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SUMMARY 

In this study, we aimed to develop genomic estimated breeding values for heat tolerance in 

Australian dairy cattle. We combined test-day herd recording data with temperature and humidity 

measurements (in the form of temperature-humidity index or THI) from weather stations that were 

closest to the herds for test days between 2003 and 2013. Tolerance to heat stress was then 

estimated for each cow using random regression (intercept and slope) to model the rate of decline 

in production with increasing THI accumulated over the four days prior to the day of milking, for 

milk, fat and protein yields. The cow slopes from this model were used to define daughter trait 

deviations (DTD) for their sires. Data were analysed separately for Holsteins and Jerseys. The 

reference population for genomic prediction was 2,300 Holstein and 575 Jersey genotyped sires 

with DTD for response to heat stress for milk, fat and protein yield. With this reference, and using 

GBLUP, the range in accuracy of genomic predictions for heat tolerance across traits were 0.38 – 

0.53 and 0.49 – 0.63 for 435 Holstein and 135 Jersey validation sires, respectively. When 2,191 

Holstein and 1,190 Jersey cows were added in the reference populations, no substantial 

improvements in accuracy were observed. Genomic selection appears to be a useful tool to enable 

farmers to improve milk production in environments with higher heat load. 

INTRODUCTION 

Changes in environmental factors such as air temperature, humidity, air flow and radiation 

beyond the comfort zone of animals will lead to heat stress (Armstrong 1994). Heat stress in dairy 

cattle is an important issue as it results in reduced milk yield (Hayes et al. 2003), reduced fertility 

(Haile-Mariam et al. 2008) and therefore reduced profitability (St-Pierre et al. 2003). As the 

temperature in Australia is projected to continue to increase, the future of dairy farming will need 

measures to adapt to heat stress. 

One way to address the challenge posed by heat stress is to apply management measures such 

as providing shade, fans and sprinklers to cows. Another approach that may have greater benefits 

in the long term is to select animals with better heat tolerance, as it has been demonstrated that 

variation in heat stress response is heritable (Hayes et al. 2003; Haile-Mariam et al. 2008). That is, 

production and fertility of some animals are less affected by heat stress than others and therefore 

these animals could be valuable candidates for selection. The genetic gain for heat tolerance will 

be greatest if accurate genomic estimated breeding values are available, as this will enable 

selection of young bulls and heifers. 

In this study, we used dense DNA markers, together with field production and climate data, to 

develop GEBV for heat tolerance for dairy cattle in Australia. 

MATERIALS AND METHODS 

Hourly climate data including dry bulb temperature and relative humidity (%) were obtained 

from the Bureau of Meteorology (Melbourne, Australia) for all weather stations in Australia from 

2003 to 2013. Average temperature-humidity index (THI) on the test day and 1, 2, 3 and 4 d 
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before the test day were calculated following Hayes et al. (2009). The first-lactation test-day 

records between 2003 and 2013 for milk, protein and fat yield were extracted from the Australian 

Dairy Herd Improvement Scheme (ADHIS) database for Holstein and Jersey cows. Production 

records were merged with THI from the nearest weather station, or the second nearest station if it 

had a lower number of missing records. In total, THI from 105 weather stations were matched to 

production records of 1,655 Holstein and 501 Jersey dairy herds. 

In our dataset, genotypes were available for a total of 2,735 Holstein and 710 Jersey sires. 

Illumina Bovine High-Density genotypes (777,963 SNP markers) were available for 1,620 of the 

Holstein sires and 125 of the Jersey sires. For all other sires, 50K (56,430 SNP) genotypes were 

available. After quality control and removal of non-polymorphic SNPs, 632,004 SNPs remained 

for animals genotyped at high density and 43,425 SNP remained for animals genotyped at the 

lower density. All animals genotyped at the lower density had genotypes imputed to the higher 

density SNP panel using BEAGLE 3 (Browning and Browning 2009).  

All statistical analyses were undertaken separately for Holstein and Jersey. Mixed linear 

models were used to fit the data with variance components estimated using maximum likelihood in 

ASReml (Gilmour et al. 2009).  

A random regression model was used to derive individual cow sensitivity to changes in THI of 

milk, fat and protein yields (i.e. the slope of the regression, or cow slope): 𝑦𝑖𝑗𝑙 = 𝜇 + 𝐻𝑇𝐷𝑖 +

𝑌𝑆𝑗 + ∑ 𝐴𝑛𝑋𝑛
3
𝑛=1 + ∑ 𝐷𝑛

8
𝑛=1 𝑍𝑛 + ∑ 𝑃𝑙𝑛𝑊𝑛

𝑙
𝑛=0 + 𝑒𝑗𝑙𝑖  (model 1), where 𝑦𝑖𝑗𝑙  is yield of milk in 

litres, fat in kg x100 or protein in kg x 100 from the 𝑖𝑡ℎ herd test day, 𝑗𝑡ℎ year season of calving, 

and 𝑙𝑡ℎ cow in her first lactation; µ is the intercept, 𝐻𝑇𝐷𝑖 is the effect of the 𝑖𝑡ℎ herd test day; 𝑌𝑆𝑗 

is the effect of the  𝑗𝑡ℎ year season of calving; 𝑋𝑛 is the  𝑛𝑡ℎ-order orthogonal polynomial 

corresponding to age on day of test; 𝐴𝑛 is a fixed regression coefficient of milk/fat/protein yield on 

age at test; 𝑍𝑛 is the  𝑛𝑡ℎ-order orthogonal polynomial corresponding to days in milk (DIM) at test; 

𝐷𝑛 is a fixed regression coefficient of milk/fat/protein yield on DIM; 𝑃𝑙𝑛 is a random regression 

coefficient on THI for the  𝑙𝑡ℎ cow; 𝑊𝑛 is either the intercept or slope solution for heat load index 

for cows; and 𝑒𝑖𝑗𝑙  is the vector of residual effects. In this random regression model, all THI values 

below 60 were set to 60 (Hayes et al. 2009). 

The effects of the sires (sire slope) to sensitivity of milk, protein and fat yield of cows to 

changes in THI were obtained using the following model:  
𝑦𝑖 = 𝜇 + 𝑆𝑖𝑟𝑒𝑖 + 𝑒 (model 2), where, 𝑦𝑖  is a vector of slope value for a daughter of the i

th
 sire 

obtained from model 1, 𝑆𝑖𝑟𝑒𝑖 is the effect of the i
th

 sire on cow slope ~ 𝑁(0, 𝜎𝑠
2), 𝑒 is the vector of 

residuals ~ 𝑁(0, 𝑰𝜎𝑒
2) where I is identity matrix and 𝜎𝑒

2 is residual variance.  

Proportion of additive variance in cow slope was calculated as 4 times of sire variance divided 

by total variance obtained from model 2. 

To assess the accuracy of using genomic breeding values to predict heat tolerance, in each 

breed, the sires were split into a reference and a validation population. These populations were 

split by age, with sires born before 2005 included in the reference population, and sires born in or 

after 2005 placed in the validation population for Holsteins; sires born before 2004 were included 

the reference population, and sires born in or after 2004 were placed in the validation population 

for Jerseys. Sires that are paternal half-sibs were placed in either the reference set or the validation 

set. The genomic breeding values (GEBV) of the validation sires (the phenotype of which were not 

included in the analysis), were estimated by GBLUP using model: 𝑦 = 𝜇 + 𝑍𝑔 + 𝑒 (model 3), 

where 𝑦 is a vector of sire slope values (solutions for model 2), 𝜇 is the intercept, 𝑍 is a design 

matrix relating records to genomic breeding value of animals, 𝑔 is a vector of genomic breeding 

values ~ 𝑁(0, 𝑮𝑹𝑴𝜎𝑔
2), where 𝑮𝑹𝑴 is the genomic relationship matrix, 𝜎𝑔

2 is the additive genetic 

variance captured by SNP, and e is a vector of random residuals ~ 𝑁(0, W𝜎𝑒
2), where W is identity 
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matrix and σe
2
 is residual variance. The genomic relationship matrix (GRM) was constructed 

amongst all genotyped individuals following Yang et al. (2010). 

Proportion of additive variance of sire slope that is explained by SNP was calculated as 

additive variance divided by total variance obtained from model 3. 

In some analyses the genotyped cows were used in the reference population as well as 

reference sires, and in this case cows that were daughters of validation bulls were excluded from 

the analyses. A similar model to model 3 was fitted to the reference data, but in this case the 

difference in residual variances for bull and cow phenotypes were taken into account by 

constructing the diagonal matrix 𝑾 as 𝑔(1 𝑤𝑖⁄ ) , where 𝑤𝑖  is the weighting coefficient for the 𝑖𝑡ℎ 

animal. Weighting coefficient was calculated differently for bulls and cows following Garrick et 

al. (2009), as follows: 

𝑤𝑖(𝑏𝑢𝑙𝑙𝑠) =  
1−ℎ2

𝑐ℎ2+ 
4−ℎ2

𝑝

       ;    𝑤𝑖(𝑐𝑜𝑤𝑠) =  
1−ℎ2

𝑐ℎ2+[
1+(𝑛−1)𝑡

𝑛
−ℎ2]

 

where ℎ2is the heritability of heat tolerance, 𝑐 is the proportion of variance not explained by SNP 

(𝑐 =0.2), 𝑑 is the effective number of daughters, 𝑛 is the number of repeat records (i.e. lactations),  

𝑟 is the number of records per cow, and 𝑡 is the repeatability of the trait (average repeatability for 

cow slopes in relation to milk, fat and protein was 0.34 for Holsteins and 0.44 for Jerseys in the 

current datasets). 

The accuracy of genomic prediction was taken as the correlation of the genomic estimated 

breeding values, and the slopes for the validation sires (from model 2), divided by square root of 

the proportion of variance of sire slope explained by SNP obtained from model 3.  

RESULTS AND DISCUSSION 

 

Table 1. Correlations between sire slopes and GEBV, and accuracies of genomic estimated 

breeding values using 632,004 SNP panel for heat tolerance on milk, fat and protein yield 

using GBLUP 

 
Breed Reference Validation Production 

traits affected 

by heat stress 

Correlation Accuracy 

Holstein  2,300 sires 435 sires Milk yield 0.26 0.46 

   Fat yield 0.22 0.38 

   Protein yield 0.26 0.47 

 2,300 sires + 2,191 cows 435 sires Milk yield 0.27 0.48 

   Fat yield 0.22 0.38 

   Protein yield 0.29 0.53 

      

Jersey  575 sires 135 sires Milk yield 0.34 0.49 

   Fat yield 0.40 0.60 

   Protein yield 0.42 0.63 

 575 sires + 1,190 cows 135 sires Milk yield 0.39 0.56 

   Fat yield 0.39 0.60 

   Protein yield 0.43 0.64 

 

There was substantial test-day milk, fat and protein yield variation in the datasets. In all dairy 

farming regions of Australia, cows experienced some degree of heat stress, which was variable 

among regions. For example, in Queensland the median of daily temperatures and THI were 20.7 

and 67.3, respectively. Northern Victoria experienced a wide spectrum of weather conditions, with 
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average daily temperatures ranging from -5°C to 38°C (median of 13°C), and THI ranging from 

33.8 to 81.0 (median 56.6). 

The proportion of additive variance in cow slope in relation to milk, fat and protein yields 

were 0.14, 0.16 and 0.13 in Holsteins and 0.27, 0.26 and 0.21 in Jerseys, respectively. The 

corresponding proportions of variance explained by SNP in sire slope were 0.32, 0.34 and 0.30 in 

Holsteins and 0.49, 0.44 and 0.45 in Jerseys. This confirms that selection for heat tolerance is 

possible and could be particularly effective in the geographical regions with high heat load. 

Correlations of sire slopes among milk, fat and protein yield ranged from 0.46 – 0.86 for Holsteins 

and 0.60 – 0.86 for Jerseys. 

Genetic correlations between heat tolerance and production traits in cows were negative. For 

example, in Holsteins the correlations between heat tolerance with milk, fat and protein yields 

were -0.38, -0.40 and -0.54, respectively. This confirms the antagonistic relationships between 

heat tolerance and production traits reported in previous studies (Ravagnolo and Misztal 2000). 

Correlations between sire slopes and GEBV, and accuracies of genomic prediction are 

presented in Table 1. When only genotyped sires were included in the reference population, 

accuracies of genomic prediction ranged from 0.38 to 0.53 in Holsteins and 0.49 to 0.63 in Jerseys. 

When the reference set was expanded to include genotyped cows, the accuracies of genomic 

predictions showed a slight increase in some cases but not all. 

The accuracies of genomic predictions for heat tolerance we have reported indicate that 

genomic selection offers a promising tool to predict heat tolerance for individual animals based on 

their genotypes. This will enable farmers to improve the milk production at higher heat load 

conditions of their herd over time through selection decisions. 
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