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SUMMARY 

Improving feedlot performance, carcase weight and quality is a primary goal of the beef industry 
globally. Here we used data from 3,408 Australian Angus steers from seven birth cohorts (2011 to 
2017) with genotypes for 45,152 SNPs. We report genetic parameter estimates and accuracies of 
genomic estimated breeding values (GEBV) for feedlot and carcase traits, namely feedlot average 
daily gain (ADG), carcase weight (CWT) and carcase Meat Standard Australia marbling score 
(MBL). Prediction accuracies were estimated based on traditional method as well as method LR. 
The average prediction accuracies across cohorts assessed with the traditional method were 0.28 
(ADG), 0.49 (CWT) and 0.50 (MBL), while method LR accuracies were 0.47 (ADG), 0.64 (CWT) 
and 0.59 (MBL). We found a strong correlation (0.74, P-value<0.001) between traditional accuracies 
and method LR accuracies. Heritability estimates were moderate to large (0.29 for ADG, 0.53 for 
CWT and 0.41 for MBL). The metrics of GEBV quality and heritabilities reported here suggest good 
potential for accurate genomic selection of Australian Angus for feedlot performance and carcase 
characteristics. 
 
INTRODUCTION 

Genomic selection represents a revolution in animal breeding. It enables the identification of 
superior animals through the estimation of genomic breeding values (GEBVs) for relevant 
quantitative traits (Goddard et al. 2010; Hayes et al. 2013). But the accuracy of GEBVs depends on 
several aspects including the size of the reference population and heritability of the trait (Goddard 
and Hayes 2009).  

In this sense, Legarra and Reverter (2018) have proposed the method LR, which provides 
estimates of accuracy and biases by comparing genomic predictions based on partial and whole data. 
This method has been successfully applied to data from several different species (Aliakbari et al. 
2020; Chu et al. 2019; Macedo et al. 2020; Silva et al. 2019).  

Here we used method LR and a traditional method to evaluate the accuracy of genomic estimates 
in Australian Angus cattle. Angus is the dominant breed in the Australian cattle herd with an 
estimated 5.6 million females influenced by Angus genetics, accounting for 48% of the national 
female heard (Angus Australia 2019). Considering its importance, we aimed at determining the 
potential for accurate genomic selection of Australian Angus for feedlot performance and carcase 
characteristics. 

 
MATERIALS AND METHODS 

The dataset used for this study was collected as part of the Australian Angus Sire Benchmarking 
Program (ASBP). It includes phenotypes, genotypes, and fixed effect information of 3,408 
Australian Angus steers from seven year of birth cohorts (YOB, 2011 to 2017) and imputed 
genotyped for 45,152 autosomal SNPs. The steers represent 12 breeding properties and 294 sires 
with an average of 11.5 progeny per sire, ranging from 1 to 27. The number of animals and sires (in 
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brackets) in YOB cohorts 2011 to 2017 are respectively 361 (35), 514 (48), 579 (44), 274 (25), 569 
(49), 575 (63) and 536 (56). 

Three phenotypes were analysed, including feedlot average daily gain (ADG, 1.59 ± 0.33kg/d), 
carcase weight (CWT, 432.99 ± 65.60kg) and Meat Standard Australia marbling score (MLB, 
494.66 ± 122.54). Variance components, heritabilities and genetic correlations were estimated using 
Qxpak5 (Pérez-Enciso and Misztal 2011). The linear mixed model used to analyse all traits 
contained the fixed effects of contemporary group (CG), including property of origin, year and 
month of birth, and date of measurement, age of dam (AOD) at birth of calf in years and the linear 
covariate of age at measurement. Contemporary groups were different for each phenotype due to the 
different measurement dates. The random additive polygenic and residual effects were fitted with 
assumed distributions N(0, G⨂VG) and N(0, I⨂VR), respectively, where G represents the genomic 
relationship matrix (GRM) generated using the first method of VanRaden (2008), VG is the genetic 
covariance matrix, I is an identity matrix, VR is the residual covariance matrix and ⨂ represents the 
Kronecker product. The analyses were undertaken in two stages. First, one multivariate (3-variate) 
analysis was performed with all traits. The resulting GEBV (ûw) from this multivariate analysis, 
based on the whole dataset, was used as the calibration in the computation of accuracy and bias. 
Next, a series of single-trait analyses were undertaken where the values from animals from a given 
YOB cohort were treated as missing. The resulting GEBV (ûp) from these univariate analyses based 
on partial data were used as the validation. 

To ascertain the quality of the resulting GEBV in the validation population we used: 1) 
Traditional accuracy, calculated as the Pearson correlation between a GEBV and its associated 
phenotype adjusted for fixed effects for individuals in the validation population, divided by the 
square root of heritability (Bolormaa et al. 2013); 2) Method LR Bias, calculated as the difference 
between the average GEBV of individuals in the validation population minus that using the 
calibration data; 3) Method LR Dispersion, measured for individuals in the validation population 
from the slope of the regression of  ûw on ûp; and 4) Method LR accuracy, computed for individuals 
in the validation population according to Legarra and Reverter (2018) as follows: 

ACCLR =  �
𝑐𝑐𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝒑𝒑�

�1 + 𝐹𝐹� − 2𝑓𝑓�̅𝜎𝜎𝑔𝑔,∞
2

 

Where 𝐹𝐹� is the average inbreeding coefficient, 2𝑓𝑓 ̅ is the average relationship between 
individuals, and 𝜎𝜎𝑔𝑔,∞ 

2  is the genetic variance at equilibrium in a population under selection which, 
assuming the individuals in the validation population are not under selection, can be estimated by 
the additive genetic variance estimated from the partial dataset. 

 
RESULTS AND DISCUSSION 

Heritability estimates were 0.30 for ADG, 0.53 for CWT and 0.41 for MBL which are well within 
reported values in literature. For instance, Somavilla et al. (2017) using Bayesian GBLUP to 
evaluate feedlot ADG in Nellore cattle found a heritability of 0.31. For the carcase traits, Su et al. 
(2017) working with Hereford and admixed Simmental reported heritabilities of 0.48 and 0.43 for 
marbling score and 0.51 and 0.34 for CWT, respectively. 

Genetic correlations were high and positive between ADG and CWT (0.64) and close to zero 
between those 2 traits and MBL (0.05 and 0.04, respectively). These results corroborate literature 
that have reported low correlations between live/carcass weight and traits such as fat deposition and 
marbling (Nkrumah et al. 2007). 

The metrics of GEBV quality are presented in Table 1. Traditional accuracies were 0.28 (ADG), 
0.49 (CWT) and 0.50 (MBL), while method LR accuracies were 0.47 (ADG), 0.64 (CWT) and 0.59 
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(MBL). This is in accordance with the literature that reports greater accuracy for carcase traits than 
for live animal body composition traits (Boerner et al. 2014) and increased accuracy for traits with 
a higher heritability (Fernandes Júnior et al. 2016). We found a strong correlation (0.74, P<0.001) 
between traditional accuracy and Method LR accuracy (Figure 1). Values of bias for all the traits 
were fairly close to zero, showing an absence of bias. In the absence of bias, the expected value of 
dispersion is 1, which was observed for all traits.  
 
Table 1. Traditional accuracy (ACCT) and method LR accuracy (ACCLR), bias (BiasLR) and 
dispersion (DispLR) of GEBV for feedlot average daily gain (ADG), carcase weight (CWT) and 
marbling score (MBL), based on a 7-way cross-validation schema 

 
  ADG CWT MBL 
  Mean SD Min Max Mean SD Min Max Mean SD Min Max              
             
ACCT 0.28 0.11 0.08 0.42 0.49 0.07 0.40 0.58 0.50 0.06 0.43 0.60 
ACCLR 0.47 0.04 0.42 0.53 0.64 0.05 0.57 0.67 0.59 0.05 0.53 0.67 
BiasLR 0.00 0.01 -0.01 0.01 0.27 0.61 -0.54 1.20 -0.08 1.71 -2.14 2.13 
DispLR 0.97 0.15 0.74 1.17 0.99 0.09 0.83 1.10 0.98 0.09 0.88 1.13 

 

 
Figure 1. Relationship between traditional accuracy and Method LR accuracy for feedlot 
average daily gain (ADG), carcase weight (CWT) and carcase marbling score (MBL) 
according to the 7-way cross-validation scheme based on year of birth cohorts 

 
The relationship between heritability and GEBV accuracy is also reflected in the phenotypic 

differences between validation animals in the highest and lowest GEBV quartile (Table 2). Based 
on SD units, ADG shows a Q1-Q4 difference of 0.35, CTW shows 0.93 and MBL 0.89. This 
demonstrates that the higher the GEBV accuracy, the higher the genetic gain expected when 
selecting elite bulls to sire the next generation. 
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Table 2. Difference between highest and lowest quartile for adjusted phenotypes (feedlot 
average daily gain - ADG, carcase weight - CWT and marbling score - MBL) based on GEBV 
ranking 
 

Cohort ADG CWT MBL 
    
2011 0.00 33.57 103.47 
2012 0.14 33.25 116.36 
2013 0.08 34.44 99.20 
2014 0.10 25.90 78.60 
2015 0.08 28.36 85.45 
2016 0.13 31.51 86.56 
2017 0.09 20.53 60.19 
Average 0.09 29.65 89.98 
Average/SD* 0.35 0.94 0.89 

                                                     *Standard deviation of adjusted phenotypes 
 
CONCLUSIONS 

The metrics of GEBV quality based on method LR, including accuracy, bias, and dispersion, as 
well as the heritabilities reported here, suggest good potential for accurate genomic selection of 
Australian Angus for the analysed traits. Further analyses are being undertaken to include other 
relevant feedlot and carcass traits. 
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