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SUMMARY 

A multi-breed genome wide association study (GWAS) can potentially improve QTL mapping 

precision and detection power. Alternatively to a multi-breed GWAS, meta-analysis can combine 

within breed GWAS results. Our objective was to compare within breed GWAS, multi-breed 

GWAS and meta-analysis of within breed GWAS results. Imputed whole-genome sequences and 

deregressed proofs for milk, fat and protein yield of 16,031 bulls of five French and Danish dairy 

cattle breeds were used for the analyses. GWAS were performed within each breed, combining 

French and Danish Holstein, combining Jersey, Montbéliarde, Normande and Danish Red, and 

combining all breeds. Within breed GWAS results were combined using three different meta-

analysis models. The multi-breed GWAS resulted in more distinct peaks by increasing the p-

values of some variants and decreasing the p-values of others. For some QTL not segregating in 

Holstein, combining all breeds except Holstein was useful, because they were overshadowed by 

larger QTL segregating in Holstein when all breeds were combined. The meta-analysis gave 

results similar to the multi-breed GWAS and can be used as an alternative. The results obtained by 

the weighted Z-score model were closest to those of the multi-breed GWAS. 

 

INTRODUCTION 

Genome wide association studies (GWAS) can help in the identification of causative mutations 

influencing quantitative traits. With the increasing number of re-sequenced individuals, more 

causative mutations are directly present in the data. In addition, however, there is also a large 

number of variants in linkage disequilibrium (LD) with the causative mutations. As a 

consequence, especially in populations with high levels of long range LD, as is the case within 

dairy cattle breeds (de Roos et al., 2008), GWAS generally results in large number of variants 

associated with a QTL, over a large region. Across breed, LD is only shared for short distances, 

and multi-breed GWAS could therefore improve QTL mapping precision. Furthermore, with the 

large number of sequence variants, high thresholds are necessary to avoid too many false positives. 

For breeds with small study populations, the detection power of a within breed GWAS might not 

be sufficient to detect QTL with a small effect. If causative mutations are shared across breed, a 

multi-breed GWAS could help to improve detection power and aid the identification of such QTL.  

A multi-breed GWAS could thus potentially improve both mapping precision and detection 

power. It is, however, not always possible to have all data required for a multi-breed GWAS. 

Alternatively, a meta-analysis can be performed, that combines results of individual GWAS 

(Begum et al., 2012). In human, Lin and Zeng (2010) found similar efficiency for a meta-analysis 

as for a full joint analysis. 

Our objective was to compare different multi-breed GWAS approaches, using whole-genome 

sequence data of five French and Danish dairy cattle breeds. GWAS was performed both within 

breed and multi-breed, and three meta-analysis methods were compared to the multi-breed GWAS. 
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MATERIALS AND METHODS 

Imputed sequences of 4993 Danish Holstein, 984 Jersey, 768 Danish Red, 5626 French 

Holstein, 1935 Montbéliarde and 1725 Normande bulls and deregressed proofs obtained following 

Garrick et al. (2009) for milk yield, fat content and protein content were used for the analyses. 

First, bulls genotyped with the 50K chip were imputed to HD. For the French data (Hozé et al., 

2013), this step was performed using Beagle 3.0.0 (Browning and Browning, 2007), while for the 

Danish breeds, IMPUTE2 was used (Howie et al., 2009). Subsequent imputation to whole-genome 

sequence was for all breeds done using IMPUTE2. The reference used for imputation to sequences 

of the Danish bulls consisted of the bulls in run 4 of the 1000 bull genome project (Daetwyler et 

al., 2014), while for the imputation of the French bulls, a combined French-Danish reference set 

was used. The latter consisted of 122 Holstein, 27 Jersey, 28 Montbéliarde, 23 Normande and 45 

Danish Red bulls. In total, 24,550,115 polymorphisms were used for the analysis, after filtering for 

imputation quality (IMPUTE2 info score ≥ 0.6) and minor allele frequency (MAF) (≥ 0.005).  

To study genomic relationships between breeds, a genomic relationship was constructed using 

SNP from the 50K chip for 500 randomly selected individuals of each breed. Genomic 

relationships were standardised and scaled based on allele frequencies estimated in the animals 

used to construct the genomic relationship matrix, following VanRaden (2009). Subsequently, a 

principal component analysis (PCA) was performed using the prcomp() command in R (2015). 

A GWAS was performed within each breed, using a single marker model with a random sire 

effect: 

𝑦𝑖𝑗 = 𝜇 + 𝑆𝑗 + 𝛽𝑔𝑖𝑗 + 𝑒𝑖𝑗  , 

where yij is the DRP for individual i with sire j, S the random effect of sire j, b the effect of the 

polymorphisms, gij the allele dose (ranging from 0 to 2) of individual i with sire j and eij a random 

residual. 

Afterwards, for all variants with a within breed p-value below 10
-5

 in French or Danish 

Holstein or below 10
-3

 in one of the other breeds for at least one trait were used for the multi-breed 

GWAS. The multi-breed GWAS was performed combining French and Danish Holstein (HOL), 

combining Jersey, Danish Red, Montbéliarde and Normande (REST), and combining all 

populations (ALL). The model used was identical to that used within breed, except for the addition 

of a breed effect.  

Three meta-analysis approaches were used to combine within breed GWAS results: the 

weighted Z-scores model using METAL software (Willer et al., 2010), and the fixed and random 

effects models using META software (Liu et al., 2010). The inputs of the Z-score model are 

within breed p-values, effect direction and sample size, while the fixed and random effects models 

use the within breed effects and standard errors. The random effects model accounts for 

heterogeneity between studies using Cochran’s statistic.  

 

RESULTS AND DISCUSSION 

Figure 1 shows the genomic relationship between the different breeds used for the studies. 

French and Danish Holstein populations were very similar, and Danish Red was closer than 

Montbéliarde and Normande, while Jersey was the most distinct from the other breeds.   

The multi-breed GWAS generally resulted in more distinct peaks than the individual within 

breed GWAS. When only the two Holstein populations were combined, p-values decreased due to 

the larger detection power. When all breeds or all breeds except Holstein were combined, p-values 

of some variants decreased, but increased for others.  

For QTL segregating in multiple breeds, adding more breeds resulted in stronger associations 

and decreased p-values. Peaks became more distinct when more different breeds were added, also 

for QTL that were segregating in only one or few breeds. For such QTL, the p-values of variants 

segregating in the breeds where the QTL is not present increased. When, however, a region 
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contained different QTL segregating in different breeds, QTL segregating in breeds with a smaller 

sample size were sometimes overshadowed by QTL segregating in Holstein.  

Figure 2 shows a peak around 94 Mb on chromosome 5 associated with fat yield in Holstein. 

Within breed, the peak was present in both Holstein populations with a –log10(p) around 33, and a 

smaller peak on the same location was detected in Normande. Combining the two Holstein 

populations increased the –log10(p)  of the top variant to 62.6, and adding the other breeds resulted 

in a further increase in the peak. The most significant variant had a –log10(p) of 71.6, and was an 

intron in MGST1, with rs-id rs211210569, a gene known of for its association with fat yield 

(Raven et al., 2014).  

In the other breeds, several peaks were detected in the same region. In the multi-breed GWAS 

combining all breeds, these peaks seem to disappear due to the large peak in MGST1. When all 

breeds except Holstein were combined, however, a clear peak was detected around 112.5 Mb, as 

shown in figure 4. Within breed, this peak was observed in Normande and Jersey. The most 

significant variant in the multi-breed analysis excluding Holstein was an intron in MKL1, with rs-

id rs110294643. MKL1 plays an important role in mammary gland development in mice (Sun et 

al., 2006). 

 

 
Figure 1. Principal component analysis of genomic relationships. Showing principal 

components (PC) 1, 2 and 3, dark blue = Danish Holstein, light blue = French Holstein, green = 

Jersey, black = Montbéliarde, orange = Normande, red = Danish Red. 

 

 
Figure 2. -log10(p) for fat yield in the multi-breed analysis on chromosome 5 (93-95Mb) 

 

Table 1 gives the correlation between p-values obtained in the multi-breed analysis and those 

obtained in the different meta-analyses. The weighted Z-score model gave the most similar results 

to the multi-breed GWAS. The weighted Z-scores model uses p-values as input rather than 

estimated effects, and is therefore less influenced by scaling differences. The random effects 

model gave for some variants very similar results to the multi-breed GWAS. For a large part of the 

variants, however, heterogeneity detected by this model was large, resulting in high p-values, even 

for variants that showed strong associations in the multi-breed analysis. All meta-analyses gave 

more different results from the multi-breed GWAS when different breeds were combined than 
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when the two Holstein populations were combined. Not all QTL are segregating in all breeds, and 

as a consequence, it is more difficult to estimate an overall effect in a multi breed analysis.  

 

 
Figure 3. -log10(p) for fat yield in the multi-breed analysis on chromosome 5 (111-113Mb) 

 

Table 1. Correlations between p-values obtained in multi-breed analysis and p-values 

obtained by meta-analysis for variants with a p-value below 10
-5

 in Holstein or 10
-3

 in Jersey, 

Montbéliarde, Normande or Danish Red in a within breed GWAS 

 
  milk   fat   protein  

 Z F R Z F R Z F R 

HOL 0.97 0.87 0.84 0.97 0.88 0.86 0.96 0.87 0.85 

REST 0.54 0.26 0.45 0.81 0.70 0.78 0.90 0.79 0.85 

ALL 0.48 0.28 0.34 0.85 0.69 0.57 0.86 0.70 0.57 

Z = weighted Z-scores, F = fixed effects and R= random effects 

 

CONCLUSIONS 

The multi-breed analysis helped to improve the precision of QTL mapping compared to the 

within breed GWAS. However, due to the much larger number of records available for Holstein 

than for the other breeds, when different QTL are segregating in different breeds in the same 

region, the Holstein QTL tended to dominate the results. Combining all breeds except Holstein 

was therefore useful to detect some QTL segregating in the other breeds that were overshadowed 

by larger Holstein QTL. A meta-analysis can be used as an alternative for a full multi-breed 

analysis. The weighted Z-score model gave results most similar to those of the multi-breed 

GWAS.  
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