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SUMMARY 

Identifying causal variants in the bovine genome is difficult as there are millions of variants. 
Work in humans shows that most variants affecting complex traits lie in non-coding functional 
regions. However, functional regions are generally species specific and not well annotated in non-
model organisms. This project annotated functional regions directly in dairy cows using a laboratory 
technique called ChIP-seq (Chromatin Immunoprecipitation followed by sequencing). 

We generated 86 functional datasets across 6 tissues from 3 lactating Holstein dairy cows. This 
represents millions of putative functional regions in the bovine genome including, for the first time, 
in the mammary gland of lactating dairy cows. These regions were highly enriched for putative 
causal variants (eg milk trait QTL and eQTL). The results represent the largest database of functional 
regions in the bovine genome to date and can be used to narrow the search space for causal variants 
and improve genomic predictions. 

 
INTRODUCTION 

Genomic prediction aims to predict the phenotypes of animals based on their genotypes. It does 
this by finding genotypes which associate with the phenotype in a training population. However, 
this association could be based on linkage disequilibrium (LD) and not a direct causal relationship 
between the trait and the genotype. This means the accuracy of genomic predictions can break down 
over time as LD breaks down and is not useful in breeds which have different LD to the training 
population. If we could use the genetic variant which is directly affecting the phenotype (the causal 
variant) in our predictions, this would not occur (Hayes et al. 2016).  

Work in other species has found that causal variants are enriched in functional regions (Schaub 
et al. 2012). Until recently, these were not well annotated in the bovine genome (Fang et al. 2019). 
Functional regions can be identified with Chromatin Immunoprecipitation followed by sequencing 
(ChIP-seq) to identify functional marks which pinpoint these regions in the genome. Examples of 
functional marks include histone modifications and transcription factors. Histone modifications are 
alterations to the histone proteins which DNA is wrapped around in the cell. Four histone 
modifications of interest are H3K4Me3-found at promoters, H3K4Me1-found at enhancers, 
H3K27ac-found in active regions and H3K27Me3-found in inactive regions (Kimura 2013). 
Another marker of interest is the binding site for the transcription factor CTCF which is found at 
insulators and other regions of importance (Kim et al. 2015). This study annotated these functional 
markers in 6 tissues (mammary, liver, kidney, spleen, lung and heart) in Holstein dairy cows and 
tested whether these regions are enriched for causal variants.  

 
MATERIALS AND METHODS 

Chromatin Immunoprecipitation and Sequencing. Heart, kidney, liver, lung, mammary 
gland, and spleen were sampled from 3 Holstein dairy cows post-mortem and snap frozen in liquid 
nitrogen before being stored at -80°C until use. At sampling animals were at 5th, 7th, and 1st parity 
and 208, 173 and 65 days of lactation respectively. Ethics approval for 2 of the cows were obtained 
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from Department of Jobs, Precincts and Regions Ethics Committee (Application No. 2014-23). The 
3rd cow was not euthanised for this study but culled as a result of injury. Frozen tissue was ground 
for 3 minutes in the Geno/Grinder (SPEX SamplePrep) and fixed for 10 minutes with 10% 
formaldehyde. Chromatin was prepared using the Magnify Chromatin Immunoprecipitation kit 
(ThermoFisher) as per the manufacturer’s instructions. Fixed chromatin was sheared to 200-500bp 
using the Covaris S2 (Covaris) for three minutes, duty cycle five, % intensity four and 200 cycles 
per burst. Chromatin immunoprecipitation was performed using the Magnify Chromatin 
immunoprecipitation kit (ThermoFisher) with some modifications. Sheared chromatin was 
immunoprecipitated with 0.25-0.5µg of antibody for the histone modifications (H3K4Me3, 
H3k4Me1, H3K27ac and H3K27Me3) or 10µl of antibody for CTCF. Sequence libraries were 
prepared for each ChIP sample and a control for each chromatin preparation (input sample) using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) as per the 
manufacturer’s instructions and run on the Hiseq 3000 (Illumina) in a 150 cycle paired end run. Each 
library was sequenced with 20-300 million reads. Raw sequence reads were trimmed of adapters 
and poor-quality bases at the ends (quality less than 20) using Trimmomatic (Bolger et al. 2014). 
Trimmed reads with length less than 50 were removed. Trimmed reads were mapped to UMD3.1 
bovine genome using BWA mem with default settings (Li 2013). Poor-quality reads with q>15 were 
removed with Samtools (Li et al. 2009) and marked duplicate reads were also removed. MACS2 
with default settings was used to call peaks from mapped ChIP reads with input reads as control 
(Zhang et al. 2008). The quality of peaks was checked with deepTools plotFingerprint (Ramirez et 
al. 2016) and SPP (Kharchenko et al. 2008). 

Enrichment of Causal SNP in Functional Regions. Enrichment of putative causal SNP in 
functional regions was calculated using the formula described in (Ernst & Kellis 2010) as outlined 
below. A variety of SNP datasets were used as putative causal SNP (Table 1). Statistical significance 
of enrichment or depletion was calculated in R using a hypergeometric test. 

Enrichment=(C/A)/(B/D) where: 
A= number of positions under peaks 
B=number of positions under peaks and also a putative causal SNP 
C=number of positions that were putative causal SNP 
D=number of positions in the genome 

 
RESULTS AND DISCUSSION 

In total we sequenced 86 ChIP-seq samples, with three biological replicates in 6 tissues assayed 
for 5 marks (four samples were excluded due to low quality). There was an average of 480,000 peaks 
per sample covering an average of 13% of the genome. All samples were high quality. These data 
represent millions of putative functional regions in the bovine genome.  

Peaks were significantly enriched for putative causal variants (P<0.001) as expected (Table 2). 
The QTL for milk traits were particularly strongly enriched within peaks and particularly enriched 
within peaks found in the mammary gland (Figure 1). This is consistent with studies in other species 
which show that trait QTL are particularly enriched within histone markers specific to tissues 
relevant to the trait (Trynka et al. 2013). The 80k SNP dataset was the least enriched although these 
were still significantly enriched within peaks. It is possible that this is because these SNPs are 
contributing to multiple traits which may not be relevant to the tissues represented in this study. 
 
CONCLUSION 

This work substantially increases the number of putative functional regions found in different 
tissues in the bovine genome, including the mammary gland of lactating dairy cows. As seen in other 
species, these regions are substantially enriched for putative causal variants for important traits 
suggesting SNP within these regions should be prioritised for genomic selection. 
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Table 1. Details of putative causal SNP tested for enrichment within functional regions 
 

Dataset Number 
of SNP 

Description Reference 

Allele specific 
eQTL 1,100,446 

Allele specific expression QTL from white blood 
cells and milk cells in 112 holstein cows (P<1e-4) 

(Chamberlain et al. 
2018)  

Exon eQTL 945,832 
Exon expression QTL from white blood cells, milk 
cells, liver and muscle in 209 holstein cows (P<1e-4)  

(Xiang et al. 2018, 
Xiang et al. 2019)  

Gene eQTL 110,200 
Gene expression QTL from white blood cells, milk 
cells, liver and muscle in 209 holstein cows (P<1e-4) 

(Xiang et al. 2018, 
Xiang et al. 2019)  

Conserved 
regions 378,472 

SNP conserved in 100 species lifted over from human 
to bovine genome 

(Xiang et al 2019) 

SNP 80k 83,454 
Top 80,000 sequence variants ranked for their 
contributions to 34 traits 

(Xiang et al. 2021) 

Splice QTL 1,112,324 
Splice QTL from blood, milk cells, liver and muscle 
in 209 holstein cows (P<1e-4) 

(Xiang et al. 2018, 
Xiang et al. 2019) 

QTL Protein 
Yield 3,317 

GWAS in 32347 cows for protein yield with P<1e-7 (Xiang et al. 2020)  

QTL Fat yield 4,815 GWAS in 32347 cows for fat yield with P<1e-7 Xiang et al. 2020)  

QTL Milk 
Yield 6,883 

GWAS in 32347 cows for milk yield with P<1e-7 Xiang et al. 2020)  

QTL Fat 
percentage 12,373 

GWAS in 32347 cows for fat percentage with P<1e-7 Xiang et al. 2020)  

QTL Protein 
percentage 17,012 

GWAS in 32347 cows for protein percentage with 
P<1e-7 

Xiang et al. 2020)  

 

Figure 1. Enrichment of 3 sets of milk trait QTL within H3K27ac peaks. Peaks in mammary 
gland have the highest enrichment for these milk trait QTL 
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Table 2. Enrichment of causal SNP in ChIP-seq peaks. Enrichment of each SNP dataset 
within each histone modification or CTCF averaged across tissues  
 

 H3K4Me3 H3K27ac CTCF H3K4Me1 H3K27Me3 

Allele specific eQTL 1.86 1.96 1.93 1.76 1.69 

Exon eQTL 1.68 2.21 1.73 1.61 1.33 

Gene eQTL 2.24 2.37 2.27 1.97 1.82 

Conserved regions 1.66 1.46 1.42 1.21 1.14 

SNP 80k 1.20 1.16 1.18 1.16 1.15 

Splice QTL 1.70 1.77 1.75 1.63 1.58 

QTL Protein Yield 4.46 4.27 4.06 3.21 2.93 

QTL Fat yield 3.72 3.46 3.43 2.82 2.60 

QTL Milk Yield 3.09 2.79 2.85 2.35 2.24 

QTL Fat percentage 2.78 2.51 2.58 2.19 2.16 

QTL Protein percentage 1.85 1.91 1.80 1.58 1.40 
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