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SUMMARY 
A SNP array of 50k SNP markers was used in single-step GBLUP (SS-GBLUP)  models to 

estimate breeding values in the Australian sheep genetic evaluation system. In 2019, Neogen 
launched a new GeneSeek Genomic Profiler Ovine 50k chip, which included ~5000 SNPs that were 
identified based on Sheep CRC research as highly predictive for growth, carcass and eating quality 
traits. The objective of this work was to apply a five-fold cross-validation approach to compare 
different models for the use of predictive SNPs for post-weaning weight (PWT), carcass eye muscle 
depth (CEMD), carcass fat at C site (CCFAT), intramuscular fat (IMF) and shear force (SF5) based 
on the LAMBPLAN terminal sire genetic evaluation. Correlation and regression coefficients 
between adjusted phenotypes and SS-GBLUP EBVs for validation animals from the different 
models were calculated. The results indicated that adding predictive SNPs slightly improved the 
correlation and regression coefficient of EBVs, but there was no advantage in giving them more 
weight via a separate term in the model, confirming that the current industry evaluation model using 
a single genomic relationship matrix is the best of the tested models for these traits. 
 
INTRODUCTION 

Single-step genomic BLUP (SS-GBLUP) procedures have been implemented in the Australian 
sheep genetic evaluation system since 2017 (Brown et al. 2018). Prior to 2020, the genomic 
relationship matrix (GRM) used in SS-GBLUP analyses was built using an ovine 50k panel of 
common SNPs. Recent genome-wide association studies have identified ~5000 predictive SNP 
markers for carcass and eating quality traits in sheep (Moghaddar et al. 2019). In 2019, Neogen 
launched a GeneSeek Genomic Profiler Ovine (GGP) 50k panel, which included these predictive 
SNPs. To accommodate these markers, the set of SNPs used in routine genetic evaluations was 
modified to be the union of all SNPs included on all panels used for sheep genotyping, resulting in 
a set of 60,410 SNPs. This set of SNPs was then implemented in the sheep SS-GBLUP analyses in 
a single genomic relationship matrix (GRM) from 2020. However, this method assumes equal 
weighting for all SNPs. An alternative approach is to use an additional term in the model, using a 
separate GRM based on predictive SNPs, effectively giving them more weight to those SNPs. In 
this study, models with one or two GRMs fitted in the SS-GBLUP model for the calculation of 
breeding values were investigated using a five-fold cross-validation approach. The correlation and 
regression of SS-GBLUP EBVs with adjusted phenotypes from the different models were compared.  

 
MATERIALS AND METHODS 

Phenotype data. This study was conducted using data from the LAMBPLAN terminal sire 
industry evaluation, due to the new predictive SNPs targeting growth, carcass and eating quality 
traits. The data consisted of records from animals measured for the main slaughter traits in the Sheep 
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CRC Information Nucleus Flock (van der Werf et al. 2010) and the MLA Resource Flock databases 
which are used in the industry evaluation. Phenotypes were pre-adjusted for a combination of birth 
type, rearing type, age, and age of dam, depending on the trait. Five traits from two data sets were 
used in SS-GBLUP analyses to estimate breeding values for cross-validation (Table 1). The first 
data set included 9688 animals that had all five traits observed as well as SNP genotype information 
(the “small data set”). To investigate whether the extra phenotypes from ungenotyped animals 
affected the cross-validation results for those genotyped animals, the second data set extended the 
small data set by including all ungenotyped animals with at least one trait observed for any of the 
five traits in the analysis (the “large data set”). A summary of the two data sets is presented in Table 
1. Pedigree information was extracted from the LAMBPLAN database and included 44,874 and 
1,985,749 animals for the small and large data sets, respectively.  

 
Table 1. Traits (units), number of animals (N), mean and standard deviation (sd) for the  small  
(animals with all phenotypes and genotypes) and large (all animals including ungenotyped 
animals with at least one phenotype) data sets in this study 
 

Trait Unit 
Small data set Large data set 

N mean sd N mean sd 
Post-weaning weight (PWT) kg 9688 58.58 9.47 1,674,789 58.00 9.71 
Carcass eye muscle depth (CEMD) mm 9688 31.31 3.87 16,753 31.43 3.77 
Carcass fat at C site (CCFAT) mm 9688 4.13 1.96 16,560 4.63 2.48 
Intramuscular fat (IMF) % 9688 4.24 0.99 14,832 4.35 1.04 
Shear force (SF5) Newtons 9688 34.88 15.22 14,840 34.24 15.16 

 
The five-folds subsets derived from the 9688 genotyped animals were used as the cross-

validation data set for SS-GBLUP analyses. Animals were crosses between terminal sire breed rams 
and Merino ewes or Border Leicester x Merino ewes. The main ram breeds represented were White 
Suffolk (323 sires,3801 progeny), Poll Dorset (319 sires, 4080 progeny), Suffolk (40 sires, 499 
progeny), White Dorper (35 sires, 309 progeny), Texel (31 sires, 413 progeny) and Dorper (29 sires, 
235 progeny). Five-fold subsets were randomly allocated stratified by ram breeds and sire families 
with five replicates with the average number of sires and progeny ranging from 161 to 167 and from 
1679 to 2043 for each subset, respectively.  

Genomic data. Three sets of SNPs were used in this study: unselected (random) SNPs (55,709), 
the predictive SNPs (4,701) and the combined set (60,410). The first set was a combination of the 
original ISAG 50k sheep panel and the additional random SNPs from the Neogen GGP 50k, where 
the actual number of SNPs used is the set remaining after applying quality control measures. The 
predictive 4,701 SNPs (Moghaddar et al. 2019) were those originating from the CRC research  that 
were then commercialised on the GGP 50k. Genomic relationship matrices ( GRMs ) were 
constructed based on these SNP sets, using the implementation of the breed-adjusted GRM as 
described by Gurman et al. (2019) and as implemented in the LAMBPLAN terminal sire SS-GBLUP 
analysis. Three genomic relationship matrices were calculated: 𝐆𝐆𝑟𝑟, based on the random SNPs; 𝐆𝐆𝑝𝑝, 
based on the predictive SNPs and 𝐆𝐆𝑟𝑟𝑝𝑝, based on the combined set. 

Models. The multivariate linear mixed model used for estimating breeding values was Y = Xb 
+ ZQg + Zt + e, where Y is data in the multivariate form; Xb is the fixed contemporary group effects 
(defined as combinations of the management group, flock, year, sex, breed type and date of 
measurement); ZQg is the random genetic group effects; Zt represents combined effects of breeding 
values based on pedigree and genomic effects from different SNP sets, and e is residuals. Maternal 
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effects were included as permanent environment effects for PWT. Four combinations of polygenic 
and genomic effects were compared to identify appropriate models: 1) A model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁; 2) A+Gr 
model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 + 𝒁𝒁𝒖𝒖𝒓𝒓; 3) A+Grp model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 + 𝒁𝒁𝒖𝒖𝒓𝒓𝒓𝒓; and 4) A+Gr+Gp model: 𝒁𝒁𝒁𝒁 =  𝒁𝒁𝒁𝒁 +
𝒁𝒁𝒖𝒖𝒓𝒓 + 𝒁𝒁𝒖𝒖𝒓𝒓 , where a, ur, up and urp are N(0, 𝑨𝑨⨂𝚺𝚺𝒁𝒁 ), N(0, 𝐇𝐇𝒓𝒓⨂𝚺𝚺𝒈𝒈𝒓𝒓 ), N(0, 𝐇𝐇𝑝𝑝⨂𝚺𝚺𝒈𝒈𝒓𝒓 ) and 
N(0, 𝐇𝐇𝑟𝑟𝑝𝑝⨂𝚺𝚺𝒈𝒈𝒓𝒓𝒓𝒓) respectively, with Hr, Hp and Hrp matrices derived from combining the genomic 
relationship matrixes Gr, Gp and Grp with pedigree relationship matrix A, respectively. 𝚺𝚺𝒁𝒁, 𝚺𝚺𝒈𝒈𝒓𝒓, 𝚺𝚺𝒈𝒈𝒓𝒓 , 
and 𝚺𝚺𝒈𝒈𝒓𝒓𝒓𝒓  are the multivariate genetic variance-covariance matrices due to those corresponding 
relationship matrices as estimated by Gurman et al. (2021). 

The average accuracy of the different models was assessed by the correlation coefficient between 
EBVs and phenotypes adjusted for contemporary group effects (solutions from the same models 
with the full data set) for the animals in the test set which were removed from the analysis. Note that 
correlations were presented without scaling by heritability. The bias was evaluated based on the 
regression coefficient of adjusted phenotype on EBVs. This process was repeated for all five cross-
validation sets. 

 
RESULTS AND DISCUSSION 

The average correlation and regression coefficient for validation animals across the five cross 
replicates from cross-validation are shown in Table 2 for the small data set and in Table 3 for the 
large data set. Results from both data sets show that the average correlation increased by the largest 
amount when adding genomic information, from model A to model A+Gr, with much greater 
improvement for carcass and eating quality traits (17.6 ~ 43.5% increase) than growth traits (5.3 ~ 
7.9 % increase for PWT). The correlation was also generally higher in the large data set compared 
to the small data set. There were small improvements in correlation when adding predictive SNPs 
in the combined GRM, from A+Gr to A+Grp, but no apparent benefit was observed in fitting 
predictive SNPs in a separate GRM in model A+Gr+Gp. The results confirm that the current 
LAMBPLAN model (A+Grp), including predictive SNPs in a combined GRM is an appropriate 
solution to exploit the additional benefits of these SNPs. 
 
Table 2. Average correlation and regression coefficients for validation animals for post-
weaning weight (PWT), carcass eye muscle depth (CEMD), carcass fat at C site (CCFAT), 
intramuscular fat (IMF), and shear force (SF5) for models A, A+Gr, A+Grp and A+Gr+Gp  
across 5 replicates for the small data set 

 
Models PWT CEMD CCFAT IMF SF5 
   Correlation   
A 0.38 0.17 0.17 0.23 0.18 
A+Gr 0.40 0.20 0.23 0.33 0.23 
A+Grp 0.41 0.21 0.24 0.36 0.25 
A+Gr+Gp 0.40 0.19 0.22 0.34 0.23 
  Regression coefficient  
A 0.97 1.01 0.90 0.92 0.92 
A+Gr 0.93 0.97 0.98 1.10 1.01 
A+Grp 0.94 0.99 1.00 1.15 1.03 
A+Gr+Gp 0.93 0.83 0.88 1.08 0.91 

1 Standard deviation for correlation and regression coefficients ranged from 0.002 to 0.008 
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Table 3. Average correlation and regression coefficients for validation animals for post-
weaning weight (PWT), carcass eye muscle depth (CEMD), carcass fat at C site (CCFAT), 
intramuscular fat (IMF), and shear force (SF5) and for models A, A+Gr, A+Grp and A+Gr+Gp 
across 5 replicates for the large data set 

 
Models PWT CEMD CCFAT IMF SF5 
   Correlation   
A 0.38 0.19 0.22 0.31 0.20 
A+Gr 0.41 0.23 0.27 0.39 0.25 
A+Grp 0.41 0.24 0.28 0.41 0.26 
A+Gr+Gp 0.41 0.22 0.26 0.39 0.24 
  Regression coefficient  
A 0.87 0.91 0.95 0.93 0.96 
A+Gr 0.81 0.82 0.89 1.08 0.94 
A+Grp 0.81 0.83 0.90 1.12 0.95 
A+Gr+Gp 0.82 0.74 0.83 1.08 0.84 

1 Standard deviation for correlation and regression coefficients ranged from 0.002 to 0.008  
 
Regression coefficient estimates were generally within an acceptable range around the 

expected value of 1 in both data sets, although there was a greater degree of over-prediction 
(regression coefficient < 1) in the large data set relative to the small data set. This could be due to 
the variance components used in both data sets were estimated using the small data set. Over-
prediction regression coefficient was also more remarkable for the weight trait, PWT. It is interesting 
to note that IMF is the only trait with under-prediction regression coefficient (regression coefficient 
>1), especially for the A+Grp model.  

 
CONCLUSIONS 

Cross-validation analyses comparing the predictive ability of breeding values demonstrated the 
benefits of including genomic information, and that predictive SNPs do increase correlation by a 
small amount, and they can be included in a single genomic relationship matrix with all SNPs rather 
than used for an additional random term. This method is equivalent to the current industry evaluation 
model for these traits, highlighting that the current method is the more accurate of those investigated. 
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