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SUMMARY
A scheme for penalized estimation of genetic covariance matrices free from tuning – using default

settings for the strength or penalization – is described and its efficacy is demonstrated by simulation.

INTRODUCTION
Estimates of genetic covariance matrices, ΣG, are known to be afflicted by substantial sampling

errors, increasing markedly with the number of traits considered. ‘Regularization’, i.e. modification of
estimators to reduce sampling variation at the expense of a small, additional bias, has been advocated
to obtain estimates closer to the population values. An early suggestion by Hayes and Hill (1981,
‘bending’) has been to shrink the canonical eigenvalues, λi, i.e. the eigenvalues of Σ−1

P ΣG (with ΣP
the phenotypic covariance matrix), towards their mean. As shown by Meyer and Kirkpatrick (2010),
the analogue in a maximum likelihood framework is to maximize the likelihood subject to a penalty
proportional to the variance among the estimates of λi. Neither authors provided guidelines on how to
determine the amount of shrinkage to be applied. While cross-validation techniques allow estimation
of so-called ‘tuning factors’, this proved laborious and only moderately successful (Meyer 2011).

A simple alternative is to apply a mild, default penalty which, while not providing maximum
benefits, will yield stable estimates and worthwhile reductions in ‘loss’, i.e. the average deviations
of estimates from population values. This is similar to the concept of weakly informative priors,
which is gaining popularity in Bayesian estimation (e.g. Gelman 2006). This paper demonstrates the
reductions in loss achievable using a default penalty on canonical eigenvalues.

PRIORS AND PENALTIES
For a given prior distribution of some function of the parameters to be estimated, we can obtain a

corresponding penalty as minus the logarithmic value of the pertaining probability density.
Shrinking canonical eigenvalues towards their mean, λ̄, by applying a quadratic penalty, P ∝∑

i(λi − λ̄)2, implies a Normal distribution, N(λ̄,σ2), with σ2 the variance of λi. This gives penalty

PN =
1
2

[
q
(
log(σ2) + log(2π)

)
+

1
σ2

q∑
i=1

(
λi − λ̄)2)] (1)

with q denoting the number of traits. Similarly, assuming a log-Normal distribution, the penalty is
obtained by substituting logλi and (

∑
i logλi)/q for λi and λ̄ in (Eq. 1). Earlier results showed that for

such a prior it was advantageous to penalize both logλi and log(1−λi) (Meyer 2011). We use PL to
denote the penalty obtained by summing contributions for both, with the same variance σ2.

A more flexible alternative is a Beta distribution, B(α,β), with scale parameters α and β allowing
for a wide range of shapes. For α,β > 1, the distribution is unimodal. In Bayesian estimation, ν= α+β
is interpreted as effective sample size, i.e. the number of ‘observations’ added by the prior. A Beta
distribution with mode equal to λ̄ can be specified as α = 1 + (ν− 2)λ̄ and β = 1 + (ν− 2)(1− λ̄), for
ν > 2. This allows us to quantify the degree of belief in the prior through the single parameter ν. For
m = ν− 2 and Γ(·) denoting the Gamma function, the penalty for the Beta distribution is

Pβ = q
[

logΓ
(
ν
)
− logΓ

(
1 + mλ̄

)
− logΓ

(
1 + m(1− λ̄)

)]
+ m
[
λ̄

q∑
i=1

logλi + (1− λ̄)
q∑

i=1

log(1−λi)
]

(2)
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As for PL, Pβ involves functions of logλi and log(1−λi). The strength of penalization for all three
penalties is regulated by the parameter σ2 or ν. In contrast to previous formulations employing a
tuning factor, this lends itself to attempts of direct estimation by maximizing the penalized likelihood
with respect to this parameter (de los Campos 2013; pers. comm.).

SIMULATION STUDY
Records for q = 9 traits were sampled from multivariate normal distributions, assuming a balanced

paternal half-sib design comprised of s = 100,400 or 1000 sire families of size 10. Population values
for 72 scenarios, selected to represent an extensive range of possible – including unusual or ‘difficult’
– cases were obtained by combining 12 sets of heritabilities with 6 correlation structures. The variance
among population values for canonical eigenvalues ranged from 0 to 0.099 (mean 0.046) on the
original and 0 to 2.504 (mean 0.989) on the logarithmic scale. Restricted maximum likelihood
estimates of genetic and residual (ΣE) covariance matrices were obtained fitting a simple animal
model with means as the only fixed effects, for the three types of penalties described above. Penalties
were applied using the same, default ‘strength parameter’ for all cases, σ2 = 0.02 to 0.1 for PN ,
σ2 = 0.5 to 2.0 for PL and ν = 2.5 to 10 for Pβ. In addition, σ2 or ν were estimated from the data by
evaluating points on the profile likelihood and employing a quadratic approximation to determine
its maximum. In doing so, parameter estimates were constrained to the interval [2.001,50] for ν and
[0.001,10] and [0.01,25] for σ2 for PN and PL, respectively. A total of 500 replicates were carried
out for each case. For each sample, the loss in estimates was determined as (for X = G,E and P)

L1
(
ΣX ,Σ̂X

)
= tr
(
Σ−1

X Σ̂X
)
− log

∣∣Σ−1
X Σ̂X

∣∣− q (3)

with ΣX the matrix of population values, Σ̂X the corresponding estimate, and ΣP = ΣG +ΣE . The
Percentage Reduction In Average Loss due to penalization was then evaluated as

PRIAL = 100
[
1− L̄1

(
ΣX ,Σ̂

ν
X

)
/L̄1
(
ΣX ,Σ̂

0
X

)]
(4)

with Σ̂ν
X and Σ̂0

X the penalized and unpenalized estimates of ΣX , and L̄1(·) the average loss over
replicates. In addition, the mean reduction in unpenalized likelihood due to penalization (from its
maximum for unpenalized estimates), ∆L, was calculated.

RESULTS
Our main goal of penalized estimation is to reduce the loss in estimates of ΣG. The rationale for

shrinking canonical eigenvalues towards their mean or mode is that this reduces sampling variation by
‘borrowing strength’ from the estimate of ΣP, which typically is estimated much more accurately than
either of its components, ΣG and ΣE (Hayes and Hill 1981). Hence, loosely speaking, we attempt to
redress the balance in partitioning skewed by sampling error. This implies that we expect the estimate
of ΣP to remain more or less unchanged. Too stringent penalization can result in reduced or even
negative PRIAL for any of the covariance matrices estimated. In particular, a negative PRIAL for ΣP
represents a strong warning signal for over-penalization.

The distribution of PRIALs (higher values are better) across the 72 scenarios for ΣG and ΣP
for two sample sizes is summarized in Figure 1. Central dots display mean values. Values on the
x-axis are the fixed values for σ2 and ν used, except for ‘E’ which denotes use of the estimated value.
For clarity of scale, 5 values for ΣG less than −60, occurring for PL, ‘E’ and s = 100, are omitted.
PRIALs for PN were modest, but positive throughout for ΣG. Except for the smallest, fixed value for
σ2, i.e. the most stringent penalty, there was little evidence for adverse effects on estimates for any
of the cases. Estimating σ2 yielded marked improvements, especially for the larger sample size, for
cases with low variance among the population values for λi, i.e. the cases which matched the prior.
As there were few of the latter, however, mean PRIALs achieved remained quite low.

Proc. Assoc. Advmt. Breed. Genet. 21: 278-281

279



100

PN

100

PL

100

Pβ

1000

PN

1000

PL

1000

Pβ

●
●

● ● ● ●

● ● ● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ●

● ●

●
●

● ● ●

● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ●

●
● ● ● ● ●

●
● ● ● ● ●

●

●
●

●
● ● ●

● ● ● ● ● ● ●

−50

0

50

100

0

3

6

9

G
enetic

P
henotypic

E

0.
02

0.
04

0.
06

0.
08 0.
1 E 0.
5

0.
7 1 1.
5 2 E 2.
5 3 4 6 8 10 E

0.
02

0.
04

0.
06

0.
08 0.
1 E 0.
5

0.
7 1 1.
5 2 E 2.
5 3 4 6 8 10

Figure 1. Distribution of Percentage reduction in average loss for genetic and phenotypic co-
variance matrices (for s=100 and 1000 sire families).

As reported previously (Meyer 2011), penalizing logλi yielded substantially larger PRIALs. Using
a fixed value of σ2 = 2 proved to be a safe default for a mild penalty with mean PRIALs for ΣG as high
as 54, 44 and 33% for s = 100,400 and 1000, respectively. Lower values for σ2 resulted in increasing
numbers of unfavourable cases. Attempts to estimate σ2 for PL failed in a substantial proportion
of replicates for a number of cases, with estimates close to the lower boundary. As this was set at
0.01, it resulted in far too stringent penalization. This held in particular for the smallest sample size,
suggesting that this was, in part at least, attributable to insufficient information. Additional analyses
(not shown) estimating separate values of σ2 for two the parts of PL, involving logλi and log(1−λi),
respectively, reduced the incidence of problem cases, but, on the whole, was not satisfactory either.

A similar pattern emerged for a penalty based on the Beta distribution. However, for Pβ an
estimate for ν close to its lower boundary at 2.001 was equivalent to virtually no penalization. Hence,
there were no negative PRIALs due to over-penalization. Yet, overall there was little advantage in
estimating ν compared to a default value for a mild penalty. Means and minimum values for PRIALs
and the corresponding decrease in likelihood (from it’s unpenalized maximum) for selected values of
ν are given in Table 1. Results for fixed ν identified little adverse effects for any cases or sample sizes
for values up to about 6. Average changes in likelihood were small, especially when considering that
for q = 9 traits there were 90 covariance components to be estimated. As shown in Table 1, repeating
analyses with minimum values for ν of 2.5 and 4 increased PRIALs by a few percent compared to
corresponding results for a fixed ν, but at the price of marked additional effort.

DISCUSSION
Penalized estimation provides a powerful mechanism to improve estimates of genetic covariance

matrices by reducing sampling variation. Large improvements can be obtained if population parame-
ters approximately match the assumed prior distribution on which the penalty is based. In practice,
however, true values are unknown and it is important that the procedure chosen is robust, i.e. unlikely
to result in worse estimates. While estimation of the strength of penalization is possible in principle,
it is computational demanding and may not be particularly advantageous or even successful.
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Table 1. Mean and minimum PRIAL for estimates of genetic (ΣG), residual (ΣE) and pheno-
typic (ΣP) covariance matrices and change in log likelihood (∆L) for penalty Pβ

νa 100 sires 400 sires 1000 sires

ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L
Mean

F2.5 31.3 36.4 0.5 -0.27 21.9 15.6 0.1 -0.08 14.3 7.6 0.1 -0.03
F4.0 49.5 48.2 1.0 -1.25 37.5 23.3 0.4 -0.47 27.2 12.6 0.2 -0.22
F6.0 56.5 51.5 1.2 -2.52 43.6 26.3 0.5 -1.06 32.4 14.7 0.2 -0.55
F8.0 59.2 52.6 1.2 -3.72 45.7 25.5 0.5 -1.68 34.0 12.7 0.2 -0.92
E2.0 32.4 16.7 0.5 -1.25 31.9 11.8 0.4 -0.56 23.8 7.5 0.2 -0.27
E2.5 46.2 46.5 0.9 -1.35 38.8 24.2 0.5 -0.60 28.2 13.1 0.2 -0.29
E4.0 54.2 52.7 1.2 -2.01 46.7 29.3 0.6 -0.84 33.1 16.3 0.3 -0.41

Minimum
F2.5 16.2 8.7 0.2 -0.47 0.9 1.3 0.0 -0.23 0.2 0.4 0.0 -0.11
F4.0 16.0 22.5 -0.2 -1.98 4.0 5.0 0.0 -1.13 1.4 1.7 0.0 -0.69
F6.0 6.7 23.4 -0.5 -3.91 -0.4 9.4 -0.6 -2.41 -2.0 3.4 -0.2 -1.69
F8.0 -1.7 8.4 -1.0 -5.69 -17.1 13.2 -0.9 -3.72 -20.2 -1.3 -1.0 -2.67
E2.0 0.3 -3.1 -0.2 -5.21 0.5 -0.7 -0.1 -1.96 0.5 -0.2 -0.1 -1.18
E2.5 18.1 26.5 0.0 -4.99 14.5 7.1 -0.0 -2.01 3.4 3.0 -0.0 -1.17
E4.0 16.2 32.5 0.0 -5.38 15.8 9.8 0.1 -2.02 5.1 3.9 -0.1 -1.19

aEffective size, F: fixed value, E: estimated with this minimum value

Results show that a penalty encouraging shrinkage of canonical eigenvalue lends itself to a scheme
using a default strength parameter to impose a mild penalty. Assuming a Beta distribution provides
a more flexible prior than a Normal or log-Normal distribution. Moreover, the resulting penalty
has an intuitive parameter – the so-called effective sample size – regulating its stringency. A value
of ν = 4 to 6 yielded worthwhile reductions in loss without (non-negligible) negative PRIALs or
substantial changes in likelihood and can be recommended for routine use. Additional computational
requirements are small, but derivatives of the penalty may be needed. These are readily obtained by
parameterising analyses to canonical eigenvalues and elements of the corresponding eigenvectors
(Meyer and Kirkpatrick 2010), but this may have less favourable convergence rates than the standard
parameterisation. Alternative penalties, e.g. to shrink genetic correlations towards their phenotypic
counterparts may be preferable in this respect, and equally suited to default penalties (Meyer 2014).

CONCLUSIONS
Maximum likelihood estimation subject to a penalty can markedly reduce sampling variation of

estimates, and should be applied routinely in multivariate analyses involving more than a few traits.

ACKNOWLEDGEMENTS
Work was supported by Meat and Livestock Australia grant B.BFG.0050

REFERENCES
Gelman A. (2006) Bayesian analysis 1:515.
Hayes J.F. and Hill W.G. (1981) Biometrics 37:483.
Meyer K. (2011) Genet. Sel. Evol. 43:39.
Meyer K. (2014) In Proc. Tenth World Congr. Genet. Appl. Livest. Prod. Paper No. 217.
Meyer K. and Kirkpatrick M. (2010) Genetics 185:1097.

Proc. Assoc. Advmt. Breed. Genet. 21: 278-281

281




