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SUMMARY
Multivariate restricted maximum likelihood analyses for a large data set comprising eight traits were
carried out, estimating the leading 3, 4, 5 and 6 genetic principal components only. Traits were eye mus-
cle area, percentage intra-muscular fat, and fat depth at the 12/13th rib and P8 sites, treating records
on bulls and heifers or steers as different traits. The resulting, reduced rank estimates of genetic co-
variance matrices for analyses fitting 5 or 6 principal components agreed closely with an estimate from
pooled, bivariate analysis. It is shown that reduced rank estimation can result in substantial reduction
in computational requirements, compared to standard analyses fitting unstructured covariance matrices,
and thus facilitate higher-dimensional multivariate analyses.
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INTRODUCTION
In estimating genetic covariance matrices, analyses are very often limited to a few traits. Estimates
of higher dimensional matrices are usually obtained by combining estimates from several, lower di-
mensional analyses. Limits on the dimensions of multivariate analyses are imposed by computational
requirements. Whilst the number of effects fitted increases linearly with the number of traits consid-
ered, the number of non-zero elements in the mixed model equations, and thus of calculations required
per likelihood evaluation in a restricted maximum likelihood (REML) analysis, increases much more
rapidly. By and large, covariance matrices are assumed to be unstructured, so that for q traits there are
q(q + 1)/2 distinct elements of the matrix to be estimated. Maximising the associated log likelihood
(logL ) tends to become more difficult as the number of parameters increases. Moreover, sampling
errors increase. Unless the traits considered are essentially uncorrelated, the corresponding covari-
ance matrices have a number of eigenvalues close to zero. This implies that there are linear combi-
nations of traits which contribute very little information and can be omitted (Kirkpatrick and Meyer
2004). Estimating the first m principal components (PCs) only reduces the number of parameters to
m(2q−m + 1)/2, and gives estimates of covariance matrices which have reduced rank m. This paper
presents a multivariate analysis of eight traits, obtaining reduced rank estimates of the genetic covari-
ance matrix by considering the leading genetic PCs only.

MATERIAL AND METHODS
Data. Data consisted of records for traits measured by live ultrasound scanning for Angus cattle in
36 herds which had 1000 or more animals with scan records. Traits considered were eye muscle area
(EMA), fat depth at the 12th/13th rib (RIB), P8 fat depth (P8), and percentage intra-muscular fat (IMF),
recorded from 300 to 700 days of age, with a single record per trait. Records on heifer or steers (.H) and
bulls (.B) were treated as separate traits, yielding a total of 8 traits. After basic edits, the data comprised
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Table 1. Characteristics of the data structure

Heifers/Steers Bulls

TraitA P8 RIB EMA IMF P8 RIB EMA IMF
(mm) (mm) (cm2) (% ×10) (mm) (mm) (cm2) (% ×10)

No. records 38,601 38,251 38,604 23,918 34,966 34,923 35,167 18,432
Mean 6.692 4.998 58.99 44.00 4.152 3.203 77.00 28.38
S.D.B 3.482 2.490 9.422 18.91 2.000 1.367 12.67 16.60
Age 506.7 506.2 507.3 524.8 489.1 488.5 489.2 496.1
No. CGC 1296 1295 1293 712 1568 1567 1569 819

A see text for abbreviations,B standard deviation, C contemporary group subclasses

262,862 records on 74,268 animals, 34,649 heifers, 35,345 bulls and 4,274 steers. Generally, all four
measures for an animal were taken at the same time. However, IMF recording was introduced some
time after the other traits. Hence, only 51.1% of bulls and 60.4% of heifers and steers had all four traits
recorded, with most of the remainder having records for P8, RIB and EMA. In addition, there was a
small number of animals with other combinations of traits, due to missing observations or deletion of
dubious records. Further details are given in Table 1.

Analyses. Estimates of covariance components were obtained by REML. The model of analysis fitted
contemporary groups (CG), birth type (single vs. twin) and a dam age class (heifer vs. cow) as fixed
effects. CG were defined as herd-sex-management group-date of recording subclasses, with a further
subdivison (“age slicing”) if the range of ages in a subclass exceeded 60 days. In addition, age at
recording for each sex and age of dam were fitted as linear and quadratic covariables. The only random
effects fitted were additive genetic effects. Including pedigree information for animals with records and
their parents up to four generations backwards resulted in a total of 103,467 animals in the analysis.

Estimates of covariances matrices were obtained from eight-variate analyses, estimating the first 3, 4, 5
and 6 genetic principal components only, as described by Meyer and Kirkpatrick (2005). The residual
covariance matrix was assumed to have full rank throughout, with the 16 residual covariances between
traits measured on heifers or steers and bulls assumed to be zero, resulting in only 20 covariances to
be estimated. In addition, 28 corresponding bivariate analyses were carried out to estimate correlations
between all pairs of traits. Results were pooled using ‘iterative summing of expanded part matrices’
(Mäntysaari 1999), as implemented by Henshall and Meyer (2002).

RESULTS AND DISCUSSION
Characteristics of the reduced rank analyses are summarised in Table 2. In essence, fitting the first m
PCs only reduced computational requirements of the eight-variate analysis to those of a corresponding
m−variate analysis. The full rank analysis would have comprised 56 parameters to be estimated, and
837,915 effects and 28.59× 106 elements in the mixed model matrix. Factorisation would have cre-
ated “fill-in” to yield a total of 186.9× 106 non-zero off-diagonal elements, and would have required
212.6× 109 operations. For our relatively large data set, logL increased significantly for increas-
ing numbers of PCs fitted. With a stringent penalty on the number of parameters, the corresponding
Bayesian Information Criterion (BIC) too indicated that fitting six PCs was ‘best’.
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Figure 1. Estimates of the first six genetic (left) and residual (right) eigenvalues.

Estimates of the first 6 eigenvalues from different analyses are shown in Figure 1. The remaining
eigenvalues from pooled bivariate analyses were 0.195 and 0.011 for genetic, and 0.494 and 0.221
for residual covariances. Overall, some repartitioning of genetic into residual variances was evident for
reduced rank analyses. Whilst the first two eigenvalues differed comparatively little between analyses if

Table 2. Characteristics of reduced rank analyses

Fit 3 Fit 4 Fit 5 Fit 6

No. rowsA 320,580 424,046 527,530 630,981
No. elem.sA,B 7.81 10.46 13.19 15.98
“Fill-in”C,B 40.98 61.01 85.21 115.60
No. op.sD 17.42 35.14 61.47 103.77
No. par.sE 41 46 50 53
logL F,G -599.6 -62.8 157.5 212.6
BICH,G -854.6 -349.0 -153.5 -117.1
A in mixed model matrix, B ×106, C non-zero elements in
Cholesky factor, D operations to factor mixed model ma-
trix, ×109, E parameters, F maximum log likelihood,
G +373,000, H Bayesian Information criterion, ×−0.5

at least 4 PCs were considered, estimates of
third and fourth eigenvalues were substantially
lower for analysis fitting 3 or 4 PCs only than
for analyses considering more PCs. Zero resid-
ual covariances between traits measured on dif-
ferents sexes resulted in estimates of the first
two residual eigenvalues of similar magnitude,
each being the first eigenvalue of an indepen-
dent sub-block of the residual covariance ma-
trix. Enforcing such structure in estimation
may have affected repartitioning between ge-
netic and residual components, and thus may
have caused some abrupt changes in estimates
of genetic eigenvalues with increasing numbers
of PCs fitted.

Figure 2 displays the first five genetic PCs. Estimates of PC1 and PC2 were essentially the same
for all analyses. PC1 represented a weighted sum of all measures of ‘fatness’, dominated by the
highly variable IMF records, and with larger contributions from records on heifers or steers. PC2
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Figure 2. Estimates of genetic eigenvectors fitting 3 (•), 4 (�), 5 (�) and 6 (N) principal compo-
nents, and bivariate analyses (H).
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Figure 3. Estimates of genetic (below diagonal) and residual (above diagonal) correlations (×100)
for analyses fitting the first 3, 4, 5 and 6 genetic eigenvalues only, and pooled bivariate analyses.

was essentially the weighted sum EMA measurements, with a small, negative weight on IMF.B. Esti-
mates of the third and fourth PC differed between analyses fitting only 3 or 4 PCs and the remainder,
emphasizing that a least 5 PCs were required to characterise genetic covariances among the 8 traits

Table 3. Estimates of phenotypic variances (σ2
P) and

genetic parametersA from analysis fitting 6 PCs

σ 2
P Heifers Bulls

P8 RIB IMF EMA P8 RIB IMF EMA

H P8 4.398 48 68 28 28 0 0 0 0
RIB 2.249 86 45 30 26 0 0 0 0
IMF 219.8 58 65 36 19 0 0 0 0
EMA 28.53 18 20 18 35 0 0 0 0

B P8 2.018 70 60 28 -1 35 73 41 21
RIB 0.846 62 72 35 2 92 28 37 19
IMF 120.4 40 44 72 3 66 71 22 16
EMA 41.9 2 -1 -1 82 -8 -2 -1 28

A heritabilities (in bold) on, genetic correlations below, and
residual correlations above diagonal; all ×100

adequately. PC3 represented the weighted
difference between sexes in genetic values for
the 3 ‘fatness’ traits. PC4 and PC5 were less
readily interpretable, comprising the differ-
ence between sexes for EMA, but also high
weights for measurements of fat depths.

Estimates of correlations between traits are
shown in Figure 3. Clearly, fitting 3 or 4 PCs
only resulted in increased estimates of ge-
netic correlations, in particular for the same
trait measured on different sexes. Table 3
gives estimates of phenotypic variances and
genetic parameters of the analysis fitting 6
PCs. Overall, estimates are very consistent
and show good agreement with literature val-
ues. As reported previously (e.g. Meyer and

Graser 1999), genetic correlations between sexes for the ‘fatness’ traits were only about 0.7, and records
on heifers or steers were more variable and heritable than those on bulls.

CONCLUSIONS
Genetic effects for the eight traits recorded by live ultrasound scanning of beef cattle can be summarised
by 5 or 6 genetic principal components. Reduced rank estimation can result in a substantial reduction
in computational demands, both for genetic evaluation and variance component estimation.
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