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SUMMARY 

Genomic breeding values for heat tolerance were first developed and released to the Australian 
dairy industry in 2017, to allow farmers to select animals that better tolerate hot and humid 
conditions. It is desirable to improve the reliability of these genomic predictions to help accelerate 
the genetic improvement for this trait. Whole-genome sequence data may contain causative 
mutations, or variants in high linkage disequilibrium with causal mutations for traits. This study 
investigated the potential improvements in the accuracy of genomic prediction for heat tolerance 
when adding informative markers to the 50k industry SNP panel used routinely by DataGene for 
Australian dairy genomic evaluations. We selected informative sequence variants from a genome-
wide association study (GWAS) of heat tolerance phenotypes of 20,623 Holstein cows (each cow 
with ~15 million imputed sequence variants) and augmented the 50k SNP panel with these SNPs for 
genomic prediction using a Holstein bull reference (N = 3,323) and Holstein cow validation set (N 
= 8,484). The accuracy of genomic prediction of heat tolerance for reduction in milk, fat, and protein 
yield under hot and humid conditions increased by 0.1%, 4%, and 6% units, respectively when 
informative markers were integrated with 50k SNP data. Since genetic gain is linearly related to 
EBV accuracy, this lift in accuracy is important for driving the genetic improvement of heat 
tolerance. 

 
INTRODUCTION 

Heat tolerance is the ability of an animal to maintain production and reproductive performance 
under hot and humid conditions. The desire to breed for heat tolerance is growing worldwide due to 
the increasing effect of global warming on animal production. Considerable research has been 
conducted so far in many countries, including Australia, where the first breeding values for heat 
tolerance were released to the dairy industry in 2017 (Nguyen et al. 2017).  

Since genetic gain is linearly related to the accuracy of estimated breeding values (EBVs), even 
a small lift in the accuracy of the heat tolerance EBV is important to the dairy industry. Besides 
increasing the size of the reference population, one way to boost the accuracy is to increase the 
density of markers used for genomic predictions. However, increasing the marker set from lower 
density SNP panels to whole-genome sequence have, in most cases, yielded limited, or no 
appreciable increase in the accuracies for various traits in cattle (e.g., Van Binsbergen et al. 2015). 
A promising alternative, in which a boost of accuracy has been realized in previous reports (e.g., 
Moghaddar et al. 2019), has been to augment standard industry SNP panels (i.e., 50k or 600K arrays) 
with a small set of informative or causal mutations for a trait. To fully maximize predictions, this 
approach requires careful selection of informative markers. Thanks to the 1000 Bull Genomes 
project (Hayes and Daetwyler 2019), it is now possible to use this sequence database to impute 
genotyped animals up to whole genome sequence. This may facilitate accurate selection of highly 
informative variants for use in genomic predictions, especially for complex traits such as heat 
tolerance. 

In this study, we selected informative variants for heat tolerance from a genome-wide association 
study (GWAS) using milk production records of 20,623 Holstein cows, each having over 15 million 
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imputed sequence variants. We then investigated the accuracy of prediction when sets of these 
selected variants were added to the standard industry 50k SNP array, by training the prediction in a 
bull reference set, and validating it in an independent set of Holstein cows. 

 
MATERIALS AND METHODS 

Phenotypes. The phenotypes used in this study were obtained from DataGene (DataGene Ltd., 
Melbourne, Australia; https://datagene.com.au/) and included test-day milk, fat, and protein yields 
for Holstein cows and bulls, collected from dairy herds between 2003 and 2017 that were matched 
with climate data (daily temperature and humidity) obtained from weather stations across Australia’s 
dairying regions. The distribution of dairy herds and weather stations, data filtering, and the 
calculation of environmental covariate (i.e., temperature-humidity index or THI) used in this work 
were described in our earlier studies (Nguyen et al. 2016, Cheruiyot et al. 2020). 

Calculation of heat tolerance phenotypes for cows and bulls. The rate of decline (slope) in 
milk, fat, and protein yield due to heat stress events was estimated using reaction norm models as 
described by Cheruiyot et al. 2020. In these models, data on milk, fat, or protein yield were adjusted 
for fixed effects, including herd test day, year season of calving, parity, age at calving, jointly for 
parity and DIM, and jointly for stage of lactation and THI. Random effects fitted in the model 
included a random regression on a linear orthogonal polynomial of THI, where the intercept 
represents the level of mean milk yield and the linear component represents the change in milk yield 
(slope) due to heat stress for each cow (i.e., trait deviations (TD)) and a residual term. Slope solutions 
for each bull’s daughters were averaged to obtain slope traits for bulls (i.e., daughter trait deviations 
(DTD)). 

Genotypes and study design. Two genotype data sets were available: 50k SNP array and ~15 
million imputed whole-genome sequence variants. The number of Holstein animals with genotypes 
and heat tolerance phenotypes were 29,107 ♀/3,323 ♂. We split the Holstein cows into two: 1) QTL 
discovery set (N = 20,623; comprising older cows born before 2013) for selecting informative 
markers for heat tolerance, and 2) genomic prediction validation set (N = 1,223; young cows born 
after 2012). We used Holstein bulls as a training set for genomic prediction. We ensured that none 
of the cows in the QTL discovery set were daughters of the bulls in the training set to avoid parent-
daughter pairs between the two datasets to minimise close genetic relationships. 

QTL discovery analysis and selection of informative SNPs. We performed single-trait GWAS 
analysis to test associations between individual SNP and cows' slope traits (milk, fat, and protein) 
using GCTA software (Yang et al. 2011). The models used for analyses are described by Cheruiyot 
et al. (https://www.biorxiv.org/content/10.1101/2021.02.04.429719v1.full). 

Following the GWAS, we selected informative variants defined as ‘top SNPs’ for each slope 
trait as follows: for SNPs passing the GWAS threshold of −𝑙𝑙𝑙𝑙𝑙𝑙10(𝑝𝑝 𝑣𝑣𝑣𝑣𝑙𝑙𝑣𝑣𝑣𝑣) = 2; we chose the most 
significant SNP from within each 100 kb window and sliding 50 kb to the next window along each 
chromosome. We then removed one SNP of any pair of the selected ‘top SNPs’ in strong LD (r2 > 
0.95). 

Genomic prediction. We used BayesR (Erbe et al. 2012) to estimate prediction accuracies for 
50k SNP panel and compared the resulting accuracies with those obtained from adding ‘top SNPs’ 
to the 50k SNP set (i.e., 50k + ‘top SNPs’) using BayesRC method (MacLeod et al. 2016). The 
BayesR model fitted to the training bulls (N = 3,323) for 42,572 variants from 50k SNP panel was: 
y = Xβ +  Zg + Wv + e , where 𝐲𝐲 = vector of heat tolerance slope phenotypes; 𝐗𝐗 = design matrix; 
𝛃𝛃 = vector of fixed effect solutions; 𝐙𝐙 = design matrix relating phenotypes to GBV; g = vector of 
GBV ~ 𝑁𝑁(0, 𝐈𝐈𝜎𝜎𝑔𝑔2), where 𝜎𝜎𝑔𝑔2 is the additive genetic variance for the trait; 𝐖𝐖 = design matrix of SNP 
genotypes; 𝐯𝐯 = vector of SNP effects, modelled to have four possible normal distributions 
corresponding to zero, small, medium and large effects, respectively; 𝐞𝐞 = vector of residual errors 
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𝑁𝑁(0,𝐄𝐄𝜎𝜎𝑒𝑒2), where E is a diagonal matrix calculated as diag(1 𝑤𝑤𝑖𝑖⁄ ), with 𝑤𝑤𝑖𝑖  being a weighting factor 
for ith sire calculated based on the available number records following Garrick et al. (2009).  

We then used the BayesRC method to analyse 50k + ‘top SNPs’ dataset; an extension of the 
BayesR model that allows pre-allocation of variants to 2 or more classes (MacLeod et al., 2016) and 
hence a different posterior mixture distribution within each class if the class is enriched for 
informative SNPs. In our case the SNPs from 50k array (42,572) were allocated to class I and the 
selected ‘top SNPs’ to a separate class II, because the latter may be enriched with causal mutations 
for heat tolerance. For both BayesR and BayesRC models, we performed five MCMC replicate 
chains, each with 40,000 iterations of which 20,000 were discarded as burn-in for all the traits. We 
ran the analysis for 2 random validation sets of 600, and 623 Holstein cows. 

Calculating accuracy of genomic prediction. For each of the three validation cow sets 
(described above), the accuracy of prediction was calculated as: 𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣𝐴𝐴𝑣𝑣𝐴𝐴𝐴𝐴(𝑉𝑉𝑣𝑣𝑙𝑙𝑖𝑖) =  𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺,𝑝𝑝ℎ𝑒𝑒𝑒𝑒

�ℎ2
, 

where 𝑉𝑉𝑣𝑣𝑙𝑙𝑖𝑖  = Holstein cow validation set; 𝐴𝐴𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑝𝑝ℎ𝑣𝑣𝑒𝑒 = correlation of GBV and phenotypes (i.e., 
slope traits); ℎ2 = genomic heritability calculated for each trait using variance component estimates 
of Holstein cows (N = 29,107) for 50k SNP array (45,504 SNPs) data based on –reml option of 
GCTA software (Yang et al. 2011). The bias of prediction was assessed as the regression coefficient 
of the phenotypes (pre-corrected for fixed effects) on the GBV for animals in the validation set. 

 
RESULTS AND DISCUSSION 

In this study, we used a large dataset of Holstein cows (N = 20,623) to select informative markers 
from a GWAS and then tested them for increased genomic prediction of heat tolerance phenotypes.  

The genomic heritability estimates (± standard errors) for the heat tolerance milk (HTMYslope), 
fat (HTFYslope) and protein (HTPYslope) yield slope traits from Holstein cows that used to 
calculate the accuracy of predictions were 0.23 ± 0.01, 0.21 ± 0.01, and 0.20 ± 0.01, respectively. 
The number of informative markers for heat tolerance (i.e., ‘top SNPs’) selected from GWAS (p < 
0.01) was highest for HTPYslope (9,633) followed by HTFYslope (9,352), and HTMYslope (9,207) 
traits. Similarly, the total number of markers used in the BayesRC analyses (i.e., 50k + top SNPs) 
were 51,750, 51,894, 52,168, for HTMYslope, HTFYslope and HTPYslope traits, respectively. We 
chose a cut-off of p < 0.01, which is comparatively relaxed, to capture both markers with small and 
large effect sizes for heat tolerance. 

Figure 1 shows the accuracy and bias of genomic predictions in the Holstein validation cows. 
For the BayesR model using only 50k SNP data, we found the highest accuracy of prediction for 
HTFYslope (0.49 ± 0.01), followed by HTMYslope (0.49 ± 0.01) and HTPYslope (0.39 ± 0.01). 
The bias across all study traits was > 1.0 (Figure 1) indicating ‘deflation’ or under prediction, 
meaning less variance among predicted than observed values. 

When the selected ‘top SNPs’ were added to the standard 50k SNP array and analysed using the 
BayesRC model, we found a consistent increase in the prediction accuracy across all the traits with 
values of 0.001, 0.04, and 0.06 for HTMYslope, HTFYslope and HTPYslope traits, respectively 
(Figure 1). This increase in accuracy is notable for HTFYslope and HTFYslope traits and likely to 
be associated with the pre-selected markers (potentially functionally linked with heat tolerance) and 
the method used (BayesRC). The bias of prediction for BayesRC was comparable that for BayesR. 
In this study, we investigated the potential benefits of sequence variants selected from a single breed 
(Holsteins) on the accuracy of genomic predictions for the same breed (within-breed prediction). 
The value of sequence variants selected in across-breed population (combined Holsteins and Jersey) 
on genomic prediction of other breeds (Jersey and crossbred cattle) will be investigated in a further 
study. 
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Figure 1. Accuracy of genomic prediction in Holsteins cows based on BayesR (50k; grey) and BayesRC 
(50k+topSNPs; blue) models for heat tolerance milk (HTMYslope), fat (HTFYslope), and protein 
(HTPYslope) yield slope traits. Vertical lines are the standard errors of prediction estimated from 2 
random validation sets of 600, and 623 Holstein cows 
 
CONCLUSION 

Overall, our results show that the accuracy of genomic prediction for reduction in milk, fat, and 
protein yields under hot and humid conditions can be improved by 0.1%, 4%, and 6% units, 
respectively when selected informative sequence variants are added to the industry-implemented 
50k SNP panel. 
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