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SUMMARY 

The objective of this collaborative research project was to use phenotypes collected from 

Charolais-sired crossbred calves in a commercial feedlot and processing plant to develop 

genomically-enhanced EBVs. Phenotypes and genotypes were collected from 4,195 crossbred 

feedlot calves and genomic breeding values (GBV) were calculated for post-weaning average daily 

gain, hot-carcass weight, marbling (MRB), ribeye area, and external fat thickness (FAT). 

Estimated breeding values (EBV) for Charolais sires with 10 or more progeny were calculated 

using an animal model with MTDFREML. Correlations of GBV with EBV ranged from 0.84 to 

0.93 when all calves were included in the data, but dropped to between 0.13 and 0.31 when sire’s 

own progeny were removed from the data set using a 5-fold cross-validation approach. 

Correlations increased when narrowing the evaluation to only those sires with 15 or more progeny, 

resulting in trait GBV accuracies ranging from 0.18 to 0.45 for FAT and MRB, respectively.  The 

inclusion of additional progeny in subsequent years of this project is expected to improve the 

accuracies of genomic predictions, and data will be used to evaluate the potential uses, costs and 

predicted benefits of using genomic information to optimize breeding program design and 

management on this vertically-integrated beef operation.  

 

INTRODUCTION 

To explore the potential economic value of genomic information to a large, vertically-

integrated beef cattle enterprise, a collaborative research agreement was formed between J.R. 

Simplot Land and Livestock and their genetic consultant Dr. Michael MacNeil, Delta G; the 

University of California, Davis; and Neogen/GeneSeek. Objectives of the project are i) to develop 

genomically-enhanced EBVs using data collected from commercial calves in the feedlot for the 

selection of terminal sire seedstock, ii) determine the cost:benefit of incorporating genomics into 

seedstock selection for an enterprise that derives value improvement in feedlot and processor 

economically-relevant traits,  and iii) examine other opportunities for deriving additional value 

from the genomic information such as marker-assisted management of the feedlot calves or an 

optimized breeding program design for this enterprise.  Here we provide a preliminary report of 

results from the first year of data collection. 

 

MATERIALS AND METHODS 

Phenotypes were collected from 4195 crossbred feedlot calves sired by Charolais terminal 

sires. Crossbred calves were genotyped with the “Low Density GeneSeek Genomic Profiler” 

(GGP_LD) bead chip that includes 19,725 SNPs. The phenotypic data collected for this project 

includes sex and polled status and encompasses traits involved in feedlot performance and carcass 

merit. Current traits analyzed for this project include post-weaning average daily gain (ADG), hot-

carcass weight (CWT), marbling (MRB), ribeye area (REA), and backfat thickness (FAT). A 
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total of 629 Charolais sires were genotyped, 415 with the “High Density GeneSeek Genomic 

Profiler” (GGP_HD) that includes 76,883 SNPs and 214 with the GGP_LD. Sire assignment was 

performed on calves with all sires as potential candidates for each run using an exclusion-based 

method implemented by SireMatch (J. Pollak, Cornell University). Two sets of 500 SNPs, selected 

based on high minor allele frequency (MAF) and high call rate, were utilized for the assignment of 

sires.  

A genome wide association study was performed on all traits using the Efficient Mixed-Model 

Association eXpedited (EMMAX) model implemented in Golden Helix. The mixed model 

equations consisted of contemporary groups based on sex, ranch origin (10 ranches), and harvest 

date. The GWAS was carried out utilizing phenotypes on 3,555 crossbred calves and the 15,658 

SNP from the GGP_LD. SNPs surrounding significant QTL peaks were extracted to evaluate the 

proportion of genetic variance explained by SNPs in the QTL region. 

Estimated breeding values (EBV) and heritability (h
2
) estimates were first calculated using an 

animal model with MTDFREML (Boldman et al., 1995). Due to a lack of pedigree data, sires 

(established via genotyping) were considered unrelated and dams were unknown. The EBV for 

Charolais sires with 10 or more progeny were extracted from the results.  The GBLUP method 

implemented in Golden Helix’s SNP and Variation Suite (Golden Helix, Bozeman, MT) was then 

utilized to estimate SNP marker effects on 8,000 SNP that are common to both the GGP_LD and 

GG_HD, for prediction of genomic breeding values (GBV).  A 5-fold cross validation approach 

was used to calculate the accuracy of the GBV. Sires with EBV were randomly allocated to one of 

5 groups such that approximately an equal number of progeny were included in each group. In 

each training analysis, the progeny of the sires in each of the 5-fold cross validation groups were 

excluded for the development of the genomic prediction equation for those sires.  Accuracy of the 

genomic breeding value for the sires was calculated as the correlation between the EBV and the 

GBV, divided by the average accuracy of the EBV (Neves et al. 2014).    

  

RESULTS AND DISCUSSION 

Collection of phenotypes at the feedlot and through the processing facility was facilitated by 

the use of electronic capture of all records at the processing chute, and the use of matched pair sets 

of visual ID and EID and the nextGen
TM

 ear tissue sampling unit (Allflex USA, Dallas, TX) to 

collect a DNA sample for genotyping. A total of 4195 DNA samples were analysed of which 3269 

were identified to a total of 325 single sires (77.93%). The use of two sets of 500 SNPs for sire 

exclusion clearly identified animals with no genotyped sire. Principal component analysis of the 

genomic data clearly revealed clustering of half-sib groups for groups of calves with no sire 

assignment. Data from calves that were not assigned to a specific sire were also used as part of the 

training population for the GBV. Collection of DNA from all possible sires remains one of the 

predominant difficulties when working with large commercial populations. The proportion of 

possible sires that were genotyped increased for the year 2 progeny as demonstrated by an increase 

in sire assignment rate to 87.5%.   

The GWAS analysis identified a small number of calves with incorrect gender assignment, and 

correctly identified a significant LOD peak for the polled locus on Chromosome 1. Significant 

SNPs were identified for CWT, ADG, and FAT on chromosomes 6 and 7 (Figure 1), both of 

which have been associated with growth in beef cattle previously (Lindholm-Perry et al., 2011; 

Saatchi et al., 2014). Further analysis for CWT on SNPs surrounding the peak on chromosome 6 

revealed that 10 SNP on either side of the peak accounted for 6.29% of the genetic variance with 

the most significant SNP accounting for 1.1%. Two SNP in close proximity to the peak on 

chromosome 7, and two SNP upstream accounted for 1.72% and 0.77% of the genetic variance, 

respectively. The identification of QTLs that are in common with those found in other studies 

using different breeds of cattle supports the integrity of the field phenotypic data collection in this 
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study.    

Figure 1. Manhattan plot using 3555 hot carcass weight (CWT) records implemented with a 

mixed model analysis, using the Efficient Mixed-Model Association eXpedited (EMMAX) 

model.  
 

Accuracies of genomic prediction using a 5-fold cross validation approach ranged from 0.13 to 

0.38 and from 0.18 to 0.45 for sires with ≥10 or ≥ 15 progeny, respectively (Table 1). Estimates of 

GBV accuracy using this 5-fold cross-validation approach are likely lower than true accuracy, 

because a large number of calves (i.e. ≥10 calves x ~ 22 sires) were removed from the training 

population in each of the five iterations.  

  

Table 1.  Accuracies of EBVs of Charolais sires with at least 10 progeny records, and GBVs
1
 

for the same sires when using all progeny records to train the prediction equations, or when 

excluding the sire’s own progeny from the training population using a 5-fold cross validation 

approach.  

   Sires ≥ 10 Progeny Sires ≥ 15 Progeny 

Trait2 

 

h2 

± SE 

N 

Train
3 

N 

Sire
4 

EBV 

Acc.5 

r 
 All

6 

r 
5-Fold

7 
GBV 

Acc.8 
N 

Sire
4 

EBV 

Acc.5 

r 
 All

6 

r 
5-Fold

7 
GBV 

Acc.8 

ADG 0.31±0.06 3392 112 0.75 0.84 0.21 0.29 65 0.78 0.88 0.29 0.37 

CWT 0.32±0.06 3555 114 0.74 0.92 0.22 0.30 72 0.77 0.92 0.21 0.28 

MRB 0.49±0.08 3370 111 0.80 0.92 0.31 0.38 67 0.82 0.93 0.37 0.45 

REA 0.40±0.07 3370 111 0.77 0.87 0.21 0.28 67 0.8 0.89 0.27 0.33 

FAT 0.49±0.08 3370 111 0.80 0.93 0.13 0.16 67 0.82 0.94 0.15 0.18 
1
Genomic breeding value (GBV) accuracy estimates were calculated on Charolais sires with at 

least 10 or at least 15 progeny records; 
2
ADG = average daily gain from feedlot arrival to final 

implant (µ= 135 days); CWT= carcass weight; MRB= marbling scored by camera; REA= ribeye 

area scored by camera; FAT= external fat thickness in adjusted yield grade units; 
3
Number of 

crossbred calves with associated phenotypes and genotypes used to train the prediction equations; 
4
Number of Charolais sires with ≥ 10 and 15 progeny respectively; 

5
Average accuracy of 

estimated breeding values (EBV); 
6
Pearson’s correlation between EBV and GBV, r(EBV,GBV), 

when all crossbred calves are included in the training; 
7
Pearsons correlation between EBV and 

GBV, r(EBV,GBV), for 5-fold cross-validation, where progeny from one sire group were excluded 

for the prediction of GBVs for that respective sire group; 
8
Accuracies calculated as the Pearson’s 

correlation between the EBV and the 5-fold cross-validated GBV, divided by the average accuracy 
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of the EBV.  

Accuracy of genomic prediction when using phenotypes is affected by heritability of the trait, 

quality of the phenotypic data, number of animals in the training population for each trait, marker 

density, and statistical prediction methodology. Thus, we anticipate improved accuracy to result 

from increases in the number of sires and phenotyped calves from subsequent calf drops, as well 

as future work to impute genotypes to greater density (Marchini and Howie, 2010), and implement 

Bayesian prediction methodology (Fernando et al., 2014). 

The impediments to the adoption of genomic technology in the beef cattle industry include the 

need for large training populations, the lack of a national breeding objective that includes and 

appropriately weights varying economic drivers in the different sectors of the beef cattle industry, 

and the difficulty of obtaining phenotypes from the whole supply chain. Much of the value derived 

from selection at the seedstock sector is realized by downstream supply chain partners (e.g. 

processing sector). Frequently there is no price signalling back to the seedstock producer making 

investments in phenotyping and genotyping to improve genetic progress in these traits, and this 

market failure impacts the commercial viability of any genetic technology (Van Eenennaam et al., 

2011). 

Vertically-integrated enterprises have the opportunity to develop their own breeding objective, 

and derive all of the value associated with genetic improvements across the various sectors of the 

beef industry, and hence are ideally situated to fully realise the potential of genomic information 

(Van Eenennaam and Drake, 2012). One advantage that vertically-integrated beef operations have 

when developing their breeding objective is the opportunity to include non-conventional traits. 

They are more likely to have ready access to records of economically relevant traits (e.g. feedlot 

feed requirements; survival to market endpoint) with very high relative economic value (Van 

Eenennaam and MacNeil, 2011), or related indicator traits (e.g. disease treatment/death records).  
It is envisioned that at the end of this three-year collaborative project accurate GBVs will have 

been developed for traits of economic importance to this large vertically-integrated beef cattle 

enterprise for their Charolais terminal sire seedstock herd, and the value proposition associated 

with the multiple potential uses of the genomic information and phenotypic information being 

collected as a part of this project will have been evaluated.  
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