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SUMMARY 

vo113 

A method of estimating genotype probabilities in complex pedigrees is described. The method is 
similar to existing genotype elimination methods, but is based on sampling inheritance rather than 
genotype. This removes assumptions regarding the distribution of alleles in ungenotyped base 
animals, reducing bias in the genotype probability estimates. 
Keywords: Genetic markers, complex pedigrees 

INTRODUCTION 
Increasing use of markers to detect quantitative trait loci (QTL) is being made by animal breeders. 
The process is still expensive and consequently only a proportion of the population is genotyped. 
The probability that ungenotyped individuals possess particular genotypes at these loci is of interest, 
and is similar to the problem faced by human geneticists concerned with carriers of genetic disorders. 

Currently no algorithm for determining these probabilities unbiasedly is available for large complex 
pedigrees containing many intersecting loops, which are the norm for animal breeders. Loops cause 
problems for approximation methods such as peeling based algorithms (eg. Elston and Stewart 
1971). A method for computing unbiased genotype probabilities for ungenotyped animals in 
complex pedigrees would be most useful for both human and animal geneticists. 

One approach to the estimation of genotype probabilities is to repeatedly sample the genotype of the 
entire pedigree. Each sample must be consistent with the observed genotypes and adhere to the 
mendelian rules of inheritance. If the origin (paternal or maternal) of the alleles is specified in the 
sample, then it can be referred to as an ordered legal genotype sample. 

Sobel and Lange (1996) use the genotype elimination algorithm (see Lange 1997) to generate 
ordered legal genotypes as a first step in a QTL detection algorithm. The genotype elimination 
algorithm repeatedly cycles through the pedigree, eliminating any brdered genotypes that are 
inconsistent with the set of ordered genotypes currently feasible for parents and offspring. The result 
is a list of ordered genotypes for each animal, which are consistent with the observed marker data. 
Iteration can be used to narrow this down further to a list in which each animal has only a single 
ordered genotype (Lange 1997). In each cycle, one ordered genotype is randomly chosen for an 
animal with more than one possible ordered genotype, and the genotype elimination algorithm 
applied to the newly constrained pedigree. This is referred to here as genotype elimination through 
genotype constraint (GEGC). 

* AGBU is a joint institute of NSW Agriculture and The University of New England 
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For Sobel and Lange (1997), any legal ordered genotype was satisfactory, as they were only used as 
starting values in a larger algorithm. However, if legal genotypes are being used to estimate 
genotype probabilities, not only must the genotypes be legal, they must be random samples from the 
appropriate distribution. The random parts of the GEGC algorithm are in the choice of the animal to 
constrain in each cycle, and its genotype. Ideally, a genotype would be selected with probability 
according to the (constrained) genotype probability for that animal, However this is unknown, and 
its estimation is likely to be the reason for implememing the algorithm in the first place. Heath 
(1998) included a peeling step in the GEGC algorithm .to estimate constrained genotype probabilities 
prior to each round of constraint. This should reduce, but not eliminate bias in genotype probabilities 
estimated from repeated sampling, as peeling produces biased genotype probability estimates in the 
presence of loops (Fernando et al. 1993). 

Without markers, but with phenotypic measurements for a quantitative trait, it is possible to draw 
QTL genotype samples for the entire pedigree (Tier and Henshall, pers comm). If it were feasible to 
implement this method with marker data, then the samples would provide unbiased genotype 
probability estimates. Unfortunately, due to the high proportion of illegal marker configurations, the 
method is probably infeasible for large pedigrees with marker data. However, the idea of sampling 
inheritance rather than genotype is applicable to genotyped pedigrees and a modification to the 
GEGC algorithm to incorporate inheritance sampling is described here. 

METHOD 
Animals inherit a marker allele from each parent. Each of these alleles will have originated from 
either a grandfather or grandmother. The origin of each allele is its inheritance state. Marker data 
may limit the inheritance state of an allele to a single configuration. Such an allele is said to be 
constrained in its inheritance state. Otherwise, the allele’s inheritance state is unconstrained by the 
marker data. 

The Geilotype Elimination through Inheritance State Constraint (GELC) Algorithm. The 
algorithm proceeds as follows: 
1. Apply genotype elimination to construct a list of feasible ordered genotypes for each animal 

from the marker data. 
2. From the feasible genotypes found in step 1, construct a list of alleles with unconstrained 

inheritance states. 
3. Repeat the following steps until no unconstrained inheritance states remain: 

a) Randomly chose an allele from the current list with unconstrained inheritance states. 
b) Assign the allele chosen in step 3a a random inheritance state. 
c) Eliminate any infeasible genotypes resulting from Step 3b. 
d) Rebuild the list of alleles with unconstrained inheritance states. 

[All animals will now have either a single feasible ordered genotype, or multiple ordered genotypes 
with equal probability, or the sample may be illegal]. 
4. Store (or accumulate) the sample if legal. 
5. Restore the original list of alleles with unconstrained inheritance states identified in step 2 and 

repeat steps 3 and 4 until sufficient samples are drawn. 
6. Calculate ordered genotype probabilities for all individuals as the mean of the samples. 
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A special case of multiple ordered genotypes with equal probability occurs when a marker allele is 
equally likely to take any value, because that particular <allele was not measured anywhere in the 
pedigree. 

As the inheritance state of all animals is not sampled in a single step, but in multiple steps 
conditional on previous steps, some bias is introduced. Some samples are found after fewer cycles 
than others. A variation of the GEIC algorithm is to weight each sample by a function of the number 
of cycles used in obtaining the sample. We will refer to this as the GEICW algorithm. 

Table 1. Simulated pedigree and observed unordered genotypes ( . . denotes genotype 
unknown). 

Animal 1 2 3 4 !j 6 7 8 
Sire 0 0 0 2 :! 4 2 7 
Dam 0 0 0 1 3 5 5 6 
Genotype 13 . . . . . . 12 . . 11 11 

Evaluation A small pedigree was constructed to compare the algorithms (see Table 1). Three 
alleles are observed in the pedigree, labelled 1, 2, and 3. The true genotype probabilities for each 
animal were established using an exhaustive search (ES) of the complete pedigree space (an 
infeasible process for all but very small pedigrees, unless there are no loops in the pedigree). Three 
iterative genotype elimination algorithms were tested, genotype elimination through genotype 
constraint (GEGC), genotype elimination through inheritance state constraint with unweighted 
samples (GEIC) and GEIC with samples weighted by 2” where n is the number of cycles used to 
obtain the sample (GEICW). Animals to be constrained were chosen randomly from a uniform 
distribution of those available, and the genotype or inheritance state chosen randomly from a uniform 
distribution of those available. 10,000 samples were drawn for each method, and the results 
accumulated. 

RESULTS AND DISCUSSION 
Table 2 contains the probabilities obtained using the four methods for those animals where the 
genotype probabilities are of interest. None of the sampling methods provided genotype probabilities 
identical to those obtained using an exhaustive search, but GEIC and GEICW produced estimates 
closer to those from ES than GEGC did. For example, GEGC severely underestimated the 
probability of animals 2, 4 and 6 being homozygous. The estimates produced by GEICW were 
clearly superior to those produced by GEIC. Additional research will establish whether better weight 
functions exist. 

Randomly sampling an inheritance state for a random animal is similar to sampling a genotype for 
that animal’s parents given the genotypes of progeny, which is similar to what occurs in the 
algorithm of Heath (1998). The properties of the estimates produced by this algorithm and GEIC 
require further investigation. GEIC should be equally suited to large complex pedigrees and should 
be quicker and less biased as no peeling step is required. 
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Table 2. Genotype probabilities (%) obtained using an exhaustive search (ES), genotype 
elimination through constraint (GEGC) and genotype elimination through inheritance 
constraint unweighted (GEIC) and weighted (GEICW). The paternal alleles precede maternal 
alleles, and “*” indicates that the allele was not measured anywhere in the pedigree, and is 
therefore unknown 

Ordered Genotype probability (%) 
Animal genotype ES GEGC GEIC GEICW 

2 *1,1* 14.3 28.7 
11 

12,21 
3 *1,1* 

*2,2* 
4 *1 

*3 
11 
13 
21 
23‘ 

5 21 
12 

6 *1 
11 
12 
21 
31 

42.9 5.7 
14.3 18.4 
14.3 18.4 
35.7 31.5 

7.7 19.8 
3.6 15.5 

46.4 18.8 
32.1 25.2 

7.1 10.4 
3.6 10.2 

28.6 36.9 
71.4 63.1 

3.6 15.6 
53.6 27.2 
28.6 26.5 

3.6 9.8 
10.7 20.9 

13.8 
31.1 
20.6 
20.6 
29.4 

6.6 
3.8 

41.7 
30.9 
10.7 

6.4 
41.2 
58.8 

2.5 
47.5 
27.5 

5.1 
175 _A 

15.2 
41.2 
14.3 
14.3 
35.7 

9.0 
3.2 

50.0 
26.2 

8.6 
2.9 

28.5 
71.5 

3.2 
52.8 
32.3 

2.9 
8.8 
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