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SUMMARY
Convergence behaviour of restricted maximum likelihood algorithms in multivariate analyses imposing
a factor-analytic structure on covariance matrices is examined. Results indicate that estimation for such
models can entail a more difficult maximisation problem than ‘unstructured’ estimation. On the other
hand, if only factors explaining negligible variation are omitted, convergence can be faster as parameters
at the boundaries of the parameter space have been eliminated. The ‘parameter expanded’ expectation
maximisation algorithm tends to require many more iterates than the ‘average information’ algorithm,
but is useful, in particular when combined with the latter.

INTRODUCTION
Factor-analytic (FA) models have been proposed to describe the dispersion among numerous traits or
random regression coefficients parsimoniously. This includes reduced rank (RdR) estimation as the
special case where specific effects and their variances are assumed to be zero. Thompson et al. (2003)
and Meyer and Kirkpatrick (2005) described ‘average information’ (AI) restricted maximum likelihood
(REML) algorithms for such models. Imposing a FA structure on covariance matrices reduces the
number of parameters to be estimated and, for RdR estimation, the computational requirements per
REML iterate. However, initial applications (Meyer 2005, 2007a) have encountered slow convergence
and required more iterates to locate the maximum of the likelihood function (logL ) than comparable
analyses estimating full rank, ‘unstructured’ covariance matrices. Carrying out a few, initial iterates of
the ‘parameter expanded’ expectation maximisation (PX) algorithm (Liu et al. 1998) before switching
to the AI algorithm has been found to improve convergence for full rank analyses (Cullis et al. 2004;
Meyer 2006a). Recently, Meyer (2007b) outlined an adaptation of the PX algorithm for RdR and FA
models. This paper examines convergence rates of the AI and PX algorithms for two practical examples.

MATERIAL AND METHODS
Data. Example 1 comprised records for 6 carcass traits recorded on Angus heifers or steers, as part of a
meat quality research project by the Australian Co-operative Research Centre for Cattle and Beef Indus-

Table 1. Data characteristics

Set 1 Set 2

No. records 9487 21807
No. animals 1796 3769
No. parents 3105 203
No. parameters 27–42 43–73

try; see Reverter et al. (2000) for details. Example 2 considered
weights for calves in the Wokalup selection experiment, recorded on
a monthly basis from birth to weaning; see Meyer (2001). Table 1
summarises characteristics of the data structure.
Analyses. Analyses for Example 1 fitted a simple animal model. Ge-
netic covariance matrices were estimated fitting increasing numbers
of principal components (PC), assuming specific variances were zero.
This yielded estimates of rank 1; : : : ;6. In addition, FA models with
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Table 2. Number of iterates required (N) and deviation of logL from best value (D �1000) for
different convergence criteria (∆), for Example 1

∆ Fit 2 Fit 3 Fit 4 Fit 5 FA 1 FA 2

N D N D N D N D N D N D

10�5 AI 35 0 17 0 54 0 8 0 16 0 32 0
PXAI 37 0 18 0 51 0 10 0 17 0 25 -234
PX 1278 -3 1036 -1 866 -1 715 -2 332 0 6955 -239

0:0001 AI 29 0 15 0 45 0 7 0 13 0 24 0
PXAI 35 0 16 0 42 0 9 0 16 0 23 -234
PX 583 -29 761 -12 600 -11 459 -11 242 -3 547 -1199

0:0005 AI 25 -1 13 0 38 -2 6 0 11 0 23 0
PXAI 26 -1 15 0 35 -2 8 0 15 0 22 -234
PX 227 -106 574 -58 420 -56 321 -45 199 -13 333 -1248

1 or 2 factors and 6 specific genetic variances were fitted. The residual covariance matrix was assumed
to be unstructured and have full rank throughout. Example 2 was analysed fitting a random regression
(RR) model, with quadratic B-splines of age at recording (0 to 279 days) and knots at 0, 70, 140, 210
and 280 days as basis functions. This fitted 18 RR coefficients, 6 each for direct additive genetic and
direct and maternal permanent environmental effects. Measurement error variances were assumed to
change with age according to a step function with 10 classes (0, 1-60, 61-90, : : :, 241-279 days). Anal-
yses were carried out fitting 222, 333, 444, 453, 564 and 666 PCs for the 3 random effects, respectively.
Furthermore, the genetic covariance matrix was estimated assuming a factor analytic structure with
1 or 2 factors, with the permanent environmental covariance matrices assumed to have rank 5 and 3
(analyses FA153 and FA253).

All analyses were performed using our REML program WOMBAT (Meyer 2006b). This imple-
ments an AI algorithm which enforces an increase of the likelihood in each iterates, using a backtrack-
ing line search to determine optimal step sizes. In addition, the average information matrix is ensured
to be ‘safely’ positive definite and well-conditioned by adding a small constant to its diagonal if the
smallest eigenvalue is less than min(0:002;10�6

� λ1), with λ1 the largest eigenvalue. For the same
starting values, analyses were carried out using AI and PX steps only, and a combination of 4 initial
PX steps followed by AI (PXAI). Iterations ceased when the change in logL between iterates was less
than 10�5 for an AI or less than 10�6 for a PX step. No ‘re-starts’ were carried out.

RESULTS
Convergence statistics for Example 1 are summarised in Table 2. D is the deviation from the highest
value for logL found for a particular analysis, with a value of “0” indicating no difference to the third
decimal.

Overall, imposing a structure on the estimated genetic covariance matrix tended to increase the num-
ber of iterates required. This trend was most evident when PCs with non-negligible eigenvalues were
omitted. In comparison, the full rank, unstructured analysis required only 6 AI iterates to reach ∆ =
10�4 with D=0. While the PX algorithm generally yielded larger improvements in logL than AI in the
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Figure 1. Convergence pattern for Fit 4.

first 2 or 3 iterates, combining PX and AI steps only
reduced the total number of iterates in a few cases.

For all analyses, the PX algorithm required a
substantial number of iterates to locate the maxi-
mum of logL . Again there was a tendency for the
number of iterates to increase as the number of PCs
fitted decreased. The typical pattern of convergence
is illustrated in Figure 1. Improvements in logL for
the PX algorithm exhibited a steady decrease over
iterates. Though the algorithm tended to reach prox-
imity of the maximum of logL relatively quickly,
this resulted in a large number of iterates required
overall.

The convergence criteria applied were very stringent. For practical purposes, a criterion of ∆ =
0:0005 appeared more than adequate for analyses using the AI algorithm. Accurate estimation with the
PX algorithm, however, tended to require a criterion as strict as ∆ = 10�5 or smaller.

Table 3 shows the convergence behaviour for the AI algorithm for Example 2. For this example, the
PX algorithm required excessive numbers of iterates for all cases considered. With multiple random
effects and a larger number of parameters to be estimated, the ‘unstructured’ analysis proved more
difficult, though relatively good starting values were used. Analyses employed a parameterisation the
Cholesky factor of the covariance matrices to be estimated. Taking logarithms of the diagonal elements
in addition, the AI algorithm converged in 10 iterates (Fit 666) and none of the iterates required step
size scaling. Without the logarithmic transformation, however, AI failed to locate the maximum of
logL and comprised numerous iterates which required severe step size modifications.

Results indicated that a RdR analysis with fit 453 would eliminate only PCs with eigenvalues close
to zero. Even without log diagonals, convergence for this analysis was swift, while analysis 564 still
involved PCs with small eigenvalues and thus required roughly twice the number of iterates. Reducing
the numbers of PCs fitted further, the number of iterates required again increased.

DISCUSSION
Similar patterns of convergence have been found in other examples (Meyer 2007b). Results show that
RdR estimation fitting the important PCs only can substantially reduce computational requirements,
decreasing both the number of iterates required and the operations per iterate. However, care must be

Table 3. Convergence for Example 2 (see Table 2 for notation)

∆ Fit 222 Fit 333 Fit 444 Fit 453 Fit 564 Fit 666 FA1 53 FA2 53

N D N D N D N D N D N D N D N D

0:0001 AI 109 0 52 -1 19 0 11 0 25 0 10 -1 15 0 14 -257
PXAI 110 0 62 -1 24 0 15 0 25 0 13 0 18 0 22 0

0:0005 AI 102 -1 40 -4 18 0 9 0 21 -1 9 -1 13 1 12 -257
PXAI 103 -1 49 -4 22 0 13 0 21 -1 12 0 17 0 20 0
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taken in selecting the numbers of PCs fitted and the parameterisation employed.
Clearly, structured estimation can represent a more difficult problem than full rank, unstructured

analyses. The AI algorithm utilises second derivatives of logL in determining its direction of search.
This implies a quadratic approximation of the likelihood surface. Failure to perform well for RdR
analyses involving few PCs indicates a deviation from the parabolic shape. This is supported by limited
investigations of the profile likelihood surface for simple RdR analyses, which have encountered ridges
and saddle points (Meyer and Kirkpatrick 2007). Step size modifications in the AI algorithm can
induce slow, almost linear rates of convergence, but without strict control the AI algorithm is apt to fail
altogether for this kind of analysis.

While the PX algorithm has been found to converge reliably, like most expectation maximisation
type algorithms it tends to require many more iterates than the AI algorithm. This seems to hold even
if the latter is applied in scenarios where logL is not well approximated by a parabolic surface. As
suggested by Cullis et al. (2004), the PX algorithm appears most useful in conjunction with the AI
algorithm and for ‘difficult’ problems. For analyses fitting simple models and with good starting values
for the variance components to be estimated, however, advantages of PXAI over AI for RdR analyses
tend to be limited.

CONCLUSIONS
Results show that RdR estimation can reduce computational requirements of multivariate analyses. On
the other hand, imposing a structure which fits too few factors can not only yield biassed estimates,
but also increase the difficulty of the optimisation problem to be solved. The ‘parameter expanded’
expectation maximisation algorithm is a useful addition to our armoury, in particular in combination
with other algorithms.
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