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SUMMARY 
Segregation analysis was performed on normal and binary data in order to compare accuracy and bias of 
parameters estimated on different scales. Data simulated and analysed were: data on the underlying 
normally distributed liability (NDL) and binary data created by truncating NDL data based on two 
thresholds corresponding to two incidences. The parameters estimated under mixed inheritance (H1) for 
normal trait were similar to the true values of parameters used in the simulation. The major gene variance 
was howe ver underestimated. On the other hand, the estimated parameters under polygenic inheritance 
(H0) were overestimated, especially for the genetic and the permanent environmental variances. Under 
H0, for binary trait  and for both incidences, the estimates of heritabilities and repeatabilities were the 
same and high. However, under H1, these estimates were very low and slightly higher for 40% incidence. 
Using a low incidence (15%), the results show an overestimation of the unfavorable genotype A1A1 
frequency and underestimation of A1A2 and A2A2 genotypes frequencies. In the case of high incidence 
(40%) however, there is an overestimation of the favorable genotype A2A2 frequency and underestimation 
of unfavorable genotype A1A1 frequency. For the normal trait, the estimated heritabilities and 
repeatabilities were lowered from polygenic H0 to mixed inheritance H1. However, for binary trait these 
estimates for both incidences were dramatically lowered from H0 to H1. Following these preliminary 
results, it could be concluded that power for detecting major gene is higher for NDL than 0/1 data and 
estimates are more biased for 0/1 than NDL data. 
Keywords : Normal trait, binary trait, incidence, major gene, mixed model, segregation analysis  
 
INTRODUCTION 
In domestic animal populations, genetic analyses of quantitative traits have been thoroughly addressed for 
traits whose phenotypes  are controlled by many genes (polygene) each having a small effect, and follow a  
continuous distribution (normal). However, in many cases phenotypes  and especially disease traits are 
expressed in two or more categories, representing binary and categorical traits, respectively. Several of 
these traits are controlled by few genes with a large effect (major genes or quantitative trait loci, QTLs) 
and polygene. The objective of this study was to compare the segregation analysis applied to trait on the 
norma l versus binary scale with two incidences (15 and 40%) using simulated data. In a first step we test 
if the transformation of normally distributed liability data to binary data has an influence (bias) on the 
estimation of genetic parameters of the population. In a second step we compare the segregation analysis 
for binary traits using two different incidences . 
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MATERIALS AND METHODS  
Simulation of the normal ly distributed liability (NDL) data . The data were simulated using a mixed 
inheritance model (polygene + major gene) and according to a hierarchical and balanced family structure: 
one population consists of 20 sire families with 100 dams per sire, which resulted in 2000 dams. A total 
of 3 records/phenotypes per dam was simulated (i.e. 300 records per sire). Therefore the total number of 
records in the population is 6000. We assumed more than one phenotype per dam, because in the most 
cases , livestock data sets are consisted of repeated records. The phenotypic data were simulated as 
follows:   ijijijiij epeamy +++=  where ijy  is the phenotype, im  is the effect of the ith 

genotype at major gene, ija  is the  polygenic effect of the jth individual bearing the ith genotype, 

)  ,0( ~ 2
gij Na σ , ijpe  is the permanent environmental effect, )  ,0( ~ 2

peij Npe σ  and ije  is the residual 

effect, )  ,0( ~ 2
eij Ne σ , where 2

gσ , 2
peσ  and 2

eσ  are polygenic, permanent environmental and residual 
variances, respectively. The single major gene is assumed to be an additive, biallelic (A1 and A2), 
autosomal locus with Mendelian transmission probabilities . We consider here that 6.01 =p  and 

)1( 12 pp −=  are the frequencies of alleles A1 and A2. Three genotypes  can be encountered: A1A1, A1A2 

and A2A2, with a frequency of 2
1p , 212 pp  and 2

2p , respectively. The A2 allele is assumed to increase the 
trait value, and is called the favorable allele. Further, we assume no dominance and the additive allele 
effect a  was 3.7 phenotypic standard deviation units of the trait . The phenotypic data were simulated 

using heritability 2h  of 0.41 and repeatability r  of 0.52. The genotype of the offspring was determined 
according the Mendelian transmission probabilities. The polygenic effect of the offspring was determined 
as the summation of the mean of the parents’ polygenic effect and the Mendelian sampling effect. The 
true values of parameters (major gene and polygene) used in the simulation of the population are 
illustrated in the Table 1. 
 
Simulation of binary (0/1) data. The liability models for analysis of binary data were first proposed by 
(Wright 1934) and have been thoroughly investigated (e.g. Kadarmideen et al. 2000 applied liability 
models to QTL mapping). The simulated normal trait was standardized using the average, µ  and the 

standard deviation, Pσ  of the trait as: Pyy σµ /)(* −= , where y* is the standardized normal data with 
N(0,1). Then, based on the liability concepts, the y* could be transformed into binary data as follows: 

0        and , 1       ** =≤=> bb y thentyifythentyIf , where t is the threshold point. Here yb taking value of ‘1’ 
could be considered as diseased and ‘0’ as healthy, thus representing liability model for complex diseases. 
The values for thresholds t were chosen in such a way that it represents two scenarios: a less common 
disease with 15% and more common disease with 40% incidence. Therefore the corresponding values of t 
were: 036.1=t  for 15% and 253.0=t  for 40% (Falconer and Mackay, 1996). Both the underlying 
normally distributed liability data (NDL) and binary (0/1) data resulting from truncating the same NDL 
data were kept for segregation analyses. 
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Statistical analyses. There were 3 types of data sets. The original NDL data and two binary data sets with 
15% and 40% incidences. Same segregation analysis method was performed on all the normal and binary 
data sets. Simulations and analyses were replicated 100 times for each combination of parameters . 
Different values of parameters were used as initial values for the calculations of the estimated parameters. 
The segregation analysis method used in this study was based on the comparison of the likelihoods under 
2 inheritance hypotheses  (Le Roy et al., 1990, Ilahi et al., 2000 and Bodin et al., 2002): 
 
Mixed inheritance hypothesis (H1). This model describes the genetic transmission of the simulated trait by 
polygenic effects and a single major gene effect. The parameters to be estimated are: the mean of each 
genotype )  ,  ,(

222111 AAAAAA µµµ , the three variance components )  ,  ,( 222
epeg σσσ  and the genotypic 

frequencies )( 11 AAf , )( 22 AAf  and ))()(1)(( 221121 AAfAAfAAf −−= . These estimated parameters 
allowed the computation of the ‘residual’ heritability, and the repeatability. 
 
Polygenic inheritance hypothesis  (H0). This model, which is a sub-model of the H1 mixed inheritance 
hypothesis, is given by µµµµ ===

222111 AAAAAA . In this case the parameters to be estimated are: µ , 
222   ,  , epeg σσσ  from which we can compute the ‘total’ heritability, and the repeatability. The likelihoods  

0l  and 1l  were computed respectively for both hypotheses H0 and H1, the likelihood ratio  is given by  

)/( log 2 10 ll=LR . This  likelihood ratio is compared to the value of 2
dχ  with degrees of freedom d  

equal the difference in number of para meters between the mixed and polygenic inheritance hypotheses 
(Le Roy et al. 1990, Kadarmideen et al. 2000). In this analysis, 4=d . The estimation of parameters 
maximising the likelihoods was carried out using the Gauss-Hermit quadrature (D01BAF) and 
optimization (E04JBF) subroutines of the NAG Fortran Library with a quasi-Newton algorithm in which 
the derivatives were estimated by finite differences. 
 
RESULTS  AND DISCUSSION 
The results of parameter estimates by segregation analyses for normal and binary traits under both 
polygenic and mixed inheritance models  are given in Tables 1 and 2, respectively. The mean of the 
likelihood ratio ( LR ) for the normal trait, comparing mixed and polygenic models was about 165, greatly 
exceeding 13.3, the tabulated value of 2

4χ  distribution at %1  significance level. This has confirmed the 
true mixed genetic determinism of the simulated trait. Using normal trait, the estimated parameters under 
mixed inheritance (H1) were similar to the true values of parameters used in the simulation. The major 
gene variance was however underestimated (Table 1). On the other hand, the estimated parameters under 
polygenic inheritance (H0) were overestimated, especially for the genetic and the permanent 
environmental variances. This is explained by the genetic model used in the simulation of data set: the 
major gene has a large additive effect on the trait. Moreover, under H0, the major gene effect was not 
taken into account to explain the genetic variability of the analysed trait, which resulted in overestimation 
of genetic and permanent environmental variances. 
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For binary trait with both incidences  (15 and 40%) under H0, the estimates of heritabilities and 
repeatabilities were the same and high. In the case of H1, however, the segregation analysis method used 
in this study did not allow the estimation of the permanent environmental variance. This may be due to 
the loss of genetic variability and information when normal distributed data were truncated to 0/1 binary 
form (Kadarmideen et al. 2000). In a recent study  Miyake et al. (2002) using segregation analyses for 
binary traits, have also found similar problems in the estimation of variance components  and to obtain a 
good convergence to true values. Using a low incidence (15%), the results of segregation analysis for 
binary trait show an overestimation of the unfavorable genotype A1A1 frequency and underestimation of 
A1A2 and A2A2 genotypes frequencies. In the case of high incidence (40%) however, there is an 
overestimation of the favorable genotype A2A2 frequency and underestimation of unfavorable genotype 
A1A1 frequency, (Table 2). This corresponds to earlier findings that statistical power is lower and bias is 
higher for low incidence than for intermediate incidence (Kadarmideen et al. 2000). For the normal trait , 
the estimated heritabilities and repeatabilities were lowered from H0 to H1, from 0.54 to 0.38 and from 
0.80 to 0.51, respectively. This was expected and due to the taking into account of major gene effect in 
H1. However, in the binary trait these estimates for both incidences were dramatically lowered from H0 to 
H1. It decreased from 0.38 to 0.01 and from 0.60 to 0.01 for 15% incidence, and from 0.39 to 0.012 and 
0.60 to 0. 012 for 40% incidence, respectively . We can observe that the estimated of residual variance did 
not change from H0 to H1, an underestimation of genetic variance especially for binary trait with low 
incidence and non estimation of the permanent environmental variance. This indicated that the parameters 
estimated on the binary scale are biased. This paper showed the possibility of applying segregation 
analysis to binary traits with intermediate incidence under mixed inheritance. However, more research is 
needed to apply and to investigate more appropriate statistical methods and softwares to detect major 
genes segregating in binary or categorical traits. The method used in this study for segregation analysis 
for binary traits show a weakness on the estimation of all the parameters and to give an expected 
likelihood values in both polygenic and mixed inheritance models of the population. Further analysis and 
other alternative methods using Bayesian methodology (e.g. Janss et al. 1995, 1998) are required. 
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Table 1. True values of parameters and parameter estimates by segregation analyses for normal 
trait (averages and standard deviations of 100 replicates) 
 

Parameters True values Polygenic inheritance (H0) Mixed inheritance (H1) 

2

2
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AAf
AAf
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σ
σ
σ

µ
µ
µ
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Heritability 
Repeatability 

0 
-3.50 

0 
3.50 
0.36 
0.48 
0.16 
1.44 
0.36 
1.69 
5.88 
0.41 
0.52 

-0.10 ( ± 0.28) 
- 
- 
- 
- 
- 
- 

4.74 ( ± 0.77) 
2.38 ( ± 0.66) 
1.68 ( ± 0.03) 

- 
0.54 ( ± 0.07) 
0.80 ( ± 0.01) 

- 
-3.47 ( ± 0.20) 
0.04 ( ± 0.18) 
3.55 ( ± 0.19) 
0.35 ( ± 0.05) 
0.48 ( ± 0.09) 
0.17 ( ± 0.03) 
1.30 ( ± 0.26) 
0.45 ( ± 0.18) 
1.68 ( ± 0.03) 
3.45 (( ± 0.80) 
0.38 ( ± 0.06) 
0.51 ( ± 0.02) 

 

Table 2. Parameter estimates by segregation analyses for binary trait using two incidences (average 
and standard deviations of 100 replicates) 
 

 Incidence= 15% Incidence= 40% 
Parameters  Polygenic inher. 

(H0) 
Mixed inheri. 

(H1) 
Polygenic inher. 

(H0) 
Mixed inheri . (H1) 

2

2

2

2
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AA
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AAf
AAf
AAf
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σ
σ
σ

µ
µ
µ
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Heritability 
Repeatability 

0.190 ( ± 0.022) 
- 
- 
- 
- 
- 
- 

0.051 ( ± 0.010) 
0.030 ( ± 0.010) 
0.053 ( ± 0.003) 

- 
0.38 ( ± 0.07) 
0.60 ( ± 0.02) 

- 
0.023 ( ± 0.004) 
0.050 ( ± 0.005) 
0.852 ( ± 0.011) 
0.53 ( ± 0.08) 
0.38 ( ± 0.10) 
0.09 ( ± 0.05 

0.0005 ( ± 0.000) 
0.000 

0.049 ( ± 0.002) 
0.050 ( ± 0.010) 
0.010 ( ± 0.004) 
0.010 ( ± 0.004) 

0.410 ( ± 0.072) 
- 
- 
- 
- 
- 
- 

0.091 ( ± 0.021) 
0.050 ( ± 0.018) 
0.091 ( ± 0.004) 

- 
0.39 ( ± 0.08) 
0.60 ( ± 0.02) 

- 
0.053 ( ± 0.023) 
0.096 ( ± 0.018) 
0.882 ( ± 0.019) 
0.19 ( ± 0.09) 
0.51 ( ± 0.14) 
0.30 ( ± 0.12) 
0.001 ( ± 0.00) 

0.00 
0.084 ( ± 0.009) 
0.090 ( ± 0.022) 
0.012 ( ± 0.007) 
0.012 ( ± 0.007) 

 


