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SUMMARY 
The linear mixed model has been a major research interest of Dr Arthur Gilmour, motivated by 

problems arising in research data generated by agricultural scientists. He has developed a variety 
of computer packages associated with the linear mixed model. He has tirelessly assisted 
researchers in the analysis and interpretation of their data using these packages. In this quest to 
help researchers he has made several important innovations. The purpose of this paper is to review 
some of these innovations, including improved iterative schemes for estimating variance 
parameters, developing a powerful scheme for specification of linear mixed models and exploiting 
sparsity to reduce the computational burden. Some of these innovations are only implicitly 
described in computer user guides and deserve wider recognition.  
 
INTRODUCTION 

In this paper we review some of the contributions of Dr Arthur Gilmour to the analysis of 
correlated data, especially that generated by agricultural scientists. He has developed several 
packages that help with this analysis including REG (Gilmour 1993a), a generalised linear model 
program, TwoD (Gilmour 1992), a program for the analysis of spatial data, BVEST (Gilmour 
1993b), a program for the prediction of breeding values using best linear unbiased prediction 
(BLUP) and more recently ASReml (Gilmour et al. 2006) a program for the analysis of mixed 
models. In this paper some of the features involved in the development of this program will be 
reviewed, including some of the theory behind the program, the specification of the model and 
taking account of sparsity in various algorithms introduced to reduce the computational burden.  
      
THEORY 

Some of the main points arise by considering a linear model of the form 
࢟  ൌ ࣎ࢄ  ࢛ࢆ  ࢋ
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 ቃࡾ
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          (1) 
where y is the vector of phenotypic measurements and X is the design matrix for fixed effects, τ,  
Z is the design matrix for random effects, u, and e is the vector of model residuals and where 
effects vector, u, and the residual vector, e, are assumed to be multivariate normally distributed 
with varቂu  . Because this linear model includes fixed effects, τ, and random effects, u, 
this is called a mixed model. It has many applications. In the analysis of experiments interest is in 
estimation of treatment effects,  ࣎, taking account of the correlated variance structure. In some 
genetic applications there is interest in estimation of the genetic variances and covariances in G, 
adjusting the data for the fixed effects ࣎. In other applications, which particularly motivated 
Henderson, there is interest in predicting the random effects u and Henderson (1973) introduced 
the system of equations  

    (2)    

or     ሾ ො
ቃ࢛ ൌ ࢄԢିࡾଵ࢟

࢟ଵିࡾԢࢆ
൨  (3) 
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and showed that  the solutions for the random effects are the Best Linear Unbiased Predictors 
(BLUPs) of those effects. Given R and G, the solution for the fixed effects given by these 
equations is the same as given by solving ࢄ  where ࢂ ൌ ′. Because of 
the similarity of these equations to least squares equations, which are the same as (2) but without 
the ࡳ  term, these equations are now called Henderson’s mixed model equations. 

ො࣎ࢄିࢂ′ ൌ ࢟ଵିࢂ′ࢄ ࡾ  ࢆࡳࢆ

ିଵ

ᇱିࢂࢄ
࢟ࡼᇱ࢟ ି െ ିࢂᇱࢄሻିࢄିࢂᇱࢄሺࢄିࢂ ൌ

ିࡾ െ ିࡾԢࢃିࢃିࡾ

In other cases there is interest in parameterizing R and G, as a function of variance parameters 
and estimating these variance parameters. Patterson and Thompson (1971) introduced a residual 
maximum likelihood (REML) method based on maximising the likelihood of error contrasts i.e. 
contrasts that contributed no information on fixed effects. This REML method agreed with 
analysis of variance methods in balanced cases and effectively eliminated bias in variance 
estimation due to not knowing the fixed effects. Convenient forms of the residual log-likelihood 
(Harville 1974, Smith and Graser 1985)   are  
L=-(0.5)(D+S), where D=logdet(V)+logdet(ࢄ ) = logdet(G)+logdet(R)+logdet(C)  
and  ܵ ൌ , is a residual sum of squares  with   ࡼ ൌ ࢂ  

 with W=[X Z]. 
This residual likelihood is of the same form as the full likelihood with the addition of the last 

term in D that is sometimes thought of as a penalty for estimating the fixed effects. Smith and 
Graser (1985) introduced the form that is a function of C that naturally leads to sequential 
formation of the likelihood. The terms D and S can be formed sequentially by using terms 
associated with eliminating, or absorbing, the fixed and random effects one by one from the MME. 
An advantage of this is that C–1 is not calculated and, because of the large number of zero elements 
in C, computation can be substantially reduced by using sparse matrix methods. One disadvantage 
was that the differentials of the likelihood were not easily available. To maximize the likelihood 
with one parameter Smith and Graser (1985) suggested using a quadratic approximation. With 
more than one parameter, methods that avoid calculating derivatives become a popular flexible 
alternative, and the DFREML program written by Meyer (1991a) was used extensively. For 
example, these methods were used for Animal and Reduced Animal Models, both for univariate 
and multivariate data (Meyer, 1989, 1991b).  The basic framework was extended to include more 
biologically appropriate models with genetic components, including maternal models with both 
Wilham and Falconer terms (Koerhuis and Thompson, 1997), and models with mutation terms 
(Wray, 1990). 

A major disadvantage of derivative-free methods is that the computational effort increases 
dramatically as the number of variance parameters increases. An important advance in derivative-
based methods was the rediscovery (Misztal and Perez-Enriso, 1993) of an algorithm (Takahashi et 
al. 1973) allowing calculation of the terms in C-1 required for forming the first differentials, what 
might be called the sparse inverse of C, without calculating all the elements of the inverse.  Meyer 
and Smith (1996) introduced an alternative way of calculating these first differentials by 
performing the ‘automatic’ differentiation of the Cholesky decomposition of C.  These techniques 
for forming first derivatives both require twice the computational effort of forming the likelihood.  
An alternative derivation in terms of sequential formation of the sparse inverse of C-1 parallels the 
sequential formation of the likelihood (Thompson et al. 1994). This result allowed the 
implementation of EM algorithms to estimate variance parameters (Misztal 1994).  These were an 
improvement on derivative free methods but could still be slow to converge.  It is possible to 
calculate second differentials using automatic differentiation  (Smith 1995) but the computation of 
each second differential requires six times as many multiplications as those involved in a single 
likelihood calculation (Smith 1995), and this becomes more costly as the number of parameters 
increases.  A convenient suggestion (Johnson and Thompson 1995; Gilmour et al. 1995) is based 
on manipulation of the alternative information matrices. They show that the average of the 
observed and expected information (AI) is relatively easy to calculate. The AI matrix is based on 
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the differential of the sum of squares S, and can be written in the similar way to S itself, using 
working variables based on estimates of the fixed effects and predictors of the random effects. 

A synthesis of comparisons of different algorithms used to compute REML estimates was 
carried out by Hofer (1998) and is updated in Table 1.  These comparisons show the expected 
improvement of EM methods over derivative free methods.  The comparisons also show that most 
second differential methods converge in relatively few iterations. 
 
Table 1. Results of empirical comparison of REML algorithms with regards to rounds of 
iteration (function evaluations for DF) and total time to convergence a 

 

Refa MMEb Parc            DFd EM NR/AIe 
   F.Eval Time (h) Rounds Time (h) Rounds Time (h) 

1 4895 3 26 0.01 24      0.05   
 9790 9 238 0.31 33 0.26   
 14685 18 583 1.77 45 1.02   

2 6192 9 699 1.27   6 0.45 
 10230 12 1236 2.33   8 0.90 
 14274 18 4751 11.10   18 3.33 

3  5731 5 169 0.34   6 0.07 
4 8765 6 927 70.6 109 1.14 7 1.86 
5 5073 2 39 0.02 23 4.97 5 0.02 
6f 233796 55 37021 2083   185 40.10 
7 46581 12 1435 15.2 1006 88.6 6 0.58 

 55410 19 5813 30.6   6 1.00 
a References 1 Misztal  1999;  2  Meyer and Smith 1996;  3  Johnson and Thompson  1995 ;     

4 Gilmour et al.  1995; 5 Madsen et al.  1994 ;  6  Neumaier and Groeneveld  1998;  
                7 Jensen et al. 1997 
b Dimension of mixed model equations (MME). 
c           Number of (co)variance components. 
d ‘DF’ = derivative free 
e ‘NR’ = quasi-Newton using computed analytic differences. 
f quasi -Newton using finite differences. 
 
APPLICATION 

With the availability of an efficient algorithm for the calculation of the sparse inverse of  C and 
for the  calculation of  an AI matrix  there was interest in developing a general program for 
estimating variance parameters. This program ,now called ASReml (Gilmour et al. 2006), was 
designed taking into account features in existing programs. These included REG (Gilmour 1993 )a 
program for estimation of generalized linear models, TwoD (Gilmour 1992), a  program for spatial 
analysis, REML (Thompson 1977,Robinson et al. 1982), a program  developed for the analysis of 
variety trials that had been ported  to Genstat, (Welham and Thompson 1990)   and DFEML 
(Meyer 1991a). 
 
Linear model specification. The specification of the design matrices X and Z in (1) initially 
followed the Wilkinson and Rogers (1973) syntax that allowed interaction between factorial terms 
and the specification of polynomial and regression sub models associated with factorial terms. 
This specification of models was very general but several modifications were found to be of value 
to ease the setting up of the linear model terms. 
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Conditional factors. Sometimes effects are only required to be fitted for subsets of the data. The 
at() function allows this. For example at(HERD.1).SEASON allows SEASON effects just for data 
with HERD =1. If no levels of the conditioning factor (at(HERD).SEASON in this case) are 
specified in the at() function, a complete set of conditioning terms is generate and this  allows 
estimation of variance models  for SEASON effects for each level of HERD. 
 
Combining design matrices. There is sometimes the need to combine or overlay design matrices. 
The and() function allows this. For example SIREBREED and(DAMBREED) allows models with 
equal SIREBREED and DAMBREED effects to be fitted and this might be useful in the analysis of 
diallel crosses .Sometimes there is the need to associate competition effects from animals in the 
same group(Bijma et al.,2006). For example if there are 4 animals in each group and DIRECT is a 
factor indicating each animal and INDIRECT1, INDIRECT2, INDIRECT3  are factors indicating  
the 3  animals in the same group this can again be  modelled using DIRECT and(INDIRECT1) 
and(INDIRECT2) and(INDIRECT3). 
 
Functions of covariates and factorial effects. ASReml originally allowed  model terms that were 
polynomials of covariates but there is sometimes interest in forming other functions ,for example 
when fitting splines. To add generality the facility to form user generated functions was added .For 
example, if the values of a covariate c are  ࢜ࢉ   then reading in a file with i-th row ࡸ

 with i=1,…,L and j=1,…,L*  and allows the functions    ࢌ   with j=1,…,L* to be 
constructed and used in a model. Similarly if the effects,  ࢛ , for a factor with L levels are required 
to be replaced by  ࢛  are constrained, then again theݑ  for example if some elements of ,כ
,possibly non-zero, elements of the Lൈ   כ࢛ effects כܮ  matrix F can be read in and the כܮ
incorporated into the linear model. 

, … , ࢜ࢉ 
ሻ࢜ࢉሺࢌ   ࢜ࢉ  ሻࢉሺ


 ൌ ࢛ࡲ



ࡾ ൌْୀ
࢙ ࡾ ൌ

ۏ

 
Variance specification. In the simplest case when the random effects were all uncorrelated 
allowed easy specification of the variance structure of the model. However the programs REML 
and TwoD and the need of users for various models including seperable spatial processes, random 
regression models and multivariate animal models inspired a wider class of models. Firstly both R 
and G were allowed to be expressed as a direct sum of respectively s and b parts i.e.  

ێ
ێ
ێ
ۍ
ࡾ       ڮ        
    ࡾ ڮ          
ڭ     ڭ     ڰ    ڭ       ڭ
     ି࢙ࡾ  ڮ  
     ڮ          ے࢙ࡾ

ۑ
ۑ
ۑ
ې

     and         ࡳ ൌْୀ
࢈ ࡳ ൌ

ۏ
ێ
ێ
ێ
ۍ

ࡳ       ڮ         
    ࡳ ڮ          
ڭ     ڭ     ڰ    ڭ       ڭ
     ି࢈ࡳ  ڮ  
     ڮ          ے࢈ࡳ

ۑ
ۑ
ۑ
ې
 

ࡳ and   ࡾ

ൌ  ࡾ ٔ ࡾ ٔ ࡳ    andࡾ ൌ ࡳ ٔ ࡳ ٔ  ࡳ

ࢂ ൌ ࣌  ൌ ࡰ ࡰ 

The effects associated with each part are uncorrelated with effects in the other parts. This 
generality of  R was partly to allow the analysis of a series of trials with possibly different numbers 
of plots and different variance parameters in each trial. The parameter b relates to the number of 
sets of random effects embedded in the random effects u. Models for the component matrices 

 are allowed to be formed as the direct product of models for up to three correlated 
random factors of the form ࡾ . 

A range of models are available for the components of both R and G, They include correlation 
models and covariance models. Correlation models generate variance matrices, C , with diagonals 
one, include uniform, banded and general correlation and models motivated by time-series analysis 
including autoregressive, moving average and autoregressive-moving average models. The 
covariance models, generate a variance matrix V, include diagonal, ante dependence, unstructured 
and factor analytic models. There is also the facility to form homogeneous variance matrices  

  and heterogeneous variance matrices ࢂ / / and estimate the parameters in the 
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correlation matrix C, the scalar ࣌  and the parameters in the diagonal matrix ࡰ (Gilmour et al. 
1998). There is also the facility to form an additive relationship matrix from a pedigree, and fit 
cubic splines by incorporating an equivalent mixed model (Verbyla et al., 1999).Typically a 
variance structure applies to individual terms in the linear model but the facility is available to 
impose structure on a combination of terms, for example if there are effects ANIMAL and 
ANIMAL.TIME with ANIMAL representing animal effects and TIME a covariate and wish to 
impose random animal terms  and animal regression terms and a covariance between these two sets 
of terms. 

 /

 ࢇ
   
    ൨ ࢇ

ᇱ ൌ ሾࢇ࢛
ᇱ ࢇ࢛  

ᇱ


then if ି ൌ  െ   ൌ  ൌ 
ࢇ
ᇱ ൌ ࢇ࢛ 

ᇱ
ࢇ ࢇ

ᇱכ ൌ ሾࢇ࢛
ᇱ ࢇ࢛  

ᇱכ

ࢇ࢛
כ ࢇ  ࢇ࢛

כ ି ൌ 
                

                െ      ࡵ
   െ       .      ࡵ



ିଵ
. ࢇ

כ

. ൌ  ࢇ
 ࢇ

Despite the generality of the variance models one cannot always predict the ingenuity of users 
(for example Jaffervic et al. 2004)and so there is the facility to read in a user generated relationship 
matrix or its inverse and  there is a facility to allow users to define variance matrices (or their 
inverses) as functions of parameters to be estimated. One problem with user generated relationship 
matrices is that they may, perhaps due to sampling, be singular. For example a relationship matrix 
A may have rank r and have s singularities, then if we reorder A so that A  and the associated 

random effects ࢛ can be partitioned as  ൌ 
 

and ࢛ ሿ  with   of rank r 

     then because of the s singularities       .   and the  
random effects are given by   ࢛ . One might extend  ࢛    using    ࢛ ሿ  

with  the same size as and setup MME using ࢛   and   

replacing u and ࡳ  in (2).Note that if   is positive definite then with absorption of ࢛  the 
mixed model equations reduce to the usual form. If  כ࢛ ,  can be thought of as introducing 
Lagrange multipliers to take account of the constraints on ࢛ . 
 
Exploiting sparsity. The MME and the inverse variance matrices involved in the MME are 
typically sparse with a large number of zero elements. Some of the computational work can be 
reduced if due account of this sparsity is taken. This reduction includes calculation of the likelihood 
and its differentials, calculation of variances of linear functions of the effects, and calculations 
involved with factor analysis models. 
 
Calculation of the likelihood and its differentials. This involves the sequential calculation of the 
weighted sum of squares, S, and the calculation of the sparse inverse of C depend on the order that 
the order of terms in C. For example in a simple example with model with a grand mean and h 
uncorrelated  herd effects, then C has h+1 rows and columns and 1+3h non-zero elements in C.If 
the sequential formation starts by eliminating the grand mean the resulting updated C matrix fills in 
the non-zero elements of C and the sparse inverse requires calculation of all elements of C–1.By 
contrast, if in the sequential formation the grand mean is the last term then there is no in-fill of C 
and only the 1+3h elements, corresponding to the non-zero elements in the initial C, need 
calculating in the sparse inverse of C. The computation time with the initial ordering is 
proportional to ݄ଷand proportional to h in the later scheme. 

In order to reduce the computational time and effort several different orderings were 
investigated. A simple algorithm would be to (i) count the non-zero elements in each row, (ii) 
absorb the row with the least number of non-zero elements and update C, then repeat the process of 
the updated C matrix. Potentially this requires a large number of ordering operations and so a 
nested search (NS) algorithm (Gilmour and Thompson, 2007) was suggested. This involves step (i) 
and step(ii) is extended by finding  the row with the least number of non-zero elements and finding 
the decile of the number of non-zero elements in a row. This decile is used as a cut-off and in step 
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(iii) absorb rows shorter than the cut-off at the time they are considered for absorption, starting 
with the shortest row. Once all rows with non-zero elements less than the cut-off have been 
absorbed then the program goes back to step  (i) and the process is repeated until all the rows have 
been absorbed. 

After experimentation an extra grouping step was introduced giving a grouped nested search 
algorithm(GNS).This grouping step  identifies rows which have the same columns present. Each 
such group of rows is represented by just one member in the list of equations yet to be absorbed; 
the whole group is absorbed when that representative is absorbed. This has little impact on the 
order obtained but does reduce the work required to determine the order. 

Timings for two examples are given in Table 2 for these two ordering algorithms (NS and 
GNS) and  another suggested ordering (MeTiS). Ducrocq and Druet (2003) identified the MeTiS 
suite of ordering algorithms (Karypis and Kumar, 1998) as being very suitable for the solution of  
 
Table 2. Fill-in(size of coefficient matrix after absorption) and timing for ordering and one 
iteration for two examples and three algorithms run on a 32bit Linux. 
 

Example  Algorithm Fill-in Order(secs) Iteration (secs) 
Multivariate MeTiS  7,477,499 1 582 
 NS  6,726,733 195 415 
 GNS 6,703,056 124 412 
Random Regression MeTiS 39,724,222 33 473 
 NS 38,228,850 1984 487 
 GNS 38,202,783 45 432 

 
mixed model equations. These algorithms are based on a multilevel k-way partitioning of graphs. 
MeTiS uses initial coarsening, partitioning and then uncoarsening resulting in multilevel, nested 
dissection involving top-down and bottom-up ordering. Meyer (2005) evaluated MeTiS in her 
software, comparing it to a range of other published algorithms including the multiple minimum 
degree routine GENMMD (George and Liu, 1981, Lui, 1985) and various refinements extracted 
from the MUMPS package (Amestoy et al., 1998, 2001). She concluded MeTiS produced 
orderings which required about half the execution time of the minimum degree algorithms 
although the times vary a little with the particular characteristics of the example. 

The first example is a six trait multivariate sire model analysis of data from 26875 animals 
fitting 31745 equations and 39 variance parameters. The second example is a multivariate random 
regression of 437,632 data records fitting 536,288 equations and 116 variance parameters. The 
MeTiS ordering routines quickly find a good order for solving mixed model equations. However, 
in the context of ASReml, the MeTiS order is on balance not the optimum order when compared 
with the GNS ordering algorithm. This is often 10-20% faster per iteration. 

 
Calculation of variances of linear functions of the effects. It sometimes required to estimate a linear 
combination of the fixed and random effects ࢞  and with ࢝ ൧ the variance of 
this combination is  ࢝ ᇱ. By replacing the right hand side of equation (3) by ࢝ ᇱ it can be 
shown (Gilmour et al. 2004) that the variance of the linear combination could be found in a sparse 
way in exactly same way as the fitted sum of squares from the linear model (1). 

ො࣎    ࢛ࢠ ൌ ࢠ ࢞ൣ

࢝ି 

࢛ as ࢛  ൌ ࢌࡸ  ,ࢾ ࢛ ൌ ,࢛ ݄ݐ݅ݓ ࢌࡸ ,ݎ of size ࢌ and࢛ .and ݇ respectively ݏ

 
Factor analysis models. These models have been suggested as a way of giving a parsimonious way 
of modelling variance structures. They can be motivated by writing a vector of  p random effects 

The vector 
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࢛



ࡲ can be then be written as ࢛ ൌ ቈ
ࡸࡸ  ࡸࡸ     ࡰ

ࡸࡸ
′ ࡸࡸ               

′   with varሺࢾሻ ൌ ࡰ

ࢌand 

࢛

ٔ 

 may represent the performance of the i-th genotype in p environments or p different traits.This is 
motivated by writing the elements of ࢛ as linear  combinations of the k elements of ࢌ and the first 
r of the elements of ࢛ having extra components based on  ࢾ  .The variance matrix of 

′ ′
.If r=0 then we have 

a reduced rank model (Meyer 2005). If ࢛ ࢛ are used instead of using  ,in the mixed model 
equations then the sparsity increases especially if k is much less than p because the inverse matrix 
associated with these terms is sparser than the inverse variance matrix associated with . 
Thompson et al. (2003) give examples where the alternative parameterization had savings of 50% 
of computational time when p=3 and k=3 and savings of 90% when p=62 and k=3. 

Also if the effects ࢛ are associated with genotype i, and are combined into a vector  u , and the 
genotypes have an additive relationship matrix A then var(u)= ࡲ  . The calculation of the 
average information matrix requires the calculation of terms such as s=Ar where r is a vector of 
residuals (Kelly et al. 2009). As ି is much sparser than A, Kelly et al . (2009) found it useful to 
think of s as the solution to ିs=r. This solution can be found in a recursive way first adjusting 
the right hand sides of ancestors for direct descendants and then adjusting direct descendents for 
ancestors (Kelly et al. 2009).This computation avoids the formation of A and the computational 
effort is linear in the number of genotypes. 
 
DISCUSSION 

The initial motivation in developing the computer program was to generate a kernel to be ported 
into Genstat.  Such was the enthusiasm for the methods that a standalone program was developed, 
partly using code from REG to allow a wide range of data transformations. This has needed much 
more support but has the advantage that the algorithm has been made available to a wider user 
community. The user guide has been cited in over 1,000 publications. These publications are an 
appropriate testimony to the insight and innovations of Arthur Gilmour. 
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