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SUMMARY 

Genetic improvement of dairy cattle health using producer-recorded data is feasible. Estimates of 

heritability are typically low, indicating that genetic progress will be slow. Health improvement may 

also be possible through incorporation of environmental and managerial aspects into herd health 

programs. The objective of this study was to utilize non-parametric methodologies including support 

vector machines and random forests to explore prediction of cow health status from routinely collected 

herd summary data. Random forest models attained the highest accuracy for predicting health status in 

all health categories. Accuracy of prediction (SD) of random forest models ranged from 0.87 (0.06) to 

0.93 (0.001). Results of these analyses indicate that non-parametric algorithms, specifically random 

forest, can be used to accurately identify individual cows likely to experience a health event of interest. 

Further development of predictive models into herd management programs will continue to improve 

dairy health. 

 

INTRODUCTION 

To fully understand complex diseases, it is important to understand relationships between genotype, 

environment, and phenotype. Genetic improvement of dairy cattle health has been determined to be 

feasible utilizing producer-recorded data by several studies (Zwald et al. 2004; Parker Gaddis et al. 

2012, 2014). Low estimates of heritabilities indicate, however, that genetic progress will be slow. 

Variance observed in lowly heritable traits can largely be attributed to non-genetic or environmental 

factors. In typical genetic evaluations, adjustments for environmental effects are accomplished by 

considering them as fixed effects. This disregards potential effects of management and environmental 

conditions on genetic expression (Windig et al. 2005). The question is then whether more rapid 

phenotypic improvement can be achieved if herd health programs incorporate environmental and 

managerial aspects. 

Recent studies have incorporated herd characteristics into statistical models in relationship to 

reproductive efficiency (e.g., Löf et al. 2007), production (e.g., Windig et al. 2006), and health (e.g., 

Stengärde et al. 2012). Farm staff or Dairy Herd Information (DHI) Association technicians regularly 

report on numerous herd characteristics observed on test days (DHI-202: Dairy Records Management 

Systems 2014). Additional environmental information is accessible through online databases including 

climatic, human census, and geographical data. Large numbers of variables create analysis challenges, 

ranging from increased data pre-processing to increased computing time. The majority of previous 

studies have utilized parametric statistical models to analyse herd characteristics (e.g., Stengärde et al. 

2012), which can suffer from multiple testing problems and colinearities of numerous variables (Sato 

et al. 2008). Alternatively, non-parametric methods have recently been investigated to better handle 

numerous variables (e.g., Schefers et al. 2010). The objective of this study was to utilize non-
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parametric methodologies to explore prediction of cow health status from routinely collected herd 

summary data. 

 

MATERIALS AND METHODS 

Data. The DHI-202 Herd Summary provides a report on herd production, reproduction, genetics, 

udder health, and feed cost information (www.drms.org). Data were available from 2000 through 2011 

from Dairy Records Management Systems (DRMS; Raleigh, NC). Four months (March, June, 

September, and December) of collected records were available for each year. Each herd summary 

contained over 1,100 variables. Number of contributing herds varied from 647 to 1,418, depending on 

month and year of reporting. Data included Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and 

crossbred herds.  

Supplementary data were acquired from publicly available datasets. The National Oceanic and 

Atmospheric Administration National Climatic Data Center (NCDC) provides information regarding 

temperatures, precipitation, degree-days, and drought indices (NCDC, 2014). Monthly summaries of 

data from the weather station located closest to each herd were merged with herd characteristic data. 

Estimates of population size were obtained on a county-basis from the United States Census Bureau 

(www.census.gov) as a measure of population density. Intercensal estimates from 2000 through 2010 

were produced by updating the Census 2000 counts with estimates for components of population 

change (United States Census Bureau, 2012).  

Voluntary producer-recorded health event data were available from DRMS (Raleigh, NC) from 

U.S. farms from 2000 through 2012. These data were merged with available production data. Health 

and production datasets were edited following the editing procedures described in Parker Gaddis et al. 

(2012). Health events included hypocalcemia, cystic ovaries, digestive problems, displaced abomasum, 

ketosis, mastitis, metritis, and retained placenta. These events were grouped into three main categories: 

mastitis, metabolic (hypocalcemia, digestive problems, displaced abomasum, and ketosis), and 

reproductive (cystic ovaries, metritis, and retained placenta) disorders. Health events were combined 

with herd characteristics based on date of health event occurrence. 

Data pre-processing. A function was employed to determine and remove highly correlated 

variables by searching the correlation matrix. Editing was also performed to ensure that no variables 

were linear combinations of other variables (Kuhn 2013). Any variables with (near) zero variance were 

removed from the data. The above editing reduced the size of the dataset to approximately 3.7 million 

records with 829 variables. Missing records needed to be handled before statistical modeling could be 

performed. Variables with more than 50% missing observations (n = 70) were excluded from further 

analyses. Remaining missing herd characteristic records were imputed using an iterative principal 

component analysis algorithm (Husson and Josse 2012). Once a complete dataset was created, 

lactational incidence rate was calculated for each health event by herd-year as number of affected 

lactations per lactations at risk (Kelton et al. 1998). 

Analyses. Analyses were performed using a binary indicator where “0” represented no incidence of 

a health event during a lactation and “1” represented at least one incidence of a respective health event 

during a lactation. Nonparametric models investigated included support vector machines (SVM) and 

random forests (RF). Briefly, an SVM model maps response variables to a higher-dimensional space 

that contains a “maximal separating hyperplane” (Sullivan 2012). The response variable should 

separate across this hyperplane into correct classifications (Sullivan 2012). Two different kernel 
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functions were investigated: a linear kernel and a radial basis kernel (RBF). The SVM
perf

 software 

(version 3.0) was utilized to fit SVM models (Joachims 2006).  

Tree models are a data mining technique that are easily interpretable and implicitly perform feature 

selection, making them ideal for data with numerous variables (Kuhn and Johnson, 2013). Random 

forest (RF) models were utilized as a machine learning algorithm that fits many decision trees to 

bootstrapped samples of a dataset and then averages these decision trees to create a final predictive 

model (Breiman 2001). The “bigrf” package of R (R Core Team 2014) was used to fit these models 

(Lim et al. 2014). An optimal number of trees was determined prior to fitting a final model by testing a 

range of values for each health event category. 

For all the above described models, 10-fold cross validation was used to evaluate predictive ability. 

Measures of predictive ability included accuracy, sensitivity, and specificity. Accuracy was calculated 

as the sum of true positives and true negatives divided by the sum of positive and negative incidences. 

Sensitivity, or true positive rate, was calculated as number of positive incidences correctly identified 

divided by the total number of positive incidences. Specificity, or true negative rate, was calculated as 

the number of negative incidences correctly identified divided by the total number of negative 

incidences (Fawcett 2006). 

 

RESULTS AND DISCUSSION 

The number of states reporting data ranged from 35 to 45, depending on health event. The most 

common herd size fell in a range of 100 to 299 cows; however, data included herds with fewer than 50 

cows and a maximum herd size of over 5,500 cows. Overall median incidence rates were 24%, 8%, 

and 18% for mastitis, metabolic, and reproductive health events, respectively. These fall within the 

range of previously reported incidence rates (Parker Gaddis et al. 2012). 

Predictive ability in training datasets were similar to those estimated for validation data, indicating 

that the models were not being overfit to training data. Prediction accuracies, sensitivity, and 

specificity for SVM models are shown in Table 1. Linear and RBF kernels performed similarly for all 

health event categories. These models had much higher specificity compared to sensitivity, indicating 

that they were more capable of identifying healthy cows. 

 

Table 1 Summary of model performance for incidences of mastitis, reproductive, and metabolic 

health events averaged across 10-fold cross validation results fitting support vector machine 

(SVM) and random forest models 

 
  Accuracy 

(Validation) 

Sensitivity 

(Validation) 

Specificity 

(Validation) 

Mastitis SVM (linear) c=0.01* 0.70 (0.003) 0.24 (0.002) 0.88 (0.003) 

 SVM (RBF) c=10.0 0.70 (0.01) 0.39 (0.03) 0.83 (0.02) 

 Random forest 0.93 (0.001) 0.82 (0.003) 0.97 (0.001) 

Reproductive SVM (linear) c=0.005 0.69 (0.002) 0.32 (0.01) 0.79 (0.004) 

 SVM (RBF) c=10.0 0.77 (0.01) 0.33 (0.03) 0.88 (0.02) 

 Random forest 0.92 (0.001) 0.74 (0.006) 0.97 (0.0007) 

Metabolic SVM (linear) c=0.01 0.76 (0.03) 0.12 (0.03) 0.93 (0.05) 

 SVM (RBF) c=10.0 0.75 (0.01) 0.25 (0.02) 0.88 (0.01) 

 Random forest 0.87 (0.061) 0.57 (0.145) 0.96 (0.04) 
*c represents the error penalty tuning parameter for SVM models 
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The optimal number of trees for RF models was determined to be 25, regardless of health event. 

Random forest models had the best predictive ability across all health event categories (Table 1). 

Overall, sensitivity was lower than specificity; however, sensitivity was higher for RF models 

compared to SVM models. 

Each of the models investigated herein had benefits and disadvantages. Support vector machines 

are a flexible class of models with several kernels that can be employed. These models require 

estimation of tuning parameters and results can be more difficult to interpret. Random forests were the 

most flexible models. They can easily handle a large number of variables, as well as missing records. 

Random forest models can be more difficult to interpret than a single decision tree, but tend to have 

better predictive performance and are capable of identifying influential variables. 

This study suggests that benchmarking of cow health is feasible with routinely collected data. 

Improvement in predictive ability may be possible by modeling each health event as opposed to 

grouping events into categories. Factors that predispose a cow to retained placenta, for example, may 

not be the same as factors that increase a cow’s risk of cystic ovaries. With continued development and 

incorporation of predictive models into herd management, routinely recorded herd data could be used 

in conjunction with genomic selection strategies to further improve dairy cattle health. 
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