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SUMMARY 
While genome-wide association study (GWAS) is an important tool for gene discovery for economic 
traits in livestock, its use of large numbers of genetic markers necessitates the use of multiple testing 
correction methods. Several of these methods have been suggested, but their optimality is not as 
well studied. The aim of this study is to present a deterministic algorithm to provide a framework 
for estimating the power and false positive rate (FPR) in a GWAS, and using these estimates to test 
the optimality of these correction method based on the Receiver Operating Characteristic (ROC) 
curve. This study suggests that both Bonferroni correction and Benjamini-Hochberg False 
Discovery Rate are overly conservative even if under the assumption of independence between 
markers. 
 
INTRODUCTION 

Genome-wide association studies (GWAS) are commonly used to identify genes associated with 
quantitative traits. Due to the increasingly large number of markers used in GWAS however, it had 
been plagued by an unprecedented level of a multiple testing problem. To avoid the correspondingly 
increased number of false positives, a multiple testing method that increases the threshold for 
significance had been utilized in GWAS (Gondro 2015; Tam et al. 2019; Visscher et al. 2017).  

The Bonferroni correction was originally proposed due to its effectiveness in controlling the 
false positives (Narum 2006), but has since been widely criticized for its conservativeness (de Smet 
et al., 2004; Narum 2006; Tam et al. 2019). Alternative correction methods with reduced stringency 
in their threshold such as the frequently used Benjamini-Hochberg False Discovery Rate (BH-FDR) 
method have been suggested. A test on threshold optimality, defined as its ability to optimally 
balance the power and FPR of GWAS is lacking. Such an optimal threshold may depend on sample 
size, QTL effect distribution and marker allele frequencies. 

The aim of this study is to test the degree of optimality of thresholds provided by Bonferroni and 
BH-FDR methods under varying relevant parameters. Optimality will be derived from an estimate 
of power and FPR of a GWAS using a deterministic algorithm, and using these estimates to establish 
the optimality of these thresholds.  

  
THEORY 
In this study a threshold would be considered optimal if it could balance the power and FPR in a 
GWAS. Given a threshold 𝑇𝑇𝑇𝑇𝑇𝑇, alongside with effect size of the marker 𝑎𝑎, phenotypic variance 
𝑉𝑉𝑎𝑎𝑉𝑉(𝑝𝑝), allele frequency 𝑝𝑝, sample size of GWAS 𝑁𝑁 and number of QTL 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, the power of GWAS 
can be defined as follow:  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑉𝑉𝑁𝑁𝑝𝑝 𝑄𝑄𝑇𝑇𝑄𝑄𝑄𝑄 𝑛𝑛ℎ𝑎𝑎𝑛𝑛  𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇 �−𝑛𝑛𝑝𝑝𝑙𝑙10(𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝)�

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 

The expected 𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝 of a locus could in turn be calculated using the following equation: 

𝑝𝑝𝑝𝑝𝑎𝑎𝑛𝑛𝑁𝑁𝑝𝑝 =  2 − 2𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 �𝑎𝑎�
2𝑝𝑝(1 − 𝑝𝑝)(𝑁𝑁 − 2)

𝑉𝑉𝑎𝑎𝑉𝑉(𝑃𝑃) − 2𝑝𝑝(1 − 𝑝𝑝)𝑎𝑎2
 ,𝑁𝑁 − 2� 
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Where 𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛,𝑛𝑛) is the cumulative density function (CDF) of Student’s t-distribution with test 
statistic 𝑛𝑛 and degree of freedom 𝑛𝑛. While 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is not estimated in this study, deterministic 
algorithms for this estimation are available with assumption on the distribution of QTL effect sizes, 
for example see Hall et al. (2016). With the same threshold 𝑇𝑇𝑇𝑇𝑇𝑇, the FPR could be defined as 
follow:  

𝐹𝐹𝑃𝑃𝑇𝑇 =  
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑁𝑁𝑛𝑛𝑛𝑛 𝑁𝑁𝑎𝑎𝑉𝑉𝑚𝑚𝑝𝑝𝑉𝑉 𝑛𝑛ℎ𝑎𝑎𝑛𝑛 𝑝𝑝𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝𝑉𝑉 𝑝𝑝𝑜𝑜 𝑛𝑛𝑁𝑁𝑛𝑛𝑛𝑛 𝑁𝑁𝑎𝑎𝑉𝑉𝑚𝑚𝑝𝑝𝑉𝑉
 

As this model assumed independence between markers, linkage disequilibrium is not assumed, 
and null marker are modelled with effect size 0. Modelling of simulated null markers suggested that 
𝐹𝐹𝑃𝑃𝑇𝑇 followed a 1-CDF of gamma distribution with shape and scale parameter of 1 and 0.4344 
respectively, and FPR depends only on 𝑇𝑇𝑇𝑇𝑇𝑇. Thus the equation of 𝐹𝐹𝑃𝑃𝑇𝑇 can be rewritten as follow:  

𝐹𝐹𝑃𝑃𝑇𝑇 =  (1 − 𝑙𝑙𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇𝑇𝑇𝑇𝑇;  1, 0.4344)) 
Where 𝑙𝑙𝑎𝑎𝑁𝑁𝑁𝑁𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒;  𝑚𝑚,𝜃𝜃) is the CDF of gamma distribution at point 𝑒𝑒 with shape and scale 
parameter 𝑚𝑚 and 𝜃𝜃. To test the optimality of 𝑇𝑇𝑇𝑇𝑇𝑇, a receiver operating characteristic (ROC) curve 
was used. The conventional ROC curve have its FPR and power plotted at x and y-axis, respectively, 
with optimal threshold being the point where the tangent of the curve equal to 1 (as described by de 
Smet et al. (2004) and mathematically proven by Kaivanto (2008)). Another interpretation which 
was used in this study, is the difference between number of true and false positives, which represent 
the numerator of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑉𝑉 and 𝐹𝐹𝑃𝑃𝑇𝑇 respectively. The optimal threshold can then be defined as the 
argument of the maxima of this differences, where the power is maximized and FPR minimized. 
This interpretation can also take into account the unequal chance between finding true QTLs and 
null markers. A sample of this reinterpreted ROC curve would be provided in Figure 1.  
 
VALIDATION OF THE MODEL 

The model was validated through simulation using Python (Version 3.7.3), where the optimality 
of threshold calculated by Bonferroni and BH-FDR was compared under varying parameters. 

A GWAS experiment with 𝑁𝑁 sample size was simulated with a genotype array with 𝑀𝑀 number 
of independent markers with their allele frequencies following a beta-distribution. A vector of effect 
sizes was assigned to 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 markers, which were considered QTL with their effect sizes following a 
gamma distribution while other markers had effect size of 0. Only markers with effect size of > 0.1 
σ were considered in the calculation of power. For all simulations the heritability of the trait was set 
to 0.3. Using the genotype array, effect sizes and heritability, a vector of phenotypes was calculated, 
and a GWAS was conducted using Single SNP Linear Regression with the genotype array and 
phenotype vector. Using Bonferroni correction and BH-FDR at alpha = 0.05, the number of true and 
false positives were recorded. The ROC score was calculated by subtracting number of false 
positives from number of true positives. Correction methods with higher ROC score are deemed 
having its threshold more optimal and provide better balance between power and FPR. This 
simulation was repeated 200 times. When a parameter is under study the other parameters were kept 
at the Default Value. The parameters tested are presented in Table 1.  
 
Table 1. Parameter tested in this experiment 
 

Parameter Default Value Alternative Value 
Sample Size  2000 800 
Number of Markers  20k 80k 
Distribution of QTL Effect Size  Gamma(0.4, 1) Gamma(0.8, 1) 
Distribution of Allele Frequency  Beta(0.5, 0.5) Beta(0.2, 0.2) 
Number of QTLs  100 2000 
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Figure 1. The reinterpreted ROC curve under default scenario with Bonferroni correction, 
with TP and FP representing number of true and false positives respectively 
 
RESULTS AND DISCUSSION 

The number of true and false positives from each correction method are provided in Table 2, and 
the ROC score and threshold of each correction methods were provided in Table 3.  
 
Table 2. The number of true positives (TP) and false positives (FP) for each correction methods 
under varying parameter values1  
 

Parameter Tested Values Multiple Testing Correction Method 
Optimal 
Threshold 
from ROC 

Bonferroni 
Correction 

BH-FDR 

TP FP TP FP TP FP 
Sample Size (Default)1 2000 11.36 0.86 7.82 0.09 9.77 0.63 
                     (Alternative) 800 4.70 0.42 2.64 0.04 3.35 0.20 
Number of Markers 80k 9.53 0.72 6.92 0.05 8.30 0.44 
Distribution of QTL Effect Size Gamma(0.8,1) 11.70 1.01 7.52 0.02 9.72 0.50 
Distribution of Allele Frequency Beta(0.2, 0.2) 9.96 0.61 7.37 0.07 8.84 0.48 
Number of QTLs 2000 6.77 2.31 1.08 0.02 1.47 0.07 

1 The default values are provided in Table 1.   
 
Table 3. The threshold (THR) and ROC score for each correction methods under varying 
parameter values1 

 
Parameter Tested Values Multiple Testing Correction Method 

Optimal 
Threshold 
from ROC 

Bonferroni 
Correction 

BH-FDR 

THR ROC THR ROC THR ROC 
Sample Size (Default)1 2000 4.29 11.18 5.60 7.49 4.62 9.10 
                     (Alternative) 800 4.73 4.05 5.60 2.61 5.09 2.86 
Number of Markers 80k 5.06 8.82 6.20 6.88 5.28 7.86 
Distribution of QTL Effect Size Gamma(0.8,1) 4.32 10.84 5.60 7.79 4.58 9.41 
Distribution of Allele Frequency Beta(0.2, 0.2) 4.46 9.35 5.60 7.30 4.64 8.36 
Number of QTLs 2000 3.93 4.58 5.60 0.93 5.34 1.24 

1 The default values are provided in Table 1.   
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Compared to both the Bonferroni and the BH-FDR methods, the threshold optimal to the ROC 
curve has a significantly higher number of false positives in all scenarios, which is associated with 
a significantly lower threshold. This suggests that the threshold optimal to ROC is less stringent 
compared to both correction method. Despite this, as suggested by the increased ROC score, the 
increment of power of GWAS due to the decreased threshold is more significant than the increment 
of FPR, which could suggest that both Bonferroni correction and BH-FDR are overconservative for 
all the scenarios in this study. 

Between the two existing correction methods, BH-FDR provided a better balance between power 
and FOR when compared to the Bonferroni correction. While the number of false positives also 
increased in this correction method, as suggested by Huang et al. (2018), the increment in true 
positives is more significant than the increment of false positives. While with the Bonferroni 
correction, the power is significantly lower than with BH-FDR, it also had a significantly smaller 
proportion of false positives. Indeed, the Bonferroni correction had successfully maintained the 
number of false positives between 0.02 and 0.09 in all scenarios, whereas BH-FDR failed to 
maintained it in all the scenarios. 

While this experiment has illustrated the optimality of threshold from the multiple correction 
methods, there were several assumptions being made. One of the main assumptions is the 
independence of the markers, which is unlikely to occur in actual GWAS. Huang et al. (2018) 
suggested threshold from correction methods that assumed independence between markers had 
increased conservativeness compared to those without such assumption. Despite this, even if this 
assumption is held, as in this experiment, both correction methods are still overconservative in 
respect with the optimal threshold. Further study on the effect of correlated markers on the optimality 
of thresholds from these correction methods would be required. 
 
CONCLUSION 

This study had provided a framework for estimating the power and false positive rate of GWAS 
using a deterministic algorithm, and using these measures to test the optimality of threshold from 
two common multiple testing correction methods. This study had demonstrated the excessive 
conservativeness in both correction methods, especially in Bonferroni correction. The BH-FDR 
attained a better balance between true and false positives in the setting of independent markers and 
thus a more optimal threshold. Despite this the optimality of these threshold from correlated markers 
still warranted further study.  
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