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SUMMARY
Computational requirements for sparse matrix factorisation or inversion are highly dependent on the
‘fill-in’ created. This can be reduced by judicious re-ordering of equations. It is shown that use of newer
ordering strategies, with corresponding computer code available in the public domain, can reduce the
time required for ordering and computational requirements of analyses dramatically.
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INTRODUCTION
Mixed model analyses of data from livestock improvement schemes generally involve manipulations
of large, sparse matrices. In particular, estimation of variance components via restricted maximum
likelihood (REML) requires the Cholesky decomposition or the inverse of the coefficient matrix in
the mixed equations for each likelihood evaluation. Computational steps for this can be thought of as
sequentially ‘absorbing’ one row and column into the remainder of the matrix. Clearly, the number
of calculations required for each of these steps increases quadratically with the number of non-zero
off-diagonal elements in the row. Moreover, each step is likely to create additional, non-zero entries
in the remaining rows and columns, commonly referred to as ‘fill-in’. In turn, the amount of ‘fill-in’
determines computational requirements of subsequent steps.

Judicious choice of the order in which to process rows and columns is thus critical for computational
efficiency. A number of general ordering strategies, based upon graph theory, exist and various strate-
gies are readily implemented using software available in the public domain. This paper examines the
impact of different ordering strategies on computational demands of variance component analyses of
beef cattle data.

MATERIAL AND METHODS
Fill-in created and number of operations required in the Cholesky decomposition of the mixed model
matrix were examined for 7 examples, summarised in Table 1. Cases A to D represented uni- and
bivariate analyses of traits measured on Hereford cattle (Meyer et al. 2004). Case A involved repeated
records for mature cow weights (MCW), and fitted genetic and permanent environmental effects of the
animal. Case B treated gestation length (GL) as a record of the calf, and allowed for both genetic and
permanent environmental maternal effects. Case C comprised a bivariate analysis of birth (BW) and
weaning (WW) weight records. Case D was an analysis of BW together with days to calving (DC). In
addition to direct genetic effects, both maternal effects were fitted for BW and WW. DC involved re-
peated records per animal and was thus modelled fitting animals’ genetic and permanent environmental
effects. Cases E and F were random regression analyses of weights of Angus cattle (Meyer 2005a),
fitting quadratic and quartic regressions on Legendre polynomials of age for animals’ direct, genetic
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Table 1. Characteristics of the analyses examined

Scenario Case Traits Number of

records animalsA animalsB equationsC elementsC

Univariate A MCW 9,850 6,886 18,274 25,592 113,505
B GL 33,006 33,006 93,922 214,518 1,267,769

Bivariate C BW, WW 68,408 39,036 60,537 282,949 4,919,953
D BW, DC 102,431 75,484 116,894 391,621 4,085,122

Multivariate E WT : RR-3 84,534 20,731 47,463 384,819 6,133,601
F WT : RR-5 84,534 20,731 47,463 521,211 10,350,163
G SCAN-8 262,872 74,268 103,467 837,915 28,592,845

A in the data, B in total, C in the mixed model matrix

and permanent environmental effects, respectively, and corresponding quadratic regressions for mater-
nal effects. Case G was the eight-trait multivariate analysis of scan traits recorded on Angus cattle,
considered by Meyer (2005b).

A symbolic factorisation of the mixed model matrix for each analysis was carried out, using permu-
tations determined by several ordering strategies. Operations required in the corresponding Cholesky
factorisation were counted, defining an operation as a pair of floating point calculations, consisting
of one addition/subtraction and one multiplication/division. Orderings using the multiple minimum
degree procedure were obtained using routine GENMMD (George and Liu 1981; Liu 1985). Approxi-
mate minimum degree (AMD), AMD with a pre-ordering to remove dense rows (QAMD), and approx-
imate minimum fill (AMF) orderings were determined by routines DMUMPS 197, DMUMPS 421
and DMUMPS 337, respectively, extracted from the MUMPS package (Amestoy et al. 1998, 2001).
Routine METIS NodeND from the METIS package (Karypis and Kumar 1998b) provided multilevel
nested dissection orderings. In the following, Ma,b denotes a METIS ordering, obtained using a graph
separators in each dissection step, and considering vertices with degree b times higher than average as
dense, placing them at the bottom of the graph. All computations were carried out on a Compaq 64-bit
Alpha station with a processor rated at 667 Mhz.

RESULTS
Results are summarised in Tables 2 and 3. Not surprisingly, there was a strong relationship between
numbers of non-zero elements and operation counts. On the whole, AMD and QAMD orderings were
comparable to MMD, but quicker to obtain. In all cases, METIS provided substantially better orderings
than the minimum degree procedures, and did so at a fraction of the time required. Similar results have
been reported by Ducrocq and Druet (2003). In contrast, for smaller test cases (not shown), MMD and
(Q)AMD performed much better than METIS. Considering more graph separators per step generally
increased the quality of ordering, especially for the larger and more complex analyses, but increased
ordering times dramatically. Disregarding very dense rows in ordering tended to increase ordering time,
and was only advantageous for cases A and E. AMF provided orderings with fill-ins comparable to those
from METIS, but generally higher operation counts. For case B, computing times for one likelihood
evaluation were 153 and 273 secs for M1,0 and MMD orderings, respectively. Corresponding times for
one average information (AI) REML iterate, as implemented in DFREML (Meyer 1998), were 946 and

283



Computing techniques: Developments and validations

Table 2. Number of non-zero elements (NNZ) and operations (NOPS) for uni/bivariate analyses

Case A Case B Case C Case D

Method NNZ NOPSA tB NNZA NOPSC tB NNZA NOPSC tB NNZA NOPSC tB

MMD 692,112 108.68 4.0 20.06 27.47 26.1 37.80 46.68 589 46.95 57.78 454
AMD 686,529 105.32 3.9 19.60 24.82 8.3 38.91 51.46 404 47.83 63.82 703
QAMD 679,395 103.61 0.4 21.32 30.44 6.3 36.77 43.01 16 43.13 46.95 25
AMF 550,706 57.31 5.9 15.92 16.54 10.5 32.82 29.71 555 35.50 28.87 976
M1,0 569,066 48.97 0.9 16.40 14.15 8.5 33.10 22.90 22 40.27 30.29 72
M5,0 593,276 54.71 3.2 17.00 15.99 37.7 30.23 17.86 56 35.98 21.91 305
M5,20 576,024 50.43 4.9 17.32 16.52 41.0 32.86 21.22 83 36.42 21.99 145
M10,0 569,274 48.48 5.7 16.47 14.74 68.6 30.14 17.65 96 35.32 20.67 603
M10,20 561,245 47.29 9.6 16.41 14.59 79.9 32.36 20.39 147 36.37 22.53 263
M12,0 553,376 45.36 6.9 16.33 14.34 84.0 30.00 17.76 112 34.87 20.65 715
M14,0 577,063 51.07 7.7 16.44 14.69 98.2 30.45 17.88 82 34.69 20.09 840

Shaded entries show ‘best’ values; A ×106, B time for ordering & symbolic factorisation (secs); C ×109

1634 secs. Times for case D were 1895 (M14,0) vs. 4458 (MMD) secs per AI iterate and 308 vs. 676
secs per likelihood, with memory requirements of 619 vs. 812 Mbytes. Hence reductions in operation
counts translated almost directly into proportionally reduced computing times.

DISCUSSION
Computer code for all ordering schemes considered requires the same format of the adjacency structure
of the sparse matrix to be factored. Hence implementation of alternatives to GENMMD, used widely so
far, is straightforward. No strategy proved best for all examples considered. Times required for ordering
were sufficiently small, in particular for QAMD and METIS considering 5 or less graph separators, that
a number of alternatives could readily be trialled. Especially for large analyses, computational savings
achieved outweighed the additional effort for ordering by orders of magnitude.

The multilevel, nested dissection implemented in METIS is an example of a modern scheme combining
top-down and bottom-up ordering strategies. In essence, METIS attempts to recursively partition the
graph into independent subgraphs. Separators and dense vertices are ordered to the bottom of the graph.
When subgraphs reach a minimum size, a minimum degree ordering is applied to the remainder. This
‘divide and conquer’ technique appeared to be well suited to the structure of mixed model equations
considered. Herds provided a natural separator, as animals effects, in part at least, and contemporary
groups were nested within herds. Other strategies exist which claim a tighter coupling between steps
and better performance (e.g. Pellegrini et al. 2000; Schulze 2001). Different heuristics to the minimum
degree or minimum fill have been shown to improve orderings in other cases (Ng and Raghavan 1999).
Further research should examine these alternatives. Operation counts are computationally inexpensive
to obtain. Hence, it may be feasible to apply a global optimisation strategy to permute orderings derived
from a standard strategy like METIS to reduce operation counts further (Tier, 2003; pers. comm.).

CONCLUSIONS
The multilevel nested dissection scheme of Karypis and Kumar (1998a) is well suited to ordering sparse
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Table 3. Number of non-zero elements (NNZ) and operations (NOPS) for multivariate analyses

Case E Case F Case G

Method NNZA NOPSB tC Method NNZA NOPSB tC Method NNZA NOPSB tC

MMD 84.33 188.87 498 MMD 133.40 382.30 754 MMD 231.37 630.83 8408
AMD 81.62 174.40 163 AMD 135.77 388.13 204 AMD 235.33 679.27 1875
M1,0 64.40 80.40 39 M0,0 114.27 216.32 45 M0,0 200.17 266.85 162
M5,0 63.71 83.28 105 M5,0 109.15 195.51 98 M5,0 197.81 238.12 238
M5,20 62.56 79.67 151 M5,20 108.77 198.23 197 M5,20 195.53 244.45 433
M10,0 65.61 89.03 167 M10,0 109.90 199.72 167 M10,0 189.05 216.97 286
M10,20 60.72 76.38 257 M12,0 108.09 196.79 224 M12,0 190.60 225.05 319
M10,25 60.08 74.22 254 M6,0 107.19 186.65 111 M14,0 192.01 221.73 363
M12,30 67.33 104.69 307 M7,0 109.15 195.51 209 M16,0 186.89 213.54 397
M14,20 60.53 75.48 349 M8,0 107.63 191.29 139 M18,0 187.79 212.56 390
AMF 58.63 90.27 218 AMF 100.16 208.67 270 M20,0 189.22 219.71 429

Shaded entries show ‘best’ values; A ×106, B ×109, C time for ordering & symbolic factorisation (secs)

matrices with structure of the mixed model matrix, as encountered in REML analyses of large data sets
in animal breeding. Implementation is simple, and reductions in computing time of 50% or more over
minimum degree orderings are readily achieved.
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