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SUMMARY 

Genomic predictions derived from one breed but applied in another breed typically have low 

accuracy due to SNP x breed interactions (due to either QTL x breed interactions or differences in 

LD between breeds) and due to differences between breeds in QTL allele frequency. In this paper 

we discuss the importance of these two factors and the implications for livestock breeding. 

 

INTRODUCTION 

Genomic selection (Meuwissen et al. 2001) has been very successful in predicting the breeding 

value of animals from DNA marker data. It works best in Holstein cattle for milk production traits 

where there is a large amount of high quality data on which to train the prediction and the animals 

where the prediction is to be used (target animals) are closely related to the training population 

(often their sons). As the test animals become less closely related to the training population the 

accuracy of prediction declines (Habier et al 2010) and when they are of different breeds, the 

accuracy is typically low (eg. Kemper et al 2015a). Unfortunately there are many traits where we 

do not have a large training dataset within every breed. For instance, the expense of measuring 

feed conversion efficiency limits the size of training datasets. Therefore we would like to use a 

multi-breed training dataset to maximize the number of training animals and to predict breeding 

value in animals of a breed included in the training data or even a breed not included in the 

training data. In these situations the low accuracy of across breed prediction is a severe 

disadvantage. Alternately, if a method was available in which across breed prediction was of high 

accuracy, it seems likely that within breed prediction would also be more robust and not affected 

by the degree of relationship between training and test animals. In this paper we consider reasons 

for the low accuracy of across breed prediction and what might be done to increase the accuracy. 

 

ACROSS BREED ACCURACY OF GENOMIC PREDICTIONS 

Information from another breed can be used in prediction in two ways. Firstly, Brondum et al. 

(2012) and Khansefid et al. (2014) showed that the accuracy of prediction in breed B could be 

increased by including in the statistical model SNPs that were associated with the trait in breed A 

but by estimating the effect of the SNP entirely within breed B. This implies that some of the same 

QTL segregate in both breeds. Secondly, the accuracy can be improved slightly by estimating the 

effect of each SNP across all target breeds (Bolormaa et al. 2013a, Hoze et al. 2014, Makgahlele 

et al. 2013) and some accuracy is obtained even in a breed not included in the training population 

(Kemper et al. 2015a). For instance, Kemper et al. (2015a) found the accuracy in Australian Red 

cattle for milk production traits averaged 0.3 based on a training population of Holstein and 

Jerseys. They also reported that the regression of phenotype on genomic EBV (bias) was 0.6 on 

average indicating that the EBVs exaggerated the predicted differences between animals. 

 

REASONS FOR LOW ACCURACY 

There are two reasons for low across breed prediction accuracies – SNP x breed interactions 

and differences in QTL allele frequency between breeds. Khansefid et al. (2014) analysed residual 
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feed intake using genomic relationship matrices and found the SNP variance and the SNP x breed 

variance to be about equal. SNP x breed interactions could be due to QTL x breed interactions or 

differences between breeds in linkage disequilibrium (LD) between QTL and SNPs.  

The extent of QTL x breed interactions, due to non-additive gene effects, is largely unknown. 

It is similar to sire by breed interaction which is seldom above 0.2 of the genetic variance, so it 

seems unlikely that QTL x breed would explain 0.5 of the genetic variance. One type of non-

additive variance is dominance which Bolormaa et al. (2015) estimates to explain 5% of 

phenotypic variance across a number of traits in beef cattle. 

Differences in LD between breeds depend on the distance which separates the QTL and SNP. 

GBLUP uses LD over long distances within a breed but this LD breaks down between breeds 

(deRoos et al. 2008). Therefore this will explain some of the SNP x breed interaction found by 

Khansefid et al. (2014). Differences in LD occur even at short distances in the case of a QTL 

mutation which has occurred since the breeds diverged. In this case, an ancestral haplotype may 

exist in one breed with the ancestral QTL allele and in the other breed with the mutant QTL allele. 

Thus even with sequence data and methods such as BayesR (Erbe et al. 2012), SNP x breed 

interaction will occur for recent QTL mutations unless the QTL mutation itself is used. 

Differences in QTL allele frequency will occur due to selection and drift. QTL with minor 

allele frequency (MAF) near to 0.5 contribute more to genetic variance and have their effect 

estimated more accurately than QTL with low MAF. This increases the accuracy of prediction 

within a breed. However, if the MAF is low in the training population but high in the target 

population, the QTL is important to genetic variance in the target population but its effect will be 

estimated poorly. This will reduce the accuracy of the genomic prediction in the target population. 

The extreme case of this phenomenon is when the QTL segregates in the target population but not 

in the training population. In that case, no estimate of its effect can be made and the variance it 

explains will be totally missed. This can happen if the QTL mutation is recent and has occurred in 

one breed since the breeds diverged. It can also occur if the QTL is old but has become fixed in the 

training population but not the target population. This extreme case, where the QTL segregates 

only in one breed, places an upper limit on the potential accuracy attainable using across breed 

genomic prediction. Kemper et al. (2015b) recently estimated that about ½ the QTL discovered for 

milk production traits in Holstein also segregated in Jersey cattle. Even among random SNPs in 

sequence data, 20% do not segregate in both Holsteins and Jerseys (Kemper et al 2015b). 

The factors that cause low accuracy of across breed predictions can also cause bias. For 

instance, if a QTL mutation has occurred in the training population since the breeds diverged, the 

genomic predictions will predict that the QTL contributes to variance in the target population 

when it does not segregate.  Kemper et al. (2015b) documented several examples where Holstein-

only QTL were predicted for Jersey cattle when the QTL did not segregate in that breed.  

 

AGE AND BREED DISTRIBUTION OF QTL 

From the discussion of factors causing low accuracy it emerges that two closely related 

parameters are important - the age of QTL mutations and the range of breeds in which they 

segregate. Since the mutation causing a QTL (a QTN) is seldom known, the age and distribution of 

QTL is not well understood. For neutral mutations we can estimate their average age from the ratio 

of the heterozygosity per site (in cattle this is typically about 0.001) to the heterozygosity 

introduced each generation by mutation (2 x mutation rate e.g. 2 x 10
-8

) which gives an average 

age of 50,000 generations or well before domestication of cattle and sheep. This average disguises 

a large range in age from new mutations in the last generation to very old ones. 

QTL are unlikely to be neutral and so selection will modify this average age. One estimate of 

average age is the genetic variance (e.g. 0.5VE) divided by the variance added by mutation each 

generation (e.g. 0.001VE) or about 500 generations. However, this average includes detrimental 
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mutations of large effect which are soon eliminated from the population, so the average age of 

those that are segregating is likely to be much greater than 500 generations and to vary greatly 

about this average. The age of QTL can also be estimated from the length of a common haplotype 

which surrounds the mutant allele. For myostatin mutations causing double muscling O’Rourke et 

al. (2010) estimated their age to be <100 generations. Consistent with this, each mutation 

segregates in one or a few related breeds.  

Kemper et al. (2015b) examined the length of haplotype surrounding QTL for milk traits in 

Holstein. They found examples of QTL that appeared recent (800 generations) and occurred in 

Holsteins but not Jersey and others that appeared old (12000 generations) and occurred in both 

breeds. By comparison de Roos et al. (2008) estimated the age of the Holstein-Jersey divergence 

at 400 generations. There were also QTL that appeared old but did not segregate in Jerseys. This is 

expected to occur because breeds of Bos taurus cattle have suffered some inbreeding since they 

diverged and consequently lost a proportion of polymorphisms including QTL. Of 11 QTL in 

Holstein, 6 also segregated in Jerseys. 

Saatchi et al. (2014) found 4 QTL for weight that segregated in several breeds of US beef 

cattle and we have found QTL in the same position in Australian beef cattle. On the other hand, 

Bolormaa et al. (2013b) concluded the QTL seldom segregate in both B. taurus and B. indicus, 

which diverged perhaps 100,000 generations ago.  

Thus we conclude that while many QTL segregate in multiple B. taurus breeds, some QTL 

segregate only in some breeds, either because they are recent mutations or because they are old but 

fixed in some breeds. 

 

IMPLICATIONS FOR LIVESTOCK BREEDING 

We conclude that the poor accuracy of genomic prediction when the training dataset comes 

from one breed and the predictions are applied to another breed is due to a combination of QTL x 

breed interactions, differences in LD between breeds and differences in QTL allele frequency 

between breeds (especially when a QTL segregates only in some breeds). What strategies can be 

used to overcome this problem? 

One strategy is to do all prediction within breed. This is simple to implement because a low 

density SNP panel (e.g. 50K) is satisfactory and simple statistical methods, such as BLUP, can be 

used. However, this strategy cannot be implemented in all cases and even where it can be used it 

has disadvantages – some 10% of the genetic variance is not explained by a 50K SNP panel and 

the predictions may not be robust when applied to target animals not closely related to the training 

population (MacLeod et al. 2014a). 

The alternative strategy is to use a multi-breed training population. This requires dense SNPs, 

ideally sequence data, and a statistical method which can find and utilise the causal mutations or 

markers in near complete LD with them. Figure 1 shows results for a mixed breed reference 

(Holstein and Jersey) where accuracy was evaluated in 3 validation sets that differed in their 

relatedness to the reference. We compared accuracy for different SNP densities: including a 

combined set of high density markers and imputed sequence in and near coding regions (SEQ). 

Instead of real phenotypes, we simulated 4000 QTL into the real genotypes (h
2
=0.6) so that the 

true breeding value was known. We found accuracy increased as the density of SNP increased to 

SEQ and this was most apparent in the target population that was least related to the training 

population (Australian Red). However, there was still a drop in accuracy even with the QTL 

included in the SEQ data. This must be partly a result of the BayesR analysis spreading the effect 

of a single QTL across several SNP in strong LD with the QTL in the training population. Figure 1 

also demonstrates that the BayesRC method (Macleod et al. 2014b), which is similar to BayesR 

but includes a broadly defined biological prior, also increases the accuracy of across breed 

genomic predictions. 
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As causal mutations or markers in near perfect LD with causal mutations are discovered we 

will be better able to assess the importance of non-additive genetic effects causing QTL x breed 

interactions and fit them in the model if necessary. 

 

 
Figure 1. Accuracy of genomic prediction for simulated QTL using different densities of genotypes 

[(10K, 50K, 800K SNP or including sequence variants (SEQ)] with BayesR or BayesRC. Validation 

populations were either closely related to the reference (Black & White [B&W] Holstein), somewhat related 

(Red Holstein) or a different breed (Australian Red) 
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