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SUMMARY
Parsimonious estimation of covariance matrices for multiple traits or repeated records is reviewed.
Emphasis is placed on flexible models which do not require prior assumptions about the structure of
covariance matrices, in particular parameterisations involving genetic principal components.

INTRODUCTION
Covariance matrices in quantitative genetic analyses have, by and large, been considered ‘unstructured’,
i.e. for q random variables, there are q(q + 1)/2 distinct covariance components. This implies that the
number of parameters to be estimated increases quadratically with the number of variables. Multivariate
analyses involving more than a few traits have been hampered by computational problems. Recent
improvements in computer hardware, both speed and memory available, have made analysis of larger
data sets and models feasible. In addition, methodology to estimate covariance components has seen
substantial progress. For restricted maximum likelihood (REML) estimation in particular, there are now
fast and reliable algorithms available, capable of dealing with analyses involving higher dimensional
covariance matrices among numerous traits or random regression coefficients.

However, computational problems aside, an inherent problem remains: with many parameters to
be estimated we rarely have sufficient data to support accurate estimation of all the elements of un-
structured covariance matrices. Attempts to improve efficiency of multivariate estimation fall into two
broad categories, ‘shrinkage’ and estimation assuming covariance matrices have a certain structure.
This paper reviews approaches to structured estimation relevant to quantitative genetic analyses.

‘REPEATED’ RECORDS AND FARTHER
Substantial impetus for structured estimation has come from the analysis of ‘repeated’ records, i.e.
traits measured repeatedly per subject and, almost invariably, recorded along some continuous scale,
i.e. along a trajectory. Most commonly the ‘control’ (co)variable is time (longitudinal data) or distance
(spatial data). While we generally assume that records at points close together are similar and highly
correlated, only in special cases are the assumptions of a ‘repeatability’ model, i.e. equal variances and
correlations throughout, justified. Often we have measurements at numerous different, irregular spaced
points and observations not represented by a grid, i.e. many ‘missing’ points per individual. Hence, the
other extreme, fitting a ‘full’ multivariate model, which treats observations at all points along the scale
as different traits, with an unstructured (US) covariance matrix is seldom feasible or desirable. This
has motivated a number of approaches to model covariance matrices assuming an underlying structure;
see Jennrich and Schluchter (1986), Wolfinger (1996) and, in a genetic context, Jaffrézic and Pletcher
(2000) for reviews. On the one hand, this reduces the number of parameters, often dramatically so, and
thus facilitates more efficient estimation. On the other hand, the structure assumed may provide more
easily interpretable results or facilitate interpolation at missing values.
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Table 1. Stationary RF

CS ri j = ρ

AR(1) ri j = exp{−θ∆i j}

GAU ri j = exp{−θ∆i j
2}

DEX ri j = exp{−θ∆i j
κ}

Parametric correlation structures. Widely used in many areas of applied
statistics are models assuming a parametric correlation structure. Let Σ =
SRS, with Σ of size q × q an US matrix of covariances, S = Diag {σi} the
diagonal matrix of standard deviations, and R the corresponding correlation
matrix with elements ri j. Assume the i−th variable has been recorded at
value ti of the control variable, t, and let ri j = 1 for all i = j.
Stationary. Common, simple correlation functions (RF) assume stationarity

(e.g. Diggle et al. 1994), i.e. that the correlation between points ti and t j depends only on the lag,
∆i j = |ti − t j|, rather than ti or t j. Let ρ > 0 denote the lag 1 correlation and θ = − ln(ρ). Well
known structures determined by a single parameter are compound symmetry (CS), first-order auto-
regressive (AR(1)) and Gaussian (GAU) RFs, shown in Table 1. These are special cases of the ‘damped’
exponential (DEX) (Muñoz et al. 1992) for κ = 0, 1, 2. An alternative form of AR(1) is the auto-
correlation function, ri j = ρ

∆i j . AR(1), GAU and DEX define correlations which decay with increasing
lag. Other, less common single parameter RFs have been considered by Pletcher and Geyer (1999).
Non-stationary. In other cases we cannot assume equidistant records to be equicorrelated. A simple
extensions of the above RF to account for non-stationarity is a deformation of the control variable t.
Related to time series are the so-called ante-dependence models, AD(s). These assume that the i−th
‘repeated’ record per individual depends (at most) on the s preceding observations. In its unstructured
form, the corresponding RF has sq − s(s + 1)/2 parameters, which are the elements the first s sub-
diagonals of R. The remaining elements of R are a function of these parameters. For s = 1, these are
ri j =

∏ j−1
l=i+1 rl,l+1 (for i = 1, q and j = i + 2, q), e.g. r13 = r12r23 and r14 = r12r23r34. This gives Σ−1

which is banded, with only the first s sub-diagonals non-zero. Structured ante-dependence (SAD(s))
models (Núñez-Antón and Zimmerman 2000) impose a functional relationship on the parameters of an
AD(s) model. The RF defined by SAD(s) has 2s parameters, ρn and γn for n = 1, s. Correlations on
the n−th sub-diagonal of R are then given as ri j = exp{ln(ρn)∆n

i j} for i = n + 1, q and j = i − n, with
∆n

i j = f (ti, γn)− f (t j, γn). The function f (·) represents a Box-Cox transformation, i.e. f (t, γ) = ln(γ) for
γ = 0 and f (t, γ) = (tγ − 1)/γ otherwise. For s = 1 and γ = 1, SAD(1) reduces to AR(1).

An alternative, encompassing many stationary and non-stationary RFs as special cases, is the ‘gen-
eralised autoregressive parameter’ (GARP) model (Pourahmadi 1999). This models the off-diagonal
elements of T for TΣT′ = D, with D is the diagonal matrix of ‘innovation’ variances. The unit, lower
triangular matrix T has off-diagonal elements, ui j which are (negative values of) the regression coef-
ficient predicting the i−th record from the i − 1 preceding observations. These are unconstrained can
thus be modelled as a function of some covariates zi j and parameters γ′ = (γ1, · · · , γs), ui j = g(zi j, γ).
More dimensions. Generalisations to more than 1 dimension are available in the literature, in particular
in the field of geostatistics (e.g. Wackernagel 2003). For example, Zimmermann and Harville (1991)
discuss spherical, exponential and Gaussian covariance functions for random fields, and Gaspari and
Cohn (1999) consider RFs with up to 3 dimensions.
‘Character process’ models. Generally, parametric correlation structures are used to model within-
subject or residual covariance matrices. Pletcher and Geyer (1999) suggested to model both the ge-
netic and residual covariance matrices for longitudinal data in this way, dubbing the resulting models
character process (CP) models. CP models can involve any of the RFs described above. Extensions to
repeated records for multiple traits have been described by Jaffrézic et al. (2004).
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Variance functions. Similarly, changes in variances with t can be modelled parsimoniously through a
(link) function. Most commonly, this is done parameterising to logarithmic values, thus removing the
need for constraints, i.e. ln(σ2

i ) = v(zi, υ) with zi a vector of covariates and υ the vector of parame-
ters. Simple variance functions, v(·), are step functions or low degree polynomials of t. Alternatively,
trigonometric or spline functions may be appropriate to model periodic or more arbitrary patterns of
change. In most cases, zi will comprise functions of t only, but more complicated dependencies are
readily accommodated. In mixed model analyses, for instance, this may involve conditioning on fixed
effects, i.e. effectively fitting a ‘double’ mixed model (Ruppert et al. 2003).
Random regression models. A less parsimonious, but more flexible alternative is the covariance struc-
ture defined in random regression (RR) models; see Meyer and Kirkpatrick (2005b) for a detailed re-
view. RR models imply that traits are ‘function-valued’ and that these functions can be represented
as regression equations, g(t) =

∑k
j=1 α jφ j(t) = α′φ(t). The underlying idea is that any trajectory can

modelled as the weighted sum of a set of basis functions, φ(t) = {φ j(t)}. Suitable bases are, for in-
stance, orthogonal polynomials, trigonometric or spline functions. Conceptually, there are infinitely
many functions in the set, but, in practice, a small number of k functions often suffices for a good
approximation. This allows non-linear trajectories to be fitted within the standard, linear mixed model.

In particular, we can model the trajectory for any random effect by fitting a corresponding set of RR
coefficients, αi = {αi j}, for each level i. Let V(α) = K denote the k× k covariance matrix among the RR
coefficients. The covariance between two measures, at points ti and t j, is then given by the covariance
function G =

∑k
l=1
∑k

n=1 Klnφl(ti)φn(t j), with Kln the ln−th element of K. In turn, this gives Σ = Φ′KΦ
with Φ = {φ(t1) · · · φ(tq)} the k × q matrix of basis functions evaluated for the q points represented
in Σ. This is equivalent to the covariance function in the ‘infinite-dimensional’ model proposed by
Kirkpatrick et al. (1990), i.e. RR models provide a convenient way to estimate such functions.

Generally, K is considered to be US, i.e. the q(q+1)/2 elements of Σ are modelled by p = k(k+1)/2
parameters. If K is estimated at reduced rank, m < k, this is reduced to p = m(2k−m+ 1)/2. In special
cases, a more rigid structure can be imposed on K. For instance, when fitting a RR on natural, cubic
smoothing splines only the intercept and linear terms are assumed correlated and all quadratic terms
are considered to be i.i.d. distributed, yielding a low number of p = 4 parameters (White et al. 1999).

RR analyses in quantitative genetics usually involve covariance functions for at least 2 sources of
variation, individuals’ additive genetic and permanent environmental effects. In addition, temporary
environmental effects are considered. These are generally considered independently distributed and
often modelled through a variance function, as described above. Extensions to multiple traits or more
than one control variable are conceptually straightforward but can be complex in practical applications;
see Meyer and Kirkpatrick (2005b) for some discussion.
Other. Other notable approaches to model covariances among repeated records include a factor-analytic
(FA) structure for Σ, and methods of ‘covariance selection’ (Dempster 1972) aimed at identifying zero
elements of the ‘concentration’ matrix, Σ−1, or its Cholesky factor (Smith and Kohn 2002).

PRINCIPAL COMPONENTS AND BEYOND
In a more general scenario, we want to estimate covariances among numerous, correlated traits where
there is no ‘natural’ ordering and – assuming few, if any repeated records – no obvious structure. In
special cases, there may be prior knowledge or restrictions for individual elements of Σ, e.g. that a
covariance between two traits is zero or that a correlation has an absolute value of unity. In addition,
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some of the ‘covariance’ selection procedures (see above) may be applicable. Parsimonious estimation
for this case in general, however, requires a different approach.

Principal components (PC) have long been used to summarise multivariate information in a number
of areas, going back to Hotelling (1933) and earlier. They are based on an eigen-decomposition of the
covariance matrix. Moreover, eigen-values and -vectors are ubiquitous in the statistical literature on
matrices. Yet, apart from use of the ‘canonical transformation’ to reduce computational requirements
of multi-trait analyses, there has been little interest in parameterisations involving these quantities.

So far, genetic PCs have generally been estimated in two steps, carrying out an eigen-decomposition
of an initial, US estimate of the genetic covariance matrix. Recently, Kirkpatrick and Meyer (2004)
advocated direct estimation of PCs, showing that this involved little more than a straightforward repa-
rameterisation of the standard linear, mixed model.
Principal components. Let Σ = EΛE′ represent the eigen-decomposition of Σ, with Λ = Diag{λi}

the diagonal matrix of eigen-values, and E = {ei} the matrix whose columns are the corresponding
eigen-vectors. E is orthogonal, i.e. EE′ = I. Assume the λi and ei are in descending order of λi, i.e.
λ1 ≥ λ2 ≥ · · · ≥ λq. Further, let Σ = V(v) with v, of length q, a vector of random variables. The i−th
PC is then given by Pi = e′iv, has variance λi and is uncorrelated with all other PCs. Moreover, Pi is
the linear function of v which explains most variation, given P1 to Pi−1.
Reduced rank estimation. Hence, any PCs with corresponding eigen-values close to zero contribute
little and can be omitted with negligible loss of information. This is the principle underlying the use
of PC analysis as a dimension reduction technique. Considering the leading m PCs only reduces the
number of effects in a mixed model analysis and thus computational requirements and sampling errors.
Let Em denote E truncated to the first m columns and Λm the corresponding sub-matrix of Λ. This
yields Σm = EmΛmE′m, i.e a parameterisation of Σ which defines a reduced rank matrix . It involves
p = m(2q − m + 1)/2 parameters, m values λi and m(2q − m − 1)/2 elements of Em. The remaining
m(m + 1)/2 elements of Em are determined by the orthogonality constraints on its columns.

More useful forms for estimation are Σm = ΓmΓ
′
m with Γm = EmΛ

1/2
m , or Σm = LmL′m where Lm

denotes the Cholesky factor of Σ (obtained pivoting on the largest diagonal), truncated to the first m
columns. This utilises that, for Σ = LL′, L = EΛ1/2U′ with UU′ = I, i.e. that the columns of L can be
interpreted as rotated PCs (Smith et al. 2001). L has m(m− 1)/2 elements of zero (above the diagonal),
i.e. the rotation is a convenient way of imposing the necessary constraint on the number of parameters.
Factor-analytic models. Closely related, but with a somewhat different emphasis, is the assumption of
a FA structure for Σ, i.e. Σ+m = ΓmΓ

′
m + Ψ, where Ψ = Diag{ψi} represents the matrix of ‘specific’

variances ψi, for i = 1, q. This increases the number of parameters to p = q(m + 1) − m(m − 1)/2, and
thus imposes a restriction on m, as p cannot exceed the value in the US case, i.e. p ≤ q(q+ 1)/2. While
PC analysis is concerned with identifying variables which successively explain maximum amounts of
variation, factor analysis attempts to attribute covariances between variables to common factors. This
implies a latent variable model v = Γm f + δ, with m factors f ∼ N (0, Im) and residuals δ ∼ N (0,Ψ).
Elements of Γm are generally referred to as ‘factor loadings’ .
Mixed model implementations. REML estimation of a covariance matrix Σ assuming a FA structure
might simply involve a ‘standard’ multivariate analysis for q traits, fitting a corresponding random
effect, v with q effects per level, and maximising the corresponding likelihood imposing the structural
constraint on Σ. Alternatively, we might fit the components of the latent model separately, i.e. fit m
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factors f and q effects δi per level of the random effect, to yield an ‘extended FA’ model (Thompson et al.
2003). While this increases the total number of effects, this is advantageous as the δi are independent,
resulting in sparse mixed model equations. If specific effects and their variances are considered to be
zero, this collapses to the reduced rank model considered by Meyer and Kirkpatrick (2005a) to directly
estimate the leading m PCs only.
Common principal components. When there are several, independent groups of individuals with the
same q variables recorded, we may want to model the corresponding covariance matrices, Σ j for j =
1, g, simultaneously. Assuming a common correlation structure, R1 = · · · = Rg, reduces the number
of parameters from p = gq(q + 1)/2 for the full, US case to p = gq + q(q − 1)/2. If we can assume
variances to be proportional, Σ j = τ jΣ1 for j = 2, g, p = q(q + 1)/2 + g − 1.

Alternatively, we can base classification of the degree of similarity of the Σ j on their PCs. The
common PC (CPC) model assumes all matrices have the same eigen-vectors, E1 = · · · = Eg, but allows
for different eigen-values (Flury 1984). This implies that all Σ j can be simultaneously diagonalised.
The number of parameters is the same as for the common correlation model, p = gq+ q(q− 1)/2. Less
restrictive is the a partial CPC structure, where we assume that the first m ≤ q − 2 eigen-vectors are the
same in all groups, i.e. Em 1 = · · · = Em g, while the remaining eigen-vectors are group specific. This
gives p = (gq(q+1)−m(g−1)(2q−m−1))/2. The so-called ‘Flury hierarchy’ has had considerable uptake
in evolutionary biology to characterise differences in genetic covariance matrices between species or
its change over time; see Phillips and Arnold (1999), or Steppan et al. (2002) for a review.

While generally described for a full rank scenario, there are obvious extensions of the CPC models
to reduced rank estimation, with corresponding reductions in the number of parameters. For instance,
we might have m < q PCs of interest and k < m CPCs. The parameters then consist of gm eigen-values,
k(2q − k − 1)/2 elements of the common and g(m − k)(2q −m − k − 1)/2 elements of the non-common
eigen-vectors. Other authors consider common subspaces of PCs. In particular, Schott (1999) examines
the case where the groups have ‘almost’ common subspace of dimension m + n with n a small number.

Similarly, CPCs can be useful in modelling patterned covariance matrices which can be partitioned
into blocks of similar matrices. For instance, Klingenberg et al. (1996) investigate q morphological
traits measured at each of g growth stages. Assuming CPCs, the sub-matrices for stages i and j are
Σi j = EΛi jE′ with E the matrix of common eigen-vectors. This reduces the number of parameters from
p = gq(gq + 1)/2 in the US case to p = q(g(g + 1) + q − 1)/2. Extensions to reduced rank, partial CPC
models for other types of multivariate repeated records or function-valued traits are readily conceived,
but have not been considered so far.
Related models. Again utilising the relationship, L = EΛ1/2U, between the Cholesky factor and eigen-
vectors of a matrix, Pourahmadi et al. (2007) propose a common GARP model. This allows a similar
hierarchy to the (partial) CPC models, and, due to the unconstrained nature of its parameters offers the
scope for finer hierarchies as well as computational advantages. An even more gradual change in the
number of parameters is afforded by ‘spectral’ model of Boik (2002), which comprises a number of
CPC and common subspace models as special cases. It achieves flexibility by modelling the eigen-
values and -vectors of several matrices simultaneously, allowing for relationships between eigen-values
across groups in addition to communality of PCs or their spaces.

DISCUSSION
Estimation of high(er) dimensional genetic covariance matrices will often require assumptions of an
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underlying, structural relationship between individual covariance components. There are a substantial
number of alternatives. While structured estimation is likely to make more efficient use of the data
available, there is clearly a trade-off between parsimony, potential bias and complexity of analyses, and
judicious choices need to be made.
Model selection. With likelihood based estimation, a likelihood ratio test (LRT) is an obvious way to
compare the fit of models assuming different covariance structures. A less often used alternative is a
score test, which also allows for one-sided hypothesis testing (Verbeke and Molenberghs 2003). LRTs
are limited to nested models, and care must be taken to account for boundary conditions when testing
hypotheses involving parameter values at their limits (Self and Liang 1987), e.g. whether an eigen-value
or variance component is zero. Moreover, the LRT is known to favour the most detailed model. Hence,
the so-called information criteria, which adjust for the number of parameters fitted, are widely used
alternatives, in particular, the Akaike (AIC) and Bayesian (BIC) information criterion; see Burnham
and Anderson (2004) for a comprehensive exposé. REML forms are −2lnL+ 2p and −2lnL+ ln(d) p,
respectively, with L the likelihood and d the degrees of freedom (Wolfinger 1993), i.e. BIC generally
involves a considerably more stringent penalty for higher numbers of parameters than AIC.

While these statistics are commonly reported for and used with mixed models, it has to be noted
that they were originally derived in the context of regression analyses. Concern has been voiced that
some of the underlying assumptions are violated when the model of analysis includes random effects
(Ripley 2004). Vaida and Blanchard (2005) propose a conditional AIC for mixed effect models, based
on the conditional likelihood given the random effects. Further work is needed to evaluate how robust
and consistent information criterion based model selection procedures are, in particular with reference
to discriminating between covariance structures.
How many PCs ? A crucial question for factor or reduced rank analysis is how many PCs should be
fitted or, equivalently, which eigenvalues are different from zero. In addition to the likelihood based
criteria, a number of tests addressing this question are in use. These range from Lawley’s (1956)
adaptation of Bartlett’s test to heuristic procedures like the scree test (Cattell 1966). Disconcertingly,
limited simulation studies available (Jackson 1993; Peres-Neto et al. 2005) show inconsistent results,
indicating that these methods should be applied with caution. For a half-sib design, Hine and Blows
(2006) report a tendency for reduced rank REML analyses together with an AIC based choice, to
underestimate the number of PCs of the genetic covariance matrix at low heritabilities.
Perils of parsimony. Imposing any constraints on covariance matrices introduces bias. A typical ex-
ample is the bias in REML estimates of US covariance matrices, generated by forcing them to be
non-negative definite. Parsimonious estimation assuming covariance matrices are structured reduces
sampling variances in comparison to the US scenario. However, the mean square error of estimation
is reduced only if any corresponding bias created is small or negligible. Clearly the bias acceptable
depends on the particular analysis and data available.

For analyses involving more than one covariance matrix, structured estimation may create biased
partitioning of variation. Loosely speaking, any excess variance not accommodated by the structure
imposed is likely to be ‘picked up’ in a covariance matrix subject to less restrictions. Gilmour and
Thompson (2006) recommend that all ‘strata’ should be fitted at the same degree of complexity. How-
ever, this may not suffice. Jaffrézic et al. (2002) encountered substantially inflated estimates of genetic
variances when fitting a CP model for longitudinal data. Providing an ‘outlet’ for permanent envi-
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ronmental variation not modelled by the CP by allowing residual effects to be correlated and to have
heterogeneous variances alleviated the problem. This emphasises that care must be taken when fitting
highly parsimonious and restrictive covariance structures.

Similarly, as shown by Meyer and Kirkpatrick (2007), fitting too few PCs in reduced rank analyses
can substantially bias estimates of the leading PCs. For a simple animal model, ignoring genetic PCs
with non-zero eigenvalues is likely to yield underestimates of the genetic and overestimates of the
residual variances. For models with additional random effects, the resulting pattern is less readily
predictable and depends on the relative numbers of PCs fitted and assumptions on the structure of the
residual covariance matrix. For reduced rank analyses of longitudinal data, it appears prudent to fit
more PCs for permanent environmental than genetic effects (Meyer 2005).
Structure and shrinkage. Early work on efficient multivariate estimation, most notably by Stein (see
e.g. Dey and Srinivasan (1985) for references), has considered ‘shrinkage’ estimators. In particular,
regression of the eigenvalues of a matrix towards their mean has been suggested. In a genetic context,
Hayes and Hill (1981) advocated this approach to improve sampling properties of selection indexes.
Recently, there has been renewed interest in such estimators. In particular, Daniels and Kass (2001)
consider estimation which combines some ‘squeezing’ of eigenvalues with shrinkage of the estimate
towards some specified, parametric structure, and Daniels and Pourahmadi (2002) extend this work
to a Bayesian setting. Such ’data-driven’ shrinkage can alleviate the ill effects of miss-specifying an
underlying structure. Future work should examine its applicability and properties for genetic models
with more than one covariance matrix.

CONCLUSIONS
Structured estimation of covariance matrices provides a means of modelling patterns of dispersion in
more than a few dimensions parsimoniously. In particular, reduced rank estimation considering the
leading principal components only requires few initial assumptions, can reduce computational require-
ments, and is highly appealing. It is likely to see increasing use in future.
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