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SUMMARY 
Calving difficulty scores recorded in beef cattle are challenging to analyse due to low frequency 

of difficult births and the scored nature of the trait, requiring analysis in a threshold model, typically 
in combination with two linear traits, birth weight and gestation length. Previous software to 
calculate estimated breeding values (EBVs) for calving ease was not able to include single-step 
methods or fit genetic groups in models of analysis. In this study, we examined the value of including 
genetic groups and genomic information via single-step genomic BLUP (ssGBLUP) in the 
TransTasman Angus Cattle Evaluation (TACE) BREEDPLAN and Hereford BREEDPLAN 
analyses, by forward-validation in genotyped animals. The greatest improvements in accuracy were 
observed when including genomic information, with increases of 0.169 and 0.106 in the Angus and 
Hereford analyses respectively. Adding genetic groups to models had no impact on accuracy, but 
increased the bias of CE EBVs in ssGBLUP analyses for both breeds. 

INTRODUCTION 
Traits that are measured as scores are often difficult to analyse, especially if the distribution of 

the scores is skewed. A linear model can be used in some cases if the scores approximate normality, 
but a threshold model is typically used to address the imbalance in measurement between categories 
(Hoeschele et al. 1995; Gilmour et al. 1998). Mixed-model threshold analyses add extra complexity 
to solving for fixed and random effects due to the requirement of estimating both the threshold values 
and the weights to apply to each categorical phenotype.  

Calving difficulty scores in BREEDPLAN analyses are characterised by low frequencies of 
difficult births. Analyses of this trait are performed using a categorical threshold model with birth 
weight and gestation length included as correlated linear traits to improve prediction for overall 
calving ease. Since 2017, BREEDPLAN analyses for most traits have been transitioning to 
ssGBLUP. In November 2019, a ssGBLUP implementation for calving ease was developed in new 
software for the BREEDPLAN component of the TransTasman Angus Cattle Evaluation (TACE, 
herein Angus), including genetic groups.  

As part of the process of developing these enhancements, the utility of genetic groups came into 
question. The addition of genetic groups was observed to substantially increase convergence times 
of the model in the Angus evaluation, and when applied to Hereford BREEDPLAN, resulted in 
changes in EBVs that were difficult to interpret. 

This paper examines the predictive ability of threshold model calving ease EBVs in Angus and 
Hereford BREEDPLAN with the inclusion of genetic groups and single-step using forward 
validation procedures. 

MATERIALS AND METHODS 
Calving ease (CE) data from the March 2022 Angus and May 2021 Hereford BREEDPLAN 

calving ease analyses after cleaning were used in this study. CE is scored as 1: no assistance required, 
2: easy pull, 3: hard pull. Genetic parameters used for these models were adapted from Jeyaruban et 
al. (2015), with the genetic group variance assumed to be equal to the genetic variance. Genetic 
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groups were fitted as routinely constructed in BREEDPLAN based on year window, breed, and 
country for the main analysis traits, with 20 groups for Angus and 16 for Hereford. There groups 
were included to improve prediction for animals with missing pedigree. Each data set was split into 
two groups, “training” and “validation”, based on year of birth. The training set included animals 
born before 2019, while the validation set included animals with phenotypes born from 2019 
onwards. BLUP analyses were performed in a factorial design, with and without genetic groups, and 
with and without genotypes. These four analyses were performed, first using all phenotypes, with 
the resulting EBVs for validation animals denoted as 𝒖𝒖�𝑤𝑤. Phenotypes for the validation animals 
were then removed and the analyses repeated, with the resulting EBVs denoted as 𝒖𝒖�𝑝𝑝. The subscripts 
“𝑤𝑤” and “𝑝𝑝” refer to “whole” and “partial” analyses respectively, with the partial EBVs of validation 
animals (𝒖𝒖�𝑝𝑝) informed through their pedigree and genomic relationships with the training animals. 
Maternal effects were fitted as routinely calculated in BREEDPLAN, but were not examined in the 
cross-validation, because the validation animals were not chosen to remove all phenotypes 
connected to the dam. EBVs were analysed on the underlying scale. 

Correlations were used to examine the change in EBVs between each analysis. Cross-validation 
metrics were calculated using the method of Legarra et al. (2018). Traditional phenotype-based 
cross-validation metrics were not considered for this analysis due to the categorical nature of the 
calving ease trait. Accuracies were calculated by the formula  

𝑎𝑎𝑎𝑎𝑎𝑎 = �
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where 𝑲𝑲 is the appropriate relationship matrix for the validation animals with phenotypes for each 
trait and 𝜎𝜎𝑢𝑢,∞

2  is genetic variance in the validation animals, assumed to be the genetic variance. The 
dispersion was estimated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝑝𝑝�/𝑣𝑣𝑣𝑣𝑣𝑣(𝒖𝒖�𝑝𝑝) and the bias was estimated as 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
�𝒖𝒖�𝑝𝑝���� − 𝒖𝒖�𝑤𝑤����� /�𝜎𝜎𝑢𝑢2, which was modified by Legarra et al. (2018) to allow for comparison between 
traits. While the validation animals included both genotyped and pedigree-only animals, metrics 
calculated only included genotyped animals due to computational difficulties. Metrics were also 
only calculated on direct effects, without consideration of maternal effects. Analyses were 
performed with the AGBU commercial solver on a computer with 2 x Intel(R) Xeon(R) E5-2697 v3 
CPUs. 

Table 1. Summary of the data used in the cross-validation studies 

Angus Hereford 
# animals in pedigree 3,006,655 2,247,767 
# animals genotyped 200,259 34,585 
# phenotypes 
    Birth weight (BWT) 1,707,804 781,505 
    Calving difficulty score (CDS) 482,565 325,978 
    Gestation length (GL) 519,274 119,468 
# validation animals with phenotypes 
    Birth weight (BWT) 125,780 48,064 
    Calving difficulty score (CDS) 37,383 23,818 
    Gestation length (GL) 47,865 8,345 
Proportion of CDS scores: 1,2,3 96.1, 2.7, 1.2 93.2, 4.7, 2.1 

RESULTS AND DISCUSSION 
A summary of the data used in the forward cross-validation is presented in Table 1. The 

correlation between EBVs from pedigree models with and without genetic groups for all animals 
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was 0.912 for both the Angus and Hereford analyses. When considering animals born from 2019 
onwards, this correlation increased to 0.995 and 0.990 for the Angus and Hereford analyses, 
respectively. For the models without genetic groups, the correlations between pedigree and 
ssGBLUP models were 0.994 and 0.990 for the Angus and Hereford analyses, respectively. This 
decreased for the 2019-born animals to 0.886 and 0.961 for the Angus and Hereford, respectively. 
For recent animals most likely to be used for selection, inclusion of genomic information had a larger 
impact on changes in EBVs than inclusion of genetic groups. 

Table 2. Cross-validation metrics for the Angus and Hereford analyses calculated based on 
genotyped animals born in 2019 or later 

EBV n Pedigree Pedigree GG Single-Step Single-Step GG 
Angus 

Accuracy BWT 45,613 0.475 0.475 0.840 0.839  
CE 14,606 0.340 0.340 0.533 0.534 
GL 19,351 0.441 0.442 0.672 0.676 

Dispersion BWT 45,613 0.983 0.982 1.030 1.029  
CE 14,606 0.997 0.999 1.025 1.026 
GL 19,351 0.941 0.950 0.992 0.995 

Bias BWT 45,613 0.002 -0.024 -0.002 -0.033 
CE 14,606 -0.013 -0.051 -0.010 -0.056
GL 19,351 0.021 -0.029 0.001 -0.057

Hereford 
Accuracy BWT 10,285 0.677 0.672 0.869 0.863 

CE 5,715 0.401 0.413 0.516 0.526
GL 2,670 0.555 0.646 0.655 0.718

Dispersion BWT 10,285 0.968 0.965 1.010 1.012 
CE 5,715 0.942 0.917 1.008 0.992
GL 2,670 1.149 1.019 1.127 1.052

Bias BWT 10,285 -0.014 -0.003 -0.015 0.006 
CE 5,715 0.015 0.017 0.001 0.014
GL 2,670 0.138 0.038 0.133 0.029

The forward cross-validation results for the Angus and Hereford analyses are presented in Table 
2. For the Angus analyses, adding genetic groups to either pedigree or ssGBLUP models had
virtually no impact on accuracy. Adding genomic information on the other hand improved accuracy
substantially over pedigree-only analyses, by 0.365, 0.194, and 0.231 for BWT, CE and GL EBVs
respectively in the ssGBLUP model without genetic groups. Little change was also observed in the
dispersion, with all analyses close to the expected value of 1, indicating little evidence of over- or
under-prediction. An increase in bias was observed for genetic group models for all traits, especially
CE, with the bias increasing from -0.013 to -0.051 in the pedigree model, and from -0.01 to -0.056
in the ssGBLUP model.

For the Hereford analysis, the addition of genetic groups to the pedigree model increased 
accuracy for CE and GL EBVs, respectively, but as with the Angus analysis, adding genomic 
information had the largest impact on accuracy. Dispersion was improved for ssGBLUP models, 
with evidence for over-prediction in pedigree models (regressions < 1). The pattern of changes in 
bias was not consistent across traits and analyses, but for the CE trait itself, the ssGBLUP model 
without genetic groups had the least bias.  

Based on these validation results, the inclusion of genomic information in ssGBLUP had a large 
benefit to prediction by increasing accuracies, and in some cases correcting dispersion and 
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minimising bias. Similar benefits were not apparent from the addition of genetic groups, which had 
no or minor benefit for accuracy and increased bias in CE EBVs for both analyses. Dispersion was 
largely unaffected by the model, but there was evidence for over-prediction for pedigree models in 
Herefords. While the pedigree accuracy for Angus is lower than Hereford, this is likely due to 
differences in the data structure for the two validation groups and warrants further investigation. 
While large increases in accuracies were observed for the genotyped validation animals, a smaller 
increase in accuracy is expected for the non-genotyped animals. Animals directly related to a 
genotyped animal will experience the greatest benefit from single-step, while animals less related 
will derive a lower benefit. It should also be noted that these validation metrics reflect the expected 
change for animals without a phenotype, and that individual animal results will vary. These results 
need to be verified for maternal effects but will require modifications to the validation set design. 

Computation times for the models, including genomic information or genetic groups, had a large 
impact on the commercial viability of these analyses. For the Angus analyses, the model without 
genomics or genetic groups took 10,377 iterations to converge and 2.03 hours. The addition of 
genetic groups to this model required 19,986 iterations and 5.9 hours. The genomic model without 
genetic groups required 11,375 iterations and 20 hours to converge, while the addition of genetic 
groups increased this to 20,038 iterations and 37.34 hours. While the increase in computation times 
from the addition of genomic information is large, there is a corresponding increase in accuracies. 
The addition of genetic groups had no benefit to accuracies and almost doubled the number of 
iterations required. Therefore, inclusion of genetic groups constructed with the current strategy in 
this analysis is not recommended. 

Calculating the mean of the 𝑲𝑲 matrix for each trait makes using the Legarra et al. (2018) method 
challenging for pedigree-only animals when validating a single-step analysis. While an algorithm 
exists for calculating the diagonal of the ssGBLUP relationship matrix 𝑯𝑯 (Legarra e t  a l . 2020), 
summary statistics for blocks of 𝑯𝑯 are a challenge. For genotyped animals, the block of the 𝑯𝑯 matrix 
required is a sub-matrix of the genomic relationship matrix 𝑮𝑮, which can be calculated easily, but 
the other subblocks of 𝑯𝑯 are more complex. One approach could be to solve the equation 𝒗𝒗′𝑯𝑯−1𝒗𝒗 
by conjugate gradient, where 𝒗𝒗 is a vector of zeros, except in the positions of the validation animals, 
which are set to 1/𝑛𝑛, where n is the number of validation animals.    

CONCLUSION 
Clear improvements in predictive ability were obtained for genotyped animals with the addition 

of genomic information in ssGBLUP models. However, the addition of genetic groups did not 
provide any improvements in calving ease direct predictions. Given the significant increase in 
computation time required to add genetic groups to the model, this term can be left out of the model 
without impact on recently born animals who are candidates for selection.    
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