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SUMMARY 
We report on the integration of a number of RT-PCR expression datasets totalling 102 genes 
across 49 experimental conditions of relevance to gastro-intestinal nematodes in sheep. The 
experimental conditions include three challenge trials, six tissues, five genotypes and two parasites 
surveyed at multiple time points. After mining gene interaction data for these 102 genes, we have 
generated an interaction network that enabled us to study these genes in a biologically relevant, 
system context. Following a systematic investigation of this network, we have identified a number 
of genes encoding extracellular matrix proteins that may be useful biomarkers enabling 
identification of parasite resistant sheep.  
 
INTRODUCTION 
Selective breeding of sheep that are genetically resistant to nematode infection may be used to 
overcome problems associated with anthelmintic resistance (Waller, 2006). This strategy would be 
greatly enhanced if accurate tests were available for attributing resistance. Differential expression 
of genes or their encoded protein products between resistant (RES) and susceptible (SUS) animals 
provides one option for such tests. For this reason, we have generated gene expression profiles in 
RES and SUS animals before and after nematode challenge, demonstrating the impact of time, 
parasite species, multiplicity of challenge and tissue.  

In this study, we combine expression data from various studies from our laboratory and apply 
data mining techniques to publicly available human data to generate a gene network that may be 
used to determine how the performance of one gene might be informed by others in the network 
and in so doing determine an optimal selection of genes that are predictive of phenotype. We also 
intend to determine the location of our key candidates within a previously determined protein 
interaction network. We overlay a series of gene attributes into the network, including regulatory 
and extracellular component, allowing us to efficiently identify targets that are likely to be 
measureable in the blood, thereby making good candidates for biomarker assays. 
 
MATERIALS AND METHODS 
We use the gene expression data from the set of 76 candidate genes related to nematode resistance 
in sheep reported by Ingham et al. (2007). The set comprised of genes differentially expressed 
(DE) between RES and SUS animals. To these data, an additional set of 26 genes was incorporated 
from studies in further trials with more biological replicates and tissues. In total, 102 genes across 
49 experimental conditions were represented in the combined data set including 2 parasites, 3 
trials, 5 flocks, 6 tissues, and 16 time points. The experimental layout of the resulting data set was 
that of an incomplete block design with only two genes (GAPDH and RPL) represented across the 
49 conditions. 

The entire data set was normalized by fitting a mixed ANOVA model with threshold cycle in 
the PCR reaction as the measure of expression abundance as the dependent variable. Main design 
effects were treated as fixed effects, while gene and gene by condition interaction were treated as 
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random effects. PermutMatrix (http://www.lirmm.fr/~caraux/PermutMatrix/EN/index.html) was 
used to perform cluster analysis of the normalized expression data across rows (genes) and 
columns (conditions).   

Finally, we downloaded a set of 55,606 true positive interactions among 7,197 human genes  
that were defined from functional studies (Franke et al., 2006). This interactions dataset was built 
including 2,788 confirmed, direct, physical protein-protein interactions derived from the 
Biomolecular Interaction Network Database (BIND; http://bind.ca), 18,176 confirmed human 
protein interactions from the Human Protein Reference Database (HPRD; http://www.hprd.org/), 
22,012 direct functional interactions from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG; http://www.genome.jp/kegg), and 16,295 interactions derived from Reactome 
(http://www.reactome.org). 

 
RESULTS AND DISCUSSION 
Figure 1 shows the result of the hierarchical cluster analysis of the expression profile of 102 genes 
across the 49 conditions. Expression results for 76 genes have been reported previously by Ingham 
et al. (2007). To this dataset we have added 6 additional genes studied in the same trial but not 
reported along with a further 20 genes analysed in third independent experiment. See 
supplementary data for details. To avoid biases in the generation of clusters, the average gene 
expression was imputed in the cells corresponding to genes not surveyed in a given condition. 
These are represented as black cells in Figure 1. The cluster of columns, corresponding to 
experimental conditions, reveals the tissues as being the biggest hierarchy in the clusters, followed 
by parasite and time point. The cluster of rows, corresponding to genes, reveals groups of genes 
enriched for specific functions. Across the rows, three main clusters are clearly distinguishable 
including toll-like receptors, cytokines, and proteases. 

The mining of the interaction dataset resulted in a network with 703 nodes (genes) connected 
by 1,090 edges (interactions) that was visualized using Cytoscape (http://www.cytoscape.org).  
The entire view of the network is given in Figure 2. Interestingly, some of the clusters observed in 
Figure 1 and derived from gene expression data, retained their integrity in the network. For 
instance, TLR pathway members form a cluster in Figure 1 and a sub-network in Figure 2. The 
network file in Cytoscape format used to generate Figure 2 is available for download from our 
public website (http://www.livestockgenomics.csiro.au/courses/Shiv_AAABG09.html). 

One limitation of using gene expression data as a biomarker is that the expression profile of the 
gene and subsequent location of its encoded product are often tissue specific. In this case, DE 
genes distinguishing RES and SUS animals in gut tissues might only be detectable in these tissues. 
Sampling gut tissue is highly invasive and therefore not appropriate for assaying in a routine 
manner. Instead, extracellular products are easily sampled in the blood. For this reason we 
performed a systematic investigation of this network and identified a number of genes encoding 
extracellular matrix protein candidates, associated with our DE candidates. The DE genes KCNJ15 
and DYRK3 both distinguish RES and SUS animals in the gut, but these factors are intracellular. 
Through cluster analysis these genes were shown to interact with the extracellular factors IL16 and 
NT5E respectively, making these candidates potentially useful targets for biomarker development. 
Taken together, the results illustrate the benefits of integrating gene expression data, together with 
interaction networks to study genes involved in complex biological processes/signalling pathways 
associated with parasite resistance in sheep. 
 
FUTURE DIRECTIONS AND CONCLUSIONS 
Although gene expression data offers a list of DE genes, and interaction networks supply a list of 
dual connections, the nature of the information that can be drawn from either approach is relatively 
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limited. Transcript abundance alone reveals little about the mechanisms underlying the observed 
changes or details of different simultaneously occurring events. 

In order to understand the genetic basis for ovine resistance to diseases, we need to gain 
insights into the dynamic regulatory nature of the immune response. Here we have shown how a 
network systems approach can be used to successfully inform the selection of potential 
biomarkers. Moving forward, we plan to capture the dynamism inherent in immune responses by  

 
 
Figure 1. Hierarchical cluster analysis of 102 genes (rows) by 49 experimental conditions 

(columns) derived from parasite resistance studies with sheep.  
A snapshot of representative cluster comprising TLR pathway genes has been shown; complete 

version of figure 1 containing all the clusters is available for download from our public website 
(http://www.livestockgenomics.csiro.au/courses/Shiv_AAABG09.html). The spectrum goes from 
green to red for low and high expression, respectively. Abbreviations used in column headings are 
as follows; Animals (TSF Trichostrongylus Selection Flock; HSF, Haemonchus Selection Flock; 
Chiswick, Outbred commercial sheep);  Genetic Resistance (R, Resistant; S, Susceptible); 
Infection status (HC, Challenged with Haemonchus contortus; TC, Challenged with 
Trichostrongylus colubriformis; NONE, Sheep not challenged); Tissue sampled (ABOM, 
abomasum; ILE, ileum; JEJ, jejunum, WBC, white blood cells; JEJILE, junction of jejunum and 
ileum; PP, Peyer’s Patch); Time of sample collection relevant to challenge (0, 3, or 108 days). 
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Figure 2: Network with 703 nodes (genes) connected by 1,090 edges (interactions). Visualised 
attributes included: genes surveyed in the RT-PCR assays were coloured red (otherwise 
green); transcription factors as triangles (otherwise, circles); big symbols were assigned to 
post-translational modifiers; red borders for secreted proteins; and sub-networks are 
highlighted as clouds.  
 
studying gene co-expression networks overlaid with transcription regulation associated with 
regulatory events. These studies are crucial, given the current, serious resistance problems in 
parasites against most treatments, and residue problems in meat, milk and the environment. 
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