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SUMMARY 
Various models were used to extract spatial effects from microarray data. Large discrepancies  
between the rankings of genes for the different methods were found, due to the roughness of the 
signal. Models assuming separability and autocorrelation did not perform as well as wavelets because 
the data were fractal in dimension, so assumptions underlying those models were violated.  
Keywords: Microarray, spatial effects, wavelet, fractal.  
 
INTRODUCTION 
Microarray technology is becoming increasingly available to animal scientists to estimate expression 
levels of genes in biological processes. Intensity bias, dye bias and spatial bias can all influence the 
estimated expression level of genes if they are not included in the model or considered in the design 
of the experiment.  This may result in inefficient allocation of resources in subsequent studies.  This 
paper is concerned with spatial bias. Spatial trends can accumulate in the various stages of a 
microarray experiment. The final intensity reading of each spot is the result of a complex process 
involving array fabrication, sample preparation, cDNA synthesis and labeling, hybridization and 
microarray quantification. There are many possible causes for spatial trends on a slide within each 
step of a microarray experiment, not all of which are fully understood. The sources of variation in a 
microarray slide may not act continuously, so may be fractal and discontinuous in dimension.  
 
Several authors have considered models to account for spatial bias involving autocorrelation 
(Burgueno et al. 2005, Baird et al. 2004). Models involving autocorrelation and splines assume 
separability (Adler 1981). Such methods rely on the data having an integer fractal dimension. When 
this condition is violated they may not be as efficient as other methods of removing spatial 
dependencies such as wavelet decomposition. This paper compares the efficiency of four methods in 
removing spatial dependencies from a murine microarray experiment. 
 
MATERIALS AND METHODS 
Data. The data used in this study came from cDNA extracted from mice livers in experiments 
conducted by Harry Noyes at The University of Liverpool. The treatments applied to the microarray 
were determined by strain of mice, challenge, replicate and time and these factors were unbalanced. 
Two types of mice were used, AJ and C57BL6. The mice were further divided into two challenges. 
                                                 
* AGBU is a joint unit of NSW Primary Industries and the University of New England. 
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From each mouse challenge two replicates were taken and the biological samples were applied to the 
microarrays at time points of 0, 4, 7, 10 and 17 days. Fifteen slides were used in total, with two 
biological treatments applied to each, one coloured red and the other green. The design of the first 
stage of the experiment involving the mice is not relevant to this paper.  
 
Each slide was divided into four metacolumns and twelve metarows, forming 48 printing blocks on 
each slide. There were twelve rows within each metarow and sixteen columns within each 
metacolumn yielding 9,216 spots per array. Thus with 15 slides, 2 colours and 9,216 spots there were 
276,480 data points. 11,218 genes were spotted on the arrays in all, so clearly not all genes were 
printed on each array. Housekeeping genes were used on all arrays, and included empty cells. They 
were printed in a very similar pattern on each array, with the first and last row of each metarow 
typically filled with housekeeping genes and the third row of each metarow usually containing some 
empty cells. 
 
Statistical models. A mixed model of the form y = Xβ + Zu +E , E~N(0,Σ), was fitted for each 
colour on each array with log2 of intensity as the response variable. Thus, dye bias was modeled as a 
part of the systematic model. The effects of housekeeping genes, β, were treated as fixed effects and 
the effects of test genes, u, were assumed to have come from a normally distributed (N(0,σ2

u)) 
population.  The model was fitted with no spatial correlation assumed and then separable first order 
auto-correlated rows and first order auto-correlated columns (AR1×AR1). The grand error term, E, 
was partitioned into mutually orthogonal components, a spatial component, ξ, which modeled the 
spatial bias and remaining error term, ε. The spatial component was estimated using wavelets, splines 
and AR1×AR1 with splines. A model was also fitted with no consideration for spatial effects as a 
benchmark. Once ξ was found, this term was subtracted from the original intensities to give adjusted 
intensities, y*. As before a model of the form y* = Xβ + Zu + ε was fitted and the 100 gene by 
treatment interactions with the highest absolute expression from each method were compared.  
 
Splines. A simple model was fitted for each slide of the form E = printing block + Rspl + Cspl + ε, 
where Rspl and Cspl are the spline trends due to rows and columns respectively. The spatial 
component, ξ = printing block + Rspl + Cspl, was subtracted from the original data. 
 
Wavelets. The Discrete Wavelet Transform (DWT) was applied to the grand error term, E, and then 
thresholded in the wavelet domain to remove the spatial trend, ξ. Wavelet coefficients below a 
threshold are considered to correspond to noise and the larger scale wavelet coefficients correspond 
to the spatial trend (Huang and Cressie 1997). Thus the larger wavelet coefficients corresponding to 
spatial trends were transformed back into the spatial domain before subtraction from the original 
intensities. 
 
A sample variogram of ε was computed and plotted for each model to compare the models. The 
variogram ordinates are given by γij = ½ [εi- εj]2. The sample variogram is the triple (|τr

i - τr
j |, |τc

i – τc
j|, 

vij), where τr
i is the row position of the ith point, τc

i  is the column position of the ith point and  vij is 
the mean of the variogram ordinate with a distance of (|τr

i - τr
j |, |τc

i – τc
j|) between them. A flat 

variogram with a low plateau illustrates that the model has efficiently removed spatial trends. The 
sample variogram was also calculated as a function of the absolute distance between points, v(|τ|).   
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Calculating Fractal Dimension.  The fractal dimension of all 15 slides was calculated for both the 
red and green treatments by both box counting and a variogram based method. 
 
Box counting. If a set S can be completely covered with a minimum number of cubes NδS of side 

length δ, then the box counting fractal dimension is given by
0

ln( ( ))
lim ln( )BC

N S
D δ

δ δ→
= . In order to 

calculate the box counting fractal dimension of a microarray image, a triple of each row position, 
column position and intensity was formed. Now each microarray slide was represented as an image in 
R3. The minimum number of cubes to completely cover the image was found for a variety of cube 
sizes and the logarithm of the cube size was plotted against the logarithm of the number of cubes 
required. The slope of the plot for small δ gave the estimate of the box counting fractal dimension, 
DBC. 
 
 

  
Figure 1. Sample variograms for red, slide 15 with (a) No spatial trend modeled. (b) Splines. (c) 
AR1×AR1 with splines. (d) Wavelets. 
Variogram Based Estimator. The sample variogram, v(|τ|), was used to estimate the fractal dimension 
(Constantine and Hall 1994). Assuming that v(|τ|)=c| τ |α as τ approaches 0, then log(v(|τ |))= constant 
+ αlog(τ) + error. The slope of the plot of log(τ) and log(v( | τ |)) for small τ was used to find an 
estimate of α and then an estimate of the fractal dimension was given by D=3-α/2. 
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RESULTS   
The model used to adjust for spatial trend affected the ranking of the expression levels of the gene by 
treatment interaction. Each of the models resulted in the same gene (<K01391-a) being the most 
highly ranked in absolute expression level for a given treatment, but overall only 30 of the gene by 
treatment interactions were ranked in the top 100 interactions for all four methods. Only 31 
interactions were ranked in the top 100 for each of the three models correcting for spatial bias. The 
majority of the genes in the 100 most highly ranked gene by treatment interactions were spotted once 
per array, but some were spotted up to 40 times per array. Between three and nine of the genes in the 
100 most highly ranked gene by treatment interactions for each method were only printed on one 
array. The Pearson’s rank correlation between methods ranged between 0.355 and 0.365 for all pair 
wise comparisons of all ranked gene by treatment interactions. The sample variograms for the four 
methods are displayed in Figure 1 for the red dye, slide 15. The shape of the variograms for this slide 
and colour was typical of the data.  
 
The mean fractal dimension for the red (green) treatment of all 15 slides was 2.22 (2.22) ± 0.01 and 
2.21 (2.17) ± 0.13 for the box counting and variogram based methods respectively. 
 
DISCUSSION 
The low number of genes ranked in the top 100 for all four methods illustrates the large difference 
between methods and that care should be taken when choosing methods for removing spatial effects 
from data.  From the variograms in Figure 1, it can be seen that wavelets were much more successful 
in removing the spatial trend than the other methods. The splines and AR1×AR1 with splines models 
were marginally better than fitting no spatial trend. Their variograms had a flatter plateau than if no 
spatial trend were modeled.  
 
Departure from 2 in the fractal dimension of the data, suggests that the data are insufficiently smooth 
for the separable autocorrelation model to be efficient. The wavelet transform for correcting spatial 
trends in microarrays is a generic method for capturing the spatial information irrespective of fractal 
dimension. The location-frequency resolution of wavelets allows identification of broad spatial trends 
and fine scale vibrations.
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