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SUMMARY
The use of whole-genome sequence data has great potential in livestock breeding programs but 

suitable sequencing strategies and imputation methods need to be developed to generate sequence 
information for a large number of individuals at an affordable cost. We describe the sequencing strat-
egy that we followed in a study that sequenced more than 7,848 pigs from nine commercial lines, 
mostly at low coverage. Results demonstrate that the coupling of appropriate sequencing strategies 
and imputation methods such as hybrid peeling is a viable strategy for producing whole-genome 
sequence data for large livestock pedigreed populations, but it remains to be determined whether 
these large datasets can provide an increased accuracy of genomic predictions.

INTRODUCTION
The use of whole-genome sequence data has great potential in livestock breeding programs. It 

may increase the power of discovery of causative variants (Pasanuic et al. 2012; Daetwyler et al. 
2014; Nicod et al. 2016) and may enable more accurate and persistent predictions of breeding val-
ues than marker arrays (Meuwissen and Goddard, 2010; Iheshiulor et al. 2016). To capture the full 
potential of sequence data in livestock, sequence and phenotype data are required on a large number 
of individuals, perhaps millions, to accurately estimate the effects of the large number of causative 
variants that underlie quantitative traits (Hickey et al, 2014).

Low-cost sequencing strategies combined with imputation can be utilised to generate the required 
amount of sequence information for a large number of individuals at an affordable cost (Brøndum 
et al. 2014; van Binsbergen et al. 2014; VanRaden et al. 2015; Pausch et al. 2017). Low-coverage 
sequencing (LCSeq) enables the sequencing of a larger number of animals, which provides four 
advantages: (1) higher variant discovery rates, particularly for low-frequency variants; (2) inclusion 
of rare haplotypes; (3) a more precise capture of the recombination events that have occurred in the 
population, which enables better definition of haplotypes and thus better imputation of these haplo-
types into the individuals that carry them; and (4) more sequenced animals that are related, which 
improves the imputation of the sequence data to the whole population.

We first describe the sequencing strategy that we followed in a study that sequenced more than 
7,848 pigs from nine commercial lines, mostly at low coverage (1x or 2x). Then, we demonstrate 
that the coupling of that sequencing strategies with the imputation method ‘hybrid peeling’ is a viable 
strategy for producing whole-genome sequence data for large livestock pedigreed populations. Finally, 
we test the benefit that these large datasets can provide an increased accuracy of genomic predictions.
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MATERIALS AND METHODS
Sequencing strategy. We performed whole-genome sequencing of 7,848 individuals from nine 

commercial pig breeding lines (Genus PIC, Hendersonville, TN) with a total coverage of approximately 
32,114x. Sequencing effort in each of the nine lines was proportional to population size. Approx-
imately 2% (1.7-2.5%) of the pigs in each line were sequenced. Most pigs were sequenced at low 
coverage, with target coverage of 1 or 2x, but a subset of pigs were sequenced at higher coverage of 
5x, 15x, or 30x. Thus, the average individual coverage was 4.1x, but the median coverage was 1.5x. 

We selected the individuals and the coverage at which they were sequenced using a three-step 
strategy: (1) we first selected sires and dams that contributed most genotyped progeny in the pedi-
gree (referred to as ‘top sires and dams’) to be respectively sequenced at 2x and 1x; (2) conditional 
on the first step, we used AlphaSeqOpt part 1 (Gonen et al. 2017) to identify the individuals whose 
haplotypes represented the greatest proportion of the population haplotypes (referred to as ‘focal 
individuals’) and to determine an optimal level of sequencing coverage between 0x and 30x for 
these individuals and their immediate ancestors (i.e., parents and grandparents) under a total cost 
constraint; and (3) conditional on the second step, we used the AlphaSeqOpt part 2 (Ros-Freixedes 
et al., 2017)  to identify individuals that carried haplotypes whose cumulative coverage was low (i.e., 
below 10x) and distributed 1x sequencing amongst those individuals so that the cumulative coverage 
on the haplotypes could be increased (i.e., at or above 10x). AlphaSeqOpt used haplotypes inferred 
from marker array genotypes (GGP-Porcine HD BeadChip; GeneSeek, Lincoln, NE), which were 
phased with AlphaPhase (Hickey et al. 2011) and imputed with AlphaImpute (Hickey et al., 2012). 
The sequencing resources were split so that approximately 30% of the sequencing resources were 
used for sequencing the top sires at 2x, 15% for the top dams at 1x, 25% for the focal individuals and 
their immediate ancestors at variable coverage, and the remaining 30% for individuals that carried 
under-sequenced haplotypes at 1x.

Variant discovery. The reads were preprocessed using Trimmomatic (Bolger et al. 2014) to cut 
adapter sequences from the reads. Then the reads were aligned to the Sscrofa11.1 reference genome 
using the BWA-MEM algorithm (Li & Durbin 2009). Duplicates were marked with Picard (http://
broadinstitute.github.io/picard). SNPs and short insertions and deletions (indels) were genotyped 
jointly for all samples using a pipeline based on the HaplotypeCaller tool from GATK 3.8 (DePristo 
et al. 2011). To avoid biases towards the reference allele introduced by GATK when applied on 
low-coverage sequence data we extracted the read counts supporting each allele directly from the 
aligned reads stored in the BAM files with a pile-up function using the pipeline described in (Ros-
Freixedes et al. 2018). A total of 60 million SNPs were discovered across the nine lines.

Imputation of whole-genome sequence data. Most individuals in every population were gen-
otyped using commercial marker arrays, with either 15,000 (LD) or 75,000 (HD) markers genome-
wide. Imputation to whole-genome sequence was performed in each population separately using 
hybrid peeling, as implemented in AlphaPeel (Whalen et al. 2018) with the default settings. This 
method involves two stages: (1) multi-locus iterative peeling to estimate the segregation (the prob-
ability that each pair of grandparental gametes was co-inherited at a given locus) at the positions 
genotyped with the marker arrays; and (2) a modified single-locus iterative peeling step to impute 
the genotypes at each variant position discovered from the sequence data. This two-stage method 
reduces the computational cost of the imputation by estimating segregation of the markers from the 
array only and then approximating the segregation estimates at any other loci based on the estimates 
of the markers from the array that flank them. The accuracy loss of this approximation is negligible 
due to the limited number of recombinations in each chromosome and the high probability that nearby 
markers are inherited together. Multi-locus iterative peeling was performed on all available marker 
array data to estimate the segregation probabilities for each individual. The individuals genotyped 
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with LD marker arrays were not imputed to HD prior to this step. The segregation probabilities were 
used for segregation-aware single-locus iterative peeling for the remaining segregating variants. The 
total number of pigs with imputed data across the nine lines ascends to around 350,000.

To assess imputation accuracy, we used 284 individuals from four of the nine populations who were 
sequenced at high coverage (15x or 30x). Of these, 37 belonged to a 20,000-individual population, 65 
to a 35,000-individual population, 92 to a 70,000-individual population, and 90 to a 110,000-individual 
population. Many of these individuals sequenced at high coverage belonged to early generations of the 
pedigree of each population. Sequence data of the 284 individuals was completely masked, using a 
leave-one-out design. The imputed allele dosages were compared to those obtained with the complete 
data, considered as the ‘true’ values. For estimating the accuracies, we used 50,000 non-consecutive 
SNPs chosen randomly from chromosome 5.

Genomic prediction. Genomic prediction accuracy was tested in a single line with 30k pigs 
with imputed genotypes for 16 million of SNPs. Genomic predictions were performed using ridge 
regression as implemented in AlphaBayes software. The model was trained on 22,318 individuals and 
validated on 1,458 individuals. Genomic predictions were performed for nine synthetic traits with 
different heritability (0.1, 0.25, or 0.5) and with different number of QTN underlying their variation 
(100, 1,000, or 10,000 QTN), selected randomly from among all variants. The effect of the QTN was 
sampled from a normal distribution N(0,1). Genomic predictions were performed using four sets of 
markers: the 57k markers from the array (HD), 248k variants preselected from the sequence data 
based on LD pruning (WGS_LD), around 183k variants preselected from the sequence data based 
on results of single-marker regression with a set of 13k individuals independent from the training 
and testing sets (WGS_SMR), or 67k variants preselected from the sequence data by keeping only 
every 200th variant (WGS_200th). Accuracy of the gEBV was estimated as the correlation between 
the gEBV and the synthetic phenotypes in the validation set.

RESULTS AND DISCUSSION
Imputation accuracy. The imputation accuracy in the real data was high for most of the tested 

individuals. The imputation accuracy achieved for each of the 284 tested individuals is shown in 
Figure 1. The average individual-wise dosage correlation was 0.94 but there was substantial variation 
with an asymmetrical distribution (median: 0.97; min: 0.11; max: 1; interquartile range: 0.94-0.98). 
Some of the oldest individuals that belonged to the earliest generations of the pedigree (some of the 
106 individuals located in the first 20% of the pedigree) had lower imputation accuracy than individ-
uals in the remainder of pedigree, who had consistently high imputation accuracy. This pattern was 
observed for all four populations. The imputation accuracy of the individuals in later generations (the 
178 individuals after the first 20% of the pedigree) was higher, with an average dosage correlation of 
0.97 and with much lower variability (median: 0.98; min: 0.69; max: 1; interquartile range: 0.96-0.99).

The marker array density of the individuals was confounded with the number of ancestors that 
were genotyped with marker arrays. The non-genotyped individuals (n=19) and approximately half 
of the individuals genotyped at HD (n=87 out of 157) belonged to early generations of the pedigree, 
which reduced the chances that they had ancestors with data and penalized the imputation accuracy 
for these two groups of individuals. On the contrary, most individuals genotyped at LD belonged 
to later generations (n=91 out of 108), ensuring that their ancestors had enough data to enable high 
imputation accuracies for the LD individuals. The average dosage correlation for the non-genotyped 
individuals was 0.81, for the HD individuals was 0.94, and for the LD individuals was 0.96. The 
average dosage correlation for the HD individuals in the earliest generations was lower (0.91) than 
for the HD individuals in later generations (0.97). For individuals in the later generations there were 
no significant differences between marker array densities and the average dosage correlation of both 
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the HD and LD individuals was 0.97 and therefore no intermediate imputation steps were required 
for the LD individuals. There was no clear trend that population size affected imputation accuracy.

Figure 1. Imputation accuracy on relative position of the individual in the pedigree, marker 
array density, or population size

Genomic prediction. Sequence data can provide better prediction accuracy than marker arrays 
in some cases, but its advantage may depend on the genetic architecture of the trait. The genomic 
prediction accuracies for the nine synthetic traits are shown in Table 1. When a low number of QTN 
determine the phenotype, there may be sufficient statistical power to identify variants that underlie the 
genetic variation of the trait and prediction accuracy using those variants (WGS_SMR) is higher than 
with the markers from commercial marker arrays (HD). This is consistent with previous observations 
that adding one or a few markers with large effects as predictors can improve prediction accuracy of 
the marker arrays (Estany et al. 2017; Lopes et al. 2017; Nani et al. 2019; Al Kalaldeh et al. 2019). 
In such contexts, the information from markers with large effect could overcome the noise that arises 
from a higher number of markers with low effects. When the number of QTN is large, it became more 
difficult to identify these variants with single-marker regression and WGS_SMR performed worse 
than HD. In such cases, other sets of variants selected from the sequence data can be (marginally) 
more beneficial than the commercial marker arrays as they are not affected by ascertainment bias in 
the same way as commercial marker arrays.
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Table 1. Prediction accuracies for nine synthetic traits
 

QTN h2 HD WGS_LD WGS_SMR WGS_200th
100 0.1 0.370 0.367 0.389 0.368

0.25 0.416 0.395 0.422 0.418
0.5 0.625 0.615 0.626 0.626

1,000 0.1 0.373 0.345 0.356 0.370
0.25 0.396 0.393 0.402 0.404
0.5 0.620 0.594 0.597 0.620

10,000 0.1 0.430 0.411 0.395 0.430
0.25 0.437 0.430 0.398 0.444
0.5 0.657 0.644 0.617 0.658

In this test we did not observe an improvement in prediction accuracy using sequence data when 
the number of QTN was large, which is the case of many traits of economic interest in livestock. 
These results are partly due to the already high prediction accuracies obtained with the current 
implementation of genomic selection using commercial marker arrays. These results are in line with 
other studies that found no improvement or only small variations in genomic prediction when using 
sequence data, often by preselecting variants, compared to HD marker arrays (van Binsbergen et 
al. 2015; Calus et al. 2016; Veerkamp et al. 2016; van den Berg et al. 2017; VanRaden et al. 2017). 
However, these genomic prediction results are preliminary results for a single line. With a more 
complete set of sequenced individuals, it remains to be determined whether the results will improve 
due to: data from multiple breeds, enabling multi-breed training and a much larger training set; or 
genomic prediction methods that are more suited for exploiting sequence data at a large scale than 
ridge regression.

CONCLUSIONS
The coupling of an appropriate sequencing strategy and hybrid peeling is a powerful method for 

generating whole-genome sequence data in large pedigreed populations, as long as the individuals 
are connected to enough informative relatives with marker array or sequence data, and regardless of 
population size. It remains to be determined whether these large datasets can provide the leverage 
for increased accuracy of genomic predictions. 
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