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SUMMARY
Multivariate estimation fitting a common structure to estimates of genetic and environmental

covariance matrices is examined in a simple simulation study. It is shown that such parsimonious
estimation can considerably reduce sampling variation. However, if the assumption of similarity in
structure does not hold at least approximately, bias in estimates of the genetic covariance matrix can
be substantial. For small samples and more than a few traits, structured estimation is likely to reduce
mean square error even if bias is quite large. Hence such models should be used cautiously.

INTRODUCTION
Accurate estimation of genetic covariances and correlations is inherently problematic as it re-

quires substantial numbers of records on pairs of close relatives for all traits of interest, and as it may
impose a considerable computational burden. Examining literature results, Cheverud (1988) found
that estimates of genetic correlations for sets of traits such as body measurements are often very
similar to their phenotypic counterparts. Others reported corresponding patterns for different natural
populations (Roff 1995, 1996), in plants (Waitt and Levin 1998) and livestock (Koots and Gibson
1996; Kominakis 2003). Cheverud’s suggestion to substitute estimates of phenotypic for genetic
correlations, in particular when sample sizes are small or pedigree information is limited, has met
with justifiable criticism (Willis et al. 1991; Kruuk et al. 2008). However, the idea of ‘borrowing
strength’ from the phenotypic covariance matrix in estimating genetic covariances is appealing.

As multivariate analyses involving more than a few traits have become computationally feasible,
there has been increasing interest in ‘structured’ estimation. A modern, mixed model based analogue
to Cheverud’s proposal might be to estimate genetic and phenotypic or environmental covariance
matrices, imposing a common structure on the two matrices. This paper examines three alternatives
to do so and their impact on estimates and their sampling properties.

MATERIAL AND METHODS

Structured estimation. Consider a multivariate analysis of q traits, fitting a simple animal model.
Let ΣG and ΣE denote the covariance matrices for additive genetic and residual effects, respectively.
Unstructured. In most multivariate analyses, we assume covariance matrices are ’unstructured’ (US),
i.e. we describe the q(q + 1)/2 distinct elements of each matrix by the corresponding number of
parameters. A common parameterisation is to the elements of the Cholesky factor of a matrix.
Common correlation. To fit a common correlation (CORR) matrix, R, we model ΣG = SGRSG and
ΣE = SERSE , with SG and SE the diagonal matrices of genetic and residual standard deviations.
Common principal components. Fitting common principal components (CPC), we assume that both
matrices have the same eigenvectors, V, but different eigenvalues, i.e. ΣG = VΛGV′ and ΣE =

VΛEV′ with ΛG and ΛE the diagonal matrices of genetic and residual eigenvalues.
Common GARP model. A related, common structure is obtained by modelling ΣG = UDGU′ and
ΣE = UDEU′, with U a unitary, lower triangular matrix. The non-zero off-diagonal elements of
U have an interpretation as regression coefficients in an auto-regressive model, hence the acronym
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438



Proc. Assoc. Advmt. Anim. Breed. Genet. 18:438–431

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

λλ1

−
20

0
20

40

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

θθ1

2
5

8

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

∆∆G

10
20

30

●

●

●
●

●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

2
6

10

ψψ1

0.
3

0.
5

0.
7

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

rG12

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

0.3 0.5 0.7

−
20

0
20

40

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

0.3 0.5 0.7

5
10

15

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

0.3 0.5 0.7

10
30

50

●

●
●

●
●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

0.3 0.5 0.7

10
20

30

0.
3

0.
5

0.
7

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

0.3 0.5 0.7

Figure 1. Mean estimates (see text for definitions) for example I, for equal (top row) or un-
equal (bottom row) heritabilities and rE = 0.2 to 0.8 (◦ US, N CORR, � GARP, • CPC).

GARP, standing for generalised auto-regressive parameters (Pourahmadi et al. 2007). Correspond-
ingly, the elements of the diagonal matrices DG and DE represent the ‘innovation’ variances, i.e. for
variable i the conditional variance given variables 1 to i − 1.
Parsimony. Each of the 3 structured models reduces the number of parameters to be estimated by
q(q − 1)/2, i.e. from p = q(q + 1) in the US case (for ΣG and ΣE) to p = q(q + 3)/2.

Simulation. Behaviour of restricted maximum likelihood (REML) estimates for the 4 different pa-
rameterisations was examined considering a simple, balanced paternal half-sib design (s sires with n
progeny each). This involved sampling of the matrices of mean squares between and within families
from appropriate central Wishart distributions, performing 10 000 replicates for each scenario con-
sidered. Maximisation of the likelihood, constraining both Σ̂G and Σ̂E to be positive definite, was
carried out using a Method of Scoring algorithm combined with a derivative-free search.
Summary statistics. Means over replicates were calculated for estimates of genetic correlations (rG i j),
the eigenvalues of Σ̂G (λi), the log likelihood (logL), and (for VX = {vX i} in ΣX = VXΛXV′X)
- the angle between i−th eigenvectors of ΣG and Σ̂G: θi = (180/π) arccos |v̂′G ivG i|

- the angle between i−th eigenvectors of Σ̂G and Σ̂E : ψi = (180/π) arccos |v̂′G iv̂E i|

- the ‘quadratic loss’ in Σ̂G: ∆G = tr(Σ̂GΣ−1
G − I)2

- the mean squared difference in r̂G i j and r̂E i j (in %): ∆R =
∑q

i=1
∑q

j=i+1(r̂G i j − r̂E i j)2/(q(q − 1)/2)
- the ‘adjusted’ Akaike information criterion: AIC= −2logL + 2p(1 +

p+1
qsn−p−1 )

Example I. Example I comprised q = 2 traits with a genetic correlation of rG 12 = 0.5 and equal
phenotypic variances (σ2

P = 100), for a moderate sample size (s = 500 with n = 8). Environmental
correlations considered were rE 12 = 0.2 to 0.8. Scenario A assumed heritabilities for both traits were
equal (h2

1 = h2
2 = 0.3), while scenario B involved different values (h2

1 = 0.36, h2
2 = 0.24).

Example II. The second example involved q = 6, again using equal parameters of h2
i = 0.33, rG i j =

rE i j = 0.5 and σ2
P = 100 for all traits to construct population values for ΣG and ΣE . ΣE was then

replaced by TΣET′, with T =
∏q

i< j C(α)i j and C(α)i j a rotation matrix with elements cii = c j j =

cos(α), ckk = 1 for k , i, j, ci j = sin(α), c ji = −ci j and zero otherwise. Rotation angles from α = 0°
to 6° (equal for all i, j) were used to generate ΣG and ΣE with increasingly different eigenvectors.
Three sample sizes, s = 1000, n = 20, s = 500, n = 10 and s = 250, n = 8, were examined.

439



Statistical Methods II

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●
● ●

●
●

λλ1

−
20

−
10

0

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●θθ1

0
5

10

● ●
●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●0
10

20 ψψ1

1 3 5

● ● ● ●
●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

0
1

2

∆∆R

1 3 5

Figure 2. Means statistics for example II
(s=1000, n=20; see Figure 1 for legend).

RESULTS
Means of summary statistics for example I are sum-
marised in Figure 1. For equal heritabilities, eigen-
vectors of ΣG and ΣE are collinear regardless of
the value of rE12 (shown along the horizontal axes).
Hence CPC is the correct model throughout, and es-
timates of λ1 (expressed here as % deviation from
population value) and rG 12 for CPC and US are vir-
tually the same. Fitting CPCs thus reduces sampling
variation in the direction of the first genetic eigen-
vector (θ1) substantially, and yields a consistently
lower loss in Σ̂G (∆G) than the US model. For CORR
and GARP, estimates of rG 12 are dominated by the
population value for rE 12 (i.e. r̂G 12 closely follows
rE 12), with a corresponding bias in estimates of λ1.

The angle between the first eigenvectors of Σ̂G and Σ̂E (ψ1) is similar to that for US, except for high
values of rE 12. With a moderate sample size, there is a narrow range of rE 12 , rG 12 (≈ 0.35 − 0.60)
for which these structured models reduce ∆G compared to US.

For h2
1 , h2

2, however, CPC is no longer the correct model, with the angle between the first
eigenvectors of ΣG and ΣE ranging from 22.7° (rE 12 = 0.2) to 14.6° (rE 12 = 0.8). Fitting CPC for
this case, estimates of λ1 and rG 12 are little affected, but estimates of the direction of eigenvectors
are heavily biased, with a correspondingly large loss ∆G. Nevertheless, CPC appears advantageous
over both CORR and GARP for larger differences between rG 12 and rE 12.

Results for example II are given in Figure 2, with different values of the rotation angle α along
the horizontal axes. The population value for ψ1 (shown as smooth gray line) increases linearly with
the α used, causing estimates of θ1 to increase similarly when fitting CPC. Again, estimates of λ1 are
relatively little biased, even if the CPC model is grossly wrong. True differences in ∆R (gray line)
increase quadratically with α. For US analyses, estimates of ∆R are consistently larger, reflecting
marked sampling variation. All three structured models underestimate differences in genetic and
environmental correlations for values of α larger than ≈ 3°.

Corresponding values for ∆G together with the proportion of replicates for which each model
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Figure 3. Estimates of ∆G and proportion of samples (in
%) for which each model fitted ‘best’ for example II
(◦ US, N CORR, � GARP, • CPC).

fitted ‘best’, based on the value of
AIC, are shown in Figure 3. With a
difference of 15 parameters between
US and structured models, the lat-
ter can provide estimates of ΣG with
substantially lower quadratic loss
than US, especially for small sam-
ples. While CORR and GARP ap-
peared advantageous over CPC in
terms of ∆G, model selection on
the basis of AIC generally favoured
CPC over the other structured mod-
els, decreasingly so as α increased.
Bias in both the individual parame-
ters and ∆G increased faster with α
for CPC than for CORR or GARP.
AIC is derived from logL and thus
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dominated by Σ̂E , i.e. such model selection by and large does not aim at minimising loss in Σ̂G.

DISCUSSION
It has been demonstrated that joint modelling of the genetic and environmental covariance matrix

in mixed model analyses is readily feasible, and can result in reduced sampling variation. This
resulted in ‘improved’ estimates of ΣG, i.e estimates with a smaller quadratic loss than unstructured
estimates in a range of scenarios. Of the three alternative parameterizations considered, none proved
best overall. The common principal components model tended to yield least biased estimates of
the first genetic eigenvalue. Reduction in mean square errors and loss generally comes at the price
of bias in estimates. Disconcertingly, standard likelihood based model selection procedures (AIC)
appeared to favour parsimonious models imposing a common structure for a range of cases where
this was not the appropriate model, in spite of accounting for the number of parameters estimated.
For small samples in particular, ∆G somewhat higher than in the US case and thus potentially non-
negligible bias seemed to be tolerated. Further work is necessary to determine the best strategy for
model selection in practical applications.

A less rigid alternative to the assumption of a common structure may be a ‘shrinkage’ of the
estimated genetic towards the phenotypic covariance matrix. While this does not reduce the number
of parameters to be estimated, it can reduce sampling variation in Σ̂G and thus ∆G. For instance, we
could maximise logL subject to a penalty which measures the divergence between Σ̂G and Σ̂G + Σ̂E .
This is similar in spirit to the ‘bending’ procedure proposed by Hayes and Hill (1981). Preliminary
analyses have been promising, showing a marked reduction of loss in Σ̂G even for mild penalties
accompanied by relatively small bias.

CONCLUSION
Structured estimation provides a powerful tool to increase the accuracy of genetic parameter

estimation, especially for multivariate analyses comprising more than a few traits and smaller sample
sizes, and is readily implemented in a mixed model framework. However, as always, there is the
trade-off between a reduction in sampling variation and bias. The utility of such analyses depends
very much on the underlying assumption of a common structure to hold at least approximately –
while parsimonious estimation may yield estimates with reduced loss or mean square error, this may
be at the expense of substantial bias. Structured estimation appears most promising when sample
sizes are small, but such models are not a substitute for using data sets of sufficient size.
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