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SUMMARY 
This study investigated the current animal-level and herd-level variation for enteric fermented 

methane emissions across pasture-based dairy farms in New Zealand. We used the DairyNZ core 
database consisting of 2,398 herds and 751,981 cows as the inputs, and inferred crucial but unknown 
variables including methane emissions per unit of feed from department of environment, food&rural 
affairs (DEFRA), and live weight from New Zealand animal evaluation limited database to predict 
methane emissions for individual dairy cows. Methane emissions were predicted using dry matter 
intake (DMI) with an Intergovernmental Panel on Climate Change tier 2 approach. While individual 
methane emissions (R2 =0.29) were poorly predicted, but excellent predictability of herd average 
methane emissions were well predicted (R2=0.95) based on variables including herd, age, 
replacement rate, DMI, live weight (LW) and milk solids. The results showed an advantage of 
predicting methane emissions at herd level than individual cow level. Based on the results, the NZ 
dairy industry should focus on new traits and breeding objectives, with the support of trait 
prioritisation, a monitoring plan, policy making and incentivisation for farmers. 

 
INTRODUCTION 

More than 95% of methane emissions in a life cycle of dairy production come from enteric 
fermentation (Fonterra co-operative group limited, 2017). There is variation in greenhouse gas 
emissions among dairy farms caused by variation in production practices, environment, and regional 
historical disparity (Latham 2010; Beukes et al. 2010). To facilitate farmers in compliant with the 
future regulation, it will be important to establish objective, data driven and, practical and easy-to-
implement methods of monitoring emissions levels at an individual farm level.  

Currently animal identification and performance recording in New Zealand dairy farms are 
generally not well linked, due to the difficulty in tracking large herds on seasonal pasture-based 
production system (Edge and Kavalali 2018), although many farms have some level of recording in 
place for the purpose of herd improvement (3.67 million out 4.95 million cows, LIC and DairyNZ 
2019). For example, the national database such as New Zealand dairy core database (DairyNZ 
Hamilton, New Zealand) have performance records unlinked to animal ID, such as live weight. 
Additionally, the current techniques for measuring methane per unit of feed was difficult to apply 
on a large scale (DEFRA 2014). With the introduction of new data and IT systems, it would be 
possible to create a database infrastructure that would allow dairy cow GHG emissions to be 
predicted at the individual cow level and aggregated to individual farm level. 

Due to aforementioned reason,  the objectives of this study were 1) to combine multiple existing 
data sources to predict the variation among individuals and herds for dairy cattle enteric fermentation 
methane emissions for New Zealand dairy farms; 2) assess the requirement of future data 
infrastructure and technologies in order to monitor methane emissions at animal and herd level and; 
3) infer the emission mitigation strategies enabling the adoption of future on-farm emission policies 
and technologies. 

 
MATERIALS AND METHODS 

Data. New Zealand dairy core database containing herd test and movement records of 
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27,288,426 cows from 1989 to 2014. Breeds included Jersey, Holstein-Friesian and crossbred. 
Records of cows calving between June 1st and October 1st, 2005 were extracted, and quality control 
such as removing cows with lactation length beyond 365 days was applied. 751,981 cows with 
records in 2,398 herds were obtained in the end. 

General approach. DMI approach illustrated in the IPCC 2000 (Pickering et al. 2020; Clark et 
al. 2003) as 𝐸𝐸 = 𝐹𝐹 ∙ 𝛼𝛼, where E is methane emissions/cow/year, F is the annual DMI (kg DMI/year) 
and α is the methane emissions per unit of feed (g CH4/kg DMI). 

Estimation of live weight. Simulated from mean live weight by age and breed (Livestock 
Improvement Company 2008; DairyNZ 2019), a CV of 0.105 (Zhang et al. 2019), a phenotypic 
correlation of 0.15 between LW and milk yield during the first 240 days of lactation (Correa-Luna 
et al. 2018). 

Prediction of total lactation milk yield from test day records. Obtained by fitting quantile 
splines to each lactating cow for their milk volume, protein and fat production during lactation using 
smooth.spline function in R(v3.5.3).  

Prediction of DMI from live weight and energy requirements. First calculated the energy 
requirement following Nicol and Brookes (2007) and Clark et al. (2003) as the summation of 
maintenance, lactation, replacement and gestation energy requirement; then converted energy to 
DMI by multiplying the average diet energy. 

Prediction of methane emissions from DMI. First obtained the mean and SD of methane 
emissions per unit of feed, α, from experiments (DEFRA 2014) by removing research institute, 
measuring method, diet type, breed, sex and physiological status effects. Then sample α from this 
distribution and assign it to each cow i, multiplied by their DMI to obtain the prediction of E. 

Statistical analysis.  The summary statistical tests were calculated for measured and predicted 
variables (results not shown). Pearson correlations between E and energy related traits were also 
calculated (results not shown). To access the variance of variables in relation to E, an OLS linear 
model was fitted with herd as random effect, and milk solids, live weight, survival of individual 
cows and the herd averages of all previous effects as covariates. 

 
RESULTS AND DISCUSSION 

The methane emissions per unit of feed was estimated as 20.72 ± 4.24 g CH4/kg DM. Variances 
of each variable regressed on individual and herd average E are shown in Table 1. Factors including 
herd, milk solids per cow, cow live weight and survival could predict individual feed intake well 
(R2=0.29) but not individual methane output (R2=0.29). The reason is the substantial variation that 
exists in methane eructed per unit of feed consumed, which is also difficult to measure in practice 
(Beukes et al. 2010; Herrero et al. 2013; DEFRA 2014). Additionally, in practice, farmers are 
unlikely to mitigate emissions by reducing production. Therefore, new technologies such as e-collars 
that measure cow activity for the use of predicting DMI is also likely to be of limited use in practice. 

Herd average milk solids and live weight were powerful in predicting herd average methane 
emissions (R2=0.95), hence policy based on farm level rather than individual cow level could be 
more effective in reducing methane emissions on an industry wide basis. 
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Table 1. Model comparisons for dry matter intake (DMI, kg) and methane emissions (E, kg) 
during the lactation for each cow and for the herd average (𝑫𝑫𝑫𝑫𝑫𝑫������� and 𝑬𝑬�) 
 

Dependent 
variable1 Model formula2 R2 R 

Model 
variance 

Total 
variance 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑖𝑖𝑖𝑖 

~ ℎ𝑖𝑖𝑖𝑖 0.28 0.52 232,627 845,228 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.25 0.50 211,555 845,228 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.11 0.33 94,448 845,228 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.01 0.09 6,943 845,228 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.09  7,011   845,228  

~ ℎ𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 0.78 0.88 661,980 845,228 

Eij 

~ ℎ𝑖𝑖𝑖𝑖 0.10 0.32 100 985 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.09 0.30 91 985 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.04 0.20 41 985 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.003 0.06 3.09 985 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.003 0.06 3.02 985 
~ ℎ𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖 + 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 0.29 0.54 285 985 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝚤𝚤∙��������� 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.89 0.94 198,896 224,645 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.41 0.64 92,298 224,645 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.02 0.14 4,512 224,645 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.10 2,411 224,645 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ + 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.97 0.99 218,726 224,645 

𝐸𝐸𝚤𝚤∙��� 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ 0.86 0.93 85 98 

~ 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.40 0.63 39 98 

~ 𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙������� 0.02 0.14 1.96 98 

~ 𝑎𝑎𝑎𝑎𝑎𝑎𝚤𝚤∙������� 0.01 0.11 1.27 98 

~ 𝐷𝐷𝑀𝑀𝚤𝚤∙������ + 𝐿𝐿𝐿𝐿𝚤𝚤∙����� 0.95 0.97 93 98 
1 Calculated for fall 2005 to spring 2006 season. i indicates i-th herd and j indicates j-th animal. DMI and E 
are accumulated predictions across the whole lactation. 
2 Dependent variables were herd (ℎ𝑖𝑖𝑖𝑖), herd average accumulated milk solids (𝐷𝐷𝑀𝑀𝚤𝚤∙������, kg), herd average mean 
live weight (𝐿𝐿𝐿𝐿𝚤𝚤∙�����, kg), herd average survival (𝑀𝑀𝑆𝑆𝑆𝑆𝚤𝚤∙�������, year), herd average age (𝑎𝑎𝑎𝑎𝑎𝑎�����𝑖𝑖𝑖𝑖, year), accumulated milk 
solids (𝐷𝐷𝑀𝑀𝑖𝑖𝑖𝑖, kg), mean live weight (𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 , kg) and survival (𝑀𝑀𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖, year). Herd was fitted as a random effect 
and other effects were fitted as covariates. 

 
CONCLUSIONS 

This preliminary study identified a key antagonism between farmer desire for profitable 
utilisation of farm feed resources and a national need to moderate the overall methane emissions 
from the dairy industry. Technologies that only predict individual feed intake will have limited value 
for practical mitigation of enteric methane emissions. Rather, additional mechanisms would be 
required to effectively incentivise mitigation opportunities that reduce emissions per unit of feed. A 
well-linked comprehensive animal level database infrastructure could support effectively 
incentivising some levels of farm and animal level changes to reduce enteric methane emissions.  
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