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SUMMARY 

Methane emissions for beef cattle are heritable, whether measured as methane production, 

methane yield (methane production/dry matter intake), or residual methane (observed methane 

production – expected methane production).  This suggests methane emissions could be reduced 

by selection.  Genomic selection is perhaps the most feasible approach to implement for the beef 

industry, given the high cost of measuring methane production from individual cattle.  Here we 

derive genomic estimated breeding values (GEBV) for methane traits from a reference set of 747 

Angus animals measured for methane traits, and genotyped for 630K SNPs.  The accuracy of 

GEBV was evaluated in a cohort of 273 Angus animals.  Accuracies ranged from 0.29, for 

methane yield, to 0.35 for residual methane.  Selection on GEBV using the genomic prediction 

equations derived here could reduce emissions for beef cattle by roughly 5% over 10 years.   

 

INTRODUCTION 

Methane emission levels, whether measured as methane production, methane yield (methane 

production/dry matter intake), or residual methane (difference between actual and predicted 

methane production) are all heritable traits (Donoghue et al. 2013; Herd et al. 2014).  Selection for 

reduced emissions could therefore result in likely small annual but cumulative and permanent 

changes in emission levels.  Residual methane production (RMP) or methane yield (MY) are more 

attractive targets for selection than methane production (MPR), as they are not unfavourably 

correlated with production traits (Donoghue et al. 2015).   

Unfortunately given the cost and difficulty of measuring these traits, it is unlikely that either 

MY or RMP could be measured on the scale that would be necessary to calculate estimated 

breeding values (EBV) on an ongoing basis for the beef industry.  An alternative is to use genomic 

selection for these traits.  This entails measuring a large reference population for MY or RMP, 

genotyping the reference population for a large number of SNP markers, and then using the 

information to derive a genomic prediction equation, that can be used to calculate genomic 

estimated breeding values (GEBV) for any selection candidate that is genotyped.  Here we use a 

large group of Angus animals measured for methane emission levels (as described by Donoghue et 

al. 2015), and real or imputed genotypes for 632,003 SNPs were used, to derive GEBV for MPR, 

MY and RMP.  The accuracy of the GEBV was demonstrated to be moderate, enabling selection 

for reduced methane emission levels for Australian beef cattle.     

 

MATERIALS AND METHODS 

Phenotypes. For a full description of phenotypes, see Donoghue et al. (2015), in this 

proceedings. Briefly, 1,020 Angus animals were measured for methane production in 10 

respiration chambers on the University of New England campus, Armidale NSW (Herd et al. 

2014a) provides details on the management of animals and methane measurement procedure. The 

animals were progeny of 73 sires (average 14 progeny per sire, range 1-30), born across 4 drops. 
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Progeny of individual sires were stratified across groups and cohorts.  Methane production was 

measured over 2 x 24h consecutive periods. For animals born from 2011 to 2013 these 

measurements were taken at approximately yearling age (mean = 339 days). However, for animals 

born in 2009, these measurements were taken at approximately two years of age (mean = 738 

days).  Traits measured (Table 1) included pre-test weight (TWT), dry matter intake (DMI), daily 

methane production (MPR) and methane production per unit feed intake (methane yield: MY). 

Four different forms of residual MPR (RMP) were defined to target MPR independent of feed 

intake, with RMP defined as actual MPR minus expected MPR (expMPR). For RMPJ, expMPR 

was calculated using a published prediction equation (Johnson et al., 1995), while for RMPR, the 

residuals from a simple regression of MPR on DMI were used. 

  

Table 1. Definition of traits 

 

Trait name Abbrev-

iation 

Units Definition 

Test  Weight TWT Kg Pre-test weight 

Dry matter intake DMI kg/day Dry matter intake during methane measurement 

Methane production rate MPR g/day Methane produced 

Methane intensity MI g/kg MPR per unit TWT (MPR  TWT) 

Methane yield MY g/kg  MPR per unit DMI (MPR  DMI) 

Residual methaneB RMPB g/day MPR net of expected MPR (expMPR) from the DMI, 

with expMPR obtained by formula of Blaxter and 

Clapperton (1965) 

Residual methaneJ RMPJ g/day MPR net of expected MPR from DMI, with expMPR 

obtained by formula of Johnson et al. (1995) 

Residual methaneI RMPI g/day MPR net of expected MPR from DMI, with expMPR 

obtained by formula of IPCC (2006) 

Residual methaneR RMPR g/day MPR net of expected MPR from the DMI, with 

expMPR obtained by regression of MPR on DMI 

 

Genotypes.  1,020 Angus cattle, that have been measured for methane traits, were genotyped 

with either 777,000 SNPs Illumina Bovine HD Array (847 animals) or the Bovine 54,000 SNP50 

array (173 animals).  The SNP positions used were from bovine genome assembly UMD 3.1 

(University of Maryland, College Park, MD). Stringent quality control procedures were applied to 

the data.  Monomorphic SNPs and SNPs with less than 5 copies of the rare allele were removed.  

Then genotype calls with GenTrain score (GenCall) > 0.6 are high quality; below this value they 

were excluded. For the animals genotyped with the HD array, there were 650,934 SNPs genotyped 

at GenCall > 0.6. Furthermore, 343 mitochondrial SNPs, 1,124 Y chromosome SNPs, and 1,735 

unmapped SNPs were excluded.  SNPs with duplicate positions or dubious positions given linkage 

disequilibrium with surrounding SNPs were also removed.  632,003 SNPs remained.  Samples 

(animals) were checked for excess heterozygosity (>0.4 is a sign of sample contamination), and 

had to have more than 90% of SNP with GenCall scores >0.6. All 1,020 samples passed these 

quality control criteria, and 97.9 % of SNPs were genotyped at GenCall > 0.6.  Missing genotypes 

for animals genotyped with the 777K were imputed using Beagle3 (Browning and Browning 

2009), and the same program was used to impute the animals genotyped for the 50K to 632,003 

genotypes, after quality control on 50K genotypes as for the 777K genotypes 

  Genomic heritabilities and genomic breeding values.  The models fitted to the data were as 

described by Donoghue et al. (2015), except that genomic relationships were used to describe 

relationships between animals: 
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𝒚 = 𝑿𝒃 + 𝒁𝒈 + 𝒆, where y is a vector of trait records (WT, DMI, CH4, MY, MI, RMPB, 

RMPJ, RMPI or RMPR), b is a vector of fixed effects including contemporary group, age and dam 

age, X is a design matrix allocating records to fixed effects, g is a vector of genomic estimated 

breeding values (GEBV), Z is a design matrix allocating records to breeding values, and e is a 

vector of random residuals ~ N(0, I
2

e), where 
2
e  is the error variance.  The g were assumed 

distributed  N(0, G
2

gen), where 
2

gen  is the additive genetic variance and G is the genomic 

relationship matrix constructed from the 632,003 SNP markers genotypes, following Yang et al. 

(2010).  Variance components were estimated on the full data set (1,020 records) using ASReml 

(Gilmour et al. 2009).  Genomic heritabilities were then calculated as: 

ℎ2 =
𝜎𝑔𝑒𝑛
2̂

𝜎𝑔𝑒𝑛
2̂ +𝜎𝑒

2̂
.   

The accuracy of genomic estimated breeding values (GEBV) was evaluated by predicting the 

youngest cohort of animals, those screened in 2014 (273).  The reference population were then all 

the other animals (747).  The accuracy of prediction was taken as for the animals in the validation 

set, the correlation of their genomic estimated breeding values and their phenotypes (corrected for 

fixed effects), divided by the pedigree heritability of the trait: 𝑟(𝐺𝐸𝐵𝑉, 𝑦 ∗)/√ℎ2.   

RESULTS AND DISCUSSION 

    The estimates of genomic heritabilities were very similar to those previously calculated using 

pedigree data (Donoghue et al. 2015) for most traits, and were within one standard error for all 

traits (Table 2).   

 

Table 2.  Estimates of heritability from analysis using either pedigree or genomic 

information to construct relationships between animals, and accuracy of genomic estimated 

breeding values in a validation cohort. Standard errors are in brackets.  

      
Trait name h2 pedigree* h2 genomic Proportion of genetic variance 

explained by SNP 

Accuracy 

of GEBV 

Weight (kg) 0.43 (0.08) 0.42 (0.07) 0.96 0.37 

Dry matter intake 0.44 (0.08) 0.37 (0.07) 0.82 0.35 

Methane Production 0.27 (0.06) 0.28 (0.06) 1.05 0.35 

Methane Yield 0.22 (0.06) 0.20 (0.05) 0.92 0.29 

Methane Intensity 0.28 (0.06) 0.25 (0.06) 0.83 0.29 

Residual methaneB 0.19 (0.06) 0.18 (0.05) 0.97 0.30 

Residual methaneJ 0.19 (0.05) 0.18 (0.05) 0.98 0.34 

Residual methaneI 0.19 (0.05) 0.18 (0.05) 0.96 0.34 

Residual methaneR 0.19 (0.05) 0.18 (0.05) 0.94 0.35 

 

*From Donoghue et al. (2015) using the same data.   

     

    The proportion of the additive genetic variance captured by the SNP (the estimated genetic 

variance from the SNP divided by the genetic variance estimated from pedigree) ranged from 0.82 

to 1, and was close to 1 for most traits.  This is encouraging, indicating the SNPs are picking up 

most of the genetic variation for the traits (the proportion of genetic variation explained by the 

SNP sets an upper limit on the accuracy of GEBV that can be achieved).     
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     The accuracies of GEBV from GBLUP were moderate, and quite similar across traits (Table 2). 

Accuracies were all significantly different to zero - the standard error of the correlation between 

GEBV and phenotypes (which divided by square root of heritability gives the accuracy) was 0.06, 

and for all traits the correlation was positive and at least twice this standard error.  The accuracies 

of GEBV are similar to those for methane traits in sheep (Rowe et al. 2014).      

     In conclusion, results were encouraging – accuracies of GEBV for all traits were moderate, 

even though no SNPs with large effects for any of the methane traits was observed.  Given an 

accuracy of GEBV of 0.3 (e.g. for methane yield and methane intensity), we can calculate 

response to selection for these traits that could be achieved per year (very roughly) as:  

∆𝐺 =
𝑖𝑟𝜎𝑔𝑒𝑛

𝐿
 

where i is the intensity of selection (assume 1.5), L is the generation interval (assume 3.5), r = 0.3 

is the accuracy of genomic breeding values, gen is the genetic standard deviation for the trait.  The 

selection response for methane yield and methane intensity would be 0.084 g/kg DMI and 0.002 

g/kg live weight respectively.  This is 0.4 % and 0.5 % of the mean for these traits – suggesting 10 

years of selection could lead to a 4 % reduction in methane yield, or a 5 % reduction in methane 

intensity, using the genomic breeding values derived with the data set used here.  This compares 

not too unfavourably with for example milk yield in dairy cattle, a much easier trait to measure, 

where roughly a 1.5 % gain per year is achieved.   
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