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SUMMARY 
Performance of genomic selection is typically evaluated by cross-validation. In this work we 

review and point out some problems and features of the cross-validation metrics. Then we propose 
a semiparametric alternative using statistics derived from the “Method R”. 

 
INTRODUCTION 

Genomic prediction of breeding values via genomic BLUP (GBLUP) is expensive and requires 
initial and continuous investments in genotyping. State of the art theory so far does not yield 
convincing a priori estimates of the increased accuracy of genomic prediction vs. pedigree-based 
predictions. Thus, cross-validation has been extensively used (e.g. Legarra et al. 2008; VanRaden 
et al. 2009; Mantysaari et al. 2010; Christensen et al. 2012). The theory of cross-validation is 
poorly understood in the context of heavily related and selected data (but see (Gianola and Schön, 
2016)). For instance, how to evaluate accuracy for maternal traits is very unclear. Here we provide 
a brief review of this topic and suggest some options. 

 
CROSS-VALIDATION BIAS AND ACCURACY 
What cross-validation? Forecasters such as pedigree-BLUP and GBLUP may behave differently 
according to what the “forecasted” target is. Breeders have a difficult task, namely, to forecast the 
best reproducers in order to select them. In this, they are different from machine learners, whose 
objective is (from our perspective) to forecast present phenomena. Thus, it is rather obvious that 
for breeders the best method is such that allows taking the best selection decisions, that it is, the 
method that best predicts future performance of an individual knowing its genetic background. 

We will call this forward cross-validation. Its features are three-fold: (1) It needs the definition 
of a cut-off date; (2) It needs the construction of “Full” and “Reduced” data sets (Mantysaari et al. 
2010; Olson et al. 2011); and (3) In its crudest form, it does not provide any form of randomisation 
and therefore a point estimate of goodness of prediction is obtained, without any associated 
measure of uncertainty. 

In contrast, the classical random folding k-fold cross-validation in its most classic form splits 
randomly the data into k distinct sets and predicts one set from the remaining k-1 sets. Its key 
features include: (1) Extremely simple to implement; (2) Provides estimates of standard error of 
metrics of cross-validation; (3) Not realistic in an animal breeding setting and the ranking of 
methods is not suitable for practical purposes; and (4) Tends to overfit (case of leave-one-out) 

Some more esoteric forms of cross-validation exist. Legarra et al. (2008) split folds “across” 
or “within” families, obtaining very different results. But this is undoable (and little useful) for 
regular animal breeding data. The k-means for cross-validation (Saatchi et al. 2011) separates 
individuals into “most distinct” folds, and the i-th fold is predicted from the remaining k-1 folds. 
This does not answer the breeder’s question, which most often wants to predict from close, not 
from far animals.   

 
Which metrics? To assess the predictive ability of the different forecasters, animal breeders are 
highly formatted by Henderson’s BLUP, which in turn was highly dependent upon dairy cattle 
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genetic improvement. Metrics commonly used come from linear regression, named in this paper 
predictive abilities, are: 

Bias: 𝑏𝑏0 = 𝐸𝐸(𝑢𝑢 − 𝑢𝑢�);  Slope: 𝑏𝑏1 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�) ;     Accuracy: 𝑟𝑟 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�)

�𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢)𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�)
 

Sometimes mean squared error is used (𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑏𝑏02 + 𝜎𝜎𝑢𝑢2(1 + 𝑟𝑟2/𝑏𝑏12 − 2𝑟𝑟2/𝑏𝑏1)). Properties of 
BLUP in absence of selection are no bias, slope of 1, and maximum accuracy. Henderson defined 

this at the individual level on a 
frequentist basis (over conceptual 
repetitions). Bias=0 and slope=1 
ensure fair comparisons across 
old and young animals. This is 
important if the scheme mixes 
proven and young animals, like 
dairy cattle. It seems less relevant 
in schemes were reproducers are 
culled quickly (pigs, chicken) 
with beef species falling someone 
in the middle, we believe. 
Deviations may exist if there is 
selection, because bias and slope 
are related to genetic gain and 

dispersion (see Figure 1). 
 

What is it meant by classical bias? Animal breeders probably agree to Henderson’s (1973) 
sentence “most users would, I think, be reluctant deliberately to bias comparisons between 
different groups, for example to underevaluate young sires as compared to older ones”. Here we 
have an operational definition of bias. In formal terms this implies that at a given point in time: 

𝑏𝑏0
[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] = �𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 − 𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2� − �𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 − 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2�

= �𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 − 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1� − �𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2 − 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2� 

This definition has practical implications: if the candidates are chosen across groups, selection 
decisions are optimal if there is no bias. Thus, it is expected that 𝑏𝑏0

[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] = 0. There may be 
several definitions of groups: (1) Different conditions (grazing vs. indoor fed cattle). This case 
should be addressed by the model used for evaluation; (2) Within country, different amounts of 
information that cumulate in time (progeny-tested vs. genomic bulls). This case is strongly 
affected by within-country genetic trend (see below); (3) Same amount of information, but 
different origins (US vs. FR). This case is most affected by wrong estimates of the difference in 
genetic level across countries (Bonaiti et al. 1993; Powell and Wiggans 1994). 

The Interbull definition. Interbull uses retrospective tests (Boichard et al. 1995; Mantysaari et al. 
2010) that compare EBV’s before and after progeny testing.  

𝑏𝑏0
[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] = 𝟏𝟏′𝒖𝒖�𝑡𝑡 − 𝟏𝟏′𝒖𝒖�𝑡𝑡−1 

If progeny testing gives exact EBVs, then 𝒖𝒖�𝑡𝑡 = 𝒖𝒖𝑡𝑡 and 𝑏𝑏0
[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼] = 𝟏𝟏′𝒖𝒖 − 𝟏𝟏′𝒖𝒖�𝑡𝑡−1.Note that 

𝑏𝑏0
[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] ≠ 𝑏𝑏0

[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼], but if group1 is “very old” proven bulls and 𝒖𝒖�𝑡𝑡 = 𝒖𝒖𝑡𝑡 and group2 is 
genomic bulls (then becoming proven bulls) then  𝑏𝑏0

[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] = 𝑏𝑏0
[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼]. This may be rather 

obvious, but it only holds for progeny testing data. 
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Figure 1. Typical scenario for retrospective analysis 
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What happens under selection? Assume that we want to compare selection candidates with 
“proven” animals. If there is no selection, then 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 = 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2  and there is actually no 
need to make the test. Alas, if there is selection, then  

𝑏𝑏0
[𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻] = �𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 − 𝟏𝟏′𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2� − �𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔1 − 𝟏𝟏′𝒖𝒖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔2� = 𝑛𝑛�𝛥̂𝛥 − 𝛥𝛥� 

in other words, unbiasedness requires a correct (unbiased!) estimate of the realized genetic trend.  
 

What is overdispersion, a.k.a {Interbull, genomic} bias? Is it affected by selection? 
Dairy cattle breeders are much concerned by overdispersion of genomic proofs. If there is too 

much dispersion of 𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , the retained candidates will have unfairly high 𝒖𝒖�𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 . This could 
be staten more formally as “the mean of the EBVs of the selected candidates should be equal to the 
mean of the TBVs”. If selection is by truncation and under multivariate normality, the true mean 
after selection is 𝜇𝜇𝑇𝑇 = (𝟏𝟏′𝒖𝒖)/𝑛𝑛 + 𝑖𝑖𝑟𝑟𝑟𝑟𝑢𝑢, but this mean is (implicitly) predicted before selection as 
𝜇𝜇𝐸𝐸 = (𝟏𝟏′𝒖𝒖�)/𝑛𝑛 + 𝑖𝑖𝜎𝜎𝑢𝑢�. 

For 𝜇𝜇𝑇𝑇 = 𝜇𝜇𝐸𝐸 to hold, we need the first unbiasedness condition (𝑏𝑏0 above), plus a second 
condition,  𝜎𝜎𝑢𝑢� = 𝑟𝑟𝑟𝑟𝑢𝑢. But this condition only holds if 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�), which amounts to the 
regression coefficient to be 1:  

𝑏𝑏1 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�)  

This is the Interbull official, and most put forward, test of unbiasedness and nowadays more 
often called as “bias”. It is easy to see why 𝑏𝑏1 = 1 may not hold, namely, because selection 
modifies variances in rather unpredictable manners. The expected 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢, 𝑢𝑢�) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�) holds 
under quite restrictive conditions (Henderson 1982).  

 
Evaluations can easily be biased. Unbiasedness of current genetic evaluations is more wishful 
thinking than an established fact. Unbiasedness exist only if several conditions hold: 

• The model is correct (linear model, effects, heritabilities…) 
• The selection process is described by the data  
• Multivariate normality 

Thus, there are many reasons why there is wrong estimate of the genetic trend and thus there will 
be bias: 

• Collinearity of contemporary groups and genetic trend (this is the usual case) 
• Genetic groups in the model 
• Heritability is wrong (or changes with time) 
• Analysis are single trait whereas selection is multiple trait 
• Selection decisions not based on data. 
In addition, genetic gain can be estimated one generation forward (but no more) unless an 

explicit selection model is included. In other words, retrospective analysis cannot be done deleting 
two generations of records. This would need explicit introduction of the selection process. 

 
Why some species/traits seem biased where others do not? Basically, if there is no selection 
then automatically 𝑏𝑏0 = 0 holds (i.e., all possible sets of candidates have 0 average value), and 
most likely 𝑏𝑏1 = 1 holds, because selection does not change variances, and if a decent estimator of 
genetic variance is used, then genetic parameters are such that 𝑏𝑏1 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�) = 1 by construction, 
in particular in a BLUP context. So, bias is expected to increase more with higher genetic gains. 

An example is pigs. Christensen et al. (Christensen et al. 2012) found slopes below 1 ( ~0.9) 
for a heritable, selected trait (daily gain), whereas Xiang et al. (Xiang et al. 2016) found 
regressions nearly one for hard-to-select trait litter size.  
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In Lacaune dairy sheep (Baloche et al. 2014), we can put together the following. Figure 1 
shows the regression slopes vs. the expected genetic gain or the expected loss of genetic variance 

based on Robertson 
(1977) . In theory, 
the reduction in 
variance is 
accounted for by 
genetic evaluation 
(Bijma 2012). In 
practice, this does 
not seem to be the 
case. A possible 
solution may be to 
reestimate this 
variance in each 
cycle of selection. 

Vitezica et al. 
(2011) compared by 
simulation several 
predictors in 

selected populations in a SSGBLUP context. Statistic 𝑏𝑏1 generally indicated bias, that was higher 
with less heritability. High heritability increases the selection differential and reduces variances, 
but it also gives more information. Interestingly, the only method which provided unbiased 𝑏𝑏1 =
0.99 resulted in strong bias 𝑏𝑏0 = 1.38𝜎𝜎𝑢𝑢. Thus, both bias should be checked. 

 
What do we mean by accuracy? In animal breeding textbooks, accuracy (𝑟𝑟, with reliability 𝑟𝑟2) is 
presented twice: first, as a component of 𝛥𝛥𝐺𝐺 = 𝑖𝑖𝑖𝑖𝜎𝜎𝑢𝑢 (so, a populational parameter) and, second, as 
a measure of uncertainty of 𝑢𝑢� (an individual parameter). However, when selecting from real 
populations, EBVs are correlated across individuals, so the individual accuracies may be 
meaningless. In other words: it is pointless to obtain 𝑟𝑟𝑖𝑖 = 0.70 and 𝑟𝑟𝑗𝑗 = 0.70 if 𝑟𝑟�𝑢𝑢�𝑖𝑖 ,𝑢𝑢�𝑗𝑗� = 0.69.  

Cross-validation accuracies are computed as correlations 𝑟𝑟2 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑢𝑢,𝑢𝑢�)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢)𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�). They indicate our 

ability to rank individuals within a cohort. The fact that these accuracies are computed regardless 
of the correlated structure of both 𝑢𝑢 and 𝑢𝑢� has unclear implications.  In fact, it can be shown that, 
if Hendersonian conditions hold, 𝐸𝐸(𝑟𝑟)2 = 1 − �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑪𝑪22)���������������−𝑪𝑪22������

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑮𝑮)������������−𝑮𝑮��
 is the expectation of the observed 

reliability. This reliability takes into account the “classical” reliability contained in the diagonal 
terms but also the relationships a priori (in 𝑮𝑮) and a posteriori (in 𝑪𝑪𝟐𝟐𝟐𝟐) across individuals. If the 
evaluation method cannot rank correctly within the validation sample, then diagonal and off-
diagonal values of 𝑪𝑪22 are similar and reliability drops down. This is a desirable behaviour.   

Selection also affects observed cross-validation accuracy (Edel et al., 2012; Bijma 2012). If the 
cross-validation test uses elite animals, accuracies are underestimated. In other words, it is easy to 
rank all animals, but more difficult to rank elite animals. The reduction is such that  

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 1 − (1 − 𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2 )
𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
2

𝜎𝜎𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2   . 

 
ISSUES OF CROSS-VALIDATION METRICS 
The accuracy of cross-validation metrics. After an experiment has been carried out, the breeder 
wants to know if the genomic accuracy is really different from the parents average accuracy. A 

Figure 2. Slope 𝒃𝒃𝟏𝟏 vs. expected reduction in genetic variance (left) or 
genetic gain (right) by trait in Lacaune dairy sheep 
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simple method is to use the theoretical standard error of the estimates; for 𝑏𝑏0 and 𝑏𝑏1 these are from 
classical regression theory. For the correlation, this is a bit more convoluted, but an option is to use 
Fisher’s z-transform: 𝑧𝑧 = 1

2
𝑙𝑙𝑙𝑙 1+𝑟𝑟

1−𝑟𝑟
 has approximate s.e. 1/√𝑛𝑛 − 3 where 𝑛𝑛 is the number of data 

points used. From this a confidence interval can be worked out. For instance, in the Basco-
Bearnaise breed genomic predictions of 87 rams were 0.06 more accurate than parent averages 
(Legarra et al. 2014); this implies a rather symmetric 95% confidence interval of [−0.15,0.27].  

There is a source of bias and two sources of randomness in cross-validation metrics. The 
source of bias is that individuals are related both at the stage of prediction (parent average and 
genomic) and later, at the stage of validation (moment at which they have data; except for the case 
of progeny-tested animals for which proofs can be assumed uncorrelated). This has been discussed 
above. The two sources of randomness are: (1) Sampling of the reference population, (2) Sampling 
of the validation population. Fisher’s z-transform and Hotelling-Williams test include both. 
However, they do not consider that individuals are related, and therefore the accuracy is likely to 
be overestimated. Again, a theoretical equation can be worked out to estimate 𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟).  

 
(Re)Sampling of the validation population. A more practical approach involves using 
(re)sampling techniques. In k-fold cross-validation this is immediate but, as discussed before, the 
setting is not realistic. In (Mäntysaari and Koivula 2012; Legarra et al. 2014; Cuyabano et al. 
2015), sampling of the validation population was addressed by bootstrapping, i.e. sampling n 
individuals with replacement from the original n individuals in the validation data set. This method 
main virtue is that it avoids strong influence of outliers in the validation data set. It also allows 
formal comparisons of accuracies. Its main drawback is that it does not addresses the sampling of 
the reference population. 
  
(Re)sampling of the reference population. Recently,  (Mikshowsky et al. 2016) bootstrapped, 
not the validation, but the reference population. This also provides distribution of metrics. 
However, it may be argued that, in a dairy cattle reference population, including a sire twice (what 
the bootstrapping actually does) is like including it once, because the accuracy of the sire pseudo-
phenotype is close to 1 in dairy cattle. Thus, including it twice will not change much the solution 
for the sire – or the contribution of the sire to SNPs solutions. Therefore, randomness comes from 
removing sires more than by overrepresenting sires. In that sense, Mikshowsky et al. (2016) 

bootstrap corresponds to Tukey’s jackknife with 
more than one data point removed.  

 
Superiority of genomic on pedigree predictions is 
a function of family structure of the validation 
data set. Consider a set of two generations, a 
generation of parents and one of descendants: n full-
sib families with k offspring each. Parents have 
information (say, own weight) but there is not 
information for the offspring. We can ask: is it worth 
doing genomic prediction? 

Families can be easily ranked based on parent 
average, but there is not possibility to rank within 
families with pedigree information. However, 
genomic information can rank within family as well 
as across families. Thus, the observed benefit of 
GBLUP by retrospective analysis will be larger in a 

Figure 3. Genomic accuracy and family size 
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set composed of few families with a large number of candidates within families. In the limit, if 
there is one big family, pedigree prediction has 0 accuracy, whereas if there are 𝑛𝑛 families with 1 
offspring each, pedigree and genomic predictions should behave similarly.  

This is supported by Figure 3 in which we plot the genomic vs pedigree accuracy for milk yield 
for five dairy sheep and two dairy cattle breeds in France, as a function of family size. Clearly, the 
larger the family size, the larger the benefit because genomic selection allows distinguishing sibs. 
This raises several questions: (1) Do comparisons reflect “genetic architecture” or merely data 
structure in the validation? (2) Do selection schemes that select across families get less benefit 
from genomic selection? (3) Is Holstein gaining a lot from genomic selection because it has higher 
LD than other breeds or just as an artefact of its family structure?  

 
Which variables to use on the metrics? In the dairy industry, sires do not have phenotypes, so 
that comparisons are between (G)EBV’s and the “true” progeny proofs or deregressed proofs. In 
other species, it is more common to compare (G)EBV’s to “true” phenotypes, say 𝒚𝒚, using an 
approximation 𝑟𝑟 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺, 𝑦𝑦)/ℎ where ℎ2 is the heritability (Legarra et al. 2008). This is 
unsatisfactory, for conceptual and practical reasons: 

• The equation above for r assumes uncorrelated individuals and GEBV’s 
• Records 𝒚𝒚 are typically pre-corrected to 𝒚𝒚∗ = 𝒚𝒚 − 𝑿𝑿𝒃𝒃�, and the results are sensitive to 

precorrection. It is unclear what happens if there are contemporary groups in 𝒃𝒃 that are not 
present in the training data. 

• If the whole data set is used for precorrection, then a relationship structure is fit (e.g. 
pedigree relationships) as 𝒚𝒚∗ = (𝑰𝑰 − 𝑿𝑿(𝑿𝑿′(𝒁𝒁𝒁𝒁𝒁𝒁𝜎𝜎𝑢𝑢2 + 𝑰𝑰𝜎𝜎𝑒𝑒2)−1𝑿𝑿)−)𝒚𝒚 where 𝑨𝑨𝜎𝜎𝑢𝑢2 is assumed 
to be “correct”. If the assumed relationship is biased or incorrect, so will be 𝒃𝒃� and 𝒚𝒚∗, and 
the bias will be toward the assumed relationship. This may explain some puzzling results, 
e.g. poor performance of genomic prediction in low heritable traits such as fertility (Hayes 
et al. 2009).  

• Even after precorrection, there will be a remaining covariance structure across pre-
corrected 𝒚𝒚∗. This structure is notoriously hard to model (and rarely modelled). This may 
explain phenomena such as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝒚𝒚∗)

ℎ
> 1. 

• Some precorrected 𝒚𝒚∗ are too clumsy (Ricard et al. 2013) to be believed or computed in 
practice, for instance maternal effects.  

 
CROSS-VALIDATION ACCURACIES FROM METHOD R  
Description of the method. We propose to use the properties of method R to construct metrics of 
cross-validation. Reverter et al. (1994) observed that the regression of EBVs obtained with 
“whole” (𝑤𝑤) data on EBVs estimated with “partial” (𝑝𝑝) data, 𝑏𝑏𝑤𝑤,𝑝𝑝 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢�𝑤𝑤,𝑢𝑢�𝑝𝑝�

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�𝑝𝑝)
 is 1, and this 

checks bias (in the sense 𝑏𝑏1 before). The correlation of partial on whole (eq. 7-9 in their paper) 
𝜌𝜌𝑝𝑝,𝑤𝑤 = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢�𝑝𝑝,𝑢𝑢�𝑤𝑤�

�𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�𝑤𝑤)𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢�𝑝𝑝)
 is a function of respective accuracies. Invoking exchangeability, both 

equations can be extended to multivariate forms, and expectations can be taken in both the 
numerator and the denominator, resulting in: 

𝑏𝑏𝑤𝑤,𝑝𝑝 = 𝒖𝒖�𝑤𝑤′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝/𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝 
where 𝑲𝑲 is a matrix of relationships, 𝑏𝑏𝑝𝑝,𝑤𝑤 with an expected value of 1, and  

𝜌𝜌𝑤𝑤,𝑝𝑝 = 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤/�𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝𝒖𝒖�𝑤𝑤′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤 
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with an expected value 𝐸𝐸�𝜌𝜌𝑤𝑤,𝑝𝑝� = �
𝜇𝜇𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝2

𝜇𝜇𝑎𝑎𝑎𝑎𝑐𝑐𝑤𝑤2
 that is, proportional to the relative increase in average 

reliabilities. As more data cumulates, 𝒖𝒖� tends towards the true breeding values, thus 𝒖𝒖�𝑤𝑤 is more 
accurate than 𝒖𝒖�𝑝𝑝. The empirical covariance 𝒖𝒖�𝑤𝑤′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝 measures the strength of the association 
between the two, whereas 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝 measures the extent of shrinkage due to lack of information. 
In other words, the theoretical prediction error covariances are replaced by empirical ones 
(Thompson 2001). By combining cross-validation and theory from mixed models, we hope to 
retain the best of both worlds: a measure of accuracy that corresponds to reality and that is little 
affected by the existence of related, unbalanced data. Therefore, an algorithm to estimate accuracy 
of (say) PBLUP and GBLUP is: 

 
1. Compute EBV’s with all data (“whole”) using, say, GBLUP (which method should not be 

critical if all animals have data or progeny) 
2. Choose cutoff date 
3. Create “partial” data: Set values after cutoff date to missing  
4. Compute EBVs based on “partial” and GBLUP 
5. Compute statistic 𝑏𝑏𝑤𝑤,𝑝𝑝

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤
𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝

 

6. Compute statistic 𝜌𝜌𝑝𝑝,𝑤𝑤
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤

�𝒖𝒖�𝑤𝑤′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝
 

7. Compute EBVs based on “partial” and PBLUP 
8. Compute statistic 𝑏𝑏𝑤𝑤,𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤
𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝

 

9. Compute statistic 𝜌𝜌𝑝𝑝,𝑤𝑤
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤

�𝒖𝒖�𝑤𝑤′ 𝑲𝑲−1𝒖𝒖�𝑤𝑤𝒖𝒖�𝑝𝑝′ 𝑲𝑲−1𝒖𝒖�𝑝𝑝
 

 
For forward cross-validation, the statistics should be computed for the focal individuals (i.e., 

candidates to selection). On exit, 𝑏𝑏𝑤𝑤,𝑝𝑝
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 should be 1 (unbiased method) and is equivalent to 𝑏𝑏1 

and 𝜌𝜌𝑝𝑝,𝑤𝑤
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜌𝜌𝑝𝑝,𝑤𝑤

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 describes the respective accuracies of GBLUP and PBLUP. An extra 
statistic is bias 𝜇𝜇𝑤𝑤𝑤𝑤 = 𝑏𝑏0 = (𝟏𝟏′𝑲𝑲−1𝒖𝒖�𝑤𝑤 − 𝟏𝟏′𝑲𝑲−1𝒖𝒖�𝑝𝑝)/𝑛𝑛 . Matrix 𝐊𝐊 should be the “true” relationship 
matrix across individuals but there should be no great difference in using either genomic or 
pedigree relationships as far as they are correct. The procedure has several advantages: is 
completely general (it can be used e.g. for maternal traits or random regression), it is semi-
automatic, and can, at least potentially, provide estimates of the accuracy of the cross-validation 
metric. There are though many points that need to be addressed: robustness to misspecification, the 
role of selection (and how to avoid biases in the estimates of the different 𝑏𝑏′𝑠𝑠), how to sample 
efficiently, etc. 

 
TEST WITH REAL LIFE DATA SETS 

In beef cattle, we used genetic and phenotypic resources from Brahman cows (N = 995) and 
bulls (N = 1,116) outlined in (Porto-Neto et al. 2015). The phenotype was yearling body weight. A 
procedure “method R” as above was introduced to assess accuracy of GBLUP, and random (1000 
replicates) splits of the data set in training and validation was used, as animals are quite unrelated 
and belong to a single generation. We only present very briefly the results. The statistic 𝑏𝑏𝑤𝑤,𝑝𝑝 =
0.96 ± 0.08 (in the whole population) showed that evaluation was nearly unbiased, whereas 
𝜌𝜌𝑝𝑝,𝑤𝑤 = 0.67 ± 0.02 has a correlation of 0.81 with conventional cross-validation accuracy 
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estimated as 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,𝒚𝒚∗)
ℎ

. 
In dairy sheep, we used a large data set (Manech Tete Rousse) of 1,700,000 milk yield 

performances, 500,000 animals in pedigree and 2,111 sires with 50K genotypes. Data was split at 
2011 in training and validation. For all individuals, unbiasedness of (SSG)BLUP was checked 
with results 𝜇𝜇𝑤𝑤,𝑝𝑝 = 𝑏𝑏0 = 0.2𝜎𝜎𝑔𝑔 = 5 (liters), 𝑏𝑏𝑤𝑤,𝑝𝑝 = 𝑏𝑏1 = 0.996, so genetic evaluation is virtually 
unbiased for 𝑏𝑏1 (slope) but not for 𝑏𝑏0 (genetic trend), which is unsurprising because the model 
includes Unknown Parent Groups. Later, candidates to selection were compared, with 𝜌𝜌𝑤𝑤,𝑝𝑝

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
0.55 vs. 𝜌𝜌𝑤𝑤,𝑝𝑝

𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃 = 0.39, and both evaluations where notoriously biased (𝑏𝑏1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.77, 𝑏𝑏1𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
0.70), possibly due to selection not well accounted for. All these results agree well with previous 
analysis (Legarra et al. 2014). 
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