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SUMMARY
Fitting only the leading principal components allows genetic covariance matrices to be modelled par-
simoniously, yielding reduced rank estimates. If principal components with non-zero variances are
omitted from the model, genetic variation is moved into the covariance matrices for residuals or other
random effects. The resulting bias in estimates of genetic eigen-values and -vectors is examined.

INTRODUCTION
Direct estimation of only the leading principal components (PC) of genetic covariance matrices has
been proposed to model variation among numerous traits parsimoniously and make efficient use of
data (Kirkpatrick and Meyer 2004). Due to their orthogonality, we can increase the number of PCs
fitted successively when considering a single matrix, i.e. estimates of the i−th PC remain constant
for analyses fitting k ≥ i PCs. For quantitative genetic analyses, however, we consider at least two
covariance matrices, genetic and environmental, simultaneously. This allows genetic covariances to be
partitioned into the environmental components if PCs with non-zero eigenvalues are omitted. This note
examines bias in estimates of genetic eigen-values and -vectors from reduced rank (RdR) analyses.

Table 1. MANOVA table

Source d.f.A MS E[MS]

Between s − 1 B ΣW + mΣB

Within s(m − 1) W ΣW
A degrees of freedom

MATERIAL AND METHODS
Consider a balanced one-way classification with s independent
groups, m individuals per group and q traits recorded for each
individual. Let B and W denote the matrices of mean squares
and cross-products (MS) between and within groups. This gives
the multivariate analysis of variance (MANOVA) as shown in
Table 1. Let ΣG and ΣE be the genetic and environmental covari-

ance matrices among the p traits. Assume groups represent families whose members have degree of
relationship α, so that ΣB = αΣG and ΣW = (1−α)ΣG +ΣE . This gives Σ̂W =W and Σ̂B = (B−W)/m.

It is well known that for the balanced case, restricted maximum likelihood (REML) estimators of
covariance components have closed form and are identical to those from MANOVA (e.g. Corbeil and
Searle 1976; Lee and Kapadia 1984). However, REML estimates are, by definition, only valid if they are
within the parameter space (Harville 1977), while MANOVA estimates of ΣB can be negative-definite,
i.e. yield estimates of covariance matrices which have negative eigenvalues. As demonstrated by Hill
and Thompson (1978), the probability of this happening increases rapidly with increasing number of
traits, decreasing sample or group size, and if W−1B has small eigenvalues. Due to sampling variation,
eigenvalues of estimated matrices are dispersed more widely than the corresponding population values,
leading to overestimates of the largest and underestimates of the smallest values, while their mean is
estimated without bias (Hill and Thompson 1978). Hence, Hayes and Hill (1981) suggested to improve
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the quality of estimates of ΣB or, equivalently, ΣG by regressing the eigenvalues of W−1B towards their
mean, leaving the corresponding eigenvectors unchanged, a procedure termed ‘bending’. In particular,
this has been used to ensure that estimates of ΣB were non-negative definite, choosing a degree of
shrinkage so that the smallest, modified eigenvalue of Σ̂B was equal to zero. Closely related is the
method of Amemiya (1985), who used the ‘non-negative part’ of W−1B only to estimate ΣB, which is
equivalent to setting any negative estimates of eigenvalues of Σ̂B to zero. The author showed that the
resulting estimators are REML estimators, imposing non-negativity constraints. This approach can be
employed to examine the bias in RdR estimates of covariance matrices, fitting selected subsets of PCs.

Procedure. Both Hayes and Hill (1981) and Amemiya (1985) utilise the so-called canonical transfor-
mation, which simultaneously diagonalises two symmetric matrices. Steps involved are :
a) Determine a matrix L so that L′WL = I. The simplest choice is L = EWΛ

−1/2
W , with ΛW the

diagonal matrix of eigenvalues of W and EW the matrix whose columns are its eigenvectors, i.e.
W = EWΛWE′W . Alternatives are L = EWΛ

−1/2
W E′W or L = U−1, with U the Cholesky factor of W.

b) Determine Q = L′BL = EQΛQE′Q, with eigenvalues ΛQ and eigenvectors EQ.

c) Obtain P = (L′)−1EQ = Λ
1/2
W E′WEQ. This gives matrix P so that PP′ =W and PΛQP′ = B.

Considering the first k < q PCs of ΣB only, RdR estimators are (from Amemiya 1985)

Σ̂B =
(
P
(
Λ∗Q − I

)
P′
)
/m

Σ̂W =
(
(s − 1)

(
B − mΣ̂B

)
+ s(m − 1)W

)
/(sm − 1)

where Λ∗Q is ΛQ with diagonal elements λQ i replaced by λ∗Q i = 1 for i = k + 1, . . . , q. If λQ i > 1 for all
i = 1, . . . , k, Σ̂B is positive definite with rank k.

Bias. For k < q, ΣP = ΣB + ΣW the total variance and pi denoting the i−th column of P, this gives

Σ̂B = ΣB − (1/m)∆ or Σ̂G = ΣG − (α−1/m)∆

Σ̂w = ΣW + ((s − 1)/(sm − 1)) ∆ or Σ̂E = ΣE +
(
(s − 1)/(sm − 1) + (α−1 − 1)

)
∆

Σ̂P = ΣP − (1 − 1/m)/(sm − 1)∆ with ∆ = P
(
ΛQ − Λ

∗
Q

)
P′ =

q∑
i=k+1

(λQ i − 1) pip
′
i

Calculations. RdR estimates of ΣG and ΣE and their eigenvalues were obtained for two examples with a
paternal half-sib design. Case 1 comprised s = 500 and m = 10 for two traits with a genetic correlation
of rG = 0.5. Trait 1 was assumed to have phenotypic variance of 1 and heritability (h2) of 0.4. Variance
and h2 for trait 2 and the environmental correlation, rE , were varied. Case 2 considered ΣG and ΣE for 8
traits measured by ultra-sound scanning of cattle with s = 4000 and m = 4, corresponding to an earlier
analysis and simulation study (Meyer 2005).

RESULTS
Estimates of the genetic (λG i) and environmental (λE i) eigenvalues for case 1 are shown in Figure 1
together with the angle, θG, between estimates of the first genetic eigenvector and the first axis of the
coordinate system. For equal h2 and variances, θG = 45°, and λQ i = λB i/λW i. As long as rE ≤ rG, λG1
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Figure 1. Estimates of eigenvalues and angles (in °) from reduced (thick lines) and full (thin
lines) rank analyses.

and θG are estimated correctly when fitting the first PC only, while λ̂E2 = λE2 + λG2. For rE > rG, the
order of the ratio of eigenvalues is reversed, i.e. λQ1 = λB2/λW2. This causes the RdR estimate of the
first PC to ‘pick’ up the second PC instead, so that λ̂G1 = λG2, θ̂G = θG + 90° and λ̂E1 = λE1 + λG1.
Inspection of the profile likelihood for λG1 and θG identified a saddle-point at the correct values for this
scenario. A similar pattern emerges for equal h2 but different variances. However, λ̂G1 = λG1 − δ for
rE < rG and λ̂G1 = λG2 + δ for rE > rG, while RdR estimates of λG1, λE1 and θG are unbiased for
rG = rE . For different h2, bias in estimates changes less abruptly with rE .

Figure 2 summarises estimates of the first 4 eigenvalues for case 2, for analyses fitting increasing
numbers of PCs, F1, . . .,F8. With large s, bias in Σ̂P and its eigenvalues is negligible. For the first
PC a strong downward bias in λG1 and corresponding upward bias in λE1 is evident until at least 4
PCs are fitted. With genetic eigenvalues of 97.9, 20.0, 13.7, 2.6, 1.8, 0.20, 0.17 and 0.01, the first
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Figure 2. Estimates of the first 4 eigenvalues for analyses fitting n principal components (Fn).
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4 PCs accounted for 98.4% of the total genetic variation. There is good agreement with earlier sim-
ulation results for λG i (from Meyer 2005), even though the simulation assumed traits to be recorded
on two distinct sets of animals and obtained estimates setting the respective environmental covari-
ances to zero. Effects of omitting PCs on genetic eigenvectors are quantified by the angle between
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Figure 3. Angles (°) for eigenvectors 1 to 4.

estimates from analysis Fi and F8, shown in Figure 3
together with corresponding means (open symbol)
and empirical standard deviations from simulation.
While the first two eigenvectors are estimated with
little error if at least 3 PCs are fitted, estimates of
the third and fourth eigenvectors deviate 80° or more
for analyses F3 and F4. This is accompanied by a
substantial downward bias in estimates of the cor-
responding eigenvalues, suggesting that we have, as
observed for case 1,‘picked’ up one of the remaining
PCs. Indeed, for i = 3, 4, 5 estimates of the i−th PC
from analysis Fi deviated least from true PC i + 1.

DISCUSSION
Constraining the parameter space yields biased estimates of covariance components. This is well es-
tablished for the non-negativity constraints commonly imposed in REML estimation, but is equally
applicable to RdR estimation. The main difference is that we select the maximum rank of Σ̂B rather
than a minimum value for its eigenvalues. Results show that estimates of the largest eigenvalues can be
severely biased downwards if PCs explaining significant amounts of variation are ignored. Moreover,
for certain constellations, there is a tendency for the estimate of the last PC fitted to ‘pick’ up one of
the subsequent PCs instead. This implies that an estimate of λG i close to zero from an analysis fitting i
PCs does not necessarily indicate that i PCs suffice to model ΣG.
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