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SUMMARY 
Multiple trait mapping has not only proven to be more powerful than single trait analysis, but also 
allows testing of a number of biologically interesting hypotheses concerning the nature of genetic 
correlation between traits.  A simple method is presented that combines multiple trait analysis and the 
generality of regression methods for fitting multiple and interacting QTL using an efficient search 
method based on a genetic algorithm. 
Keywords: QTL, multiple traits, regression mapping, epistasis. 
 
INTRODUCTION 
Most QTL experiments include the measurement of multiple phenotypes.  Several investigations have 
shown the advantages of multiple trait analyses (Korol et al. 1995; Jiang and Zeng 1995).  These 
advantages include not only increased power to detect QTL and increased precision in mapping QTL, 
but also the ability to test a number of biologically interesting hypotheses concerning the nature of 
genetic correlation between traits.   
 
Multiple trait analysis based on maximum likelihood methods is relatively complex and 
computationally demanding.  Recently, simpler multiple trait QTL mapping methods based on least 
squares were developed (Moser 1998; Knott and Haley 2000).  Moser and Van der Werf (2000) have 
shown that the least squares method gives very similar results to those obtained by multiple trait 
maximum likelihood.   
 
Currently, most statistical methods for detecting multiple QTL such as composite interval mapping 
(CIM) (Zeng 1994) map individual QTL separately, since a multidimensional exhaustive search for 
several QTL is computationally not feasible.  CIM combines interval mapping with multiple 
regression on selected markers to eliminate variation arising from other QTL elsewhere in the 
genome.  A major limitation of CIM is that interactions between loci (epistasis) are ignored.  A new 
approach to map multiple interacting QTL simultaneously was introduced by Carlborg et al. (2000) 
using a genetic algorithm (GA) as an efficient search strategy. 
 
In this paper a method for the simultaneous mapping of multiple interacting QTL using information 
from multiple traits is presented.  The approach uses a genetic algorithm as an efficient search 
strategy.  We compare the method with the CIM approach.  A simulation example of mapping 
multiple linked QTL for two correlated traits in a F2 generation derived from a cross between outbred 
lines is presented to illustrate the method. 
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MATERIALS AND METHODS 
Multiple trait tests.  Following Moser (1998) the likelihood ratio test (LRT) in the multiple trait 
analysis using least squares can be approximated by: 

 
 

 
where |Vreduced| is the determinant of the residual variance-covariance matrix of the reduced model, 
and |Vfull| the determinant of the model including the QTL.  In the case of two traits, V is equal to 

 
 
 
 

where RSS1 and RSS2 are residual sums of squares of trait 1 and trait 2 respectively, and RSP12, RSP21 
are crossproducts of the residuals for trait 1 and trait 2.  The residuals are obtained by performing a 
separate regression for each trait in turn and are then combined to form the joint test statistic.  
Hypotheses testing in multi-trait analysis can be performed as outlined by Jiang and Zeng (1995).  
Under a pleiotropic model a single QTL is at the same position in the two separate regressions on 
both traits.  Fitting a single QTL at different positions for the two traits leads to a close linkage 
model. 
 
One dimensional search for multiple QTL.  Following Jiang and Zeng (1995) we have 
implemented CIM using the linear regression model for interval mapping and the multiple linear 
model to control for linked QTL.  Selection of cofactors was based on single-trait analysis.  Instead of 
the actual marker genotypes, QTL genotype probabilities at the marker locations flanking a putative 
QTL were used as cofactors.  For the test pleiotropy vs. close linkage only cofactors outside the 
interval containing the putative closely linked QTL were fitted. 
 
Simultaneous search for QTL using a genetic algorithm.  The basic idea of a genetic algorithm is 
to have a population of solutions that improves relative to the objective through a “survival of the 
fittest” mechanism.  As a stochastic function minimiser the Differential Evolution algorithm (DE) of 
Price and Storn (1997) was used.  Briefly, the algorithm starts with a randomly generated population 
in which each individual is a vector containing values of the parameters of an objective function to be 
optimised.  The parameters optimised by the genetic algorithm are the positions of the QTL.  The 
objective function is equal to the denominator of the LRT.  After initialisation, each vector is selected 
in turn as the target vector.  DE generates new candidate solutions by adding the weighted difference 
between two randomly chosen population vectors to a third randomly chosen vector.  If the resulting 
vector yields a higher LRT statistic than the target vector, the newly generated vector replaces the 
target vector in the next generation, otherwise the target vector is retained.  The process is stopped 
when no improvement in fitness is observed in the last 500 evaluations of the fitness criteria.   
 
Numerical example.  One hundred replicates of a F2 generation (n = 500) from a cross between 
outbred lines were simulated.  Regression mapping was carried out using the method described by 
Haley et al. (1994).  The genome consisted of one chromosome of length 150 cM with equally spaced 
markers in  10 cM intervals.  Each  marker  had four alleles  segregating at  equal  frequencies  in  the  
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Table 1.  Simulated parameters and estimates of QTL positions and effects from composite 
interval mapping (CIM) and a genetic algorithm (GA) over 100 replicates of simulation using 
multiple trait analysis 
 

Additive- and Dominance effects 
 Position Additive Dominance 
QTL (cm) Trait1 Trait2  Trait1 Trait2 

Simulated parameter values of marginal QTL effects A 
 

1 32.0 -1.50 -1.60 0.90 1.00 
2 87.0 -1.10  0.40  
3 94.0  1.20  0.60 
4 128.0 1.30  -0.40 

No epistasis fitted 
 

Estimates by CIM B 
1 31.3 ± 2.1 -1.41 ± 0.40 -1.49 ± 0.39 1.07 ± 0.35 1.13 ± 0.37 
2 87.3 ± 5.8 -1.05 ± 0.36    0.53 ± 0.38 
3 93.4 ± 5.4    1.34 ± 0.33    0.70 ± 0.38 
4 129.1 ± 3.7 1.43 ± 0.36    -0.38 ± 0.38 
 

Estimates by GA B 
1 31.5 ± 1.6 -1.39 ± 0.15 -1.47 ± 0.15 0.98 ± 0.21 1.09 ± 0.17 
2 87.2 ± 3.6 -0.98 ± 0.19    0.48 ± 0.21 
3 93.8 ± 2.4    1.34 ± 0.15    0.68 ± 0.22 
4 128.4 ± 2.6 1.34 ± 0.16    -0.41 ± 0.23 

Epistasis fitted 
 

Estimates by GA B 

1 31.7 ± 1.6 1.50 ± 0.25 -1.62 ± 0.23 0.90 ± 0.37 0.99  0.32 
2 87.2 ± 4.0 -1.12 ± 0.32    0.39 ± 0.38  
3 93.4 ± 2.0    1.20 ± 0.25    0.57 ± 0.33 
4 128.6 ± 3.1 1.34 ± 0.18    -0.41 ± 0.22 

 
Interaction effects B 

AA    0.39 ± 0.28 0.42 ± 0.26 
AD    0.34 ± 0.32 0.40 ± 0.30 
DA    0.39 ± 0.36 0.42 ± 0.36 
DD    0.43 ± 0.48 0.46 ± 0.47  

AEpistatic effects (aa,ad,da,dd) were simulated between QTL1 and QTL2 for trait1 and between 
QTL1 and QTL3 for trait2 and accounted for less than 10% of the genetic variance. 
BEstimates are means ± standard deviations. 
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founder breeds.  Two pleiotropic QTL (QTL1, QTL4) affecting two traits and two closely linked 
QTL (QTL2, QTL3) each affecting a single trait were simulated with main effects given in Table 1.  
Epistatic effects were simulated between QTL1 and QTL2 for trait 1 and between QTL1 and QTL3 
for trait 2 using the common model for two locus interactions (Mather and Jinks 1982).  Epistatic 
effects were of magnitude 0.4 and accounted for less than 10% of the genetic variance.  Broad-sense 
heritability was 0.4 and genetic and phenotypic correlation between the two traits was 0.54 and 0.35, 
respectively. 
 
RESULTS AND DISCUSSION 
Not accounting for interaction effects in the statistical model resulted in biased estimates of QTL 
effects for both methods, but estimates of the positions of QTL were close to the simulated values 
(Table 1).  Estimates obtained with the GA method were more accurate.  Accounting for epistasis in 
the GA method removed the bias of the estimates of main QTL effects, but estimates of the 
interaction terms were not very accurate.  Sampling variances of estimates of main effects were also 
consistently larger when epistasis was included in the model.  The percentage of replicates in which 
QTL2 and QTL3 were detected in different marker segments and the close linkage hypothesis was 
favoured over the pleiotropic hypothesis was low.  Power to detect close linkage was 34% for CIM 
and 52% for GA.   
 
A prerequisite for detecting epistasis is to simultaneously model QTL.  As a multidimensional 
exhaustive search for multiple interacting QTL using information from several traits is 
computationally not feasible, a GA-based search method seems to be the method of choice in most 
situations.  Even for the relatively small problem of mapping QTL for two traits in a 150 cM genome, 
using a genetic algorithm increased the computational efficiency by a factor of more than 106.  Such a 
computationally efficient approach is required in the analyses of real data and when permutation 
testing and bootstrap methods are used to determine significance thresholds and confidence intervals. 
 
In summary, a simple least squares method is presented that allows mapping of multiple and multiple 
interacting QTL for several traits simultaneously.  The complexity of the method does not increase 
greatly with the number of parameters estimated, as it does in multiple trait maximum likelihood 
analysis.  The method can easily be implemented for a wide spectrum of designs such as back- and 
intercrosses between inbred lines and in F2- and half-sib families in outbred populations. 
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