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SUMMARY 
Evolutionary Computation encompasses optimization methods loosely based on biological 
evolutionary processes. These methods are efficient to find near-optimal solutions in large, complex 
non-linear search spaces. This paper sketches a roadmap to their adoption in animal genetics. 
 
INTRODUCTION 
Animal genetics is treading down the same path as most of the other biological sciences. It is heavily 
dependant on data, high-throughput techniques and on the development of computational tools and 
analytical methods that allow the interpretation and extraction of new knowledge from these vast 
amounts of data. There is a clear shift towards an information-centred science. The downside is that 
we still do not have widespread resources capable of optimizing large systems or solving complex 
problems purely through exhaustive search, nor deterministic algorithms guaranteed to derive optimal 
solutions for every conceivable problem. The alternative is to rely on intelligent computational 
methods that are capable of reducing the search space that must be covered and can guide the search 
to the most feasible areas. These methods are not guaranteed to always yield the optimal result but at 
least they offer good approximations that can be further tuned. A blooming field of research for such 
methods is Evolutionary Computation (EC).  

Evolutionary Computation is a broad field of research in optimization methods loosely based on 
biological evolutionary processes such as mutation, crossover and selection. Biological evolution is a 
common source of inspiration for tackling difficult computational problems since, in rather simple 
terms it can be viewed as a search method for the survivability of a species over a huge solution space 
under a dynamic environment. The central idea behind EC is to create populations of candidate 
solutions of a problem and evolve these populations by selection based on an objective function 
which emulates natural selection (Fogel 1999; Bäck et al. 2000a, 2000b; Bäck 2003).  

In the following sections we briefly review some of the main flavours of EC and dot-point some 
applications developed within our group. A review of EC would easily take up an entire book; here 
the focus is on a roadmap of which methods could be more suitable for a given problem and some 
practical pointers on how to implement them.    
 
A SIMPLE RECIPE FOR SOLVING COMPLEX PROBLEMS 
1. Write an objective function: This should be able to return a single value (criterion or fitness value) 
that represents the value of a single solution; albeit this value can consist of weighted multiple 
components directed at different sub-objectives (for multi objective optimization problems). The 
single solution is represented by variable input values (eg. selection index weights) and/or states (eg. 
a vector of animals that should be selected). 
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2. If needed, write an algorithm 
to produce the input variables or 
states from a vector of real 
numbers.  An example is given 
by Kinghorn and Shepherd 
(1999) who convert such a vector 
into a pattern of mating and 
selection. This algorithm should 
ideally produce only legal 
solutions to the problem. 
3. Choose an optimization 
engine.  For optimizing a vector 
of real numbers, our group has 
used Differential Evolution 
(Storn and Price 1997) quite 
widely. The optimization engine 
is quite simple ‘on the outside’. It 
generates vectors of numbers and 
seeks the vector that gives the 
highest fitness. 
 
OPTIMIZATION ENGINES: EVOLUTIONARY COMPUTATION  
In a nutshell, EC tries to mimic the mechanisms of biological evolution to solve complex problems 
(Mitchell and Taylor 1999). EC methods are commonly referred to as Evolutionary Algorithms (EAs) 
and all have in common the use of populations of candidate solutions which reproduce, compete, and 
are subjected to selective pressures and random variation (Atmar 1994). These candidates are 
evaluated as to their adaptiveness which determines their capacity of generating descendants, thus 
propagating better fit solutions into the future generations. Implementations vary significantly and 
algorithms are not constrained to using only biological mechanisms, but there still are some common 
features which are shared by the different EC methods (Mitchell and Taylor 1999; Bäck et al. 2000a): 
Population. A number (n) of candidate solutions (representations of the problem) compete against 
each other to remain in the population and generate offspring. Since EAs use populations, they can be 
seen as a parallelized search of the solution space. Population structures can be either steady-state or 
generational. Steady-state uses an overlapping generation approach in which parents and offspring 
simultaneously compete in the population. The generational approach uses non-overlapping 
populations with the offspring entirely replacing the parental population. Steady-state runs tend to 
have a higher variance. Thus in small populations the effect of drift is more pronounced and can lead 
to the loss of variability. To counteract this effect, larger populations should be used in steady-state 
systems (De Jong and Sarma 1993). 
Fitness. Candidates from the population pool are selected for culling or reproduction based on their 
fitness. Fitness is a function measurement of how ‘good’ a representation is at solving the problem. 
The two most adopted methods for assigning fitness are as a direct mapping to the problem or as a 
relative measurement of performance in relation to the remainder of the population. Arguably, the 
choice of a fitness function that clearly states the problem is the most important step in determining 
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the success or failure of the algorithm. A good fitness function should allow for a range of 
intermediary values which can be explored by the EA, the more continuous/smoother the fitness 
function, the higher the probability that the EA will converge on an adequate solution. In multi-
objective optimization this issue is even more critical as there usually is no unique solution to a 
problem but rather a Pareto front of solutions. Since objectives can conflict, improvements in one 
objective can degrade another one. More formally a solution is Pareto optimal if there is no feasible 
set of variables which would improve a criterion without simultaneously decreasing at least one other 
criterion. A common approach to multi-objective optimization is to use a weighting scheme for the 
different objectives (Zitzler et al. 2000; Van Veldhuizen and Lamont 2000) which ranges from a fully 
self adaptive approach (the scheme evolves alongside the candidate solutions) to a user-defined 
approach where the user modifies weights based on personal preferences. In this case, weightings can 
be varied in the light of the response surface of component outcomes generated during analysis – the 
best direction to take depends on how far can be gone in each direction (Kinghorn et al. 2002). 
Selection. There are several selection operators (Bäck et al. 2000a) but all essentially select better 
solutions for reproduction and delete less fit solutions which are replaced by the offspring of the 
better performing ones. Selection does not generate new solutions; it simply directs the evolution of 
the population. Note that since the process is stochastic, the best solutions are not necessarily always 
selected. This allows inferior solutions to be selected over better ones with a low probability and 
helps preserve the diversity of the population and also avoids a premature convergence on local 
optima. The main methods are proportionate, rank-based, Boltzmann and tournament. Proportionate 
selection assigns a probability of generating offspring based on the relative fitness of the solution. 
The simplest form of proportionate selection is roulette wheel; where each solution is assigned an 
area in the wheel proportional to its fitness – fitter solutions have a bigger area and consequently a 
higher probability that the wheel when spun will stop in their area. Rank-based selection ranks the 
entire population based on their fitness and then assigns a selection probability based on these ranked 
values. Boltzmann selection uses a probability distribution with a T term similar to the temperature 
term in the Boltzmann distribution which decreases as the iterations progress; initially all solutions 
have similar chances of being selected since a large T is used, but as T reduces the stringency 
increases and only better solutions are chosen. In tournament selection a given number of candidates 
compete and the ones with the lowest fitness are replaced by new solutions, the selective pressure is 
defined by the size of the tournament. Tournament selection is rapidly becoming the selection method 
of choice for EC applications. There is no need to evaluate the entire population or maintain 
population statistics which makes the selection process faster. For the same reasons it is also well 
suited for parallel implementations. The major drawback of roulette wheel is avoided, in which the 
size of the roulette wheel areas rapidly become the same as the population converges on a solution, 
forcing the use of a fitness scaling mechanism between the upper and lower limits of the fitness 
range. But, tournament selection can rapidly lead to a loss of diversity. To counterbalance this effect 
small tournaments are preferred in association with slightly higher mutation rates (Bäck et al. 2000a). 
Search operators. These provide the variability necessary for the EC population to explore different 
areas of the solution space. The two main sources of variability are mutations, which are randomly 
generated new sources of variability, and crossover. Crossover is a search operator that does not 
generate new sources of variability in the populations albeit introducing new variation, meaning that 
it can only generate new combinations from the available diversity in the population. It operates by 
combining parts from two or more parents to generate one or more offspring. The drive behind 
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crossover is to manipulate the component sources of variation to explore new combinations which 
might be better solutions to the problem. The choice of a specific crossover method (Bäck et al. 
2000a) will depend on the EA and the representation of the problem (eg. binary strings, real-valued 
vectors, finite-state machines or parse trees). A simple one-point crossover is depicted in figure 2. 

Mutation (Figure 2) generates new 
variability in the population. The general 
principle is that new offspring are created by 
a stochastic change to a single parent. Like 
crossover there is a plethora of mutation 
algorithms for the different EAs (Bäck et al. 
2000a). Mutation is an important operator to 
generate new sources of variability and expose new 
areas of the solution landscape whilst crossover can 
only shuffle and reveal existing variability. 
Mutation and crossover are the main search 
operators used in EC. Frequently both are used in 
an EA and the parameter settings for these 
operators are critical for a successful run. High 
mutation rates can reduce the method to a random 
search. If too low, there will be insufficient 
variability in the population. The same applies to 
crossover, if too high good constructs will be 
broken up. If too low there will be little exploration of the search space. A balance always has to be 
achieved between the two search operators as well as selective pressure and population size, which 
are the four main parameters in an EA (Banzhaf et al. 1998). A generic EA combines the above 
features and through iterations improves the overall fitness of the population, gradually converging 
on a solution. The following steps form the general structure of an EA: 

1. Create an initial population – randomly or based on prior information; 
2. Assign a fitness value to all solutions; 
3. Select solutions for reproduction based on their fitness and a selection scheme; 
4. Create descendants from the selected parents; 
5. Modify the descendants with the search operators; 
6. Evaluate the fitness of the descendants; 
7. Cull solutions from the parental population and replace them with the descendants according 

to the selection scheme; 
8. Repeat from step 3 until a termination criterion is met, for example, a specified number of 

iterations or a predefined fitness value is reached.  
 
MAIN TYPES OF EVOLUTIONARY ALGORITHMS 
Evolutionary Programming (EP). The basic form consists of generating an initial population µ and 
a fitness value is assigned to each individual. The iterative loop (each loop is commonly referred to as 
a generation) usually consists of duplicating each parent µi until a predefined number λi of offspring 
are generated. The offspring are modified through a mutation process – commonly a Gaussian 
distribution with zero mean and variance of one, crossover is not used in classic EP. All offspring are 

Figure 2. One-point crossover – a breakpoint is 
randomly selected and the two chromosomes 
swap bitstrings after the breakpoint. Point-
mutation bit-flip – new offspring are produced 
by a random change to the parent. 
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evaluated as to their fitness and along with the parental population a selection operator is used to cull 
the population size back to µ. The main difference between EP and other EC methods is the global 
optimization method employed by EP. No attempt is made to break the problem down into 
subcomponents; the fitness evaluation is based solely on the whole solution. In this sense the 
genotype is of little importance and focus is on optimization of the phenotype. EP traditionally uses 
continuous-valued variables instead of the discrete representation common in Genetic Algorithms. 
Current versions of EP are self-adaptive, with the mutation parameters (variance, covariance) 
adapting to the current state of the population (Bäck 1996; Fogel 1999). 
 Evolution Strategies (ES). ES were initially developed to solve technical optimization problems. 
There are two main general notations for the strategy: (µ + λ) where the ES generates λ offspring 
from a parental population µ and selects the best µ from all µ+λ individuals. Alternatively the (µ , λ) 
strategy generates λ offspring from µ parents and selects the µ best from the λ offspring. Weak 
selective pressures seem to yield a better response thus the µ/λ ratio should not be too small. Of 
course, a 1:1 mapping of µ:λ reduces the algorithm to a random walk. Typically ES use crossover 
between two randomly selected parents to generate the offspring; commonly adopted is the 
multipoint crossover. In a typical ES mutation scheme each solution, alongside the element that maps 
their position in the search space, can have several parameters controlling the mutation distribution 
which customarily follows a multivariate normal distribution with zero mean and a covariance matrix 
that is symmetric and positive definite. At least two mutation parameters are commonly used: angles 
(σ) and standard deviations (ω). These mutation parameters can be self-adaptive as in EP algorithms. 
The original ES strategy was (µ + 1) with a single replacement per iteration loop. Even though the 
steady-state approach is the preferred choice for other EC methods, modern ES adopt a generational 
approach similar to EP. As with Evolutionary Programming, ES does not attempt to break down the 
problem into smaller subcomponents. Optimization is solely based on the phenotypic values of the 
solution (Schwefel and Rudolph 1995). 
Genetic Algorithms (GAs). The most widely disseminated EC branch, GAs date back to Holland’s 
(1975) seminal work. Traditional GA solutions are represented as linear bitstrings which are referred 
to as chromosomes. The value in each position of the bitstring is an allele (0 or 1) and the position 
itself is a gene or locus. The combination of values (alleles) in the chromosome maps to a phenotypic 
expression, such as a parameter to be optimized. GAs operate at two structural levels: a genotypic and 
a phenotypic one. Selection operators are carried out based on the overall chromosome value 
(phenotype) while search operators act on the genotype, modifying the chromosome which may or 
may not change the phenotypic expression. GAs are the class of EC which most closely mimic 
evolutionary processes at a genetic level. Crossover swaps chromosome parts between parents to 
form the offspring and mutation changes the value of alleles at randomly selected loci. From this 
notion derives the concept of schema in GAs (Holland 1975); a good solution consists of a set of 
good small building blocks. Thus, the assumption is that the chromosomes in the population are 
formed by small schemas that add up to yield the final fitness. The schema theory has been under 
attack recently, with many arguments for and against but still limited solid proofs (Whitley 2001; 
Langdon and Poli 2002). Crossover is often regarded as the main search operator of a GA, with 
mutation seen more as a mechanism of ensuring a robust gene pool to be explored by crossover (Bäck 
et al. 2000a). 
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Genetic Programming (GP). Often regarded 
as a specialization of Genetic Algorithms, GP 
has evolved to become a branch of EC in its 
own right. Initially GP was devised as a 
method to optimize data structures as 
executable computer programs with the fitness 
value assigned based on the results obtained 
when executing the instructions contained in 
each member of the population. In this context, 
GP evolves populations of computer programs 
or other algorithmic processes to solve a 
specific problem (Banzhaf et al. 1998; Koza et 
al. 2003). Original implementations of GP 
used tree-structured representations 
implemented in LISP (rarely used nowadays). 
Tree-structures have the terminal nodes of the 
tree containing inputs (referred to as terminals) 
and the internal nodes holding functions. This 
type of construct demands significant overhead t
division by zero or infinite loops) or correct tree 
crossover (Heywood and Zincir-Heywood 2000; 
and mutation in a similar fashion as GAs. 
  
EVOLUTIONARY ALGORITHMS APPLIED
Our group has used EAs for many applications, in
• Allocation of animals to treatments. 
• Selective genotyping for mapping experimen
• Allocating individuals to groups for DNA poo
• Decisions on which animals to genotype for m
• Selecting markers into panels for genotyping.
• Allocating DNA sequences to multiplex grou
• Fitting complex non-linear growth models. 
• Essentially the full range of issues impacting

and selection decisions. 
• Optimising a wide range of management i

efficiency in animal production systems. 
• Optimising the number of harvesting sessions

session, and the timing of these harvestings
grid(s) for the trait(s) concerned. 

• Matching current and projected seedstock in
seedstock with specific customer requiremen

 
 
 
 

Figure 3. Crossover in a tree GP. Crossover between
parents A and B generate offspring C, the function
set is {*,+,/,-} and the terminal set is {2,0,1,5}. The
trees code for A=(5*0)-(1*2); B=(5+0)+(1/2);
C=(5*0)-(5+0).   
77

o ensure viability of the trees (handle, for instance, 
structures which can break-up due to mutation and 
Banzhaf et al. 1998). GP uses crossover (Figure 3) 
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attributes, and specified dates of delivery, while also accommodating the logistics/welfare of 
assembling groups of animals into orders, and efficient use of animal facilities. 

• Allocating families to common-environment untagged groups and simultaneously allocating 
genetic markers to these groups for subsequent use to derive familial contributions to groups and 
mean merit by family. 

• Optimization of microarray experimental designs. 
• Reconstruction and parameterization of genetic networks.   
 
PRACTICAL CONSIDERATIONS 
No single approach is always superior for all problems or can solve any type of problem. The choice 
of an appropriate EA depends on the nature of the problem at hand. There have been advances in 
developing a formal framework for EC but largely the field is still anchored on a trial-and-error 
approach. There are no widely applicable rules for selection of population parameters apart from the 
collective empirical experience of practitioners (Banzhaf et al. 1998). On the bright side, the methods 
are robust and even suboptimal parameter selection can still lead to good results. 
 As a rule of thumb, GAs are well suited for discrete problems such as sorting, ranking or 
allocation problems; EP and ES are a good first choice for continuous problems such as model 
parameterization; GP allows tackling problems such as model discovery. Within each EC branch 
there is vast number of different algorithms. Selecting the best one for a given task can be quite 
daunting. From a practical standpoint considerations of ease of implementation, computational and 
convergence speeds and repeatability of results are important. Our group has largely favoured 
Differential Evolution in many applications because of these aspects.   

Complex problems with convoluted constraints can be handled in two ways: (1) test conformance 
at the time of criterion evaluation, and allocate a criterion value to non-conforming solutions that is 
sufficiently low to exclude them from contention. The advantage here is simpler coding, but there can 
be big speed penalties, with sometimes almost all evolutionary pressure used to maintain 
conformance to constraints or (2) develop a filtering algorithm that will convert the vector of 
parameters being optimised into a solution that must always conform to constraints. This is the 
preferred solution if it can be achieved. The speed cost of implementing such a filtering algorithm is 
most likely to be small compared to the speed gains achieved from removing constraints as an issue 
to be handled in the optimisation part. So a filtering algorithm should be targeted to handle 
constraints. This is an issue of problem representation – how to present the problem to the 
optimisation engine (see Figure 1). 

An appropriate choice of representation for the populations is crucial for EA and largely depends 
on the nature of the problem. A parameterization problem is usually represented as a real-valued 
vector; if using an ES or EP the vector consists of the solution vector and variability parameters. 
Finite-state representations are also frequent with EP. A GA classically uses binary strings. GP has to 
store information on the functions, the terminals and the relations between the two; lists, stacks, 
parse-trees and vectors are commonly used. The choice of programming language is of secondary 
importance to the algorithms and they can usually be easily ported between languages. FORTRAN 
and C/C++ are good candidates, with the former having the upper hand in terms of speed. Probably 
the greatest limitation to the use of EC methods is the dimensionality problem. As the number of 
variables increases the computational effort can increase exponentially. But, since EAs are easily 
parallelizable this problem is becoming less significant (Alba and Tomassini 2002). 
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In summary, real-world problems are complex and demand flexible tools that can be adapted to 
the nature of the problem and not tools that force the problem to adapt itself to them. EC provides a 
powerful framework for solving these problems.  
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