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SUMMARY 
Regardless of the mating method (natural or artificial insemination), bull fertility impacts the 

reproductive outcomes of any breeding herd. There is a need to improve our ability to genetically 
select fertile bulls, and genomic selection approaches could assist this process. Aiming at this gap 
in genomic approaches, we collected phenotypes and SNP genotypes on more than 6,000 bulls 
across six tropically-adapted breeds. Phenotypes related to male fertility were measured during Bull 
Breeding Soundness Examinations. The genomic correlations of the same trait observed in different 
breeds were positive for scrotal circumference and sheath score in most breed comparisons but close 
to zero for percentage normal sperm, suggesting a divergent genetic background for this trait. We 
confirmed the importance of breeds being part of the reference population while estimating breeding 
values in an across-breed scenario. Using this dataset, multibreed genomic predictions were obtained 
with useful accuracies. 

 
INTRODUCTION 

Fertility is a key driver of profitability for beef breeding herds in tropical and semi-arid 
environments. The standardized bull breeding soundness examination (BBSE) involves a general 
physical examination, a detailed examination of the external and internal genitalia, and a 
microscopic examination of semen cells (Entwistle and Fordyce 2003). Quantitative traits of the 
BBSE are heritable (Corbet et al. 2013) and can be improved by selection. However, the BBSE is 
labor intensive resulting in a limited number of animals being tested every year, which hinders the 
assembly of a reference population. By combining information across breeds, we were able to 
generate a reference population of reasonable size (>6,000 animals,) and we postulate that the use 
of multibreed genomic selection approaches could allow the estimation of breeding values with 
useful accuracy to assist the improvement of commercially relevant male traits.  

 
MATERIALS AND METHODS 

Animals and phenotypes. Phenotypic data was sourced on bulls from six different populations 
varying in number from 535 to 1,093 (Table 1). These were Brahman (BB) and Tropical Composite 
(TR) from the Beef CRC (Barwick et al. 2009), and cattle from four performance recorded breeding 
herds in Queensland, a Santa Gertrudis (SG), a Droughtmaster (DM), a Belmont Tropical Composite 
(BT) and an Ultra Black (UB) herd. The observed phenotypes included scrotal circumference (SC, 
cm), sheath score (Sheath, score 1-5), and the percentage of morphologically normal spermatozoa 
(PNS, %). The age at which the phenotype was observed varied across the populations; for the CRC 
cattle, the mean age at SC was around 360 d, and for Sheath and PNS around 700 d. For SG and 
DM all phenotypes were observed at around 600 d of age, while for UB and BT were around 440 d 
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and 390 d, respectively. 
Genotypes. Most animals were genotyped using a commercial SNP chip with ~50K markers. 

Genotypes were imputed to ~720K SNP using a reference population that combined Beef CRC and 
industry cattle genotyped on the higher density platform. Genotypes were first phased using Eagle 
(Loh et al. 2016) and then imputed using Minimac3 (autosomes) or Minimac4  (BTAX) (Das et al. 
2016). SNP with imputation r2 > 0.8 were kept for further analyses. To visualise the genetic 
relationship between animals a principal components analyses were calculated using PLINK1.9 
(Chang et al. 2015).  
 
Table 1. Number of records and descriptive statistics of the observed traits* 

 
  Number of records Mean (SD) of measurements 
Population** SC Sheath PNS SC Sheath PNS 

BB  1,089 1,093 947 21.26 (2.69) 3.79 (0.92) 73.70 (21.95) 
TR  985 985 985 26.55 (3.17) 3.12 (1.54) 73.01 (20.59) 
SG 918 928 896 34.46 (3.10) 2.95 (0.78) 73.28 (21.57) 
DM 568 722 680 33.68 (3.13) 3.14 (0.68) 63.55 (26.28) 
UB 836 841 771 33.80 (3.38) 1.78 (0.80) 68.77 (25.30) 
BT 527 535 429 28.11 (3.29) 1.64 (0.59) 54.65 (29.70) 

* SC scrotal circumference (cm), Sheath score (1-5), PNS percentage of normal sperm (%). 
** BB Brahman, TR Tropical Composite, SG Santa Gertrudis, DM Droughtmaster, UB Ultra Black, BT 
Belmont Tropical Composite. 

 
Statistical analyses. The phenotypes were adjusted using SAS 9.4 (www.sas.com) before the 

genomic analyses. The model for adjustment included the fixed effects of population (one per farm), 
year of birth and management group (within farm). The covariates of age and the first two principal 
components were also used. The genomic relationship matrices (GRM) were constructed following 
method 1 of VanRaden et al. (2008). Univariate, and the GBLUP analyses were run using QXPAK 
(Perez-Enciso and Misztal 2011).(Porto-Neto et al. 2015) The accuracies of the genomic predictions 
were calculated as the correlation of adjusted phenotypes divided by the square root of heritability 
and by the method LR (Legarra and Reverter 2019) that compares the predictions based on the whole 
and partial datasets to estimate accuracies and biases. 

 
RESULTS AND DISCUSSION 

The estimates of heritability for SC, Sheath and PNS across-breeds were moderate, with mean 
heritabilities, estimated using across-breed bivariate models, of 0.45, 0.59, and 0.33, respectively. 
These were at the lower end of the reported estimates for SC, but similar to values reported in the 
literature for the other traits (Corbet et al. 2013; Fortes et al. 2020). The mean genomic correlation 
between these traits calculated using the same across-breed bivariate analyses were close to zero, 
apart from a modest 0.11 between SC and Sheath (results not shown in Tables). 

Using bivariate models, we also estimated the genomic correlation of the same trait observed in 
different breeds. The mean correlation estimate for all pair-wise combinations of populations were 
0.34, 0.40 and 0.00 for SC, Sheath and PNS, respectively (Table 2). There is very low genomic 
correlation between all pair-wise combinations for PNS, suggesting different genetic architecture of 
the trait in the different breeds, except for BB and TR with a moderate -0.30. For SC, the relative 
lower genomic correlation between BB and the other breeds suggests that this trait is more 
genetically different when comparing BB to other breeds. The strong genomic correlations between 
breeds for SC and for Sheath might hint at the presence of common haplotypes affecting the traits 
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in both populations.    
 
Table 2. Genomic correlation for a given trait in two separate populations*, ** 

  
Pop 1 Pop 2 SC Sheath PNS 

BB  TR  0.2694 0.7217 -0.3052 
BB  SG 0.1248 0.5781 0.0133 
BB  DM 0.1619 0.5123 0.0289 
BB  UB 0.1036 0.5498 -0.0191 
BB  BT 0.0151 0.2347 -0.0124 
TR  SG 0.5370 0.4773 -0.0017 
TR  DM 0.6504 0.4785 -0.0024 
TR  UB 0.5445 0.7920 0.0431 
TR  BT 0.4803 0.2636 0.1332 
SG DM 0.8174 0.0303 -0.0003 
SG UB 0.5693 0.7512 -0.0093 
SG BT 0.0627 0.0301 0.0209 
DM UB 0.2470 0.2925 0.0006 
DM BT 0.0263 -0.0051 0.0038 

UB BT 0.5031 0.2610 0.0126 
Mean 0.3408 0.3979 -0.0063 

* Analyses performed using a bi-population GRM (ie. for the two populations under comparison). ** 
Traits and populations as described in Table 1. 

 
GEBV accuracy estimates for a breed, when the breed was not represented in the reference, were 

lower than those when some animals of the breed were included in the reference (comparison 
between scheme 1 vs 2, Table 3), with the largest impact on BB. This observation was expected 
given the known relationship between accuracy and genetic distance to the reference population for 
a given test animal (de Roos et al. 2009). Moreover, BB is the most divergent breed among the six 
populations, even though it was used during the formation of some of the other breeds.  
 
CONCLUSIONS 

There are some genomic correlations between the same trait observed in different breeds, 
implying there exists at least some similarities in the genetic background across breeds; however, 
this was not observed across all traits. We confirmed that higher accuracies are obtained by including 
the targeted breed in the reference population. Finally, it was possible to estimate GEBVs with useful 
accuracies, for fertility-related traits in bulls, in a multibreed scenario. This approach could be 
further developed in the future, aiming at a broader adoption of the technology by the industry.  
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Table 3. Multibreed genomic prediction accuracies calculated using the method LR** 
 

Population SC Sheath PNS Mean 
Scheme #1: From a given population, all records missing in the reference 

BB 0.217 0.217 0.217 0.217 
TR 0.479 0.696 0.211 0.462 
SG 0.367 0.366 0.233 0.322 
DM 0.497 0.358 0.251 0.368 
UB 0.381 0.512 0.176 0.356 
BT 0.263 0.323 0.227 0.271 

Mean 0.367 0.412 0.219  

Scheme #2: From a given population, a random 20% records missing in the reference (mean 
across five 80/20 cross-validation splits) 

BB 0.513 0.399 0.319 0.410 
TR 0.648 0.812 0.402 0.621 
SG 0.501 0.412 0.341 0.418 
DM 0.593 0.402 0.473 0.489 
UB 0.629 0.573 0.406 0.536 
BT 0.610 0.343 0.510 0.488 

Mean 0.582 0.490 0.408  

* Traits and populations as described in Table 1. ** Legarra, and Reverter (2019) 
 

REFERENCES 
Barwick S.A., Johnston D.J., Burrow H.M., Holroyd R.G., Fordyce G., Wolcott M.L., Sim W.D., 

and Sullivan M.T. (2009) Anim. Prod. Sci. 49: 367. 
Chang C.C., Chow C.C., Tellier L., Vattikuti S., Purcell S.M., and Lee J.J. (2015) Gigascience 4. 
Corbet N.J., Burns B.M., Johnston D.J., Wolcott M.L., Corbet D.H., Venus B.K., Li Y., McGowan 

M.R., and Holroyd R.G. (2013) Anim. Prod. Sci. 53: 101. 
Das S., Forer L., Schonherr S., Sidore C., Locke A.E., Kwong A., Vrieze S.I., Chew E.Y., Levy S., 

McGue M., Schlessinger D., Stambolian D., Loh P.R., Iacono W.G., Swaroop A., Scott L.J., 
Cucca F., Kronenberg F., Boehnke M., Abecasis G.R., and Fuchsberger C. (2016) Nat. Genet. 
48: 1284. 

de Roos A.P., Hayes B.J., and Goddard M.E. (2009) Genetics 183: 1545. 
Entwistle K., and Fordyce G. (2003). Australian Association of Cattle Veterinarians, Australia. 
Fortes M.R.S., Porto-Neto L.R., Satake N., Nguyen L.T., Freitas A.C., Melo T.P., Scalez D.C.B., 

Hayes B., Raidan F.S.S., Reverter A., and Boe-Hansen G.B. (2020) Genet. Sel. Evol. 52. 
Legarra A., and Reverter A. (2019) Genet. Sel. Evol. 51. 
Loh P.R., Danecek P., Palamara P.F., Fuchsberger C., Reshef Y.A., Finucane H.K., Schoenherr S., 

Forer L., McCarthy S., Abecasis G.R., Durbin R., and Price A.L. (2016) Nat. Genet. 48: 1443. 
Perez-Enciso M., and Misztal I. (2011) BMC Bioinformatics 12: 202. 
Porto-Neto L.R., Barendse W., Henshall J.M., McWilliam S.M., Lehnert S.A., and Reverter A. 

(2015) Genet. Sel. Evol. 47. 
VanRaden P.M. (2008) J. Dairy Sci. 91: 4414. 
 




