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SUMMARY 
Phenotypic and additive genetic covariance functions were estimated from covariance matrices of 
repeated measures of sheep production traits. The results of these analyses highlight a major 
shortcoming of traditional estimates of phenotypic variances, namely that they are often 
substantially overestimated. Analysis of the additive genetic covariance functions indicated that 
selection for body weight and fleece traits in sheep at any age will result in improvement at all ages. 
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INTRODUCTION 
Conventional quantitative genetic analyses treat the performance at each age at which 
measurements are taken as a distinct trait or (with a repeatability model) as distinct repeated 
performances of the same trait. However, it would be far closer to reality if the full continuous 
nature of those performances were considered. The ‘infinite-dimension approach, pioneered by 
Kirkpatrick and Heckman (1989), Kirkpatrick et al. (1990), Kirkpatrick and Lofsvold (1992) and 
Kirkpatrick et al. (1994), does just that. It involves estimation of a covariance function from the 
estimated covariance matrix, and it can be applied to both phenotypic and additive genetic 
covariances. There are several advantages to this approach. First, it enables the removal of upwards 
biases in the estimation of variances. These biases (due to measurement and other temporary 
environmental factors) are inevitable in the traditional estimation of variances, but do not occur in 
traditional estimation of covariances, thereby introducing a ‘ridge’ along the diagonal of 
traditionally-estimated covariance matrices. Estimation of a covariance function enables the 
removal of this ridge. Second, it enables estimation of the (co)variance between performance at any 
two ages, even if no animals were measured at either age. Third, it enables the fitting of ‘reduced’ 
covariance functions, which provide a smoother covariance surface, described with fewer 
parameters. Fourth, by studying additive genetic covariance functions, it is possible to draw 
conclusions about the pattern of additive genetic variation during the lifetime of animals. The initial 
application of infinite-dimension analysis involved body weight in Chios and synthetic sheep for a 
limited number and range of ages (birth to 20 weeks of ages) by Kirkpatrick and Lofsvold (1992) 
and lactation records in dairy data (one to ten months) by Kirkpatrick et al. (1994). In this paper, 
we report the first use of infinite-dimension analysis in Merino sheep. 

MATERIALS AND METHODS 
Using the REML procedure on data from a flock of Australian Merino sheep (Torshizi 1996), 
estimates were obtained of additive genetic and phenotypic covariance matrices of performances of 
body weight (BW) measured at birth, 4, 10, 16 and 22 months of age; greasy fleece production 
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(GFP) measured at 4, 10, 16 and 22 months of age; and clean fleece production (CFP) and mean 
fibre diameter (MFD) measured at 10, 16 and 22 months of age. Following Kirkpatrick et al. 
(1990), covariance functions were estimated from these matrices by fitting Legendre polynomials 
as orthogonal functions. The actual methodology, involving the use of asymmetric coefficients, is 
described in detail by Kirkpatrick et al. (1994). In these initial calculations, the number of 
polynomials equalled the number of ages actually measured (5 for BW, 4 for GFP, and 3 for CFP 
and MFD) giving rise to a so-called ‘full’ fit. 

If the ‘full-tit’ phenotypic covariance surface showed a ridge along the diagonal, indicating 
upwards biases in the original estimates of variances, a method known as ‘extrapolating to the 
diagonal’ was used to re-estimate phenotypic covariance functions using one fewer polynomial, 
resulting in ‘full extrapolated’ phenotypic covariance functions (Kirkpatrick et al. 1994). In this 
method, the phenotypic covariance function was estimated after excluding diagonal elements of the 
original covariance matrix. Excluding the diagonal elements reduces by one the number of 
polynomials fitted. We then followed Kirkpatrick et al. (1990) and re-estimated the phenotypic 
covariance functions with even fewer polynomials, thereby fitting ‘reduced extrapolated’ functions. 
The aim was to obtain phenotypic covariance functions using as few polynomials as possible (to 
obtain the smoothest possible covariance surface), but which still give phenotypic covariance 
estimates similar to those in the original matrices. Unfortunately, for phenotypic functions there is 
no statistical test available for testing the degree of similarity (Kirkpatrick et al. 1994). 
Accordingly, the degree of similarity was assessed subjectively. 

For additive genetic covariance functions, extrapolating to the diagonal is not appropriate 
(Kirkpatrick et al. 1994), but the fitting of reduced models is. For additive genetic functions, this 
task required estimates of the (co)variances of the original genetic (co)variances, which were 
estimated, following Kirkpatrick et al. (1990), by assuming that the original data was obtained from 
a balanced design, in this case a paternal half-sib design with 157 random sires, each with 25 
offspring, and a total of 4260 residual degrees of freedom. Since the sheep measured in this trial 
came from a breeding programme that had been specifically designed for the estimation of 
quantitative genetic parameters (Torshizi 1996), the above assumption was not too far from reality. 
Following Kirkpatrick et al. (1990), chi-squared tests were used to compare the additive genetic 
covariances resulting from reduced models with the covariances in the original matrices. A 
calculated * higher than the tabulated value indicates that the difference between the reduced 
estimate of the covariance function and the original covariance matrix is significant, and thus the 
reduced estimate should be rejected. The most reduced function that still provided estimates 
consistent with the original (co)variances is called the preferred function. If none of the reduced 
functions is satisfactory, the preferred function is the full extrapolated function (in the case of 
phenotypic functions) and the full function (in the case of additive genetic functions). 

The nature of the genetic variation in the population was determined through decomposing the 
covariance function into its components, i.e. eigenfunctions, and eigenvalues, which are analogous 
to the principal components in a standard multivariate analysis (Kirkpatrick and Heckman 1989). 
The eigenvalues indicate the relative proportion of additive genetic variance in the population 
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genetic variation. for example, leading eigenvalue a large of the 
of all then the eigenfunction explains equally large of 

available variation. 

RESULTS AND DISCUSSION 
Estimates of phenotypic covariance functions. The estimates of the preferred phenotypic 
covariance functions obtained for body weight and fleece traits, are plotted in Figures la to Id. For 
BW (plot a) and GFP (plot b), a reduced extrapolated function (with 2 polynomials fitted) resulted 
in the best fit. The discrepancy between the covariance function and the original variance estimates 
(i.e., discrepancies along the diagonal) were substantial (up to 64% and 68%, respectively). For 
CFP (plot c) and MFD (plot d), the full extrapolated function (with 2 polynomials fitted) removed 
the diagonal upwards biases, which ranged from 29% to 52% and 14% to 26%, respectively. These 
results clearly show that the phenotypic variances have been overestimated in the original analysis. 
Similar results were reported by Kirkpatrick et al. (1994) for lactation records in dairy cattle. 
However, the extent of overestimation in the sheep data was substantially higher than in the dairy 
data (up to 68% compared with 36%). 

Estimates of additive genetic covariance functions. The estimates of the preferred additive 
genetic covariance functions are plotted in Figures le to lh. For BW, none of the reduced models 
produced a satisfactory additive genetic covariance function. Using a reduced model with 4, 3 and 
2 polynomials gave 2 (or+) equal to 19.5, 25.3, and 50.0 (P < 0.003 for all cases). Although the 
shape of the function looked smoother than with a full model (results not shown), there were large 
discrepancies between these estimates and the original covariance matrix (up to 60%). 
Consequently, only full-model estimates were consistent with the original covariance matrix. The 
results for GFP indicate that a reduced function with 3 polynomials (Plot Q produces a smoother 
function than a full model. The goodness-of-tit test for this function gave 2u,r,4j = 5.0 (P = 0.288). 
The actual differences were less than 15%. For CFP, fitting a reduced model with 2 polynomials 
gave a smoother function (plot g) compared with full model. However, the goodness-of-tit tests 
indicated significant differences from the original covariance estimates ( 2@r=sj = 10.9; P = 0.012). 
However, since the discrepancies were relatively low (a maximum of 13%), a reduced model may 
be acceptable (Kirkpatrick et al. 1994). A similar pattern was observed for MFD (plot’h), where the 
discrepancies between the reduced-model estimate (using 2 polynomials) and the original 
covariances were relatively low (less than 19”/0), despite the good-of-fit test indicating significant 
differences ( 2~r,r,3J = 2 1.4; P < 0.001). In this case, again following the philosophy of Kirkpatrick et 
al. (1994), it was decided to prefer the reduced function. 

The question whether it is possible to decrease the number of repeated records which are measured 
for repeatable traits may be answered by considering different performances as infinite-dimensional 
characters. The analysis of the preferred additive genetic function for BW and GFP indicated that 
approximately 87% of total additive genetic variance for each of these traits is associated with the 
first eigenfunction. The proportion of additive genetic variation in CFP and MFD attributable to the 
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leading eigenbction was about 98% of total additive genetic variation. These high percentages 
suggest that there is no tradeoff between early and later measurements for any of thwe traits, i.e., 
selection at any age results in improvement at all ages. 
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Figure 1. Estimates of the preferred phenotypic and additive genetic covariance functions for 
production traits in Merino sheep (in each plot, x axis is age in months and y axis is (co)variance). 
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