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SUMMARY 

Imputation of genotypes is a cost-effective method for generating genotypes for un-typed loci 

and allows data from different genotyping panels and platforms to be combined. Accuracy of 

imputation can be defined in a number of ways to distinguish well-imputed from poorly-imputed 

SNP. The aims of this study were to compare different measures of imputation accuracy in low 

density panel data and determine how well the estimated allelic R
2
 (AR

2
) measure reported by 

BEAGLE performs across minor allele frequency (MAF) as a post-imputation filtering tool. 

Genotypes for 28,793 New Zealand mixed-breed dairy cows from a low density BeadChip 

(n=16,512 SNP) were used in the study. For 17,593 animals, 9,166 SNP were masked and imputed 

using version 4.0 of BEAGLE software. Imputation accuracy for SNP with MAF ≥ 0.005 was 

high, but was variable for low MAF (< 0.005) SNP. Genotypic concordance was not informative 

for low MAF SNP and was poorly correlated with AR
2
 for low MAF SNP. Other imputation 

accuracy measures (genotypic correlation, minor allele sensitivity and imputation quality score) 

were informative for low MAF SNP and were highly correlated with AR
2
 across all MAF 

classifications (r > 0.81). Results showed that post-imputation filtering based on AR
2
 is an 

effective approach for removing poorly-imputed SNP, including those of low MAF. 

 

INTRODUCTION 

Genotype imputation increases the power of existing data by providing predicted genotypes for 

loci that have not been directly assayed. It allows data from different genotyping platforms to be 

combined and makes additional variants available for analysis without the cost of actually 

genotyping them. Compared to using a smaller set of only true genotypes, the additional power 

from imputed genotypes can provide better signal in genome wide association studies (Khatkar et 

al. 2013) and better estimates of direct genetic values (Khatkar et al. 2012; Weigel et al. 2010). 

However, incorrectly imputed genotypes can add noise and compromise an analysis (Weigel et al. 

2010; Chen et al. 2014). Imputation correctness has been evaluated based on a number of accuracy 

metrics in previous studies (Khatkar et al. 2013; Calus et al. 2014), each providing a different way 

to distinguish well-imputed from poorly-imputed SNP. This differentiation can be particularly 

problematic for low minor allele frequency (MAF) SNP where accurate imputation is more 

difficult and sensitive to genotype calling errors (Lin et al. 2010; Calus et al. 2014). Also, some 

measures of accuracy are highly dependent on MAF and can give misleading results for low MAF 

SNP (Lin et al. 2010; Hickey et al. 2012). In this study, accuracy of imputation was examined for 

genotypes from New Zealand (NZ) progeny test dairy herds which were genotyped on a custom 

GGP-LD BeadChip. Imputing low MAF SNP well is important within this context because these 

custom SNP chip panels are often updated with new loci, many of which are low MAF, with a 

requirement for these to be imputed through the historically genotyped population. Generating 

imputation accuracy metrics requires a comparison set of true and imputed genotypes, and this is 

often obtained by selecting a subset of animals as a validation set. For this validation subset, a set 

of SNP of interest are masked and then imputed. In practical applications of imputation where a 

complete “truth set” is unavailable, pedigree relationships can sometimes be used to infer true 

genotypes and the level of imputation accuracy. However, a generally-available post-imputation 

quality measure which is not dependent on having a “truth set” and is reliable across MAF is 
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desirable. Browning and Browning (2009) outline a post-imputation estimate of imputation 

accuracy, the estimated allelic R
2
 (AR

2
) which is not dependent on allele frequency or having a 

“truth set” of genotypes. The aims of this study were to compare the AR
2
 reported by BEAGLE 

(Browning and Browning 2009) to a number of different imputation accuracy metrics derived 

from comparing true with imputed genotypes, and determine how well the AR
2
 performs across 

MAF as a post-imputation filtering tool. 

 

MATERIALS AND METHODS 

Genotypes from New Zealand (NZ) progeny test dairy herds (Holstein-Friesian, Jersey and 

crossbreed) were obtained from a custom version of the GGP-LD BeadChip with 20,183 SNP. 

After removing animals with a call rate < 0.95 and any SNP that were non-autosomal or had a call 

rate < 0.9, 19,143 SNP for each of 28,793 animals were included in the study. 

Imputation reference. Reference animals were selected as those with progeny in the wider 

population (11,062 females; 138 males). Average pedigree relationships between reference 

animals were 0.034 (sd=0.031). Monomorphic SNP were removed and missing SNP were imputed 

using version 4.0 of BEAGLE (Browning and Browning 2009) with default parameters. This 

resulted in an imputation reference of 16,512 SNP for 11,200 animals. 

Imputation target. Genotypes for 17,593 animals not included in the imputation reference 

were included in the imputation target population. Of the target population, 38.4% had at least 1 

parent in the reference, and the average pedigree relationship between reference and target animals 

was 0.033 (sd=0.029). Of the 16,512 SNP in the imputation reference, 9,166 were masked to leave 

only the SNP in common with an earlier version of the GGP-LD BeadChip. Imputation was 

carried out using version 4.0 of BEAGLE with default parameters. True and imputed genotypes 

were compared for 9,166 masked SNP on 17,593 animals. 

Imputation accuracy. Imputation accuracy was assessed according to 4 measures: Genotypic 

concordance (GCONC; proportion of genotype calls where the true genotype matches the most 

likely imputed genotype), genotypic correlation (GCORR; correlation between observed and 

imputed number of copies of the alternate allele), minor allele sensitivity (MAS; proportion of 

times a minor allele is correctly called when it is present, analogous to non-reference sensitivity) 

and imputation quality score (IQS; concordance adjusted for chance agreement) as defined by Lin 

et al. (2010). 

Post-imputation quality. Post-imputation quality was assessed using the AR
2
 calculated by 

BEAGLE. This is an estimate of the squared correlation between the allele dosage of the most 

likely imputed genotype and the allele dosage of the true genotype. The true genotype is unknown 

but the allelic R
2
 is estimated from the distribution of imputed posterior genotype probabilities. 

MAF classifications. SNP were grouped by frequency of the minor allele in the reference. 

 

RESULTS AND DISCUSSION 

Table 1 summarises imputation accuracy as measured by GCONC, GCORR, MAS and IQS, 

and the AR
2 

reported by BEAGLE. For SNP with MAF < 0.005, GCORR, MAS and IQS all 

indicated measures of accuracy ≤ 0.462, whereas GCONC indicated a high accuracy (0.999). Also, 

a decrease in GCONC was observed with increasing MAF, but an increase in accuracy was 

observed when measured by GCORR, MAS and IQS. This is because GCONC is dependent on 

MAF, and demonstrates that measuring accuracy based on GCONC can be misleading for low 

MAF SNP, as outlined by Calus et al. (2014). Mean AR
2
 values also increased with MAF and 

were particularly low (0.188) for SNP with MAF < 0.005. Imputation accuracy levels were high 

(≥ 0.864) when MAF ≥ 0.005 based on all 4 measures considered in this study. The MAF at which 

SNP are accurately imputed would be expected to increase as the size of the imputation reference 

decreases. 
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Table 1. Mean imputation accuracy (GCONC, GCORR, MAS, IQS) and post-imputation 

quality (AR
2
) for SNP classified by MAF. 

 
MAF classification N GCONC GCORR MAS IQS AR2 

< 0.005 1218 0.999 0.462 0.198 0.217 0.188 

0.005-0.01 130 0.998 0.906 0.864 0.887 0.774 

0.01-0.05 557 0.995 0.951 0.930 0.947 0.873 

≥ 0.05 7261 0.974 0.965 0.974 0.951 0.910 

All 9166 0.979 0.928 0.867 0.852 0.810 

 

Correlations between imputation accuracy measures and AR
2
 are shown in Table 2. GCONC 

was poorly correlated with AR
2
 for SNP with MAF < 0.005. Other imputation accuracy measures 

(GCORR, MAS, IQS) were highly correlated (≥ 0.812) with AR
2 

across all minor allele 

frequencies. High correlations between these accuracy measures and AR
2 

suggest that AR
2
 may be 

a good tool for screening SNP post-imputation. 

 

Table 2. Correlations between AR
2 and imputation accuracy (GCONC, GCORR, MAS, IQS) 

 

classified by MAF. 

 
MAF classification N GCONC GCORR MAS IQS 

< 0.005 1218 -0.069 0.851 0.908 0.903 

0.005-0.01 130 0.763 0.824 0.852 0.900 

0.01-0.05 557 0.644 0.837 0.846 0.882 

≥ 0.05 7261 0.888 0.925 0.812 0.947 

All 9166 -0.077 0.927 0.972 0.974 

 

Figure 1 shows the distribution of GCORR values prior to and post filtering based on an AR
2
 

threshold of 0.7. Prior to filtering imputed genotypes, GCORR values were highly variable, in 

particular for SNPs with MAF < 0.005 (Figure 1a). After filtering, the variation in GCORR values 

was significantly reduced, particularly for SNP with MAF < 0.005 (Figure 1b). In total, 1191 SNP 

were removed, most of which were SNP with MAF < 0.005. Results for MAS and IQS were 

similar (not presented here). 

 

 
Figure 1. Distribution of genotypic correlation (GCORR) (a) prior to filtering and (b) post 

filtering based on an AR
2
 threshold of 0.7. 
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Browning and Browning (2009) demonstrated that at high SNP density, AR
2 

is a good metric 

for estimating imputation accuracy without dependence on allele frequency. Kelly et al. (2013) 

also showed that in a population of composite tropical cattle, AR
2 

was an effective measure for 

identifying a large number of poorly-imputed SNP when imputing from Illumina BovineSNP50 to 

Illumina BovineHD SNP panels. Table 3 summarises mis-classifications of SNP in this study that 

resulted when a post-imputation filter of AR
2 

> 0.7 was used to predict SNP that had been imputed 

well according to each of the accuracy measures GCORR, MAS and IQS. For each measure, 

well-imputed SNP are defined as those where the measure was > 0.7. False negative (FN) SNP 

were defined as those with an AR
2
 ≤ 0.7 but an imputation accuracy > 0.7. False positive (FP) 

SNP were defined as those with an AR
2 

> 0.7 but an imputation accuracy ≤ 0.7. Low FN rates 

(≤ 3.77%) were observed for SNP with MAF ≥ 0.01, but were higher for SNP with MAF < 0.01 

(5.83-22.88%). Very low FP rates (≤ 0.9%) were observed for SNP with MAF < 0.005 and were 

all zero for SNP with MAF ≥ 0.005. These results confirm that post-imputation filtering based on 

AR
2 
is an effective approach for removing poorly-imputed SNP, including those of low MAF. 

 

Table 3. Percentage of false positive (FP) and false negative (FN) SNP for imputation 

accuracy measures (GCORR, MAS, IQS) based on an AR
2
 threshold of 0.7. 

 
 GCORR MAS IQS 

MAF classification FN FP FN FP FN FP 

< 0.005 22.88 0.85 5.83 0.90 9.52 0.41 

0.005-0.01 20.93 0 17.69 0 16.15 0 

0.01-0.05 3.77 0 3.41 0 3.41 0 

≥ 0.05 0.25 0 0.36 0 0.15 0 

All 2.35 0.06  1.52 0.12 1.82 0.05 

 

CONCLUSION 

Genotypic concordance was not informative for low MAF SNP and was poorly correlated with 

AR
2 

values reported by BEAGLE for low MAF SNP. Other imputation accuracy measures 

examined (GCORR, MAS, IQS) were informative for SNP across all minor allele frequencies. 

These measures were also highly correlated with each other and with post-imputation AR
2 

values. 

Post-imputation filtering based on an AR
2 

threshold of 0.7 was shown to be an effective way of 

removing poorly-imputed SNP for imputed genotypes from a population of NZ dairy cows 

genotyped on a low density panel. 
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