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SUMMARY 
A static simulation study was performed to develop algorithms and a model for predicting crossbred 
performance.  The model was built using @Risk software using quantitative risk analysis.  Estimates 
of crossbreeding parameters were fitted with normal distribution functions as the model inputs.  Sets 
of available population means were used as model target values. The standard deviations of the 
predicted means from the target values for all structured crossbreeding systems using up to 4 breeds 
were compared to predefined risk threshold criteria. This appeared to be a good approach to 
estimating robust, balanced trait parameters. 
Keywords: crossbreeding parameters, simulation, risk analysis, probability distribution  
 
INTRODUCTION 
Prediction of crossbred performance is subject to the uncertainties of non-additive genetic variation, 
which results in performance prediction risk. This variation can only be estimated by carefully 
designed crossbreeding experiments (Garrick 2001).   
 
A quantitative risk analysis approach (Vose 2000) was used, where uncertainties were quantified by 
probability distribution functions (Palisade 2002), based on the analyses of collated sheep 
crossbreeding parameter estimates (Wei et al. 2001).  This paper briefly describes a simulation 
prediction of untested crossbred performance based on current crossbreeding theories.  
 
MATERIALS AND METHODS 
All published NZ data for weaning weight (WWT), litter size (LitSize) and loose wool bulk (Bulk), 
for Romney (Rom), Merino (Mer), Finn and Texel (Tex) breeds and their crosses were chosen to 
demonstrate the simulation algorithms.  
 
Genetic model and design matrix. Direct and maternal additive breed effects as well as direct and 
maternal heterosis were assumed. A simple non-additive model was used, with dominance the only 
source of heterosis.  ‘Averaged’ direct and maternal heterosis parameters for each trait were used 
(Kinghorn 1987;1997).   
 
The model notation was:        
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  G  =vector of mean values of each genotype in the given genetic group 
 m  =general mean whose interpretation depends on the model used 

iα  =proportion of genes from the ith source population in the genetic group 

ijδ  =probability that at a randomly chosen locus of a randomly chosen individual of the 
given genetic group, one allele is from the ith and the other allele from the jth source 
population 

adi  =additive direct effect of the ith source population 
  ami  =additive maternal effect of the ith source population  
  dd =averaged dominance direct effect  

dm =averaged dominance maternal effect  
 
The design matrix for a four-breed rotational or synthetic crosses assumed breeds were balanced at 
equilibrium.   
 
Probability distributions.  A normal distribution was assumed for all crossbreeding parameters.  
The available estimates of direct and maternal heterosis for each trait (Wei et al. 2001), were fitted as 
values drawn from normal distribution, using @Risk (Palisade 2002), where a risk quantifies the 
probability that a prediction can go beyond a target in this context.  The ad value for each breed was 
added to m to provide breed adi normal distribution functions.  Since there were generally less than 
five ami estimates for each breed, the am distribution function was arbitrarily defined with reference 
to the available estimates with the sum of ami effects set to zero.  In each iteration, m was calculated 
as the average of the randomly sampled values from each adi function, and then subtracted from each 
adi sampled value, to give the input value for the ith source population to the model. 
 
Simulation algorithm.  For each trait simulation, distribution functions and relevant trait population 
means (Wei et al. 2001) were input into the genetic model for all structured crosses using up to 4 
breeds.  The population means were regarded as target values for corresponding genotypes.  The 
maximum deviation (MSD) between the simulated means and target values were calculated and 
simulations stopped when MSD fell to a predefined arbitrary threshold level for WWT, LitSize and 
Bulk of 15%, 30% and 15% respectively.    Other thresholds than MSD could have been used. Two 
thousand iterations were done in each run of the model using random samples from the distribution 
functions. The run outputs were evaluated by sensitivity analysis using @Risk®. The input functions 
were adjusted by changing the associated means and/or standard deviations until the MSD threshold 
or tolerance level was reached.   
 
RESULTS AND DISCUSSION 
The input distribution function for maternal heterosis for Bulk was not available (Table 1). All 
functions in Table 1 were assigned a minimum and maximum value to reflect the limits of biological 
performance. 
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Table 1.  RiskNormal distribution functions (mean and standard deviation) used in the 
simulation models 
 

  WWT (kg) LitSize (lamb) Bulk (cm3/g) 
Direct heterosis  (1.84, 3.87)1  (-0.02, 0.17)1  (0.53, 3.03) 
Maternal heterosis   (-0.27, 2.13)1  (0.08, 0.15)1  
additive direct    
 Romney  (19.58, 1.89) (1.53, 0.00)  (22.28, 1.09) 
 Texel  (28.28, 2.34)  (1.30, 0.00)  (30.16, 1.41) 
 Finn  (28.53, 0.00)  (2.10, 0.00)  (22.35, 0.00) 
 Merino  (20.54, 0.00)  (1.10, 0.00)  (27.16, 0.00) 
1: Heterosis estimates from non-New Zealand sources were incorporated into the function definitions 
 
Some functions (Table 1) had very small standard deviations (zero when only two decimal places 
were kept).  This was because no additive maternal effect could have been estimated simultaneously 
with the additive direct effects due to insufficient input data of crossbred genotypes.  The MSD 
histograms from the runs of 2000 iterations (Figure 1) show the distribution of different MSD values 
for each trait.  The probabilities that MSD values can go beyond the thresholds, produced from the 
@Risk results for each trait, are: 12.2%, 37% and 42% for WWT, LitSize and Bulk respectively. 
These values could assist breeders to decide if crossbreeding decisions have a high element of risk in 
predicting performance from published information, eg. CrossSheep software (Cottle et al. 2001). 

 

 

 

 

 

 
Figure 1. MSD histograms for traits (a) WWT (b) LitSize and (c) Bulk 
 
Following the simulations, the means of each distribution function within each model were used to 
provide validated parameter point values (Table 2).  These should be more robust and balanced for 
predicting crossbred performance across a wide range of crosses than those in Table 1, but were not 
necessarily the optimum solutions to the models, given that arbitrary adjustments of the input 
functions and only limited target data were used in the simulations. 
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Table 2.  Validated crossbreeding parameters for WWT, LitSize and Bulk models 

Model m ad1 ad2 ad3 ad4 am1 am2 am3 am4 dd dm MSD 

WWT (kg) 24.50 -5.12 4.21 4.85 -3.95 0.73 -0.73 0.90 -0.91 2.12 0.84 9.58
LitSize (lamb) 1.50 0.06 -0.28 0.59 -0.36 -0.08 0.04 0.10 -0.05 -0.15 0.20b 6.28
Bulk (cm3/g) 25.62 -2.62 4.15 -3.12 1.59 -1.99 1.70 -0.95 1.24 2.39 -0.58 9.42
a: subscript 1 =Romney, 2= Texel, 3= Finn, 4= Merino 
b: Litsize dm value was unable to be tested as no relevant target value was available 
 
The MSD point values for each model (Table 2) were calculated by the deterministic model when the 
parameter point values were used.  These are lower than the corresponding MSD mean values in 
Figure 1 simply because those mean values were produced from simulation where randomly 
sampling were performed 2000 times.  On completion of the simulation for different traits, it is easy 
to rank different crossbred genotypes on their aggregate economic returns using appropriate 
economic weights for each trait (Amer 2000), and the predicted merits for the genotypes.  The 
ranking results should be useful to breeders for decision-making.  This will be discussed in another 
paper. 
 
The simulation algorithms and model appeared to be a practical, robust approach to the problem 
where crossbreeding trait parameter information is sparse (Wei et al. 2001). This approach showed 
promise by making full use of available NZ sheep crossbreeding data and incorporated genetic 
modelling and risk analysis technologies.  It offers the flexibility of applying different target 
parameter values for specific environments. This study is not definitive and predictions will become 
more accurate when more data become available and as more sophisticated models are developed are 
developed. 
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