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SUMMARY 
Cost effective genotyping tools are essential for wide-spread use of genomics in research and 

industry. While the majority of large-scale industry implementations of genomic selection have 
relied on single nucleotide polymorphism (SNP) arrays, genotyping using skim-whole-genome 
sequencing (SWGS) is becoming more accurate and, due to large reductions in sequencing cost, 
SWGS genotyping is becoming price competitive with SNP arrays. In SWGS genotyping, a 
sample is sequenced to 0.5 or 1x read depth and imputed to full WGS with a reference population 
sequenced at higher read depth (e.g. 1000 Bull Genomes Project). Imputation software, such as 
Beagle, can directly impute SNPs from SWGS to high fold coverage WGS, but they were not 
designed to do so. Gencove has developed an imputation algorithm especially for this task, 
1oimpute. We compared the genotyping and imputation accuracy of Beagle4.0 and 1oimpute in a 
sample of 31 Holstein, 55 Jersey, and 39 Jersey-Holstein crosses. Animals were sequenced to 
approximately 10-fold coverage and variants and genotypes were identified as part of 1000 Bull 
Genomes Run8. Each animal’s sequence was then randomly down-sampled to 0.5 and 1-fold 
coverage, aligned to the reference assembly, and imputed either with Beagle4.0 or with 1oimpute. 
Imputed genotypes were compared to observed full-sequence genotypes via correlation and 
proportion correct (concordance). The mean per marker genotype correlation of the 16 million 
imputed SNP across all breeds was 0.78 (0.5x) and 0.84 (1x) for Beagle and 0.92 (0.5x) and 0.93 
(1x) for 1oimpute. While the Beagle pipeline could be likely further improved, the results 
demonstrate that a purpose-built imputation method is required to perform accurate SWGS 
genotyping. The method is attractive as it can provide sequence density genotypes at a cost price 
point comparable to low or medium-density SNP arrays.  
 
INTRODUCTION 

The large scale implementation of genomic breeding approaches in industry (e.g. genomic 
selection) requires genotyping tools that are accurate and cheap. The lower the cost of genotyping, 
the more widespread the adoption of genomic selection. Therefore, the continued development and 
refinement of genotyping methods is crucial to realising genetic gain from genomics.  

Whole-genome sequencing has always underpinned genotyping platform development through 
the discovery of genetic marker diversity, such as single nucleotide polymorphisms (SNP), from 
which a subset of markers can be chosen for routine genotyping. Whole-genome sequencing 
requires the preparation of a library that cuts DNA into segments (i.e. sequence reads) and attaches 
a barcode to each segment. Once barcoded, samples can be mixed and sequenced together and the 
data for each sample can be separated afterwards. This multi-plexing approach coupled with vastly 
increased sequence output of recent technologies are the primary reasons for the large reduction in 
sequencing costs over time. The amount of sequencing per position of the genome is called read 
depth (e.g. read depths of 8 to 20x are common in livestock populations).  

The most widely used genotyping method in large livestock populations have been SNP chips, 
which are microarrays that can provide genotypes on a few to many thousands of SNP. SNP chips 
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are generally highly accurate, amenable to high-throughput methods, and deliver near complete 
data at the loci queried. Low to medium density SNP chips with approximately <10,000 and 
50,000 markers are currently available at prices that warrant wide-spread use when compared to 
impact on farm profitability (e.g. Newton et al. 2018). Nevertheless, decreasing genotyping costs 
further would no doubt increase the use of genomic selection. 

Another way to genotype individuals is through genome sequencing directly. The reduced cost 
of sequencing now makes routine genotyping with whole-genome sequence feasible when 
sequence depth per sample is kept to 1x read depth or less, so-called skim whole-genome 
sequencing (SWGS). Due to the low read depth, there are relatively few loci with enough reads to 
call genotypes accurately and the set of loci called differs for each individual in a population.  
SWGS could be improved by imputing missing genotypes and improving genotype accuracy of 
loci with insufficient reads. Several imputation programs are available, such as Beagle, Minimac3, 
and FImpute, but most have not been developed specifically for imputing SWGS. Gencove have 
developed an imputation algorithm (1oimpute) for SWGS adapting an methods by Li and Stephens 
(2003) to routinely impute SWGS genotype data. 

Here we present a comparison of SWGS genotyping using 1oimpute and Beagle4.0 imputation 
in three dairy cattle breed groups, Holstein, Jersey and Holstein-Jersey crossbreds, sequenced at 
0.5 and 1x read depth. 

 
MATERIALS AND METHODS 

Whole-genome sequencing and processing. Thirty-one Holstein, 55 Jersey, and 39 Holstein-
Jersey crossbred bulls were whole-genome sequenced to an average depth of 10x. Raw sequence 
fastq data were provided to Gencove and each animal’s sequences were downsampled to 0.5 and 
1x read depth. Full, 0.5 and 1x sequences were quality controlled and aligned with BWA to the 
ARS-UCD-1.2 reference assembly (Rosen et al. 2020) to produce binary alignment (bam) files. 
Full sequences were included in Run8 of the 1000 Bull Genomes Project (Hayes & Daetwyler 
2019) and processed as described in Daetwyler et al. (2017).  

Genotype calling and imputation. Two parallel pipelines were implemented by Gencove and 
Agriculture Victoria (AgVic) for a total of four scenarios: Gencove 1oimpute 0.5 and 1x read 
depth and AgVic Beagle at 0.5 and 1x read depth.  

Gencove used their imputation software 1oimpute, which implements the Li and Stephens 
model for a set of reads in each animal’s bam file and a known set of phased variants in a 
reference panel (Li & Stephens 2003). The diploid genotype probabilites are estimated using a 
Hidden Markov Model (Wasik et al. 2019). Gencove used a multi-breed reference panel of 946 
animals (including 184 Holstein and 15 Jersey) for each breed (Snelling et al. 2020). AgVic 
performed variant calling on SWGS bam files using GATK3.8 according to the 1000 Bull 
Genomes Project guidelines. The 1000 Bull Genomes Project Run8 multi-breed taurus dataset 
with 4109 animals (including 1200 Holstein and 120 Jersey) was used as the AgVic reference for 
imputation. Random missing genotypes in the reference set were imputed with Beagle4.0 
(Browning & Browning 2009) and filtered to only include biallelic SNP whose alleles occur at 
least 4 times. SWGS genotypes were then imputed with Beagle4.0 utilising genotype probabilities 
(Browning et al. 2018), and imputed animals were removed from reference sets.  

Imputation accuracy evaluation. The accuracy of imputation was calculated as the Pearson 
correlation and concordance of imputed SWGS genotypes (coded as 0, 1, 2) from each respective 
pipeline and raw full sequence genotypes from the 1000 Bull Genomes Run8. Concordance was 
calculated as the proportion of imputed genotypes matching full sequence genotypes. Further, 
these statistics were summarised in minor allele frequency (MAF) bins of 0.0-0.03, 0.03-0.06, 
0.06-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5. Comparisons were restricted to the set of SNP imputed 
by both 1oimpute and Beagle5.1 and passing the GATK quality tranche threshold of 99.9. 
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RESULTS AND DISCUSSION 

The SWGS process led to approximately 1.6 million SNP.  This is substantially more than a 
50,000 marker SNP chip, but the SWGS SNP would be called with lower accuracy. The number of 
SNP imputed across all bovine autosomes by both 1oimpute and Beagle was 16,488,621 and the 
set of overlapping loci between the two pipelines were >95%.  

 
Table 1. Mean correlation and concordance per SNP of imputed and observed genotypes in 
Holstein (HOL), Jersey (JER) and Holstein-Jersey crossbreds (HOLJER) from 1oimpute (G) 
and Beagle (B) pipelines.  
 
Read Depth 0.5x Read Depth 1x Read Depth 
Breed HOL JER HOLJER HOL JER HOLJER 
Method G B G B G B G B G B G B 
Correlation 0.95 0.79 0.90 0.78 0.90 0.76 0.95 0.84 0.91 0.84 0.92 0.83 
Concordance 0.98 0.88 0.96 0.89 0.96 0.87 0.98 0.91 0.97 0.92 0.96 0.91 

SD across autosomes ~0.01 
 
The 1oimpute pipeline achieved substantially higher mean correlations between imputed and 

observed  genotypes across all 16 million SNP tested, with a difference of ~0.15 (Table 1). This 
trend was also observed when using concordance as the evaluation measure, though the advantage 
of 1oimpute over Beagle was slightly less at ~0.1 (Table 1). This is quite a marked improvement 
that would surely result in improved downstream analyses. Imputation performance was quite 
similar across the three breeds for both piplelines. Interestingly, 1oimpute managed to still 
outperform Beagle even though Beagle had approximately 7 times the number of Holstein and 
Jersey animals in its reference. We did also test Beagle5.1, but it performed very poorly 
(correlation reduced by ~0.2) as it does not utilise genotype probabilities. Slightly better 
imputation was observed when animals were sequenced at 1x versus 0.5x, although the difference 
was small, and suggests that 0.5x is likely sufficient for the 1oimpute algorithm. Both imputation 
methods provide metrics per SNP on their confidence in genotype accuracy, which can be used to 
filter data further. 

 

 
Figure 1. Mean correlation and concordance in minor allele frequency bins for Gencove 
1oimpute and Beagle imputation for Holstein bulls with 1x sequence read depth. 

 
It is well known that conventional imputation algorithm performance is substantially reduced 

for alleles with low frequency in the population (e.g. van Binsbergen et al. 2014). This was 
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confirmed for Beagle, where the correlation between imputed and observed genotypes in Holsteins 
was ~0.83 for loci with MAF < 0.03 (Figure 1). The reverse was observed for Beagle concordance, 
which was highest for the same low MAF bin. This occurs solely because most of the time, the 
most likely genotype will be correct and demonstrates the weakness of concordance as a measure 
of imputation accuracy, especially for low MAF SNP. In contrast, 1oimpute imputation 
correlations and concordance were consistently high (~0.95) across all MAF bins. Due to the high 
level of accuracy achieved by 1oimpute, both correlations and concordance were higher than 
Beagle across all MAF, though concordance did reach near 1.00 for low MAF SNP, indicating a 
small bias in this measure also for 1oimpute. Correlations and concordance followed similar levels 
and patterns across MAF for Jersey and crosses (data not shown). 

The Beagle pipeline was not built specifically for imputing SWGS data with high proportion of 
missing genotypes and called genotypes with high uncertainty with different SNP called for each 
animal. Further improvement may be possible by filtering the SWGS genotypes for loci with read 
depth >5x. While this would further increase the proportion missing, it would provide more certain 
SNP genotypes to initiate the Beagle Hidden Markov Model. However, it seems unlikely that 
Beagle could achieve similar performance to 1oimpute even with these improvements. Recently, a 
new SWGS imputation method (GLIMPSE) has been published (Rubinacci et al. 2021), which 
seems competitive in accuracy with 1oimpute and testing with this method is underway. 

The 1oimpute pipeline produces accurate genotypes at millions of loci and seems to overcome 
a traditional imputation bottleneck of accurately imputing lower MAF SNP. Industry application 
with the specific loci currently available on most SNP chips is therefore feasible, and for research 
applications, it is particularly useful to have access to many accurate genotypes across the MAF 
spectrum. 
 
CONCLUSIONS 

Substantially higher imputation accuracy was observed with Ioimpute than with Beagle. While 
the Beagle pipeline could be likely further improved, the results demonstrate that a purpose-built 
imputation method is required to perform accurate SWGS genotyping. The 1oimpute SWGS 
method is attractive as it can provide sequence density genotypes at a cost price point comparable 
to low or medium-density SNP chips.   
 
ACKNOWLEDGEMENTS 

The authors thank DairyBio, a joint venture project between Agriculture Victoria, Dairy 
Australia and The Gardiner Foundation, for funding and the 1000 Bull Genomes Project for use of 
whole-genome sequence data. 
 
REFERENCES 
Browning B.L. & Browning S.R. (2009) Am. J. Hum. Genet. 84, 210-23. 
Browning B.L., Zhou Y. & Browning S.R. (2018) Am. J. Hum. Genet. 103, 338-48. 
Daetwyler H.D., Brauning R., …, Kijas J.W. (2017) In: Proc of AAABG, Townsville, AUS. 
Hayes B.J. & Daetwyler H.D. (2019) Ann. Rev. Anim. Biosci. 7, null. 
Li N. & Stephens M. (2003) Genetics 165, 2213 - 33. 
Newton J.E., Hayes B.J. & Pryce J.E. (2018) J. Dairy Sci. 101, 6159-73. 
Rosen B.D., Bickhart D.M., …, Medrano J.F. (2020) GigaSci. 9, giaa021. 
Rubinacci S., Ribeiro D.M., …, Delaneau O. (2021) Nat Genet 53, 120-6. 
Snelling W.M., Hoff J.L., …, Pickrell J.K. (2020) Genes (Basel) 11. 
van Binsbergen R., Bink M.C., …, Veerkamp R.F. (2014) Genet. Sel. Evol. 46, 1-13. 
Wasik K., Berisa T., …, Cox C. (2019) bioRxiv, 632141. 




