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UNSELECTED POPULATIONS 
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SUMMARY 
A finite locus model has been developed which models an individual’s genetic value as being the 
aggregate effect of a series of loci. Established Monte Carlo Markov Chain (MCMC) techniques are 
used to sample fixed effects and the error variance, while a new sampling method is used to sample 
genotypes and locus effects and is based on sampling all genotypes in a pedigree jointly. The model 
is tested using unselected populations. 
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INTRODUCTION 
A mixed linear model that includes an individual’s additive genetic effect is the basic model for 
current genetic evaluation systems. It is generally assumed that the inheritance of the additive genetic 
effect is controlled through many genes each of small effect (infinitesimal model). Genetic effects are 
considered as random effects and are predicted by assuming a covariance structure based’ on 
knowledge of relationships between animals. 

Quantitative geneticists are now facing the challenge of including genetic marker information and 
non-additive genetic effects into genetic evaluation systems. The addition of these types of genetic 
effects into linear models complicates the genetic covariance structure to such a degree that in nearly 
all but trivial situations exact solutions cannot be obtained. Several authors (Fernando et al. 1994; 
Goddard 1998; Pong-Wong et al. 1998) have proposed using alternative modeling of the genetic 
effects to provide more tractable solutions. In these “gene based” models an individual’s genetic 
value is the aggregate effect of a finite number of loci. The segregation and the genotypic effects are 
analysed at each locus. Variances for each type of genetic effect can then be calculated directly from 
the individual locus estimates. As Goddard (1998) has pointed out one or more of the loci can be 
considered “major loci” and may be identified genes and the remaining loci are used to explain a 
polygenic component. Both Goddard (1998) and Pong-Wong et al (1998) used Markov Chain Monte 
Carlo (MCMC) techniques to sample genotypes and genetic values at each locus. Estimates of 
genetic and environmental parameters were calculated from the sampled posterior distributions. 
Fernando et al (1994) were concerned with formulating a model to be used with maximum likelihood 
procedures. They were able to simplify considerably the likelihood calculations for the series of loci 
which explain the polygenic component. The algorithm assumes the loci are unlinked, bi-allelic and 
have equal and only additive effects and have equal gene frequencies. 
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We agree with Goddard (1998) that MCMC methods are well suited to providing solutions in a finite 
locus setting. The assumptions that are required in the algorithms of Fernando et al (1994) seem 
overly restrictive. As far as the authors of the present study are aware previous MCMC studies have 
used sampling schemes in which an individual’s genotype at a single locus is sampled using a 
conditional probability based on the individual’s nearest relatives. It is well known that this 
technique, when used in complex pedigrees, is susceptible to “getting stuck” in particular 
configurations (Thompson 1994). Tier and Henshall (pers. comm.) have described a new method of 
sampling genotypes, which is ‘exact and is not susceptible to mixing problems. The purpose of the 
present study was to implement this method, along with current MCMC techniques, into a finite 
locus model. Computer simulation was used to check the accuracy of the method in estimating 
genetic and environmental parameters. 

MATERIALS AND METHODS 
The simulated trait was controlled by 100 unlinked loci to mimic an infinitesimal model. In one 
treatment, the deviation ai, from the mean value of the two homozygotes at the ith locus was equal to 

fi for all i. In another treatment the value for ai, was sampled from a gamma distribution with scale 

and shape parameters both set to 1. This treatment mimics the situation of few genes of moderate to 
large effect and many genes each of small effect. Maximum values for ai ranged between 6 and 8 
over the replicates. The dominance deviation was assumed to be zero in all cases and epistasis was 
not modeled. An individual’s observed genotypic value (G’) was the sum of the contributions from all 

loci, G = ZZgi. The base population consisted of 10 and 150 unrelated and non-inbred males and 
females, respectively. Sampling of genotypes for base animals was done on the basis of gene 
frequencies at each locus equaling 0.5. The expectation for the observed genetic variance for a 
population in perfect Hardy-Weinberg and linkage equilibrium for both treatments was 100. For each 
of 4 mating cycles randomly selected parents were randomly mated to produce 2 progeny per family, 
with males mated once. For all descendents an observation was simulated by adding a contemporary 
group and an individual residual effect to G. Both effects were sampled from a normal distribution 
with zero mean and variance = 250. 

Variance components and breeding values were estimated at each cycle using both infinitesimal and 
finite locus models. Under the infinitesimal model variance components were estimated using the 
ASREML (Gilmour 1998) software package. Under the finite locus model, variance components 
were estimated using software, which modeled 4, 8 or 16 loci. For details on the strategy used for 
sampling genotypes see Tier et al (1999). Details of the MCMC method are very similar to that 
outlined in Sorenson (1998). Following a burn in period of 500 samples, 1000 samples were 
generated from which means and sampling variances were calculated for each parameter of interest. 
The genetic variance for the current population was estimated empirically from vector containing all 

the & values. Ten replicates of each treatment eombination were completed. 

RESULTS AND DISCUSSION 
Table 1 presents the mean estimate for the additive genetic variance, across 10 replicates for the 
various treatments. Generally all methods gave unbiased estimates. It can be seen that for both the 
infinitesimal model (ASREML) and finite locus models (FIN4, FIN8 and FIN16) the addition of data 
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with each new mating cycle resulted in more precise estimates, as seen in the reduced standard errors 
of the means @EM). Mean estimates of the residual error variance are not shown but again all 
methods gave unbiased estimates. Estimates were not statistically different from the simulated value 
of 250 and standard errors of the means were of the same order as that for additive genetic variance 
and ranged between 12 and 52. The correlation between true and estimated genotypic values rc,i;, 

calculated under the finite locus model and the correlation between true and estimated additive 
genetic values ra,; , calculated under the infinitesimal model were also computed and compared. Both 

types of correlation were consistently equal or close to 0.6, which is expected considering the 
simulated heritability was 0.29, 

Table 1. Mean (SEM) of estimates of additive genetic variance using an infinitesimal model 
(ASREML) and a finite locus model (FIN4, FIN8 or FIN16), for two distributions of$ene 
effects 

Mating cycle 

1 
2 
3 
4 

1 
2 
3 
4 

ASREML FIN4 
Va=ZOO(a~=~2fori=1,...,100) 

89. (37) 119 (57) 
105 (37) 94 (25) 
114 (26) 95 (18) 
107 (21) 101 (22) 

Vu = 100 (ai - GAMMA( 1,l)) 
118(48) 99 (47) 
113 (41) 110 (43) 
117 (27) 109 (30) 
113 (24) 110 (23) 

FIN8 FIN16 

116 (33) 118 (32) 

96 (34) 100 (28) 
85 (29) 92 (21) 
85 (27) 93 (13) 

128 (61) 153 (65) 
104 (45) 123 (43) 
98 (35) 100, (37) 
100 (35) 112 (35) 

Under the conditions simulated it would appear that 4 hypothetical loci are adequate for a finite locus 
model to accurately estimate generic variances and individual aggregate genotypic values. From 
Table 1 it can be seen that though the estimates remain statistically not different from 100, there is 
some real evidence of a trend for the FIN8 and FIN16 treatments to underestimate the additive 
genetic variance in the later mating cycles. Inbreeding and genetic drift can contribute to increased 
covariances between additive genetic values in an unselected population and cause a reduction in the 
additive genetic variance. Generally, there is a need to develop criteria to determine the optimum 
number of hypothetical loci needed to explain a polygenic component. 

In Figure 1 two plots are presented which describe the distribution of estimated additive gene effects 
(ai) across all replicates and mating cycles for the FIN16 treatment, when the actual simulated 
distribution was either a uniform or gamma distribution. The effects of each genotype class were 
sampled using conditional normal distributions. To a large degree the distribution of estimated gene 
effects reflects this model - estimated effects have roughly a normal distribution. However the 
distribution on the right, which corresponds to the case of the simulated distribution being a gamma 
distribution, is noticeably more skewed. The same comparison for the FIN4 treatment did not reveal 
any noticeable differences. From these results it is apparent that 16 or more assumed hypothetical 
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loci might offer the potential to indicate any underlying distribution of gene effects. Of course a 
gamma distribution could have been used to sample gene effects. This will need to be investigated. 
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Figure 1. Distribution of estimated gene effects under a finite locus model assuming 16 loci, 
when the simulated distribution was a uniform (left plot) or gamma (right plot) distribution. 

The main difference between this study and that of Goddard (1998) has been the method in sampling 
genotypes. To avoid problems of slow convergence Goddard sampled simultaneously the genotypes 
of sires and progeny from terminal families, as well as introducing a mutation rate and retaining 
samples that showed no mutation. The sampling scheme used in the present study samples all 
genotypes in the pedigree jointly. A mutation rate could also be considered, though for the present 
study, was considered unnecessary. Goddard also assumed the error variance and gene frequencies in 
the base population known whereas in the present study all parameters were considered unknown. 

In conclusion the study has demonstrated that a finite locus model is at least comparable to a 
standard REML analysis in estimating an additive genetic variance of a polygenic trait in an 
unselected population. In future work, selected populations will be used and models will be 
developed to include non-additive gene effects. 
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