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PRESIDENT’S MESSAGE 

On behalf of the organising committee, I am very pleased to welcome you to the 25th Conference 
of the Association for the Advancement of Animal Breeding and Genetics. We are meeting at the 
University of Western Australia which sits on sacred soil alongside the Derbal Yerrigan (Swan 
River) on Whadjuk Noongar Booja. We acknowledge that this has been a place of learning for tens 
of thousands of years and look forward to continuing that learning at AAABG. 

The theme of our conference is Animal Breeding at the Crossroads. We will reflect on our 
achievements in animal breeding since the inaugural AAABG conference in 1979 and explore the 
role of genetics in a future with ever-increasing community concern for climate change, 
environmental impacts, animal welfare, and meat consumption. 

A highlight of our conference will no doubt be the WA Livestock Research Council’s Producer day 
where we aim to "link science with farm". We are taking the opportunity to provide a producer 
audience with the latest developments in animal breeding and genetics as well as showcasing 
emerging geneticists and launching the 2023 Farm a Friend Program. This program pairs emerging 
scientists with progressive farmers in a mentoring program designed to ensure science is grounded 
in practical farm reality and priorities. The Producer Day program will be meeting one of the major 
aims of AAABG, which is to "develop communication among all those interested in the application 
of genetics to animal production, particularly breeders and their organisations, consultants, 
extension workers, educators and geneticists". 

Thank you to all our sponsors for your generous support of the conference and an enormous thank 
you to all members of our organising committee and the conference organising team from 
Conference Design. Finally, thank you to Dr Sue Hatcher, AAABG Editor and AAABG Executive 
Officer, for putting together these proceedings. 

We hope you enjoy your time in Perth and take the opportunity to interact and network with students, 
researchers, and producers from all corners of the animal-breeding community. 

Bronwyn Clarke 
President 
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THE ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND 
GENETICS1 INCORPORATED2 

 
OBJECTIVES 
(i)     to promote scientific research on the genetics of animals;  
(ii)    to foster the application of genetics in animal production;  
(iii)   to promote communication among all those interested in the application of genetics to animal 

production, particularly breeders and their organisations, consultants, extension workers, 
educators and geneticists.  

 
To meet these objectives, the Association will:  
(i)     hold regular conferences to provide a forum for:  

(a) presentation of papers and in-depth discussions of general and industry-specific topics 
concerning the application of genetics in commercial animal production;  
(b) scientific discussions and presentation of papers on completed research and on proposed 
research projects;  

(ii)   publish the proceedings of each Regular Conference and circulate them to all financial 
members; 

(iii)    use any such other means as may from time to time be deemed appropriate.  
 
MEMBERSHIP  

Any person interested in the application of genetics to animal production may apply for 
membership of the Association and, at the discretion of the Committee, be admitted to membership 
as an Ordinary Member.  

Any organisations interested in the application of genetics to animal production may apply for 
membership and, at the discretion of the Committee, be admitted to membership as a Corporate 
member. Each such Corporate Member shall have the privilege of being represented at any meeting 
of the Association by one delegate appointed by the Corporate Member.  
 
Benefits to Individual Members.  
• While it is not possible to produce specific recommendations or “recipes” for breeding plans 

that are applicable for all herd/flock sizes and management systems, principles for the 
development of breeding plans can be specified. Discussion of these principles, consideration 
of particular case studies, and demonstration of breeding programs that are in use will all be of 
benefit to breeders. 

• Geneticists will benefit from the continuing contact with other research workers in refreshing 
and updating their knowledge. 

• The opportunity for contact and discussions between breeders and geneticists in individual 
members’ programs, and for geneticists in allowing for detailed discussion and appreciation of 
the practical management factors that often restrict application of optimum breeding programs.  

 
Benefits to Member Organisations.  
• Many of the benefits to individual breeders will also apply to breeding organisations. In 

addition, there are benefits to be gained through coordination and integration of their efforts. 
 

1 AAABG was formerly known as the Australian Association for Animal Breeding and Genetics. Following 
the 1995 OGM the name was changed when it became an organisation with a joint Australian and New 
Zealand membership.  
2 The Association for the Advancement of Animal Breeding and Genetics is incorporated in South Australia. 
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Recognition of this should follow from understanding of common problems, and would lead to 
increased effectiveness of action and initiatives. 

• Corporate members can use the Association as a forum to float ideas aimed at improving and/or
increasing service to their members.

General Benefits. 
• Membership of the Association may be expected to provide a variety of benefits and, through

the members, indirect benefits to all the animal industries.
• All members should benefit through increased recognition of problems, both at the level of

research and of application, and increased understanding of current approaches to their solution.
• Well-documented communication of gains to be realised through effective breeding programs

will stimulate breeders and breeding organisations, allowing increased effectiveness of
application and, consequently, increased efficiency of operation.

• Increased recognition of practical problems and specific areas of major concern to individual
industries should lead to increased relevance of applied research.

• All breeders will benefit indirectly because of improved services offered by the organisations
which service them.

• The existence of the Association will increase appreciably the amount and use of factual
information in public relations in the animal industries.

• Association members will comprise a pool of expertise – at both the applied and research levels
– and, as such, individual members and the Association itself must have an impact on
administrators at all levels of the animal industries and on Government organisations, leading
to wiser decisions on all aspects of livestock improvement, and increased efficiency of animal
production.

CONFERENCES 
One of the main activities of the Association is the Conference. These Conferences will be structured 
to provide a forum for discussion of research problems and for breeders to discuss their problems 
with each other, with extension specialists and with geneticists. 
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ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS 

FELLOWS OF THE ASSOCIATION 

“Persons who have rendered eminent service to animal breeding in Australia and/or New Zealand 
or elsewhere in the world, may be elected to Fellowship of the Association…” 

Elected February 1990 Elected September 1992 
R.B.M Dun K. Hammond
F.H.W. Morley 
A.L. Rae
H.N Turner

Elected July 1995 Elected February 1997 
C.H.S. Dolling J.S.F. Barker 
J.R. Hawker R.E. Freer 
J. Litchfield

Elected June 1999 Elected July 2001 
J. Gough J.N. Clarke 
J.W. James A.R. Gilmour 

L.R. Piper

Elected September 2005 Elected September 2007
B.M. Bindon K.D. Atkins
M.E. Goddard R.G. Banks
H.-U. Graser G.H. Davis
F.W. Nicholson

Elected September 2009 Elected September 2011 
N.M. Fogarty B.P. Kinghorn 
A.R. Fyfe A. McDonald
J.C. McEwan
R. Mortimer
R.W. Ponzoni

Elected October 2013 Elected October 2015 
H.M. Burrow P.F. Arthur 
P.F. Fennessy D. Johnson
G. Nicol K. Meyer
P. Parnell B. Tier

R. Woolaston

Elected October 2019 Elected November 2021
S.A. Barwick F.D. Brien
H.T. Blair D. Garrick
S.W.P. Cloete J. Greeff
I.W. Purvis B. Hayes

J.E. Pryce
J.H.J van der Werf
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Elected July 2023 
K.G. Dodds 
W.S. Pitchford 
H.W. Raadsma 
C.W. (Bill) Sandilands
A.A. Swan

HONORARY MEMBERS OF THE ASSOCIATION 

“Members who have rendered eminent service to the Association may be elected to Honorary 
Membership…”  

Elected September 2009 
W.A. Pattie 
J.R.W. Walkley 
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HELEN NEWTON TURNER MEDAL TRUST 

The Helen Newton Turner Medal Trust was established in 1993 following an anonymous 
donation to the Animal Genetics and Breeding Unit to perpetuate the memory of Helen Newton 
Turner and to encourage and inspire those engaged in animal genetics.  

Helen Newton Turner AO 

Trustees of the Helen Newton Turner Trust are: 
• Ms Kate Lorimer-Ward (Chair), NSW Department of Primary Industries (DPI)
• Prof. Brian Kinghorn, University of New England (UNE)
• Dr Robert Banks, Animal Genetics and Breeding Unit (AGBU) (UNE)
• Prof. James Rowe, National Farmers Federation (NFF)
• Mr Ian Locke, Association for the Advancement of Animal Breeding and Genetics (AAABG)

THE HELEN NEWTON TURNER MEDAL 
The Medal is named after Dr Helen Newton Turner whose career with CSIRO was dedicated to 

research into the genetic improvement of sheep for wool production.  
The Helen Newton Turner Medal was first awarded in 1994 to Associate Professor John James 

and a list of all recipients to date is given below. The Helen Newton Turner Medallist is chosen by 
Trustees from the ranks of those persons who have made an outstanding contribution to genetic 
improvement of Australian livestock.  

The recipient of the Medal is invited to deliver an Oration on a topical subject of their choice. 

Medallists 
1994 J.W. James 2003 F.W. Nicholas 2015 A.R. Gilmour
1995 L.R. Piper 2005 K. Hammond 2017  
1997 J. Litchfield 2007 L. Corrigan 2019 K.D. Atkins
1998 J.S.F. Barker 2009 R. Hawker 2021 J.H.J van der Werf
1999 C.W. Sandilands 2011 R. Banks
2001 G.A. Carnaby 2013 M. Goddard

The Oration of the 2021 Medal recipient, Professor Julius van der Werf, is reproduced in the 
AAABG Special Issue of Animal Production Science that accompanies these proceedings. 

A. Collins
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THE HELEN NEWTON TURNER BRIGHT FUTURES AWARD 
In 2021, the Trust established a new award, the Helen Newton Turner Bright Futures Award to 

recognise the achievements of an up-and-coming individual who is showing evidence of establishing 
a reputation for excellence in the field of animal genetics within Australia. 

2021 S.A. Clark 
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SUMMARY 

The world’s food systems must become more sustainable and equitable. The livestock sector 
must evolve and continue to deliver its benefits to humankind while competing for natural resources 
and maintaining resilience to changes in climate and other outside forces. The genetic diversity of 
livestock is a global public good that will underlie this transformation and demands collaborative 
stewardship. The FAO provides a forum for its member countries to discuss and agree upon priorities 
and actions for the proper management of animal genetic resources. It also facilitates the sharing of 
knowledge among countries and monitors the degree and impact of measures undertaken to 
safeguard and sustainably utilize livestock genetic diversity. Activities are guided by the Global Plan 
of Action for Animal Genetic Resources. 
 
INTRODUCTION 

Sufficient, nutritious and safe food is a need and right for everyone. Fortunately, due to advances 
in technology, improved agriculture and food policy, increases in income and greater international 
cooperation, among other factors, the proportion of undernourished people has continually declined 
across the recent decades. Proportions of incomes spent on food have also decreased steadily. Food 
systems are not perfect, however. Hundreds of millions of people still go hungry on a regular basis, 
while many others suffer from other dietary imbalances, including obesity. Many production 
systems have questionable sustainability from environmental, economic and/or social perspectives. 
The global COVID-19 pandemic revealed the fragility of many of the world’s food systems. In 2021, 
the UN convened the Food Systems Summit as the climax of a comprehensive consultative process. 
Summit participants concluded that although current systems already produce billions of tons of 
food while considering the conservation of biodiversity and ecosystems, “business as usual” is not 
sufficient, and that a transformation of global food systems is needed. This process must consider 
“People, Planet and Prosperity” and align with the UN Sustainable Development Goals (SDG). 
FAO, a specialized agency of the UN, leads international efforts to defeat hunger and improve 
nutrition and food security, and will have a key role in this transition. Its current Strategic 
Framework aims to support its member countries in achieving the “Four Betters”: better production, 
better nutrition, a better environment, and a better life, while leaving no one behind. 
 
THE SUSTAINABLE LIVESTOCK TRANSFORMATION 

Livestock production is an exemplary case. The sector makes a vital contribution to global food 
security and nutrition, livelihoods, and ecosystem services. It contributes to all of the SDGs (FAO 
2018). At the same time, the sector utilizes vast amounts of natural resources, faces continual threats 
from epidemic, transboundary and zoonotic diseases, and both contributes to and is affected by 
climate change. Trade-offs abound, and disparities between regions and economies are 
commonplace. To provide just a few examples, animal source foods are a nutrient-dense source of 
protein, energy and many micronutrients, but are characterized by both under- and over-
consumption. Ruminants can convert human-inedible plant matter into valuable foods, but they emit 
greenhouse gases in the process. Human-edible feeds improve efficiency of livestock diets, but 
compete with humans and require land for production. Wide differences exist in access to, and 
application of, technologies to help enhance productivity. In the future, livestock production will 
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continue to play an important role in the diets and livelihoods of billions of people and to the 
economies of all countries. However, like food systems in general, evolution and transformation of 
the sector are required to ensure it achieves its goals in a sustainable manner, while addressing all 
of the many trade-offs.  
 
LIVESTOCK GENETIC DIVERSITY 

Within the livestock sector, wise management of animal genetic resources (AnGR) will be an 
essential part of this transformation. “Transformation” is just another way to say “change”. The 
genetic diversity within and across breeds allows populations to adapt to changes in their production 
environment and breeders to improve the ability of their animals to achieve productivity objectives. 
This diversity will be critical in the future. The sustainable transformation will demand increased 
efficiency of resource utilization. This implies effective use of AnGR around the world and 
implementation of genetic improvement programmes. Climate challenges may lead to more 
movement of diverse genetic material across borders. This will depend upon increased knowledge 
on the characteristics of different AnGR, to properly match breeds with environments, both for 
productivity and welfare of animals and the sustainability of the natural biodiversity of the 
production environment. Greater equity in access to technology and the capacity to use it will also 
be critical. Conservation programmes must be strengthened to ensure diversity is maintained. 

Although individual animals and breeds are private or “club” goods, the collection of genetic 
diversity is considered a global public good. Alas, recent assessments have determined that this 
diversity has been decreasing over time (FAO 2015). This suggests a need for global collaboration 
on its management, and as a UN agency, FAO has a natural role to play. FAO has a history of 
supporting countries on matters regarding AnGR since the 1960s. This work was formalized in the 
1990s, when the Commission on Genetic Resources on Genetic Resources for Food and Agriculture 
(CGRFA) established its Intergovernmental Technical Working Group on AnGR (ITWG). The 
CGRFA and ITWG provide a forum for countries to discuss key issues regarding livestock genetic 
diversity and to advise FAO (and themselves) about steps to be taken to improve its use and 
conservation. 
 
THE GLOBAL PLAN OF ACTION FOR ANIMAL GENETIC RESOURCES 

Under the umbrella of the CGRFA and ITWG, FAO member countries developed the Global 
Plan of Action for Animal Genetic Resources (GPA; FAO 2007). The GPA is a policy document 
that includes 23 Strategic Priorities (SP), under four Strategic Priority Areas (SPA; described 
below) and provides the framework for sustainable management of AnGR. The SP address the most 
important actions to ensure sustainable use and conservation of AnGR that when implemented 
would ensure a substantial contribution of livestock genetic diversity. Table 1 provides an example 
of the actions under SP4 on breed development. 

Although the GPA was adopted in 2007, it was prepared with a forward vision and remains fully 
valid today and highly relevant. In 2017, FAO members reaffirmed their commitment to its 
continued implementation. As sustainability was a key theme in its preparation, the priorities and 
actions of the GPA are highly appropriate for the evolution associated with the transformation of the 
livestock sector. 

The GPA stipulates that the main responsibility for its implementation rests with national 
governments, but it also specifies that FAO has an essential role in supporting these country-driven 
efforts, as well as monitoring their progress and impact. In particular, FAO is key actor in 
coordinating international cooperation. FAO also promotes the importance of AnGR and their 
diversity and leads efforts in information sharing. With the contribution of international scientific 
experts, technical support to countries is provided 
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by implementing and backstopping projects, organizing and participating in capacity building 
activities, developing international technical standards and protocols, and producing technical 
guidelines. The following paragraphs provide examples of current activities to support the 
integration of AnGR into the sustainable livestock transformation, organized according to the SPAs 
of the GPA. 

Table 1. The actions associated with Strategic Priority 4 of the Global Plan of Action on 
Animal Genetic Resources 

Strategic Priority Actions 
Establish national 
species and breed 
development 
strategies and 
programmes 

Develop long-term planning and strategic breeding programmes 
Assess breed development programmes and revise, as appropriate, with the aim to 
meet foreseeable economic and social needs and market demands 
Establish and develop organizational structures of breeding programmes 
Incorporate consideration of the impacts of selection on genetic diversity 
Establish or strengthen recording schemes to monitor changes in non-production traits 
and adjust breeding goals accordingly 
Encourage the development of backup collections of frozen semen and embryos from 
current breeding schemes to ensure genetic variability  
Provide information to farmers and livestock keepers to assist in facilitating access to 
animal genetic resources 

SPA1. Characterization, inventory and monitoring of trends and associated risks. 
Information about any entity is requisite for its proper management. A major role of FAO is curation 
and maintenance of the Domestic Animal Diversity Information System (DAD-IS), the web 
interface for the Global Database of Livestock Breeds. DAD-IS contains information on nearly 
9,000 breeds from 37 livestock species plus managed bees. Among the data are inventories 
population sizes of breeds and material in gene banks, which are key indicators for risk of extinction. 
These data are used to indirectly monitor the impact of the GPA and inform official Indicators of 
the SDGs. Alas, these data are lacking for about half of the breeds, so FAO is currently developing 
low-cost methods to estimate population sizes. To complement census population size as a risk 
indicator, FAO is working with experts to facilitate the use of effective population size as an 
indicator of risk in DAD-IS. Developments in genomics have decreased costs substantially, making 
this possibility feasible. This effort corresponds to the recent release of guidelines on genomic 
characterization (Ajmone et al. 2023) and the recognition in the Kunming-Montreal Global 
Biodiversity Framework of the key importance of within-population genetic diversity. FAO has 
recently expanded DAD-IS to include data for populations of bees that are managed for food and 
agricultural purposes. 

SPA2. Sustainable use and development. The profitable maintenance of breeds in situ is the 
optimal way to maintain livestock genetic diversity, as it ensures not only the survival of the breed, 
but the continued delivery of ecosystem services by the breed and its traditional production system. 
FAO is undertaking a study to collect best practices for establishing and operating breeding 
programmes on the community level and upscaling them to greater dimensions. Promotion of 
agroecosystems approaches in the management of AnGR is SP5 of the GPA. FAO has developed 
the Tool for Agroecology Performance Evaluation (TAPE) and is building capacity in its utilisation. 
TAPE can be used for self-diagnosis of existing production systems and for gathering of evidence 
on how agroecology can contribute to sustainability. The overwhelming majority of genetics-related 
technical cooperation projects of FAO and its joint centre with the International Atomic Agency 
address sustainable use. These projects support countries in the adoption of new technologies and 
practices to improve the management of livestock genetic diversity.  
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SPA3. Conservation. FAO has recently released guideline on cryoconservation of AnGR (Boes 
et al. 2023), which informs countries about recent innovations in animal gene banking. Major 
innovations include not only new methods for collection and cryopreservation of genetic material, 
but also in the application of genomics for management of collections. The guide also promotes a 
more active engagement with stakeholders in developing the gene banking strategy and in 
stimulating the wider use of gene banks in the active management populations in situ, rather than 
primarily as a safeguard against breed extinction. A series of webinars was implemented to build 
capacity on the content of the guidelines. 

SPA4. Policies, institutions and capacity-building. Policy support is a key role of FAO. For 
livestock, FAO support to countries ranges from developing comprehensive Livestock Master Plans, 
to national strategy and action plans for all AnGR, to targeted conservation programmes for single 
breeds. 

Previous global assessments on animal resources (e.g. FAO 2015) identified lack of technical 
capacity in developing countries as one of the factors hindering the sustainable use and conservation 
of AnGR. FAO both builds capacity directly and helps coordinate cooperation between countries. 
FAO has widely adopted the web-conferencing practices utilised as a necessity during the pandemic. 
More than a dozen webinars were presented in 2022 and more are planned for the future. Live or 
recorded presentations are also given in events of other organizations. However, many types of 
capacity building are difficult to do effectively online. In 2024 and 2025, FAO will benefit from 
support from the government of Germany to organize regional in-person training events on topics 
to be determined in direct consultation with the beneficiary regions. 

In-person events also provide more visibility and opportunities for networking than can be 
offered by the virtual world. Therefore, from 25 to 27 September 2023, FAO will be hosting the 
first-ever Global Conference on the Sustainable Livestock Transformation. The conference will be 
held in Rome and will include scientific sessions on the contributions of livestock, including AnGR, 
to the Four Betters, as well as a high-level session for ministers of agriculture and livestock. 
Participants will be nominated by national governments, but the Conference will be webcasted to 
make sure that anyone who is interested can follow. 

CONCLUSIONS 
By improving the management of AnGR, countries will take an important step in the sustainable 

transformation of the livestock sector and contribute to better production, better nutrition, a better 
environment, and a better life for both human kind and their animals. FAO is looking forward to 
cooperating with all stakeholders in these efforts. 
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ANIMAL BREEDING IS PART OF THE SOLUTION TO ENVIRONMENT, CLIMATE, 
AND ANIMAL-WELFARE CHALLENGES FACING ANIMAL PRODUCTION 

M. Henryon1,2, T. Ostersen1, P.E. Vercoe2, and A.C. Sørensen1

1 Danish Pig Research Centre, Danish Agriculture and Food Council, Denmark 
2 School of Agriculture and Environment, University of Western Australia, Australia 

SUMMARY 
We argue that animal breeding is part of the solution to a major challenge facing animal 

production: community concerns for the environment, climate change, and animal welfare. Animal 
production will increasingly be expected to use fewer resources, reduce its impact on the 
environment and climate, and improve animal welfare. Animal breeders can provide animals with 
genetics that make them productive in future, reshaped, production systems by defining breeding 
objectives with traits that benefit the environment, climate, and animal welfare. Breeders are well-
equipped to make gains in these breeding objectives because they can predict breeding values 
accurately. These accuracies will only increase as new genetic technologies become available, 
leading to even faster gains. However, faster gains also call for caution because they increase the 
risk of unintended side effects. To manage this increased risk, breeders should consider three 
safeguards: control of inbreeding, reliable selection criteria, and monitoring and surveillance of 
animals. Another safeguard is maintaining many populations of commercial breeds. It’s an exciting 
time for animal production, and breeders must be there providing the genetics. 

ANIMAL BREEDING IS PART OF THE SOLUTION 
Animal breeders use selection to improve desirable traits in animal populations. The underlying 

principle is to rank animals for these traits and choose the best to be parents of the next generation 
while controlling rates of inbreeding at acceptable levels. This principle will not change in future. 
What is likely to change is the direction of this selection – the composition of traits in our breeding 
objectives – as animal production wrestles with community concerns for the environment, climate 
change, and animal welfare. We have little doubt that animal production has a future. Animals 
provide humans with high-quality protein, essential nutrients, and non-synthetic products; they 
convert biomass that is unsuitable for human consumption into food, manure, and ecosystem 
services; they utilise land that cannot be used to produce other types of food; and they are deeply 
embedded into the economies and cultures of societies around the world. However, like most other 
businesses, these benefits come at a cost. Animal production uses land, water, and energy, it 
degrades and pollutes terrestrial and aquatic ecosystems, it encourages deforestation, it emits 
greenhouse gasses, and it rears animals in captivity. Assuming communities are well fed and have 
their basic needs met, animal production will increasingly be expected to use fewer resources, reduce 
its impact on the environment and climate, and improve animal welfare. This is where animal 
breeding must play a key role by providing animals that are genetically suited to production systems 
of the future. Therefore, we argue that animal breeding is part of the solution to the challenges facing 
future animal production. Other solutions, which we do not address here, are to increase plant 
consumption, reduce animal consumption in wealthy countries, replace conventional meat with 
cultivated meat, and reduce food wastage. We see our paper as a summary of opportunity and a call 
to action. Our primary focus is on large, centralised breeding schemes as we believe that these 
schemes will provide most of the world’s genetics in future. 
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ANIMAL PRODUCTION IS CHANGING 
Modern animal production requires a “licence to produce”. Animal products need to be produced 

and supplied in a way that eases the community’s concern for the environment, climate change, and 
animal welfare. Governments, particularly in wealthy countries, are reacting to these concerns. They 
are introducing change in the form of legislation, incentives, and penalties to balance the economic 
benefits of animal production with its impact on the environment, climate, and animal welfare. For 
example, New Zealand’s government will charge farmers for the greenhouse gases emitted by their 
livestock. The Dutch and Belgian Governments will halve nitrogen emissions by reducing livestock 
numbers. The German Government has already introduced strict requirements for animal welfare 
with a short phase-in period and did so without consulting any animal sectors. The European 
Commission will phase out cage production of farmed animals. In response to these changes, we 
must expand our definition of productivity to include economic incentives and penalties associated 
with the environment, climate, and animal welfare. They will almost certainly lead to new 
production systems with revamped management strategies and husbandry practices as producers 
cope with the new legislation, pursue the incentives, and avoid the penalties. The impact of these 
changes could be substantial. For example, producers that use cattle feedlots will need to improve 
animal welfare and reduce their impact on the environment and climate. Intensive pig, chicken, and 
fish enterprises may have reduced their impacts on the environment and climate, but they still cause 
animal-welfare concerns. Organic pig and chicken productions have improved animal welfare, but 
still have an impact on the environment and climate. We will probably also see new and efficient 
species introduced into production systems. A prime example is the growing interest in insects and 
microorganisms reared on waste products to generate food and animal feed. No matter what the 
production system, they all have one thing in common: they all require animals – including insects 
and microorganisms – with genetics that make them productive. So, animal production is changing 
because our definition of productivity is changing, requiring animals with genetics that make them 
productive in future, reshaped, production systems. 

BREEDING OBJECTIVES FOR ENVIRONMENT, CLIMATE, ANIMAL WELFARE 
Animal breeders can provide animals genetically capable of being productive in future 

production systems by defining new breeding objectives. Breeders define breeding objectives by 
identifying the traits they want to improve and deriving economic values that allocate an appropriate 
amount of selection pressure to each of these traits. New breeding objectives will almost certainly 
include most, if not all, of the traits in current breeding objectives, including growth rate, feed 
efficiency, meat and milk yields, fleece weight, litter size, and survival. Not only do these traits 
increase economic returns, they also benefit the environment, climate, and animal welfare by 
increasing production efficiency. So, new breeding objectives will reflect current breeding 
objectives, but there are likely to be two striking differences. First, these breeding objectives will 
also include new traits directed towards benefiting the environment, climate, or animal welfare. 
Possible examples include reduced emissions of nitrogen, phosphorus, and methane, lower 
production odours, and tail biting. Second, the economic values allocated to each trait will change 
to shift some selection pressure towards traits associated with the environment, climate, and animal 
welfare. Deriving some of these economic values could be particularly challenging for traits, such 
as survival and conformation disorders, that infer a “licence to produce”. Economic values for these 
traits can have “non-market” values that are much larger than any profit margin when the phenotypic 
means of the traits fall below levels that are acceptable to the community. Non-acceptable standards 
can trigger government legislation, consumer boycotts and, in extreme cases, shut whole industries 
down. The problem for breeders is that they will be compelled to foresee “non-market” values for 
traits when the level of community acceptance in future is fraught with uncertainty. Therefore, 
defining new breeding objectives with traits that benefit the environment, climate, and animal 
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welfare is certain to be challenging, but it is critical that we tackle these challenges because breeding 
objectives are the only lever breeders have to increase productivity in future production systems. 

ANIMAL BREEDERS NEED STRONG SIGNALS 
Animal breeders who practice good business management are unlikely to be “first movers” 

because they need certainty before they change their breeding objectives. Breeders make selection 
decisions based on projected market conditions but there is a time lag before genetic gains made 
from these decisions are realised and disseminated to producers. If these projected conditions are 
incorrect, breeders risk wasting selection pressure on improving traits that are not profitable. 
Governments and the community can assist all vested stakeholders in animal production by 
providing breeders with strong and early market signals. These signals are long-term legislation, 
incentives, and penalties directed at producers. They would enable breeders to define with 
confidence breeding objectives that provide a clear direction for selection, avoid selection for traits 
that can be improved by non-genetic methods, resist selection for traits that are merely indicators of 
productivity, and hasten the time before animals with improved productivity are disseminated to 
producers. So, we recommend that governments and the community provide breeders with strong 
and early market signals directed at producers. This is in the best interests of all vested stakeholders. 

MAKING FAST GENETIC GAINS SAFELY 
Modern animal breeders are well-equipped to make gains in their breeding objectives because 

they are good at ranking animals. They predict breeding values accurately by fitting sophisticated 
genetic-statistical models to phenotypes, pedigree relationships, and genomic information. This 
accuracy will increase further in future as breeders develop better genetic-statistical models, improve 
phenotyping strategies, and acquire new genetic technologies, such as intermediate phenotypes, 
genetic engineering, gene editing, and gene networking. This is good news for animal production 
because it implies faster genetic gains. However, faster gains also call for caution because animal 
breeding is, and will remain in the foreseeable future, a “black box” technique. Breeders make 
genetic gains without understanding the full genetic and physiological consequences of selection. 
Some of these consequences can be unintended behavioural, physiological, metabolic, reproductive, 
and immunological side effects caused by genetic correlations between these effects and the traits 
in breeding objectives. Faster genetic gains merely increase the risk of these side effects. Clearly, 
we need improved safeguards to manage the increased risk of unintended side effects with faster 
genetic gains. We suggest three safeguards that should be considered by animal breeders to address 
this problem. 

1. Control of inbreeding. Controlling inbreeding within populations at acceptable rates is a
safeguard against unintended side effects because it maintains genetic variation, reduces inbreeding 
depression, decreases the spread of deleterious recessives, and reduces variability in the rate of 
genetic gain. Unfortunately, control of inbreeding in selective breeding schemes is struggling to 
keep pace with the fast genetic gains being realised by highly accurate predictions using genomic 
information. We see three key issues that need to be resolved before we can control inbreeding 
effectively in these schemes. First, there is no consensus on the most appropriate definition of 
inbreeding following the advent of genomic information. Do we control identity-by-descent (IBD), 
loss of heterozygosity, or genetic drift? Second, we have not learnt to control inbreeding with 
genomic information in selective breeding schemes. Breeding schemes that use pedigree 
information to control inbreeding realise more genetic gain than genomic information at the same 
rate of IBD. This leads us to reason that pedigree control is the method-of-choice for inbreeding 
control in selective breeding programs. Genomic control is unlikely to realise more genetic gain than 
pedigree control until we understand which regions of the genome harbour quantitative trait loci and 
we can manage genetic variation along the genome. A notable caveat is that pedigree control tends 
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to underestimate rates of IBD when genomic information is used to predict breeding values. This 
implies that pedigree inbreeding should be controlled at rates lower than desired rates of IBD. Third, 
optimum-contribution selection (OCS) is the best method of selection because it maximises genetic 
gain for a given rate of inbreeding, but is not used in many breeding schemes because it can be 
difficult to implement in practice. With the promise of faster genetic gains, we urgently need to 
adapt OCS to conform to the practical aspects of animal breeding. Selection decisions made by OCS 
are not always optimal because reproductive biology and logistical constraints can be more complex 
than the input data we provide OCS software. There can be a mismatch between OCS decisions 
made centrally at discrete time points and the true optimum for any given day. So, there is clearly a 
lot of work to do before we have effective inbreeding control with fast genetic gains. Until then, we 
recommend pedigree control of inbreeding while correcting for the fact that pedigree underestimates 
rates of IBD. 

2. Reliable selection criteria. Identifying reliable selection criteria for traits in the breeding
objective provides a safeguard against unintended side effects by enabling breeders to allocate an 
appropriate amount of selection pressure to traits associated with the environment, climate, and 
animal welfare. The most reliable selection criteria are phenotypes that are easy to measure, express 
genetic variation, are genetically correlated with one or more traits in the breeding objective, and 
can be recorded for many selection candidates or their relatives. The challenge for breeders is that 
traits associated with the environment, climate, and animal welfare are often difficult to measure. 
Developing suitable and usable selection criteria for these traits must be a priority. Without them, 
we will forego potential gains in our breeding objectives by failing to allocate the correct amount of 
selection pressure to each trait. So, while it is key to include traits associated with the environment, 
climate, and animal welfare in breeding objectives, it is also important that we identify selection 
criteria that enable us to improve these traits by selection. 

3. Monitoring, surveillance, and communication. Close monitoring and surveillance of
animals is an important safeguard against unintended side effects by uncovering some of these 
effects before they spread through breeding populations. No monitoring or surveillance will uncover 
all unintended side effects, given that selection acts at the molecular level. However, we can increase 
the probability of uncovering them by routine evaluation using human assessment and surveillance 
technologies carried out by stakeholders with a vested interest in animal welfare. These stakeholders 
can be active at all levels of production and include animal breeders, producers, veterinarians, 
abattoir operators, retailers, and scientists. The side effects that they uncover are relayed back to the 
animal breeder who can then begin to rectify the effects. So, animal breeders can manage the 
increased risk of unintended side effects with faster genetic gains by communicating closely with 
vested stakeholders who routinely evaluate the animals generated by breeding. 

MANY BREEDING POPULATIONS FOR BREED SECURITY 
Like the safeguards against unintended side effects within animal populations, maintaining many 

populations of each commercial breed can provide a safeguard against production changes and 
market uncertainty. Maintaining many populations conserves genetic variation. It increases the 
probability that some populations will cope with change better than others. It also enables producers 
to choose animals from populations best suited to their production systems. However, maintaining 
many breeding populations is at odds with the business strategies and commercial goals of breeding 
companies for three reasons. First, like other businesses, breeding companies compete, go bankrupt, 
merge, exclude new entrants, and seek to monopolise global markets. For example, the world’s 
genetics for broiler chickens is now supplied by only three companies and most of the pig genetics 
is supplied by just six companies. Second, breeding populations that do not make a return on 
investment are discontinued, and discontinued populations are seldom replaced. Third, breeding 
companies with the same commercial breed define similar breeding objectives for their populations 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 5 - 9 

9 

so that these populations tend to converge genetically. The result is few breeding companies 
maintaining few breeding populations and these populations tend to resemble each other. This makes 
many commercial breeds vulnerable to market fluctuations and they risk being replaced by other 
breeds, species, and even alternative food sources. We need to balance the economic drive to 
concentrate breeding populations with the need to maintain populations. This balance could be 
achieved through government intervention to resist global monopolisation of genetic resources. So, 
we have a choice. We can leave breed security to the mercy of breeding companies and economic 
forces, or we can intervene to resist global monopolisation. We advocate for intervention. 
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LIVESTOCK BREEDING, WHERE HAVE WE BEEN AND WHAT LIES AHEAD? 

S.P. Miller 

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2350, Australia 

SUMMARY 
Presented is an overview of recent advancements in livestock breeding, focussing post the 

implementation of genetic evaluation, which overlaps with the career of the single author. The rise 
of genomics is presented as a major turning point and the increased gains and future challenges with 
this technology is presented. Some history of the corporatisation of breeding programs is presented 
and parallels with the invention of an enabling technology, such as artificial insemination, is 
illustrated. It is suggested that further advancements in genetic engineering, such as surrogate sires, 
or the joining of embryonic stem cells to enable ‘speed breeding’, would be the next turning point. 
These technologies would create the environment for large corporate investment in sheep and beef 
cattle and could change the structure of those genetic industries forever.   

EARLY FOUNDATIONS 
Livestock breeding has changed considerably over time. A century ago selection was based 

primarily on phenotype and the ‘eye’ of the breeder played a major role. Compared to selection 
practices today, that are based heavily on quantitative data, these early selection programs can appear 
rudimentary. However, we should acknowledge that breeding in the early part of the 20th century 
was a great advancement from the century earlier and it is at this point in history when many of the 
livestock breeds were moved to ‘colonies’, which later became major food producing nations, one 
of which would be Australia. Indeed, the genetic improvement in the recent century has been made 
possible by the stock developed by the forebears of animal breeding.  

Early developments included the establishment of breed societies in the ‘new world’ and an 
exportation of genetics from the old world. Initially, genetic improvement was focussed around 
bringing the best genetics into the new world and this was facilitated through the establishment of 
breed societies. The establishment of herd books within breed societies provided a way for buyers 
to verify the ‘purity’ of the stock they were purchasing, as the newly imported breed was an 
advancement over the local alternative, and it was this preservation of purity that was the main goal. 
Genetic advancement was achieved through a replacement of ‘local’ stock with ‘improved’ stock or 
the displacement of one breed with another. 

Prior to the widespread use of artificial insemination, breeding was also a local affair. Since 
breeding was based in part on selection of a desired ‘type’, often set as a breed standard by the 
societies, the placement of stock in classes at exhibitions developed as an important ranking tool. 
Producers looking to advance their stock would seek out champions from an exhibition and the 
larger the exhibition (competition), the better the animal. However, the relative merits of producers 
in their ability to prepare animals for showing (eg feeding, grooming) may have been difficult to 
disentangle from genetic merit. Nevertheless, this culture of commerce supported a vibrant 
exhibition industry with local, state and national exhibitions. The remnants of these still exist today 
and some are still a marketplace for trade for some species, examples would be the Sydney Royal 
Easter show or the ‘Ekka’ Royal Queensland Show, to name a couple. These exhibitions were an 
important avenue for breeders to market their genetics. Without artificial insemination, commercial 
producers needed to purchase a natural service sire and a commercial producer’s local genetics 
supplier was more likely to be a ‘neighbour’ in relative terms.  

*A joint venture of NSW Department of Primary Industries and the University of New England.
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THE RISE OF CORPORATISATION 
The selection, marketing and trade of genetics today is very different to how it looked 50 to 100 

years ago. The argument put forth in this paper is that this transition from a family enterprise, with 
a local selection and marketing program, to a more global corporate enterprise is based around four 
primary factors: 

1. Reproduction rate 
2. Production cost per breeder 
3. Availability of reproductive technologies. 
4. Ease of preservation and shipment of semen, embryos and stock 

Progress in these four areas has created the corporatisation of breeding in some species more 
than others. These factors are contrasted across four species in Table 1 with indicative levels 
indicated for each. By comparing the corporatisation in these species and the contributing factors, 
we can make more informed predictions about how new technological developments may affect 
corporatisation in different species in the future.   
 
Table 1. Indicative* levels of key factors leading to corporate investment in animal breeding 
programs across four major species 
 

 Laying Hens Pigs Dairy Cattle Merino Sheep 
Reproductive rate XXXXX XXX X X 
Low production cost 
per Breeder 

XXXXX XXX X XX 

Availability of 
reproductive 
technologies. 

XX XX XXX X 

Preservation and 
shipment of semen, 
embryos and stock 

XXXXX XX XXX XX 

Hybridization, line 
crossing 

XXXXX XXX X X 

* the more X’s, the higher the level and contribution towards corporatisation of breeding programs  
 

Let’s first focus on the laying hen, where the reproductive rate is high, with each hen capable of 
laying 300 eggs per year, and a hen is low cost to maintain and support. A single corporate entity 
can finance the infrastructure to produce large quantities of commercial stock in a pyramid system. 
Also, although artificial insemination is somewhat limited to fresh semen, this provides little 
impediment to progress since considerable stock can be located in one facility. The fact that hatching 
eggs or newly hatched chicks can be shipped nationally and internationally at low cost also supports 
the corporatisation of breeding in that species. Finally, following the success seen in corn breeding, 
the development of inbred lines (which are crossed to form hybrid commercial stock) was a game-
changer in the poultry industry. This could only really be achieved on a large scale with many lines 
of sufficient size, and this is where the corporate breeders pulled away from the smaller private 
enterprises in the last half of the 20th century. This same hybrid model was tried in other species 
such as pigs and beef cattle, to capitalize on the same ‘hybrid vigour’, but these attempts largely 
failed as the cost to maintain inbred lines was simply too high at the scale required. Also, these 
mammalian species lines that failed due to poor reproductive rates, as a result of the inbreeding 
depression, contributed to the downfall of these attempts. Similar to hybrid corn, these commercial 
birds were of limited value to keep as replacement stock by the commercial farmer, which means 
the commercial producer must keep coming back to the corporation for commercial chicks, which 
perpetuates the corporate model. 
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Within the scope of species considered for comparison in Table 1, pigs are next in line for the 
most corporate breeding model. Although the reproductive rate is much less than chickens, at 20-30 
pigs per sow per year, they are far ahead of cattle and sheep that are naturally limited to one or a 
little over one progeny per year in natural mating situations. As a litter bearing species, the 
advantages of embryo transfer offer fewer gains than cattle and are less successful. The use of 
artificial insemination is widespread with the ability to ship fresh semen widely within a country. 
However, international shipment of stock and semen is limited by health status within some 
countries, with Australia restricting importation of new genetic material. Although the cost of 
maintaining a sow is considerably more than a hen, the intensive nature of swine housing in modern 
production practices enables large numbers of animals to be maintained with a moderate outlay of 
capital for land, which tends to be the limiting factor with more extensive species. This combination 
of factors has made the global swine breeding industry the next most corporate within the examples 
presented. Factors such as the cost and health restrictions to ship stock around the world has limited 
this corporatisation and as a result we find many more pig breeding companies, in more countries, 
compared to poultry. The cost of maintaining lines and perhaps challenges with inbreeding in a 
mammalian species has made the hybrid model that was successful in poultry infeasible in pigs. As 
a result, commercial pig rearing is dominated by dedicated lines that come together in a dedicated 
crossing program to produce commercial sows and feeder pigs.   

Dairy cattle are the next most corporate of the species presented and this has been enabled 
through the widespread use of artificial insemination and the characteristic of essentially sex-limited 
breeding goals. Excellent conception rates from frozen semen and non-surgical techniques have 
allowed artificial breeding to become the standard in most developed dairy breeding industries 
world-wide. This has allowed global breeding businesses to be built around the sale and distribution 
of bull semen. The impact of artificial breeding is best realised when one answers the question “What 
would the dairy breeding industry look like if artificial insemination was never invented?”. It is 
likely that without artificial insemination, that the dairy breeding industry would look a lot more like 
the beef or sheep industries, with many breeders and a structure that is much less ‘corporate’ by 
nature. Looking back at the dairy breeding industry in the 60’s, before artificial breeding was 
widespread, the industry did indeed look more like the beef industry, with many more stud breeders 
selling bulls for natural service. Hindered by reproductive rate, crossbreeding of any kind has seen 
limited implementation, with the majority of cattle being milked commercially in the world’s largest 
dairy producing nations being purebred, with New Zealand being a noted exception to this rule.  

Finally, Merino sheep is the example of the species that is the least corporate, with many studs 
in operation and the primary market being the sale of rams for natural service matings. This is despite 
the ease with which semen can be stored; but perhaps reflecting the greater difficulty of AI (surgical) 
for ewes and the relative cost of AI compared to the value of the animal. Although Merino sheep 
was provided as this example, beef cattle breeding will share many similarities with sheep, but beef 
cattle has a greater degree of corporate influence. A notable difference with beef cattle is the more 
prominent availability of frozen semen and a viable export market. The export markets and channels 
in place to support the sale of dairy semen has been leveraged for beef semen sales globally. Also, 
unlike Merino wool production, where Australia dominates, beef production is a more global 
industry. This global aspect results in more corporate activity around semen purchase and sale.   

Although crossbreeding is not common within a wool production system it is common in 
terminal and maternal sheep breeding (McMillan et al. 2023). The increased reproductive rate in 
sheep compared to beef, and the potentially reduced generation interval when ewes are lambed at a 
year of age, does promote greater implementation of cross and composite breeding systems in sheep 
than in beef cattle. This multi-breed nature of the breeding industry in sheepmeat productionhas 
enabled a national multi-breed genetic evaluation under Sheep Genetics in Australia (Brown et al. 
2007), where beef cattle evaluations through BREEDPLAN in Australia have been dominated by 
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within-breed evaluations as a result of the structure of the data coming primarily from breed 
societies. 
 
CHANGING BREEDS 

The change in breeds used over time has been dramatic in some instances. Take the Holstein-
Friesian as an example, where it has dominated much of the developed world. The explosion of this 
breed began in the latter half of the 19th century at a time when farms were getting larger and milk 
supply and marketing moved to a more pooled system, with less scope for individual attributes. 
Changes to how milk was marketed favoured the Holstein and this displaced breeds such as Jersey, 
Guernsey and the Milking Shorthorn, that had an advantage for butterfat.  

The change of breeds in the Australian beef industry has been even more dramatic in the past 30 
years, as depicted in Figure 1. Presented is the population of registered cattle through the Australian 
Registered Cattle Breeders Association (ARCBA). Although this is not a perfect picture of the 
breeds in the commercial industry, it is logical to consider these numbers as a good indicator of 
change at a population level. The most remarkable change has been the move from an industry 
dominated by Hereford genetics to one dominated by Angus. The reason for this change cannot be 
proven but there are a number of theories. Considering the breed differences identified in America 
at the USDA Meat Animal Research Centre (Kuehn and Thallman 2022), the Angus breed is a clear 
leader for marbling, a product differentiator in many branded markets, one of which is Certified 
Angus Beef (CAB). CAB has grown into the world’s largest beef brand, marketing over 1 billion 
pounds of beef annually (American Angus 2022). Although CAB is a brand that dominates in 
America, this same success paves the way for Angus brands operating in Australia as well. Secondly, 
the Angus breed leads for calving ease, making it a more solid choice for crossbreeding, especially 
when mating heifers. Some trait advantages, the rise in feedlot finishing in Australia and the 
associated access to key branded products are likely reasons for this rise in Angus over this time 
period.  

Figure 1. Changes in number of registrations of some beef breeds in Australia overtime 
Source: Australian Registered Cattle Breeders Association (2023) 
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The total registered cattle population has fluctuated considerably overtime from a minimum of 
127,000 in 2003 to 177,000 in 1990. Overall, the population is declining, where a linear regression 
estimates a decline of 513 animals per year in total registrations across all breeds. This gradual 
decline means that an increase in one breed is almost certainly gaining market share from another. 
Perhaps even more remarkable has been the rise of the Wagyu breed in Australia. This breed is also 
targeted at a premium market and lot feeding production system. The year 2000 was the first year 
to register over 1,000 Wagyu, and now Wagyu is the second largest breed for registrations, 
surpassing Herefords. It is remarkable to think that such dramatic changes in breed use is still taking 
place. The reason for this rise in Wagyu is likely to be similar to Angus, with a drive from the 
commercial market for a specific product, which in this case is one of very high marbling. 

Changing the breed structure of an industry is perhaps the most dramatic example of genetic 
change. Changing breeds is certainly genetic change, but is it genetic progress? As animal breeders, 
much of the effort is focussed on within-breed selection in many instances, with very little input in 
the choice of breeds. This is despite breed choice having potentially the largest impact. The 
germplasm evaluation program at the USDA (Kuehn and Thallman 2022) and the recent Southern 
Multibreed project (Walmsley et al. 2021) in temperate Australia, along with RepronomicsTM in 
Northern Australia (Johnston et al. 2017) are meant to provide benchmarking for a limited set of 
current, more popular breeds.   

In 1988 the Angus breed had a similar number of registrations to both Simmental and Shorthorn. 
Over time, Simmental and Shorthorn has retracted and Angus now registers 10-fold the numbers of 
either of these two breeds. The Speckle Park breed first registered animals in Australia in 2011 and 
has risen rapidly to now register a similar number to the Shorthorn breed. Clear objective 
information on the merit of the Speckle Park breed is not available. Although it might be seen as old 
fashioned, it would seem that objective comparisons of breeds is required for breeders to make 
informed choices on breed selection, as it continues to be in a state of change.   

PERFORMANCE RECORDING AND THE BLUP ERA 
It would be short sighted to suggest that performance recording started in the middle of the 20th 

century, as there has been recording of measurements for production and parentage going back well 
before that. However, it is during this period that more formal performance recording schemes were 
developed on a state and national level. Here in Australia, one such scheme was the National Beef 
Recording Scheme (NBRS) and there were similar schemes in other species in Australia and around 
the world. This was an era when phenotype truly was ‘king’ as it was the determining characteristic 
for selection. Then in the late 1980’s and into the 1990’s, schemes around the world transitioned to 
taking these performance databases and combining these with pedigree, that was typically recorded 
through a breed society, to create Estimated Breeding Values (EBVs). The technology to enable this 
was based on ground-breaking work (Henderson 1973) and Australia rapidly implemented these 
techniques (Graser 1982; Graser and Hammond 1985; Graser et al. 1987). At that time, the 
calculation of EBVs was brand new and required special skills in programming relatively large 
computational problems. Also, these problems required considerable computer power to run and 
such computer power was somewhat rare to access. These requirements resulted in the development 
work for EBV programs to be centred around Universities as they typically had the expensive 
computer hardware and the skilled staff required. The Animal Genetics and Breeding Unit (AGBU) 
at the University of New England, established in 1976 is one such entity. Around the world this race 
to implement EBV technology is what made the strong institutions in animal breeding that went on 
to make a significant impact in this area.    
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DAWN OF MOLECULAR GENETICS 
During the mid-1990’s, as EBVs were becoming entrenched, the next selection tool from the 

field of molecular genetics was also advancing. The future of animal breeding was in question. Was 
the calculation of breeding values using performance and pedigree information going to continue, 
or would this approach by surpassed with a purely molecular approach? Thoughts at the time were 
that once the genes controlling the traits were identified, selection could simply be to fix the desired 
variants. This was the beginning of somewhat of a divide in the field with two streams, Animal 
Breeding (quantitative) or molecular genetics. Those in the field of animal breeding did not simply 
bury their heads in the sand, but did what all good animal breeders do, and when faced with a lack 
of data, they ‘simulated’ what breeding would look like with molecular data and how the evaluation 
models would change to handle it. Some important papers resulting from this period related to the 
transition to molecular based breeding are Fernando and Grossman (1989) and Nejati-Javaremi et 
al. (1997). 

Coming into the turn of the century it was becoming clear amongst the animal breeding 
community that molecular markers could have a significant role to play in practical breeding 
programs. ‘Major genes” as they were commonly referred to at that time were starting to be 
identified. Some examples discovered included those affecting beef tenderness, including the related 
Calpain (Page et al. 2002; Casas et al. 2009) and Calpastatin genes (Schenkel et al. 2006) in this 
complex. The challenges facing the breeders was then how were we going to incorporate these new 
molecular tools into breeding programs? One early example of the integration of molecular 
information into breeding programs was the implementation of the Calpastatin genotypes in the 
Australia BREEDPLAN Brahman genetic evaluation for tenderness (Johnston et al. 2009). This was 
a challenging time for the animal breeding community as their funding sources were starting to 
fragment. Those wanting to fund genetic improvement in livestock were faced with a decision of 
funding the traditional programs that had been successful so far, or to start to direct money to this 
developing field of molecular genetics that just seemed more ‘modern’. Unlike the field of 
quantitative genetics, that had been relatively low cost to date, research including genotyping and 
related laboratory costs was considerably more expensive. The result was animal breeders went 
through a phase where it was hard to secure research money unless their programs included 
something ‘molecular’.   

The first half decade into the twenty first century was one of very rapid advancement. Using beef 
cattle as an example, many molecular variants were being identified that were associated with 
economically important traits and companies were popping up that were now marketing these 
directly to farmers. Animal breeders found themselves sometimes in a position of validating these 
variants with independent data (Schenkel et al. 2005; Van Eenennaam et al. 2007; Johnston et al. 
2010). In some cases single SNP tests were being sold for $80 USD. This quickly changed as more 
variants were discovered and genotyping companies realized that traits were influenced by multiple 
genes. The number of SNP in a test were quickly rising and were becoming limited by genotyping 
technology with plexes of 384 SNP being developed and sold. Meanwhile, alongside all this 
development of specific gene tests the animal breeding community was continuing to work on how 
this information would best be used and a landmark paper was released. This paper outlined the 
premise for what later became known as ‘genomic selection’ (Meuwissen et al. 2001). In 2005, 
while the search for specific variants continued to rage, a new genotyping array technology from 
Affymetrix (www.affymetrix.com) became available that enabled 10,000 SNP to be genotyped at 
reasonable cost, comparatively speaking. This technology was made possible by the Bovine Genome 
Project (Bovine Genome Sequencing Consortium 2009) along with contributing projects such as the 
Bovine HapMap project (Bovine HapMap Consortium 2009). With the ability to genotype large 
numbers of SNP effectively, the methods of genomic selection could then be applied. The 10K 
Affymetrix chip, ground breaking at the time, was soon replaced by the Illumina 50K (Matukumalli 
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et al. 2009) with early access for research starting at the end of 2006, at an approximate cost of 300 
dollars per sample, which was a dramatic reduction in cost per SNP, but is 10-fold the cost of 
genotyping today.   
 
THE GENOMICS ERA 

The ‘standard’ 50K chip changed the future of animal breeding and was a real turning point. 
During the next few years many changes occurred. The first was somewhat of a dissolving of the 
lines between quantitative animal breeding and molecular biology. Now instead of chasing 
individual genes, animal breeders could genotype their reference herds for 50K SNP and undertake 
meaningful Genome-Wide Association Studies (GWAS) analyses. This proliferation of large scale 
GWAS also discovered a number of new major variants. Genotyping companies were facing a cross 
roads, was the future bigger and better custom panels of hundreds of significant SNP, or were these 
mathematical approaches that use all 50K SNP, with no regard for which were significant, going to 
be better? Given the investment in specific panels (in beef cattle for example) to date, it seemed hard 
for the genotyping companies to believe the 50K shotgun approach could possibly be better. The 
length of time these debates raged was a blip on the overall timeline as the dairy industry soon 
proved beyond a doubt how powerful genomic selection could be (VanRaden et al. 2009). Where 
genomic selection was first applied I am sure is hotly debated, but I know it was applied in Canada 
in 2009 and although this may not have been the first implementation, it was not likely very far 
behind. The reason the dairy industry could apply genomic selection quickly was their extensive use 
of artificial insemination and long-standing progeny testing schemes provided them with a source 
of DNA (frozen semen) on thousands of bulls with highly accurate proofs, providing an instant 
genomic reference population.    

The beginning of the second decade of the 21st century now saw other species looking at the 
success of genomic selection in the dairy industry and strategising how they could harness this same 
success. The key ingredient was clearly the reference populations and it was evident that these 
needed to be large and the bigger the better. The genotyping companies were also faced with the 
realization that their Intellectual Property (IP) in terms of specific marker panels could be displaced 
with this 50K product, something that was available to all. The implementation in dairy provided a 
stark example of a highly successful genomic product where genomic companies had no IP 
ownership. During this period the availability of low-density panels, first 3K, then 7K brought a new 
technology to the table in imputation (Sargolzaei et al. 2014; Browning and Browning 2016). 
Although the low-density panels did not last long as the cost of 50K genotypes came down, as global 
genotyping rates went up, the tool of imputation would prove important for the long-term.   

The early implementations of genomic selection were predominantly multi-step approaches 
where predictions from the markers were combined with the traditional EBV, based only on 
phenotypes, in a blending approach. A popular blending approach used was the method of Harris 
and Johnson (2010) as applied to Australian beef cattle and sheep evaluations as described in Swan 
et al. (2011). In beef cattle, an approach applied in American Angus, as one example (Miller et al. 
2018) was to bring the marker information into the genetic evaluation via a correlated trait with a 
heritability close to 1 and a correlation with the target trait in proportion to the prediction accuracy 
of the genomic trait (Kachman 2008). The multi-step approach allowed an expedited path for 
genomics to influence existing EBV procedures already in place bringing the technology to market 
with little delay. However, the multistep procedures were not optimal and relied on calibration steps 
that needed to be kept up to date (Johnston et al. 2010). The development of single-step procedures 
(Misztal et al. 2009; Aguilar et al. 2010) was a great advancement and allowed a simpler, more 
elegant approach, eliminating the need for separate calibration steps and enabled prediction with all 
the contributing information such as genomics, pedigree and performance information in a single 
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procedure. In Australia, Sheep Genetics analyses went to Single Step in 2016 (Brown et al. 2018) 
and the first BREEDPLAN analyses transitioned to Single Step in 2017 (Johnston et al. 2018).  

The implementation of genomic selection has been heralded as the greatest advancement in dairy 
cattle breeding since the widespread implementation of artificial insemination with frozen semen. 
Prior to genomic selection becoming fully implemented it was predicted that the rates of genetic 
progress would double in dairy cattle as a result of genomic selection (Schaeffer 2006). This has 
now been proven to be true (Scott et al. 2021; Fleming and Van Doormaal 2022). The early 
prediction of increased genetic progress by Schaeffer (2006) turned out to be an underestimate, 
possibly due to the fact it was based on early results with the Affymetrix 10K, whereas 
implementation has been with the Illumina 50K with more markers. Although higher density chips 
were also available at the time, these did not prove to increase the accuracy of genomic prediction. 

Genomic selection has been a game-changer throughout many livestock industries. However, 
the basic implementation has not changed since it was implemented over a decade ago. Although 
there are some different variations being implemented, the basic model is via GBLUP, which is 
simply a better pedigree. In the past decade there has been much effort to increase genomic 
prediction accuracy through a better understanding of the genome. This era coincided with a great 
increase in whole genome sequencing resources being generated. The highly successful 1,000 bull 
genomes project (Hayes and Daetwyler 2019) is one example. Implementing sequence variants in 
the genetic evaluation has not increased selection accuracy considerably as demonstrated in dairy 
cattle by VanRaden et al. (2017) and in sheep by Li et al. (2021). The lack of papers purporting 
increases in selection accuracy following all the sequencing being done around the world at the 
recent (July 2022) World Congress on Genetics Applied to Livestock Production in Rotterdam (2022 
WCGALP) was a testament to the disappointing progress in this area. The potential increase in 
prediction accuracy through models that more closely match the function of the genome still remains 
and should be pursued. 
 
IMPACT OF GENOMIC SELECTION 

Presented in Figure 2 are the genetic trends in Australian Angus, Friesian and Merino for a major 
respective economic index, each standardized to a genetic standard deviation. The increase in 
genetic progress in dairy is clearly evident in the graph, coinciding with the implementation of 
genomic selection in Australian Friesian in 2012 (Datagene 2022), and earlier for some other 
countries influential in dairy cattle genetics. In fact, a linear estimate of the trend 2001-2011 
compared to 2012-2021 indicates the trend increase is over 4-fold in Friesian. The Merino trend is 
also increasing post-genomics with an increase of 1.57-fold pre and post genomics, which was first 
implemented in 2013 (blending Swan et al. 2011) with single step implemented in 2016 (Brown et 
al. 2018). The increase in trend in Angus is less dramatic with a 1.17-fold increase before and after 
the implementation of genomics in 2011 (blending) with single step implemented in 2017 (Johnston 
et al. 2018).   
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Figure 2. Standardized genetic trends for a prominent economic index in Australian 
Friesian, Angus and Merino populations 
Source: Datagene, Angus Australia and Sheep Genetics (2023) 
 

The dairy industry capitalized on genomics by greatly decreasing the generation interval on the 
male side, as sires no longer needed to be proven for lactation related traits through their daughters. 
The selection accuracy for females also greatly increased and was no longer plagued by preferential 
treatment of ‘bull dams’. In contrast, the generation interval in Merinos and Angus could not be 
reduced to the same degree, as many of the economically important traits are measurable on the sire 
himself, promoting the use of young sires. In the case of Angus, carcass traits required progeny 
proving to some degree but ultrasound on the yearling bull was also available as a highly correlated 
predictor (Reverter and Johnston 2001), and similarly wool traits are measurable on young rams. 
Despite the already heavy use of young sires in Angus, Miller (2023) showed how the average age 
of sires is reducing in American Angus post the implementation of genomic selection. 

Although the impact of genomic selection is starting to show in Merino and Angus, the results 
are far less dramatic than in dairy cattle. Despite biological differences such as generation interval 
and the levels of AI etc., it is reasonable to expect that there is much opportunity to further increase 
progress with the technology for both sheep and beef. One focus area could be the continual increase 
in selection accuracy that may be possible with further increases in the size of the reference 
population, which will accompany increases in genotyping, as long as breeders keep up the recording 
effort. One difference between dairy cattle breeding compared to sheep and beef cattle is that large 
breeding corporations have a much greater influence in dairy cattle breeding, compared to sheep and 
beef cattle. These large corporations run what is closer to a single-desk decision making process, 
compared to the thousands of decision makers in sheep and beef cattle. These same companies are 
able to hire specialised talent in the way of Ph.D. geneticists and implement the latest tools in 
selection. This rise in the corporate domination of breeding companies in dairy cattle globally was 
outlined by John Cole as part of the 2022 WCGALP plenary (no reference available). It was 
suggested that such companies will likely move to a more isolated model, with custom evaluations 
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and reference populations and a potential withdrawal from industry wide evaluation schemes such 
as that provided by Datagene in Australia.    
 
NEW TECHNOLOGIES AND A MORE CORPORATE FUTURE 

Sheep and beef cattle breeders in Australia should be looking at the greater progress experienced 
in dairy cattle as an illustration of the potential threat to their business models. How would they 
compete with a large corporate breeder that is employing the tools available, such as genomic 
selection with custom reference populations and novel traits, and large-scale in-vitro embryo 
production programs with embryo genotyping? It is the suggestion of this paper that the reason why 
large companies have not entered this market is because of the lack of a technology, such as the 
deployment of artificial insemination in commercial farms, that is the major inhibitor. There is one 
technology on the horizon that has been in development for a number of decades and is described 
as a ‘surrogate sire’ in the review of reproductive technologies and their impact on genetic 
improvement by Mueller and Van Eenennaam (2022). This surrogate sire can be described as a 
walking artificial insemination delivery, where a natural service sire is breeding cows, but delivering 
the genetic material from an elite sire. This technology could provide the step change in technology 
needed for a significant entry of corporate investment into the largely untapped sheep and beef cattle 
genetic supply markets. Collectively this could be a very significant market for commercial genetics 
companies. There are about 10 times as many beef cattle as dairy cattle in Australia alone. The other 
advantage of this walking artificial insemination model would be the opportunity to disconnect the 
genetics of the walking bull from the genetics he is passing through his semen. This could be quite 
opportunistic for regions like northern Australia, where the sire will need to be adapted for the harsh 
tropical climate, but the resulting calves could be more suited to a feedlot system. A potential 
example could be a walking Brahman or tropical composite sire delivering elite Wagyu genetics.   

Clearly the deployment of reproductive technologies can be transformational. A more recent 
technology that has had a large impact has been sexed semen as deployed in cattle breeding 
internationally. This has had recent significant ramifications for beef production in many countries, 
especially those with well-developed beef and dairy sectors. As outlined in Miller et al. (2021) sexed 
semen has created a significant increase in beef cross calves from the dairy herd, often referred to 
as ‘beef on/from dairy’. Several factors have come together to facilitate this, among which is the 
availability of sexed semen, allowing dairy farmers to target dairy female replacements from the 
best cows in their herds and breed the remainder of the herd to beef sires to maximize their value. 
This trend was exacerbated by low global milk prices and a shrinking dairy herd, which decreased 
the demand for dairy replacements.  

A step change in this ‘beef on dairy market’ could be possible with an improvement in embryo 
production. If a calf with half beef breed heritage is more profitable than a dairy calf, then a pure 
beef breed calf would be even more valuable. To accomplish this, bottom-end cows that are getting 
mated to beef semen could become pregnant with a pure beef embryo instead. At the moment, the 
cost of generating these embryo’s and their decreased conception rate must make this proposition 
economically unattractive or it would have taken off. One pipeline that could be exploited would be 
the generation of IVF embryos from slaughter females. These could be culled beef cows, or slaughter 
heifers from feeding programs without drugs that prevent oestrus, which are purported to create 
difficulties in creating viable embryos. If commercial genotyping was widespread, the genetic merit 
of these females could be made available and linked to their mandatory national electronic ID in 
many countries. These best commercial females could be a source of the ‘beef from dairy’ animals, 
or even replacements in beef herds. The viability of replacements in beef herds would then depend 
on the specific herd genetic merit, the merit of the embryos and the increased costs per live 
replacement generated through embryos. The use of sexed semen could target females for 
replacements and males for dairy-beef as required. Another parallel application would be the 
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production of more high value beef genetics from tropical environments. Similar to the surrogate 
sire scenario presented earlier, a well-designed beef embryo could lift the value of the calf generated 
from this system, with calves placed in easier finishing systems such as feedlots, while maintaining 
the indicus content required in the females. 

Another step change in technology that could forever change animal breeding would be the 
realization of what is referred to as speed breeding. This was referred to as In Vitro Breeding (IVB) 
in the review by Mueller and Van Eenennaam (2022) and new breakthroughs to support this 
approach were recently reviewed by Goszczynski et al. (2019). The technique is called speed 
breeding as the generation cycle can be reduced to 3-4 months in cattle. Multiple embryos can be 
generated from elite parents and these embryos can be the start of multiple embryonic stem cell lines 
(ESC). The multiple ESC can be genotyped and through genomic selection, the best ESC can be 
selected. With viable gametes possible from ESC, the best ESC can be joined to create another 
generation of embryos, which will start another generation of selection. This technology, if 
implemented on a large scale, could create further opportunities for large corporate breeding 
companies, especially when combined with walking artificial insemination as previously described. 
Considering factors related to corporate investment in breeding as outlined in Table 1, walking 
artificial insemination allows genetics to be dispersed widely and speed breeding reduces the cost 
of maintaining the breeding female, as much of it will be done in the lab. Also, to undertake the 
breeding at a large scale will require investment in lab facilities. Currently in species such as sheep 
and beef the breeders with the land required to maintain the breeding herd dominate. Speed breeding 
could open this market to those with the capital to invest in lab facilities and is less tied to land 
ownership. 

As genomics has shaped developments over the past two decades it is certain to continue to play 
a major role. It is making enabling technologies such as reproductive technologies more productive, 
which will also increase the corporatisation of breeding as outlined in Miller (2023). The cost of 
genomic sequencing continues to decline. Twenty years ago there was the push for the 1,000 dollar 
genome and this has been passed (NIH 2023) and the new horizon is a 100 dollar genome (Illumina 
2023). With sequencing costs continuing to decline, genotyping by sequencing is poised to offer a 
low-cost genotyping alternative that is already being deployed (Snelling et al. 2020; McEwan et al. 
2021). Such low-cost genotyping could also open up the market for widespread commercial 
genotyping. In beef cattle this could mean a genotype on every animal in key supply chains. A 
scoping study on the widespread use of genotyping in the Australian red meat industries for 
traceability purposes found that the biggest advantages to genotyping every animal would be the 
opportunities for supply chain efficiencies and better adoption of genetic improvement tools (Banks 
et al. 2022). Widespread commercial genotyping could change how reference populations are 
developed with a shift away from a seedstock focus to more dedicated commercial streams, that 
could be more private. This availability of private reference populations, with custom data collection 
streams, including novel traits, could also fuel a rise in more corporate breeding investment.     
 
CONCLUSIONS 

Animal breeding has gone through some transformative change in the past 50 years. From 
performance recording to BLUP and now genomic selection, advanced breeding programs today are 
making more progress than ever before. These improvements have not all come from the animal 
breeding community but in many cases development in other fields have been leveraged and 
successfully implemented. The development of large-scale performance recording schemes and 
genetic evaluation was made possible through the parallel developments in computing power. 
Advancements in reproductive technologies have played an important role in shaping industry 
structure including the rise of corporate ownership. Genomics was made possible through the 
development of low-cost, moderate density genotyping, following developments created for human 
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genetic applications. Similarly, future opportunities are sure to leverage new technologies such as 
low-cost sequencing applications to reduce the cost of genotyping. Advancements in genetic 
engineering could make in-vitro breeding or the deployment of surrogate sires available on a 
commercial scale. These are technologies that could change the rate of genetic progress and also the 
structure of the industry, with a likely increase in corporate ownership. As new technologies 
continue to be deployed, new opportunities are created for more structured corporate ownership, 
which will continue to change the animal breeding industry as we know it.  
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AN OPTIMAL CONTRIBUTION SELECTION TECHNIQUE THAT UTILISES NON-
ADDITIVE GENETIC COMPONENTS 

Z. Loh, J. H. J. van der Werf, S. Clark

School of Environmental & Rural Science, University of New England, Armidale, NSW, 2351 
Australia 

SUMMARY 
This study proposes an optimal contribution selection method (OCS) that utilizes both additive 

and non-additive genetic components. Using a genetic algorithm, the contribution of sires toward a 
cohort of dams, along with their mate allocation, were optimized under a constraint of a 1% 
increment of inbreeding per generation. The inclusion of dominance into the OCS increases the total 
genetic gain in offspring initially by 30.5% improvement from +4.02 to +5.27 units compared to 
using additive genetic component alone for a trait with a 15% dominance-to-additive variance ratio. 
Compared to additive-only OCS, optimization of the dominance component resulted in one-off 
additional gains, with no additional merit thereafter, despite continued optimization. In conclusion, 
this inclusion of dominance in mate allocation can give a significant genetic lift in total genetic 
merit. 

INTRODUCTION 
While optimal contribution selection (OCS) has successfully optimized the additive genetic gain 

in livestock breeding systems within a constraint of inbreeding, it has only focused on estimated 
breeding values (EBVs) and generally not focused on optimizing the non-additive genetic 
component, such as dominance. Dominance could explain a significant proportion of the genetic 
variance for some traits, but it has been difficult to exploit due to its dependency on sire-dam mating 
configuration and the difficulty of predicting these specific effects. The advent of genomic 
information, however, allows direct prediction of the expected offspring heterozygosity, which 
could be used to predict dominance effects for mate allocation.  

The aim of this study was to develop an OCS that could optimize both additive and non-additive 
genetic components, using information easily available to a breeding program. It is anticipated this 
OCS can be used in improving both additive and non-additive effects in a trait.   

LAYOUT OF THE OPTIMAL CONTRIBUTION SELECTION METHOD 
The OCS requires several inputs: sire and dam genotype arrays of size 𝑁𝑁𝑚𝑚 × 𝑀𝑀 and 𝑁𝑁𝑓𝑓 × 𝑀𝑀 

respectively, with 𝑁𝑁𝑚𝑚, 𝑁𝑁𝑓𝑓 and 𝑀𝑀 be number of sires, dams and markers respectively; sire and dam 
phenotypic vector of length 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑓𝑓 respectively, and narrow sense heritability. The genotype, 
phenotype and heritability were used to calculate the sire EBVs (𝜷𝜷�𝒎𝒎) and sire GRM (𝑮𝑮) using 
method by VanRaden (2008). A targeted level of increment of consanguinity (∆𝐹𝐹𝑡𝑡) were also needed 
for the OCS.  

This OCS has three phases: the first phase optimized additive and inbreeding components; the 
second phase optimized the non-additive genetic components only, and the final phase combined 
the results from both phases. Such a design was needed to improve the feasibility of the method 
from the significantly increased sample space when optimizing the dominance genetic components. 

To initialize the GA, 1500 candidate solutions of length 𝑁𝑁𝑓𝑓, denoted as 𝒔𝒔, that contain the indices 
of sires that paired with each dam, were generated, with the 𝑖𝑖-th entry of 𝒔𝒔 contains which sire that 
would be paired with 𝑖𝑖-th dam. This formatting was required due to the mate-specific nature of the 
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dominance component, which depends on the exact permutations of the sires. This set of 𝒔𝒔 vectors 
were compiled into a sire index matrix of size 1500 × 𝑁𝑁𝑓𝑓, denoted as 𝑺𝑺𝟏𝟏.   

The first phase of this OCS optimized the additive and inbreeding coefficients, which were 
initialized by translating 𝑺𝑺𝟏𝟏 into its corresponding sire proportion matrix 𝑿𝑿𝟏𝟏, defined as a matrix of 
size 1500 × 𝑁𝑁𝑚𝑚 with its 𝑖𝑖-th row and 𝑗𝑗-column representing the proportion of 𝑗𝑗-th sire that would 
contribute into the next generation for the 𝑖𝑖-th solution. The objective function for this phase was 
defined as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴 = 𝑿𝑿𝟏𝟏𝜷𝜷�𝒎𝒎
′ − 𝜆𝜆𝑖𝑖 ∗ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑿𝑿𝟏𝟏𝑨𝑨𝑿𝑿𝟏𝟏′) [1]

where 𝜆𝜆𝑖𝑖 denoted the scalar weightage for the inbreeding component for this phase of OCS.  
From this objective function, the top two 𝒔𝒔s in term of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴  were chosen, which were 

propagated into a new 𝑺𝑺𝟏𝟏. This new 𝑺𝑺𝟏𝟏 was subjected to five genetic operators: mutation, where 
sires in 𝑺𝑺𝟏𝟏 were replaced with new sires; vertical and horizontal recombination, where the part of 𝑺𝑺𝟏𝟏 
were exchanged, column-wise and row-wise, respectively, and vertical and horizontal inversions, 
where the orders of sires in 𝑺𝑺𝟏𝟏 were reversed, column-wise and row-wise respectively. The hyper-
parameters values for these operators were based on Srinivas and Patnaik (1994).  

This phase was then iterated with the new 𝑺𝑺𝟏𝟏. For each iteration, the 𝜆𝜆𝑖𝑖 was adjusted with the 
amount 100�𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑿𝑿𝟏𝟏𝑨𝑨𝑿𝑿𝟏𝟏′)� − ∆𝐹𝐹𝑡𝑡�. The mutation, recombination and inversion rate 
were also adjusted adaptively based on the method by Srinivas and Patnaik (1994). This process 
continued until convergence, defined as the point where the slope of the curve of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴  is less 
than 1 × 10−3 across the last 50 iterations. To reduce the chance of premature convergence for 
subsequent phases, this phase was repeated eight times, with the converged solutions from each 
repeat pooled into a new sire index array, 𝑺𝑺𝟐𝟐. From each repeat, the average of the 𝜆𝜆𝑖𝑖 at the point of 
convergence, denoted by 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎, was also recorded. 

The 𝑺𝑺𝟐𝟐 was then used for Phase 2 optimization, which maximizes the offspring dominance 
component. From 𝑺𝑺𝟐𝟐, 3000 solutions were resampled and altered using genetic operators. Only 
vertical recombination and horizontal inversion were used on 𝑺𝑺𝟐𝟐, as they only affect the 
permutations of the sires within the 𝒔𝒔s, thus with no effects on its additive and inbreeding scores, 
thus not affecting their Phase 1 optimality. The performance of each solution in 𝑺𝑺𝟐𝟐 was tested, with 
the objective function for 𝑘𝑘-th solution defined as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟐𝟐)𝐷𝐷 = �𝑯𝑯𝑺𝑺𝟐𝟐(𝑘𝑘,𝑖𝑖),𝑖𝑖

𝑁𝑁𝑓𝑓

𝑖𝑖=1

[2] 

where 𝑯𝑯𝑺𝑺𝟐𝟐(𝑘𝑘,𝑖𝑖),𝑖𝑖 is defined as the expected heterozygosity for 𝑺𝑺𝟐𝟐(𝑘𝑘, 𝑖𝑖)-th sire and 𝑖𝑖-th dam, which 
𝑺𝑺𝟐𝟐(𝑘𝑘, 𝑖𝑖) is the 𝑘𝑘-th row and 𝑖𝑖-th column of 𝑺𝑺𝟐𝟐. The top two 𝒔𝒔s in terms of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟐𝟐)𝐷𝐷 were extracted 
from 𝑺𝑺𝟐𝟐 and used to generate a new 𝑺𝑺𝟐𝟐 array, subjected to vertical recombination and horizontal 
inversion. This phase was iterated until convergence, defined as the point where the slope of the 
curve of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟐𝟐)𝐷𝐷 is less than 1 × 10−4 across the last 200 iterations. To increase the chance of 
finding the global maximum, Phase 2 was repeated eight times, and the solutions pooled into 𝑺𝑺𝟑𝟑. 

In the final phase, the 𝑺𝑺𝟑𝟑 was translated into its corresponding sire proportion array 𝑿𝑿𝟑𝟑. The 
performance of each solutions was evaluated as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟑𝟑,𝑿𝑿𝟑𝟑)𝐴𝐴𝐷𝐷𝐴𝐴 = 𝑿𝑿𝟑𝟑𝜷𝜷�𝒎𝒎
′ + �𝑯𝑯𝑺𝑺𝟑𝟑(𝑘𝑘,𝑖𝑖),𝑖𝑖

𝑁𝑁𝑓𝑓

𝑖𝑖=1

− 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 ∗ �𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑿𝑿𝟑𝟑𝑨𝑨𝑿𝑿𝟑𝟑′ )� − ∆𝐼𝐼𝑡𝑡� [3] 

Equation [3] served as the final objective function for the OCS. The top 𝒔𝒔 in terms of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟑𝟑,𝑿𝑿𝟑𝟑)𝐴𝐴𝐷𝐷𝐴𝐴 
were deemed as the optimized solution, and were the final output of the OCS.  
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TESTING THE OPTIMAL CONTRIBUTION SELECTION METHOD 
The OCS was tested with simulated genotypic arrays generated using QMSim (Sargolzaei and 

Schenkel 2009). For the ancestral population, 5,000 animals and 20,000 loci across 10 chromosomes 
of 100 cM each were simulated. This population was gene-dropped for 1,000 generations, with the 
population size increasing up to 10,000 in the final generation. Either 500 or 1000 sires and dams 
were then randomly chosen for genotyping and these were selection candidates (Table 1).  

From all loci, 500 of them were assigned as QTL, with both additive and dominance effects. 
Using these effect sizes, the phenotypes were calculated as follows:  

𝒚𝒚 = 𝒁𝒁𝒂𝒂𝜷𝜷 + 𝒁𝒁𝒉𝒉𝜹𝜹 + 𝒆𝒆 [4] 
where 𝒚𝒚 is the phenotype vector; 𝒁𝒁𝒂𝒂 is the additive genotypic array encoded in the format of {0,1,2}; 
𝒁𝒁𝒉𝒉 is the heterozygosity array with a value of 1 for heterozygotes and 0 otherwise; 𝜷𝜷 and 𝜹𝜹 are 
vectors with additive and dominance effect sizes for each QTL, respectively, and 𝒆𝒆 is a vector with 
the residual component of the phenotypes. Both 𝜷𝜷 and 𝜹𝜹 were generated using a gamma distribution, 
with shape parameters set at 0.3 and scale parameters provided in Table 1. The vector 𝒆𝒆 was 
generated using a normal distribution, with mean zero and variance  �1−ℎ

2�𝑎𝑎𝑎𝑎𝑣𝑣(𝑮𝑮𝜷𝜷)
ℎ2

, where ℎ2 is the 
narrow sense heritability. The ℎ2 was set at 0.3 for all simulations. 

These genotypes and phenotypes were used in a four-generation selection program. Three 
selection regimes were tested: truncation genomic selection (denoted as TS), OCS with additive 
component (OCSA); and OCS with both additive and dominance components (OCSAD). The ∆𝐹𝐹𝑡𝑡 
is set at 1% per generation for OCSA and OCSAD. To ensure validity of comparison for TS, the 
proportion of sires selected was determined by the number of selected top sires that would produce 
the same ∆𝐹𝐹𝑡𝑡. A non-selected population (NSEL) was used to establish the offspring baseline 
performance. For each generation, the additive, dominance and total genetic merits (TGM) from 
each selection regime were recorded. 

The parameters and values tested in this study were provided in Table 1. When a parameter was 
under study, default values were used for other parameters. When neither the additive and 
dominance genetic variances were under study, the default scale parameters of the effect size 
distributions were chosen such that the dominance genetic variance is 15% of the additive genetic 
variance. For each set of parameter values and selection regimes, 20 replicates were conducted. To 
test the performance between selection regimes, a two-sample Welch’s t-test was used, with the 
performance deemed significantly different if the 𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑎𝑎𝑑𝑑𝑙𝑙 = −log10(𝑙𝑙 − 𝑎𝑎𝑑𝑑𝑙𝑙𝑣𝑣𝑎𝑎) ≥ 3.  

Table 1. Parameters and values tested in this study 

Parameters Default values Alternative values 
Number of Sires and Dams 500 1000 
Additive Effect Size Scale Parameter 1.0 3.0 
Dominance Effect Size Scale Parameter 0.5 1.5 

RESULTS 
The additive, dominance and TGM across four generations for the different selection regimes 

were provided in Figure 1. The first-generation total genetic merit under different parameter values 
and selection regimes were provided in Table 2.  

Compared to TS, both OCS methods significantly improved the additive genetic component of 
the offspring across all parameter values tested. The OCSAD method significantly improved the 
dominance component compared to OCSA from +0.17 to +1.51 (𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑎𝑎𝑑𝑑𝑙𝑙 = 22.54), and this led to 
a 30.5% additional improvement in TGM from +4.02 to +5.27 (𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑎𝑎𝑑𝑑𝑙𝑙 = 8.48) in the first 
generation of selection under the default parameter values. The additional gain from the dominance 
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component is a one-off genetic lift, however, with no further additional increments in dominance 
genetic merit despite its continued optimization in the subsequent generations (Figure 1b).  

The improvement in TGM in OCSAD compared to OCSA was  observed for all parameter values 
tested, although these parameters affect the significance of improvement. For example, by increasing 
the scale parameter for additive QTL effect sizes from 1.0 to 3.0, which increases the additive genetic 
variance, the increment in TGM becomes less significant (𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑎𝑎𝑑𝑑𝑙𝑙 = 1.59). While this change of 
parameter value has decreased the dominance-to-additive variance ratio to 2.1%, the TGM for 
OCSAD is still 11.4% higher than OCSA after the first generation of selection, indicating the 
potential merit of mate allocation in exploiting dominance variation.  

Figure 1. Plots for the base scenario showing (a) additive, (b) dominance and (c) total genetic 
merit of the offspring under truncation selection (TS), additive-inbreeding OCS (OCSA) and 
additive-dominance-inbreeding OCS (OCSAD) across four generations 

Table 2. First generation total genetic merit with truncation selection (TS), additive-
inbreeding OCS (OCSA) and additive-dominance-inbreeding OCS (OCSAD) under varying 
parameter values and selection regimes. Superscripts with different letters (row wise) denote 
significant differences between  selection regimes 

Parameter values Value tested Total genetic merit 
TS OCSA OCSAD 

Number of sires and dams (default) 500 3.045a 4.019b 5.247c 

         (alternative) 1000 4.010a 4.527a 5.827b 

Additive effect size scale parameter 3.0 8.845a 11.328b 12.616b 

Dominance effect size scale parameter 1.5 3.052a 3.953b 7.855c 

DISCUSSION AND CONCLUSION 
In this study, an OCS method that optimized the additive and dominance component was 

proposed. Using heterozygosity for all loci as a proxy for the optimization of dominance, with a 
15% dominance-to-additive variance ratio, this method improved the initial TGM by 30.5% 
compared to only optimizing the additive component. The one-off lift from the dominance 
component optimization means that after the first generation both OCS would have the same rate of 
genetic gain despite the continued optimization of dominance. Some  computational aspects of the 
proposed method could be further optimised.    

In conclusion, an OCS that optimizes additive and dominance effects was proposed in this study, 
and gave a significant lift in total genetic merit of a selected trait. The method can be used to improve 
the within-population genetic merit for economically important traits in livestock. 
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SUMMARY 
The significance of ewe genotype and its interactions with sire effects were examined for Merino 

fleece traits recorded between post weaning and adult stages of progeny at the Macquarie site of the 
Merino Lifetime Productivity project. Across post weaning, hogget and 3 adult expressions, ewe 
bloodline effects significantly influenced fleece traits, particularly fleece weight and fibre diameter. 
Sire X ewe genotype interactions on fleece traits across ages were generally unimportant, accounting 
for small amounts of the phenotypic variance (less than 1%). Correlations between sire progeny 
performances were generally greater than 0.70. These results support the methods used routinely to 
account for these effects in MERINOSELECT genetic evaluations. 

INTRODUCTION 
Atkins et al. (1999) concluded that for across-flock genetic evaluation of Merino sires, though 

sire X dam source interactions were small, the influence of heterosis on some Merino traits may also 
need to be included in evaluation models. This has been addressed by the fitting of a sire X flock-
year interaction in the model; its component of a genotype X genotype interaction allows the 
MERINOSELECT genetic evaluation system to account for potential sire X ewe genotype 
interactions (Li et al. 2015). 

In the context of central test sire evaluation and on-farm progeny testing, it is usual to have the 
sires mated to an even line of ewes selected to meet a breeding objective that differs from that of the 
majority of the sires. Anecdotally, some Merino breeders have concerns that these genetic 
benchmarking systems will be biased by heterosis as sires are mated to ewes of a different genetic 
background, with these concerns greater for assessments at later ages. Several recent studies have 
shown that these sire X ewe bloodline interactions are unimportant for measured fleece traits 
(Egerton-Warburton et al. 2019), visually assessed wool traits (Mortimer et al. 2021b) and body 
composition and reproduction traits (Mortimer et al. 2021a) recorded at post weaning, hogget and/or 
a first adult shearing. At most, the interaction effect in those studies accounted for less than 2% of 
the phenotypic variance. Using data recorded on progeny at the Macquarie site of the Merino 
Lifetime Productivity (MLP) project, this study extends the findings of Egerton-Warburton et al. 
(2019) by examining the influence of sire X ewe bloodline interaction on fleece traits recorded at 
hogget and 3 adult shearings. 

MATERIALS AND METHODS 
Data were available from the progeny born in 2017 and 2018 at the Macquarie MLP site. The 

site’s establishment at the Trangie Agricultural Research Centre has been outlined by Egerton-
Warburton et al. (2019), while the overall design of the MLP project has been described by Ramsay 
et al. (2019). Briefly, each drop was generated by AI matings of industry sires (30 sires in total, 
including a link sire) to foundation ewes, which had previously lambed, of 2 bloodlines sourced 

∗ A joint venture of NSW Department of Primary Industries and the University of New England 
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from representative commercial flocks. Bloodline 1 (B1) was selected to meet a dual purpose 
objective, where selection aimed to improve wool, fertility and growth traits. The breeding objective 
of bloodline 2 (B2) was set to increase wool production and body size. The allocation of ewes to 
sires was balanced across the ewe flock sources. The progeny were assessed at post weaning 
(average age of 280.6 days), hogget (average age of 533.7 days), first adult (average age of 899.3 
days), second adult (average age of 1,273.7 days) and third adult (average age of 1,659.2 days) 
shearings. Animals were shorn for assessment of greasy fleece weight (gfw, kg), clean fleece weight 
(cfw, kg), mean fibre diameter (fd, µm), coefficient of variation of fd (fdcv, %), fibre curvature 
(curv, degrees/mm), staple length (sl, mm) and staple strength (ss, N/ktex). Birth type and rearing 
type of the progeny were inferred from parentage determination based on DNA samples and the 
dam’s pregnancy scan results. Fleece traits recorded on the ewe progeny have been used for this 
study, except for the post weaning assessment where the records were available for both drops on 
wethers only. From the post weaning assessment, records were available from 529 (52% of records) 
and 495 animals for B1 and B2 respectively, with these proportions maintained across the later 
assessments. Mean performances for each trait of each bloodline are shown in Table 1. Coefficients 
of variation were similar for each combination of bloodline and trait within an assessment (results 
not shown). 

Table 1. Means (standard deviations) for fleece traits of bloodline 1 (B1) and bloodline 2 (B2) 
for post weaning to third adult assessments of fleece traits 

Post weaning Hogget First adult Second adult Third adult 
gfw   B1 3.6 (0.72) 5.1 (0.72) 7.5 (1.30) 6.8 (1.12) 6.8 (1.17) 

   B2 3.5 (0.69) 5.1 (0.68) 7.7 (1.29) 7.4 (1.11) 7.4 (1.19) 
cfw   B1 2.4 (0.54) 2.8 (0.49) 4.5 (0.89) 4.7 (0.94) 4.8 (0.98) 

   B2 2.4 (0.53) 2.9 (0.54) 4.9 (0.84) 5.4 (0.92) 5.6 (1.01) 
fd      B1 16.5 (1.12) 18.0 (1.33) 18.3 (1.29) 18.9 (1.44) 19.5 (1.49) 

   B2 17.5 (1.34) 19.0 (1.45) 19.5 (1.40) 20.5 (1.59) 21.2 (1.70) 
fdcv  B1 18.3 (2.20) 15.8 (2.35) 16.5 (2.36) 15.8 (2.00) 15.3 (1.83) 

   B2 19.2 (2.26) 17.2 (2.60) 17.8 (2.55) 16.9 (2.22) 16.0 (1.98) 
curv  B1 60.1 (10.02) 63.1 (10.80) 61.6 (11.4) 62.5 (12.29) 62.9 (12.68) 

   B2 60.4 (8.85) 63.1 (10.62) 61.5 (10.52) 60.5 (11.63) 60.0 (12.21) 
sl      B1 77.3 (9.77) 81.3 (10.02) 115.3 (11.28) 115.8 (10.41) 108.6 (10.36) 

   B2 77.1 (8.79) 79.4 (9.90) 112.6 (10.51) 114.7 (9.76) 108.6 (9.68) 
ss      B1 26.9 (8.03) 44.3 (9.29) 28.7 (9.41) 34.9 (11.13) 38.5 (12.47) 

   B2 26.6 (9.58) 48.3 (10.11) 30.6 (9.51) 37.2 (10.92) 40.0 (12.74) 

Analyses were performed using ASReml (Gilmour et al. 2021). Initially, the significance of ewe 
bloodline fitted as a fixed effect was tested in univariate models that fitted other fixed effects and a 
random effect of sire. Those fixed effects included birth type (single, twin, triplet), rearing type 
(single, twin), dam age (3, 4, 5, 6 and 7 years old at mating), current reproduction (adult traits only) 
and contemporary group. Fixed effects were excluded from the model when not significant. Then, 
to this model a sire X ewe interaction was added to test if it increased significantly (P < 0.05) the 
log-likelihoods between models. Treating the performances of the progeny of each ewe bloodline as 
individual traits, a multivariate approach also was used to evaluate the correlation between predicted 
sire effects as a measure of the genetic correlation between performance in each bloodline.  

RESULTS AND DISCUSSION 
In general, the ewe bloodline effect was significant (P < 0.001) for the fleece weights and mean 

and variability of fd (Table 2). Bloodline 1 cut less clean wool than B2 at hogget (0.45 kg) and adult 
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shearings (0.9 to 1.1 kg) and grew finer fleeces at all shearings (from 0.5 µm to 1.9 µm at post 
weaning and third adult shearings respectively) which were of more uniform diameter. The results 
were consistent with the breeding objectives described for the bloodlines and agreed with the 
findings for post weaning fibre diameter traits reported earlier from the Macquarie data (Egerton-
Warburton et al. 2019). The ewe bloodline effect also influenced curv at later shearings, sl at hogget 
and first adult shearing and ss at the hogget and the first and second adult shearings. 

In agreement with Egerton-Warburton et al. (2019), the sire X ewe bloodline interaction was 
significant for cfw at the post weaning shearing, accounting for 4.6% of the phenotypic variation 
(Table 2), versus 1.8% in the earlier study. Previously, Mortimer and Casey (2015) had found the 
interaction to be not significant for both clean and greasy fleece weights, accounting for negligible 
amounts of phenotypic variance. Otherwise, the interaction was unimportant for fleece traits 
recorded at later stages, where it tended to account for less than 1% of the phenotypic variation, 
particularly for traits recorded at hogget and later adult shearings. For yearling Merino fleece traits 
recorded on the Information Nucleus flock, sire by site interaction effects have been shown to be at 
most moderate, accounting for 6% of the phenotypic variation in cfw (Swan et al. 2016). 

Table 2. Significant ewe bloodline effects1, and their estimates (deviation from bloodline 2), for 
post weaning to third adult fleece traits and percentage variation accounted for by sire X ewe 
bloodline interaction  

Post weaning Hogget First adult Second adult Third adult 
Ewe bloodline effect 
gfw 0.02 (0.13)*** ns -0.83 (0.21)*** -0.92 (0.21)*** -1.07 (0.22)***
cfw ns -0.45 (0.09)*** -0.87 (0.16)*** -0.89 (0.17)*** -1.07 (0.18)***
fd -0.48 (0.24)*** -1.56 (0.25)*** -1.46 (0.26)*** -1.82 (0.29)*** -1.89 (0.32)***
fdcv -0.21 (0.46)*** -1.81 (0.48)*** -1.14 (0.47)*** -1.67 (0.42)*** -1.32 (0.40)***
curv ns ns ns 2.29 (2.25)** 5.09 (2.42)*** 
sl ns 2.10 (1.43)*** 0.84 (2.07)*** ns ns 
ss ns -3.35 (1.79)*** -6.49 (1.95)** -3.85 (2.17)** ns 
Sire X ewe bloodline (%) 
gfw 3.6 0 1.7 0.7 0 
cfw 4.2* 0.5 2.6 0.7 0 
fd 1.7 0 0 0.7 0.5 
fdcv 0 0 2.0 0 0 
curv 0 0 0 0 0 
sl 2.7 0 0 0 0 
ss 0.7 0 2.5 0 0.9 

1 ns, not significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

Correlations between predicted sire progeny means across the stages for each bloodline for both 
greasy and clean fleece weights were generally around 0.80 (Table 3). While the sire X ewe 
bloodline interaction was not significant for post weaning gfw, the correlation was 0.36. At this 
assessment, progeny of B1 ewes produced more greasy wool than progeny of B2 ewes in contrast 
to the trend observed across later assessments. Most sire progeny means for post weaning gfw of B1 
and B2 were not significantly different from each other, but significantly different means were 
detected where the sire progeny means were at the higher end of the range for B1. Reasonably high 
correlations, usually greater than 0.70, were also estimated for mean and variability of fd across 
assessments. For fd, there tended to be at least half the sire means of B1and B2 detected to be 
significantly different from each other. 
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Table 3. Correlations between predicted sire progeny means for post weaning to third adult 
fleece traits in 2 different ewe bloodlines 

Post weaning Hogget First adult Second adult Third adult 
gfw 0.36 0.77 0.90 0.80 0.78 
cfw 0.79 0.88 0.79 0.81 0.79 
fd 0.77 0.90 0.86 0.79 0.71 
fdcv 0.75 0.85 0.82 0.78 0.67 
curv 0.72 0.87 0.82 0.90 0.86 
sl 0.54 0.97 0.87 0.77 0.85 
ss 0.96 0.91 0.35 0.93 0.61 

CONCLUSION 
Although ewe bloodline effects influenced the fleece traits across stages, sire X ewe genotype 

interactions were generally unimportant and accounted for minor amounts of phenotypic variation 
in Merino fleece traits. Rankings of sires for fleece traits would be reasonably consistent for 
evaluations conducted across different ewe genotypes. This study supports the methods adopted by 
MERINOSELECT genetic evaluations that routinely fit this interaction to account for ewe bloodline 
source effects (Li et al. 2015). 
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SUMMARY 

The LAMPLAN – Terminal and Maternal analysis are large and contain multiple breeds. Over 
the last 20 years there has been an increase in cross breeding in seedstock flocks and thus the number 
of composite animals in these analyses, especially in the Maternal analysis and an overall reduction 
in the number of breed pure animals. The increase in crossbred animals will require some 
development to ensure that breed and heterosis effects are being modelled accurately. Further use 
and reporting of breed composition via genomics and pedigree methods should be considered. 
However, composite animals provide the comparisons needed for an accurate multibreed 
LAMBPLAN analysis allowing selection of animals across breeds for the industries diverse needs. 

 
INTRODUCTION 

Sheep Genetics (SG) has made significant advancements to the Australian national sheep genetic 
evaluation since its inception in 2005. Combining multiple database (for Merinos) and developing 
a uniform “language” to describe genetic evaluation for Australian sheep has proven extremely 
successful and allowed a more streamlined pipeline for delivery of genetic tools and extension 
activities (Collison et al. 2018). Much research has focused on the technical advancements to the 
genetic evaluation, with the main development work, first outlined by Brown et al. (2007), being 
completed and implemented into the current genetic evaluation. Advances in genomic technologies 
and development of resource populations (Brown et al. 2018) have seen changes to the analyses and 
these are incorporated as key component in the evaluation and in many breeding programs. 

This paper examined the occurrence of the major contributing breeds and/or composites within 
the SG population and examine utilisation of pure animals and composite animals over time. 
 
MATERIALS AND METHODS 

Data for this analyses was obtained from the Terminal and Maternal LAMBPLAN database from 
the February 2023 routine analyses. Table 1 below shows a summary of pedigree related data for 
these two analyses. The breed of animals is assigned based on the flock of origin with animals within 
that flock being designated a breed. This included a number of breed codes specifically for 
composite animals (CT; Terminal, CM; Maternal).  

As part of the routine analyses a pedigree-based breed composition matrix for all animals was 
calculated along with both generalised direct heterosis and maternal heterosis which was calculated 
across all breeds but not accounting for specific breed combinations (Brown et al., 2016). Flock and 
breed level trends were calculated for the following statistics breed purity (animals which have 90% 
or greater of assigned breed proportion), homebred (proportion of animals where the sire’s flock 
code is the same as to progeny’s flock code), outside sire breed (proportion of animals where sire 
type does not match the flocks breed code), direct heterosis and maternal heterosis. 
 
 
 

 
* A joint venture of NSW Department of Primary Industries and University of New England. 
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Table1. Data summary of LAMBPLAN pedigree for the February 2023 Analyses 
 

 Animals Sires Dams Flocks Breeds 
Maternal 2,671,734 35,484 608,956 2,635 65 
Terminal 3,726,242 54,788 958,806 4804 73 

 
RESULTS AND DISCUSSION 

The LAMBPLAN analysis contains many breeds however for this study we focus on the major 
breeds with minor breeds grouped into an “Other” category. The number of minor breeds 
contributing has declined from 39 breeds in 2000 to 19 breeds in 2020 for the Maternal analysis and 
from 42 in 2000 and to 28 in 2020 for the Terminal analysis (Table 2).  

Within the Maternal analyses the major difference in breed contribution between 2000 and 2020 
can be associated with a 7,000% increase in the number of CM animals due to large increases in the 
use of composite sires and dams as well as a substantial increase in number of composite stud flocks. 
Furthermore, it is worth noting that there was a significant proportion of CM animals in 2000 were 
missing pedigree, a likely by-product of the development of composites from non-SG sources. 
Excluding the CM breed all other breeds have exhibited a reduction in flock numbers since. The 
number of Border Leicester and Booroola animals in the analysis has increased while the Coopworth 
and White Suffolk have maintained similar number of animals. The Corriedales and minor breeds 
(other) have seen reductions in the number of animals and flocks. 

In the Terminal analysis the use of a composite breed (CT) has significantly increased in both 
the number of animals and flocks, although not to the same extent as observed in Maternals. White 
Dorper, Dorper, White Suffolk, Poll Dorset, Suffolk and Southdown all show large increases in 
animals. With the Texel and the minor breeds (other) breeds having a reduction in numbers.  
 
Table 2. Summary of the major breed contributions in the LAMBPLAN analyses in 2000 and 
2020 
 

Breed Animals Sires Dams Flocks 
2000 2020 2000 2020 2000 2020 2000 2020 

Maternal Analysis 
Border Leicester 8,130 15,341 277 292 5,319 9,114 53 45 
Corriedale 9,462 5,520 177 116 5,781 3,506 25 21 
Coopworth 35,095 32,371 406 417 18,922 17,561 52 35 
White Suffolk 2,282 2,444 212 94 1,618 1,597 81 17 
East Friesian 885 798 47 12 454 446 12 1 
Booroola 224 625 6 10 111 322 2 1 
Composite 345 25,096 19 365 12 12,771 3 39 
Other 1,914 684 595 64 1,559 490 229 22 

Terminal Analysis 
White Dorper 831 6,394 89 142 285 4,180 25 18 
Dorper 494 4,056 46 108 113 2,271 15 14 
White Suffolk 24,995 58,053 663 1,102 16,647 36,794 166 193 
Suffolk 3,144 6,369 172 220 2,224 4,073 49 62 
Texel 4,123 1,302 192 48 2,975 919 63 10 
Poll Dorset 37,595 55,662 1,034 1,049 24,847 35,477 199 152 
Southdown 483 2,204 33 85 362 1,345 8 15 
Composite  1,164 8,791 51 311 683 5,292 21 34 
Other 5,269 4,466 619 172 3,541 2,983 196 41 

 
Figure 1 below summarises the trend in animal number for the two most populous breeds along 
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with the composite breed for their respective analyses. The terminal analyses showed a rise in the 
composite animals, but they remain below the number of Poll Dorset (PD and White Suffolks (WS) 
within the analysis. In comparison the Maternal composites have had a marked rise in popularity 
since the mid-2000s. Equalling the top two breeds Border Leicester (BL) and Coopworth (CW) for 
animals born in 2015 and increasing rapidly to almost 25,000 animals in 2020. 

Whilst the popularity of developing a composite line has increased the desire to maintain purity 
varies across breeds, most likely due to breed society convention and capacity to achieve desired 
genetic gains with the breed population. For example, the Poll Dorset and Border Leicester breeds 
which have remained largely pure with only small influence from outside breeds. This contrasts with 
the White Suffolk in Terminals and Coopworth in Maternal which show only a small number of 
animals born per year which could be considered pure. Unsurprisingly the composite animals in 
both analyses have considerable influence from outside breeds.  
 

 
Figure 1. Breed contributions within the LAMBPLAN of the two largest breeds and 
composites, Maternal (left) and Terminal (right), databases from 1990-2020. Solid lines are 
counts of animals with dotted lines being counts of pure (>90%) animals 
 

The LAMBPLAN Terminal and Maternal analysis are large multibreed analysis when we look 
at trends overtime for statistics relating to breed some interesting differences were observed 
between the two analyses. Figure 2 presents for both analyses the proportion of animals which are 
pure of designated breed or above 90 percent of that breed via the black and green lines, 
respectively. The reduction in purity across the analyses is greatest in the Maternal analysis, where 
there is a stronger willingness from breeders to look at individual animals from outside their breed 
rather than limiting sire uses to their breed. Thus, allowing maternal breeders to take advantage of 
across breed and within breed genetic variation and potential heterosis effects. The red lines (Figure 
2) represent the proportion of animals which are the progeny of a homebred sire, this has increased 
overtime in both analyses and approaching 50% in Terminals and almost 70% in Maternal. The 
proportion of progeny born to outside breeds is significantly higher in Maternals compared to 
Terminals, suggesting an increased willingness from breeders to look to capitalise on high merit 
animals from outside breeds. However, the trend to use and outside breed remains proportionally 
relatively constant (Figure 2, blue line). Direct and Maternal Heterosis levels increase to around 
25% in the Terminal analysis and approaching double that in the Maternal analysis however the 
level of heterosis looks to be stabilising in the Terminal analysis while the Maternal animals are 
continuing to trend towards higher levels of heterosis. Overall the trends across both analyses are 
for less pure and more cross bred animals with Maternal analysis showing this trend much more 
strongly than the Terminal analysis. 
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Figure 2. Breed purity, sire selection and Heterosis trends within the Sheep Genetics Maternal 
(left) and Terminal (right) databases from 1990-2020. The mean percentage of pure breed 
(grey), proportion of animals who are > 90% of their assigned breed (green), proportion of 
homebred animals (red), proportion of outside breed sires (blue), Direct Heterosis (orange) 
and Maternal Heterosis (purple) 

CONCLUSIONS 
This study showed the change overtime in the breed structure of the LAMBPLAN Terminal and 

Maternal analysis. In general, the number of flocks and breeds represented in the analysis has 
reduced overtime, while the overall animal numbers have increased. Both analyses have also had an 
overall reduction in breed purity and a consequent rise in composite animals, this is especially 
prominent in the Maternal analysis where composites are now the largest “breed” represented. 
These changes provide both opportunities and challenges for the evolution of the analysis. Future 
challenges included modelling of more heterosis effects and providing information around the breed 
proportion of these composites. Also, with the number of breed crosses and composites and large 
number of animals and pedigree in common could provide the possibility of a future joint Maternal 
and Terminal Analysis. 
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SUMMARY 
When dairy farmers have reared surplus dairy heifers, a subset are selected for retention and 

entry to the milking group. We used stochastic simulation modelling followed by economic 
modelling to compare effects of 1) selection of heifers based on genomic Balanced Performance 
Index estimates to either 2) selection of early-born heifers in seasonal and split calving herds (the 
most common calving systems in Australia), or 3) random selection in year-round calving herds. 

Based on those results, for Holsteins in seasonal and split calving herds, selection in a single 
birth-year group based on Balanced Performance Index typically delivers a small profit over the 
medium term (i.e. estimated net present value for the first 7 years $1,704 for a 300 cow herd) but 
larger profits over 12 ($5,354) and 17 ($6,942) years. These estimates did not include the additional 
costs incurred due to retaining later-born heifers when heifers are selected based on Balanced 
Performance Index estimates compared to selection of early-born heifers. Effects on profit were 
estimated as typically being larger in year-round calving herds ($4,897, $9,958 and $12,124, 
respectively). In Jerseys, effects would be expected to be a little less than these as there was typically 
less variation in Balanced Performance Index estimates within groups of Jersey heifers. 

These results indicate that, under the model assumptions, the medium-term effects of using 
genomic selection to select replacements from surplus dairy heifers on herd profit are typically small 
in seasonal and split calving herds, but are larger in year-round calving herds. However, there was 
large stochastic variation between birth-year groups of 100 heifers in effects of selection strategy on 
true breeding values for Balanced Performance Index, indicating that effects would vary 
substantially between individual birth-year groups. 

 
INTRODUCTION 

When dairy farmers have reared surplus dairy heifers, a subset are selected for retention, calving 
and entry to the milking group and the remainder are sold before their first calving. Heifers can be 
selected based on various attributes. In seasonal and split calving herds (the most common calving 
systems in Australia), preferential selection of early-born heifers helps ensure all heifers are at target 
liveweight by yearling mating start date. Alternatively, selection can be based on genetic estimates 
for the heifers. With the availability of commercial genomic testing services, genetic estimates based 
jointly on animal pedigree and genomic results are readily available for heifers prior to their first 
calving. 

The aim of this work was not to assess the profitability of rearing and selling surplus dairy-breed 
heifers relative to other management strategies available for the herd but rather, for herds that have 
an excess of AI-sired dairy heifers, to estimate the effects of selection of a subset of those heifers 
for retention based on genomic Balanced Performance Index estimates compared to each of a) 
selection of early-born heifers in seasonal and split calving herds or b) random selection in year-
round calving herds (representing any selection strategy that is independent of both the heifers’ true 
Balanced Performance Index values and birth date). 
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MATERIALS AND METHODS 
We used stochastic simulation modelling followed by economic modelling to compare selection 

strategies in a single birth-year group in a commercial herd. To provide input parameter values for 
this modelling, we analysed genomic Balanced Performance Index estimates and reliabilities, and 
birth dates from 25,423 Holstein heifers born in 2019 or 2020 from 205 herds, and 61,631 Jersey 
heifers born in 2019, 2020, or 2021 from 396 herds. Only genomic estimates from before the heifers’ 
first calving dates were used. 

The steps in the simulation modelling were as follows: 
1. Generate a simulated group of 100 heifers, each with a true breeding value for Balanced 

Performance Index and a birth date 
2. Generate Balanced Performance Index estimates for each heifer 
3. Select 50 heifers from the 100 heifers using each of three methods: 

a. Select the 50 heifers with highest Balanced Performance Index estimates 
b. Select the 50 earliest-born heifers 
c. Select 50 heifers independently of their genetic attributes and birth date 

(simulated by random selection) 
4. Calculate mean true breeding value for Balanced Performance Index under each 

strategy, and calculate differences between means for strategy a versus strategy b and 
strategy a versus strategy c 

5. Also calculate differences in distributions of birth dates under each strategy 
6. Repeat steps 1 to 5 a further 9,999 times, and summarise differences 

True breeding values for Balanced Performance Index were simulated using specified parameter 
values for 1) the standard deviation of Balanced Performance Index estimates in the source 
population from which the birth year group of heifers were drawn, 2) Balanced Performance Index 
estimate reliabilities and 3) the genetic correlation between Balanced Performance Index and birth 
date. Birth dates were selected from a log-normal distribution based on that observed in the study 
dairy heifers and the observed value for the (negative) correlation between Balanced Performance 
Index estimate and loge-transformed birth date in Holstein study heifers of -0.21 used as the genetic 
correlation parameter value. The Balanced Performance Index includes the daughter fertility 
estimated breeding value (Australian Breeding Value or ABV) so cows with higher Balanced 
Performance Index values on average, conceive and so calve earlier in the calving period in seasonal 
and split calving herds. As daughter fertility ABVs between dams and daughters are correlated, it 
was expected that  Balanced Performance Index would be correlated with birth data, and this is what 
we found in our analyses.  

Economic effects of selection based on Balanced Performance Index estimates relative to each 
of the other strategies in a single birth-year group were assessed for a 300-cow herd rearing 132 
dairy heifers each year and retaining 66 to calve in the herd (i.e. 22% replacement rate). Herd 
replacement rates and age structures were held constant in every year under all three strategies. 
Differences between means for the strategies from the simulation modelling (Table 1) were 
estimated with the standard deviation of Balanced Performance Index values in the source 
population from which the birth year group of heifers were drawn of 85.9 units, with Balanced 
Performance Index estimate reliabilities of 0.64, with genomic testing costs of $53 per heifer ($50 
testing cost plus $3 labour). We assumed that each 1 unit increase in herd average true breeding 
value for Balanced Performance Index in a particular year over the previous year causes a $1 
increase in herd profit in that year, as inferred by Byrne (2016). Effects of higher Balanced 
Performance Index values of the selected birth-year group on true breeding value for Balanced 
Performance Index of their daughters, granddaughters etc were incorporated when calculating 
differences in herd average true breeding values for Balanced Performance Index by year. Economic 
effects were estimated for 17 years where year 1 is the year of birth of the selected group. Net present 
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values were calculated using a 5% discount rate. The additional costs incurred due to retaining later-
born heifers (additional feed costs to attain higher growth rates to the herd’s yearling mating start 
date and/or economic costs of failing to achieve the same liveweights by then) when heifers are 
selected based on Balanced Performance Index estimates compared to selection of early-born heifers 
were not included in economic calculations. 

RESULTS AND DISCUSSION 
Means of true breeding values for Balanced Performance Index amongst 50 heifers selected from 

100 heifers based on Balanced Performance Index estimates were, on average, modestly higher than 
for other selection methods but there was large stochastic variation between birth-year groups (Table 
1 and Figure 1). The mean of differences relative to random selection of 54.6 was close to the 
expected value from the breeders’ equation (Falconer 1989) of 54.8. Relative to selection of the 
earliest-born heifers, more of the heifers selected based on Balanced Performance Index estimates 
had been born after day 42 of the herd's calving period,  (Table 1). 

Table 1. Distribution of differences in means of true breeding values for Balanced 
Performance Index and percentages of heifers born after day 42 of the herd's calving period 
between 50 simulated Holstein heifers selected from 100 heifers as those with the highest 
Balanced Performance Index estimates and either the 50 earliest-born heifers or 50 randomly 
selected heifers selected from the same 100 heifers; distributions were from 10,000 replications 

Outcome variable and statistic Relative to selection of 
earliest-born heifers 

Relative to random 
selection of heifers 

Means of true breeding values for Balanced Performance Index 

Mean of differences 39.9 54.6 

Standard deviation of differences 9.6 10.8 

Range of differences 7.2 to 82.9 16.2 to 103.9 

Percentages of heifers born after day 42 of the herd's calving period 

Mean of differences 17%1 -4%

Standard deviation of differences 5% 6%

Range of differences 0% to 40% -26% to +18%
1For example, the percentage of the 50 heifers selected as those with the highest Balanced Performance Index 
estimates that had been born after day 42 of the herd's calving period was, on average, 17% more (range 0% to 
40%) than that for the 50 earliest-born heifers 

From the economic modelling, for seasonal and split calving herds, selection in a single birth 
year based on Balanced Performance Index typically delivers a small profit over the medium term 
(i.e. estimated net present value for the first 7 years $1,704 for a 300 cow herd) but larger profits 
over 12 ($5,354) and 17 ($6,942) years. The larger profits for 12 and 17 years relative to 7 years 
were mainly due to higher Balanced Performance Index values in the daughters, granddaughters etc 
of the selected heifers. Effects of selection on profit were estimated as typically being larger in year-
round calving herds ($4,897, $9,958 and $12,124, respectively). Newton et al (2018) also reported 
small estimated profits from selected heifers based on genomic Balanced Performance Index 
estimates in seasonal calving herds compared to selection in the absence of genetic information. Due 
to stochastic variation in genetic effects between single birth-year groups under each heifer selection 
method, in seasonal and split calving herds, net present value for the first 7 years would be expected 
to be negative (i.e. the benefits being less than the costs of genomic testing) for 20.4% of birth-
year 
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groups but net present value for the first 17 years would be expected to be negative for only 1.2% 
of birth-year groups. In contrast, in year-round calving herds, negative net present values due to 
stochastic variation in genetic effects would be very unlikely (1.4% and 0.04% of birth-year groups, 
respectively). 

Figure 1. Distribution of differences in means of true breeding values (TBVs) for Balanced 
Performance Index (‘BPI TBV difference’) between 50 simulated Holstein heifers selected 
from 100 heifers as those with the highest Balanced Performance Index estimates and a) left-
hand graph: selection of the 50 earliest-born heifer and b) right-hand graph: 50 heifers 
randomly selected from the same 100 heifers. Distributions were from 10,000 replications 

There was typically less variation in Balanced Performance Index estimates for groups of Jersey 
heifers (median of the standard deviations 63.5 compared to 68.7 for Holsteins). Accordingly, 
economic effects of selection on Balanced Performance Index estimates would be expected to be a 
little less for groups of Jersey heifers than for Holsteins as reported above. 

CONCLUSIONS 
These results indicate that currently the medium-term effects of genomic selection from surplus 

dairy heifers on profit are typically small in seasonal and split calving herds but are larger in year-
round calving herds, on average. Genomic testing can also assist in correcting pedigrees and 
reducing inbreeding, avoiding recessive lethal genes, and selecting for desired genetic variants, and 
the benefits of these effects were not included in the economic analyses. 
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EFFECTS OF SELECTION AND DATA TRUNCATION ON ESTIMATES OF GENETIC 
PARAMETERS OBTAINED FITTING A SINGLE-STEP MODEL

Karin Meyer

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW 2351 Australia

SUMMARY
Simulation was used to illustrate the effects of genomic selection on estimates of genetic parame-

ters, comparing values when genomic relationships were ignored with those obtained accounting for 
the joint relationship matrix of genotyped and non-genotyped individuals. Analyses were carried out 
with increasing truncation of earlier records, pedigrees and genotype information. Results showed that 
estimates from pedigree only analyses could be markedly biased downwards as more historical data 
is ignored, especially with strong genomic selection, causing predicted breeding values for selection 
candidates in the last generation to be under-dispersed.

INTRODUCTION
Increasingly genetic evaluation schemes for livestock incorporate genomic information on a 

routine basis. To date, the most common method is single-step genomic best linear unbiased prediction 
(ssGBLUP) fitting a breeding value model. This replaces the pedigree-based inverse of the numerator 
relationship matrix with its counterpart which combines pedigree and genomic information (Aguilar 
et al. 2010). It is a conceptually simple extension of the classic prediction procedures using pedigree 
based relationships only (PBLUP). Like PBLUP, ssGBLUP requires appropriate values of genetic 
parameters as input. It is common practice to estimate these fitting the same –  or at least a  very 
similar – model as used for prediction of breeding values (EBV). Reviewing the status of genomic 
evaluation, Misztal et al. (2020) advocated inclusion of genomic relationships when estimating genetic 
parameters to counteract the bias due to genomic selection. The authors also recommended frequent 
re-estimation as genetic variances appeared to change quicker with ssGBLUP.

However, to date, estimates are mostly obtained considering pedigree based relationships only, 
and little is known about the impact of doing so on the efficacy of genomic se le ction. This paper 
presents a simple simulation study exploring the effects of accounting for genomic relationships on 
estimates of genetic parameters and the resulting accuracy of ssGBLUP based selection.

MATERIAL AND METHODS
Data were simulated for a trait with heritability of 0.3 and for individuals from 13 generations 

using the software package AlphaSim, version 1.05 (Faux et al. 2016). The data set contained records 
for 2100 and 3150 animals, respectively in generations 1 to 7 and 8 to 13, who were the progeny of 
100 and 150 sires and 1000 and 1500 dams, respectively. To mimic a distribution over fixed effects 
subclasses, records were randomly assigned to 51 ‘contemporary groups’ per generation. Genotypes 
were constructed by sampling 10 chromosomes with 4,000 single nucleotide polymorphism (SNP) 
and 50 quantitative trait nucleotide (QTN) each, randomly allowing for some QTN to be included 
among the SNP and assuming no mutation or recombination. Marker information for all individuals 
in generations 10 to 13 was retained, disregarding earlier genomic information.

AlphaSim provides the option to carry out selection in individual generations externally by 
allowing the user to select the parents and mating allocations of the next generation (Faux et al. 2016). 
This was utilised to implement three alternative selection schemes, combining random selection with 
selection on EBV obtained using pedigree relationships only and EBV from ssGBLUP analyses.

* A joint venture of NSW Department of Primary Industries and University of New England,
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Figure 1. Distribution of heritability estimates over replicates (see text for definitions)

Discarding generations 1 to 4 as burn-in, parents of generations 5 to 7 were chosen at random. 1) For 
a genomic scenario (GSel) selection was on EBV from PBLUP in generations 8 to 10 and on EBV 
from ssGBLUP in generations 11 to 13. This was contrasted with 2) selection on EBV from PBLUP 
in generations 8 to 13 (PSel) and 3) random selection throughout (RSel). EBV were obtained from 
restricted maximum likelihood (REML) analyses at convergence. For generation i analyses utilised 
data and pedigree information from generation 6 to i (to select the parents of generation i + 1) and, 
where applicable, all marker information from generation 10 to i.

To investigate the effects of selection bias and truncation of data on estimates of genetic parameters, 
analyses were carried out successively ignoring information from earlier generations, i.e. considering 
records, pedigrees and marker counts from generations i to 13 only where i = 6,...,12. In the following, 
we refer to generation i as the ‘starting generation’ for an analysis. Accuracy and dispersion of EBV 
for selection candidates in generation 13 were measured as the correlation between and regression of 
true breeding values (TBV) on EBV. 50 replicates were carried out for each scenario.

REML analyses (for both the external selection steps and the data sets sampled) used either pedi-
gree based relationships only (PREML) or pedigree and genomic relationships jointly (ssGREML), 
fitting a simple animal model with contemporary group as the only fixed effects. Genomic relationship 
matrices (G) were built using Method 1 of Van Raden (2008), eliminating SNP with minor allele 
frequencies less than 2% and centering allele counts using mean frequencies in the data. These were 
aligned to their pedigree based counterparts (A22) following Vitezica et al. (2011).

RESULTS
The distribution of heritability estimates over replicates for the three selection strategies is 

summarised in Figure 1. In all cases, means – depicted by circles – agreed closely with the median 
values. As expected, for RSel, estimates from ssGREML and PREML did not differ noticeably and 
showed no bias, though some differences in variability across replicates were evident. For PSel and 
GSel, however, estimates depended strongly on the subset of data utilised. Loosely described, REML 
can account for selection bias, provided the information that selection decisions were based on is 
included in the analysis. Hence, for data starting at generations i = 6 or 7, no selection bias was evident 
for PSel, while corresponding estimates from PREML analyses for GSel were somewhat lower. The 
latter could be attributed to stronger selection in the last three generations for GSel, together with the 
fact that PREML ignored the genomic information which facilitated it. Conversely, as more and more 
of the generations subject to selection were omitted from the data (i.e. as the ‘starting generation’ 
increased), estimates reflected the reduced genetic variation available in what was implicitly treated 
as the base generation in the truncated data set.
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As shown in Figure 2 for
GSel, the higher heritability esti-
mates from ssGREML analyses
were mainly due to higher ge-
netic variance estimates. Inter-
estingly, ssGREML estimates of
the residual variance did not de-
pend strongly on the amount of
data truncation, while values for
PREML exhibited distinct repar-
titioning of genetic into residual
variation.

The distributions of correla-
tions between TBV and EBV and
regressions of TBV on EBV for
selection candidates in generation 13 are shown in Figure 3. With the simulation involving strong 
selection and, for ssGREML, all individuals from generation 10 onward having genomic information, 
mean correlations for ssGREML analyses were very high and substantially exceeded those from 
PREML, in particular for GSel. For all three scenarios, values for PREML differed little between the 
subsets of data utilised. Robustness of such correlations, in particular for univariate analyses, is a well 
known phenomenon for PBLUP. In contrast, means for ssGREML and starting generations 11 and 
12 dropped, due to the omission of marker information in these analyses. Mean regressions of TBV 
on EBV were close to their expected value of unity for all ssGREML analyses. Corresponding values 
for PREML and PSel or GSel, however, showed increasing underdispersion of EBV (i.e. regression 
coefficients greater than unity) with increasing starting generation, mirroring the underestimates of 
genetic variation reported above.

DISCUSSION
Simulation studies on ssGREML have been presented by Cesarani et al. (2019) and Junqueira 

et al. (2022) but involved different set-ups and questions considered. Our study attempted to mimic, 
in a simplified s cheme, t he p rogression f rom r andom s election t o pedigree based and finally to 
genomic assisted selection which might occur in a livestock improvement programme. Clearly, results 
are at least partially specific to the scenario c onsidered. In particular, for analyses using genomic 
information all individuals in the relevant generations were assumed to be genotyped. This yielded 
substantial differences in estimates of variance components from PREML and ssGREML. Additional 
ssGREML analyses retaining only genotypes for a proportion of randomly selected animals reduced 
estimates closer to values from PREML (not shown).

Truncation of data and pedigrees redefines the base generation. This implies that estimates of the 
genetic variance reflect the amount of ‘usable’ genetic variation in that generation. Consequently, when
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Estimates from ssGREML were consistently higher than those from PREML for both PSel and 
GSel and, for analyses including data from unselected generations, were somewhat higher than 
the population value of 0.3 simulated. Including pedigree information for individuals in starting 
generation i, we would expect estimates to reflect t he genetic variance i n base g eneration i − 1. 
Presumably the overestimates might be attributed, to some extent at least, to the effects of pedigree 
truncation – and thus underestimates of inbreeding – resulting in imperfect alignment of G to A22. 
Limited additional analyses for GSel using data from generations 3 to 13 yielded a mean heritability 
estimate closer to 0.3, suggesting so.



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●● ●● ●● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

RSel PSel GSel

C
o

rre
la

tio
n

R
e

g
re

s
s
io

n

6 7 8 9 10 11 12 6 7 8 9 10 11 12 6 7 8 9 10 11 12

0.5

0.6

0.7

0.8

0.9

1.00

1.25

1.50

1.75

Starting generation

●

●

ssGREML

PREML

Figure 3. Distribution over replicates of correlations between true and predicted breeding 
values and regressions of true on predicted breeding values for animals in generation 13 (see 
text for definitions)

omitting information on which selection decisions have been based, estimates declined, especially for 
GSel. Implications thereof need to be considered when predicting response to selection or evaluating 
reliabilities of EBV (Gorjanc et al. 2015). As more and more animals are genotyped and as the 
emphasis on genomic selection increases, ssGREML estimation of genetic parameters will become a 
necessity.
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SUMMARY 

This study aimed to examine the predictive ability of the “Flock Profile” genomic benchmarking 
method in maternal sheep flocks, estimated from the Maternal LAMBPLAN analysis. Data from 
this analysis was used in a validation study to test the accuracy of predicting mean flock performance 
for reproductive traits. For each validation flock, the pedigree, genotypes and performance data were 
removed for the entire flock and then its Flock Profile result was estimated from genomic predictions 
based on estimated SNP marker effects from single step genomic BLUP analyses (ssGBLUP). The 
Flock Profile results were then compared to the original Australian Sheep Breeding Values (ASBVs) 
from the full analysis. The accuracy of ranking of mean flock performance was high (r>0.85) for all 
traits except ewe rearing ability. However, the Flock Profile results were generally over-dispersed 
and thus had more variation compared to their ASBVs. Genomic predictions for individual animals 
were also highly correlated to the full ASBVs. This initial study supports further investment into the 
development of these products, with the potential to offer commercial producers new genetic tools 
to foster ongoing improvement in on-farm profitability. 

 
INTRODUCTION 

The Flock Profile test is successfully used to genetically benchmark commercial Merino flocks 
(Swan et al. 2018). While the average Australian Sheep Breeding Value (ASBV) of rams purchased 
is often the most accurate metric of genetic merit, it is not available to commercial flocks from 
outside of Sheep Genetics when sourcing rams. Thus, Flock Profile tests are an important tool for 
those breeders without any knowledge of their current genetic benchmark. At present, these are only 
commercially available in purebred Merino flocks and does not include reproduction traits. 
However, dissemination of genetic gain made in the seedstock sector would be enhanced across 
industry if similar products were available for other breeds, and in particular for commercial 
crossbred flocks. Brown et al. (2022) conducted a preliminary validation in terminal sire breeds for 
carcase traits, which demonstrated that genomic flock profiling accurately predicted their true ASBV 
mean. Another application under consideration is a Flock Profile product to support the marketing 
of maternal replacements, allowing purchasers to value sale lots on more accurate genetic 
benchmarks for all the key traits rather than relying on visual appraisal alone. In addition to flock 
benchmarking, the methodology could also be used to perform genomic prediction on individual 
animals. 

 This study aimed to examine the predictive ability of the Flock Profile test for reproductive traits 
in maternal sheep breeds, estimated from the maternal LAMBPLAN analysis (Brown et al. 2007). 

 
MATERIALS AND METHODS 

Data from the reproductive component trait analysis for Maternal LAMBPLAN (as described by 
Bunter et al. 2019) were utilised for this study. Reproductive data and genotypes were identified for 
14 selected seedstock flocks within this analysis, chosen based on volume and quality of data. The 
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flocks consisted of Border Leicester, Coopworth and composite breeds. The data available for each 
trait are illustrated in Table 1. To generate an independent ASBV analysis, all the phenotype data, 
pedigree and genotypes from these 14 flocks were removed sequentially and 14 special Maternal 
LAMBPLAN analyses conducted. Using the genotypes only, ASBVs were estimated for each 
animal using the back-solve methods described by Swan et al. (2018) and these were then averaged 
for each flock to estimate the Flock Profile result. The Flock Profile results were then compared to 
their true ASBV means from the full LAMBPLAN analysis using all data. A key aspect of the Flock 
Profile method is the projection of genetic group effects using a regression of genetic group 
coefficients on genomic relationships between reference animals in the ssGBLUP and the animals 
targeted for prediction. Genetic groups in Maternal LAMBPLAN are defined at the breed level, and 
an important difference between Merino and Maternal LAMBPLAN ssGBLUP analyses is that the 
latter uses a genomic relationship matrix which accounts for breed structure (Gurman et al. 2019) 
while the Merino analysis does not. The current Maternal LAMBPLAN analysis uses a breed-
adjusted genomic relationship matrix (G) and a lambda of 0.5. In an attempt to capture breed effects 
in the Flock Profile prediction in this study, back-solving was conducted using genomic 
relationships without accounting for breed structure. In addition, a “lambda” value of 1 was used i.e. 
variance fully explained by markers with no residual polygenic variation. 

The component reproduction traits analysed included conception rate (CON: 0=failed to 
conceive, 1=conceived) litter size (LS: 1 to 4 lambs born) and ewe rearing ability (ERA: lambs 
surviving/lambs born for ewes which lambed). All three traits have yearling and adult expressions 
separated. Additional correlated traits included maternal behaviour score (MBS: from 1: good to 5: 
poor) and, pre-joining weight (AWT) and condition score (CS) recorded within the 30 days before 
joining. Body composition and development traits also included in the analysis were post-weaning 
body weight (PWT), carcase fat (PFAT) and eye muscle depth (PEMD), along with post-weaning 
(PSC) or yearling (YSC) scrotal circumferences. 

 
Table 1. Descriptive statistics of the data used in the validation for each trait. 

 
Trait Flocks Animals Genotyped Mean SD 
PWT 14 94,176 14,632 45.50 9.54 
PCF 14 94,095 14,616 3.33 1.26 
PEMD 14 94,145 14,628 26.52 3.95 
AWT 13 65,016 19,790 68.80 11.58 
PSC 10 31,029 1,449 28.88 4.44 
YSC 7 15,075 269 28.49 2.90 
MBS 11 26,845 19,320 1.82 0.92 
CS 12 33,976 15,542 3.49 0.64 
CON 14 102,562 17,447 0.92 0.27 
LS 14 154,410 25,279 1.76 0.60 
ERA 14 108,618 19,415 0.85 0.30 
YCS 6 4,859 3,580 3.41 0.55 
YCON 12 43,130 13,963 0.66 0.47 
YLS 14 37,854 10,231 1.51 0.55 
YERA 14 28,719 7,707 0.78 0.36 

 
RESULTS AND DISCUSSION 

The accuracy of ranking of flocks was high (r>0.85) for all traits except ewe rearing ability. 
However, the ASBV means and variation between flocks were significantly different between the 
full ASBV and Flock Profile results (Table 2). The difference in the variation between flocks and 
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slope values significantly less than 1 indicate that the Flock Profile results were generally over-
dispersed compared to their ASBVs. This over-dispersion maybe due to the use of the unadjusted G 
and lambda of 1.0 in this study and further research is required to study the impact of these factors. 

 
Table 2. Relationship between Flock Profile (n=14) results and ASBV means from the full 
Maternal LAMBPLAN analysis 

 
Trait Flock Profile mean 

 
ASBV mean (SD) Slope Corr RMSE# 

PWT -0.50 (3.89) 2.76 (1.61) 0.39 (0.04) 0.95 0.49 
PCF 0.27 (0.13) 0.35 (0.13) 0.85 (0.14) 0.87 0.06 
PEMD 0.33 (2.09) 2.21 (1.00) 0.44 (0.06) 0.92 0.40 
AWT -1.31 (1.47) 0.80 (1.13) 0.70 (0.09) 0.91 0.47 
PSC -0.56 (1.97) 1.10 (0.93) 0.44 (0.05) 0.94 0.33 
YSC -1.05 (1.70) 0.71 (0.87) 0.49 (0.04) 0.96 0.25 
MBS -0.10 (0.04) -0.11 (0.05) 0.92 (0.19) 0.81 0.03 
CS 0.13 (0.08) 0.13 (0.05) 0.47 (0.12) 0.75 0.03 
CON 0.00 (0.04) 0.03 (0.01) 0.33 (0.07) 0.83 0.01 
LS -0.18 (0.25) 0.08 (0.11) 0.41 (0.05) 0.92 0.04 
ERA 0.01 (0.02) 0.02 (0.01) -0.02 (0.14) -0.03 0.01 
YCS 0.15 (0.10) 0.24 (0.08) 0.73 (0.10) 0.91 0.03 
YCON 0.01 (0.16) 0.19 (0.06) 0.36 (0.05) 0.91 0.03 
YLS -0.11 (0.20) 0.11 (0.08) 0.36 (0.07) 0.85 0.04 
YERA 0.01 (0.03) 0.03 (0.01) 0.28 (0.05) 0.86 0.01 

# RMSE: Root mean square error 
 
The results of the back-solved breeding values at the level of individual animal are shown in 

Table 3. These results highlight that the Flock Profile methodology could accurately predict the 
ranking of ASBVs within the flocks tested with correlations generally greater than 0.7 for most traits 
and regression slopes of close to 1.0. The relationships across all animals and flocks were lower with 
correlations ranging from 0.34 to 0.96. Further research is required to refine the methodology to 
more accurately partition flock and breed effects. 

It should be noted that unlike most commercial flocks, the flocks used in this analysis were 
seedstock breeders with stronger genetic links to other breeding and reference flocks in the Maternal 
LAMBPLAN analysis and some descendants of these flocks would have existed in other flocks that 
remained in the analysis. Thus, the correlations observed here may be higher compared to those 
observed in less related commercial flocks in industry that are the target of Flock Profile products.  

The longer-term challenge for the development of a commercial Flock Profile test for industry 
flocks is to accommodate their crossbred structure. Lamb production flocks generally incorporate 
breed components from the 3 major breed types of Merino, maternal and terminal, each of which 
are analysed separately by Sheep Genetics in their MERINOSELECT, Terminal LAMBPLAN and 
Maternal LAMBPLAN evaluations. Therefore, the results would need to be aligned relative to each 
of these 3 different ASBV analyses. One difficulty of alignment across analyses not covered in this 
study is the potential effects of heterosis in commercial crossbred ewes, which is one of the key 
benefits of using these maternal sheep, for example in the Border Leicester x Merino production 
system. This requires further consideration. Another technical challenge is that the LAMBPLAN 
analyses are multi-breed, with genomic information corrected for breed effects (Gurman et al. 2019). 
One of the motives of this study was to investigate this issue and ensure breeds effects could be 
accommodated in the Flock Profile method. Aside from addressing the technical challenges 
associated with breed structure and heterosis, Flock Profile testing should be expanded to cover 
more of the traits that influence profitability in sheep enterprises, including reproduction and ewe 
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efficiency, product quality and disease resistance. 

Table 3. Relationship of the genomic only animal level breeding values to the ASBV from the 
full Maternal LAMBPLAN analysis both across and within flocks 

Across all flocks Average of within flock

Trait Flock Profile 
mean (SD) 

ASBV mean 
(SD) Slope Corr RMSE# Corr Slope 

PWT 1.59 (3.34) 3.69 (2.02) 0.51 (0.00) 0.85 1.06 0.87 (0.03) 0.88 
PCF 0.30 (0.25) 0.35 (0.26) 0.93 (0.00) 0.89 0.11 0.90 (0.03) 0.95 
PEMD 1.49 (1.73) 2.69 (1.13) 0.54 (0.00) 0.83 0.64 0.86 (0.04) 0.90 
AWT -0.84 (2.88) 1.05 (2.84) 0.89 (0.00) 0.90 1.21 0.88 (0.03) 0.92 
PSC 0.64 (1.63) 1.77 (1.03) 0.54 (0.00) 0.86 0.52 0.87 (0.06) 0.93 
YSC -0.01 (1.47) 1.30 (0.96) 0.58 (0.00) 0.89 0.44 0.86 (0.06) 0.92 
MBS -0.09 (0.13) -0.12 (0.14) 0.96 (0.00) 0.87 0.07 0.90 (0.03) 1.00 
CS 0.09 (0.12) 0.12 (0.12) 0.81 (0.00) 0.85 0.06 0.90 (0.03) 0.96 
CON 0.02 (0.03) 0.04 (0.02) 0.34 (0.00) 0.49 0.02 0.58 (0.19) 0.76 
LS -0.04 (0.21) 0.16 (0.14) 0.55 (0.00) 0.83 0.08 0.68 (0.13) 0.79 
ERA 0.01 (0.02) 0.01 (0.02) 0.39 (0.01) 0.35 0.02 0.64 (0.12) 0.92 
YCS 0.20 (0.10) 0.27 (0.10) 0.86 (0.00) 0.85 0.05 0.87 (0.04) 0.98 
YCON 0.10 (0.13) 0.23 (0.09) 0.46 (0.00) 0.65 0.07 0.65 (0.18) 0.75 
YLS -0.01 (0.17) 0.17 (0.13) 0.57 (0.00) 0.78 0.08 0.70 (0.14) 0.84 
YERA 0.03 (0.03) 0.04 (0.03) 0.52 (0.00) 0.57 0.02 0.66 (0.15) 0.81 

# RMSE: Root mean square error 

CONCLUSIONS 
The results of this study demonstrate accurate ranking of flocks, but more work is required to 

produce accurate ASBV benchmarks for all traits. This initial study supports further investment into 
the development of Flock Profile products, which has the potential to expand the range of genetic 
tools available to the sheep industry to foster ongoing improvement in on-farm profitability. 
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SUMMARY 
Visual traits are considered valuable components within the breeding objectives of many Merino 

breeders. This paper aimed to estimate genetic and phenotypic correlations between visual traits and 
growth, body composition, reproduction and survival in adult ewes. The data were derived from 
Merino Lifetime Productivity (MLP) sites. Heritability estimates were high for body weight, eye 
muscle depth, fat depth, body wrinkle, breech wrinkle, breech cover and classer grade (0.32 – 0.64), 
moderate for urine stain (0.21) and legs score (0.23) and low for weaning rate (0.07) and ewe 
survival (0.06). Low to moderate negative (favourable) genetic correlations were estimated between 
the visual traits and body weight and composition, reproduction, and survival traits. Phenotypic 
correlations between the visual traits and adult body composition and weaning rate traits were 
negative and low. The genetic and phenotypic correlations estimated in this study were generally 
favourable hence consideration of visual traits in selection and classing may have beneficial effects 
on adult ewe performance. 

 
INTRODUCTION 

Merino sheep are often visually assessed for a range of traits that are not easily evaluated by 
quantitative measurements (Mortimer et al. 2009). These traits contribute to the cost of production, 
the value of wool and meat and the welfare of the sheep; hence, they are considered valuable 
components within the breeding objective of Australian Merino sheep. Professional sheep classers 
and trained technicians currently use standardised scoring systems to visually assess sheep for 
evaluations by Sheep Genetics and the Australian Merino Sire Evaluation Association (Brown et al. 
2007; Australian Wool Innovation 2019; https://merinosuperiorsires.com.au/australian-sire-
evaluation). Moderate heritabilities and low genetic correlations have been reported in the literature 
between some visual traits and body composition (Mortimer et al. 2009). Walkom and Brown (2016) 
estimated genetic parameters and relationships among some visual and production traits in the Sheep 
Cooperative Research Centre Information Nucleus Flocks. However, the association among early 
visual traits and ewe survival are largely unknown. This study utilised data from the Merino Lifetime 
Productivity (MLP) project (Ramsay et al. 2019) to estimate preliminary genetic relationships 
between visual classing traits recorded pre-selection and adult ewe measures of body composition, 
reproduction and survival. 

 
MATERIALS AND METHODS 

Data. Data were extracted for 5,916 Merino ewes from the Balmoral, MerinoLink, New 
England, Macquarie and Pingelly Merino Lifetime Productivity (MLP) project sites (Ramsay et al. 
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2019). These first generation (F1) ewes were the progeny of 134 sires and 4,266 dams. All sites 
provided two cohorts of F1 ewes with lifetime data up to seven years of age. Additionally, the sires 
and sites represent the main wool growing regions in Australia and genotypes found in Australia 
(Ramsay et al. 2019). The data included lifetime records (all repeat records available) for weaning 
rate (WR), pre-joining adult body weight (AWT, kg), live ultrasound eye muscle depth (AEMD, 
mm) and live ultrasound fat at the C site (AFAT, mm). The visual traits included body wrinkle, 
breech wrinkle, breech cover, urine stain, legs score and classer grade, as defined in Table 1. The 
visual traits were scored on a scale of one to five except for grade, which was scored in categories 
of tops (1), flock (2) and culls (3). Ewe survival was defined as the ability of ewes to survive from 
yearling to beyond their fourth year of age (0 or 1). Individual ewes that missed consecutive adult 
reproduction, body and wool trait measurements due to involuntary culling or culling for welfare 
reasons were assumed to have been dispersed from the flock and assigned 0 for survival. Outlier 
measurements beyond four standard deviations across the dataset for body weight, fat and eye 
muscle measurements were dropped from the analysis. 

 
Table 1. Visual trait descriptions, age stages considered and their standard scoring scale 
(Australian Wool Innovation 2019)  
 

Trait Description Scores 
Breech wrinkle 
(MBRWR) 

Degree and quantity of wrinkle on the breech at marking (1 – no 
wrinkle and 5 – extensive wrinkle)  

1 - 5 

Body wrinkle 
(YBDWR) 

Degree and quantity of wrinkle on the body at yearling (5 – extensive 
wrinkles and heavy folds of skin over the entire body) 

1 - 5 

Breech cover 
(MBCOV) 

Amount of natural bare skin around the perineum and breech area at 
marking (5 – complete wool cover) 

1 - 5 

Urine (HURINE) A score of the extent of breech, hind legs and tail wool stained by urine 
at hogget (5 – extensive urine) 

1 - 5 

Legs (PLEGS) Overall soundness of the front and back leg and feet structure at post-
weaning (5 – extreme angulation at the hocks and pasterns of the back 
legs) 

1 - 5 

Grade (HGRADE) Standard of the sheep for visual performance relative to the flock 
breeding objective at hogget (1 – tops and 3 – culls) 

1 – 3 

 
Statistical analysis. Univariate and bivariate mixed linear models were used to estimate variance 

components and, genetic and phenotypic correlations between the visually assessed traits and body 
composition traits using the ASReml software package (Gilmour et al. 2015). Fixed effects in the 
models included contemporary group (flock, year of birth and management group, 97 levels), and 
the interaction between birth and rear type (8 levels). Additive genetic, permanent environmental 
and genetic group effects (182) were fitted as random. The permanent environmental effect was 
fitted for adult traits with repeated records. An extended pedigree with 10,546 animals from 
MERINOSELECT (Brown et al. 2007) was used to capture all known ancestors of the animals with 
data and their parents, and with genetic groups defined for base animals with unknown parents. 
Ultrasound fat and eye muscle depth records were adjusted for body weight (van der Werf 2004). 
Variance components and heritability for survival were based on a binomial univariate model. The 
correlations between muscle and fat and visual traits were post-adjusted for body weight as shown 
by van der Werf (2004). 
 
RESULTS AND DISCUSSION 

Low heritabilities were estimated for weaning rate (0.07) and survival (0.06) (Table 2). Low 
heritabilities for reproduction (Walkom and Brown 2016; Bunter et al. 2019) and survival traits 
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(Hatcher et al. 2009) have been commonly reported for Merino sheep. The heritability for fat, urine 
stain, leg score, classer grade, body weight, eye muscle depth, body wrinkle and breech wrinkle 
ranged from 0.21 to 0.64, indicating considerable genetic variation that could be exploited to 
improve these traits through selection. These parameters were within the ranges of estimates 
reported by Brown et al. (2010) and Walkom and Brown (2016). However, lower estimates for 
classer grade, body and breech wrinkle and legs scores for front and back legs have been estimated 
Mortimer et al. (2009). Future analysis using threshold models will be considered for the categorical 
traits. 

Table 2. Data summary, genetic groups (𝝈𝝈𝒈𝒈𝒈𝒈), additive genetic (𝝈𝝈𝒂𝒂), permanent environment 
�𝝈𝝈pe� and phenotypic (𝝈𝝈𝒑𝒑) variances and heritabilities for body composition, weaning rate 
(WR), visual traits and ewe survival traits (full trait definitions in Table 1 and in data section) 

Trait Records Mean (std) 𝝈𝝈𝒈𝒈𝒈𝒈𝟐𝟐  𝝈𝝈𝒂𝒂𝟐𝟐 𝝈𝝈𝑷𝑷𝟐𝟐 h2 
AWT 15,338 59.06 (11.21) 4.15 19.86 48.93 0.41 (0.04) 
AEMD 15,337 24.21 (3.23) 0.30 2.05 5.22 0.39 (0.04) 
AFAT 15,331 3.36 (1.70) 0.08 0.43 1.10 0.40 (0.04) 
WR 15,298 1.09 (0.67) 0.03 0.03 0.42 0.07 (0.02) 
YBDWR 3,318 2.28 (0.84) 0.20 0.14 0.32 0.44 (0.08) 
MBRWR 5,771 2.53 (0.95) 0.21 0.48 0.76 0.64 (0.06) 
MBCOV 5,771 3.60 (1.11) 0.08 0.17 0.49 0.34 (0.05) 
HURINE 2,564 1.71 (0.75) 0.01 0.08 0.41 0.21 (0.06) 
PLEGS 3,824 2.08 (0.77) 0.03 0.13 0.54 0.23 (0.05) 
HGRADE 5,304 2.00 (0.65) 0.03 0.13 0.41 0.32 (0.05) 
Ewe Survival 5,494 0.77 (0.42) 0.01 0.21 3.50 0.06 (0.03) 

The genetic relationships between early visual traits and adult body weight (Table 3), indicated 
that lower wrinkle, barer breech cover, lower urine stain, better legs and/or classer grade scores were 
all associated with heavier ewes. This relationship supports previous findings by Mortimer et al. 
(2009) and Brown et al. (2010). The association between early body and breech wrinkle scores and 
adult muscle and fat was also favourable, implying that plainer ewes (less wrinkle) were genetically 
more likely to have higher body condition. Similar results were reported by Walkom and Brown 
(2016) between wrinkle and joining condition scores, who also observed high genetic correlations 
between condition scores and muscle and fat. Ewes with more breech cover were genetically likely 
to have higher body fat. The positive correlation between classer grade and adult muscle and fat 
implies that classers favour ewes with lower body condition. This may be related to relationships 
between these traits and others not included in this study (wool traits for example), which is an area 
for further investigation. Phenotypic correlations followed a similar trend to the genetic correlations 
except for the positive correlation between urine stain and adult body weight and fat. Bigger and 
heavier ewes with longer fleece could, therefore, tend to have more urine stain.  

Low and favourable genetic relationships existed between weaning rate and body wrinkle, 
breech wrinkle and leg scores showing that ewes with lower wrinkle and good legs would tend to 
wean more lambs. The relationship between urine stain and leg scores with weaning rate should be 
treated cautiously due to the high standard errors. The genetic correlation between classer grade and 
weaning rate was also negative, indicating a favourable relationship between classing and 
reproduction. Low phenotypic correlations were estimated between the visually assessed traits and 
weaning rate. Negative and moderate genetic correlations were estimated between survival and the 
wrinkle traits. These results suggest that plain bodied ewes with low breech cover score (barer 
breech) at an early age are likely to survive longer in the flock. The genetic correlations estimated 
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between survival and breech cover, urine stains, legs and classer grade were considered not 
significantly different to 0. The phenotypic correlations between survival and the visual traits were 
also close to zero or not significantly different from zero. Further analysis of survival is required to 
better understand the impact of other traits.  

Table 3. Genetic and phenotypic correlations between welfare traits at yearling, post-weaning 
or hogget stage and lifetime adult production 

Trait AWT AEMD AFAT WR Ewe survival 

G
en

et
ic

 

YBDWR -0.18 (0.05) -0.06 (0.05) -0.12 (0.06) -0.15 (0.08) -0.43 (0.26)
MBRWR -0.09 (0.03) -0.11 (0.03) -0.08 (0.03) -0.22 (0.06) -0.46 (0.19)
MBCOV -0.33 (0.04) 0.02 (0.04) 0.11 (0.04) -0.05 (0.08) -0.01 (0.21)
HURINE -0.35 (0.08) -0.14 (0.08) -0.03 (0.08) -0.21 (0.13) -0.03 (0.29)
PLEGS -0.36 (0.07) -0.11 (0.06) 0.06 (0.06) -0.23 (0.10) 0.04 (0.27)
HGRADE -0.53 (0.04) 0.16 (0.04) 0.21 (0.05) -0.24 (0.08) -0.01 (0.20)

Ph
en

ot
yp

ic
 YBDWR -0.12 (0.02) -0.04 (0.02) -0.17 (0.03) -0.07 (0.02) -0.01 (0.02)

MBRWR -0.06 (0.02) -0.13 (0.02) -0.15 (0.02) -0.10 (0.02) -0.03 (0.01)
MBCOV -0.26 (0.02) 0.05 (0.02) 0.01 (0.04) -0.03 (0.02) -0.03 (0.01)
HURINE 0.21 (0.03) -0.11 (0.03) 0.01 (0.03) 0.03 (0.03) -0.04 (0.02)
PLEGS -0.16 (0.02) -0.06 (0.02) -0.01 (0.03) -0.03 (0.02) -0.01 (0.02)
HGRADE -0.42 (0.02) 0.05 (0.02) 0.01 (0.02) -0.05 (0.02) -0.00 (0.01)

CONCLUSION 
The genetic and phenotypic correlations estimated in this study were generally favourable hence 

emphasis on visual traits prior to first selection of maiden ewes into the breeding flock may have 
beneficial effects on adult ewe performance. This was a preliminary analysis and after data 
collection is completed a more comprehensive analysis will be conducted.  
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SUMMARY 
In Australia, there is currently no standard system for assessing ewe udder traits for genetic 

improvement. The aim of this study was to provide preliminary genetic parameter estimates of four 
visually scored udder and teat traits recorded at lambing and weaning, to inform recommendations 
about how and when to record udder and teat traits. Udder depth, teat size and teat placement were 
moderately heritable at both lambing and weaning (0.23 ± 0.08 to 0.36 ± 0.09) and the traits recorded 
at the two stages showed high genetic correlations (udder depth 0.75 ± 0.14; teat size 0.79 ± 0.12; 
teat placement 0.70 ± 0.16). Udder cleft, showed lower heritability, and lower genetic correlation 
across the two stages, with increased phenotypic variance from lambing to weaning. These results 
suggest that either stage is appropriate for recording udder depth, teat size and teat placement for 
genetic improvement of Australian Merinos.  

 
INTRODUCTION 

Neonatal lamb mortality is the most significant health issue of Australian sheep with substantial 
economic, welfare and sustainability implications (Shephard et al. 2022). In Australia, neonatal 
mortalities are mainly caused by dystocia/birth injury and the starvation/mismothering/exposure 
(SME) complex, each contributing to approximately 40% of neonatal deaths (Hinch and Brien 
2014). Starvation mortalities are typically regarded as multifactorial, however poor udder and teat 
conformation of the dam have been implicated (Jordan and Mayer 1989). Mortality rates in lambs 
born to ewes with defective udder function have been shown to be more than double that observed 
in lambs born to ewes with sound udder conformation (Hayman et al. 1955; Griffiths et al. 2019). 
Smith et al. (submitted) showed that udder and teat conformation traits of Australian Merino ewes 
are heritable, with estimates ranging from 0.09 to 0.56 across visually scored and measured traits, 
and that overall udder soundness was associated with lamb survival. Further, (Smith et al. submitted) 
observed that in some instances udder conformation issues noted at birth were not readily discernible 
at weaning, which was consistent with the findings of Griffiths et al. (2019). The objective of this 
study was to build on earlier work, providing preliminary genetic parameter estimates of udder and 
teat traits assessed at birth and weaning, to inform recommendations regarding the optimal time for 
their assessment.   
 
MATERIALS AND METHODS 

Data source. The study was conducted during 2022 using ewes from the New England Merino 
Lifetime Productivity (MLP) flock (Ramsay et al. 2019), maintained by CSIRO at the FD McMaster 
Laboratory, Chiswick, Uralla NSW, Australia, according to MLP project protocols (AMSEA 2020). 
The flock was generated by artificial insemination in 2017 and 2018 from 28 genetically diverse 
Merino and Poll Merino sires (15 sires per year with 2 sires used across years for genetic linkage). 
In 2022 ewe progeny per year-sire group ranged from 27 to 57 ewes. The flock comprised 619, 4 
year old (yo) (born 2018) and 638 5 yo (born 2017) ewes, however, only those ewes that lambed in 
2022 (number lambs born, NLB>0) and reared at least one lamb to weaning (number lambs weaned, 
NLW>0) were included in the statistical analysis (n=1,105). The ewes were natural syndicate mated 
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within age groups for 35 days (d) commencing 28th March (d0). Lambing took place from d142-
187. Lambs from the 4yo and 5yo ewes were weaned on d248 (median age 89d) and d252 (median 
age d93) respectively. Udder and teat traits were recorded on the ewes at lambing during lambing 
rounds (twice-daily), and on the days following weaning (d248-249 and d252-254 for the 4yo and 
5yo ewes, respectively). Experimental procedures conducted on animals were approved by the 
CSIRO Armidale Animal Ethics Committee (Animal Research Authority no. 21/24).  

Udder and teat appraisal. Ewes were visually scored (1-5) while in a standing position for 4 
udder and teat traits at lambing (L) and weaning (W). Traits assessed were udder depth (UD, size of 
the udder in relation to the hock, 1=smallest to 5=largest,  udder floor below hock); udder cleft (UC, 
reflects udder symmetry, strength of the medial ligament and attachment to the abdomen, 1=well 
defined cleft (strong medial ligament), 2=evident cleft, 3=flat udder floor or ‘broken’ (weak) 
ligament, 4=asymmetric but both halves functioning; 5=asymmetric with one half involuted); teat 
size (TS, combination of teat width and length, 1=smallest to 5=largest) and teat placement (TP, 
position of teat relative to horizontal, 1=high on udder, horizontal, 3=45° from vertical, 5=vertical). 
Score 3 is considered optimal in terms of productivity and ewe health for all traits, except UC where 
score 1 is optimal. At lambing, ewes were assessed by 1 of 4 trained operators during lambing 
rounds, and at weaning by a single operator (1 of the initial 4) in a classing crate.  

Statistical analysis. Univariate mixed animal models were applied using ASReml software 
package (Gilmour et al. 2021) for determination of significant fixed effects and covariates on the 
udder and teat traits, and to estimate (co)variance components and heritability. The maternal 
environmental effect was tested, but determined by likelihood ratio testing to be non-significant and 
was not considered further. All traits approximated normality and no interactions among fixed 
effects were considered. Phenotypic and genetic correlations among the udder and teat traits were 
estimated from pairwise bivariate models. Fixed effects tested for both the lambing and weaning-
stage traits were dam source (3 levels, reflecting the genetic background of the MLP Base ewes) and 
contemporary group (CG, 4 levels, combined ewe birth year and management group at/following 
lambing). Assessor of the lambing-stage traits was confounded with lambing management group. 
For the lambing-stage traits, number of lambs born in 2022 (NLB, 3 levels) and total NLB up to and 
including 2022 (TotNLB, 10 levels) were also tested, along with bodyweight and condition score 
pre-mating (pmWT and pmCS) and at late-pregnancy (lpWT and lpCS), all as linear covariates. For 
the weaning-stage traits, number of lambs weaned in 2022 (NLW, 2 levels), total NLW up to and 
including 2022 (TotNLW, 8 levels) and day of assessment (ie. from weaning, DoA, 3 levels) were 
also tested. Linear covariates tested on the weaning-stage traits were days of lactation (DoL), 
pmWT, pmCS, lpWT, lpCS, as well as weight and condition score at weaning (wWT and wCS). 
 
RESULTS AND DISCUSSION 

Phenotypes and heritabilities. The majority of ewes exhibited udders of moderate size with a 
defined udder cleft and moderately sized teats positioned at or near 45° from vertical (Table 1). The 
udder and teat trait heritabilities estimated here ranged from 0.09 ± 0.05 to 0.36 ± 0.09 among the 
two stages. These estimates were higher than those estimated previously by Smith et al. (submitted) 
in the same ewe population and for the same traits at weaning (0.01 to 0.17), but similar to those 
estimated by McLaren et al. (2018) in a terminal breed (0.14 to 0.35). The differences observed in 
the MLP flock across the different studies may be attributable to some refinements to the scoring 
system, exclusion from the current study of the ewes that were not lactating at weaning, and age of 
the ewes. The heritability estimates for UD and TP were consistent across the stages (Table 2). The 
heritability of TS was higher at weaning than lambing, and UC was lower at weaning than lambing. 
The phenotypic variance of UC doubled from lambing to weaning which suggests deterioration in 
UC during the lactation period, with increased expression of udder asymmetry at weaning. 
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Table 1. Descriptive statistics, significance of fixed effects and phenotypic variance (Vp) for 
ewe udder depth (UD), udder cleft (UC), teat size (TS) and teat placement (TP) at lambing (L) 
and weaning (W) 

LUD LUC LTS LTP WUD WUC WTS WTP 
Mean 2.99 2.21 2.70 2.87 3.17 1.97 2.75 3.08 
Sd 0.68 0.69 0.68 0.55 0.48 1.00 0.54 0.37 
Range 1 - 5 1 - 5 2 - 5 1 - 5 1 - 5 1 - 5 1 - 5 2 - 5 
CG *** *** *** *** ns * * ns 
NLB22 ** ns * * - - - - 
NLW22 - - - - *** ** ns *** 
DoA - - - - *** *** ** *** 
Vp 0.35±0.02 0.45±0.02 0.42±0.02 0.27±0.01 0.21±0.01 0.96±0.04 0.29±0.01 0.13±0.01 
n=1,105 for all traits; CG=contemporary group, NLB22=number lambs born 2022, NLW22=number lambs 
weaned 2022, DoA=day of assessment after weaning; *** P<0.001, ** P<0.01, * P<0.05, ns not significant, 
‘-‘=not tested; dam source, Total NLB, Total NLW, and days of lactation were ns effects on all traits, and ewe 
weight and condition scores pre-mating, late pregnancy and weaning were mostly ns (not reported here) 

Table 2. Heritability (bold, diagonal), phenotypic correlations (above diagonal) and genetic 
correlations (below diagonal) (all ±s.e.) for ewe udder depth (UD), udder cleft (UC), teat size 
(TS) and teat placement (TP) at lambing (L) and weaning (W) 

Trait LUD LUC LTS LTP WUD WUC WTS WTP 
LUD 0.29±0.09 0.12±0.03 0.29±0.03 0.03±0.03 0.21±0.03 0.02±0.03 0.11±0.03 0.10±0.03 
LUC 0.52±0.23 0.17±0.07 0.04±0.03 0.07±0.03 0.06±0.03 0.13±0.03 0.06±0.03 0.03±0.03 
LTS 0.37±0.22 -0.24±0.25 0.24±0.08 0.42±0.03 0.11±0.03 0.26±0.03 0.31±0.03 0.28±0.03 
LTP -0.61±0.22 -0.59±0.23 0.55±0.18 0.23±0.08 -0.05±0.03 0.00±0.03 0.14±0.03 0.27±0.03 
WUD 0.75±0.14 0.67±0.18 0.21±0.22 -0.60±0.19 0.28±0.08 -0.11±0.03 0.14±0.03 0.07±0.03 
WUC 0.04±0.31 0.31±0.34 0.02±0.32 -0.03±0.34 0.00±0.30 0.09± 0.05 0.05±0.03 0.06±0.03 
WTS -0.04±0.21 0.22±0.25 0.79±0.12 0.34±0.21 0.19±0.20 -0.23±0.28 0.36±0.09 0.33±0.03 
WTP -0.16±0.24 -0.20±0.26 0.69±0.15 0.70±0.16 0.04±0.23 -0.65±0.23 0.60±0.16 0.24±0.08 

Phenotypic and genetic correlations. Within stages, phenotypic correlations among the udder 
and teat traits were low to moderate (0.04 ± 0.03 to 0.42 ± 0.03 at lambing, and -0.11 ± 0.03 to 0.33 
± 0.03 at weaning). Phenotypic correlations between individual traits across the two stages were also 
generally moderate ranging from 0.13 ± 0.03 (UC) to 0.31± (0.03) (TS). At lambing, the genetic 
correlations between UD and UC (0.52 ± 0.23) and between UD and TP (-0.61 ±0.22) indicate that 
increasing UD is associated with deteriorating UC and high/horizontal TP, but at weaning those 
correlations were not different from zero. At both lambing and weaning UC and TP were 
unfavourably correlated genetically (-0.59 ± 0.23 and -0.65 ±0.23 respectively), indicating well-
defined UC was associated with more vertical TP. Moderate positive genetic correlations between 
TS and TP at both lambing (0.55 ±0.18) and weaning (0.60 ± 0.16) imply that large teats tend to be 
placed vertically. In general, the genetic correlations estimated here are consistent with those of 
Fernandez et al. (1997). Scores for UD (0.75 ±0.14), TS (0.79 ± 0.12) and TP (0.70 ± 0.16) at 
lambing and weaning were highly correlated genetically. While these genetic parameter estimates 
have high associated errors and should be interpreted with caution, they do suggest that for UD, TS 
and TP there would be minimal re-ranking between lambing and weaning. UC at lambing and 
weaning was not significantly correlated genetically and the estimate had a high error (0.31 ± 0.34). 

Implications. Ewe udder soundness, which encompasses aspects of udder and teat conformation 
has been shown to impact neonatal lamb survival (Hayman et al. 1955; Griffiths et al. 2019; Smith 

et al. submitted). Genetic improvement of ewe udder conformation may be a means of 
reducing 
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lamb mortality. The phenotypic and genetic parameters estimated here suggest that for UD, TS and 
TP, there could be similar genetic gain through trait recording at either lambing or weaning. 
However, there are likely trade-offs relating to data collection logistics of scoring udder traits at 
lambing or weaning. Breeders who do not conduct birth records are likely to favour udder scoring 
at weaning. This may be advantageous for the UC trait, for which deleterious levels may not become 
evident until weaning. For those who already collect birth records, additional udder scores are likely 
a minor imposition and may offer better selection outcomes in terms of future lamb survival. Where 
a lamb dies as a neonate due to an udder issue of the dam, the problem would likely be identified if 
udder scoring were conducted at birth. If udders were not assessed until weaning, the issue may not 
be identifiable because the udder will go through involution returning to a dry state. In the current 
study, DoL was a non-significant effect on weaning udder scores, which is in contrast to Smith et 
al. (submitted), and therefore requires further investigation. However, DoL can only be accurately 
calculated with knowledge of the date of birth, adding support to udder scores at lambing. Further, 
assessor of udder traits at lambing was confounded with management group, and at weaning DoA 
was a significant effect, so both of these factors require consideration in udder trait data collection.  

 
CONCLUSION 

Udder depth, teat size and teat placement scored at lambing and weaning on Merino ewes was 
moderately heritable. For these three traits, the genetic correlations between records at lambing and 
weaning were high. This indicates that among ewes that have reared a lamb(s) to weaning, there 
would be minimal re-ranking of ewes across those stages. Udder cleft had lower heritability and 
lower genetic correlations from lambing to weaning than the other three traits. The phenotypic 
variance of udder cleft increased from lambing to weaning, suggesting that udder cleft issues 
develop during lactation and therefore may be more accurately assessed at weaning.  
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SUMMARY 
571 females from six beef breeds (Angus, Brahman, Charolais, Hereford, Shorthorn and 

Wagyu) from the first cohort of the Southern MultiBreed project were recorded for fertility traits 
at different physiological stages up until their second mating. Traits included age at puberty, days 
to calving and days to return to oestrus following first calving. Sire least-square means for these 
traits were used to examine relationships between traits. There was a strong positive relationship 
between age at puberty and days to calving, indicating that sires whose progeny reached puberty at 
a later age also conceived and calved later. There was a weaker positive relationship between age 
at puberty and return to oestrus indicating that sires whose progeny reached puberty at a later age 
also took longer to return to oestrus after the birth of their first calf. A weak negative relationship 
between days to calving and return to oestrus indicates that sires whose progeny calved later in the 
calving season exhibited a quicker return to oestrus. The nature of the relationship between these 
two traits was unexpected given previous studies, and further analyses once data from other 
years/cohorts is available will be required to gain confidence in the nature of the relationships 
between these three traits.  

 
INTRODUCTION 

Research in Australian northern beef cattle breeds has shown that fertility traits measured with 
a high degree of precision (such as serial ovarian scanning to detect age at puberty) are heritable, 
favourably genetically correlated with lifetime reproductive outcomes, and may be suitable to 
achieve genetic improvement in fertility (Johnston et al. 2009). Studies in temperate beef breeds 
have found moderate heritabilities (0.38-0.42) for age at puberty (Wolcott et al. 2019; 2021), 
highlighting the potential of these traits for improved fertility outcomes in the southern beef 
industry. While studies in tropically-adapted breeds have indicated that early-life fertility traits 
have a strong genetic relationship with later fertility traits (Johnston et al. 2014), these 
relationships have not yet been quantified in temperate breeds. This current study aimed to 
characterise fertility traits at various physiological stages in young beef females from several 
temperate beef breeds and gain an understanding of the relationships between these different 
fertility traits.   
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MATERIALS AND METHODS 
The Southern MultiBreed (SMB) project is being conducted across New South Wales 

Department of Primary Industries research facilities; Trangie Agricultural Research Centre, 
Trangie; Grafton Primary Industries Institute, Grafton; Tocal Agricultural Centre, Tocal; Glen 
Innes Agricultural Research and Advisory Station, Glen Innes; and Elizabeth MacArthur 
Agricultural Institute (EMAI). Animals from the six different breeds (Angus, Brahman, Charolais, 
Hereford, Shorthorn and Wagyu) are managed in mixed breed groups at all stages of the 
production cycle except for joining, which is undertaken in breed groups. See Walmsley et al. 
(2021; 2023) for further details on the SMB project. 

Female progeny born in 2020 at the research sites were recorded for fertility traits from 
weaning through to post-calving in the first parity. Age at puberty (AP) was detected by serial 
ultrasound ovarian scanning to identify the animal’s first corpus luteum (CL) (Johnston et al. 
2009). Scanning commenced within the first month after weaning (approximately nine months of 
age) and was conducted at 4-5 week intervals. The decision to cease pubertal ovarian scanning was 
made on a within-breed basis at each site, and occurred once 100% (or extremely close to 100%) 
of heifers had reached puberty, such that there was little value in collecting additional records. 
Animals not observed as having reached puberty by the end of ovarian scanning that were 
pregnant were given an age of puberty value equal to their date of conception, calculated using 
foetal age at pregnancy test. Animals not observed as having reached puberty by the end of 
ovarian scanning that failed to fall pregnant were given a penalty value equal to the largest AP trait 
value within their site breed group + 21 days. Females were joined by natural mating at 
approximately 15 months of age for 60 days and commenced calving at approximately two years 
of age. Days to calving (DC) was calculated as the number of days from the start of the joining 
period until the date of calving. Animals that failed to calve were given a penalty value equal to 
the largest DC record within their contemporary group + 21 days. Return to oestrus interval (RO) 
was detected by serial ultrasound ovarian scanning to identify the animal’s first corpus luteum 
post-calving. Only females that calved and were lactating were scanned to identify the first return 
to oestrus. Scanning commenced approximately 45 days after the first calf was born, and ceased 
once the percentage of females that had cycled post-calving within a breed was at 100% or 
extremely close to 100%, such that there was little value in collecting additional records. Animals 
not observed as having cycled post-calving by the end of ovarian scanning were given a penalty 
value equal to the largest RO trait value within their site breed group + 21 days (if not pregnant) or 
a trait value equal to their date of conception, calculated using foetal age at pregnancy test . 

Statistical analyses. PROC MIXED in SAS (SAS Institute, Cary, NC, USA) was used to 
obtain least-square mean estimates for the effect of sire. The model fitted for AP included site, 
contemporary group and sire; for DC the model included site, joining group and sire; and the 
model for RO included site, joining group, sex of calf and sire. 
 
RESULTS 

Table 1 contains a statistical summary of the raw fertility phenotypes pooled across sites and 
breeds. There were 571 age at puberty (AP) records including 20 females whose first CL was not 
observed prior to the cessation of ovarian scanning, and received a penalty AP value. There was 
significant variation for age at puberty, with the first detected CL ranging from approximately 7 
months to approximately 27 months with an average of 12 months of age. Results from the 
pubertal ovarian scanning showed that 72% of heifers were pubertal at joining, though this varied 
between sites and breeds. There were 542 days to calving records including 105 females that failed 
to calve and received a penalty DC value. DC ranged from 273 to 386 days, with an average of 
316 days. There were 416 return to oestrus records, including 30 females whose first CL post-
calving was not observed prior to the cessation of ovarian scanning, and received a penalty RO 
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value. RO was only recorded on lactating females and ranged from approximately 1 month to 6 
months with an average of approximately 3 months post-calving.  

 
Table 1: Summary statistics of the raw unadjusted age at puberty (AP), days to calving (DC) 
and return to oestrus interval (RO) phenotypes across sites and breeds 
 

Trait Number Mean SD Minimum Maximum 
AP (days) 571 355.4 81.2 207 816 
DC (days) 542 316.1 34.3 273 386 
RO (days) 416 98.3 25.3 23 180 

 
Table 2 contains summary statistics by breed for the number of trait records, the number of 

sires represented in the data set, and the average number of progeny for these sires. There were 
158 sires with progeny recorded for AP, with the average number of recorded progeny per sire 
ranging from 2.6 to 4.0. The number of sires with progeny recorded for DC was 151. The number 
of sires with progeny recorded for RO was 140 (average number of progeny ranged from 2.6-3.4), 
which was lower than AP and DC as only progeny that were lactating (i.e. successfully raised a 
calf) were recorded for this trait. 

 
Table 2: Number of records, number of sires, average number of progeny (standard error) 
per sire by breed for age at puberty, days to calving and return to oestrus interval 
 

 Age at puberty Days to calving Return to oestrus Interval 
Breed No. 

records 
No. 

 sires 
Av  No. 
progeny 

No. 
records 

No. 
 sires 

Av  No. 
progeny 

No. 
records 

No. 
 sires 

Av  No. 
progeny 

Angus 205 51 4.0 (3.5) 203 50 4.0 (3.5) 157 46 3.4 (2.8) 
Brahman 13 5 2.6 (2.1) 13 5 2.6 (2.1) 1 1 - 
Charolais 56 16 3.5 (1.8) 55 16 3.4 (1.7) 43 16 2.7 (1.5) 
Hereford 133 38 3.5 (2.2) 111 34 3.3 (1.8) 82 31 2.6 (1.6) 
Shorthorn 79 20 4.0 (1.9) 77 19 4.1 (1.8) 56 19 2.9 (1.4) 
Wagyu 85 28 3.0 (2.0) 83 27 3.1 (2.1) 77 27 2.8 (1.7) 

 
The relationships between the three fertility traits were examined by plotting the sire least-

square means. There was a strong positive relationship between AP and DC (Figure 1a), indicating 
that, in general, sires whose progeny reached puberty at a later age also conceived later and hence 
calved later in the calving season. This result concords with previous studies which have reported 
strong genetic correlations (~0.80) between these traits (Johnston et al. 2014). However, there was 
variation observed, with some sires having progeny that reached puberty earlier than average but 
calved later (and hence conceived later) than average. There was a weaker positive relationship 
between AP and RO (Figure 1b), indicating that, in general, sires whose progeny reached puberty 
at a later age also took longer to return to oestrus after the birth of their first calf. Johnston et al. 
(2014) reported moderate to strong genetic correlations (0.31 to 0.72) between these traits. There 
was a weak negative relationship between DC and RO (Figure 1c), indicating that, in general, sires 
whose progeny calved later in the calving season exhibited a quicker return to oestrus. The nature 
of the relationship between these two traits is different to previous studies (Johnston et al. 2014) in 
tropically-adapted cattle, which reported a strong positive genetic correlation (0.75) between DC 
and lactation anoestrus interval. In this study, sires had relatively low numbers of progeny as only 
the first year/cohort of females born within the project were included. It is anticipated that future 
analyses including data from other years/cohorts will allow for greater confidence in the nature of 
the relationships between these three traits.  
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Figure 1: Plot of (1a) age at puberty and days to calving least-square sire means; (1b) age at 
puberty and return to oestrus interval least-square sire means; (1c) days to calving and 
return to oestrus interval least-square sire means 

CONCLUSIONS 
This study reports an initial investigation of female fertility traits in several temperate beef 

breeds that have been managed in mixed-breed groups. Results showed that phenotypic variation 
exists in age at puberty, days to calving and return to oestrus interval for these breeds. The next 
steps will investigate whether genetic variation is also present for these traits once sufficient 
records are available. Plots of least-square sire means indicated a positive relationship between age 
at puberty and days to calving and a weaker positive relationship between age at puberty and 
return to oestrus. A weak negative relationship was found between days to calving and return to 
oestrus interval, which was contrary to previous studies. Further analyses will be undertaken once 
more data is available to quantify these relationships with greater confidence. 
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SUMMARY 

BREEDPLAN publishes EBVs for days to calving (DTC) from natural mating (NAT) as the key 
measure of genetic merit for female reproduction. More recently, oestrus synchronization and 
artificial insemination (AI) have become more widely used in beef cattle in Australia to improve 
reproductive efficiency. The aim of this study was to develop a reproductive module to predict 
reproductive performance in beef cattle in Australia by using mating outcomes from AI, NAT from 
females and scrotal circumference (SC) in males. The study analysed mating and calving data 
collected on Angus cattle in Australia and New Zealand using the events-based recording system 
introduced in 2010. Genetic parameters for 1st, 2nd and 3rd parities conception rate (CR) to AI and 
DTC from NAT were estimated. Mean CR from 1st, 2nd and 3rd parities of AI were 51.5%, 56.2% 
and 70.4% and for DTC of NAT were 303, 308 and 305 days, respectively. Estimated heritability 
for CR from 1st, 2nd and 3rd parities were 0.15, 0.12 and 0.10 and for DTC were 0.05, 0.11 and 0.14, 
respectively. Moderate negative genetic correlations (-0.41 to -0.10) were estimated between CR 
and DTC of all three parities and were significantly lower than 1 suggesting that they were different 
traits. Therefore, there are benefits in genetic evaluation from including AI data and modelling 
parities as different traits.  

 
INTRODUCTION 

Cow reproductive efficiency is important for the productivity and profitability of beef cattle in 
Australia. DTC has been implemented in the BREEDPLAN genetic evaluation as the key measure 
of genetic merit for female reproduction in naturally mated (NAT) females (Schneeberger et al. 
1991). DTC is calculated as the number of days between the first joining date for a cow and its 
subsequent calving. However, low heritability, low intensity of selection together with repeat 
observations accumulating relatively late in life limit the capacity to improve female fertility using 
DTC measures alone. More recently, oestrus synchronization and AI have become more widely used 
in beef cattle in Australia to improve reproductive efficiency and increase genetic gain, and has now 
become the dominant mating technique for seedstock breeders in temperate Australia. CR to AI has 
been proposed as an important trait to describe reproductive performance in heifers (Bormann et al. 
2006). However, published heritabilities for CR were also low (Bormann et al. 2006) and 
relationship to natural joining traits unknown. Therefore, we combined several measures of male 
and female traits to increase the accuracy of EBVs for fertility traits in Angus cattle.   
 
MATERIALS AND METHODS 

An enhanced event-based recording system was introduced in 2010 for submission of records 
for genetic evaluation of reproductive efficiency in BREEDPLAN. This recording system includes 
all mating events such as mating and pregnancy test outcomes, in addition to culling and disposal 
dates as well as codes identifying all heifers and cows subjected to synchronization, AI and/or NAT.  
Mating and calving records for AI and NAT, along with the pedigree data, were obtained for heifers 
and cows in the BREEDPLAN evaluation for Angus cattle in May 2022. Initial examination of the 

 
* A joint venture of NSW Department of Primary Industries and University of New England 



Breeding for Reproductive Traits A 

60 

data revealed incomplete data submission for animals from unsuccessful mating. Therefore, 400-
days weight management groups were used to eliminate these selective records from AI or NAT. 
Only contemporary groups with more than 90% of heifers with 400-day weight records also having 
mating records (either AI or NAT) were included.  

Currently in BREEDPLAN, DTC for NAT, was defined as the number of days from “bull in 
date” to the resultant calving and all non-calving cows were included by assigning a penalty DTC 
record as described by Johnston and Bunter (1996). Up to 6 DTC records per cow, in a repeatability 
model, are used to predict EBVs. In this study, for AI mating traits, CR was defined as a binary trait 
with females, who calved to the first AI sire used, recorded as 1 and those which failed to calve as 
0. Records of heifers initially mated by AI, but conceived to subsequent AI or NAT, were analysed 
as failing (0) to calve to the first AI. Similarly, to DTC, CR to AI for heifers aged between 270 to 
625 days at the time of first breeding were identified and their parity records between 270 to 625, 
626 to 990 and 991 to 1340 days were defined as 1st (CR1), 2nd (CR2) and 3rd (CR3) CR records, 
respectively. Scrotal circumference (SC) records of males and their contemporaries measured for 
DTC and CR, were also included as an extra trait in the analyses. Number of records and descriptive 
statistics for CR using AI, DTC using NAT and SC are presented in Table 1.  

Combined threshold and linear animal models were used to estimate genetic parameters for 
binary traits (CR) and linear traits (DTC and SC).  

Model for CR was lijs =   cgi     + age j + age2
 j + aj + ss +e ijs 

Where lijs is the liability on the underlying scale for the CR score of animal j in a fixed contemporary 
group i (cgi) and age j and age2

 j are linear and quadratic covariates for age at mating, aj is the random 
additive genetic effect of female j. The ss is an additional random effect of service sires. The random 
error variance was fixed at 1. The contemporary group included herd of birth, year of birth and date 
of AI. Bayesian analysis, using Gibbs sampling, was used to estimate the means of marginal 
posterior distributions for CR. The analysis was carried out using THRGIBBS1F90 (Misztal et al. 
2002). Single chains of 100,000 iterations were sampled with the first 20,000 samples discarded.  
Every 20th sample was stored and a total of 4,000 were kept to compute posterior means and highest 
posterior density interval (95%) credible regions. 

Model for DTC was    Yij =   cgi     + age j + age j
2 + aj   + eij 

Where Yij is the DTC of female j in a fixed contemporary group i (cgi), age j and age2
 j are linear and 

quadratic covariates for age at mating, aj is the random additive genetic effect of female j and eij is 
the random error associated with this observation. The contemporary group included herd of birth, 
year of birth and service sire as defined in BREEDPLAN (Graser et al. 2005). In order to account 
for the selection of data in the 2nd and 3rd AI and NAT, a tri-variate analysis using CR and DTC 
records from all parities was performed.  

Model for SC was Yijk=   cgi     + age j + age j
2 + age k + age k

2 + aj   + eijk 
Where Yijk is the SC of male j in a fixed contemporary group i (cgi), age j and age2

 j are linear and 
quadratic covariates for age at measurement, age k and age2

 k are linear and quadratic covariates for 
age of dam at birth in days, aj is the random additive genetic effect of male j and eijk is the random 
error associated with this observation.  

Estimates of (co)variance components and solutions for fixed effects of DTC for NAT were 
obtained by REML using an Average Information algorithm (AI algorithm) and the Expectation-
maximisation algorithm (EM algorithm) in WOMBAT (Meyer 2007). Genetic correlations between 
CR, DTC and SC were estimated in a multivariate animal model by combining the threshold model 
for CR with linear models for DTC and SC. Models identified for the univariate analysis were used 
in the multi-variate analysis. Pedigree information from up to six generations was used. All 
multivariate animal model analyses were carried out using THRGIBBSF90 (Misztal et al. 2002).  
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RESULTS AND DISCUSSION 
Descriptive statistics for the data used in this analysis are presented in Table 1. Mean ages of 

heifers at first mating were very similar for AI and NAT and were 434 and 439 days, respectively. 
However; there was a large difference in the mean calving rate for heifers mated by AI as compared 
to NAT (51.5% for CR1 and 93.4 for DTC1). Expertise of oestrous synchronization, heat detection 
and AI all influence the CR for AI heifers. Furthermore, NAT heifers may have had more than one 
exposure to bulls and more than one expression of heat in the natural mating period. Similar mean 
calving rate of 93% was observed for 1st, 2nd and 3rd NAT, as well as for their DTC for 1st, 2nd and 
3rd parities (303, 308 and 305 days respectively). The percentage of females conceiving to first 
insemination using AI was similar to the value of 60% reported by Bormann et al. (2006) for 
American Angus heifers. Donoghue et al. (2004a) reported 79.3% for first CR of Angus cattle in 
Australia. The higher rate observed may be due to the incomplete submission of data analysed for 
that study where some reproductive data from animals with unsuccessful mating outcomes were not 
recorded or included. Furthermore, the data used in Donoghue et al. (2004a) were collected prior to 
2003 and the data used in this analysis were collected after 2010.  

 
Table 1. Descriptive statistics for 1st, 2nd and 3rd parity conception rate to artificial 
insemination (AI) and days to calving to natural mating (NAT) of heifers and cows and scrotal 
circumference (SC) of bulls 
 
Variables AI  NAT (days) SC 

(cm) 
 1st   2nd  3rd  1st 2nd 3rd   
Number of records 13233 5119 2717  25291 12196 3695 14516 
Number of sires  1052 531 357  4014 2275 1112 1274 
Number of dams 8805 3778 2148  20684 9357 3347 10083 
Number of contemporary 
groups 

165 168 141  2204 1155 850 710 

Mean age (days)  
(SD) 

434.1 
(22.9) 

811.8 
(31.8) 

1174.1 
(24.9) 

 439.4 
(37.8) 

761.2 
(38.4) 

1173.7 
(34.4) 

394.8 
(45.7) 

Mean conception rate (%) 51.5 56.24 70.4  93.4 92.8 93.0  
Trait means  
(SD)   

    303.4 
21.4 

308.3 
22.4 

305.2 
20.6 

36.6 
2.97 

 
Estimated posterior means for additive genetic variances, heritabilities and genetic correlations 

are presented in Table 2. Estimated additive variance and heritabilities for DTC2 and DTC3 were 
higher than DTC1, supporting the need for splitting the DTC records based on parities. Similar low 
heritabilities were estimated for CR1, CR2 and CR3. Low to moderate negative genetic correlations 
were estimated between CR of first three parities using AI and DTC from the first three parities 
using NAT, illustrating that higher CR is associated with shorter DTC. Overall, the genetic 
correlations between CR and DTC were lower than 1, suggesting that the CR and DTC were 
different traits. This is expected for the reasons given in the previous paragraph and in addition, CR 
is a binary trait and DTC is a continuous trait. Low genetic correlations were estimated between SC 
with CR and DTC was a continuous trait. Therefore, the data from CR and SC could increase the 
accuracy of DTC EBVs, enhancing the scope for selection and genetic improvement of female 
reproduction in Angus heifers.  

Additive variance for CR1 was 0.09 and was lower than the value of 0.11 reported by Bormann 
et al. (2006) for American Angus heifers. However, the estimated heritability was slightly higher 
than the value of 0.03 reported by Donoghue et al. (2004b) for Angus heifers in Australia. This may 
be due to the fact that the herds selected in this study, have minimised the incomplete submission of 
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data for animals from unsuccessful mating than the above study. Estimated additive genetic variance 
and heritabilities for DTC1 of NAT heifers were 16.6 and 0.05 (±0.02) respectively. Estimated 
heritability was slightly lower than the value of 0.06 reported by Donoghue et al. (2004b). The 
genetic correlation between CR and DTC of 1st NAT was lower in magnitude than the value of -0.66 
reported by Donoghue et al. (2004b).  

Table 2. Estimated additive genetic variances (σ2a), heritabilities (h2) and genetic correlations 
for 1st, 2nd and 3rd parity conception rate by artificial insemination (AI) and days to calving by 
natural mating (NAT) and scrotal circumference (SC) in bulls 

σ2a h2 Genetic correlations 
Traitsab 2nd AI 3rd AI 1st NAT 2nd NAT 3rd NAT SC 

1st AI   0.09 0.08 0.31 0.47 -0.29 -0.14 -0.10 0.10 
2nd AI 0.17 0.13 0.44 -0.33 -0.37 -0.34 0.15 
3rd AI 0.13 0.12 -0.22 -0.31 -0.41 0.23 

1st NAT 16.62 0.05 0.61 0.52 -0.17
2nd NAT 38.21 0.11 0.44 -0.12
3rd NAT 43.73 0.14 -0.10

SC 2.71 0.53 
a standard deviation from 4000 iterations from threshold model ranged between 0.04 to 0.06 
b approximate standard error from linear model evaluation ranged between 0.02 to 0.06.  

CONCLUSIONS 
This study has shown AI mating records could be included in genetic evaluation of reproduction 
traits. Higher estimated additive variance and heritabilities for DTC2 and DTC3 than that of DTC1, 
suggest that separation of DTC records based on parities also benefits the evaluation. Moderate to 
high non-zero genetic correlations were estimated between CR from the first three AI and DTC from 
the first three NATs, suggesting that both CRs from AI mating and DTC from NAT need to be 
included in the BREEDPLAN evaluation to enhance selection for higher heifer fertility. The CR and 
DTC traits reported here, together with SC, will form the core of a new reproduction trait analysis 
for BREEDPLAN.  
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SUMMARY 

The ability to select sheep which have a greater capacity to overcome environmental fluctuations 
is topical given the severity of climatic events, labour shortages and increased productive demands 
(lamb, meat and wool). In this paper, we review the possibility of using variation in fibre diameter 
(FD), measured along the wool staple as an indicator of how sheep respond to the fluctuations of 
their environment.   
 
INTRODUCTION 

Production animals are exposed to significant fluctuations in their internal and external 
environments which can hinder their productive performance, health and well-being. Significant 
research efforts over the last decade have focused on quantifying the ability of animals to cope with 
these fluctuations and in turn, selecting those with a greater capacity to overcome them, particularly 
among intensively raised livestock (Berghof et al. 2019). The ability for animals to be minimally 
affected by environmental fluctuations or to promptly recover from them is referred to as resilience 
(Colditz and Hine 2016). Many recent studies of resilience are based on quantifying the variable rate 
of resource accretion into production tissues or products (muscle, milk and eggs) (Colditz et al. in 
press). In idealised form, these measures capture the animal’s inherent success in maintaining 
homeostatic balance, as it modulates resource allocation between survival and production (Neville 
1967). An animal undergoing a challenge from its internal or external environment is likely to 
temporarily divert resources away from non-essential functions (typically production variables), 
which can then be used to inform assessments of resilience. Genetically, animals with greater 
uniformity to these production variables have been associated with better current and future health 
outcomes (Berghof et al. 2018) and improved longevity (Adriaens et al. 2020; Poppe et al. 2020), 
qualities which are increasingly valued by consumers and producers alike. 

Similar methodologies have yet to be investigated in extensive sheep populations, primarily due 
to a lack of appropriately structured data (frequent measures over long time periods). Assessment of 
fibre diameter variation along the wool staple is a promising avenue that offers frequent 
measurement intervals. Variation in FD observed along the wool staple is reflective of changes in 
nutrient supply and demand to the wool follicle in accordance with the sheep’s interaction with its 
prevailing internal and external environment. In most production systems wool is harvested annually 
and therefore becomes an archive of these interactions over the previous 12 months. Importantly, 
wool is among the final stores of energy and protein in the body and unlike other tissue structures 
such as muscle and fat, resources accumulated in wool cannot be remobilised in times of nutritional 
deficits (Freer et al. 1997). This review will provide contextual background as to how FD variation 
along the staple has been measured and analysed in other applications. It will also discuss alternative 
methods of modelling and analysing FD variation. The paper concludes with a discussion of 
challenges and opportunities for refinement and validation of along-staple FD variation as a measure 
of resilience.  
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MEASURING ALONG STAPLE VARIATION  
Fibre diameter variations along staples can be assessed through a sampling technique called a 

fibre diameter profile (FDP). These profiles are created from repeat measures of average FD taken 
longitudinally and in sequence along the wool staple (Figure 1). The last 50 years have seen 
significant advances in the instrumentation used to measure FDP. Historically, FDPs were created 
by segmenting staples into snippets (2 or 5mm), individually measuring each snippet for FD and 
plotting the average FD against its relative position along the staple. The method was labour 
intensive which confined studies at the time to small numbers of animals or a reduced number of 
samples per staple (Brown et al. 2000). The commercialisation of OFDA2000 instrumentation in 
the early 2000’s allowed FD variation along staples to be measured quickly and cheaply (Brims et 
al. 1999), and therefore on a scale sufficient to provide phenotypes for genetic evaluations. 
OFDA2000 generates profiles on entire, greasy or clean staples, typically at measurement 
increments of 5mm.  

 

 
Figure 1. Example of fibre diameter profiles from three animals (Brown and Crook 2005) 
 
GENETIC PARAMETERS OF FD VARIATION ALONG THE STAPLE 

Traditionally, FD variation along the staple has been analysed as summary statistics including 
the minimum and maximum FD and along staple FD coefficient of variation (CV (%)) or standard 
deviation (SD (µm)), with the intent of investigating their relationships to staple strength. Minimum 
and maximum FD typically produces high to moderate heritabilities (0.47 to 0.68) (Greeff 2002; 
Preston and Hatcher 2013a). However, measures of variation (CV and SD) along the staple are 
inconsistent, ranging from 0.07 to 0.30 (Yamin et al. 1999; Greeff 2002; Preston and Hatcher 
2013a). The latter two measures are most akin to a trait that reflects FD uniformity in response to 
environmental conditions throughout the year. However, both of these variation traits are potentially 
biased due to failures to account for the disparity of staple length between animals which influences 
the number of FD measures contained in the profile. Similarly, studies to date have not examined 
the phenotypic and genetic correlations between traits describing along staple FD variation and other 
important performance traits, with exception of wool quality characteristics (Greeff 2002; Preston 
and Hatcher 2013b). This is despite indications that reproduction, growth and health may account 
for some of the variation observed in the profile (Brown and Crook 2005; Gonzalez et al. 2020). 
Overall, these preliminary findings suggest that genetic variation exists for traits derived from FDP, 
however, for the purpose of examining resilience, further work should progress beyond summary 
characteristics from the FDP into more comprehensive measures of the variation over time.   
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POTENTIAL METHODS FOR ANALYSING ALONG STAPLE VARIATION 
There are potentially many ways in which FD variation along the staple could be analysed for 

the purpose of examining resilience. FDP can be thought of as repeat records of FD made between 
two known time points. Animal breeding has several approaches for analysing longitudinal records, 
for instance the repeatability or multi-trait models. Perhaps the most appropriate method involves 
the fitting of curves to phenotypic values across time points and analysing the fitted parameters such 
as the slope and intercept. This may be considered optimal as it takes account of the genetic and 
environmental covariance structures between FD measured along the staple.   

Random regression models (RRM) are among the most popular methods of analysing 
longitudinal data such as lactation or growth curves. RRM include a function nested inside the 
random effects which allows the variance components to vary along a trajectory (Schaeffer 2004). 
In animal breeding, this function is nested in the individual, thereby modelling the individual 
deviation from a fixed regression of the trait over time (Kolmodin 2002). RRM most commonly 
uses Legendre polynomials to fit the fixed and random regressions. The use of splines has also been 
advocated as an alternative to Legendre polynomials due to greater flexibility in fitting curves of 
arbitrary shapes (Meyer 2005), which is consistent with FDPs. The possibility remains to use the 
linear or curve components from RRM to determine the uniformity of animal performance across 
the trait trajectory, which may be interpreted as a greater ability to cope with environmental 
fluctuations. 

Other studies on resilience have analysed deviations from longitudinal data in what is referred 
to as profile analysis, where deviations are calculated between reference and observed production 
curves (Colditz et al. in press). Reference curves are typically modelled based on individual or 
contemporary group means (Elgersma et al. 2018; Doekes et al. 2022). Statistical measures are then 
applied to describe the amount of deviation between the reference and observed curve including; 
natural log variance, skewness and lag-one autocorrelations of the deviation. Such indicators are 
typically shown to have heritability estimates ranging from 0.01 to 0.26 (Berghof et al. 2019; Poppe 
et al. 2020). Together, the performance of these methods of analysis of FD variation are yet to be 
determined, and each is likely to have merits and limitations.   

DISCUSSION 
Quantifying FD variation along the staple may offer a unique way of assessing resilience in 

Australian sheep. Many important questions however remain regarding the analysis and 
interpretation of such measures. Firstly, provided that genetic variation exists for traits describing 
along staple FD variation, what is a desirable amount of variation to select for, in regard to 
resilience? From the points raised above, it may seem that a uniform or relatively flat profile is 
desired, as the resilient animal is considered to defend the trait expression against the environment. 
However, conformity to this normative model may be explained by other factors such as inadequacy 
to perform other productive functions such as to rear a lamb, which is not necessarily desired. This 
highlights the necessity to examine both the phenotypic and genetic correlations between FD 
variation and other key performance traits, as well as the need to validate resilience indicators to 
ensure they are able to provide economic benefits in terms of better health, welfare or long-term 
productive outcomes.  

It is also important to understand how the FD variation along staples performs both across life 
stages and under different environmental conditions (existence of G x E interactions). The absolute 
level of the FD variation shown in a contemporary group contains important information about the 
quality of the environment experienced. This information could not only be used to form an 
environmental gradient in a reaction norms analysis, but would also complement assessments of 
profile analysis. Other studies have shown that environmental conditions experienced during the 
development of young animals can have lasting consequences on the resilience of adult 
genotypes 
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(Parois et al. 2022). It would be extremely useful to be able to quantify such measures from FDP 
across years, in particular, with respect to the relationship between resilience measures and 
performance longevity. 

Finally, it is important to remember that breeding for improved resilience to environmental 
fluctuations should not be interpreted as a means of “forcing” animals to endure less than optimal 
living or management conditions. This work merely seeks to form part of an integrated approach to 
helping both animals and producers achieve better production and health outcomes amidst the 
challenges of future farming systems.  

CONCLUSION 
The use of FD variation along staple as a way of quantifying the resilience of sheep remains 

under-explored and offers a research opportunity to inform whether genetic variation exists for such 
traits in Australian sheep populations. Further work is warranted to understand the most appropriate 
ways of analysing FDP data and the potential application of these measures in breeding programs.  
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SUMMARY 
Angus HeiferSELECT is a genomic tool designed to inform the selection of replacement heifers 

by providing genomic estimated breeding values (GEBV) for traits related to cow-calf production, 
feedlot performance, carcase quality, and resilience. Here, we explore the incorporation of fertility 
indicator measures into the gamut of traits using data from 9,155 heifers in the Angus Australia 
database. The heritability of age at first calving (AFC), days to calving (DC), and pregnancy test 
measured in weeks (PREG) were 0.25, 0.26 and 0.32, respectively. The three traits were favourably 
correlated. AFC and DC presented a genetic correlation of 0.45, while PREG presented negative 
correlations to the other traits (-0.23 and -0.45, respectively). The accuracy of the GEBVs varied 
from 0.24 for DC to 0.34 for PREG. Although the three traits showed low to moderate heritability 
and prediction accuracy, phenotypic differences between animals at the top and bottom quartiles 
when ranking animals based on GEBV demonstrate the positive impact that could be achieved by 
selecting for improved female fertility in commercial enterprises. The findings from this study have 
demonstrated that DC, AFC and PREG would all be suitable traits for inclusion in the Angus 
HeiferSELECT tool. 
 
INTRODUCTION 

Targeted selection of replacement females is crucial for optimising genetic gain in commercial 
beef enterprises. The decision of which heifers to keep in the operation, and which to sell, potentially 
affects the profitability of the herd for years to come (Wathes et al. 2014). Angus HeiferSELECT is 
an advanced genomic tool developed to inform the selection of replacement heifers in commercial 
beef breeding operations. It includes GEBV for thirteen maternal, growth, feed intake, carcase, and 
resilience traits. Recently, genomic predictions for birth weight, weaning weight, yearling weight 
and mature cow weight have been validated based on the animal’s self-performance as well as the 
average performance of their progeny (Alexandre et al. 2022). However, worldwide there is an 
increasing effort to include fertility traits in genetic evaluations (Brzáková et al. 2020). 

Fertility traits are notorious for having low heritability and some, such as the result of a 
pregnancy test (PREG), are particularly difficult to measure in beef cattle since it requires a qualified 
technician. In addition, traits such as age at first calving (AFC) and days to calving (DC) are complex 
because they involve the steps required to conceive, gestate, and deliver a calf (Minick Bormann 
and Wilson 2010). Yet, these traits not only allow the identification of animals that are more likely 
to conceive, but also those who will conceive early in the breeding season, which has implications 
on calf performance, the heifer's successive re-breeding, and overall herd productivity (Moorey and 
Biase 2020). For instance, shortening the AFC has been shown to decrease replacement rates, 
decrease production costs and consequently increase profit (López-Paredes et al. 2018).  

In the present study, we investigate an opportunity to include fertility indicator traits in the Angus 
HeiferSELECT trait repertoire. Using data from heifers in the Angus Australia database we 
investigate the heritability of AFC, DC and PREG, the accuracy of genomic predictions and the 
possible phenotypic impacts of selecting for these traits. 
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MATERIALS AND METHODS 
Data for the 9,155 heifers were retrieved from the Angus Australia database. It included genomic 

information for 45,364 autosomal SNPs and three fertility indicator traits (Figure 1A): AFC 
(n=6,806, 734.4±50.9 days), DC calculated from the start of the joining period (n=2,883, 
364.4±197.4 days), and PREG (n=6,070, 13±7.4 weeks). Heifers that failed to calve were penalized 
with a DC value of 980 days. Records for PREG included N for “non-pregnant” (n=819), P for 
“pregnant” if the number of weeks pregnant was unknown or over 20 weeks (n=1,668), or a number 
between 3-20 for the number of weeks pregnant at the time of assessment as advised by a qualified 
technician (n=3,583). To transform PREG into a numerical trait, we assigned a random 0 to 1 to the 
“N”s and a random 21 to 25 to the “P”s. We reached this decision after comparing the average age 
of the heifers at the time of assessment for animals with an N, a P, and four groups based on the 
number of weeks pregnant (Figure 1B). 
 

 
 
Figure 1. Number of animals with records for age at first calving (AFC), days to calving (DC) 
and pregnancy test (PREG) (A) and the average age at pregnancy test per category (B) 
 

Heritabilities and genetic correlations were estimated using Qxpak5 (Pérez-Enciso and Misztal 
2011). The linear mixed model used to analyse all traits (n=9,155) contained the fixed effects of 
contemporary group (CG), including mating program type and a minimum CG size of five, and the 
linear covariate of age at measurement for DC and PREG. The random additive polygenic and 
residual effects were fitted with assumed distributions N(0, G⨂VG) and N(0, I⨂VR), respectively, 
where G represents the genomic relationship matrix (GRM) generated using the first method of 
VanRaden (2008), VG is the genetic covariance matrix, I is an identity matrix, VR is the residual 
covariance matrix and ⨂ represents the Kronecker product.  

To ascertain the quality of the resulting GEBVs we used the LR Method following Legarra and 
Reverter (2018). The method compares predictions based on partial and whole data, resulting in 
accuracy, dispersion, and bias estimates. For that, a series of univariate analyses were undertaken 
using adjusted phenotypes, first using the whole dataset (calibration), and then using a partial dataset 
in which data from a random 20% of records were treated as missing (validation). Finally, animals 
in the validation population were ranked based on their GEBVs from the analyses of the partial 
dataset and the difference between the average adjusted phenotype of animals in the top and the 
bottom quartile was calculated (Q1Q4 measure). 
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RESULTS AND DISCUSSION 
Among the fertility indicators, AFC is the most studied trait. Our estimate of heritability for AFC 

(0.25, Table 1) is well within the values reported in the literature for black Angus, which range from 
0.17 to 0.35 (Brzáková et al. 2020; Minick Bormann and Wilson 2010). In contrast, studies report a 
lower heritability for DC compared to our results (0.26), varying between 0.06 and 0.12 for Angus 
and Nellore (Donoghue et al. 2004; Ferreira Júnior et al. 2018). The literature is scarce for PREG, 
particularly when recorded as a continuous trait. When recorded as a binary trait, pregnancy shows 
low heritability, around 0.13 to 0.17 for heifers (Bormann et al. 2006; Buddenberg et al. 1989). In 
this study, PREG showed the highest heritability (0.32) suggesting that our strategy to transform 
PREG records into a continuous trait was reasonable and perhaps more suitable for genomic 
selection than binary pregnancy.  

As expected, we found a positive genetic correlation between AFC and DC (0.45, Table 1) 
although not as high as reported in the literature for Nellore (Forni and Albuquerque 2005). While 
lower values for AFC and DC are indicative of early conception and are therefore desirable, the 
opposite is true for PREG. This is reflected in the negative genetic correlation between PREG and 
the other traits, which was stronger for DC (-0.45). 

Table 1. Heritabilities (diagonal), genetic correlations (above diagonal) and residual 
correlations (below diagonal) 

AFC DC PREG 

AFC 0.25±0.04 0.45±0.31 -0.23±0.36
DC 0.88±0.01 0.26±0.03 -0.45±0.39
PREG -0.80±0.02 -0.85±0.01 0.32±0.02

The metrics of GEBV quality are presented in Table 2. The GEBV accuracy varied from 0.24 
for AFC to 0.34 for PREG. Indeed, increased accuracy is expected for traits with a higher heritability 
(Fernandes Júnior et al. 2016). There were no signs of bias given the high standard errors, but there 
could be an indication of overdispersion, particularly for AFC, which is not uncommon (Legarra 
and Reverter 2018) and can be related to the low heritability of the traits. 

Table 2. Method LR accuracy, bias, and dispersion of GEBV for age at first calving (AFC), 
days to calving (DC) and pregnancy test (PREG) 

AFC DC PREG 

Accuracy 0.27 0.24 0.34 
Bias -0.17±0.20 -0.64±0.48 0.03±0.02 
Dispersion 0.53±0.01 0.06±0.04 0.26±0.02 

The Q1Q4 measure for AFC, DC and PREG were respectively 11.4 days, 25.0 days, and 1.7 
weeks. Although one can expect the low to moderate heritabilities and GEBV accuracies to be 
reflected in the size of phenotypic differences between animals in the highest and lowest GEBV 
quartile, there are still gains that can be anticipated based on genomic selection.  

CONCLUSION 
This study has demonstrated that DC, AFC and PREG would all be suitable traits for inclusion 

in the Angus HeiferSELECT tool, with selection based on either trait resulting in gains in female 
sexual precocity. The phenotypic differences between animals at the top and bottom of the 
ranks 
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demonstrate the positive impact that could be achieved by selecting for improved female fertility in 
commercial enterprises using the Angus HeiferSELECT tool. 
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SUMMARY 
New sequencing technologies are opening up new opportunities to explore microbiome 

variation; however, the technical effects of the molecular methods used have not been characterized. 
In this study, we aimed to investigate the potential impact of different library preparation methods 
and base calling algorithms on the observed microbiome variation when using Oxford Nanopore 
Technologies sequencing. To achieve this, we sequenced technical replicates of a single rumen fluid 
sample from a cannulated Bos taurus. Our results showed that the use of higher accuracy base calling 
methods led to a significant increase in the number of classified reads, resulting in more usable data. 
We did not observe any alteration in the microbial profile due to the use of different base calling 
algorithms. We also found that the rapid library preparation sequencing kit, which uses an enzymatic 
method to cut the DNA and ligate the adapter, resulted in shorter sequence lengths and lower 
numbers of classified reads compared to the Ligation library preparation kit, which does not cut the 
DNA during library preparation. Importantly, we observed significant differences in the proportion 
of microbial species within the data generated using the Ligation versus the rapid library preparation 
kit. Our study suggests that the library preparation method used can impact the observed microbiome 
and is therefore important to consider in any downstream analysis. 

 
INTRODUCTION 

Metagenomics is a popular method to describe microbiome variation, with one important 
application being the investigation of the relationships between microbiome variation and host 
phenotype (e.g. Ross et al. 2013). Accurate representation of microbiome variation is essential to 
detect these associations. While short-read sequencing has been the primary method for microbiome 
analysis to date, the declining cost of long-read sequencing has made it a potential alternative (e.g. 
Ong et al. 2023). To confidently adopt long-read sequencing, specifically using Oxford Nanopore 
Technologies (ONT), it is crucial to investigate the technical effects of the molecular methods used, 
as well as the algorithms used to analyse the raw output signal. In this study, we aimed to test the 
hypothesis that the library preparation method used for generating the ONT sequencing library 
significantly affects the observed microbiome. Additionally, we tested the hypothesis that the base 
calling algorithm significantly affected the observed microbiome.  

 
MATERIALS AND METHODS 

Sample. This study used technical replicates from a single rumen fluid sample taken from a 
single 3-year-old cannulated cow (Bos taurus) under animal ethics number 2021/AE000991. The 
animal was fed with hay as a regular diet. Rumen fluid collection was performed by restraining the 
animal in a crush, removing the cannula, and collecting rumen contents. The rumen fluid was 
squeezed from the rumen contents and then sieved to remove large particulate matter. The rumen 
fluid was distributed into 1.5 mL tubes after homogenization and stored at -20°C until samples were 
processed. 
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DNA extraction. Thawed 1.5 mL rumen fluid samples were centrifuged at 14,000 rpm for 5 min 
at 4℃, followed by the removal of the supernatants. Multiple DNA extraction methods were 
performed to characterise microbiome differences between extraction kits compared to sequencing 
methods. DNA extraction was performed on the cellular pellet in triplicate for each method. The 
DNeasy Plant Mini Kit (QIAGEN, Germany) was performed following the manufacturer’s protocol. 
The PowerFecal Pro DNA Kit (QIAGEN, Germany) was used according to the instruction from the 
manufacturer. The Puregene Blood Core Kit (QIAGEN, Germany) extraction was performed by 
following the Gram-positive bacteria protocol provided by the manufacturer. Chemical cell lysis 
was performed in the DNeasy Plant Mini Kit and Puregene Blood Core Kit, while the PowerFecal 
Pro DNA Kit was combining chemical and mechanical processes. The extracted DNA was stored at 
-20℃ for subsequent use. 

Sequencing. Two sequencing kits, the ligation kit (SQK-LSK109) and the rapid kit (SQK-
RBK110.96), were used in this study. The Ligation Kit was used for the library preparation for all 
extraction methods. Exclusively, the rapid kit was used with the PowerFecal Pro DNA kit (Table 1). 
Barcoding during the library preparation of DNA samples from the Puregene Blood Core Kit was 
performed using EXP-NBD104. Library preparations were conducted according to the 
manufacturer's instructions with some modifications as previously described (Hayes et al., 2021). 
Sequencing was performed on the PromethION P24 (ONT, UK) with the MinKNOW v.22.03.4 
software using FLO-PRO002 (R9.4.1) flow cells. Samples were sequenced for 24 hours. Three 
basecall models, named Fast basecalling (FA), High accuracy basecalling (HAC), and Super 
Accurate basecalling (SUP), as well as the barcode demultiplexing, were operated by Guppy v.6.0.7. 
The adapter and barcode trimming functions were not selected during the sequencing. 

Bioinformatics. Porechop v.0.2.4 (Wick et al. 2017) was performed for the trimming of adapters 
and barcodes. Minimum Q scores for reads generated from FA, HAC, and SUP basecall models 
were 8, 9, and 10, respectively. Reads under the minimum Q scores of corresponding basecall 
methods and less than 100 bp were filtered by Nanofilt v.2.8.0 (De Coster et al. 2018). Read-based 
taxonomic classification was performed by Kraken2 v.2.1.2 (Wood et al. 2019) with a customized 
Kraken2 database. A customized Kraken2 database was used in this study to increase the taxonomic 
classification efficiency. The complete genomes of bacteria, fungi, archaea, and protozoa from the 
NCBI RefSeq were downloaded to construct the customized database, with the low-complexity 
sequences masked. The Vegan v.2.6-2 (Dixon 2003) and phyloseq v.1.40.0 (McMurdie and Holmes 
2013) package implemented in R, were used for the calculation of alpha diversity (Shannon index). 
A linear model with the DNA preparation method and/or sequencing kit as covariates was employed 
to assess significance. 
 
RESULTS AND DISCUSSION 

The sequencing process generated a total of 49,917,517 raw reads. Following trimming and 
filtering, 2,096,033 reads (4.2%) were excluded, leaving 47,821,484 reads that passed quality 
control. These reads were subsequently classified using the Kraken2 tool (Figure 1). The N50 values 
for sequence data generated from the Ligation Kit were higher (6,558 to 7,941) than for the Rapid 
Kit (4,662 to 4,952) with Powerfecal kit extraction (Table 1). The N50 value was positively 
correlated with the proportion of classified reads (r = 0.88, P < 0.001). Increasing the basecalling 
accuracy led to an increase in the proportion of classified reads (Figure 1A), rising from a mean of 
29.71 (FA) to 38.40 (SUP). Notably, within the Powerfecal excitation kit data the ligation library 
preparation kit resulted in a greater proportion of reads assigned to a taxon than the rapid library 
preparation kit (Figure 1B). 
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Figure 1. A) Percentage of reads assigned to a taxon for each base calling accuracy level. B) 
Percentage of reads assigned to a taxon for each library preparation kit (Powerfecal DNA 
extraction method only). A linear model was used to assess statistical significance. C) Within 
Archaea, the proportion of reads assigned to each genera from the ligation (Red) and rapid 
(green) sequencing kits  
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Table 1. Average lengths (N50) of the sequencing reads from each of the molecular methods 

Extraction_Method Sequencing_Kit Mean Sd Median 

DNeasy Ligation_Kit 1532.22 587.87 1382.00 

PowerFecal Ligation_Kit 7460.89 659.32 7875.00 

Puregene Ligation_Kit 1431.44 149.80 1418.00 

PowerFecal Rapid_Kit 4792.89 115.46 4731.00 

Microbial abundances at the Kingdom level were affected by DNA extraction (P < 0.01) and 
library methods (P < 0.05), but not basecall models (P > 0.05). Bacteria dominated the rumen 
microbial community (> 90.90%) for both extraction and sequencing kits. Significant effects were 
observed for the abundance of archaea genera (Figure 1C) based on both extraction and sequencing 
kits (P < 0.05), but not basecall models (P > 0.05). The Ligation Kit had a higher Shannon index 
(H=2.56) than the Rapid Kit (H=2.08). Conversely, the Rapid Kit had greater bacterial species 
diversity (H=6.13) than the Ligation Kit (H=6.11). The fungal diversity was slightly higher in the 
Rapid Kit than in the Ligation Kit (H=4.40 versus H=4.46, P < 0.05). Notably, DNeasy and Puregene 
extracted samples had less archaea abundance, but higher archaeal Shannon index compared to 
PowerFecal extracted samples. Basecall models did not affect the archaeal richness and evenness (P 
> 0.05).

CONCLUSION 
Base calling accuracy in ONT sequencing of microbiome samples affects the proportion of reads 

that can be classified, but not species ratios, thereby impacting data acquisition costs. The choice of 
library preparation kit has a significant influence on the observed distribution of microbial species. 
Therefore, it is crucial to record the library preparation kit information in the metadata of public 
sequence repositories and account for it in statistical models. 
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SUMMARY 

Utilization of more complex genetic variation present within a population can help to address 
the challenge of identifying animals that perform optimally in their environment while reducing their 
environmental impact. The objective of this study was to determine if Oxford Nanopore sequencing 
technology provides a potential solution to capture these data types in a cost-effective and high-
throughput method. Adaptive sampling was used to investigate regions of interest surrounding 
known genome-wide association studies peaks and copy number variation regions in sheep with 
higher enrichment achieved in targeted areas. Multiplexing of three animals was achieved, but 
further work is needed to determine cost-effectiveness of this tool for the animal industry. 
 
INTRODUCTION 

Providing energy-rich protein to the world while reducing the environmental impact is one of 
the largest challenges facing the animal industry today. To face this challenge, novel tools need to 
be adopted for methods to identify animals that perform optimally in their environment. This 
includes, but is not limited to, utilizing more complex variation, epigenetics, and microbial 
communities present within the host. A major hurdle in utilizing these data lies in the development 
of cost-effective and high-throughput methods for data capture. We propose the sequencing platform 
developed by Oxford Nanopore Technologies (ONT) as a potential solution.  

Adaptive sampling, a software-controlled enrichment unique to the nanopore sequencing 
platform, enables targeted sequencing of specific regions of a genome or species of interest at higher 
coverage than non-selected regions of the genome. Adaptive sampling allows the sequencing of 
particular regions of DNA to be enriched through the comparison of the first 400bp of a strand of 
DNA to a provided sequence list. If the 400bp match the sequence list then the strand continues to 
be sequenced, if there is no match then the stand is ejected, and the pore is available for the next 
strand (Payne et al 2021). This enrichment approach not only circumvents the need for upfront 
sample manipulation but also enables simultaneous capture of multiple sources of information such 
as methylation, mutations, and structural variances in a single run, with the aim of reducing costs 
(Payne et al. 2021).  

 
MATERIALS AND METHODS 

DNA was extracted from 19 sheep (Montgomery and Sise 1990) and libraries were prepared 
using SQK-LSK109 with the native barcode expansion pack EXP-NBD104 (ONT) as per ONT 
protocols. Adaptive sampling was done on 52 regions of interest (ROI) surrounding previously 
identified GWAS peaks (unpublished data) and known structural variations such as the 
Haemoglobin region. High molecular weight (>60kb) DNA and fragmented DNA samples (10-
20kb) were compared, as well single verseuse multiplexed samples to determine the optimal output 
for adaptive sampling in sheep. 

Retained reads were analysed using Nanoplot (De Coster et al. 2018) to check quality and 
mapped to the Oarv3.1 (Jiang et al. 2014) and ARS-UI_Ramb_v2.0 (Rambv2.0; Davenport et al. 
2022) sheep genomes using minimap2 (Li, 2018). Mosdepth (Pedersen and Quinlan 2018) was used 
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to determine the mean and median read depth across the ROI and the whole genome. Coverage 
results were displayed using R studio and Samplot (Belyeu et al. 2021). 

Faecal samples were taken from sheep challenged with a single isolate of the gastrointestinal 
nematode Haemonchus contortus. DNA was extracted using the QIAamp PowerFecal Pro DNA kit 
(QIAGEN), and sequenced using random Genotyping by Sequencing (GBS; Dodds et al. 2015) to 
determine the percentage of DNA mapping to the Haemonchus (Doyle et al. 2020) and sheep 
(Oarv3.1) genomes. To determine if parasite and host DNA can be detected from faecal samples 
using ONT, adaptive sequencing was completed with enrichment for Haemonchus genome 
sequence. The passed reads were mapped to the Haemonchus genome using minimap2 and the 
percent of accepted reads and reads mapped to the genome were calculated. The passed reads and 
the failed reads, which are the first 400bp that are sequenced then rejected as not matching, were 
mapped against the Oarv3.1 genome using minimap2. The reads that passed were also BLAST 
searched using BLASTn to determine the possible source of the DNA. The percent of reads mapped 
to Haemonchus and the sheep genome were compared between techniques.    
 
RESULTS AND DISCUSSION 

Multiplexing of the 52 ROI showed that higher enrichment is seen in the selected regions versus 
non-selected regions and that the median coverage of these regions ranges from 1-3x coverage when 
three samples are multiplexed together in the same run (Figure 1). 

Figure 1. Mean coverage of the target regions compared to the chromosomes and the median 
coverage per target region for three multiplexed samples. The top panel (A, C, E) shows the mean 
coverage of each chromosome (red) and the mean coverage of the target regions per chromosome (blue). The 
x-axis labels the chromosomes. The bottom panel (B, D, F) shows the mean coverage of each of the 52 ROI, 
x-axis labels the regions of interest (1-52) with the colours indicating the chromosome on which the region is 
located. Barcode 1 (A-B), 2 (C-D) and 3 (E-F) are three individual animals that were multiplexed. 

 
The β-globin locus of the ovine genome was chosen as an exemplar in this study, which is a 

region on chromosome 15 formed by the duplication of an ancestral four-gene set consisting of two 
embryonic-like genes, a pseudogene, and a β globin gene. Each set contains a different form of the 
β-globin gene, which is synthesised to make different forms of haemoglobin during development; 
in the foetus (F), pre-adult (C) and adult (A). There are two haplotypes, a long one comprising of all 
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three gene sets (haplotype A) and a short one (haplotype B), where the juvenile set is missing (Figure 
2) (McRae et al. 2022). These two haplotypes are tagged by two SNPs and the individuals are
genotyped allowing a comparison between the SNP genotype and the adaptive sampling targeting
the entire haemoglobin locus. The adaptive sampling shows a corresponding genotype as the SNPs
with the long version of the locus Hb-A having reads across the area and the short Hb-B haplotype
not having reads across the juvenile gene set (Figure 2).
Figure 2. A) Schmetic of the Haemoglobin locus with both the short (HapB), the long (HapA)

haplotype. B) Mapped examples of the long (Hb-A), short (Hb-B) and the heterozygous (Hb-
AB) aligned to the Rambv2.0 (long haplotype) genome. Left axis shows the aligments scaled 
by insert size (distance between pair ends) and the right axis shows the per base coverage 

The comparison between the GBS and adaptive sampling shows that when targeting the entire 
Haemonchus genome, a similar percentage of reads mapped to the genome using either GBS or 
adaptive sequencing (Table 1). When the adaptive sequencing reads were mapped against the 
Haemonchus genome only 0.38% of the reads were mapped. These reads were BLASTn searched 
to determine the source and the top 5 hits are shown in table 2. This suggests that the first 400bp of 
the read which adaptive sampling uses to make its decision to accept, or reject is matching a common 
sequence in the genome that is present in other species. To make this more specific to parasite DNA 
in faecal samples, the ITS2 region could be provided as a target region. The percentage of host DNA 
that is detected in adaptive sampling from both the accepted and failed reads combined shows a 
higher percentage of host DNA than is detected in the GBS (Table 1). 

CONCLUSIONS 
We have utilized adaptive sampling to investigate ROI surrounding known GWAS peaks and 

CNV regions with ~2-15x higher enrichment in selected areas versus non-selected areas. Enrichment 
of both host and parasite DNA from faecal samples shows that this technique can be utilized for 
different sample types and has flexibility in the information acquired. The results show that the use 
of the whole genome of a single parasite as the target sequence resulted in reads being accepted from 
a range of sources and not only the intended targets. To overcome this, adaptive sampling targeting 
the ITS2 region may provide a better sequencing enrichment of parasite DNA from faecal 
samples.  
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Table 1. Reads mapped to the Haemonchus and sheep genomes from both GBS and adaptive 
sampling on the same DNA faecal samples 

Table 2. Top 5 BLASTn matches for reads that were accepted as matching to the 
Haemonchus genome 

BLASTn match Accepted reads matched (%) 

Haemonchus contortus 22 
Plasmodium berghei ANKA 18 
Chrysodeixis includens 13 
Heterocephalus glaber 11 
Bos taurus 3 

We have also shown multiplexing can be achieved in conjunction with adaptive sequencing, but 
the current level of multiplexing that can be achieved to still provide the required coverage suggests 
that while this tool is useful for discovery and validation, it is not at the point of moving through to 
industry uptake. If the number of samples that can be run in one multiplexing run can be increased 
by, for example, using the R.10.4 flow cells on the PromethION, where current predictions are 15 
samples for multiplexing, this would provide a more cost-effective option for the industry.    
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GBS 
(% 

mapped) 

Adaptive 
sequencing 

(% reads accepted) 

Accepted reads mapped 
to corresponding genome 

(%) 

Accepted and failed 
reads mapped to 

corresponding genome 
(%) 

Haemonchus 0.14 0.15 0.38 

Sheep 0.01 0.14 
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SUMMARY 
Most beef breeding herds globally still use natural mating, and therefore, conception rates are 

influenced by bull fertility. Many indicator traits are captured in the Bull Breeding Soundness 
Evaluation (BBSE). This paper uses a set of BBSE phenotypes subjected to Genome-Wide 
Association Studies (GWAS) to predict a gene co-association network. Gene networks can be used 
to mine the genetic basis of complex traits, thereby deriving a better biological understanding of the 
underlying mechanisms and informing genomic predictions. Here we described how a dataset of 
BBSE traits in a multibreed population resulted in a network of 537 connected genes whose topology 
and prediction will serve as the starting point for future work. 

INTRODUCTION 
The standardised Bull Breeding Soundness Examination (BBSE) intends to evaluate bulls' traits 

relevant to fertility (Entwistle and Fordyce 2003). The quantitative traits of BBSE are heritable (0.17 
to 0.57) (Corbet et al. 2013; Porto-Neto et al. 2023) and possibly suitable for improvement via 
genomic selection. Previously, we have performed a multibreed sequence level GWAS (~ 13 million 
SNPs), which includes data from 6,422 beef bulls. As a result, we identified 179440 variants 
associated with one or more of the seven BBSE traits tested (unpublished results). The traits were 
body weight, condition score, scrotal circumference, sheath score, and semen morphology. In an 
effort to take these results beyond simple associations with our phenotypes of interest and explore 
underlying biology, this study utilises an Association Weight Matrix (AWM) (Fortes et al. 2010) 
approach to identify co-associations between SNPs and build a gene network. SNP selection through 
the AWM could highlight genes that potentially explain a key fertility phenotype, giving us insight 
into the genetics of bull fertility. 

MATERIALS AND METHODS 
Animals and phenotypes. BBSE records from 6,422 bulls comprising six different breeds were 

included in this study. Two breeds were research herds from the Cooperative Research Centre for 
Beef Genetic Technologies (Beef CRC) consisting of 1,051 Brahman (BRH) and 1,819 Tropical 
Composite bulls (TRC). The remaining four breeds were obtained from industry, which consists of 
1,288 Santa Gertrudis (SGT), 760 Droughtmasters (DMT), 844 Ultra blacks (UBK), and 660 
Belmont Tropical Composite (BTC). Descriptive statistics of BBSE records obtained for these six 
populations are shown in Table 1. Phenotypes include body weight (Weight), body condition score 
(CS), scrotal circumference (SC), sheath score (Sheath), percent normal sperm (PNS), proximal 
droplets (PD) and mid-piece abnormalities (MP). 

Genotypes. Most animals were genotyped at ~ 50K. A reference panel that utilised BeefCRC 
and industry animals that were at higher density (~700K) and sequence level (~25 million) were 
used to impute animals to higher density and, subsequently, to sequence level. The animals used in 
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the reference population was representative of the bulls used in this study (Porto-Neto et al. 2021). 
This was conducted using a phased reference generated by Eagle 2 (v2.4.1) and then imputed using 
Minimac3 for autosomes and Minimac 4 for Chromosome X. Imputation r2 > 0.8, a call rate > 0.9 
and a minor allele frequency > 0.01 were kept for further analysis. After quality control, a total of 
13,398,171 SNPs, including 92,134 SNPs mapped onto the X chromosome. After running a Leave 
One Chromosome Out (LOCO) GWAS in GCTA (Yang et al. 2011), a total of 179,440 variants 
were significant (P < 5 x 10-8) for at least one trait. 19, 337 variants were significant for two or more 
traits. 

Table 1. The number of records and descriptive statistics of the observed traits* 

NA MeanB SDC MinD MaxE 

Weight, kg 6014 391.59 98.65 124.00 810.00 

CS, score 5917 2.96 0.37 2.00 4.00 

SC, cm 6235 30.82 4.26 15.50 52.50 

Sheath, score 6417 3.19 1.77 1.00 9.00 

PNS, % 6055 61.76 27.53 0.00 100.00 

PD, % 6052 13.50 19.96 0.00 96.00 

MP, % 6052 11.39 11.04 0.00 83.00 
A Number of records available for a trait. B Mean of a trait. C Standard deviation of a trait. D Minimum 
value of the trait. E Maximum value of the trait. 

AWM-PCIT methodology. The AWM was constructed using the procedure described by 
(Fortes et al. 2010). This method applies a series of selection steps to choose relevant SNPs from 
the 179440 significant variants base on our previous GWAS study (Figure 1). Firstly, we only 
considered significant SNPs that mapped to genes expressed in the testis, which were previously 
reported by de Lima et al. (2021). PNS was chosen as the key phenotype for the AWM as sperm 
morphology is an important aspect of bull fertility that is heritable (0.24) and correlated with 
commonly used bull fertility indices (Attia et al. 2016; Butler et al. 2019; Porto-Neto et al. 2023). 
We selected SNPs that were associated with PNS (P < 0.05). If SNPs were not associated with PNS 
but with at least three other traits (P < 0.05), these SNPs were also kept. The final selection step for 
the AWM chose SNPs that map to coding regions or was within 2,500 bp of known genes. SNP-to-
gene mapping was done using the Map2NCBI package (Hulsman Hanna and Riley 2014) in R. SNPs 
were grouped by gene to map one representative SNP per gene. This was achieved by selecting the 
SNP within each gene group associated with the highest number of phenotypes. Next, SNPs within 
each group were chosen using the most significant average p-value across traits. The result is a 
matrix with rows representing genes (I) and columns representing phenotypes (J). Each element (I, 
J) contains the association of the SNP to the phenotype. We applied the partial correlation and
information theory (PCIT) algorithm described by Reverter and Chan (2008) to the AWM. This
algorithm assigns zero for non-significant correlations and retains significant correlations to
establish edges in the network (Reverter and Chan 2008). The PCIT algorithm allows for a less
stringent threshold (P < 0.05) to be used, because SNPs are highlighted based on a number of
features and not just it’s association to the phenotype (Reverter and Chan 2008). The correlation
values can be used as input for Cytoscape (Shannon et al. 2003) to establish gene interactions in the
gene network analyses.



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 79 - 82 

81 

RESULTS AND DISCUSSION 
The gene network constructed using the AWM is shown in Figure 2. The network contains 537 

genes forming two distinct clusters with 279 genes on the left and 237 genes on the right. Among 
these genes, 21 are transcription factors (TF). This network can serve as a starting point for further 
downstream analysis that can serve two aims: biological discovery and genomic prediction.  
For example, biological discovery with the STRING database (Szklarczyk et al. 2020) will perform 
functional enrichment analysis to derive biological information from the gene network. Recent 
efforts have shown that biological data and the discovery of causal variants can positively impact 
genomic prediction (Xiang et al. 2021). Botelho et al. (2021) proposed AWM weighted single step 
genomic best linear unbiased prediction (AWM-WssGBLUP) as a method to derive weights when 
building the genomic relationship matrix (G). However, this method did not significantly increase 
the predictive ability of genomic predictions in their dataset of boar taint compounds. Nonetheless, 
biological information can still be useful in genomic predictions. Tahir et al. (2022) showed that 
slight improvements in predictive accuracy could be attained using biologically informed SNPs in 
heifer fertility traits. The SNPs that underpin the network described here are leads for causal variants 
that could be used to improve predictions of bull fertility traits.   

 

 
Figure 1. AWM SNP selection flow chart 

 

 
Figure 2. Gene network derived from the Association Weight Matrix (AWM) 
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CONCLUSION 
The gene network created using the AWM highlights several genes and TFs associated with bull 

fertility traits. These genes and TFs, together with the significant SNP in our sequence-level GWAS, 
are promising leads to discover causal variants important for bull fertility. This network can be a 
starting point for further downstream analysis, giving insight into important molecular mechanisms 
for bull fertility traits.  
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SUMMARY 
Epigenetic modifications, including DNA methylation, alter gene expression without changing 

the DNA sequence, allowing for immediate and reversible modulation of physiological responses to 
abiotic/biotic stress. Facial eczema (FE) is a metabolic disease, which causes liver damage in 
affected animals. It occurs as a result of ingestion of the mycotoxin sporidesmin, which is found in 
the spores of the pasture-dwelling fungus Pseudopithomyces chartarum. This pilot study 
investigated DNA methylation changes that occurred as a result of sporidesmin exposure and 
identified a number of differentially methylation genomic regions in animals with liver stress. Of 
note, the HBA gene showed differential methylation in the promoter region; the HBA co-subunit of 
haemoglobin HBB has previously been identified as a QTL for the disease in sheep. There may be 
potential for DNA methylation markers to be used as a diagnosis proxy for FE or as a selection 
marker for resilient animals in the future.   

 
INTRODUCTION 

Facial eczema (FE) is a metabolic disease responsible for major economic losses and animal 
welfare concerns in New Zealand. The disease is caused by ingestion of the mycotoxin sporidesmin, 
causing liver damage and leading to decreased productivity and reproduction in clinically and sub-
clinically affected animals. Current strategies to reduce the severity of FE outbreaks include dosing 
animals with zinc, spraying pastures with fungicides, managing pastures, alternative feeds, and 
breeding for animals with increased tolerance to the disease.   

Currently, ram breeders in NZ use an ethical dosing strategy using sporidesmin from laboratory-
cultured Pse. chartarum to predict FE tolerance (RamGuardTM; Aymes & Hawkes 2014). The 
physiological effects of the disease are assessed by measuring serum gamma-glutamyltransferase 
(GGT) at 21 days post-challenge (GGT21), which is recorded in the national genetic evaluation (h2 
= 0.44 ± 0.03) (McRae et al. 2021). While the underpinning genomics continues to be assessed, we 
have extended our investigation to include epigenetics profiles. Advances in “omics” technologies 
have fuelled investigation into the epigenome as a tool to enhance livestock selection and breeding 
practices. DNA methylation is an important epigenetic mark that is essential for genomic stability 
and maintenance throughout development and serves as a biomarker of chronological age and a 
biological fingerprint of a stress response (Clarke et al. 2021). A pilot study was conducted 
investigating changes in the methylome in response to a sporidesmin challenge to assess the potential 
application of methylation profiling for livestock breeding.  

 
MATERIALS AND METHODS 

Animals were managed following the provisions of the New Zealand Animal Welfare Act 1999, 
and the New Zealand Codes of Welfare developed under sections 68-79 of the Act. All work was 
undertaken with the approval of the AgResearch Ruakura Animal Ethics Committee (Approval 
number: 15059). Reduced-representation bisulphite sequencing  (RRBS; Smith et al. 2009) was used 
to profile a cohort of sheep exposed to a controlled FE disease challenge with the identified stress-
imposed changes to DNA methylation across two timepoints, day 0 (pre-challenge), day 21 (post-
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challenge) presented. The animals used in this study consisted of 70 nine-month-old ram lambs from 
two breed groups. A total of 50 ram lambs (5 progeny per sire, 5 sires per breed) were challenged 
through the Ramguard™ (Amyes & Hawkes 2014) program. The remaining 20 rams (10 per breed) 
were selected from remaining unchallenged animals and were from a mixture of sires (1-2 progeny 
per sire). The Ramguard™ programme uses Pse. chartarum that is cultured in a laboratory to 
produce the toxic forms of mycotoxin sporidesmin, specifically sporidesmin A, B and E, with a 
>90% predominance of sporidesmin A. Animals were dosed with precise amounts of sporidesmin  
by intra-ruminal intubation at a volume that is dependent on the animal’s live weight (mg per kg 
live weight). Blood samples were taken for GGT testing before dosing (for a base activity; d0) and 
at 21 days after dosing (d21) and processed for serum GGT activity (IU/L) through a commercial 
laboratory (IDEXX, Hamilton, New Zealand) (Johnson & Amyes 2021). Ear tissue punches (Allflex 
Tissue Sampling Unit; TSU samples) were also collected at d0 and d21 and genomic DNA was 
extracted from tissue samples using a high-salt method (Clarke et al. 2014). 

The Zymo-seq RRBS Library Kit (Zymo Research, Irvine, CA, United States) was used for 
bisulphite conversion and library construction as per the manufacturer’s instructions, using 500 ng 
of input DNA, and sequenced at AgResearch on a NovaSeq 6000 (Illumina Inc, San Diego, CA, 
USA.), yielding 101 bp single-end reads (minimum 5 x coverage). Data were processed and analysed 
as follows. Briefly, TrimGalore v.0.5.010 was used to trim raw reads to remove adapter oligos and 
poor-quality bases (Phred score < 20) with the flags: --non_directional --rrbs -q 20 
(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Trimmed reads were aligned to 
the reference sheep genome ARS-UI_Ramb_v2.0 (Davenport et al. 2022) using the BSSeeker23 
script bs_seeker2-align.py and Bowtie2, with RRBS settings and allowing four mismatches (-m 4) 
(Guo et al. 2013). Methylation levels were called using the “bam2cgmap” function within 
CGmaptools with default options (Guo et al 2018). 

After sequencing 7 samples were excluded due to low sequencing depth leaving 63 animals in 
the analysis.  The challenged rams were categorized into high and low susceptibility groups based 
on their d21 GGT, which indicates liver/bile duct damage, with GGT<=300 IU/L classified as 
having a low GGT score (n=29) and GGT >=301 IU/L classified as having a  high GGT score (n=14) 
(Johnson & Aymes 2021). Differentially methylated regions (DMR) were identified between groups 
and time points with MethylKit  v1.12.0261 in R, which applies a sliding-window approach with a 
window of 1,000 bp and a step size of 500 bp (Akalin et al. 2012). The data were filtered for potential 
PCR duplicate reads by excluding bases with more than the 99.9th percentile of coverage in each 
sample (hi.perc=99.9). Read coverage distributions between samples were normalised using a 
scaling factor derived from differences between the median of the coverage distributions to avoid 
oversampling of reads from more highly sequenced individuals in downstream statistical analyses.  

Methylated sites common between samples were identified and combined into a single R object 
for further analysis. To calculate differential methylation, groups were compared via a logistic 
regression model. P-values were adjusted to q-values using the Sliding Linear Model (SLIM) 
method (Wang et al. 2011). DMR were defined as regions with at least a 15% difference between 
the group being tested and the remaining samples and a Q-value ≤ 0.05, controlling for false 
discovery rate based on the SLIM method. DMRs were overlapped with annotated genes and gene 
promoters, defined as 1kb upstream flanks of genes in the ARS-UI_Ramb_v2.0 genome.  

 
RESULTS AND DISCUSSION 

Day 21 serum GGT activity ranged from 50 UI/L to 1056 UI/L (Figure 1). A total of 6 rams 
showed clinical signs of FE and had to be euthanised due to the severity of their symptoms, TSUs 
were collected from these animals on the day of euthanasia and used in this study. A total of 14 rams 
had GGT activity >=301 UI/L and were ranked as high GGT animals including the 6 euthanised 
animals. A series of group comparisons were performed to identify DMRs between time points and 
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GGT score groupings. These are summarised in Figure 2A. The number of DMRs between groups 
differed greatly. There was one DMR identified between the challenged and control groups at d0 
which was also seen at d21, this DMR was located in the FBXL17gene which is involved in the 
mitotic cell cycle.  There were a large number of  DMRs (1330) identified in the comparison between 
d0 and d21 of the High GGT group.   

Figure 1. Blood GGT activity d21 post- Ramguard™ challenge, the red dashed line indicates 
the threshold for high GGT rank >=301 UI/L 

Figure 2. DMR identified between groupings; (A) number of DMRs identified between group 
1 and group 2 in each comparison and number of gene regions (gene + 1KB upstream) 
identified in the DMRs. (B) common DMRs identified in each comparison 

Interestingly there was only one DMR identified between d0 and d21 in the challenged group, 
however, when subsetted into low and high GGT groups a large number of DMRs were identified 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 83 - 86 

86 

between d0 and d21 in the high GGT group, suggesting that the low GGT responders have a different 
response mechanism compared to the high GGT responders. Two genes of note were identified as 
having DMRs in the promoter regions when comparing the high GGT d0 and d21 groups, HBA and 
CARD11. The β-globin gene, HBB has previously been identified as a QTL for FE susceptibility in 
a previous GWAS, explaining 5% of the phenotypic variance of resistance to FE (McRae et al., 
2022). The HBA locus encodes an α-globin subunit that forms a haemoglobin complex with the β-
globin subunit. The discovery of a DMR across the regulatory element of the HBA gene supports 
the notion that the haem complex is linked to FE susceptibility. Further investigations including 
proteomic mass spectrometry from blood samples of animals through the Ramguard™ program is 
currently underway to fortify this hypothesis. Another gene of note is CARD11, which has 
previously been associated with severe atopic dermatitis in humans (Ma et al. 2017). Clinical 
manifestation of FE in animals include flaking of exposed areas of the skin.  

CONCLUSIONS 
This pilot study indicates there are significant methylation changes that occur in animals with a 

poor response to mycotoxin challenge. The DMRs associated with a high GGT response have 
biological relevance and warrant further investigation. Methylation markers hold potential to be used 
as a diagnosis proxy for FE or as a selection marker for resilient animals. 
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SUMMARY 

Selection in animals whether natural or artificial leaves imprints on the genome also known as 
selection signatures. Such signals can pinpoint genomic regions that have undergone fixation during 
the selection for production, adaptation, and other domestication events. Few approaches to 
identifying selection signals require designation of ancestral alleles. Selection signature studies 
particularly at a sequence level are seldom undertaken possibly for the lack of a comprehensive list 
of ancestral alleles. Therefore, we reviewed the published lists of ancestral alleles in cattle and other 
resources of potential use in the derivation of an exhaustive list of ancestral alleles in cattle. Our 
results suggest the current list of ancestral alleles in cattle are few, incomplete and has low coverage 
on the genome. We also report on the publicly available resources particularly raw sequence reads 
from non-cattle Bos species and the 1000 Bull Genomes as readily usable resources to determine 
ancestral allele in cattle. Altogether, the use of genomic variants from the 1000 Bull Genomes is 
expected to help determine ancestral allele for about 73 million genomic positions in cattle.  

 
INTRODUCTION 

Selection signatures are genetic imprints resulting from selection, adaptation or domestication 
process. The identification of selection signature is increasingly used to mine genomic regions 
influencing complex production and adaptation traits in cattle (Stella et al. 2010; Zhao et al. 2015; 
Cheruiyot et al. 2018). Several tools employing iHS, XP-EHH, iSAFE parameters for the detection 
of selection signatures require designation of ancestral alleles in the input. The ancestral alleles are 
alleles that persisted prior to selection and are commonly determined by comparing alleles at 
orthologous sites to a closely related species (Naji et al. 2021). However, in the absence of a list of 
ancestral alleles in the cattle, most if not all selection signature studies in cattle using ancestral allele 
dependent parameters assume the major allele as the ancestral allele in some tools (e.g., rehh 
package) (Gautier and Vitalis 2012). As such the major alleles are not always the ancestral allele. 
The minor alleles constituted more than 13 and 19% of ancestral alleles in Xiang et al. (2021) and 
Naji et al. (2021) respectively and such assumption can have significant influence the inferences.  

In this study, we reviewed published lists of ancestral alleles and assessed genomic resources of 
cattle and out-species with potential for the determination of ancestral alleles. We examined the 
coherence of genomic position among the published lists of ancestral alleles and drew insight on the 
population structure of previously unused out-species.  
 
MATERIALS AND METHODS 

We reviewed the published list of ancestral alleles in cattle for their coverage or the number of 
sites, associated reference genomes and the closely related species used for its determination. 
Wherever comparable, the number of sites in common and concordance of ancestral alleles were 
estimated. In terms of resource for determination of ancestral alleles in cattle, we queried the raw 
sequences of non-cattle Bos species in the NCBI-SRA. Further, we use raw sequence reads of Bos 
species that were not previously used in the determination of ancestral alleles to draw insights on 
the population structure in relation to cattle. The sequence reads were processed following the 
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pipelines used for processing the 1000 Bull Genome. Further, we explored the coincidence of variant 
position in the 1000 Bull Genomes with previous studies and estimated its potential contribution to 
the existing ancestral allele list.   
 
RESULTS AND DISCUSSION 

Ancestral alleles. Up to now, at least four studies have determined the lists of ancestral alleles 
in cattle (Table 1). They were determined by comparing allele of cattle species to non-cattle Bos 
species and other non-Bos species. The earlier two lists of ancestral alleles were based on the older 
bovine reference genome (UMD3.1) and Bovine SNP panels. The third and fourth studies were 
based on the reference genome, ARS-UCD1.2 and independently determined ancestral allele for 32 
and 40 million positions corresponding to about 25% of the total variants detected in cattle to date.  
 
Table 1. Summary of ancestral alleles in cattle published  
 

Coverage Reference 
genome 

Cattle  
spp⸶ 

Non-
cattle 
Bos spp 

Out-group 
spp  

No. of  
AA* 
determined   

References  

BovineSNP50 UMD3.1 Taurus  
Indicine 
Composite  

Gaur 
Banteng 
Yak  

Bison 
Low-land 
anoa  
Cape 
buffalo  

50.1  
thousand 

Matukumalli 
et al. 2009 

BovineSNPs 
(19.5 million 
variants)   

UMD3.1 Taurine  Yak   Sheep 
Water 
buffalo 

14.4 million Rocha et al. 
2014 

Whole genome 
sequence  

ARS-
UCD1.2 

Taurine 
Indicine   
 

Yak 
Banteng  
Gayal 
Gaur 
Auroch  

Bison  32.4 million 
 

Naji et al. 
2021 

Whole genome 
sequence 

ARS-
UCD1.2 

Taurine 
Indicine  
Composite 

Yak Sheep, 
camel  

39.9 million Xiang et al. 
2021 

*AA: Ancestral allele 
 

Between the two recent lists of ancestral alleles, about 9 million positions were in common. The 
coincidence of the ancestral alleles in the common positions were very high (99.8%). Altogether, 
these two lists presented ancestral alleles for about 60 million positions.  
Query of raw sequence reads of non-cattle Bos species showed Bos mutus (N=4) and Bos sauveli 
(N=2) have not been previously used in the determination of ancestral allele in cattle. The inclusion 
of these species is likely to improve the reliability of some of the current ambiguous and low 
probability sites in the lists. The population structure of cattle and out-species (Figure 1) showed 
less prominent segregation among the out-species group compared to cattle. This is expected 
because the variant positions in out-species were ortholog of cattle which not necessarily segregated 
in the out-species. The PC1 largely separated out cattle and out-species groups while PC2 segregated 
Bos indicus and Bos taurus.  
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Figure 1. PC plot (PC1 and PC2) of cattle (Bos indicus and Bos Taurus) and out-species 

1000 Bull Genome. It is a massive genomic resource collating variants for genomic imputation 
and genome wide association studies in cattle. The dataset has ~32 million high confidence (i.e., 
PASS) biallelic variant positions for cattle. It also provided genomic variants for out-species (five 
non-cattle Bos species including bison). This is a readily usable resource for the determination of 
ancestral allele by comparing alleles in cattle with alleles in orthologous positions in the out-species. 
The coherence of this genomic positions with two previous studies combined were more than 65% 
(Figure 2). This dataset would add another 11 million genomic positions for ancestral alleles to the 
existing list to reach 73 million. Further, considering the next best confidence category of variants 
(i.e, Tranche90to99) which is about 40 million positions can substantially increase the positions of 
ancestral alleles in cattle up to 100 million.  

Figure 2. Positional coherence between the two studies and variant positions in the 1000 Bull 
Genomes (in million) 

89 
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CONCLUSION 
Despite limited studies investigating on the ancestral alleles in cattle, there is a high proportion 

of positions in common between the studies to investigate the coherence of ancestral alleles. Further, 
the use of available genomic resources is expected to significantly improve the coverage of ancestral 
allele on the cattle genome and to enhance ancestral allele-based detection of selection signature 
studies in cattle.   
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SUMMARY 

The New Zealand deer industry has made notable genetic progress in the last decades. Initially 
based around velvet antler and venison, deer are now selected based on several traits including 
carcass composition, reproduction, and disease resistance within DEERSelect, the industry 
performance recording system in New Zealand. Due to its low cost and manageable logistics for 
deer, the genotyping-by-sequencing (GBS) technology was chosen to replace microsatellites for 
parentage assignment and has allowed a national genetic evaluation across flocks since 2015. 
Genomic information, however, is not yet fully exploited as evaluations currently only use a 
traditional pedigree-based, best linear unbiased prediction (BLUP) approach, to estimate the genetic 
merit of an animal. To assess the benefits of using genomic information in the evaluations, here we 
compare BLUP, genomic BLUP (GBLUP) and single-step genomic BLUP (SSGBLUP) evaluations 
for several production traits in the NZ deer industry. Using forward-validation, we estimate the 
prediction accuracy and bias for these three approaches in 19,863 red animals born between 2018 
and 2020. We show that regardless of the approach, GBLUP or SSGBLUP, incorporating genomic 
information explicitly improves prediction accuracy and reduces bias. Across all traits, we estimate 
gains in accuracy of 16% for GBLUP and 18% for SSGBLUP on average for red deer. We therefore 
recommend the incorporation of genomic information in the evaluations performed by DEERSelect 
and propose a computational pipeline to support the medium to long-term growth of this dynamic 
livestock industry in New Zealand. 

 
INTRODUCTION 

The New Zealand deer industry has made substantial genetic progress in the last decades (Ward 
et al. 2016). Initially based around velvet antler and venison, deer are now selected based on several 
traits including carcass composition, reproduction, and disease resistance within DEERSelect, the 
deer industry performance recording system in New Zealand (Gudex et al. 2013; Ward et al. 2016).  

Since 2015, the AgResearch deer genomics program has developed and implemented 
genotyping-by-sequencing (GBS) methods for deer parentage (Dodds et al. 2019; Rowe et al. 2018), 
gender and breed assignment (Bilton et al. 2019). Deer are routinely genotyped by GenomNZ 
(https://www.agresearch.co.nz/genomnz) using these GBS methods (Rowe et al. 2018). Genomic 
information, however, is not yet fully exploited in current evaluations as they only use the theoretical 
relationships between animals contained in the pedigree to estimate their genetic merit (A matrix). 
This approach to generate breeding values (BVS) is also known as best linear unbiased prediction 
(BLUP) approach. In contrast to that, the genomic BLUP (GBLUP) approach uses the realized 
relationships between animals (Genomic Relationship Matrix - GRM) and thus allows a more 
accurate estimation of their breeding values. Under the GBLUP approach, the actual relatedness for 
between animals is estimated using genomic markers (realized relationships).  

The SSGBLUP approach is intermediate between the latter two, as it weights both genomic 
(GRM) and pedigree (A) contributions to construct a unified relationship matrix known as H matrix. 
The SSGBLUP approaches thus requires an extra parameter α (0 ≤ α ≤1) to weight the GRM and A 

https://www.agresearch.co.nz/genomnz
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matrices. The main advantage of the SSGBLUP approach is to allow the direct incorporation of 
animals with either pedigree or genomic information in the genetic evaluation.  

Here we investigate ways to incorporate genomic information in routine deer evaluations of 
genetic merit. We use production traits related to growth, meat and carcass yield, health, and 
reproduction to compare the performance of genomic prediction using pedigree (BLUP), genomic 
BLUP (GBLUP) and single-step genomic (SSGBLUP) relationships among animals.  

MATERIALS AND METHODS 
Animals and Phenotypes. We used phenotypes for red animals born between 2018 and 2020. 

Phenotypic data from six production traits related to growth, meat and carcass yield, health, and 
reproduction was retrieved from DEERSelect. Production traits analysed were weaning live weight 
(WWT), 12-month live weight (W12), carbohydrate larval antigen-specific immunoglobulin A 
levels at 10 months of age (CARLA10), ultrasound measured eye muscle area at 10 months of age 
(EMA), velvet weight at 2 years (VW2), and conception date at 2 years (CD2).  Table 1 details the 
number of records per trait and their corresponding summary statistics. 

Table 1. Number of records and summary statistics by trait for New Zealand red deer 

 n records Mean SD Min. Max. 
WWT 18,649 55 7 22.2 89.4 
W12 15,894 90 8.5 51.4 130.3 
CARLA10 6,962 2.4 1.2 -2.3 6.6 
EMA 6,205 25.9 2.9 12.7 36.3 
VW2 1,031 3.1 1 0.7 8.1 
CD2 2,163 103.7 12.4 73 130 

GBS Genotypes. We used genotypic information from 19,863 animals and 55,784 SNPs 
mapped using GBS data. Genomic relationship matrices (GRM) were constructed using the KGD 
software (Dodds et al. 2015). Principal components (PCs) were obtained from the GRM in GCTA 
(Yang et al. 2011). 

Population structure. The deer population in New Zealand is composed of several crosses from 
two species of the genus Cervus: C. elaphus (red deer) and C. canadensis (wapiti deer/elk), which 
have notable phenotypic differences. Given that the inclusion of genetically divergent breeds can 
reduce prediction accuracy in genomic evaluations (Calus et al. 2014; Makgahlela et al. 2013), 
analyses are conducted separately for each breed. Birth herd codes were used as a proxy for breed. 
Only red analyses are presented here. 

Statistical Analyses. Phenotypes were modelled using a univariate genetic model for each trait. 
Genetic models include relevant covariates for each trait, including contemporary group, age of dam, 
birth date deviation, and breed proportions measured with PCs from the GRM (PC1 to PC3).  

Genetic parameters and breeding values were estimated using pedigree (BLUP), genomic BLUP 
(GBLUP) (VanRaden 2008) and single-step genomic BLUP (SSGBLUP) (Misztal et al., 2009) 
relationships among animals in MTG2 (Lee and van der Werf 2016). This software tool was also 
used to construct the H matrix.  In absence of any prior information, we used α=0.5, equal weights 
for pedigree and genomic relationships, to construct H. 

Genomic prediction accuracy. We assessed the prediction quality of the three relationship 
matrices using a forward-validation scheme. This was done by removing the phenotypes of the last 
cohort (target population, animals born in 2020), estimating the genetic models again using the older 
cohorts (training population, animals born 2018 and 2019), and comparing the breeding value 
predictions with actual phenotypes for the last cohort of animals. Prediction quality was assessed 
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using two measures: prediction accuracy and prediction bias. Prediction accuracy (acc) is defined as 
correlation between predicted breeding values and phenotypes adjusted by fixed effects divided by 
the squared root of the heritability (SSGBLUP model). Bias (bias) as the regression’s slope between 
predicted breeding values and phenotypes adjusted by fixed effects.  

 
RESULTS AND DISCUSSION 

Population structure. Figure 1 shows the first two PCs by birth year (A) and birth herd (B). In 
the figure A, we observe that animals are spread out evenly across the plot, suggesting that there is 
little change in the genetic composition of the animals over time. In contrast to that, figure B shows 
that birth herds form clearly defined clusters in specific regions which do not mix with each other. 
We can thus conclude that there is more variation between birth herds than across time. 

 
(A) Admixture by year (B) Admixture by birth herd 

 
 

 
 

Figure 1. Genetic admixture by birth year (A) and birth herd (B) for deer born between 2018-
2020. Principal components (PC) 1 and 2 are shown in the x and y-axis 
 
Table 2. Accuracy and bias of genomic prediction using pedigree (BLUP), genomic (GBLUP) 
and single-step SSGBLUP) approaches for red deer 
 

     BLUP GBLUP SSGBLUP 
  n target 

 
acc bias acc bias acc bias 

WWT 6,476 0.33 0.41 0.34 0.57 0.28 0.87 
W12 5,382 0.36 0.50 0.47 0.65 0.49 0.62 
CARLA10 2,548 0.29 0.46 0.47 0.71 0.46 0.64 
EMA 2,152 0.34 0.72 0.42 0.77 0.45 0.78 
VW2 343 0.40 1.42 0.43 1.02 0.46 1.11 
CD2 733 0.31 1.20 0.22 0.62 0.27 0.78 

 Average 0.34 0.79 0.39 0.72 0.40 0.80 
 

Genomic Prediction accuracy. The prediction accuracy and bias for the six production traits in 
red deer are presented in Table 2. Across all traits the prediction accuracy from BLUP, GBLUP and 
SSGBLUP approaches are 0.34, 0.39 and 0.40. This implies that incorporating genotypic 
information in the genetic evaluation could provide much more accurate breeding values, on average 
16% and 18% more accurate for GBLUP and SSGBLUP, respectively. Similarly, bias is also 
reduced when using genotypic information (SSGBLUP) H, although variation by trait is still present. 
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Our analyses have some caveats. First, for computational easiness we focus only on red animals 
born between 2018 and 2020. This strategy reduces the computational time for the genetic evaluation 
but also limits the number of phenotypic records included for velvet weight (VW2) and conception 
date (CD2) as these are recorded at two years of age. Secondly, this strategy also reduces the number 
of deer with genotypes entering the evaluation. Despite these caveats, the prediction accuracy of the 
breeding values is improved, and the bias is consistently smaller across all traits as shown in the 
validation (Table 2). 

CONCLUSIONS 
We show that incorporating genomic information explicitly, either by using GBLUP or 

SSGBLUP, improves prediction accuracy and reduces bias. Across all traits, we estimate average 
gains in accuracy of 16% for GBLUP and 18% for SSGBLUP for red deer, the breed with the highest 
numbers of phenotypic records. In addition, breeding values that use genotype information are also 
less biased than those based on pedigree alone. We therefore recommend the incorporation of 
genomic information in the genetic evaluations performed by DEERSelect for red deer. Methods for 
joint evaluations for wapiti, red and red x wapiti cross animals are currently under investigation. 
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UNDERSTANDING TRAIT PREFERENCES AND VIEWS ON GENETIC TOOLS FOR 
THE NEW ZEALAND BEEF INDUSTRY 

 
L. Kok1, S. Harburg1, B. Santos1, P. Amer1, J. Archer2, A. Boyd2 and G. Jenkins2  

 
1AbacusBio Limited, PO Box 5585, Dunedin 9058, New Zealand 

2 Beef + Lamb New Zealand, PO Box 5501, Dunedin 9054, New Zealand 
 

SUMMARY 
Beef + Lamb New Zealand (B+LNZ) has implemented the Informing New Zealand Beef (INZB) 

programme, a 7-year Sustainable Food and Fibre Futures partnership with the Ministry for Primary 
Industries, which aims to boost the sector’s profits by $460 million over the next 25 years. The 
programme includes the development of new traits for integration into future genetic evaluations.  An 
online survey of beef producers was conducted. The survey consisted of a demographic section, 
asking questions about the respondent’s production system and their views and attitudes on cattle 
selection and bull purchases. The survey also included a trait preference section for respondents to 
indicate their preferences and the relative importance of these traits to them. Overall, respondents 
had a preference for maternal traits, particularly cow fertility, cow functionality, and calving ease. In 
general, NZ beef producer survey respondents strongly support the use of estimated breeding values 
(EBVs) and indexes as tools to inform their selection and bull purchasing decisions. Almost 75% of 
respondents agree that NZ farm systems require specialized selection indexes. The survey also 
highlighted the importance of ongoing extension programs to improve adoption and understanding 
of genetic tools. There is strong priority for structural soundness and functionality traits, feed 
efficiency, and fertility traits, which are seen as important for new trait development. 

 
INTRODUCTION 

INZB is seeking to establish a beef genetic improvement system that can best support the needs 
and priorities of the NZ beef industry. One of the INZB projects aims to develop new traits for 
integration into industry phenotyping programs for future inclusion in industry genetic evaluations. 
An industry survey was undertaken between July and August 2022, to capture NZ beef industry 
perspectives on traits, trait priorities and selection index requirements to support genetic 
improvement within the NZ beef industry. Insights from the survey are being used to identify 
opportunities to develop new breeding traits, as well as to understand views and perceptions that 
might influence the scope and relevance of the genetic evaluation systems utilized by the NZ beef 
industry. Further, identification of beef farmer trait preferences (among current and future traits) and 
factors driving these preferences, will inform development of custom selection indexes that reflect 
the priorities of NZ beef industry stakeholders. 
 
MATERIALS AND METHODS 

A voluntary online survey was conducted from 1st of July to 12th of August 2022 and was 
distributed by B+LNZ to beef farmers and other industry stakeholders. The survey predominantly 
targeted beef farmer respondents (bull breeders, commercial breeders, and finishers), rural 
professionals, and other key stakeholders. Two distinct approaches were used to allow respondents 
to identify trait priorities, a direct ranking question (within the demographic component of the 
survey), and a Conjoint Analysis approach (Hensher et al. 2005) in the trait preference component. 
Firstly, the preference for traits was asked on a scale from 1 to 100 with the question displaying all 
traits jointly from which answers were converted to a relative weight of importance of each trait by 
dividing the score given to each trait by the sum of scores across all traits. Second, trait priorities 
were also captured through 1000minds (Hansen and Ombler 2009) which contrasts trade-off choices 
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between pairs of traits, assuming the level of the trade-off has broadly equivalent economic values. 
This pairwise comparison is practical and requires less effort from participants than other methods, 
making choice decisions simpler and nearer to respondents’ “true” preferences. 

The demographics component of the survey received 439 complete responses and 290 partial 
responses, whilst the 1000minds component received 311 complete responses and 169 partial 
responses. A broad sample of the NZ beef industry participants from a variety of beef business 
activities responded. There was strong engagement from commercial breeders (44.5% of 
respondents) and finishers (24.9% of respondents). Survey respondents also represented a broad 
cross-section of farming regions across the North and South Islands of New Zealand.  

A principal components analysis (PCA) and cluster analysis (CA) of trait preferences was 
performed to investigate groupings of respondents with similar preferences. Subsequent analysis was 
undertaken to characterise these clusters and understand whether differences in trait preferences 
reflected potential demographic differences or differences in breeding philosophy.  

 
RESULTS AND DISCUSSION 

Respondents were asked a series of questions about their breeding system to inform development 
of new maternal traits (e.g., cow body condition score). Approximately 82% of respondents mate 
their heifers targeting a first calving as a 2YO, with over half of the respondents first mating heifers 
between 300-350kg live weight. The overall frequency of calving difficulty averaged 3.71% 
(standard deviation of 8.12%) and is broadly consistent with published literature (e.g. Faucitano et 
al. 2012). Respondents estimated that the average weight of cows at weaning was 548kg (SD ± 94kg) 
versus an optimum weight of 555kg (SD ± 81kg). Generally, respondents agree that cow size and 
composition is important and that more descriptive traits (beyond cow weight) could be beneficial. 
This could provide a case for the development of additional traits for describing cow size and 
composition such as cow body condition score and cow height (as an indicator of frame size). 

When asked a series of questions associated with general views on the use of genetic tools, most 
respondents believe that EBVs (64%) and economic selection indexes (54%) are useful tools for 
representing animal genetic merit and improving herd performance. Many respondents considered 
genetic tools to be important for bull purchase decisions, although a subset (30%) rated visual 
appraisal, structural soundness, and horn/poll status as being sufficient to predict performance and 
genetic merit. Similar levels of importance were placed on genetic tools and raw performance 
information (animal live weight, and other phenotypic measurements). This highlights the need for 
ongoing investment in extension activities to improve understanding and drive adoption of better 
genetics and tools across the industry. 

Respondents generally supported a simplified portfolio of selection indexes covering maternal, 
terminal, and dairy-beef systems (69% somewhat agree/agree/totally agree). Almost 75% of 
respondents selected somewhat agree, agree, or totally agree that NZ farm systems require 
specialised selection indexes. There is support for development of sub-indexes to summarise animal 
merit (83%) and customisability to adapt indexes to specific requirements (70%). Respondents also 
believed (69% somewhat agree/agree/totally agree) that maternal selection indexes should include 
emphasis on carcass and eating quality traits alongside maternal traits. There is also very strong 
support for inclusion of functional traits (structure, docility, etc.) within selection indexes. These 
traits are currently omitted from most industry indexes.  

Trait preferences. In the sociodemographic part of the survey, respondents placed greatest 
emphasis on maternal traits, particularly cow fertility, cow functionality (foot/leg structure, teat and 
udder scores, docility), and calving ease. This indicates an opportunity to improve understanding of 
existing trait EBVs and encourages greater effort on data collection for docility and calving ease. 
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Growth traits, carcass weight, and feed efficiency represent the next highest priority traits. Feed 
efficiency represents the only novel/new trait among the highest priority traits. 

Trait preferences from the 1000minds part of the survey broadly were consistent with the answers 
on trait preferences based on relative rankings. The exception was cow fertility which ranked 5th 
highest (out of 11 traits). This could reflect either an overestimation by respondents of the relative 
importance of fertility, or the nominated trade-off for fertility within the 1000minds survey (3 less 
cows per 100 culled due to low fertility) did not adequately reflect an appropriate value for cow 
fertility relative to the other trait trade-offs.  

Trait preferences tend to hold across all respondent demographic categories. There were some 
interesting insights in this demographic breakdown. For instance, the dairy farmer segment (3% of 
respondents) was the most clearly differentiated segment within the primary beef activity group, with 
a greater priority placed on methane emissions, marbling and weaning weight, and lower priority 
placed on docility, cow fertility and calving ease. Bull breeders and commercial breeders were 
generally very closely aligned, except for marbling (higher priority for bull breeders) and cow body 
condition score (higher priority for commercial breeders) as the key areas of divergence. The 
tendency for bull breeders to place higher priority on marbling is a likely reflection of sourcing 
genetics from overseas (particularly US and Australia) and the use of the combined TransTasman 
Angus Cattle Evaluation (TACE) with Angus Australia (Angus Australia, 2021).  
Cluster analysis. Two distinct groups of respondents with similar preferences were identified. The 
‘production focus’ cluster, which comprises 136 respondents, showed higher preference for both 
growth and carcass traits (i.e., feed efficiency, weaning weight and carcass weight) alongside calving 
ease. The ‘maternal focus’ cluster (comprising 168 respondents) had a stronger focus on maternal 
and functional traits (i.e., calving ease, cow fertility and docility). The average trait preferences (% 
weighting) of both clusters are presented in Figure 1. Interestingly, the PCA analysis indicated that 
a sub-cluster of novel, progressive traits, namely methane emissions, feed efficiency, and marbling 
could be formed from the ‘production focus’ group if clusters were to be further separated out. This 
reveals the existence of diversity of thought even within groups of similar preferences.  

Figure 1. Cluster analysis of trait preferences from New Zealand beef industry stakeholders 

Views and attitudes. Demographics only had a small influence on trait preferences. This is 
consistent with many similar studies, whereby breeding philosophy is intrinsic to the respondent, 
rather than reflecting their demographic situation or background.  In addition to trait preferences, 
there are subtle differences in views and attitudes between the clusters. Respondents from the 
Production Cluster generally placed greater importance on genetic tools than those in the Maternal 
Cluster, however, overall patterns of response were quite similar between the two clusters (Figure 
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2). Whilst industry does consider genetic tools to be important for bull purchase decisions, their 
importance is lower than visual appraisal (structural soundness and overall appearance). 

Figure 2. Respondent views represented by level of importance on bull purchase criteria 

Indexes and index development. Survey results highlight several key opportunities to enhance 
the use and relevance of economic indexes to the NZ beef industry. The industry strongly supports 
the inclusion of functional traits (docility and structural traits) to indexes. This represents a key area 
of potential collaboration between B+LNZ and the breed societies to evaluate options to incorporate 
these traits within industry selection indexes. The implementation of a narrower range of selection 
indexes includes several key challenges to ensure these indexes are relevant to the trait preferences 
and breeding objectives of as many users as possible. These key challenges comprise 1) the relative 
importance of maternal versus production traits reflects a key area of divergence between key 
segments/clusters of the industry; 2) Whilst industry supports a simplified portfolio of indexes, there 
is strong interest in the ability to customise indexes to meet individual breeding objectives.  

CONCLUSIONS 
This industry survey underlines the importance of maternal and functional traits to most segments 

of the industry. It has identified key areas for B+LNZ and other key stakeholders to improve the 
scope and delivery of genetic tools. The importance of ongoing extension programs to improve 
adoption and understanding of these tools is critical for the success of the INZB programme. In 
addition to scoping the feasibility of collecting phenotypic data, B+LNZ should also engage with 
breed societies to assess the feasibility of implementing existing and developing new traits in a NZ 
genetic evaluation system. This engagement will secure collaboration and identify preferred 
approaches for implementation of future selection indexes for the New Zealand beef industry. 
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SUMMARY 

Calving pattern is one of the most important factors affecting the overall profitability and 
reproductive performance of pasture-based dairy herds. Genetic selection for fertility typically 
incorporates a variety of traits, including those that use calving dates as part of their definition. Early 
calving can also be achieved through shortened gestation length (GL). Although not an official 
component of fertility evaluations in New Zealand, GL is an unavoidable contributor to calving 
season day (CSD), which is an official component. This is because CSD is the combined result of 
the conception date and GL of the foetus. 

GL is not a true reflection of fertility, which typically comprises oestrus, fertilisation, and 
maintenance of pregnancy, and it also has comparatively high heritability, allowing it to dominate 
genetic progress over conventional fertility traits. Therefore, there is growing interest in separating 
the influence of GL from cow fertility evaluations. In this paper we outline an approach to derive 
the direct economic value (EV) for GL for a situation where it would be included in an index 
containing a conception date-based fertility date. Even though GL is not a true fertility trait, we find 
a high EV for GL through its indirect effect on fertility when farmers respond to a shorter GL 
population by delaying mating to achieve an identical seasonal calving pattern. Cows that have had 
a longer period between calving and first mating conceive at higher rates. This research facilitates 
revisions to the way fertility traits are included in national selection indices for seasonal dairy cows, 
allowing the development of non-linear index functions to avoid favouring selection for excessively 
short GLs challenging the welfare, viability, and productive performance of the resulting calves.  

 
INTRODUCTION 

Calving pattern is one of the most important factors affecting the overall profitability and 
reproductive performance of pasture-based dairy herds (Macdonald and Roche 2023). Genetic 
selection for fertility traits based on calving dates is used in New Zealand (e.g., calving season day; 
CSD) and many other countries to improve fertility with the aim of tightening calving patterns and 
reducing non-pregnant rates (Bowley et al. 2015). 

Bias and censoring caused by this approach in pasture-based systems are usually addressed 
through the addition of other fertility traits, including cyclicity (e.g., PM21 in NZ) and conception 
(e.g., non-return rate in Australia). More recent research, however, has emphasized that early calving 
can be achieved not only through improved submission and conception rates, but also through 
shortened gestation length (GL). Although not an official component of fertility evaluations in NZ, 
GL is an unavoidable contributor to the CSD phenotype, as the latter is the result of conception date 
and GL of the foetus. 

However, GL is not a true reflection of fertility – i.e., a cow’s ability to resume and express 
oestrus, or to achieve fertilisation and maintain pregnancy. Further, the comparatively high 
heritability of GL dominates genetic progress over conventional fertility traits. Finally, short GL 
may have adverse consequences on calf health which must be carefully managed as part of a 
responsible approach to breeding. Most countries are likely to be indirectly selecting for short GL 
in their dairy cattle, and the impact of this on health, performance, and management systems is a 
current topic of research activity. 
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There is growing interest in separating the GL component of the EBVs for fertility into 
performance that is influenced by conception rate and performance that is due to GL. However, this 
requires an understanding of the direct economic value (EV) of GL. Therefore, the objective of this 
study was to use a stochastic fertility model to calculate the EV of GL for NZ dairy herds. 

 
MATERIALS AND METHODS 

Stochastic fertility model. To estimate the EV of GL, we adapted a stochastic fertility model 
(SFM) developed by Dennis et al. (2018) to simulate the performance of high and low fertility cattle. 
Briefly, the model simulates a cohort of 200,000 heifers’ reproductive lifetime through 5 lactations, 
including genetic, physiological and management factors. It has the capacity to adjust genetic merit, 
oestrus duration, and fertility-related breeding values, but also incorporates events such as 
pregnancy diagnosis, oestrus detection, and embryonic loss.  

The original SFM was tuned to reflect the phenotypic performance of heifers that had been 
divergently bred for low and high genetic merit for fertility in an experimental setting. Therefore, to 
model the more-realistic effects of GL changes on low- and high-fertility performance in 
commercial NZ dairy herds, we adjusted the base fertility traits underlying the model. For the 
analysis we defined low, average, and high fertility herds as having differences in their breeding 
values for postpartum anoestrus interval (-3, +3), number of services per conception (-0.03, +0.03), 
and oestrus duration (-1.6, +1.6). 

To calculate the EV of GL, we reduced the mean GL (GL-3) and delayed planned start of mating 
(PSM) by 3 days in total (PSM+3). This reflects management changes currently being implemented 
by NZ dairy farmers in conjunction with the use of short GL semen. For each of the six runs (i.e., 
no intervention and GL-3/PSM+3 for low, average, and high fertility herds), 100 iterations were 
completed for a herd size of 200,000 animals, resulting in a dataset of 20 million lactations. Although 
Table 1 shows the effects of 3 days fewer GL for high and low fertility performance herds, these 
values are mainly provided to compare the effect of GL under a range of conditions. For index 
development, the following EV calculations are based on the performance of average herds.  

EV calculation. The EV of GL is built from four component EVs that influence profitability: 
milk production, empty rate, value of artificially bred (AB) and beef calves sold, and number of 
natural mate (NM) bulls required. Component EVs were calculated as the change in $ profitability 
per lactation, per day change in GL, independent of changes in other New Zealand dairy breeding 
objective traits. Key parameters are summarised in Table 2. See Amer et al. (2013), Santos et al. 
(2022) and https://www.dairynz.co.nz/animal/animal-evaluation/interpreting-the-info/economic-
values/) for details on the breeding objective and Breeding Worth index. 

The milk component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) was calculated as 

𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ���𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑔𝑔 × 𝜌𝜌𝑔𝑔𝐺𝐺𝐺𝐺−3

3

𝑔𝑔=1

� − ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑔𝑔 × 𝜌𝜌𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

3

𝑔𝑔=1

�� −3� , 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑔𝑔 is the average milk profit per lactation in groups (denoted by g) of early (first 21 days 
of season), mid (21-42 d) and late (>42 d) calving cows. For each group, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑘𝑘𝑔𝑔 ($/lactation) was 
calculated from weighted averages of milk production from Holstein-Friesian, Jersey and crossbred 
breeds in upper and lower North and South Islands, and average feed costs per lactation based on 
energy requirements and industry feed prices. In each group, 𝜌𝜌𝑔𝑔𝐺𝐺𝐺𝐺−3 and 𝜌𝜌𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are the proportions 
of cows in the GL-3 and base herds, respectively (Table 1). -3 is the days change in GL in the base 
herd compared to the GL-3 herd.  

The empty rate component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒) was calculated as  
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 = �∑ ∆𝑒𝑒𝑒𝑒 ×4

𝑒𝑒=1 𝜋𝜋𝑒𝑒 × 𝜌𝜌𝑒𝑒� −3⁄ , 

https://www.dairynz.co.nz/animal/animal-evaluation/interpreting-the-info/economic-values/
https://www.dairynz.co.nz/animal/animal-evaluation/interpreting-the-info/economic-values/
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where ∆𝑒𝑒𝑒𝑒 is the change in the proportion of empty cows in the GL-3 herd at parity (p = 1, 2, 3 and 
4+) compared to the base; 𝜋𝜋𝑒𝑒 is the average value of an empty cow culled following parity p based 
on milk income, replacement rates, feed/purchase costs, and salvage value; and 𝜌𝜌𝑒𝑒 is a weighting 
factor aggregating effects for parities based on the proportion of cows finishing lactation p.  

The AB and beef calves sold component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑐𝑐𝑏𝑏𝑚𝑚𝑐𝑐) was calculated as 
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑐𝑐𝑏𝑏𝑚𝑚𝑐𝑐 = ��∑ ∆6𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑒𝑒 ×4

𝑒𝑒=1 𝜌𝜌𝑒𝑒� −3⁄ �× 𝜏𝜏, 
where ∆6𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑒𝑒 is the change in 6-week in-calf rate (6WICR) from the base herd compared with 
the GL-3 herd at parity p (Table 1).τ is the average benefit of AB and high-value beef-sired calves 
per unit change in 6WICR ($/calf per proportion), based on industry data of proportions and prices 
for the range of AB and natural mating sired dairy and beef crossbred calves.  

The NM bulls component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑁𝑁𝑁𝑁) was calculated as 
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑁𝑁𝑁𝑁 = ��∑ ∆6𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑒𝑒 ×4

𝑒𝑒=1 𝜌𝜌𝑒𝑒� −3⁄ �× 𝜈𝜈, 
where ν is the cost of NM bull per cow not-in-calf at the end of the 6-week AI mating season ($/cow) 
based on industry data of average yearly bull lease rate and ratio of cows to NM bull. 

The total GL EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿) was calculated as 
𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿 = �𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑐𝑐𝑏𝑏𝑚𝑚𝑐𝑐 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿_𝑛𝑛𝑃𝑃� × 𝜌𝜌𝑚𝑚𝑒𝑒 , 

where 𝜌𝜌𝑚𝑚𝑒𝑒 is the industry average herd proportion of multiparous cows modified slightly to allow 
for delayed expression. 

RESULTS AND DISCUSSION 
SFM results. The mean reproductive performance metrics, produced by the SFM for each of the 

six scenarios are shown in Table 1. These do not include the performance of nulliparous heifers, 
which are often managed separately to the milking herd. The effect of GL-3/PSM+3 differs 
depending on the herd’s existing reproductive performance. This is likely because a greater 
proportion of cows in a high fertility herd are already calving early at an optimal time. 

Table 1. Reproductive performance metrics produced by the stochastic fertility model, 
adjusted for no intervention (base) and short gestation length (GL-3/PSM+3) scenarios 

Average fertility Low fertility High fertility 
Base GL-

3/PSM+3 
Δ Base GL-

3/PSM+3 
Δ Base GL-

3/PSM+3 
Δ 

6-week in-
calf rate

(6WICR)
65.0% 67.0% 2.0% 41.3% 43.5% 2.3% 73.8% 75.3% 1.5% 

Empty rate 12.3% 11.2% -1.1% 27.9% 26.0% -
1.9% 7.9% 7.2% -0.6%

% Calved 
by 21 days 48.6% 55.3% 6.7% 32.8% 38.3% 5.5% 55.5% 62.3% 6.8% 

% Calved 
by 42 days 74.5% 78.3% 3.9% 58.5% 63.3% 4.8% 80.3% 83.5% 3.2% 

EV results. The EVs for GL (Table 2) show that reducing mean GL by 3 days and delaying 
planned start of mating can have a significant impact on dairy farm profitability, especially in 

average and low fertility herds. Most of this is due to the indirect contribution of GL to improved 
fertility, with early calving allowing greater time for uterine involution and resumption of cyclicity. 

The largest contributor to GL EVs was a reduction in empty rate at -$5.31 per extra day of 
gestation. Improving cow longevity not only reduces the need for more heifer replacements – which 
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are costly to rear to maturity and take multiple seasons to achieve peak lactation – but is also 
consistent with societal expectations around animal welfare and survival. The second-most 
significant contributor was lactation profit at -$4.11 per extra day of gestation, which came from 
having a lower proportion of cows calving late in the season (i.e., a tighter calving pattern). Note 
that early in the calving season, the pattern of calving is relatively unchanged when farmers delay 
PSM as the average GL EBV of their herd shortens. Having more cows at peak lactation in 
conjunction with peak pasture availability is a key driver of profitability for pasture-based dairy 
herds. Finally, the contributions of having more high genetic merit artificially bred heifers (-$0.20 
per extra day of gestation) and fewer natural follow-up bulls (-$0.13 per extra day of gestation) were 
smaller but still significant. 

 
Table 2. Key gestation length EV model parameters and resultant component EVs 
 

 Description Values and unit 
Model 
parameter 

Milk profit for early, mid, and late calving cows 
(Pmilkg) 

$2435, $2372, $2162 / lactation 

Empty cow culled value following parity 1, 2, 3 and 
4+ (πp) 

$1704, $1710, $1614, $1350 / cow 

Weighting factor for parity 1, 2, 3 and 4+ proportions 
(ρp) 

0.25, 0.20, 0.16, 0.39 

AB and high value beef calves benefit value (τ) $30 / calf per unit 6WICR 

Natural mating cost (ν) $20 / cow 
Proportion of multiparous cows in herd (ρmp) 0.73 

Economic 
value 

Milk profit component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) -$4.11 / lactation per d GL 
Empty rate component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑏𝑏𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒) -$5.31 / lactation per d GL 

AB and beef calf component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑐𝑐𝑏𝑏𝑚𝑚𝑐𝑐) -$0.20 / lactation per d GL 

Natural mating component EV (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝑁𝑁𝑁𝑁) -$0.13 / lactation per d GL 
 Total EV adjusted for ρmp (𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿) -$7.12 / lactation per d GL 

 
CONCLUSION 

The economic value of gestation length includes 1) increased milk income from having a greater 
proportion of early-calving cows at peak lactation when there is also peak pasture availability, 2) 
reduced involuntary culling due to decreased empty rates, 3) the value of more artificially bred high 
genetic merit heifers, and 4) a reduction in natural follow-up bulls required for the herd.  

Our results show that reducing mean gestation length by 3 days and delaying PSM can have a 
significant impact on dairy farm profitability, especially in average and low fertility herds. 
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SUMMARY 
BreedObject is the software used to formalise breeding objectives and create the selection 

indexes produced by BREEDPLAN. The BreedObject breeding objectives and selection indexes 
allow cattle producers to identify the most profitable cattle genetics for the beef production system 
modelled by each selection index. Since the release of the latest version (6.2) of the BreedObject 
software, eight Australian beef cattle breed organisations have implemented 29 new or revised 
selection indexes. This paper discusses the process by which the selection indexes were developed 
in conjunction with the relevant breed societies, summarises the EBV emphases applied in these 
new selection indexes, and discusses the breeder feedback and implications of the selection indexes 
in the greater industry. 

INTRODUCTION 
Selection indexes provide an overall estimate of an animal’s genetic value for profit for a 

specified production system. Selection indexes are calculated by placing weightings on individual 
traits, with these weightings derived from the economic importance of the trait. As such, selection 
indexes reflect both the short-term profit generated by a bull through the sale of his progeny and the 
longer-term profit generated by his daughters if they are retained in the herd. The costs of production, 
including feed, are also accounted for. The selection indexes published by BREEDPLAN are 
calculated using BreedObject software (www.breedobject.com) and are reported in units of net 
profitability per cow mated ($) for the production system/market scenario that they represent. 

MATERIALS AND METHODS 
The development process for constructing a BreedObject selection index starts with individual 

breed organisations determining which production systems are the most relevant for their 
membership. This decision is influenced by the types of production systems that each breed 
organisation’s genetics are currently used in or are expected to be used in the future. Once ready, 
each selection index is only made available for animals recorded on the relevant breed organisation’s 
database. This allows the selection index definitions and inputs (including genetic parameters) to be 
specific to each breed organisation’s recorded population. 

Once the desired production systems were identified, a detailed description of the input costs and 
value generation of the commercial herd/production system was required for the BreedObject 
software. This process involved approximately 180 questions with the actual number varying 
between the selection indexes as the presence of some questions were reliant on prior answers. These 
questions included details of typical levels of production, herd population structure, prices received, 
costs of production etc in commercial herds.  

Once the target production system was described, the BreedObject software assessed what 
emphasis needed to be applied to each trait to achieve profitability increases in the production system 

* A joint venture of NSW Department of Primary Industries and University of New England



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 103 - 106 

104 

and market end point for which each selection index was designed. This step included evaluating 
the selection response expected from direct selection on the individual EBVs and the correlated 
responses expected from selection on related EBVs. Nonlinear effects (e.g. penalties for both under 
and over fat specifications) are also accounted for. Details of each selection index are available via 
the Help Centre on the BREEDPLAN website (https://breedplan.une.edu.au/help-centre/). 

This paper summarised the EBV emphases applied in each of the new selection indexes 
implemented since 2018 using version 6.2 of the BreedObject software for Australian breed 
organisations. The selection indexes were grouped according to whether they were designed for 
replacement heifers to be retained in the herd (self-replacing) or not (terminal). 

RESULTS AND DISCUSSION 
A total of 29 new or updated selection indexes using version 6.2 of the BreedObject software 

have been made available since 2018 via the Australasian Charolais, Belmont Red, Brahman, 
Hereford, Performance Herds Australia, Southern Limousin, Trans-Tasman Angus, and Wagyu 
BREEDPLAN analyses. Of these selection indexes, 21 were self-replacing and 8 were terminal 
selection indexes (Table 1). Beyond the self-replacing/terminal differentiation, there was 
considerable variation in the target markets and production environments represented by the 
selection indexes. The target slaughter ages varied from 15 to 32 months, which in turn contributed 
to the corresponding variation in the target slaughter weights (Table 1) and emphasis on carcase 
EBVs. Part of this variation was due to the wide variety of production environments present across 
Australia from the tropical conditions in the north to the temperate regions in the south of the 
country. In addition, most breed organisations also had international members (predominantly from 
New Zealand) to consider at some level when developing their selection indexes. The presence of 
genotype by environment interactions in the resulting breeding objectives is consistent with the 
findings of Walmsley & Barwick (2018). 

Table 1. Summary of the Selection Indexes and their corresponding market endpoints that are 
analysed in this paper 

Self-Replacing Terminal 
Number of Selection Indexes Analysed 21 8 
Number of Breed Associations 8 6 
Target Steer Slaughter Age Range (months)  15 to 32 12 to 29 
Target Heifer Slaughter Age Range (months) 15 to 29 12 to 27 
Target Steer Carcase Weight Range (kg) 250 to 460 205 to 360 
Target Heifer Carcase Weight Range (kg) 230 to 410 190 to 300 

Figures 1 and 2 show the range of, and the average EBV emphasis in the self-replacing and 
terminal selection indexes. With no daughters retained for future breeding, the maternal EBVs 
received no emphasis in the terminal selection indexes, thus allowing the emphasis applied to the 
calving, growth and carcase EBVs to be greater than in the self-replacing selection indexes. It should 
be noted that only one terminal selection index for a Bos indicus breed type was developed and 
implemented in the timeframe of this study. Therefore, some of the observed differences between 
the self-replacing and terminal indexes are likely to be due to the resulting variation between the 
breed types and the environments where they are typically (but not exclusively) run in Australia 
(Bos indicus breed types in the northern part of the country and Bos taurus in the south). 

Within the self-replacing selection indexes, there were noticeable differences between the Bos 
indicus and taurus breed types. The selection indexes developed for the Bos taurus breed types 
typically had a higher emphasis on calving ease, earlier growth, and less emphasis on fertility than 
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their Bos indicus counterparts. The higher emphasis on fertility (the Days to Calving EBV) in Bos 
indicus is to address the lower levels of fertility typically observed in Northern Australia (McCosker 
et al. 2010). The Calving Ease EBV emphasis was one of the more variable due to variation in the 
age of heifers at first calving, the existing levels of calving ease within each breed, and/or the breed 
with which the bulls were mated to. Additionally, in the breeds that run the majority of their cattle 
in Northern Australia, there was a desire to maintain or raise birthweights to improve calf vigour 
and post birth survival.  

Regarding the emphasis applied to the three growth EBVs, the majority of the emphasis was 
applied to the weight EBV that matched the target slaughter age. Therefore, the other, non-target, 
growth EBVs can have a low or even negative emphasis, particularly if they occur after the target 
slaughter age. It should be noted that the expected selection response of the Growth EBVs with low 
or negative emphasis would still typically be positive due to the high genetic correlations between 
these traits. The Wagyu and any production system involving Bos indicus breed type genetics 
(including Bos taurus bulls over Bos indicus or Bos indicus cross cows) had target slaughter ages 
greater than 2 years of age, while the Bos taurus x Bos taurus selection indexes all targeted slaughter 
at 2 years or less.  

Figures 1 and 2. Range (line) and average (• for Bos indicus, × for Bos taurus breed types) of 
the EBV emphasis in 29 Australian Self-Replacing and Terminal beef cattle selection indexes 

As part of the selection index development process, breeder input was sought and there were 
some examples where breeder expectation did not match the emphasis applied by the BreedObject 
software. There was considerable variation between breeders in their attitude towards the emphasis 
applied to calving ease, mature cow weight and the carcase traits in the selection indexes. As a 
consequence, a number of breeds implemented multiple selection indexes where one or more 
allowed mature cow weight to increase, and the other(s) held or reduced it. Further feedback 
on 
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Mature Cow Weight and Days to Calving, centred around the importance of these EBVs to the 
selection indexes and their relatively low levels of recording (Gudex & Millen 2019). This feedback 
places emphasis on the need for further extension efforts to promote the recording of these traits. 
For Days to Calving, this concern was compounded in the four breeds where this EBV was not 
reported and its emphasis in the selection index is applied through correlated traits. The Milk EBV 
typically received a low or negative emphasis in the selection indexes which caused concern for 
some breeders who assumed that increasing the weaning weight of the progeny was always desirable 
without considering the whole picture (e.g. the effect on cow BCS and her subsequent fertility and 
health). This assumption by breeders does not completely align with the standard BREEDPLAN 
advice which advocates selecting for a Milk EBV level appropriate for the environment where the 
cows are to be run (BREEDPLAN 2023). Environmental impacts were also discussed by some breed 
organisations, though none chose to add additional emphasis beyond the concept that animals with 
better production system efficiency will be better for the environment (and profitability).  

CONCLUSION 
Production systems vary between breeders and breeds, and therefore the corresponding trait 

emphasis in the selection indexes presented in this paper was variable. While this study summarised 
the breeding objectives, it is important to acknowledge that other sources of information should and 
will be used in most animal selection decisions. Therefore, deviations from the breeding objectives 
described here will be expected in the commercial and seedstock herds that utilise these selection 
indexes. That said, the results presented here will have practical implications for which traits should 
have their performance recording and extension messaging prioritised. The paper and methodology 
will also provide a valuable resource for benchmarking any new selection indexes that are developed 
or revised for BREEDPLAN. 
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SIGNATURES OF POSITIVE SELECTION FOR SCROTAL CIRCUMFERENCE IN 
THREE BEEF CATTLE BREEDS 

Z. Manzari, D.J. Johnston, N.K. Connors and M.H. Ferdosi

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia 

SUMMARY 
This study aimed to detect genomic regions associated with scrotal circumference in Australian 

Brahman, Hereford, and Wagyu beef cattle breeds. The presence of selection signatures was based 
on the FST test, using data on the genotype and BREEDPLAN estimated breeding values for SC of 
100,990 animals. Signals of selection for scrotal circumference were identified in genomic regions 
on several chromosomes, especially chromosome 14 in Brahman with most candidate genes under 
selection associated with male fertility or growth. The findings of this study may be applicable to 
breeding programs using more informative markers and assigning higher weights to them to increase 
the accuracy of genomic predictions and improve the reproductive performance of beef cattle. 

INTRODUCTION 
The unique genetic patterns left on the genome by natural and artificial selection in livestock 

populations are known as “selection signatures” (Gouveia et al. 2014). Detecting these signatures 
may help explain the selection history, adaptation, and genetic advancement of traits that may be 
economically important. Scrotal circumference (SC) is commonly employed as a selection criterion 
for breeding bulls because it is easily measured and correlated with a number of favourable 
reproductive traits, such as sperm motility, morphology, and concentration (Ferreira et al. 2021). 
Identifying the genomic regions and genes associated with SC could improve future animal breeding 
programs by improving the genomic predictions used for selection. Various statistical tests have 
been developed to identify selection signatures, including the fixation index (FST), which can be 
used to infer genetic relationships between populations based on allele frequencies. This study used 
the FST index to detect selection signatures associated with the SC trait in three Australian beef cattle 
breeds: Brahman, Hereford, and Wagyu. These breeds represent the Indicus, Taurus, and East Asian 
Taurus lineages, respectively, and possess economically important traits that set them apart. 

MATERIALS AND METHODS 
Estimated breeding values (EBVs) for SC estimated independently in three Australian beef cattle 

breeds (20,312 Brahman, 27,356 Hereford, and 53,322 Wagyu) were based on a single-step genomic 
best linear unbiased prediction (ssGTBLUP) model that was extracted from BREEDPLAN along 
with their genomic data. The SC EBVs for genotyped animals were split into quartiles, and animals 
in the first and fourth quartiles were used to represent extremes for further analysis. The 
BREEDPLAN genomic pipeline quality control was applied to the genotypes (Connors et al. 2017), 
and imputation was performed using FImpute v3 (Sargolzaei et al. 2014). Additionally, PLINK v1.9 
(http://www.cog-genomics.org/plink/1.9/) was used to remove single-nucleotide polymorphisms 
(SNPs) with minor allele frequency (MAF) < 5% after imputation. The SNPs after quality control 
for Brahman, Hereford, and Wagyu were approximately 72K, 77K, and 67K, respectively. The 
GCTA v1.94.1 software (Yang et al. 2011) was used to calculate FST values, which indicate genetic 
differences between populations. A sliding window of five SNPs for FST values was applied to 
reduce noise and consider linkage disequilibrium between SNPs. Two distinct strategies were 
implemented to represent selection signals. The initial strategy utilised a standard FST value range 
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(FST > 0.25 as very high differentiation, 0.15 - 0.25 as high, 0.05 - 0.15 as moderate, and < 0.05 as 
low). The second strategy involved considering only the top 0.1% of high windowed FST outliers as 
representative of selection signals. The BiomaRt R package (Durinck et al. 2009) was used to 
identify genes (ARS-UCD1.2 cow genome) within genomic regions under selection extending 250 
kilobases (kb) upstream and downstream of significant SNPs. Functional enrichment analysis was 
also performed on the gene set using the DAVID Bioinformatics Resources 
(https://david.ncifcrf.gov/) to identify biological processes associated with SC. 

RESULTS AND DISCUSSION 
The distribution of high and low estimated breeding values (EBVs) for the trait of interest in 

each population (SC) is presented on the right side of Figure 1. Based on the genetic differences 
between the Q1 and Q4 groups, the EBVs for SC in the Brahman, Wagyu, and Hereford breeds were 
high, moderate, and low, respectively. In Brahman, the results of the top 0.1 % windowed FST values 
(FST ≥ 0.15) showed that only chromosome 14 was under strong directional selection (Figure 1A). 
In agreement with our findings, some genome-wide association studies detected genomic regions 
for SC on chromosome 14 at 20–25 Mb for the Brahman breed (Fortes et al. 2012a; Fortes et al. 
2012b; Soares et al. 2017). Genomic regions on chromosome 14 play an important role for both 
reproductive and growth traits across various cattle breeds through their pleiotropic effects. 
Candidate genes included RP1, XKR4, TOX, PLAG1, PENK, RPS20, NSMAF, SNTG1, and MOS. 
For example, TOX is a transcription factor that controls the development of puberty in tropically-
adapted Brahman and Nellore beef cattle (Fortes et al. 2012a; de Camargo et al. 2015). From the set 
of 26 candidate genes, some significant Gene Ontology (GO) biological processes (P < 0.05) were 
found, including animal organ morphogenesis (GO: 0009887), protein metabolic process (GO: 
0019538), establishment of spindle orientation (GO: 0051294), organic hydroxy compound 
catabolic process (GO: 1901616), and metabolic process (GO: 0008152). 

In Wagyu, signals of selection were detected within several genomic regions distributed across 
seven chromosomes (BTA2, BTA3, BTA6, BTA7, BTA8, BTA14, and BTA20; Figure 1B). 
Chromosome 6 exhibited the signals of selection at 32 – 41 Mb, harbouring several genes involved 
in beef cattle growth, such as SLIT2 and CCSER1 (Smith et al. 2019). The CATSPER3 gene on 
BTA7 encodes a specific ion channel in sperm and has been found to be exclusively expressed in 
the bovine testis. It has been related to male fertility in cattle (Johnson et al. 2017; Nani and 
Peñagaricano 2020). The most significant biological processes identified from 54 candidate genes 
on all chromosomes were associated with genitalia development (GO: 0048806), reproductive 
structure development (GO: 0048608), reproductive process (GO: 0022414), regulation of 
multicellular organismal development (GO: 2000026), sex differentiation (GO: 0007548), and 
positive regulation of nitrogen compound metabolic process (GO: 0051173). 

In the Hereford cattle genome, several regions under selection pressure were detected across 
eight chromosomes (BTA1, BTA4, BTA5, BTA6, BTA8, BTA10, BTA11, and BTA15) that 
contained 92 candidate genes (Figure 1C). The region on BTA5 (105 Mb) was localized close to 
genes related to cattle growth (e.g. FGF6, FGF23, and CCND2) (Bernard et al. 2009; Bolormaa et 
al. 2014; Yin and König 2019; Fang et al. 2020). For instance, genes FGF6 and FGF23, both 
members of the fibroblast growth factor family, play a role in various biological processes such as 
angiogenesis, tissue regeneration, oncogenesis, and morphogenesis (Yin and König 2019). AKAP3 
gene on BTA5 plays roles in spermatozoa, including acrosome reaction and sperm 
capacitation/motility (Han and Peñagaricano 2016; Selvaraju et al. 2018). On BTA11, there were 
two significant genomic regions at 71–75 Mb and 29 Mb. The 29 Mb region overlaps with regions 
identified by Irano et al. (2016), which were associated with the SC trait based on genome-wide 
association studies (GWAS) in Nellore. Xu et al. (2022) reported that the CIB4 gene is positively 
associated with testis size. The following biological processes from all candidate genes related to 

https://david.ncifcrf.gov/
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the SC were identified: animal organ morphogenesis (GO: 0009887), animal organ development 
(GO: 0048513), regulation of nitrogen compound metabolic process (GO: 0051171), regulation of 
muscle contraction (GO: 0006937), tissue development (GO: 0009888), and regulation of metabolic 
process (GO: 0019222). 

Figure 1. Manhattan plots of selection signatures for scrotal circumference using FST values 
with plots of the distribution of EBVs for (A) Brahman (B) Wagyu (C) Hereford. Windowed 
FST values are on the y-axis, chromosomal positions are on the x-axis, and the threshold lines 
represent the 0.1% (red) and standard FST value range (black) in the Manhattan plots 

Selection signatures based on SC EBVs highlighted genes under selection in three Australian 
beef cattle breeds. The Brahman breed has lower reproductive rates (Reverter and Boe-Hansen 2011) 
than Wagyu and Hereford breeds, and improving fertility is a breeding program focus for many 
Brahman breeders. Putative signals of divergence within the Brahman breed had the strongest FST 
values compared to other breeds, suggesting higher differentiation in the breed for this trait. The 
Wagyu and Hereford breeds exhibited moderate and low levels of regional genetic differentiation, 
respectively. These results show that even though these breeds have different estimated breeding 
values (EBVs) for the SC in their populations, these diversities are not concentrated in certain 
genomic regions. GWAS can be used to confirm the relationships between the SC phenotype and 
genotype. Then, combining information from both selection signatures and GWAS could help in the 
validation of the informative SNPs. These SNPs can be used to improve the accuracy of genomic 
predictions for SC in the future. For example, combining these SNPs as a fixed effect or giving them 
greater weight in the genomic relationship matrix can potentially lead to improved accuracy in 
genomic predictions. In addition, the identification of informative SNPs improves our understanding 
of the biological mechanisms regulating the reproductive performance of beef cattle breeds. 
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CONCLUSIONS 
Genotype data, along with EBV information, can provide insights into selection events for traits 

of interest in breeding programs. In this study, candidate genomic regions and genes associated with 
SC were detected using this method. These genomic regions could be confirmed by other validation 
studies, such as GWAS, to improve the genetic evaluation of animal breeding programs.  

ACKNOWLEDGEMENTS 
This research was partially funded by Meat and Livestock Australia project L.GEN.2204. ZM 

acknowledges receipt of an AGBU PhD scholarship, the Agricultural Business Research Institute 
provided access to BREEDPLAN data, and the Australian Brahman Breeders Association Limited, 
Herefords Australia, and Australian Wagyu Association participated in BREEDPLAN. 

REFERENCES 
Bernard C., Cassar-Malek I., Renand G. and Hocquette J.-F. (2009) Meat Sci. 82: 205. 
Bolormaa S., Pryce J.E., Reverter A., Zhang Y., Barendse W., Kemper K., Tier B., Savin K., Hayes 

B.J. and Goddard M.E. (2014) PLoS genetics 10: e1004198. 
Connors N., Cook J., Girard C., Tier B., Gore K., Johnston D. and Ferdosi M. (2017) Proc Assoc 

Advmt Anim Breed Genet. 22: 317. 
de Camargo G.M., Costa R.B., Lucia G., Regitano L.C., Baldi F. and Tonhati H. (2015) Reprod. 

Fert. Develop. 27: 523. 
Durinck S., Spellman P.T., Birney E. and Huber W. (2009) Nat Protoc 4: 1184. 
Fang L., Cai W., Liu S., Canela-Xandri O., Gao Y., Jiang J., Rawlik K., Li B., Schroeder S.G. and 

Rosen B.D. (2020) Genome Res. 30: 790. 
Ferreira C.E., Campos G.S., Schmidt P.I., Sollero B.P., Goularte K.L., Corcini C.D., Gasperin B.G., 

Lucia Jr T., Boligon A.A. and Cardoso F.F. (2021) Theriogenology 172: 268. 
Fortes M., Lehnert S., Bolormaa S., Reich C., Fordyce G., Corbet N., Whan V., Hawken R. and 

Reverter A. (2012a) Anim. Prod. Sci. 52: 143. 
Fortes M.R., Reverter A., Hawken R.J., Bolormaa S. and Lehnert S.A. (2012b) Biol. Reprod. 87: 

58. 
Gouveia J.J.d.S., Silva M.V.G.B.d., Paiva S.R. and Oliveira S.M.P.d. (2014) Genet. Mol. Biol. 37: 

330. 
Han Y., Peñagaricano F. (2016) BMC Genet 17: 1. 
Irano N., de Camargo G.M.F., Costa R.B., Terakado A.P.N., Magalhães A.F.B., Silva R.M.d.O., 

Dias M.M., Bignardi A.B., Baldi F. and Carvalheiro R. (2016) PLoS One 11: e0159502. 
Johnson G.P., English A.-M., Cronin S., Hoey D.A., Meade K.G., Fair S. (2017) Biol. Reprod. 97: 

302. 
Nani J.P. and Peñagaricano F. (2020) BMC Genomics 21: 1. 
Reverter T. and Boe-Hansen G. (2011) Meat and Livestock Australia. 
Sargolzaei M., Chesnais J.P. and Schenkel F.S. (2014) BMC Genomics 15: 1. 
Selvaraju S., Parthipan S., Somashekar L., Binsila B.K., Kolte A.P., Arangasamy A., Ravindra J.P. 

and Krawetz S.A. (2018) Syst. Biol.Reprod. Med. 64: 484. 
Smith J.L., Wilson M.L., Nilson S.M., Rowan T.N., Oldeschulte D.L., Schnabel R.D., Decker J.E. 

and Seabury C.M. (2019) BMC Genomics 20: 1. 
Soares A., Guimarães S., Kelly M., Fortes M., e Silva F., Verardo L., Mota R. and Moore S. (2017) 

J Anim. Sci. 95: 3331. 
Xu H., Sun W., Pei S., Li W., Li F. and Yue X. (2022) Front. Genet. 12: 2883. 
Yang J., Lee S.H., Goddard M.E. and Visscher P.M. (2011) Am. J. Hum. Genet. 88: 76. 
Yin T. and König S. (2019) Genet. Sel. Evol. 51: 1. 

110 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 111 - 114 

111 

BREEDPLAN SINGLE-STEP GENOMIC EVALUATIONS DELIVER INCREASED 
ACCURACIES ACROSS ALL BREEDS AND EBVS 

D.J. Johnston, M.H. Ferdosi, N.K. Connors, J. Cook, C.J. Girard and A.A. Swan 

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW 2351 Australia 

SUMMARY 
Forward cross-validation analyses were used to quantify the changes in BREEDPLAN EBVs 

from single-step genetic evaluations compared to traditional pedigree-based evaluations for Angus, 
Brahman, Hereford, Santa Gertrudis and Wagyu breeds. EBVs were generated from full multi-trait 
evaluations for each breed and compared to EBVs from an evaluation where all the phenotypic 
records were removed from the last four year drops of animals (termed Validation). Results for the 
sub-set of validation animals that were SNP genotyped showed the population-based accuracy of 
single-step EBVs were higher than pedigree-based accuracies for all breeds and traits. However, the 
magnitudes of the accuracy increases differed across breeds and traits, and generally reflected 
differences in the size of the training populations for each trait. The largest increase in accuracy, 
averaged across all traits in a breed, was observed for Angus (24%) and the smallest for Santa 
Gertrudis (5%). Across breeds, the largest increases in accuracy occurred for the growth trait EBVs 
compared to smaller increases for abattoir carcase, female reproduction and NFI EBVs. This study 
has shown the benefits of single-step genomic evaluations, and the opportunity to increase rates of 
genetic progress, through the increased accuracy generated. The study also highlighted breeds and 
traits which could benefit from additional recording to increase accuracies from single-step.  

INTRODUCTION 
Inclusion of SNP-based data is now routine in most livestock genetic evaluations worldwide. 

BREEDPLAN has included DNA marker data since 2010 and in 2017 implemented single-step 
SNP-based genomic evaluations (Johnston et al. 2018). Increasing rates of industry genotyping, 
coupled with the development of breed reference populations has resulted in increased accuracy of 
EBVs, especially for genotyped animals (Jeyaruban et al. 2019). Quantifying the benefits from 
single-step evaluations is not straightforward from large evaluations however Legarra and Reverter 
(2018) proposed using forward validation and semi-parametric estimates (called Method LR) as a 
relatively simple method to quantify the changes in accuracy, bias, and dispersion between two 
evaluations. The aim of this study was to use forward cross-validation and the Method LR to assess 
the changes in accuracies of single-step versus pedigree-based evaluations for a range of breeds that 
differ in the numbers of genotyped animals and the size and structure of their genomic reference 
populations. 

MATERIAL AND METHODS 
Data. The dataset used in this study included performance, pedigrees and genotypic data extracts 

from each of the five breed’s databases from December 2022. Full BREEDPLAN multi-trait 
evaluations including maternal effects and genetic groups were run for each breed. Single-step 
evaluations were performed according to the procedures of Connors et al. (2017) and Johnston et 
al. (2018). Traits included: birth weight (BW), gestation length (GL), 200d weight (WW), 400d 
weight (YW), 600d weight (FW), cow weight (MCW), bull ultrasound rib fat (BRF), P8 fat (BP8), 
eye muscle area (BEMA), intramuscular fat percent (BIMF), heifer ultrasound rib fat (HRF), P8 fat 
(HP8), eye muscle area (HEMA), intramuscular fat percent (HIMF), days to calving (DC), abattoir 

* A joint venture of NSW Department of Primary Industries and the University of New England
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carcase weight (CWT), rib fat (CRIB), P8 fat (CP8), eye muscle area (CEMA), intramuscular fat 
(CIMF), marble score (CMS), marble fineness score (CMF), retail beef yield (CMY), shear force 
(CSF), net feed intake-postweaning (NFIP), net feed intake-finishing (NFIF), scrotal circumference 
(SC), heifer age at puberty (AP), flight time (FT) and percent normal sperm (PNS). 

Forward validation. To perform the cross-validation animals were defined as “validation” 
animals or ‘training’ based on their year of birth. Animals born after 2018 (except Wagyu, where 
2019 was a better split in the data of genotyped animals) comprised the validation sub-set. 
BREEDPLAN evaluations were performed using pedigree-based BLUP analyses (PED) and single-
step analyses (S-S). These runs included all phenotypes, with the resulting EBVs for the validation 
subset of animals denoted as 𝒖𝒖�𝑤𝑤. Phenotypes for the validation animals were then removed and the 
analyses repeated, with the resulting EBVs denoted as 𝒖𝒖�𝑝𝑝. The subscripts “𝑤𝑤” and “𝑝𝑝” refer to 
“whole” and “part” analyses respectively, with the part EBVs of validation animals (𝒖𝒖�𝑝𝑝) informed 
by their pedigree and genomic relationships with the training animals, respectively. A series of 
metrics were computed using the Method LR (Legarra and Reverter 2018) to compare EBVs from 
part versus whole subsets from each of the PED and S-S evaluations. A population-based accuracy 
(acc) of the evaluations was computed using the approximation below: 

𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤,𝒖𝒖�𝑝𝑝�

�𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑲𝑲)�����������  −  𝑲𝑲��𝜎𝜎𝑢𝑢,∞
2

 

where, 𝑲𝑲 is the relationship matrix (i.e. NRM for PED and GRM for S-S) for the validation animals 
with phenotypes for each trait and 𝜎𝜎𝑢𝑢,∞

2  is assumed to be the genetic variance. The dispersion (i.e. 
slope) was estimated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = 𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝑝𝑝�/𝑐𝑐𝑎𝑎𝑣𝑣(𝒖𝒖�𝑝𝑝) and the bias was estimated as 𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑 =
�𝒖𝒖�𝑝𝑝���� − 𝒖𝒖�𝑤𝑤�����. While the validation animals included both genotyped and pedigree-only animals, 
metrics reported in this paper are for genotyped animals only. Bias and dispersion metrics were 
computed but only summary results are reported here. 

 
RESULTS AND DISCUSSION 

Table 1 presents population estimates of accuracies for genotyped validation animals for the five 
breeds across the range of BREEDPLAN EBVs. Results show accuracies from S-S were higher than 
PED across all breeds and all trait EBVs. This demonstrates that the validation animal’s EBVs were 
on average more highly correlated from the S-S evaluation compared to the PED evaluation from 
the part versus whole runs. Across breeds S-S accuracies were generally highest for the growth traits, 
with an extreme value for Brahman birth weight (also evident in PED accuracy) suggesting the 
additive variance assumed is smaller than the true variance or is being influenced by maternal 
effects. 

On average the increase in S-S accuracy was 0.05, 0.12, 0.16, 0.18, 0.23, for Santa Gertrudis, 
Brahman, Hereford, Wagyu and Angus, respectively (Figure 1). For Angus and Hereford the 
increased accuracies were in general agreement with earlier analyses of Jeyaruban et al. (2019) that 
used a subset of these data from previous years. Recently, Moore et al. (2023) presented an 
alternative approach applied to the Brahman data, and while their results were based on different 
edits and data subsets, the changes in accuracies from single-step across the traits were generally in 
agreement but not always, suggesting the different methods are possibly sensitive to assumptions 
and need further scrutiny.  

The magnitude of the increases in accuracies generally reflected the size of the training 
populations. Figure 2 illustrates that pooled across traits and breeds, accuracies observed in 
validation animals tended to increase with the size of the training set. The plots plateau for S-S at 
0.80 accuracy with more than 10,000 animals with records and genotypes in the training dataset 
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compared to about 0.50 for pedigree evaluations of the same size. In general, for traits with greater 
than 5,000 animals in the training populations the S-S accuracies were above 0.60. 

Estimates of dispersion (not shown here) were generally close to the expected value of unity, 
indicating little evidence of under- or over prediction of S-S EBVs. Bias estimates (not shown) were 
mostly small but further analyses are required to compare ungenotyped and genotyped 
contemporaries. 

  
Table 1. Population accuracy estimates for genotyped validation animals from pedigree (PED) 
and Single-step (S-S) BREEDPLAN evaluations for five breeds across all EBVs 
 

EBV* Angus  Brahman  Hereford  Santa Gertrudis  Wagyu 
  PED S-S  PED S-S  PED S-S  PED S-S  PED S-S 
BW 0.44 0.81  0.79 0.99  0.63 0.85  0.33 0.38  0.49 0.77 
WW 0.53 0.81  0.54 0.70  0.57 0.76  0.37 0.41  0.50 0.76 
YW 0.53 0.81  0.43 0.57  0.64 0.83  0.41 0.45  0.53 0.85 
FW 0.54 0.82  0.46 0.61  0.56 0.79  0.41 0.46  0.51 0.81 
MCW 0.52 0.84  0.42 0.64  0.58 0.79  0.50 0.53  . . 
BEMA 0.58 0.81  0.41 0.49  0.54 0.66  0.43 0.52  0.38 0.56 
HEMA 0.58 0.79  0.39 0.48  0.63 0.74  0.50 0.58  0.34 0.55 
BIMF 0.67 0.84  . .  0.65 0.78  0.34 0.39  0.33 0.42 
HIMF 0.71 0.89  . .  0.71 0.85  0.33 0.39  0.35 0.44 
BP8 0.46 0.75  0.35 0.49  0.52 0.70  0.44 0.51  0.33 0.48 
HP8 0.45 0.76  0.43 0.55  0.63 0.81  0.38 0.47  0.36 0.52 
BRF 0.50 0.78  0.34 0.48  0.54 0.70  0.45 0.52  0.34 0.48 
HRF 0.50 0.78  0.50 0.61  0.69 0.87  0.38 0.47  0.35 0.48 
CWT 0.47 0.66  0.35 0.43  0.32 0.55  0.33 0.37  0.52 0.77 
CEMA 0.39 0.69  . .  0.34 0.46  . .  0.33 0.44 
CIMF 0.50 0.73  0.40 0.46  0.35 0.51  0.31 0.34  0.45 0.61 
CMY 0.44 0.60  . .  . .  . .  . . 
CP8 0.35 0.64  0.35 0.47  0.24 0.47  0.35 0.38  0.40 0.61 
CRF 0.39 0.66  0.37 0.43  0.29 0.45  0.38 0.41    
CMF . .  . .  . .  . .  0.27 0.37 
CMS 0.40 0.62  . .  . .  . .  0.53 0.63 
CSF .   0.36 0.42  . .  0.28 0.32  . . 
DTC 0.47 0.54  0.36 0.60  0.25 0.31  0.55 0.67  . . 
AP . .  0.41 0.47  . .     . . 
PNS . .  0.21 0.26  . .  0.26 0.29  . . 
SC 0.44 0.72  0.59 0.76  0.49 0.61  0.40 0.46  . . 
GL 0.42 0.67  0.32 0.33  0.60 0.68  0.24 0.25  0.30 0.41 
FT . .  0.41 0.46  . .  0.51 0.57    
NFIF 0.22 0.40  . .  0.17 0.17  . .  . . 
NFIP 0.24 0.36  . .  . .  . .  . . 

*see text for trait names; “.” indicates trait not recorded or too few validation animals for the breed 
 
CONCLUSIONS 

This study has shown that single-step BREEDPLAN evaluations are delivering increased 
accuracies of EBVs across the full range of EBVs and breeds. This improvement in accuracies allow 
more genetic progress, particularly for economically important traits that are generally low accuracy 
at the time of selection. Improvements in accuracy from single-step will also benefit the commercial 
beef sector through better genetic description across a broader range of EBVs and allow more precise 
matching of genetics to specific production systems and markets. Further increases in accuracies are 
possible from single-step evaluations of particular breeds and traits by increasing the size of their 
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reference populations. 

Figure 1. Average change in accuracy of validation animals across all traits by breed 

Figure 2. Accuracy of validation animals versus size of training populations for all traits and 
breeds for single-step (orange) and pedigree (blue) evaluations. 
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RATE AND AVERAGE PIGLET BIRTHWEIGHT  

 
A.M.G Bunz1,2, K.L. Bunter2, J. Harper1,2, R. S. Morrison1 , B.G. Luxford1 and S. Hermesch2 

 
1 Rivalea Australia (Pty Ltd), Corowa, NSW, 2646 Australia 

2 Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia 
 
SUMMARY 

The aim of this study was to investigate if there are interactions between genotype and trait-
specific seasons (GxTrS) for average piglet birth weight and farrowing rate from sow litters. A series 
of bivariate animal models were used to estimate genetic parameters. The current study found GxTrS 
for farrowing rate (genetic correlation <0.4), but not for average piglet birth weight (genetic 
correlation >0.9). Farrowing rate recorded in the least stressful season (low temperature and positive 
change in day length) was genetically different to farrowing rate recorded in the two most stressful 
seasons (high temperature and increasing day length or high temperature and decreasing day length). 
The results of this study showed that seasonal infertility in sows can genetically be improved by 
using trait-specific seasons. However, the heritability of farrowing rate was very low (h2=0.02) and 
improving the temperature control in the sow’s housing environment and developing effective 
strategies to minimise the effects of changes in day length on the sows may be more effective to 
improve seasonal infertility. 

 
INTRODUCTION 

The reproductive efficiency of sows is economically important in pig production and has been 
observed to be affected by seasonal variation; in particular poor reproductive performance in 
summer (Love et al. 1993, Auvigne et al. 2010). Previous studies have defined seasons using 
calendar months or temperature and photoperiod information fitted separately at a single time point 
to investigate genotype by season interactions (Lewis and Bunter 2011, Sevillano et al. 2016). A 
novel methodology has been developed to define trait-specific seasons (modified from Bunz et al. 
2019), which accounts for both temperature and photoperiod information simultaneously across 
multiple important time points. This study hypothesised that interactions between genotype and trait-
specific seasons (GxTrS) exist for the reproductive traits of average piglet birthweight and farrowing 
rate recorded in mature sows.  

 
MATERIALS AND METHODS 

The traits investigated were farrowing rate calculated from the first insemination event within 
each mating cycle (FR1: 0=fail due to reproductive reasons, 1=pregnant) and average piglet birth 
weight (PWT) using multiparous-sow records. The data from two maternal lines (Large White: LW, 
and Landrace:  LD) and one terminal line (Duroc: DC) were collected from a single farm in southern 
New South Wales, Australia. Data included 42,248 FR1 records from 14,667 sows (daughters of 
1,161sires) and a subset of these sows (N=9,402 sows; daughters of 1,077 sires) with 20,293 PWT 
records collected between 2013 and 2019. All mating events were performed using artificial 
insemination with each sow receiving two inseminations from the same boar. Sows were housed in 
naturally ventilated sheds, during gestation and lactation. 

The  two steps used to define trait-specific seasons were: 1) A series of single-day models  were 
applied to identify the most informative days (P < 0.05) for FR1 and PWT regarding maximum 
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temperature (tmax) and change in day length (dl) in a trait-specific time period. The single-day linear 
mixed models were fitted using the lme4 procedure in R (R Development Core Team 2022), 
represented as: 

yijklm = µ + matingtypei + β(tmax day x) + β(dl day x) + paritygr𝑗𝑗 + lactlengthk + 𝑝𝑝𝑝𝑝𝑙𝑙
+ quarteryearm + 𝑝𝑝𝑖𝑖𝑗𝑗𝑖𝑖𝑙𝑙𝑖𝑖  (𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀 1) 

where yijklm are the observations for FR1 or PWT, µ is the overall mean effect, matingtypei is the 
fixed effect of the ith mating type (5 levels, LW x LW; LD x LD; LW x LD; LD x LW; DC x DC), 
paritygrj is the fixed effect of the jth parity grouping (4 levels, p1;p2;p3; p4), covariate of tmax day 
x and dl day x, where x is one day in the investigated trait-specific time period, quarteryearm is the 
fixed effect of the mth quarter year of trait recording (32 levels over the complete time periods) and 
the permanent environment of the sow (pel) was fitted to account for repeated records for FR1 and 
PWT. The fixed effect of previous lactlengthk, representing the kth lactation length grouping (4 
levels, quartiles), was significant for FR1 only. For PWT, the time period considered was from 115 
days before the farrowing date to the farrowing date and for FR1 the time period was from 45 days 
before to 18 days post the first mating date. Fitting a generalised linear model with a logit link 
function for FR1 did not converge; therefore, a linear mixed model was applied to FR1; 2) A cluster 
procedure (R Development Core Team 2022) was then used to group tmax and dl patterns based on 
the most informative days for every mating date (FR1) or farrowing date (PWT) which resulted in 
the definition of four clusters to represent trait-specific seasons (Table 1). 

Parameter estimates for each trait were then obtained using an animal model in ASReml 
(Gilmour et al. 2015). Additional to Model 1, the random additive genetic effect of the nth sow 
(animal). Further, the permanent environmental effect of the oth service sire (sn) was fitted for FR1. 
Covariate of tmax and dl was not fitted in the animal model. Random variables were included in 
models if significant (P < 0.05) based on a log-likelihood ratio test. Effects were distributed as 
var(a)=𝑨𝑨𝜎𝜎𝑎𝑎2, where A is a matrix describing the relationships between animals (i.e., a numerator 
relationship matrix), and for the remaining effects: Var(pe)=I𝜎𝜎𝑝𝑝𝑒𝑒2 , Var(s)=I𝜎𝜎𝑠𝑠2 and Var(e)=I𝜎𝜎𝑒𝑒2, 
where I is an Identity matrix. For each trait-specific season, genetic parameters were obtained. A 
series of bivariate animal models was applied to estimate genetic correlations between the trait-
specific seasons to measure the magnitude of GxTrS for each trait fitting the same fixed and random 
effects that were fitted in the univariate analyses.   
 
RESULTS AND DISCUSSION 

Defining Seasons. Seasons were trait-specific, varied across years and were not the same as the 
standard four calendar seasons (Figure 1) due to the different informative days for tmax and dl 
between traits, and the variation in temperature across years. For FR1, high tmax and negative 
change in dl around the time of mating had the largest reduction in performance, which was Season 
2. For PWT, high tmax and negative change in dl during early gestation and low tmax at late 
gestation had the lowest mean, which was Season 3 (Table 1).  

Univariate Analysis. This study found low heritabilities for FR1 (Table 2), similar to those 
reported by Sevillano et al. (2016) and no additive variance was found in Season 3 (Table 2). 
However, heritability estimates for FR1 differed only marginally between seasons. Moderate 
heritabilities were found for PWT (Table 2), which were lower than previously reported by (Lewis 
and Bunter 2011). Season 1 of PWT had a lower heritability (h2=0.17) than the other seasons due to 
a lower additive genetic variance, however the phenotypic variance was similar across Seasons.   

Bivariate Analysis. Estimates of genetic correlations between the same trait recorded in 
different trait-specific seasons are shown in Table 2. The standard errors for genetic correlations 
were high for FR1 due to the low heritability. The genetic correlations were low between Season 4 
and the first two seasons, suggesting that FR1 in Season 4 was genetically a different trait than in 
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Season 1 and Season 2. The first two seasons of FR1 had opposite tmax characteristics compared to 
Season 4, which could  explain the low genetic correlation found in this study. Sevillano et al. (2016) 
found a higher genetic correlation (0.46±0.13) of farrowing rate between opposite environments 
(stressful and non-stressful) using a bivariate model. Better environmental control for the sows, 
during lactation, wean to service period and early gestation could reduce the magnitude of the 
GxTrS. The current study shows that the combined effects of high tmax and dl (Season 2) had the 
largest GxTrS and therefore it is important to account for both tmax and dl for defining the presence 
of genotype by season interactions for FR1 outcomes.  

 
Table 1. Data characteristics for farrowing rate (FR1) and average piglet birthweight (PWT) 
recorded in sows according to trait-specific seasons (Sn), maximum temperature (tmax) and 
change in daylight length(dl) characteristics 
 

Abbreviations:  Mean tmax:  high >28⁰C; medium 22-28°C; low <22⁰C 
Mean dl:   positive = daylength is increasing;                                                                            

negative = day length is decreasing 
 

 
Figure 1. Distribution of calendar days according to the four trait-specific seasons for 
farrowing rate (FR1) and average piglet birthweight (PWT) over two years 2015 & 2016. Days 
with missing records were coloured white 

 
Further, there was a high genetic correlation between Season 1 and Season 2 for FR1, indicating 

that as temperature tolerance is improved, seasonal tolerance will also genetically improve. These 
results are supported by Sevillano et al. (2016), who found that pigs tolerant to decreasing dl are 

Trait  Sn Trait-specific season characteristics N 
records 

Mean(sd) 

FR1  1 tmax from medium to high; dl positive   8,130 0.87(0.33) 

2 tmax from high to medium; dl negative  14,497 0.83(0.38) 
3 tmax low; dl negative   6,562 0.88(0.33) 
4 tmax low; dl positive  13,059 0.90(0.30) 

PWT 1 tmax from low to high through gestation; dl positive   6,827 1.61(0.25) 
2 tmax from medium to high through gestation; dl negative   5,012 1.59(0.25) 
3 tmax from high to low through gestation; dl negative   5,137 1.56(0.25) 
4 tmax low through gestation; dl positive   3,317 1.59(0.26) 
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also more tolerant to high tmax. The standard errors for genetic correlations were high for FR1 due 
to the low heritabilities in all seasons. It was not possible to estimate genetic correlations between 
Season 3 and other Seasons for FR1 due to the additive genetic variance not being estimable in 
Season 3.  

Genetic correlations between PWT recorded in different Season were high (genetic correlation 
> 0.9) supporting the result of Lewis and Bunter (2011), which found that PWT was the same trait
across all calendar seasons.

Table 2. Heritability estimates (in bold on the diagonal), with genetic (above diagonal) and 
phenotypic correlations (below diagonal) for farrowing rate (FR1) and average piglet 
birthweight (PWT) between trait-specific seasons  

Trait Season 1 2 3 4 
FR1 1 0.02±0.01 0.80±0.36 ne 0.38±0.37 

2 0.04±0.00 0.02±0.01 ne 0.22±0.29 
3 ne ne 0.00±0.00 ne 
4 0.04(0.02) 0.03(0.01)  ne 0.02±0.01 

PWT 1 0.17±0.03 0.99±0.03 0.94±0.04 0.97±0.04 
2 0.31±0.02 0.27±0.03 1.00±0.04 1.00±0.06 
3 0.35±0.01 0.32±0.02 0.21±0.04 1.00±0.03 
4 0.33±0.02 0.34±0.02 0.34±0.02 0.24±0.03 

CONCLUSION 
This study showed that season defined by trait informative days for tmax and dl differed for FR1 

and PWT traits, and was accompanied by seasonal differences in mean performances. The study 
also showed that genotype by season interactions existed for FR1 but not for PWT. Farrowing rates 
observed in Season 4 versus 1 or 2, which were characterised by opposite mean temperature patterns 
around mating events, were genetically different traits. The results of this study show that using 
trait-specific seasons can provide an opportunity to improve seasonal infertility in pigs genetically.  
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SUMMARY 

Genomically enhanced estimated breeding values (GEBV) have been used by many protein-
producing industries for several years. However, its use to improve herd fertility has been limited in 
beef cattle, especially in Northern Australia. The recording of fertility-related traits like those 
measured in a bull breeding soundness examination (BBSE) following a standard protocol offers an 
opportunity for improving those traits via genomic selection strategies. Here we describe analyses 
performed using a multibreed dataset comprising around 8,000 bulls of six tropical breed types and 
with BBSE data. The heritability estimates varied from low (0.168) for the percentage of proximal 
droplets to high (0.547) for the sheath score. The GEBV were unbiased and not over-dispersed. The 
overall accuracies of the GEBV varied from moderate (0.321, proximal droplet, %) to high (0.549, 
scrotal circumference, cm). These accuracies varied depending on the population. The phenotypic 
differences between animal quartiles ranked by the GEBV demonstrated the usefulness of those 
estimates. For example, 25kg of body weight and 2.5 cm in scrotal circumference were observed 
between quartiles one and four, demonstrating the value of those GEBV.  

 
INTRODUCTION 

The use of genomically enhanced estimated breeding values (GEBV) has been implemented in 
several animal production systems aiming at genetically improving a diverse range of traits. In cattle, 
the dairy industry leads the adoption by far, possibly followed by some of the Angus breed programs. 
In tropical cattle, there is limited adoption of the technology, especially when considering hard-to-
measure traits like fertility. The use of the standardized bull breeding soundness examination 
(BBSE) (Entwistle and Fordyce 2003), known to have heritable components (Corbet et al. 2013), 
creates an opportunity to explore its use for genetic evaluation in a multibreed scenario. It might be 
hard to collect enough records within a single breed to build a breed-specific reference population. 
Therefore, the multibreed option becomes attractive. Here we tested the feasibility of a multibreed 
reference population for bull traits and evaluated if the accuracies obtained could be translated into 
a useful selection tool for on-farm selection of groups of bulls.  

 
MATERIALS AND METHODS 

We assembled a reference dataset of genotypes and trait observations on 6,063 bulls (Porto-Neto 
et al. 2023) which has now grown to more than 8,000. These comprise six tropical breed types, 
Brahman (n=1,817), Santa Gertrudis (n=1,314), Droughtmaster (n=1,008), Ultra-Black/Brangus 
(n=1,286) and different tropical composite populations (n=2,663) to which a BBSE was recorded. 
Here we present results for body weight (WT), scrotal circumference (SC), sheath score (SHEATH, 
1 - tight to 9 - pendulous), percentage of normal sperm (PNS) and percentage of the most common 
sperm cell defect, proximal droplets (PD). Table 1 presents the number of records and descriptive 
statistics of the traits.  

Most animals were genotyped using a commercial SNP array with around 50K markers. 
Genotypes were imputed to ~700K SNP using a reference population that encompassed Beef CRC, 
and industry cattle genotyped using the high-density Illumina array (BovineHD). Imputation was 
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performed in two steps; first, genotypes were phased using Eagle software (Loh et al. 2016) and 
then imputed using either Minimac3 or 4 (Das et al. 2016).  

The genomic analyses were performed with pre-adjusted phenotypes. The model for adjustment 
ran in SAS 9.4 (www.sas.com) included the fixed effects of the population (one per farm), year of 
birth and management group (within the farm). Additionally, it also fitted the covariates of age at 
measurement and the first two principal components derived from the genomic relationship matrix 
constructed following Van Raden’s method 1 (VanRaden 2008). Univariate GBLUP models were 
run using QXPAK (Perez-Enciso and Misztal 2011). The accuracies of the GEBV were calculated 
as their correlation with adjusted phenotypes divided by the square root of the heritability and the 
LD method (Legarra and Reverter 2019), both following a five-fold cross validation where a random 
20% of the traits data were set to missing. To evaluate the phenotypic potential of those GEBV, we 
ranked the animals using the GEBV, then calculated the average phenotypic difference between the 
quartile 1 to 4 (referred as Q1-Q4).   

 
Table 1. The number of records and descriptive statistics of the observed traits *  
 

Trait N Mean SD Min Max 

WT, Kg 7,730 383.05 93.82 109.50 810.00 

SC, score 7,869 30.93 4.29 15.50 52.50 

SHEATH, score 7,749 3.13 1.67 1.00 9.00 

PNS, % 7,240 62.34 27.37 0.00 100.00 

PD, % 7,214 13.13 19.78 0.00 96.00 
* WT – body weight, SC – scrotal circumference, SHEATH – sheath score, PNS – the percentage of normal 
sperm, PD – the percentage of proximal droplets in sperm cells, N – number of observations, SD – standard 
deviation, Min – minimum value, Max – maximum value observed.   

 
RESULTS AND DISCUSSION 

Using our assembled multibreed reference population, we estimated the heritabilities varying 
from 0.168 (PD) and 0.547 (SHEATH) (Table 2). The moderate to high heritability estimates agreed 
with previously estimated values for those traits (Corbet et al. 2013), giving us confidence the 
dataset is sound and the traits amenable to improvement via selection. 

The GEBV were unbiased and, with the possible exception of SHEATH, not over-dispersed 
(Table 2). Additionally, using a five-fold cross-validation approach, we obtained reasonably high 
accuracies (ACC LR, 0.321 to 0.549). The accuracies within populations varied (result not shown), 
in line with previous analyses using a partial dataset (Porto Neto et al. 2021).  

Aiming to translate the observed accuracies into phenotypic differences between the validation 
bulls, we first ranked the bulls by their GEBV, split them into quartiles, and then observed their 
adjusted trait record (Table 2, Q1-Q4) within their quartile groups. The accuracy of 0.549 for SC 
translated into a 2.59 cm difference in scrotal size between to top and bottom quartile of bulls. 
Similarly, the Q1-Q4 analyses for PNS resulted in a 9.49% difference in sperm cells that passed the 
morphology test. These analyses resulted in group means with large SD and variation within breed 
types (result not shown). Nonetheless, the translation of the observed accuracies into phenotypic 
differences was encouraging and demonstrated the potential for using such a tool for on-farm 
selection of a group of bulls.  
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Table 2. Results summary. Heritability estimates for observed traits, bias, dispersion, 
accuracies of estimated breeding values, and the phenotypic difference between animal 
quartiles ranked by GEBV *  
 

Trait h2 Bias  
Mean (SE) 

Dispersion  
Mean (SE) 

ACC  
LR 

ACC  
Trad Q1-Q4 

WT, Kg 0.310 -0.058 (0.365) -0.042 (0.032) 0.531 0.460 25.14 

SC, score 0.436 0.007 (0.027) -0.001 (0.026) 0.549 0.565 2.59 

SHEATH, score 0.547 -0.009 (0.008) 0.165 (0.020) 0.472 0.525 0.67 

PNS, % 0.270 -0.112 (0.175) 0.089 (0.033) 0.365 0.300 9.49 

PD, % 0.168 0.038 (0.073) 0.043 (0.028) 0.321 0.339 5.19 
* WT – body weight, SC – scrotal circumference, SHEATH – sheath score, PNS – the percentage of normal 
sperm, PD – the percentage of proximal droplets in sperm cells, h2 – heritability estimated, SE – standard error, 
ACC LR – estimated accuracy of GEBV calculated using the method LR, ACC Trad – estimated accuracy of 
GEBV calculated using the correlation method, Q1-Q4 – the phenotypic difference between animal quartiles 
ranked by GEBV, where Q1 is the quartile of animals with highest GEBV and Q4 the quartile with lowest 
GEBV.  

 
CONCLUSIONS 

This study shows that it is feasible to assemble a multibreed reference population for fertility-
related traits of tropical bulls. The reasonable to high heritability estimates confirm the quality of 
the dataset and encourage its adoption in selection breeding programs. The GEBV were mostly 
unbiased, and although variation within cattle type and population existed, the accuracies of GEBV 
could be translated into a useful tool for on-farm selection.   
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SUMMARY  

Centralised recording of calf identity, pedigree, treatments and health events are essential to the 
development of evaluations for calf traits so that farmers can breed for lower morbidity and 
mortality. Additionally, these same records help to inform decisions that 1) improve calf 
management protocols, 2) provide access to premium markets for surplus stock that demand 
evidence to support raising claims and 3) provide industry with greater insight of the health and 
welfare of young animals that is important in sustainability reporting activities. Farmers have 
recorded calf and calving traits for more than 30 years, but the frequency of recording is changing 
based on an analysis of almost 4M Australian calving records. In general, about 20% of herds in 
Australia and 10% of calvings are recorded with calving traits in the national database. The number 
of herds as well as recorded herds has declined over time but the number of herds with good calving 
records has declined at a slower rate. There are opportunities to improve the quality and quantity of 
calf trait data by lifting recording practices, improving connectivity between on-farm software and 
populating missing pedigree through genotyping.  
 
INTRODUCTION  

Producers and consumers share a deep interest in the welfare of calves. Calves that are born alive 
and with ease contribute to a sustainable dairy industry. Industry standards, quality assurance 
programs and animal raising label claims increase requirements for farmers to record and analyse 
animal health data (Animal Health Australia 2016; Saputo Dairy Australia 2022/23) of which 
calving traits are a component. Calf records are a valuable resource to farmers as they inform 
changes to herd management practices that lift productivity and sustainability. Dairy farmers have 
recorded calf health and calving traits for more than 30 years in Australia on a voluntary basis. 
Farmers are obliged to record the movement of an animal when it leaves their property through the 
National Livestock Identification System’s (NLIS) central system, but NLIS devices simply record 
the property where the animal originated without any description of the animal’s identity, breed or 
age (NLIS 2016). Current stores of calf data are the direct result of farmers willingly recording and 
sharing calf data, rather than through legal obligation. The aim of this study was to report trends in 
calf and calving traits over time and suggest opportunities for improved practices that will increase 
the monitoring and genetic improvement for calf survival and other traits affecting calf welfare. 
 
MATERIALS AND METHODS  

Farmer recorded calving and pedigree records were obtained for calvings with a calving ease 
observation that occurred from 1/1/1990 to 3/2/2023 as well as sire identity information from 
DataGene Ltd, Melbourne, Australia. These records can be defined as ‘well-recorded’ calving 
records which differ from more numerous calving records where only the dam’s identity and calving 
date are recorded. Well-recorded calving records include dam identity, breed, pedigree, calf fate, 
calf sex, calving ease, calf size and litter size. Nonsensical calving records were removed e.g. if the 
calving date occurred before the dam’s birth date. Using R Studio, data was grouped by calving year 
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and then total counts, percentages and means were calculated to better understand  trends over time 
(RStudio Team 2021). 
 
RESULTS AND DISCUSSION  

In 2022, 1 in 5 dairy herds recorded traits such as calf fate, calf size and calving ease using a 
system that supplies data to Australia’s centralised data repository but 1 in 10 Australian dairy cows 
had a well-recorded calving event in the same year. The number and percentage of herds with well-
recorded calvings between 1990 and 2022 is shown in Figure 1. At its peak in 2000, 1,926 herds 
with 128,821 calvings were well-recorded, which was 49% of recorded herds and 23% of all dairy 
herds in Australia (Australian Bureau of Statistics 2004). Twenty years later, 134,513 cows from 
875 herds are well recorded, representing 71% of recorded herds and 20% of all dairy herds. This 
increase in the proportion of well-recorded calvings could be the result of 1) large scale genotyping 
projects, such as Ginfo, that have encouraged recording (Pryce et al. 2018) 2) those that remain in 
herd recording are more committed data recorders or 3) the increased use of technology on farm has 
made it easier to electronically record data through apps.  

 

 
Figure 1: Number (column) and percentage (line) of herds with well-recorded calvings  

 
Changes to Australia’s dairy herd size, farm numbers and trends in herd recording practices, as 

described by Newton et al. (2021) are having a major impact on the availability of data, including 
calf data. Despite the improved proportion of herds recording calvings at a high standard, the number 
of records per year has declined. Over the past two decades, the size of the National milking herd 
has declined by about one third (Australian Bureau of Statistics 2004; Dairy Australia 2022). 
Additionally, herds that participate in official herd recording have a smaller average herd size 
compared to all herds (266 compared to 303 in 2022) and not all calvings in each herd are well-
recorded (DataGene 2022). In summary, the number of herds as well as recorded herds has declined 
over time but the number of herds with good calving records has declined at a slower rate.  

Based on the national herd identification codes, 69% of herds with well-recorded calvings are 
likely to be located in Victoria, followed by New South Wales (15%), South Australia (6%), 
Queensland and Western Australia (both 4%) and Tasmania (1%). This is inconsistent with the 
national distribution of herds where Victoria, New South Wales and Tasmania are the most populous 
states, specifically highlighting an under-representation of herds located in Tasmania. Regional 
differences provide an opportunity to tailor activities to specific groups for larger benefit. 
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Data quality, as well as quantity, is important for the evaluation of new traits. One way to 
characterise quality is to look for missing values, such as breed of the sire. In the past decade to 
2022, the percentage of dams with well recorded calving observations but unknown breed of sire 
has almost doubled to 9% after being stable at around 5% throughout the previous decade. This 
presents an opportunity to recover reasonable quantities of data through better recording practices 
as well as using genotyping to populate pedigree and breed so that more animals can be evaluated. 

Pleasingly, in the period 2012-2020, the percentage of calvings producing a female calf was 
close to 50% as expected. The percentage varied between 51-53% suggesting that calvings 
producing males and females are being similarly recorded. In 2021-22, the percentage of calvings 
producing females has increased to 55-57% which is in line with the increased use of sexed semen 
in dairy herds reported by the National Herd Improvement Association (2022). 

The number of sires of dams is consistently more than double the number of calf sires in the 
dataset with 2385 sires of calves and 6594 sires of dams in 2022. Within a herd, both old and young 
cows produce calves so a larger number of sires of dams is expected. On average 56 progeny per 
sire were born in 2022, as illustrated in Figure 2. This has increased by 20 progeny after 2008 and 
the beginning of the genomic era. It will be important for researchers to carefully consider the 
minimum progeny per sire as one-third of sires in 2022 had less than 5 progeny.  

Figure 2: Average number of progeny by year of calving observation  
Boxplots represent the mean (blue cross), median (solid line), first and third quartiles (contained in the 
boxes), outliers not shown.  

A closer look at the characteristics of sires of calves revealed that only half of sires with at least 
5 progeny had Estimated Breeding Values of sufficient merit to meet the minimum industry 
standards set by DataGene’s Good Bulls Guide and are advised for use in all dairy matings. This 
group of bulls sired 73% of calves born in 2022. The remaining calves were sired by AI bulls that 
don’t meet the Good Bulls Guide criteria (50% remaining calves), recorded herd bulls (28%), beef 
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AI or natural bulls (6%), cross-bred bulls (6%) and other groups that cannot be easily characterised. 
This data suggests that further improvements can be made to sire selection to ensure high quality AI 
sires are used for every joining to optimise the value of the resulting calves, however, a more 
complete dataset of well-recorded calvings would verify this suggestion.  

According to the National Herd Improvement Association, 17% of semen sold is beef and an 
increasing proportion is used in lower merit cows in dairy herds (National Herd Improvement 
Association 2022). At 2% of all 2022 born calves, the recording of beef sired calves is under-
reported in this dataset. This is likely the consequence of software, systems and protocols that were 
designed for dairy sire over dairy cow matings rather than beef sire over dairy cow matings. 

CONCLUSIONS 
Improvements to calf trait recording are of benefit to farmers, the industry that supports them 

and the broader community. This analysis reveals that there is a long history of good recording 
practices and that there are opportunities for continuous improvement. We conclude that 
improvements to calf trait recording may come through: 1) understanding the hurdles that prevent 
the recording of calving ease, calf size, calf fate and sire of most calvings, 2) generating pathways 
to participation for farmers not enrolled in conventional herd recording services, 3) targeting 
activities to regions and groups where small changes will return large quantities of new data and 4) 
the use of technology to make high quality data collection more efficient, 5) using genotyping to 
complete missing pedigree and 6) continuing to monitor for emerging trends in data recording 
practices.  
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SUMMARY 

We investigated whether foetal age estimates can be used in beef cattle evaluations, primarily as 
the substitute for birth dates when applying pre-adjustment for the analyses of growth traits. By 
comparing different models that involve age calculated with conception dates (i.e., inferred based 
on the foetal age) and birth dates, we found that foetal age estimates can be used to adjust weaning 
weights without undermining the goodness of fit of statistical models.   

  
INTRODUCTION 

Birth dates are used in beef cattle evaluations for several purposes, including as fixed-effect age 
adjustments for early life traits (e.g., weights, carcase scans) and as part of the definition of traits for 
fertility (e.g., days to calving/calving date) and gestation length (Graser et al. 2005). Due to logistical 
challenges and labour requirements, data for birth dates are often unavailable from commercial (non-
seedstock) herds. This, together with the lack of pedigree information, is one of the key limiting 
factors preventing wider utilisation of data from commercial herds in genetic evaluations.  

An alternative is to use ultrasound scans to determine foetal age during early pregnancy, to 
estimate conception date (Beal et al. 1992). This can be combined with pedigree information 
(specifically dam-calf match, obtained using genomics) to provide an estimate of age of the calf 
from conception (rather than from birth) without any observations at calving. An argument can be 
made that date of conception, if known with sufficient accuracy, could potentially be an alternative 
to account for variation in weight due to age rather than birth date. The calf has a growth trajectory 
from conception, and birth date represents the switch from pre-natal to post-natal growth which may 
or may not be a significant point of inflexion on the growth curve. An immediate question is whether 
conception dates can be used to replace birth dates in genetic analyses, especially in genetic 
evaluations of growth. 

Animals that were bred by artificial insemination (AI) may have different birth dates even though 
their conception dates are known to be the same. Consequently, these animals should have the same 
age from conception (AfC) but slightly different age from birth (AfB). In practice, one common 
approach is to pre-adjust weaning weights (WWs) based on AfB, where the WWs of calves with 
different AfB are projected onto the same linear model. Now, provided that AI-sired animals were 
conceived on the same dates (with identical AfC), it is questionable whether applying such pre-
adjustment still makes sense.  

To address these two questions, we analysed a small data set with both birth dates and foetal 
ages available and modelled WWs using age adjustments calculated from birth and conception dates, 
respectively. 
 
MATERIALS AND METHODS 

Data. Foetal age data was collected on 1,151 beef cattle from two New Zealand farms (Table 1). 
An experienced operator used rectal ultra-sound to age foetuses to approximately 5-day increments, 
with foetal aging conducted within a window of 42 to 140 days. A subset of 223 calves were bred 
by AI, and so true conceptions dates of these AI-sired animals are known. Otherwise, for those 
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animals that were bred by natural service (NS), their conception dates were estimated by subtracting 
the foetal ages from the scan date. Additionally, birth and weaning dates of calves, as well as their 
WWs, were recorded. Subsequently, age from conception (AfC) and age from birth (AfB) at 
weaning were determined based on the estimated (or known for AI animals) conception and 
observed birth dates. Both estimated and observed AfC are highly correlated with AfB (𝑟𝑟 = 0.81 
and 0.92). Gestation length (GL), effectively the difference between AfB and AfC, for animals that 
were bred by AI and NS were almost identical, with means equal to 280.4 and 280.8. Meanwhile, 
dam information, such as age and management group, was also available. Note that management 
groups are generally confounded with the age of dam for younger cows (i.e., management groups 
represented yearling heifers, two-year-old heifers and mixed age older cows).  

 
Table 1. Sample size, mean and standard deviation of foetal age and weaning data collected 
from animals that were bred by artificial insemination (AI) and natural service (NS)  
 

Calf 
Year 

of 
Birth  

Sample 
Size  Age 

From 
Birth  

Age From 
Conception  

Gestation Length 
Weaning 
Weight  AI NS AI NS AI NS 

2015 39 39 189.3  
(±13.5) 

481  
(±0) 

470.7  
(±13.2) 

281.8  
(±6.3) 

281.3  
(±5.1) 

217.9  
(±30.8) 

2018 37 207 202.6  
(±15.2) 

493.3  
(±2.5) 

484.1  
(±13.7) 

280.7  
(±10.7) 

281.5  
(±5.5) 

258.4  
(±33.0) 

2019 35 241 196.4  
(±14.5) 

485.1  
(±1.9) 

476.4  
(±14.2) 

281.4 
(±3.9) 

280.1  
(±5.9) 

257.5  
(±33.2) 

2020 82 183 183.6  
(±13.0) 

472.9  
(±3.1) 

462.7  
(±11.1) 

279.6 
(±3.4) 

279.2  
(±5.7) 

254.8  
(±32.4) 

2021 30 260 188.8  
(±14.9) 

482.3  
(±7.6) 

471.1  
(±13.9) 

280.0  
(±4.4) 

282.3  
(±6.8) 

265.6  
(±32.8) 

Total 223 928 192.3 
 (±15.9) 

480.9  
(±8.0) 

473.2  
(±15.2) 

280.4  
(±5.8) 

280.8  
(±6.1) 

256.4  
(±34.5) 

 
Analyses. Two set of statistical analyses were carried out to study the effects of both age from 

conception (AfC) and age from birth (AfB) on the scaled WWs (𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠), by fitting a group of three 
nested linear models using the data from 1. AI animals only 2. all animals (both AI and NS), such 
that:  

 
𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐺𝐺𝑊𝑊𝑊𝑊 + 𝛽𝛽2𝐴𝐴𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐶𝐶 + 𝜖𝜖 (1) 

 
𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐺𝐺𝑊𝑊𝑊𝑊 + 𝛽𝛽2𝐴𝐴𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜖𝜖 (2) 

 
 𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐺𝐺𝑊𝑊𝑊𝑊 + 𝛽𝛽2𝐴𝐴𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛽𝛽3𝐴𝐴𝐴𝐴𝐶𝐶 + 𝛽𝛽4𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜖𝜖 (3) 

 
where 𝐶𝐶𝐺𝐺𝑊𝑊𝑊𝑊 represents the weaning contemporary group (𝐶𝐶𝐺𝐺𝑊𝑊𝑊𝑊), defined by the combination of 
birth year, birth contemporary group (𝐶𝐶𝐺𝐺𝐵𝐵𝑊𝑊 =  calf year of birth ×  dam herd ×  sex), weaning 
management group (i.e., farm A or B) and the sex of calves (i.e., male and female); scaled weaning 
weight (𝑊𝑊𝑊𝑊𝑠𝑠𝑠𝑠) of each animal is calculated by multiplying raw weaning record by the population 
average (i.e., 256 kg) and then dividing it by its own contemporary mean;  and 𝐴𝐴𝐺𝐺𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 is the age 
of dam, with dam aged ten years and above were combined into the same class (i.e., “10+”). 
Subsequently, hypothesis testing was performed to determine whether there is any significant 
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contribution by each factor, all models were further compared based on the adjusted R-squared 
values and residual standard errors (RSE).  

 
RESULTS AND DISCUSSION 

Results showed that fitting age from birth (AfB) and fitting age from conception (AfC) provided 
very similar results (Table 2). Including AfB (model 2) explained more variation than including AfC 
(model 1), but the difference was small. The estimated coefficients associated with AfC from model 
1 and AfB from model 2 were very close (1.02 and 0.94).  Interestingly, estimated coefficients of 
AfC and AfB from model 3 seemed to partition the coefficient provided in model 1, even though its 
standard errors were much higher. In fact, all models performed similarly, with the adjusted R-
squared values range from 0.433 to 0.442 and the residual standard error range from 25.93 to 26.13. 
To summarise, there is only subtle difference between fitting AfC and AfB into the model when 
analysing WWs, and if AfC is already fitted into the model, little benefit was observed after adding 
AfB.    

For AI animals that were conceived on a known and uniform date within a contemporary group, 
our results suggest that adding AfC and/or AfB failed to improve the fitted models when analysing 
WWs, with insignificant p-values associated with both terms (Table 3). Note that the standard errors 
of these estimated coefficients, especially for AfC (1.16 and 118), are relatively high; also indicating 
a lack-of-fit. Besides, all three models yielded very similar adjusted R-squared values (0.036 - 0.037) 
and residual standard error (26.03 - 26.07). In this case, neither AfC nor AfB was significantly 
contributing towards the predictions of WWs. In this case, applying pre-adjustment based on birth 
date is likely to introduce bias in the analyses. However, this needs to be further investigated once 
more data become available.          

Although estimated conception dates are prone to measurement errors, its impact on breeding 
value (BV) predictions should only be noticeable at per individual level. In practice, animals that 
have an error of ± 5 days within their estimated AfC are likely to receive an estimated BV inflated 
(or deflated) by approximately half unit (obtained by multiplying the errors within AfC (5 days) to 
the coefficient of AfC (1.02 from Table 2) and the heritability of weaning weight (0.14, Weik et al. 
2021). However, such impact is expected to be minimal when predicting sire BVs as errors in AfC 
are averaged out across multiple progenies. Overall, AfC should be considered as a practical 
alternative to AfB for pre-adjustment in genetic evaluations for beef cattle. 
 
Table 2. Analyses of weaning weights (all animals) using different models that incorporate age 
from conception (AfC) and age from birth (AfB) 

 

Model 
Coefficient p-value Adjusted R-

squared 

Residual 
Standard 

Error  AfC AfB AfC AfB 

1 1.02 (+ 0.06) - < 2e-16 - 0.221 26.13 
2 -  0.94 (+ 0.06) - < 2e-16 0.227 26.02 
3 0.45 (+ 0.15) 0.57 (+ 0.13) 0.0027 1.61e-5 0.232 25.93 
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Table 3. Analyses of weaning weights (AI animals only) using different models that 
incorporate age from conception (AfC) and age from birth (AfB) 

Model 
Coefficient p-value Adjusted R-

squared 

Residual 
Standard 

Error AfC AfB AfC AfB 

1 0.56 (+ 1.16) - 0.626 - 0.036 26.06 
2 - -0.25 (+ 0.32) - 0.438 0.037 26.03 
3 0.77 (+ 1.18) -0.29 (+ 0.33) 0.513 0.373 0.036 26.07 

CONCLUSION 
In this study, we compared different models to investigate whether it is feasible to use foetal age 

estimates in beef cattle evaluations. Our results showed that conception dates, inferred from foetal 
age data, could effectively substitute birth dates in the analyses of weaning weights. Moreover, 
careful consideration should be given if using birth dates to pre-adjust traits where animals are 
conceived on the same day (e.g., from fixed time AI programs), as applying pre-adjustments may 
introduce rather than reduce unwanted variation.   
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SUMMARY 
A stochastic simulation model has been used to investigate the potential for combining foetal 

aging and birth date information to distinguish days to conception (DTCon) from gestation length 
(GL) under natural mating scenarios. The use of this data in genetic evaluations was assessed, with 
allowance for the error arising from an allocation to 5- or 10-day increments. The model for genetic 
evaluation included random additive genetic, permanent environmental and residual effects. 
Introducing an error associated with foetal aging of animals increased the error variances for DTCon 
and GL but had little effect on the additive genetic variances, resulting in overall lower heritabilities 
for both traits. Accounting for the foetal aging error, however, reduced the accuracies for estimated 
breeding values (EBV) only slightly, and this was true for sires, dams and progeny. The simulation 
outcomes indicate that foetal aging can be used as a tool to accurately predict the genetic merit of 
different classes of animals (sires, dams and progeny) for DTCon and to predict GL EBV with 
improved accuracies due to a larger number of phenotypes from naturally mated beef cow herds so 
long as the prediction of foetal aging can be done as accurately as 5, or 10 days. 

 
INTRODUCTION 

Genetic improvement of cow fertility within New Zealand beef cow herds is mainly achieved by 
selecting on traits such as days to calving (DTC) or gestation length (GL). Currently, DTC 
phenotypes require knowledge of the start date of mating and calving date records based on natural 
(unsynchronised) mating, while GL is based on the number of days between artificial insemination 
(AI) of cows and subsequent calving date (Graser et al. 2005). While the main variation in DTC is 
due to differences in the conception date following bull exposure, the use of birth date data alone 
does not allow for the separation of effects of conception date and GL under natural mating 
scenarios. Although evaluating GL includes information on the conception date, this is based on AI 
rather than natural mating (Graser et al. 2005) and is therefore only available on a restricted subset 
of animals. The use of foetal aging at pregnancy scanning may be a useful tool to separate the effects 
of days to conception (DTCon) and GL for naturally mated cows, providing an improved estimate 
of cow fertility (ability to conceive) and enabling GL estimated breeding values (EBV) to be 
assessed much more accurately on a larger sample of bulls. Foetal aging can be accurate to 5-day 
increments (Tweedie et al. 2019) such that an element of error is associated with the measurement 
of conception date from foetal age scans (White et al. 1985). The aim of this study was to develop 
a stochastic simulation to evaluate the impact of error associated with DTCon and GL estimated 
from foetal age scans and the applicability of foetal aging as a tool to separate the effect of DTCon 
and GL from DTC for the use in genetic evaluations. 
 
MATERIALS AND METHODS 

Simulation model overview. The simulation model was built using R version 4.2.1 (R Core 
Team 2019). The model simulated a beef cow herd and their progeny from mating to their 
subsequent calving for twenty consecutive years under New Zealand hill country conditions. The 
model ran simulations on an individual animal level and produced key production outcomes for the 
traits DTCon, GL and DTC. The cows simulated in the model were managed in an individual herd 
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within the same mob, assuming the same environmental conditions and management strategies. The 
size of the cow herd at the start of the simulation was set to 1,000 animals. 

Annual production cycle. Cows were mated annually via natural mating for a total of 63 days, 
allowing them to cycle 3 times based on a 21-day cycling interval. The percentage of bulls used for 
mating was set to 2 percent of the herd size aligning with typical farming practices within New 
Zealand beef breeding herds. Each year 50 percent of the bulls were replaced randomly. Cull cows 
were removed from the breeding herd after weaning of their calf at foot. Culling was conducted 
firstly due to cows not getting in calf and secondly due to age (cows older than 10 years of age were 
removed from the breeding herd). The annual replacement rate was set to 20 percent of the herd, 
such that additional cull cows were selected randomly from the remaining herd if the number of cull 
cows due to failure to conceive or age were below the threshold to maintain the herd size of 1,000 
cows across multiple years. The model simulated a self-replacing herd where female progeny were 
retained and first mated at 2 years of age. The average number of progeny per sire was 81 (±66). 

Simulated phenotypes. The true phenotype for DTCon (trait of the cow) for each animal i was 
calculated annually at time t as 

DTConit=µ+TBVi+pei+eit
and GL (trait of the calf) was calculated as 

GLi=µ+TBVi +ei
where µ was the overall mean of the population for each trait; TBVi was the true breeding value of 
animal i for DTCon or GL; pe was a permanent environmental effect due to repeated records of the 
animal and e a temporary environmental effect. True breeding values of calves were calculated as 
TBV=0.5(TBVsire+TBVdam)+ms where ms was a mendelian sampling component. True breeding 
values of the base population (i.e., sires (TBVsire) and dams (TBVdam)), mendelian sampling 
components, permanent and temporary environmental effects were simulated from a Log-normal 
distribution for DTCon or Normal distribution for GL with zero means and variances equal to σ2

a, 
0.5σ2

a, σ2
pe and σ2

e, respectively (Table 1). Genetic correlations between DTCon and GL were set to 
zero. Phenotypes for DTC were obtained as the sum of DTCon and GL for each cow.  

Table 1. Simulation input parameters for days to conception (DTCon) and gestation length 
(GL): phenotypic means (µ), heritabilities (h2), additive genetic (σ2a), permanent (σ2pe) and 
temporary (σ2e) environmental variances 

Trait µ h2 σ2a σ2pe σ2e References 
DTCon1 2.87 0.21 0.15 0.28 0.28 Weik et al. (2021) 

GL 282 0.64 11.83 0.00 6.66 Crews (2006) 
1Values on the logarithmic scale. 

Simulation of foetal aging error. A foetal aging error was added to the simulated DTCon 
phenotypes by rounding values to the nearest 5 (DTCon5) or 10 increments (DTCon10). This error 
was introduced to reflect the error associated with foetal aging, which is generally only accurate to 
5-day (or 10-day) increments (White et al. 1985). Similarly, GL phenotypes were adjusted, aligning
with the foetal aging error to obtain GL5 and GL10. 

Genetic evaluation. Genetic evaluation was performed in ASReml (Gilmour et al. 2009) using 
univariate animal models. The following equation was used for genetic evaluation: 

yij=µi+aij+peij+eij
for DTCon, DTCon5, DTCon10 and DTC due to repeated records on the same animal, or 

yij=µi+aij+eij
for GL, GL5 and GL10 with no repeated records on the same animal, where yij was the phenotype of 
animal i for trait j; µj was the mean for trait j; aij was the random additive genetic effect of animal i 
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for trait j; peij the permanent environmental effect of animal i for trait j and eij the random residual 
effect unique to each yij. Cows that failed to conceive were included in the analysis by assigning a 
penalty of 21 days to DTCon, DTCon5 and DTCon10 from the last conception date within the herd 
(Meyer et al. 1990). 

Model application. A total of 10 replicates were simulated, and key outcomes were averaged 
across replicates to determine the mean and SD for DTCon, GL and DTC EBV. Estimated breeding 
values were obtained for 3 classes of animals which were sires, dams and animals without progeny 
of their own (i.e., animals born in the last year of the model run). The accuracies of EBV were 
assessed within each grouping as the correlations between simulated TBV and EBV. 

RESULTS AND DISCUSSION 
Variances and heritabilities from univariate models for each trait are presented in Table 2. For 

both DTCon and GL the additive genetic variances were similar with or without the error associated 
with foetal aging, whereas the phenotypic variance increased. This resulted in a decline in 
heritability estimates from 0.20 to 0.16 for DTCon and from 0.63 to 0.43 for GL. 

Table 2. Simulated additive genetic (σ2a), permanent (σ2pe) and temporary (σ2e) environmental 
variances, heritabilities (h2) and repeatabilities (t) with standard errors shown in brackets for 
all traits considered in the analysis 

σ2a σ2pe σ2e h2 t
DTCon1 0.14 (±0.02) 0.28 (±0.01) 0.28 (±0.003) 0.20 (±0.02) 0.60 (±0.01) 
DTCon51,2 0.13 (±0.01) 0.24 (±0.01) 0.28 (±0.003) 0.19 (±0.02) 0.57 (±0.01) 
DTCon101,2 0.18 (±0.02) 0.37 (±0.02) 0.59 (±0.01) 0.16 (±0.02) 0.48 (±0.01) 
GL 11.65 (±0.43) - 6.77 (±0.23) 0.63 (±0.02) - 
GL52 11.60 (±0.47) - 8.81 (±0.27) 0.57 (±0.02) - 
GL102 11.83 (±0.58) - 15.46 (±0.37) 0.43 (±0.02) - 
DTC1 0.00032 (±0.00004) 0.00062 (±0.00004) 0.00113 (±0.00001) 0.15 (±0.02) 0.45 (±0.01) 
1Values on the logarithmic scale. 
2Error of 5 or 10 days associated with DTCon and GL records due to foetal aging. 

Overall, EBV accuracies decreased with an increase in error associated with foetal age scanning 
of cows, and this was true for both DTCon and GL across all animals considered in the analysis 
(Table 3). However, the reduction in accuracy was small and decreased for the prediction of sire 
EBV from 0.73 to 0.71 for DTCon and from 0.97 to 0.95 for GL. Results indicated that the genetic 
merit of each class of animals may be assessed reasonably accurately for DTCon and GL using foetal 
age scanning, irrespective of the error associated with the actual measurement. 

Although the error arising from foetal age scanning had a more prominent impact on the accuracy 
of GL EBV compared to DTCon EBV (especially for animals with less information on relatives), 
outcomes are likely to provide a suitable estimate for the duration of gestation from naturally mated 
beef cow herds. This would increase the number of phenotypes available independent of AI 
information, leading to an increase in accuracies for GL EBV. This has potential implications for 
beef on dairy herds such that a larger number of beef bulls may be identified with shorter GL to use 
over dairy cows to increase days in milk (Coleman et al. 2021). 
Outcomes from this study indicate that foetal aging may be used as a tool to determine the ability of 
cows to conceive following natural mating and may provide a better estimate of cow fertility 
compared to DTC due to overall higher accuracies for each class of animal. Currently, foetal aging 
using transrectal ultrasonography is the most common method in New Zealand for estimating 
conception date under extensive farming systems (Brownlie et al. 2016). The highest accuracy may 
be obtained when cows are scanned between 42 and 90 days of gestation (White et al. 1985). The 

132 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 130 - 133 

133 

restricted mating season with seasonal calvings and high pregnancy rates in New Zealand farming 
systems would allow foetal aging to be estimated across the entire herd on a single day (Brownlie et 
al. 2016). This has the potential for wider use across the New Zealand beef population and may be 
implemented in a cost-effective and efficient way at pregnancy scanning when animals are yarded 
together. Future research may consider using other technologies, such as neck collars to measure 
cycling activity more accurately and provide a prediction of the actual conception day without error. 

Table 3. Distribution of true (TBV) and estimated (EBV) breeding values and their accuracies 
for days to conception (DTCon), gestation length (GL) and days to calving (DTC) for 3 
different classes of animals 

Trait Estimate Sires Dams Progeny 
Mean SD Acc Mean SD Acc Mean SD Acc 

DTCon TBV 0.00 0.37 -0.03 0.37 -0.04 0.37
EBV 0.01 0.27 0.73 -0.03 0.23 0.62 -0.04 0.13 0.32 

DTCon51 EBV 0.01 0.26 0.73 -0.03 0.22 0.62 -0.04 0.12 0.32 
DTCon101 EBV 0.01 0.30 0.71 -0.02 0.25 0.60 -0.03 0.14 0.30 
GL TBV 0.00 3.27 0.04 3.40 0.15 3.36 

EBV 0.03 3.18 0.97 0.05 2.82 0.83 0.16 2.83 0.84 
GL51 EBV 0.01 3.17 0.96 0.03 2.75 0.81 0.15 2.74 0.81 
GL101 EBV -0.01 3.14 0.95 0.02 2.62 0.76 0.11 2.56 0.75 
DTC TBV 0.00 3.29 0.00 3.43 0.11 3.39 

EBV 0.00 0.01 0.30 0.00 0.01 0.29 0.00 0.01 0.19 
1Error of 5 or 10 days associated with DTCon and GL records due to foetal aging. 

CONCLUSIONS 
The simulation study has demonstrated the value of foetal aging as a tool to separate the effects 

of DTCon and GL from DTC records for naturally mated beef cows. Foetal aging has the potential 
to add value to future genetic evaluations by providing an improved estimate of fertility based on 
the cows’ ability to conceive and allowing more bulls from naturally mated beef cow herds to be 
evaluated for GL EBV with higher accuracies. 
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SUMMARY 
Selection of sires with high growth rates may unintentionally reduce lamb survival via dystocia 

due to the genetic relationships between high growth rates and birthweight. A range of Australian 
Sheep Breeding Values (ASBVs), including birthweight, lambing ease and gestation length, can be 
used as selection criteria to genetically increase lamb survival. However, their impact on lamb 
survival is likely to vary between birth types. Relationships between lambing ease scores, birth 
weights, gestation length and lamb survival of crossbred lambs born to Merino ewes from the MLA 
Resource Flock were quantified. Across all birth types, lamb survival was greatest for unassisted 
lambs; assisted lambs were of low incidence and above average birthweight. Increased lambing ease 
scores (i.e. more lambing difficulty) were associated with longer gestation length, higher birthweight 
and poorer lamb survival. Higher birthweight ASBVs were associated with increased lamb survival, 
but this was dependent on litter size and the lamb surviving parturition. Less fecund commercial 
flocks that experience dystocia related issues should place an upper limit on birthweight ASBVs and 
include lambing ease and gestation length ASBVs in their ram selection decisions. These flocks will 
also need to management ewe nutrition during late pregnancy, to ensure their single bearing ewes 
do not produce heavy lambs.  

 
INTRODUCTION 

Lamb survival is a key component of reproductive efficiency in sheep flocks (Hinch and Brien 
2014) particularly in enterprises where the incidence of multiple births (twins and triplets) is 
relatively high. In extensively managed flocks, lamb mortality is highly variable between farms and 
years, but averages 10% for single born lambs and 30% for twins with the cause of death affected 
by the fecundity of the flock (Hinch and Brien 2014) as well as ewe nutrition during pregnancy, 
maternal behaviour and enviromental conditions at lambing. Dystocia has been implicated in up to 
67% of lamb mortality and up to 41% of ewe mortality (Jacobson et al. 2020) with the risk of 
dystocia increasing at both high or low lamb birthweights (Horton et al. 2018). Variation in 
birthweight explains a large proportion of variation in lamb survival. The optimum birthweight for 
survival ranges between 4.5 and 5.5 kg (Hatcher et al. 2009), although birth type, breed and ewe age 
can shift the optimum range. Lambing ease scores have been genetically associated with all causes 
of lamb death (Brown et al. 2014). 

Direct selection for lamb survival is problematic as both sires and dams must have survived as 
lambs and lamb mortality can occur more than 7 days post-partum (Hatcher et al. 2009). Birthweight 
and lambing ease scores have been identified as potential selection criteria to improve lamb survival 
(Brien et al. 2014) and Australian Sheep Breeding Values (ASBVs) for both traits are available 
through Sheep Genetics. Genetic gain in lamb survival can be slow due to it’s low heritabilility, 
however the availability of ASBVs for a range of reproduction traits provide key tools for producers 
to utilise in their breeding flocks. Robertson et al. (2022) noted that high ASBVs for post-weaning 
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weight and birthweight can lead to unacceptably high levels of dystocia in single-bearing Merino 
ewes mated to Composite or Poll Dorset rams, which reduced lamb marking rates. This preliminary 
paper explores the relationships between Australian Sheep Breeding Values (ASBVs) for 
birthweight (BWT), lambing ease (LE) and gestation length (GL) with lamb survival amongst lambs 
born to Terminal sires over Merino ewes, when lambed in a common environment. 

 
MATERIALS AND METHODS 

Data were extracted from the MLA Resource Flock Katanning (van der Werf et al. 2010). LE 
scores were measured at birth, scoring each lamb on a 5-point scale consisting of: 1 for no assistance, 
2 for some assistance, 3 for hard assistance, 4 for abnormal presentation and 5 for other (such as 
veterinary assistance). Individual lambs could be unobserved and receive no LE score. In this study, 
animals with LE scores greater than 3 were discarded, as these scores reflect problems which were 
at low incidence and considered non-genetic in origin (Sheep Genetics 2014). BWTs and GL were 
also extracted from the database for all animals. All the ewes were joined via artificial insemination, 
so the gestation length was known. Lamb survival to weaning was calculated using the rearing type 
records in the database. Least squares means were estimated in R (R Core Team 2022) with year of 
birth and lamb sex fitted as fixed effects. The predictability of BWT ASBVs was examined by 
regressing the (un)adjusted BWTs from this study on breeding values obtained from an independent 
analysis with the data from the resource flocks excluded.  

 
RESULTS AND DISCUSSION 

Birthweight and lamb survival. A curvilinear relationship between lamb survival and birth 
weight (Figure 1) was evident for all birth types. The ‘optimal’ birthweight for survival was similar 
for single and twin born lambs, but lower for triplets. The slope of the curve around the optimum 
was relatively flat for singles but steeper for both twins and triplets, although the latter do not 
typically extend across the same range of BWTs as single born lambs.  

Figure 1. The relationship with BWT (kg) and lamb survival to weaning for single (1), twins 
(2) and triplet (3) born lambs in the MLA Resource Flock Katanning 
 

Mean survival was highest for lambs born without assistance and, these lambs tended to have 
lower BWT than those requiring assistance – lambs requiring assistance were typically well above 
average BWT (Table 1). It is worth noting that most of the lambs that were assisted were close to 
death when they were assisted (i.e. no dead-at-birth lambs were recorded in the data) and our results 
are consistent with this observation. In many commercial sheep flocks, ewes typically lamb 
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unassisted and would be expected to have higher rates of lamb mortality than this resource flock. 
Longer gestation length was associated with increased assistance at lambing, higher BWT and 

poorer lamb survival (Table 2). However, gestation length is rarely known in commercial flocks 
with natural joining. Across all birth types, lambing ease score increased (i.e. increased birthing 
difficulty) when birthweight approached 5.5 kg (Figure 2). Bunter et al. (2023) reported that 
birthweight and lambing ease are antagonistic traits especially for single born lambs. Lambing ease 
scores are infrequently measured in commercial or stud flocks unless dystocia is a significant issue, 
so the lambing ease data available may be represented by the flocks with higher birthweight lambs.  

Table 1. Least squares means (standard error) for survival (%) and birthweight (kg) for single, 
twin and triplet born lambs whose dams were either not assisted or assisted during parturition 

Birth type Assistance Survival Birthweight n 
Single No assistance 0.91 (0.01) 5.30 (0.03) 894 
Single Assisted 0.60 (0.05) 5.74 (0.13) 25 
Twin No assistance 0.91 (0.01) 4.49 (0.02) 1,789 
Twin Assisted 0.59 (0.05) 4.93 (0.13) 18 
Triplet No assistance 0.78 (0.02) 3.83 (0.06) 245 
Triplet Assisted 0.46 (0.05) 4.27 (0.04) 8 

Table 2. Least squares means for lambing ease scores, lamb survival (%) and birthweight (kg) 
by gestation length group (standard errors in brackets)  

Gestation length Lambing ease score Survival BWT n 
< 144 1.01 (0.03) 0.79 (0.06) 3.50 (0.17) 26 

145 – 150 1.03 (0.01) 0.87 (0.01) 4.28 (0.04) 1,011 
>150 1.15 (0.02) 0.79 (0.04) 4.83 (0.11) 62 

Figure 2. Across all birth types, lambing difficulty increased as birthweight approached 5.5 
kg, at which point lamb survival decreases. Data are least squares means by birthweight 
class (± standard error) along with the number of lambs in that class 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8

L
am

bi
ng

 e
as

e

L
am

b 
su

rv
iv

ia
l

Birthweight class

Survival Lambing ease

1.21 ± 0.16
n = 3

2.19 ± 0.04
n = 52

3.12 ± 0.02
n = 236

4.08 ± 0.01
n = 1,005

4.96 ± 0.01
n = 1,010

5.90 ± 0.01
n = 533

6.91 ± 0.03
n = 93

7.90 ± 0.07
n = 16



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 134 - 137 

137 

BWT ASBV predictive ability. The regression coefficients for BWT of progeny on their sire 
ASBVs were 0.955 for single-born lambs, 0.790 for twins and 0.478 for triplets. Higher ASBVs for 
BWT increased lamb survival, but this was contingent on litter size (affecting BWT) and the lamb 
surviving parturition (LE). Higher sire ASBVs for BWT were also associated with longer gestation 
length and higher LE scores, but this did not always translate into lower lamb survival. LE ASBVs 
were also significant predictors (P<0.001) of progeny LE outcomes. 

CONCLUSIONS 
Genetic improvement of lamb survival is complicated due to the direct genetic effects of the dam 

and lamb (i.e. half sire genes) and the mediating impacts of flock management and the lambing 
environment. Therefore, the current reproductive rate of a flock will have an impact. Commercial 
producers with a high proportion of single born lambs and evidence of lambing ease problems should 
consider placing an upper limit on BWT ASBVs, include some emphasis on both LE-dir and GL 
when choosing their rams and carefully manage the nutrition of their single-bearing ewes during late 
pregnancy. This is especially true for those flocks that place a high emphasis on post weaning growth 
rates as this trait is genetically associated with higher BWT. 

Producers with more fecund flocks can afford to select rams with higher BWT ASBVs, because 
average lamb birth weight is lower in twin litters, and there is a positive relationship between birth 
weight and lamb survival overall. 
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SUMMARY 
Litter size records of Deccani crossbred sheep with 0, 1 or 2 copies of the FecB mutation were 

analysed. FecB carrier ewes had higher live litter size per ewe lambed, at birth and at the age of 3 
months than non-carrier ewes. Live litter size per ewe conceived, at birth and at 3 months age, of 
both FecBB+ and FecBBB ewes was the same, weaning 50% more lambs per ewe conceived than non-
carrier ewes. The dampened expression of the FecB mutation thus leads to less lamb losses and 
increased lamb production in the Deccan plateau production system. 

 
INTRODUCTION 

The Deccani is an indigenous Indian sheep breed reared on the semi-arid Deccan plateau with a 
total population of about 1.4 million (GOI 2019). Deccani sheep are grazed in smallholder flocks of 
25 to 200 breeding ewes and mostly have single lambs. Most income is earned from the sale of 4-5 
months old unweaned lambs weighing 10 to 15 kg. Lambs are reared with personal attention 
including cross-fostering. In meat producing species, the reproductive rate of breeding females is a 
key determinant of productivity. There is high local demand for lambs and sheep meat. A 
(cross)breeding program was established at the Nimbkar Agricultural Research Institute (NARI) at 
Phaltan in Maharashtra state of India in 1996 to develop a more prolific and productive sheep 
adapted to the Deccan plateau environment and local sheep owners’ management. Nimbkar (2005) 
found the economic value of litter size in Deccani sheep to be positive after accounting for feed cost 
mainly because of the personal care of ewes and lambs and the practice of selling lambs early. 

The FecB or Booroola mutation is an autosomal mutation that has a large additive effect on 
ovulation rate and is partially dominant for litter size (Davis et al. 1982). FecBB is the allele at this 
locus promoting higher fecundity while FecB+ is the wild type allele. The breeding program at NARI 
introduced the FecB mutation from the prolific Garole (Bengal) sheep of West Bengal, India into 
the local Lonand strain of Deccani sheep. Two strains of FecB carrier sheep were developed: the 
NARI Suwarna with contribution from only Deccani and Garole breeds; and the NARI Composite 
with additional infusion of the indigenous Bannur, the improved Awassi from Israel and the taller 
and heavier indigenous Madgyal sheep. The proportion of the Garole breed was reduced deliberately 
in the cross as its small size, low growth rate and poor mothering ability were not found desirable 
by local sheep owners. The nucleus breeding flock is still maintained at NARI although with a 
reduction in the number of breeding ewes from >350 to around 250 in 2020 due to a labour shortage. 
Ewe and ram lambs are first selected at 4 months age based on their FecB carrier status determined 
by DNA test, their body weight and the reproductive performance and mothering ability of their 
dams. Ewes are culled for old age or poor reproductive performance. These FecB carrier sheep have 
become popular with sheep owners in Karnataka, Telangana and Maharashtra states and 900 FecBBB 
breeding rams and 1400 FecB carrier ewes have so far been supplied from NARI. This paper 
compares the reproductive performance of FecB carrier and non-carrier ewes in the nucleus at NARI 
from 2009 to 2022.  
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MATERIALS AND METHODS 
Location, climate and animal management. Phaltan is situated at 180 N latitude and 740 E 

longitude and has a dry monsoonal climate with an average annual rainfall of 500 mm. Ewes in the 
nucleus breeding flock were grazed on crop residues, seasonal grasses, weeds and fallows and 
housed in open-sided sheds at night, similar to the management of local shepherds. They were given 
cut-and-carry fodder in the evenings during severe shortage of grazing. Ewes were supplemented 
with a concentrate feed containing 18% crude protein from 2 months before lambing until weaning 
of lambs at 15 kg weight at 3-4 months’ age. The quantity of concentrate given was 200 g/day/head 
during 2009-16 which was increased to 300 g from 2017 as the average weight of breeding ewes 
increased from 28 to 32 kg. Ewes were divided into three flocks and each flock of about 100 ewes 
was bred every 8 to 10 months. Ewes which did not exhibit oestrus during a particular breeding 
period were moved to the flock next-in-line for breeding. During the breeding period which lasted 
one month, oestrus detection was done every morning with vasectomized rams. Ewes found to be in 
oestrus were artificially inseminated cervically using fresh, diluted semen (so that accurate pedigrees 
could be maintained). One ram was used only for 5 to 10 ewes and rams were used for a maximum 
of two years to limit inbreeding and shorten the generation interval. Ewes were ultrasound scanned 
on average 55 days after insemination. Lambs of dams which did not secrete sufficient milk were 
cross-fostered to ewes which had lost their lambs or had ample milk supply. All ewes and lambs 
were genotyped at the FecB locus using a forced PCR-RFLP direct DNA test. 

Breed proportions. The range of proportions of different breeds in the ewes with records was 
30 to 100% Deccani, 0 to 25% Garole and Bannur and 0 to 50% Awassi and Madgyal. The data 
from both NARI Suwarna and Composite strains were analysed together.   

Description of data. Table 1 shows the number of lambing/abortion records of 1235 ewes (3.3 
records per ewe on average) and Table 2 shows the number of lambs born alive for each FecB 
genotype of the dam.  

 
Table 1. Classification of lambings/abortions according to FecB genotype of ewe 

 
Records where ewes FecB genotype of ewe Total 

 FecBBB FecBB+ FecB++  
lambed with at least one live lamb 859 1859 578 3296 
had stillborn lambs at completion of gestation 119 150 17 286 
aborted before term 181 249 37 467 
Total records 1159 2258 632 4049 

 
Table 2. Distribution of live litter size according to FecB genotype of ewe 
 

Number of lambs born alive FecB genotype of ewe Total 
 FecBBB FecBB+ FecB++  

1 386 802 540 1728 
2 414 1008 38 1460 
3 54 49 0 103 
4 5 0 0 5 

Total 859 1859 578 3296 
 
Traits analysed. The following traits were analysed. 
i. LBTOT/EL: Number of live and dead lambs born per ewe lambed (includes lambs which 

died soon after birth) 
ii. LBA/ELA: Number of live lambs born per ewe giving birth to at least one live lamb  
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iii. LS3m/ELA: Number of live lambs at 3 months per ewe giving birth to at least one live
lamb

iv. LBTOT/EC: Number of live and dead lambs born per ewe conceived (i.e. all records used
for trait (i) above and zeros for ewes which aborted before completion of pregnancy.
Abortions were recorded at visual signs in pregnant ewes such as vaginal discharge for
early term abortions or aborted fetuses later in the term.)

v. LBA/EC: Number of live lambs born per ewe conceived (i.e. all records used for trait (ii)
above and additionally zeros for ewes which aborted before completion of pregnancy.)

vi. LS3m/EC: Number of live lambs at 3 months per ewe conceived
Model of analysis. All traits were analysed using the Echidna mixed model software (Gilmour

2023) both as Poisson variables using a square root link and as normal variables. The Poisson 
analysis was used only for testing fixed effects and comparison with the linear model. The repeated 
observations in this data for all traits are expected to reconcile the relationship between the mean 
and variance for the Poisson-distributed traits.  

The linear model used for all traits analyzed separately in single trait models was as follows. 
epeZaZXby ++++= 21µ  

where y is a vector of observations on the ewe, μ is the overall mean, b is a vector of fixed effects 
(year of insemination and FecB genotype of the ewe as fixed effects and age and weight of the ewe 
at insemination as covariates), a is a vector of random additive genetic effects of the ewe, pe is a 
vector of the permanent environmental effects of the ewe and e is a vector of residuals. X is the 
incidence matrix of fixed effects. Z1 and Z2 are incidence matrices relating observations to the 
associated random effects. Breed proportions were not fitted as they were confounded with ewe 
weights. All available pedigree relationships were used in the analysis mainly in order to obtain 
accurate predictions of the FecB genotype effect.  

RESULTS AND DISCUSSION 
FecB genotype of the ewe, year of insemination and weight of the ewe were highly significant 

(P<0.001) for all five litter size traits analysed (results not shown). The weight of the ewe had a 
positive influence on all traits while age of the ewe did not have any influence. The predicted means 
for the year of insemination showed a downward trend for all analysed traits (0.02 to 0.04 lambs per 
year) from the year 2016. Inadvertent culling of ewes with larger litter sizes because of consistently 
higher lamb losses could be one of the reasons for this reduction. 

Table 3. Predicted means (pmean) and standard errors (s.e.) for ewe’s FecB genotype 

Trait Ewe’s FecB genotype 
FecBBB FecBB+ FecB++ 

records pmean s.e. records pmean s.e. records pmean s.e.
LBTOT/EL 978 2.02 0.03 2009 1.72 0.02 595 1.01 0.03 
LBA/ELA 859 1.64 0.02 1859 1.58 0.02 578 1.00 0.03 
LS3m/ELA 859 1.57 0.02 1859 1.51 0.02 578 0.99 0.03 
LBTOT/EC 1040 1.90 0.03 2108 1.63 0.02 615 0.95 0.04 
LBA/EC 1040 1.37 0.03 2108 1.38 0.02 615 0.90 0.04 
LS3m/EC 1040 1.32 0.03 2108 1.32 0.02 615 0.88 0.03 

LBA/ELA of ewes heterozygous and homozygous for FecB was 1.58 and 1.64 respectively 
compared to 1.00 in non-carrier ewes (Table 3). FecBB+ and FecBBB ewes had an advantage of 0.58 
and 0.64 lambs at birth and of 0.52 and 0.58 lambs at the age of 3 months respectively over non-
carrier ewes. This advantage declined slightly to 0.48 and 0.47 lambs at birth for FecBB+ and FecBBB 
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ewes respectively after considering ewes that aborted. The causes of abortions were not investigated 
and infectious causes cannot be ruled out. The LS3m/EC of FecBB+ and FecBBB ewes was still 50% 
higher than non-carrier ewes. This is mainly because of the low lamb mortality which can be 
attributed to good mothering ability of the ewes and good management. Loss of lambs from birth to 
3 months’ age per ewe conceived in FecBB+ and FecBBB ewes in this study was 19% and 30% 
respectively. In contrast, the losses between scanning and lamb marking were 64% and 89% 
respectively in the Booroola Merino (Walkden-Brown et al. 2007) due to the Australian commercial 
sheep rearing conditions not being conducive to multiple-born lamb survival.  

The effect of FecB is reported to be additive on ovulation rate and varying from additive to 
dominant on litter size depending on the background genotype (Davis 2009), influenced by factors 
such as uterine capacity, perinatal survival, birth weight, level of neonatal husbandry and care. In 
this study, FecBBB ewes lost 0.38 lambs while FecBB+ ewes lost 0.14 lambs at birth. The exact causes 
of these losses are not recorded in this flock but they are likely to be related to insufficient uterine 
capacity. The losses rendered the effect of FecB on LBA and LS3m partially dominant. Similarly, 
first and second copies added 0.62 and 0.02 lambs respectively to the litter size of the Afec-Awassi 
(Gootwine 2009). The meta-analysis of litter sizes of Chinese sheep (Chong et al. 2019) indicated 
an additive influence of FecB in some breeds and a partially dominant effect in other breeds. The 
litter size at birth of Indian Avishaan sheep (comprising of Garole, Malpura and Patanwadi breeds) 
carrying 0, 1 and 2 copies of FecB was 1.04, 1.70 and 1.93 respectively, also indicating partial 
dominance and slightly higher than the litter sizes in this study (Sharma et al. 2022).  
 
CONCLUSIONS 

FecBB+ and FecBBB NARI Suwarna and Composite ewes selected for higher lamb survival 
weaned 50% more lambs than non-carrier ewes, indicating that FecBBB and FecBB+ ewes perform 
similarly. Continued wider dissemination of FecB should be through FecBBB rams to increase 
heterozygosity rather than homozygosity. The introduction of FecB appears to be an effective way 
of sustainable intensification of sheep rearing on the Deccan plateau. The effect of FecB in other 
Indian sheep breeds where it is being introgressed needs to be evaluated. 
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SUMMARY 

Knowledge of the genetic structure of cattle breed populations is an important consideration in 
genetic evaluations. This study used both genomic and phenotypic data to characterise the structure 
of the Brahman cattle population distributed over three countries in Southern Africa. Principal 
component analysis based on the genomic relationship matrix demonstrated two sub-populations, 
with the first principal component explaining 32% of the variation. Subsequent review of both 
groups showed differences in coat colour as the main source of differentiation, this being red 
coloured Brahmans and those that were white or grey in colour. Unsupervised analysis using 
ADMIXTURE with two populations revealed a unique signal in the red Brahman. Variance 
components and heritability estimates for 200-day weight were similar in the red, white and grey 
populations and the genetic correlation between the red and white types was 0.88. However, genetic 
correlations involving the grey type were considerably lower (0.25 with red, 0.58 with white) 
reflecting the limited comparisons of the grey type with either the white or red type in the same 
herds and contemporary groups. 

 
INTRODUCTION 

Development of the American Brahman commenced in the late 19th century with the importation 
of several Bos indicus breeds from India, followed by subsequent imports of Bos indicus types (such 
as Nellore, Guzerat, Gir and Indu-Brasil) from India and Brazil, and some infusion of local Bos 
taurus genetics (Utsunomiya et al. 2019). Live animal exports to Southern Africa commenced in the 
1950s, with American genetics increasingly utilised via semen and embryos, and more recently from 
Australia and Brazil. Combined with the trade in Brahman genetics between countries in Southern 
Africa, this has led to the Brahman breed contributing significantly to commercial beef production 
in that region. The Brahman Cattle Breeders’ Society of South Africa have utilised the 
BREEDPLAN genetic evaluation service provided by the Agricultural Business Research Institute 
(ABRI) since 2002, this being extended to include the Brahman Cattle Breeders’ Society of Namibia 
in 2004 and the Brahman Breeders Society of Zimbabwe in 2021. Pedigree and performance data 
are combined for evaluation, with over 711,000 animals represented in a multi-trait analysis of 
phenotypes associated with birth (gestation length and birth weight), post-birth growth (weaning, 
yearling, final and mature cow weight), fertility (scrotal size and female days-to-calving), ultra-
sound scan traits and net feed intake results. The genotyping of seedstock Brahman cattle represents 
a more recent development in Southern Africa, with a goal towards incorporating genomic data in 
the genetic evaluation. The objective of this study was to describe the genetic structure of the 
Brahman cattle population distributed across South Africa, Namibia and Zimbabwe and to 
investigate data structure relative to the genomic structure of the population including genetic 
analysis of 200-day weight. 

 
MATERIALS AND METHODS 

Genomic analysis. Genotypes were available on Brahman populations in South Africa 
(n=1,204), Namibia (n=749) and Zimbabwe (n=73), with SNP densities of 54K (n=1,434) and 140K 
(n=592). The markers located on autosomal chromosomes were considered. Quality control (QC) of 
genomic data was conducted using PLINK software (Chang et al. 2015). Individual SNPs were 
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removed at a minor allele frequency of <0.01, a call rate <90% and a deviation from Hardy–
Weinberg equilibrium of p<1E-6, with individual genotypes being excluded if the call rate for all 
loci was <85%. This resulted in a dataset of 1,746 individuals. Genotypes were imputed to the 
highest density represented using FImpute v3 (Sargolzaei et al. 2014), giving 86,110 SNPs for the 
genetic studies. Principal component analysis (PCA) was carried out on the genomic relationship 
matrix (VanRaden 2008) to investigate the population structure and genomic variability within the 
Brahman population. The PCA highlighted two sub-groups, with review of each suggesting recorded 
coat colour as the main point of differentiation: between red coloured cattle (RE, n=256) distributed 
across all 3 countries and those recorded as white (WH, n=299) in Namibia or grey (GR, n=786) in 
South Africa. An unsupervised model-based clustering approach using ADMIXTURE 1.3 
(Alexander et al. 2009) was used to explore the population structure and infer genomic admixture 
levels in the RE, WH and GR clusters. A cluster of animals of unrecorded colour (n=405), many 
from Namibia, was also included. The expected number of subgroups (K) was varied from 2 to 4. 

Genetic analysis. For animals recorded as RE, WH or GR, their 200-day weights (200D) were 
extracted from the November 2022 BREEDPLAN evaluation for Southern African Brahman. 
Phenotypes were pre-adjusted for age at weighing and age of dam as outlined by Graser et al. (2005). 
Contemporary group was defined as herd of origin, sex, year of birth, birth number (single vs twin), 
birth type (natural vs ET), breeder-defined management group and weigh date. Extracted records 
were pruned to remove single-animal contemporary groups and those comprising ET calves. The 
final data set contained 138,764 records for 200D representing RE (34,103), WH (24,486) and GR 
(80,175) animals. Weight records for RE, WH and GR animals were defined as different traits in a 
multivariate analysis including additive genetic, maternal genetic (uncorrelated), maternal 
permanent environment and residual components within trait and a direct genetic correlation only 
between traits. Contemporary group was fitted as a fixed effect. Six generations of pedigree were 
included, giving 215,947 animals in the analysis. A genotype file and associated map file were 
included in the analysis, with 51% of genotyped animals having a 200D record. The GIBBSF90 
program in the BLUPF90 family of software (Misztal et al. 2018) was used, with 50,000 rounds, a 
burn-in of 5,000 and every 20th round stored. (Co)variance components were obtained from posterior 
means using the POSTGIBBSF90 program and a burn-in of 20,000. 
 
RESULTS AND DISCUSSION 

The first and second principal components of the PCA explained 31.7% and 5.3% of total 
variation in the genomic data, with PC3-5 accounting for an additional 3.7%, 2.4% and 2.2% 
respectively. PC1 reflects a clear stratification in the genotyped population, with RE animals 
separated as a distinct genomic sub-type compared to WH and GR animals (Figure 1). WH and GR 
animals show considerable overlap, suggesting they are colour variants of more closely related 
types. The admixture proportions from the unsupervised analyses with K=2, 3 and 4 are shown in 
Figure 2. Based on the simplest model of K=2, the differentiation of RE as a distinct sub-type in the 
PCA reflects a significant difference in breed composition compared to WH and GR. Subsequent 
analyses with K=3 and K=4 were informative yet did not add considerably beyond the simplest 
model suggesting the predominant breed content of RE is a minor component of the WH and GR. 
With K=4, however, a breed fraction of larger representation in the WH than in the GR was evident. 
Based on the estimated breed allele frequencies, (i) a low frequency of mis-recorded colour codes 
seems evident and (ii) the unknown cohort appears to represent all 3 colour types with WH as the 
primary colour. One limitation of unsupervised model-based clustering is that breed allele 
frequencies are not explicitly specified, meaning that estimated breed allele frequencies may be 
biased by familiar relationships among the sample (Gobena et al. 2018). The genomic diversity 
evident in the Brahman population of Southern Africa is reflective of the heterogeneous ancestry of 
the breed. Although the Brahman breed societies of Southern Africa record all coat colour types 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 142 - 145 

144 

among their registered cattle populations, as do their American and Australian counterparts, the 
results of this study describe the red Brahman as a genomically distinct sub-type within the breed. 

 

 
 

Figure 1. Plot of PC1 vs PC2 for Grey (GR), Red (RE) and White (WH) coloured 
Brahman 

 
The summary statistics and variance component estimates for 200D in the RE, WH and GR are 

given in Table 1. The direct and maternal genetic heritability estimates are similar across the 3 types 
and the ratio of maternal permanent environment to phenotypic variance was 0.08 in each instance. 
These heritability estimates fall within the range of estimates reported for Brahman cattle in Brazil 
(de Oliveira Bessa et al. 2021), Australia (Davis 1993) and South Africa (Pico et al. 2004). 

 

 
 

Figure 2. Estimation of admixture proportions of Grey (GR), Red (RE), White (WH) and 
unknown coat colour, unsupervised with K=2 (top) to K=4 
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These results suggest a similar mode of genetic expression for 200D in each colour group without 
the need for type-specific variance components. In the current study however, the genetic correlation 
for 200D between coat colour types was inconsistent: 0.88 for RE-WH, 0.25 for RE-GR and 0.58 
for WH-GR, with high posterior density intervals (95%) of 0.85-0.90, 0.17-0.36 and 0.50-0.65 
respectively. A plausible explanation is the lack of comparative data involving grey animals. Only 
19 of the 18,441 contemporary groups recorded for 200D contained all 3 colour types, accounting 
for 320 animals in total. Of those groups comprising 2 colour types (44,003 animals in 3,013 groups), 
the predominantly contained red and white animals only. Most 200D records (71%) were in 
contemporary groups representing a single coat colour. Lower genetic correlations involving grey 
animals reflected limited linkage in the data available for estimation of covariance components. 

Table 1. Performance statistics (mean and standard deviation, SD), variance components 
and heritability estimates for 200-day weight, according to coat colour. Additive genetic 
variance (VA), total phenotypic variance (VP), direct heritability (h2D) and maternal genetic 
heritability (h2M). All units in kilograms 

Colour Mean SD VA VP h2D h2M 
Red 199.8 37.7 85.72±7.01 451.37±4.55 0.19±0.02 0.08±0.01 
White 203.4 34.6 75.57±5.50 412.74±4.55 0.18±0.02 0.08±0.01 
Grey 206.1 36.4 80.69±5.72 480.93±3.26 0.17±0.02 0.07±0.01 

CONCLUSION 
Results of the genomic analysis indicate the red Brahman as a distinct sub-type within the wider 

Brahman population of Southern Africa, though genetic analysis suggests all 3 colour types show a 
similar genetic expression of 200-day weight. Data structure does, however, indicate limited linkage 
between the grey Brahman and the other colour types, reflecting a preference of grey Brahman 
breeders for grey cattle only. Genetic evaluation of the breed in Southern Africa will benefit from 
increasing representation of all 3 colour types in the reference population.  
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SUMMARY 

Including genomics in genetic evaluations can effectively increase selection response, especially 
for hard to measure, sex limited, and late in life traits. Modelling the increase in accuracy is useful 
when designing reference data projects and when breeders choose animals to genotype. Theoretical 
equations exist to predict the EBV accuracy of un-phenotyped animals. However, there are anecdotal 
reports that the accuracy obtained in practice was often lower than theoretical predictions. This paper 
validated an empirical approach to predicting accuracy in Australian Brahman data for nine traits. 
The empirical approach required the accuracy of reference and target animals from a standard 
pedigree BLUP genetic evaluation and the accuracy of reference animals from a GBLUP genetic 
evaluation. Using this information, a series of equations were applied to obtain the predicted GBLUP 
accuracy for target animals. Forward cross-validation showed that the empirical predicted GBLUP 
was comparable to the actual GBLUP accuracy observed for target animals (accuracy differed 
between 0.9% and 3.6%). In contrast, theoretical predictions differed from the observed GBLUP 
accuracy between 5.2% and 21.8%. For smaller (<4,000) reference populations, the theoretical 
accuracy was closer to the observed GBLUP accuracy, with differences ranging from 5.2% to 
11.6%. The theoretical accuracy was overestimated by between 20.7% and 21.8% for larger 
reference populations. Empirical estimates of the effective number of chromosome segments (Me) 
were between 2.0 and 3.9 times that of theoretical Me, with the greatest difference being for the traits 
with larger reference sizes. This suggests that the theoretical Me is the reason for overestimated 
theoretical accuracy predictions.  

  
INTRODUCTION 

Selection response is linear with increasing EBV accuracy, and genomic selection can be an 
effective way of increasing accuracy, especially for hard or expensive to measure traits, late in life, 
and sex-limited traits. For genomic selection to be effective, reference data with genotyped and 
phenotyped animals are required, and generally, the larger the reference size, the greater the 
accuracy (Goddard and Hayes 2009). Constructing reference data to underpin genomic selection can 
be expensive, especially for traits not commonly recorded by the industry. Therefore, predicting 
EBV accuracy is useful for designing reference data projects. Accuracy predictions are also useful 
for breeders deciding which animals to genotype and the value they can expect from their 
investment. There have been several theoretical predictions formulated to predict EBV accuracy of 
un-phenotyped animals given different population parameters (Daetwyler et al. (2008), Goddard 
and Hayes (2009), Goddard et al. (2011)). However, there have been anecdotal reports that accuracy 
from national genetic evaluations was often lower than the theoretical predictions. Dekkers et al. 
(2021) proposed an empirical approach for predicting EBV accuracy. This method bases predictions 
on the accuracy of reference and target animals from pedigree BLUP and GBLUP genetic 
evaluations. This study aimed to apply Dekkers’ empirical approach using an Australian Brahman 
beef cattle dataset and validate the prediction accuracies for nine traits using forward cross-
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validation. 
 

MATERIALS AND METHODS 
Full details of Dekkers’ empirical method for estimating the effective number of chromosome 

segments (Me) and predicted EBV accuracy are in Dekkers et al. (2021). In brief, this approach 
requires two genetic evaluations to be undertaken. The first is a BLUP evaluation with full pedigree 
(including target animals) and phenotypes of reference animals. The second was a GBLUP analysis 
using the phenotypes and genotypes of reference animals. The average BLUP and GBLUP accuracy 
for reference animals and average BLUP accuracy for target animals, along with population 
parameters (i.e. reference size, heritability and genome size) were used in a series of equations that 
iteratively updated Me until estimates were stable, and predicted GBLUP accuracy for target 
animals. Me was estimated with the equation below, where N was the number of reference animals, 
𝑞𝑞𝐷𝐷2  the proportion of genetic variance captured by the genotypes (initially 𝑞𝑞𝐷𝐷2 = 1 but was 
recalculated each iteration using 𝑞𝑞𝐷𝐷2 = 𝑚𝑚

𝑚𝑚+𝑀𝑀𝑒𝑒
 where m = number of markers), h2 the trait 

heritability and 𝜃𝜃𝐷𝐷𝐷𝐷 the Fisher information statistic of the reference animals. Dekkers’ predicted 
GBLUP accuracy of target animals (𝑟𝑟𝐺𝐺𝐺𝐺; equation below) was calculated based on the average 
accuracy of target animals from the BLUP analysis (𝑟𝑟𝐴𝐴𝐺𝐺) and the contribution of G above that of A 
for target animals (𝑟𝑟𝐷𝐷𝐺𝐺). For target animals, 𝑟𝑟𝐷𝐷𝐺𝐺 was a function of the contribution of G above that of 
A for reference animals (calculated from average BLUP and GBLUP accuracy) and the number of 
generations between reference and target animals. 

𝑀𝑀𝑒𝑒   = 𝑁𝑁𝑞𝑞𝐷𝐷
2ℎ2

𝜃𝜃𝐷𝐷𝐷𝐷
  𝑟𝑟𝐺𝐺𝐺𝐺=�

𝐷𝐷𝐴𝐴𝐴𝐴
2 +𝐷𝐷𝐷𝐷𝐴𝐴

2 −2𝐷𝐷𝐴𝐴𝐴𝐴
2 𝐷𝐷𝐷𝐷𝐴𝐴

2

1−𝐷𝐷𝐴𝐴𝐴𝐴
2 𝐷𝐷𝐷𝐷𝐴𝐴

2  

Pedigree, pre-adjusted phenotypes and genotypes were obtained from the Brahman 
BREEDPLAN genetic evaluation. Genotypes were from different commercially available SNP 
chips, and after imputation and QA as part of the BREEDPLAN evaluation, 67,327 SNPs were 
available for analysis. Nine traits were considered; four hard to measure traits (shear force, lactation 
anoestrus interval, percent normal sperm, age of puberty) and five that were widely recorded 
(ultrasound scanned EMA, scrotal size, 200, 400 and 600-day live weight) in seedstock herds. All 
traits were recorded following BREEDPLAN protocols.  

Forward cross-validation was used to validate Dekkers’ empirical method. Reference (genotyped 
and phenotyped) animals were split based on year of birth, with the earliest animals remaining 
reference animals and more recent animals considered target animals with phenotypes and genotypes 
assumed unknown. The birth year that defined reference and target groups varied for each trait, such 
that approximately 70% of the data was the reference and the remaining 30% target animals. A five-
generation pedigree was built for reference and target animals, and three analyses were performed; 
1. BLUP evaluation with reference phenotypes and five-generation pedigree, 2. GBLUP evaluation 
with reference phenotypes and genotypes, and 3. GBLUP evaluation with reference phenotypes and 
the genotypes of both reference and target animals. Analysis 1 and 2 were used to apply Dekkers’ 
equations to obtain predicted GBLUP accuracy of target animals (𝑟𝑟𝐺𝐺𝐺𝐺) and population 𝑀𝑀𝑒𝑒. While 
analysis 3 was undertaken to get the observed GBLUP accuracy for target animals, which was then 
compared with Dekkers’ predictions. The same set of genetic parameters and models were used for 
each analysis. For all analyses, WOMBAT was used and exact accuracy based on the models and 
data obtained (Meyer 2007). Theoretical accuracy was calculated using Daetwyler et al. (2008), 
where 𝑀𝑀𝑒𝑒 = (2𝑁𝑁𝑒𝑒𝐿𝐿𝐿𝐿)/𝑙𝑙𝑙𝑙(𝑁𝑁𝑒𝑒𝐿𝐿) from Goddard et al. (2011) and compared with Dekkers’ prediction 
and the observed GBLUP accuracy. To theoretically derive 𝑀𝑀𝑒𝑒, the effective population size of the 
breed was estimated using RelaX2 (Stranden, 2014) software and was estimated to be 141.6 animals. 
The size of the chromosomes (L) was 1.017M (Snelling et al. 2007) with 29 autosomal chromosomes 
(k) represented on the SNP chips. 



Prediction/Genomic Prediction Beef 

148 

RESULTS AND DISCUSSION 
Table 1 records the number of reference and target animals, assumed trait heritability and average 

BLUP and GBLUP accuracy (empirical analyses 1 and 2). The number of reference animals ranged 
between 982 (shear force) and 11,541 (200-day live weight). Average accuracy from the BLUP 
analysis ranged from 0.47 (shear force) to 0.77 (age at puberty) for reference animals and between 
0.19 (percent normal sperm) and 0.39 (600-day live weight) for target animals. BLUP EBVs of 
target animals were based on pedigree relationships to the phenotyped reference animals. Reference 
animals had BLUP accuracies between 0.22 (ultrasound EMA) and 0.42 (age at puberty) higher than 
target animals. An additional but smaller increase in accuracy was observed for reference animals 
when genotypes were included in a GBLUP analysis; increases in accuracy ranged between 0.02 
(lactation anoestrus interval) and 0.11 (200-day live weight).  

 
Table 1. Number of reference and target animals, assumed heritability and average accuracy 
from BLUP and GBLUP analysis of Brahman reference (REF) and target (TAR) animals 
 

 Number of animals  Average accuracy 
Trait REF TAR h2 BLUP 

REF 
GBLUP 

REF 
BLUP 
TAR 

Shear force (kg) 982 511 0.26 0.47 0.50 0.21 
Lactation anoestrus interval (days) 1,048 470 0.40 0.68 0.70 0.30 
Percent normal sperm (%) 1,366 583 0.25 0.52 0.55 0.19 
Age of puberty (day) 1,670 806 0.57 0.77 0.80 0.35 
Heifer ultrasound scanned EMA (cm2) 2,565 1,393 0.21 0.52 0.57 0.30 
Scrotal size (cm) 4,351 1,988 0.48 0.67 0.73 0.32 
600-day live weight (kg) 7,805 3,673 0.51 0.70 0.78 0.39 
400-day live weight (kg) 8,730 4,832 0.41 0.67 0.75 0.37 
200-day live weight (kg) 11,541 4,415 0.25 0.59 0.70 0.36 

 
Table 2. The estimated effective number of chromosome segments (𝑀𝑀𝑒𝑒) and predicted 
accuracy from Dekkers’ empirical approach (Prediction), the GBLUP accuracy from forward 
cross-validation (observed) and the Daetwyler theoretical prediction (Theoretical) 
 

  Accuracy of target animals 
Trait 𝐌𝐌𝐞𝐞 Prediction Observed Theoretical1 

Shear force (kg) 4,500.64 0.29 0.28 0.36 
Lactation anoestrus interval (days) 3,425.78 0.42 0.40 0.45 
Percent normal sperm (%) 4,252.34 0.32 0.30 0.41 
Age of puberty (day) 3,997.45 0.52 0.49 0.60 
Ultrasound scanned EMA (cm2) 4,640.22 0.41 0.40 0.49 
Scrotal size (cm) 5,740.04 0.56 0.53 0.74 
600-day live weight (kg) 6,550.21 0.63 0.61 0.84 
400-day live weight (kg) 6,359.78 0.66 0.63 0.83 
200-day live weight (kg) 6,227.21 0.60 0.58 0.80 

1 theoretical prediction based on Daetwyler et al. (2008) method where  𝑀𝑀𝑒𝑒 = 1,680.23 (𝑁𝑁𝑒𝑒 = 141.6) 
 

The predicted accuracy from Dekkers’ empirical (Prediction) and Daetwyler’s theoretical 
(Theoretical) method are shown in Table 2, along with the observed GBLUP accuracy (Observed) 
of target animals. The difference between Dekkers’ empirical and Daetwyler’s theoretical accuracy 
was smaller (0.03 to 0.09) with smaller reference sizes, and Dekkers’ empirical prediction was lower 
than Daetwyler’s theoretical prediction. However, for traits with more than 4,000 reference animals, 
the difference between Dekkers’ empirical and Daetwyler’s theoretical predictions was much larger 
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(0.12 to 0.15). The observed GBLUP accuracy of target animals (analysis 3) showed that Dekkers’ 
empirical predictions were closer to the observed accuracy than Daetwyler’s theoretical accuracy. 
The observed accuracy was slightly lower (0.01 to 0.04) than Dekkers’ empirical predictions. The 
comparison with Daetwyler’s theoretical accuracy showed larger differences. For traits with fewer 
than 4,000 animals in the reference, theoretical accuracies were between 0.05 and 0.12 higher than 
the observed accuracy. The differences for traits with larger reference sizes ranged between 0.21 
and 0.22. These differences can be explained by the theoretical 𝑀𝑀𝑒𝑒 term being underestimated. Table 
2 shows the empirically estimated 𝑀𝑀𝑒𝑒 with estimates varying for each trait; for all traits empirical 
𝑀𝑀𝑒𝑒 was much larger than theoretical 𝑀𝑀𝑒𝑒. Empirical 𝑀𝑀𝑒𝑒 increased with increasing reference size, 
suggesting a greater diversity of DNA represented in larger references. For traits with smaller 
references, empirical 𝑀𝑀𝑒𝑒 was 2.0 to 2.8 times larger than theoretical 𝑀𝑀𝑒𝑒, and for traits with larger 
reference sizes, empirical 𝑀𝑀𝑒𝑒 was 3.4 to 3.9 times larger. The theoretical 𝑀𝑀𝑒𝑒 was a function of the 
effective population size and was constant across all traits.  

These results demonstrate that Dekkers’ empirical approach effectively predicted EBV accuracy, 
especially for larger reference sizes where theoretical methods overestimate accuracy. It was 
observed (results not shown) that spurious results occurred for the empirical method when the 
reference size was small (less than ~1,000 animals). However, with small reference sizes, genomic 
selection will have limited benefits over pedigree-based selection. The empirical method is only 
suitable once reference datasets with more than 1,000 animals exist, which limits its application for 
project design or breeds not yet undertaking genomic selection. It may be possible to use estimates 
from other breeds and traits to predict accuracy in these situations, but further work is needed to 
confirm this. One advantage of Dekkers’ empirical method is the ability to make predictions for 
different subsets of target animals. This validation study obtained the BLUP accuracy for target 
animals from a pedigree BLUP analysis. However, an alternative may be to use an assumed accuracy 
for target animals. Therefore, predictions can be made for a range of scenarios, including 
“cleanskins” where no pedigree or phenotypes are available (i.e. BLUP accuracy=0), animals that 
are not phenotyped but have phenotyped relatives and already phenotyped animals (i.e. BLUP 
accuracy will be higher than for un-phenotyped animals). In contrast, current theoretical predictions 
apply to one scenario, assuming that the target animals are un-phenotyped but have pedigree 
recorded and do not consider other scenarios.  
 
CONCLUSIONS 

Predicting the accuracy that can be achieved from genomic selection is desirable. This paper 
demonstrated that an empirical approach for accuracy prediction was effective and provided better 
predictions than existing theoretical approaches. However, the method does rely on reference 
datasets being available. 
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SUMMARY 
Using whole-genome sequence data in genomic prediction is expected to improve the predictive 

ability since the whole genome sequence may contain causal variants. This study aimed to compare 
the accuracy of genomic prediction with three densities of genotypes, 50k, high- density and whole-
genome sequence. The genomic prediction was performed to estimate breeding values for selected 
growth and carcass traits in Australian Angus beef cattle. Genotype imputation was conducted to 
retrieve genotypes at high-density and whole-genome sequence level. The dataset was split into 
testing and reference group to compare the accuracy of breeding values obtained from different 
genotype densities and for animals with different degrees of relatedness to the reference. The 
prediction accuracies were similar across three different genotype densities for the traits studied. We 
found no substantial improvement in genomic prediction accuracy using the whole-genome 
sequence data in this study. 

 
INTRODUCTION 

Genome-based evaluations, commonly known as genomic prediction, have become a standard 
approach for estimating livestock breeding values. Genomic prediction can improve the rate of 
response to selection by shortening generation interval and gaining more accuracy in predicting 
breeding value, especially for young animals and difficult-to-measure traits. The accuracy of the 
genomic prediction depends on two major factors; the number of DNA-tested animals recorded for 
the objective trait and the number of DNA markers used in genotyping. Current genomic evaluations 
use standardised genotyping arrays ranging from 10k to 700k in density, with 50k being the most 
common platform (Goddard et al. 2011). The advent of next-generation sequencing technologies 
has made it possible to obtain whole-genome sequence data at a reasonable price and such data could 
be used in routine genetic evaluations. Moreover, genotype imputation is a common practice to 
obtain whole-genome sequence with a reliable accuracy, for animals genotyped with lower densities.  

Whole-genomic sequence is expected to improve the accuracy of genomic prediction since it 
should include actual causal variants in the data instead of depending on the association between the 
QTLs and markers (Meuwissen et al. 2016). The objective of the present study was to examine the 
benefit of the sequence data for genomic prediction in Australian Angus beef cattle. Different 
genetic marker densities, including medium-density 50k, high-density 700k and whole genome 
sequence were used to examine the potential improvement in prediction ability when increasing the 
marker density for 3 economically important traits in Australian Angus cattle. 

 
MATERIALS AND METHODS 

Animal and data. Data was obtained from the Angus Australia database. The dataset analysed 
was for animals born between 2013 and 2022. Animals were measured for yearling weight 
(400dWT), final weight (600dWT) and carcass intramuscular fat (CIMF) (Table 1.). Contemporary 
groups (CG) were formed according to BREEDPLAN procedures (Graser et al. 2005) by 
concatenating herd, year of birth, sex, birth type, management group defined by breeders and 
measurement date. The CGs were subdivided by age at measurement with slices of 45 days for the 
growth traits and slices of 60 days for CIMF. Genotypes for animals were also received from Angus 
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Australia. Medium-density genotype data (50k) were from the previous study by Aliloo and Clark 
(2021). A total of 1,076 animals were genotyped with 700k genotype array (HD). Genotype data 
contained only bi-allelic SNPs located on the autosome. 

Genotype imputation. To obtain the whole-genome sequence, genotype imputation was 
performed. Whole-genome sequence data from 440 Angus bulls from the 1000 bull genome project 
(Hayes and Daetwyler 2019) were used as a reference for the imputation. The 50k genotype samples 
were imputed to the whole-genome sequence (WGS) level with a stepwise genotype imputation, 
from 50k to HD, then to WGS. The genotype imputation was performed with Minimac4 (Das et al. 
2016) and Eagle (Loh et al. 2016) was used for pre-phasing with default parameters. The imputation 
reference panel was a combination of samples with HD and reduced genotypes from the WGS. The 
imputation accuracy relied on Miminac4 internal quality metric (Rsq). Post-imputation quality 
control was applied to the imputed genotypes. Quality control filtered out those SNPs with 
Miminac4 Rsq < 0.30 and minor allele frequency (MAF) < 0.05. This resulted in 44,827, 522,192, 
and 7,899,466 SNPs for 50k, HD and WGS, respectively, in the final genotype dataset. 

Table 1. Descriptive statistics for growth traits and a carcass trait 
 

 N Mean Min. Max. SD. age age mean 
400-day weight, kg 56,058 398.46 235.00 622.00 67.82 301 to 500 400.29 
600-day weight, kg 23,705 521.84 339.00 814.00 97.89 501 to 700 574.67 
Carcass Intramuscular Fat, % 4,074 9.76 3.00 20.50 3.65 504 to 990 722.24 
 

Statistical Analysis. Possible systematic effects were tested for their significance in the model. 
The effects tested were CG and a linear and quadratic covariate of age at measurement and dam age. 
The effects with p-value <0.05 was kept in the final model. Due to a large difference in sample size 
between growth and carcass traits, they were examined differently. To assess prediction accuracy, a 
10-fold cross-validation was conducted using the whole dataset for CIMF. While, for the growth 
traits, the analysis imitated a forward prediction by splitting animals into a reference and a testing 
group based on their year of birth. The last two years of the data was used as the testing set and other 
samples were included in the reference group. Individuals in the testing set were grouped according 
to the level of their relatedness with the reference set by a relationship value, which extracted from 
a genomic relationship matrix (GRM). Then, samples in each subgroup were randomly assigned into 
10 groups for cross-validation. A univariate animal model using the full dataset with 50k genotype 
density was used to generate phenotypes corrected for all estimated fixed-effect coefficients. GRMs 
with three different genotype densities were constructed based on Yang et al. (2011) using GCTA 
software. The top-30 relationship values were extracted from off-diagonal elements of the GRM 
using 50k and then averaged (Clark et al. 2012). Observed phenotypes of the testing samples were 
masked and genomic estimated breeding values were obtained from analyses based on 50k, HD and 
WGS genotypes. The genomic prediction was performed using the GBLUP approach with a 
univariate animal model using MTG2 (Lee and Van der Werf 2016). The accuracy of genomic 
prediction was calculated as the Pearson correlation coefficient between the corrected phenotypes 
and GEBVs of the testing group divided by the square root of the trait heritability obtained from a 
50k-based analysis. The accuracies with the standard error were expressed as an average value from 
the cross-validation. The accuracy of genomic predictions was compared between three densities of 
genotypes, and was reported from the testing group and the subgroups according to the degree of 
relatedness. 
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RESULTS AND DISCUSSION 
The accuracies of genomic prediction for the studied traits are presented in Table 2. For both 

growth traits, the prediction accuracies were similar for the three genotype densities. Although there 
was no significant difference, the HD density had the highest accuracy with values of 0.683 (0.017) 
and 0.630 (0.016) for 400dWT and 600dWT, respectively. The lowest accuracy for both traits was 
from the WGS, given 0.675 (0.016) for 400dWT and 0.621 (0.014) for 600dWT. The accuracy 
marginally increased from 50k to HD, then slightly decreased from HD to WGS. Similarly, there 
was no difference in the prediction accuracies for CIMF. The highest accuracy was 0.643 (0.027) 
retrieved from HD but there was not significantly different in a comparison. Our results agreed with 
previous studies showing that using WGS did not significantly improve the accuracy of genomic 
prediction (Raymond et al. 2018; Bedhane et al. 2021). 

Table 2. Prediction accuracy1,2 with three different genotype densities by testing group and by 
relatedness subgroups, and trait heritability 

n 50k HD WGS 
400-day weight, kg
testing group 17,942 0.677 (0.016) 0.683 (0.017) 0.675 (0.016) 

medium-related 10,230 0.656 (0.020) 0.659 (0.021) 0.650 (0.022) 
high-related 7,712 0.711 (0.019) 0.721 (0.020) 0.714 (0.020) 

h2 0.246 (0.007) 

600-day weight, kg
testing group 5,117 0.627 (0.014) 0.630 (0.016) 0.621 (0.014) 

medium-related 3,259 0.611 (0.013) 0.615 (0.012) 0.608 (0.011) 
high-related 1,858 0.659 (0.032) 0.660 (0.036) 0.648 (0.035) 

h2 0.338 (0.001) 

Carcass Intramuscular Fat, % 
testing group 0.639 (0.024) 0.643 (0.027) 0.637 (0.027) 

h2 0.464 (0.027) 
1 Prediction accuracy with standard error was obtained from the 10-fold cross-validation. 
2 There was no significant difference in a comparison (p-value <0.01). 

Prediction accuracy by relatedness group. Different number of top relationship values were 
tested to define strength of relatedness between testing samples and reference set. The top-30 
average was found to clearly split testing set into two groups (Figure 1). Then, the testing set was 
subdivided into two groups, which were medium- and high-related groups, and 0.25 was the 
threshold point. There were 17,942 and 5,117 animals in the testing group for 400dWT and 600dWT, 
respectively. For CIMF, a 10-fold cross-validation with the whole dataset was performed. 
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As expected, the high-related group obtained more accurate predictions compared to the 
medium-related group (Table 1). The accuracy of relatedness subgroups fluctuated with only a slight 
change with different genotype density. However, difference in the accuracy was not significant 
between the genotype densities. The highest accuracy for both the medium- and the high-related 
group were from HD, and the lowest accuracy was from the WGS. The accuracy by subgroups was 
similar to the testing group where the accuracy steadily declined as the genotype density increased. 
There were a small difference and no clear pattern in the prediction accuracy when increasing the 
genotype density. Lastly, accuracy of genomic prediction is involved by several factors, for instance, 
trait heritability, size of the reference and relatedness between selection samples and the reference. 

Figure 1. Relationship values for testing animals from 50k genotype by traits with the 
threshold point 

CONCLUSION 
This study has investigated the benefit of whole-genome sequence for predicting breeding values 

for the selected growth and carcass traits in Angus cattle. Although the highest prediction accuracies 
were retrieved when using the high-density genotype, the difference was not significant compared 
to the 50k-based prediction. For the traits studied, there was no clear evidence of increased 
prediction accuracy with denser genotypes, such high-density array and whole-genome sequence. 
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SUMMARY 
Heifers' second joining pregnancy and lactation status (PLS) is an important fertility trait for 

commercial cattle herds in North Queensland. Genomic prediction of a candidate bull’s contribution 
to its female progeny’s PLS presents a technical challenge because the trait has a non-ordinal multi-
class nature. We previously developed a new algorithm, Genomic Attributions to a Categorical Trait 
(GA2CAT) to tackle the problem. However, the merit of the method has not been evaluated against 
those of machine learning methods. In this study, using two commercial cow populations (795 and 
340 cows respectively) with high-density SNP genotypes and imbalanced PLS phenotypes, we 
compared the classification performance of the new method GA2CAT with two machine learning 
approaches (Random Forests (RF) and Support Vector Machines (SVM)). The results from a five-
fold cross-validation scheme indicate that the classification accuracy of GA2CAT was greatly 
impacted by the coding system of PLS categories. For highly imbalanced non-ordinal multiclass 
datasets, using the average overall accuracy value for evaluating the classification performance of 
the GA2CAT and ML methods was misleading and Matthews correlation coefficient values should 
be applied.  

 
INTRODUCTION 

Female reproductive traits directly impact the profitability of commercial beef herds. Among 
many reproductive traits, fertility-related ones are the most important. In dairy and beef cattle, they 
are measured by a range of continuous (e.g. age of puberty, days at first calving), binary (e.g. 
pregnancy status) or count traits (e.g. number of inseminations) (Toghiani et al. 2017). However, in 
Australian northern commercial cattle herds, following natural syndicate joining, heifers are usually 
mustered and grouped based on the result of their 2nd joining pregnancy and lactation status (PLS). 
Females can be assigned to six PLS categories: 1. DNP = Dry and Not Pregnant; 2.WNP = Wet and 
Not Pregnant; 3. DEP = Dry and Early Pregnant; 4. DMP = Dry and Mid Pregnant; 5. DLP = Dry 
and Late Pregnant; 6. WEP = Wet and Early Pregnant (Reverter et al.2016). This non-ordinal multi-
class phenotype presents a technical challenge when trying to rank potential sires based on their 
genomic relationships with phenotyped heifers. To address this issue, we have developed a new 
method called Genomic Attributions to a Categorical Trait (GA2CAT) to predict an individual sire’s 
contribution to its future daughters’ performance (Li et al. 2022). However, the performance of 
GA2CAT has not been benchmarked against other methods commonly used for analysing non-
ordinal multi-class traits, such as the machine learning (ML) based Random Forests (RF) and 
Support Vector Machines (SVM). Therefore, we conducted the study to compare genomic 
prediction accuracies of GA2CAT and two ML methods. 

 
MATERIALS AND METHODS 

Datasets. Two datasets containing 1,135 tropical Brahman cows, 795 from the 2020 season 
(referred to as Cows_795) and 340 from the 2021 season (Cows_340), from a north Queensland 
commercial property were used for the study. All animals with PLS records were individually 
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genotyped for 54,791 SNPs (Neogen Australasia GGP TropBeef 50K chip) which were then imputed 
to high density using 700K genotypes of 861 legacy BeefCRC Brahman cattle as the reference 
genome. Table 1 summarises the composition of the phenotype records in both populations, 
illustrating unevenly distributed multi-class categories. 

Phenotypic data recoding. For comparison purposes, three different phenotype recording 
systems for PLS records were investigated (Table 1). These include: a) treating PLS as a binary trait 
(2PLS, Non-pregnant “1” vs pregnant “2”); b) as a four-category trait (4PLS, Dry and Non-Pregnant 
“1”, Wet and Non-Pregnant “2”, Dry and Pregnant “3”, and Wet and Pregnant “4”); and c) as a six- 
category trait (6PLS, see Table 1 for details).      

 
Table 1. Composition of 2nd Joining Pregnancy and Lactation Status (PLS) records of two 
Brahman cow populations (795 and 340 cows respectively) and three phenotype recording 
systems 
 

 Cow population Phenotype recoding system 
PLS Code Cows_795 Cows_340 2PLS* 4PLS* 6PLS* 

Dry and Non-Pregnant DNP 124 61 1 1 1 
Wet and Non-Pregnant WNP 358 109 1 2 2 
Dry and Early Pregnant DEP 77 109 2 3 3 
Dry and Mid Pregnant DMP 70 45 2 3 4 
Dry and Late Pregnant DLP 86 6 2 3 5 

Wet and Early Pregnant WEP 80 10 2 4 6 
Total  795 340    

*2PLS: binary categories, 4PLS: four categories; 6PLS: 6 categories 
 
Statistical methods. Three analytical methods were used for evaluating classification accuracy, 

including GA2CAT (Li et al. 2022), RF (Berriman 2001) and SVM (James et al. 2013). In brief, the 
GA2CAT algorithm applies a standard genomic relationship matrix derived from the method of 
VanRaden (2008) between the reference and testing populations to predict the likely contributions 
of an individual animal in the testing population to individual classes of a categorical trait. For PLS, 
a GA2CAT value of a given animal for a given PLS category is defined as the animal’s average 
genomic relationship with other animals having that PLS category divided by its average genomic 
relationship across all animals. RF is based on ensemble learning of a large number of decision trees 
deriving from random sampling of various subsets (both SNPs and animals) of a given dataset. It 
takes the average of decision trees (with replacement) to improve the predicted accuracy of the 
dataset. The final output (variable importance value) of RF is based on the majority votes of 
predictions. SVM applies different kernel functions (linear or non-linear) to identify a hyperplane 
that maximizes the separation of the data points to their potential classes (binary or multi-classes). 
While a genomic relationship matrix was used for deriving the GA2CAT values, both RF and SVM 
directly applied SNP genotypes for the analyses. 

A 5-fold cross-validation scheme was used for evaluating the classification performance of each 
method. Each cow population was randomly divided into 5 equal-size groups and each group (68 in 
Cows_340 or 159 animals in Cows_795) was in turn used as the validation set. Overall accuracy 
((true positive + true negative)/(true positive + true negative + false positive + false negative)) was 
used for evaluating the prediction performance. The final results were based on the average 
prediction accuracy of five validation groups. Given the imbalanced multiclass datasets used here, 
we also applied the Matthews correlation coefficient (MCC, Chicco and Jurman 2020) as a measure 
of the quality for multiclass classification. MCC values normally range from -1 to 1, with 1 
representing a perfect prediction, 0 an average random prediction, and -1 a perfect misprediction. 
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Hyperparameter tuning for RF and SVM.  A range of hyper-parameter values was examined 
for each ML method to determine the critical parameters that minimize prediction errors. These 
include: for RF, the size of forest trees (Ntree =100, 500), and the number of SNP markers at each 
sampling event (Mtry = 100, 500, 1000 and 5000); for SVM, insensitivity zone (gamma = 0.001, 1, 
5, 10) and the penalty parameter (C= 0.001, 1, 10). All other parameters for each method took default 
values. The RF and SVM classifiers in the “scikit-learn” Python package (Pedregosa et al. 2011) 
were used for classification predictions. 

 
RESULTS AND DISCUSSION 

Comparison of classification performance of GA2CAT, RF and SVM. The overall average 
prediction accuracies (standard deviations in the brackets) of the three methods from a five-fold 
cross-validation scheme are summarised in the top part of Table 2. When changing the coding of 
PLS from two to four to six categories, the overall classification accuracy decreased significantly in 
both populations for all methods in the small population Cows_340, but to a much lesser extent in 
the large population Cows_795.  
 
Table 2. Classification performance of GA2CAT, RF and SVM under different PLS coding 
systems in two cow populations, using a five-fold cross-validation scheme. A) The overall 
average classification accuracies (standard deviations in brackets); b) Matthews correlation 
coefficients (MCC) 
 

 Cows_340 Cows_795 
Method GA2CAT RF SVM GA2CAT RF SVM 

A. Overall 
Accuracy 

Cow population 

2PLS 0.46 
 (0.097) 

0.51 
 (0.073) 

0.47  
(0.032) 

0.53 
(0.027) 

0.61 
(0.029) 

0.61 
(0.033) 

4PLS 0.18 
 (0.034) 

0.43 
(0.063) 

0.47 
(0.018) 

0.24 
(0.027) 

0.44 
(0.061) 

0.45 
(0.052) 

6PLS 0.091 (0.024) 0.25 
(0.054) 

0.29 
(0.034) 

0.12 
(0.025) 

0.46 
(0.052) 

0.45 
(0.052) 

B. MCC Cow population 
2PLS -0.071 

 (0.19) 
0.020 

(0.143) 
0.000 

(0.000) 
0.059 

(0.049) 
0.077 

(0.040) 
0.000 

(0.000) 

4PLS -0.039 
(0.029) 

-0.037 
(0.036) 

0.000 
(0.000) 

0.013 
(0.026) 

-0.027 
(0.043) 

0.000 
(0.000) 

6PLS -0.017 
(0.036) 

-0.062 
(0.073) 

0.000 
(0.000) 

-0.023 
(0.036) 

0.053 
(0.043) 

0.000 
(0.000) 

RF: Random Forest; SVM: Support Vector Machine. 
 
The poor performance of the three methods under 6PLS could be due to the phenotype of PLS 

being a non-ordinal multi-class categorical trait. The separation of animals for three Dry and 
Pregnant classes, i.e. early, mid, and late pregnancy was not as clean-cut as those in the binary 
situation (2PLS, non-pregnant vs pregnant). For the GA2CAT, the genomic relationships between 
animals in these three classes in the training populations were very similar, therefore the predicted 
contributions of the animals in the validation populations to six categories of PLS (i.e. GA2CAT 
values) were very similar. As a result, it made the correct assignment of the animals in the testing 
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populations to different categories extremely difficult. The results indicate the necessity of recoding 
PLS records before applying different analytical methods to achieve reliable results. 

Across two cow populations, for the same coding system, e.g. 6 categories (6PLS), the two ML 
methods (RF and SVM) seemed to outperform the GA2CAT (see the average accuracies in Table 
2). The margin was large in the population Cows_795 (0.46 (RF), 0.45 (SVM) vs 0.12 (GA2CAT). 
The difference between RF and SVM was little in comparison to either of them with the GA2CAT. 
However, when investigating further on the classes correctly classified, we found that both RF and 
SVM assigned all of the individuals in the validation datasets to the category of Wet and Non-
Pregnant. This was the class with the largest number of phenotypic observations in Cows_795. This 
confirms the downside of ML methods that bias toward the majority class by over-sampling the 
abundant classes and under-sampling minor classes (Chicco and Jurman 2020). 

When evaluating the performance of three methods by the MCC values (the lower half of Table 
2), all three methods had the MCC values either zero (SVM) or close to zero. These suggest that: a) 
the phenotype PLS is a low heritability trait, as all three methods followed a random prediction 
behavior (MCC values ~ 0.00).  In addition, the accuracy values for the GA2CAT fitted the random 
sampling expected prediction accuracies of 0.5 (PLS2), 0.34 (PLS4) and 0.25 (PLS6); b) there was 
no significant classification performance difference among the GA2CAT, RF and SVM. 

CONCLUSION 
The results from a five-fold cross-validation scheme indicate that different coding systems of 

PLS categories greatly impacted the classification outcome of the GA2CAT. For highly imbalanced 
non-ordinal multiclass datasets, using the average overall accuracy value for evaluating the 
classification performance of the GA2CAT and ML methods was misleading and MCC values 
should be applied. A GA2CAT value is the weighted average of genomic relationships between 
reference and validation populations for a particular category, it reflects better the heritable nature 
of a phenotypic trait. 
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SUMMARY 

The “metafounders” framework is used to augment relationship matrixes to accommodate 
genetic structure in founder populations, and can be estimated from genotypes, making it useful to 
align pedigree and genomic relationships in single-step genomic analyses. This paper aimed to 
assess the value of metafounders in the genomic evaluation of beef traits in Australian Simmental 
cattle, and in particular the possibility of collapsing genetic groupings based on metafounder 
similarity. Estimated breeding values from metafounder models with different groupings had similar 
predictive ability across 12 beef traits, while models with higher weighting on genomic relative to 
pedigree information tended to perform better.  
 
INTRODUCTION 

Metafounders (MF) are pseudo-individuals included in the pedigree that allow accounting for 
genetic heterozygosity and relationships within and between base populations, considering unknown 
ancestral populations (Legarra et al. 2015). The MF approach may be advantageous because it 
derives compatibility between genomic (G) and pedigree (A) relationship matrices by modifying A 
to align with G (Garcia-Baccino et al. 2017). Currently, the BREEDPLAN genetic evaluation for 
Australian Simmental uses 25 genetic groups, defined based on the country of origin, breed, and 
year of birth of animals with unknown parentage. The influence of all these genetic groupings and 
structures in the pedigree of Australian Simmental need to be considered in single-step genetic 
evaluations. This study aimed to assess the utility of MF in the genomic evaluation of beef traits in 
Australian Simmental, considering the predictive ability with different MF assignment strategies in 
the pedigree.  

 
MATERIALS AND METHODS 

Data. The genomic data consisted of 8,245 genotyped animals with 59,678 SNPs. Traits 
analysed included eight live ultrasound scan body composition traits, eye muscle area, intramuscular 
fat, P8 fat, and rib fat in bulls and heifers (BEA, BIM, BP8, BRF, HEA, HIM, HP8 and HRF), and 
four body weight traits, birth (BWD), weaning (WWD), yearling (YWD), and final weight (FWD). 
Numbers of genotyped and pedigree-only animals recorded for each trait are shown in Table 1. 

MF procedures. Metafounders were included in single-step models using an adapted inverse 

relationship matrix defined as 𝐇𝐇Γ−1 = 𝐀𝐀Γ−1 + �0 0
0 𝐆𝐆−1 − 𝐀𝐀22Γ−1

� , where 𝐀𝐀𝚪𝚪  is the pedigree 

relationship matrix augmented by the “gamma” matrix modelling within and across base population 
relationships, 𝐀𝐀22Γ  is the sub-matrix of 𝐀𝐀𝚪𝚪  for genotyped animals, and 𝚪𝚪  is the gamma matrix 
(Legarra et al. 2015). The matrix G was obtained as 𝜆𝜆𝐆𝐆𝑚𝑚 + (1 − 𝛌𝛌)𝐀𝐀22Γ , where 𝐆𝐆𝑚𝑚is the genomic 
relationship matrix as calculated via VanRaden (2008), and 𝜆𝜆 is the weighting factor between 
genomic and pedigree relationship matrices, set as either 0.5 or 1. For 𝜆𝜆=1 a small positive value 
was added to the diagonal of 𝐆𝐆𝑚𝑚 to ensure it was invertible. 

As described above, the genetic groups used to define MF groups have been defined based on 
country of origin, breed, and year of birth of animals with unknown parents. In addition to 12 
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Simmental groups, there were 4 substantial groups of Angus origin, with minor contributions from 
Hereford, European, Indicus, and unrecognised breeds. 

Estimation of 𝚪𝚪 was performed via generalised least squares (Garcia-Baccino et al. 2017) using 
the WOMBAT software package (Meyer 2007). The correlations between MF were calculated from 
the 𝚪𝚪 estimated, and the MF were grouped using multivariate clustering techniques.  

Genetic evaluation and prediction design. Prior to cross-validation, the variance components 
for each trait were estimated using all data available with the WOMBAT program (Meyer 2007), 
and these parameters used for BLUP analyses. Variance component estimation and EBV predictions 
using ssGBLUP with MF were performed using a single-trait animal model with contemporary 
groups as a fixed effect, direct genetic effects fitted as random for all traits, and maternal genetic 
effects fitted for BWD and WWD only (uncorrelated with direct genetic effects). Phenotypes were 
pre-adjusted for fixed effects apart from contemporary group. 

The performance of analyses with different MF groupings was compared across traits using a k-
fold cross-validation approach with k=5. For the k-folds analyses, animals with phenotypic and 
genotypic data were randomly split into five parts. EBVs were calculated 5 times for each trait, 
omitting the phenotypes of animals in each validation set such that their EBVs were then predicted 
from genomic and pedigree relationships (“part” EBVs). Then, the accuracy, stability and dispersion 
of the predictions were assessed. Accuracy was calculated as the correlation between part EBV and 
phenotypes of validation animals for all traits except for the two maternally influenced traits (BWD 
and WWD) for which the LR method was used (Legarra and Reverter, 2018). Stability was 
calculated as the correlation between part and full EBVs for the validation animals, and bias as the 
regression of part EBVs on phenotypes. Results for each statistic were averaged across folds. 
 
RESULTS AND DISCUSSION 

Gamma matrix and MF clustering. The matrix 𝚪𝚪 was estimated for 25 MFs (MF25) and the 
correlations between MFs grouped by similarity are shown in Figure 1. The diagonal “self-
relationship” elements of 𝚪𝚪 ranged from 0.29 to 0.82 with an average of 0.47 (the possible range in 
values is 0 to 2 with higher values indicating higher inbreeding). The average for Simmental groups 
was 0.43 and for Angus was 0.56. Higher values tended to be for smaller groups which by default 
have less diversity. Corresponding ancestral correlations were typically >0.8 within the Simmental 
and Angus groups, and approximately 0.2 to 0.6 between other groups (Figure 1). 

 

  
 
Figure 1. Metafounder clustering results: top left = Gamma matrix (𝜞𝜞) estimated for 25 genetic 
groups, top right = Gamma correlation matrix with clustering and dendrogram of the genetic 
groups 
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Through a k-means algorithm, the MF were collapsed progressively into 15, 14 and 12 clusters, 
and new 𝚪𝚪 matrices estimated. In all cases the 3 most similar groups of Angus origin were collapsed, 
while 12 Simmental groups were collapsed into 4 groups in MF15, 3 groups in MF14, and 1 group 
in MF12. 

Genetic Parameters. Heritability estimates from the MF25 models are shown in Table 1. 
Estimates for MF12, 14, and 15 were very similar to MF25 and are therefore not shown. These 
results are similar to the heritabilities assumed in the BREEDPLAN analysis for the breed, although 
generally marginally higher. According to Legarra et al. (2015), genetic variance estimates obtained 
from MF models should not be interpreted as a genetic variance within the population but as a 
parameter of the statistical model used for the analysis. Heritability estimates tended to be higher 
for models with λ = 0.5. 

 
Table 1.Number of genotyped (Geno) and pedigree only animals (Ped) with records for each 
trait, and heritability estimates for MF25 models with λ=1 or 0.5  

 
Trait Geno Ped Heritability (λ=1) Heritability (λ=0.5) 
BEA 1,800 21,017 0.32 0.33 
BIM 1,680 11,339 0.28 0.28 
BP8 1,796 20,986 0.37 0.42 
BRF 1,795 20,889 0.28 0.31 
HEA 483 15,787 0.35 0.36 
HIM 482 9,417 0.42 0.42 
HP8 479 15,759 0.56 0.57 
HRF 476 15,746 0.47 0.48 
BWD 3,068 111,262 0.40 0.40 
WWD 2,786 115,209 0.27 0.40 
YWD 2,842 118,646 0.42 0.42 
FWD 1,647 64,860 0.44 0.45 

 
Cross-validation. Accuracies across traits for MF models with λ = 0.5 and 1 are shown in Figure 

2. There was no effect on accuracy for analyses with different MF groupings, but an increase in 
accuracy was observed with λ = 1 for body weight traits. This trend was not observed for body 
composition traits. Stability of part versus full EBVs (Figure 3) was also higher for models with λ = 
1, but again there was no difference between MF groupings. Results for dispersion (not shown) were 
similar across models, and sufficiently close to the expected value of 1 across traits. These results 
suggest reasonable prediction accuracy can be obtained using MF models, with some evidence of 
higher accuracy with higher λ values. However, there was no advantage in aggregating groups based 
on similarity.  

Before implementation, additional studies should be performed to compare these MF analyses 
with traditional genetic groups models, and to investigate the accuracy of estimating MF 
relationships for groups with low numbers of genotypes. 
 
CONCLUSIONS 

Although patterns of similarity between metafounder groups were evident, generally reflecting 
breed of origin, there was little apparent benefit in collapsing groups. Alternatively, simplification 
of groups may be possible if desired, providing the performance differences between groups to be 
collapsed are minimal.  
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Figure 2. distribution of cross-validation accuracy across traits for MF models with λ=1 or 
0.5 

Figure 3. distribution of cross-validation stability of EBVs across traits for MF models with 
λ=1 or 0.5 
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SUMMARY 

Establishing a consistent set of markers through the imputation of various marker densities is 
crucial in building the genomic relationship matrix for genomic prediction. However, imputation in 
crossbred populations presents challenges. This paper investigated the imputation accuracy of 
purebred and crossbred Brangus, Simmental and Wagyu cattle. The imputation was carried out 
independently within each breed using a population-based approach. A reference population of 
3,000 randomly selected purebred and crossbred animals with medium-density markers was used in 
each population to impute the target population with low-density markers (10,000 markers), and this 
process was repeated five times. On average, imputation accuracies higher than 0.9 were estimated 
for all three populations. However, the accuracy decreased as the relationship to the reference 
population within each breed decreased.  
 
INTRODUCTION 

Genomic information from Single Nucleotide Polymorphism (SNP) panels is incorporated into 
BREEDPLAN (Australian beef cattle genetic evaluation system; (Johnston et al. 2018)) to predict 
estimated breeding values. One of the main challenges of including genomic information is that 
individual animals are genotyped on different SNP panels. Often, different panels contain different 
SNP densities depending on the size of the panel. Therefore, imputation of un-genotyped SNPs is a 
standard procedure before building the genomic relationship matrix. This ensures a common 
consensus SNP panel from different density SNP panels enabling genotypes to be analysed together. 
The imputation accuracy of the missing SNPs is essential because it influences downstream 
analyses, such as genome-wide association studies and genomic prediction. Several factors like the 
relatedness between individuals in the reference and target populations, marker density, reference 
genome assembly and population structure influence the imputation accuracy (Ferdosi et al. 2021a). 
BREEDPLAN genetic evaluations are currently performed within breeds, however, a substantial 
proportion of the animals registered within breeds are crossbred at different levels. Currently, 
crossbred animals with low relationship (less than 80% relationship to the genomic population) to 
the reference population are not included in BREEDPLAN, partly because imputation in crossbred 
populations is challenging. Thus, this study aimed to investigate the imputation accuracy in Wagyu, 
Brangus and Simmental purebred cattle and commercial crossbred animals within each breed. 

 
MATERIALS AND METHODS 

Genotypes. Genotypes of 12,058 Wagyu, 8,103 Brangus and 4,778 Simmental cattle including 
their crosses, were extracted from BREEDPLAN data using quality controls within the 
BREEDPLAN genomic pipeline (Connors et al. 2017). Within the genomic pipeline, an estimated 
relationship to the reference population approximates how similar animals are to a known 
population, which can be inferred as breed proportion, and will be referred to as breed proportion 
for the remainder of this study (Boerner and Wittenburg 2018). The reference population refers to 
the deviation of individual allele frequencies from the mean allele frequencies in the entire 
population, which is considered pure based on pedigree. The total number of SNPs considered after 
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quality control were, 31,608, 33,302 and 33,126 for Wagyu, Brangus and Simmental breeds, 
respectively. Individuals and SNPs were removed if they had more than 20% of SNPs missing, while 
SNPs were only considered if their minor allele frequency was greater than or equal to 5%. Only 
autosomal SNPs were used for the analysis. 

Reference and target populations. Imputation was performed independently within each breed 
5 times. In each analysis, 3,000 animals were randomly selected and used as the reference while the 
remaining formed the target population with 10,000 randomly selected markers (the remaining SNPs 
were masked to missing genotypes). This is an optimal strategy to improve imputation accuracy 
(Ferdosi et al. 2021a). 

Imputation. FImpute v3 software (Sargolzaei et al. 2014) with default parameter settings was 
used to impute the genotypes that were masked as missing. The imputation was population-based, 
and the pedigree was not utilized. To investigate the imputation accuracy, genotypes of the animals 
in the target population were imputed back within each breed and were compared with the true 
genotypes. 

Imputation accuracy. The average Pearson's correlation between imputed and true SNPs was 
estimated to determine the imputation accuracy. 

 
RESULTS AND DISCUSSION 

Figure 1 shows the Pearson correlation coefficients between the true and imputed genotypes for 
Brangus, Simmental and Wagyu cattle. A relatively high imputation accuracy was observed. The 
average imputation accuracies were 0.96 (0.59 – 1), 0.97 (0.72 – 1) and 0.93 (0.59 – 0.99) for 
Brangus, Simmental and Wagyu, respectively. Overall the imputation accuracies were higher for 
animals with a breed proportion greater than 80% within each breed. The imputation accuracy 
decreased for most animals as their breed proportions decreased. Lower imputation accuracies were 
estimated for Wagyu crosses (shown as outliers in Figure 1) compared to Brangus and Simmental, 
especially for animals with less than 50% breed proportion. These results were expected and similar 
to what is reported elsewhere (Ventura et al. 2014; Aliloo and Clark 2021). Incorporating animals 
with a more substantial relationship to the target population enhances the detection of extended 
haplotypes which can improve missing SNP imputations. The reference populations in this study 
were a mixture of pure and crossbred commercial animals within each breed, selected at random. 
This strategy is important to introduce haplotypes from the other breeds present in the crossbreds. 
However, all the breeds involved in the crosses were not included in the reference set. The inclusion 
of these breeds is likely to improve the imputation accuracy, again due to enhanced detection of 
extended haplotypes.  

The differences in the imputation accuracies between the three breeds could be attributed to 
differences in their population structure, effective population size and the number of crosses. The 
Simmental population had the least number of commercial crosses while Wagyu had the highest 
number of commercial crosses with multiple breed combinations. Overall, these results show that 
randomly missing SNPs in pure breed and crosses of Brangus and Simmental were imputed 
accurately. Further strategies need to be explored to improve the imputation accuracy for crosses, 
particularly for Wagyu, where accuracies were largely lower than 0.9 for individuals with less than 
50% breed proportion. Wagyu displays a low effective population size and low haplotype diversity 
(Ferdosi et al. 2021b), which could contribute to the low imputation accuracy for animals with low 
Wagyu content when the parent breeds are missing in the reference population.  

This study utilized a population-based imputation method and excluded pedigree information to 
determine the lowest possible imputation accuracy, since all individuals do not have a pedigree. 
Combining population and pedigree imputation methods could potentially increase accuracy, but 
such gains are expected to be minimal with 3,000 individuals in the reference population and a 
medium-density target population (more than 10k SNPs). Nevertheless, incorporating purebred 
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individuals from which crossbreds were derived may enhance the imputation accuracy for 
crossbreds. 

Figure 1. Boxplots showing imputation accuracy across pure-bred and crossbred Brangus, 
Simmental and Wagyu cattle. The number of animals analysed as target population for 
different breed proportion ranges combined for the five analyses are shown above each 
boxplot. Dotted lines represent 0.98 and 0.95 imputation accuracies 

CONCLUSION 
In this study we investigate the imputation accuracy for missing SNP markers in pure-bred and 

crossbreed Brangus, Simmental and Wagyu cattle. The results show that the imputation accuracy 
was on average higher for animals that are more closely related to the reference 
population. 
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However, there are differences in the imputation accuracy between the populations, and further 
studies should evaluate strategies to improve the imputation accuracies for individuals with lower 
relationships to the reference population when some of the parent breeds are missing. The increase 
in imputation accuracy would result in a more precise determination of relationships among 
individuals and an improvement in genomic prediction accuracy, particularly for crossbred 
individuals. 
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SUMMARY 

The Lacaune dairy sheep breed split in 1972 into two subpopulations with no exchange of genetic 
material but a single genetic evaluation and same selection objectives. Previous work has shown 
that this led to the creation of two disconnected but genetically close subpopulations. Previous work 
also demonstrated that the currently performed combined genomic evaluation of both 
subpopulations is slightly advantageous, in terms of accuracy, as opposed to within-subpopulation 
genomic evaluations. This paper focuses on the study of the estimated SNPs effects related to the 
three training populations: composed of one, the other or both subpopulations. The estimated SNP 
effects are strongly correlated across years within the training population. When subpopulations are 
predicted separately, there is low correlation between estimated SNP effects, but when they are 
predicted jointly, there is a strong correlation of the joint estimate with subpopulation estimates. The 
regression of “early” (only based on genomic information) on “late” (including progeny 
information) SNP predictions is lower than one for one of the subpopulations but not for the other, 
and close to one for the joint prediction. This shows some bias in this particular subpopulation whose 
origin is not understood. 

 
INTRODUCTION 

Selection in French Lacaune dairy sheep started in the 70’s with Genomic selection starting in 
2015. Each year, young AI rams are selected, among genotyped prospective rams, based on their 
Genomic Estimated Breeding Values (GEBVs) and used to inseminate females. The accuracy of 
Milk Yield BV of young genotyped rams (AI candidates) increased from 0.32 to 0.47 (i.e. a relative 
increase of 47%), when transitioned from pedigree-based to genomic based selection (Baloche et al. 
2014). However, it is of interest to understand if this genomic accuracy can be enhanced further by 
increasing the size and optimizing the setting up of the reference population. 

In 1972, the structure of genetic improvement split, with each flock participating in the AI 
programs of only one of two existing ram AI studs (breeding companies BC) 1 or 2), exclusively, 
i.e. a flock only sends rams and receives semen to and from the chosen BC. This created in fact two 
different subpopulations (1 and 2), subpopulations which do not exchange as breeders rarely 
exchange sheep and the flux of males and semen is handled by the BC within their participant flocks. 
Moreover, flocks respect the initial assignation of flocks to BC. Thus, for the last 5 decades, flocks 
have been contributing rams to a single BC and receiving semen from a single BC. In the following, 
we will use the wording “subpopulation” to indicate the set of animals belonging to flocks attached 
to each BC.  

A first study (Wicki et al. 2023) revealed a low genetic differentiation between the two 
subpopulations observable, on the one hand, by a low Fst value (0.02), and on the other hand by the 
results of a Principal Component Analysis (PCA) of the genomic relationship matrix. Indeed, this 
PCA shows two distinct groups corresponding to each BC, separated on the second component. 
However, the percentage of variance explained (1.6%) implies that most variation is within-
subpopulation, not across. Pedigree analyses showed a low and constant average pedigree 
relatedness between BC which confirms the very low genetic exchanges between companies. 
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Finally, Wicki et al. (2023) observed a small gain in GEBVs accuracy from the evaluations with 
training populations of a single BC to the evaluation based on combined reference population.  

In this paper, we focus on the study of estimated SNPs effects obtained from genomic evaluations 
based on reference populations using one company (BC1), the other (BC2) or both of them together 
(T). We compare SNP effects across years, and across the three possible reference populations.  
 
MATERIALS AND METHODS 

This study used all the pedigree, genotypes (50K Illumina chip OvineSNP50) and phenotypic 
data obtained from regular performance recording of Milk Yield from 1972 to 2021 available in 
Lacaune dairy sheep (Table 1). The correlation between allele frequencies of each subpopulation is 
0.905. 
 
Table 1. Number of animals in the pedigree, number of records and animals in records and 
number of genotyped animals 
 

 
Genomic prediction based on different reference populations. We performed genomic 

evaluations according to several scenarios in which the subpopulations were studied together or 
separately (Table1). In two scenarios, only the reference population of one subpopulation (BC1 and 
BC2) was included in the prediction model. In the scenario Together (T), information of both 
subpopulations was included.  

For all the genetic evaluations we used an animal model ssGBLUP with metafounders as detailed 
in Wicki et al. (2023) using blup90iod2 (Tsuruta et al. 2001). We used postGSf90 to compute SNPs 
effects (Tsuruta et al. 2001; Aguilar et al. 2010), i.e. SNP effects are backsolved from GEBVs of 
genotyped individuals.  

Validation. The scenarios were compared using the LR method (Legarra and Reverter 2018) but 
applied to SNP effects. We defined as “whole” the evaluation including all the phenotypes available 
until 2021. We compared the SNP effects estimated from this evaluation with SNP effects estimated 
from “partial” evaluations in which the phenotypes were truncated, i.e. phenotypes after a cut-off 
date were deleted, with cut-off dates ranging from 2015 to 2019. The correlation shows stability of 
SNP effects whereas the regression of SNP estimates on “whole” on SNP estimates on “partial” is 
expected to have a value of 1 for unbiased predictions. 
 
RESULTS AND DISCUSSION 

We observe very high correlations of estimated SNPs effects (Figure 1) across years within each 
reference population (above 0.77, 0.87 and 0.77 respectively for reference subpopulation 1, 
subpopulation 2 and both), which is reassuring in regards to the correctness of the model and the 
stability of the genomic predictions, especially for the combined reference population. The 
correlation is slightly higher for subpopulation 2 across years although we don’t have an explanation. 
The low correlations between subpopulations 1 and 2 (below 0.28) are on line with previous studies 
investigating combined genomic evaluations where differences in SNPs effects are observed 
according to the reference population design. Indeed, in our previous study (Wicki et al. 2023) we 
observed that “indirect” genomic predictions using SNP estimates from one subpopulation to obtain 

Population Animals in the 
pedigree 

Animals with 
unknown 

parent(s) (%) 

Number of 
records 

Animals 
with 

records 

Animals 
genotyped 

BC 1 1,087,161 11.5% 2,968,758 908,116 16,792 
BC 2 1,060,862 13.5% 3,041,612 874,329 12,225 
T (BC1+2) 1,974,901 10.8% 6,010,370 1,782,445 29,017 
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GEBVs in the other subpopulation had very low accuracy of 0.10 on average. In addition, these 
results show that, when analysing both subpopulations together, the model forces the SNP effects to 
be “portable” across breeds, whereas the analysis of populations alone does not impose this. The 
correlation between “Together” with each subpopulation is lower than 1 and lower than correlations 
within each subpopulation, yet the “Together” evaluation increases accuracy of GEBVs (Wicki et 
al. 2023) from 0.56 to 0.60 for subpopulation 1 and from 0.45 to 0.55 for subpopulation 2 on average 
(ratios of accuracies). We believe that the increase in accuracy from separate subpopulation analyses 
comes from the increase in the reference population size.  

Figure 1. Correlation of estimated SNPs effects between all the studied reference populations 
(“BC1” = reference population based on subpopulation 1 only, “BC2” = reference population 
based on subpopulation 2 only, “T” = reference population based on both subpopulations, 
“W” = evaluation including all phenotypic information until 2021, “2015” to “2019” = 
evaluation with phenotypic information truncated after year 2015 to 2019) 

We expected regression slopes close to 1 between SNPs effects whole and partial in each 
reference population. Similarly, we expected slopes slightly different from 1 between reference 
populations BC1 and T, BC2 and T; but far from 1 between BC1 and BC2. We indeed observed low 
slopes (below 0.31) when estimated SNP effects from one subpopulation were regressed on 
estimates from the other subpopulation. Within training population BC1, the slope increases over 
cohorts from 0.58 to 0.83, whereas within training population BC2 the slopes are very close to 1. 
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This would suggest some bias in BC1 but not in BC2 – the reasons for that are unknown. Slopes 
between single and combined populations are also variable across cohorts and BC but not too far 
from 1. Technically, they don’t need to be 1 because the “partial” Together contains information 
that it is not in the “whole” subpopulation.   

Table 2. Slopes of regression between estimated SNPs effects “whole” on “partial” 

CONCLUSIONS 
Although the evaluations within each subpopulation alone or combined lead to very similar 

results, this study showed that the estimation of SNP effects was different depending on whether 
each of the two Lacaune subpopulations was considered separately or together. However, the 
estimation of SNP effects across subpopulations were too different to be portable, leading to very 
poor-quality cross-subpopulations evaluations. 
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Cohort 

Partial Whole 2015 2016 2017 2018 2019 

BC1 BC1 0.58 0.64 0.71 0.77 0.83 
BC2 0.25 0.28 0.30 0.30 0.31 
T 0.36 0.39 0.43 0.47 0.50 

BC2 BC1 0.22 0.22 0.23 0.23 0.24 
BC2 1.00 1.01 1.02 1.01 1.00 
T 0.35 0.38 0.41 0.43 0.46 

T BC1 0.62 0.96 0.73 0.78 0.84 
BC2 0.94 0.92 0.96 0.95 0.94 
T 0.60 1.00 0.72 0.78 0.84 



Prediction/Genomic Prediction Dairy 

170 

GENETIC EVALUATION OF LONGEVITY USING PRODUCTIVE LIFE AND 
SURVIVAL SCORES IN AUSTRALIAN HOLSTEIN CATTLE: PREDICTION OF 

EARLY SURVIVAL 
 

M. Haile-Mariam1,2, M. Khansefid1,2, M. Axford1,2,3, M.E. Goddard1,4, and Jennie E. 
Pryce1,2 

 
1Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, 3083, 

Australia 
2School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083 Australia 

3DataGene Ltd, 5 Ring Road, Bundoora, Vic. 3083, Australia. 
4Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Vic. 3010, 

Australia. 
 
SUMMARY  

The accuracy of genetic and genomic evaluation for longevity is low due to the delay in the 
availability of culling data and low heritability (h2). The h2 and accuracy of genetic prediction for 
longevity is also influenced by trait definition and differences in methodologies used for estimating 
breeding values (EBV). This study was designed to compare the reliability, stability, and predictive 
ability of the current genetic evaluation of Australian dairy cattle for longevity which uses a survival 
score of 1 or 0 to an alternative measure that considers total months of in milk until 120 months of 
age (10 years). For this study, data from cows that completed their herd life (i.e., cows born before 
2009, reference data) was used to assess differences in the ability of the two approaches for 
predicting early survival (i.e., survival to the maximum of the fourth lactation) for bulls of whose 
daughters were born in 2009 to 2014 (validation data). The h2 of longevity, when the survival rate 
was analysed, was lower (0.04) than months in milk (0.08). However, the reliability of bull EBVs 
was about 10% higher for survival rate compared to months in milk. Moreover, EBV of bulls were 
more stable (i.e., higher correlation between EBVs) when longevity is defined as survival rate than 
as months in milk. Defining longevity as a survival rate provides better prediction accuracy for 
unobserved records than when defined as months in milk for bulls with at least 25 or more daughters 
in both reference and validation data. Overall reliability and stability of EBVs and prediction of 
unobserved phenotype is better when survival rate is used for genetic analyses than months in milk. 

 
INTRODUCTION  

Improving the longevity of cows increases profitability, animal welfare and reduces the 
environmental footprints of dairy production. The accuracy of genetic and genomic evaluation of 
longevity is low due to the delay in the availability of culling data and low heritability (h2). The 
accuracy of genetic prediction for longevity is also influenced by the definition of the trait and 
differences in methodologies used for estimating breeding values (EBV) (Forabosco et al. 2009). 
Literature estimates show that longevity of cows when defined as productive life is more heritable 
(VanRaden and Klaaskate 1993; Settar and Weller 1999) than as survival rate (Madgwick and 
Goddard 1989) over the lifetime of the cow. However, quantifying differences between the two 
definitions of longevity in terms of predictive ability is important for increasing genetic progress 
and acceptance of the genetic evaluation results by end-users. This study was designed to compare 
the current genetic evaluation for longevity of dairy cattle in Australia which uses survival score 1 
or 0 (Madgwick and Goddard 1989) to alternative measures such as productive life by estimating 
h2, reliability, stability, and predictive ability of EBVs.  
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MATERIALS AND METHODS 
Data of about 1.75 million Holstein-Friesian cows that were born between 1990 and 2014 from 

9,742 dairy herds with valid cow termination dates were extracted from DataGene database for this 
study. From these data of 1.41 million cows that were born between 1990 and 2008 and that had 
opportunity to complete their herd life were used as a reference set. These data were used to estimate 
h2 and breeding values (BV) for survival rate and total months of productive life (PL). Based on the 
termination dates we defined longevity in two ways at two time points in the life of the cows. The 
survival of cows from the first to subsequent lactations until 120 months of age (Surv120) or until 
the end of 7th parity (Surv7P) were coded as 1 for survived and 0 for culled. The same data was also 
used to defined productive life (PL) by adding the months in milk of cows in each lactation until 
120 months of age (PL120) or until the 7th parity (PL7P). In all cases even if some cows were milked 
after 120 months of age or after 7th parity their survival rate or PL data was cut at the end of 120 
months of age or 7th parity. The fixed effects that were included in the model were determined based 
on preliminary analyses. For survival rate (Surv120 and Surv7P), the fixed effects fitted were month 
and year of termination of lactations or of cows, the interaction between parity and age at calving, 
inbreeding of the cow (F) and month of calving and herd-year-season of calving. For PL, the fixed 
effects were age at 1st calving, F, the last month of calving and herd-year-season of birth. In all cases, 
the model included regressions on age at calving (linear and quadratic) and F (linear). When 
estimating h2 and calculating reliability a sire model with numerator relationship matrix (NRM) 
based on sires and their ancestors was used. An animal model that considered all relationships up to 
19 generations was used to calculate EBVs. ASReml was used for all data analyses (Gilmour et al. 
2021).  

  
Table 1. Description of the data with mean and standard deviation (SD) of the traits defined  

Definition of longevity No. 
records 

Mean (SD) 
no. parities 

Mean (SD) 
trait 

Months in milk until parity 7, months 1,411,026A 3.69 (2.02) 39.38 (22.68) 
Months in milk until 120 months of age, months 1,411,026A 3.65 (2.00) 38.80(21.84) 
Survival until parity 7, % 5,204,131B 3.69 (2.02) 81.94 (38.47) 
Survival until 120 months of age, % 5,153,548B 3.65 (2.00) 82.33 (38.14) 

A Number of cows; B Includes number of repeated records for cows with more than parity.  
 
To compare genetic evaluation based on the two definitions of longevity, reliability of EBVs 

were calculated from the prediction error variance. For comparing stability, data of cows that were 
born before 2009 was split randomly into two. Then stability was calculated by correlating EBVs 
for sires estimated from two group of herds (even or odd herds) based on the two definitions of 
longevity. To assess the predictive ability of the two definitions of longevity, data of cows born after 
2008 (validation data) were used to calculate corrected phenotype and was correlated with EBV 
estimated based on the data of cows born before 2009 (reference set). Bulls that had only parent 
average (PA), at least 25 or at least 50 daughters in the reference data and at least 25 or 50 daughters 
in the validation data were used to compare predictive ability.  

 
RESULTS AND DISCUSSION  

Table 1 show that the mean months in milk is the same (39 months) when productive life is cut 
at 120 months of age or at the 7th parity. Similarly in the case of survival rates, the mean survival 
rate (82%) is the same (Table 1), although including lactation until the end of the 7th parity increased 
the total number of records by about 1%. When calculating months in milk as a measure of longevity 
cows are sometime evaluated based on shorter age limit such as 84 months of age (VanRaden and 
Klaaskate 1993; Settar and Weller 1999). In Australia most cows stay longer in the herd than in 
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several other countries (Schuster et al. 2020) so editing productive life at 120 months of age or 7th 
parity could be more appropriate. The h2 of longevity when survival rate was used as the trait was 
lower (0.035-0.036) than when defined as months in milk (0.073-0.076). The higher h2 for months 
in milk compared to survival rate observed in this study agrees with estimates in literature 
(Forabosco et al. 2009). Extending the lifetime of cows by 12 months, for both survival scores or 
months in milk until 132 months of age increased the h2 to 0.04 or 0.08, respectively. However, the 
phenotypic correlation and correlation between EBV for bulls when survival rate or months in milk 
was set at 120 and 132 months was effectively 1 suggesting little benefit for delaying the completion 
of the data beyond 10 years.  

Table 2. Mean EBV, standard deviation (SD), reliability (Rel) for bulls with at least 25 and 50 
daughters for survival rate or months in milk up to the 7th parity and 120 months of age  

Definition of longevity 25 daughters (7,035 sires) 50 daughters (3,224 sires) 
Mean (SD) Rel Mean (SD) Rel 

Months in milk until parity 7 -0.49 (3.40) 0.57 -0.34 (3.59) 0.68 
Months in milk until 120 months -0.67 (3.20) 0.56 -0.53 (3.39) 0.67 
Survival until parity 7 -1.29 (4.78) 0.68 -1.40 (4.98) 0.78 
Survival until 120 months  -1.38 (4.72) 0.67 -1.47 (4.94) 0.77 

Table 2 shows mean EBV with SD and reliability when longevity is defined in different ways. 
Reliability of EBVs for bulls were consistently higher (~ 10%) when longevity is defined as survival 
score than months in milk (Table 2). However, the difference in reliability varied from 0.07 for bulls 
with less than 3 records per daughter to 0.16 for bulls with more than 4 records per daughter. 
Completing survival or months in milk at end of 7th parity is only slightly more reliable than at 120 
months of age. This is possibly due to the slightly higher h2 and increased number of records when 
end of the 7th parity was used for editing data. The higher reliability of EBVs based on survival rate 
in the current study agrees with VanRaden (2003) who demonstrated that reliability of EBVs were 
higher when repeated survival rates were analysed instead of a single measure that represents the 
whole lifetime information of cows. The correlation between EBVs when PL is defined as months 
in milk until 120 months of age and until the end of parity 7 was effectively 1. Similarly, EBVs from 
survival rate had a correlation of 1.0 when the data ended at the 7th parity and at 120 months of age. 
As a result, further analyses that assessed stability and predictive ability were based on survival rates 
or months in milk up to 120 months of age. The correlation between EBVs from survival rate and 
months in milk for bulls with at least 5 daughters was only 0.72 and increased to 0.76 and 0.80 in 
bulls with at least 25 and 50 daughters, respectively, suggesting that the two definitions of longevity 
will rank bulls differently. However, the main reason for the below 1.0 correlation between the EBVs 
could be due to differences in modelling of fixed effects (VanRaden 2003) and the overall lower 
reliability of the EBVs of bulls due to the low h2 of trait. In the current data with an increase in the 
number of daughters per sire the correlation between EBVs for survival rate and months in milk 
increased. For bulls with at least 200 or more daughters the correlation between the EBVs was 0.87. 

By defining longevity as survival rate more stable EBVs (a correlation of 0.63 between EBVs 
from odd herds and even herds for bulls with at least 50 daughters in whole data) were obtained than 
months in milk (a correlation of 0.58). On the other hand, for bulls with at least 25 daughters defining 
longevity as months in milk up to 120 months of age produced more stable EBVs (a correlation of 
0.55) compared to defining longevity as survival rate (a correlation of 0.49). For bulls with 10 or 
less daughters defining longevity as months in milk provides a slightly more stable EBV (a 
correlation of 0.05) than defining longevity as survival rate (a correlation of 0.02). However, it is 
worth mentioning that stability of EBVs is a useful measure of quality of EBVs only if the EBVs 

have a reasonably high level of accuracy. For bulls with 100 or more daughters the 
correlations 
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between EBVs from odd and even herds (0.76) were higher when survival rate was used for genetic 
evaluation than months in milk (0.68) suggesting that the benefit of analysing survival rates on 
accuracy increases with increase in the number of progenies of the bulls.  

Prediction of early survival of cows (i.e., survival to a maximum of the fourth lactation) whose 
data were excluded was consistently higher when survival rate was a measure of longevity than 
months in milk. For bulls with at least 25 and 50 daughters in the data of cows that were born before 
2009 (i.e., reference) and that at least had 25 daughters in the data of cows that were born after 2008 
(validation) the correlation between bull EBVs and corrected bull phenotypes was 0.47 (25 
daughters) and 0.48 (50 daughters) when longevity was defined as survival scored compared to 0.39 
(daughters) and 0.44 (daughters), respectively, when months in milk was analysed. For bulls with at 
least 50 daughters in the reference and validation data the correlation between EBV and corrected 
phenotype was 0.57 for survival score and lower at 0.52 for months in milk. For bulls with PA only 
in the reference set and at least 50 daughters in the validation set the correlation between PA and 
corrected phenotype was lower at 0.24 for survival rate and even lower at 0.17 for months in milk.   

Higher reliability, stability, and predictive ability for EBVs for bulls are useful criteria when 
choosing trait definitions for genetic evaluation. It is worth noting that the increased benefit in terms 
of reliability when survival rates are used could be peculiar to Australian conditions where the 
number of repeated records is higher for cows that stay in the herd longer than conditions where 
most cows are culled after a few lactations. The most appropriate definition could also depend on 
extent of recording of termination data. In Australia, about 50% of the herds that participate in herd 
recording do not record termination data and survival status for cows in these herds is scored based 
on re-calving pattern in subsequent years which delays the availability of data (Madgwick and 
Goddard 1989) and also milk testing is less frequent making it difficult to determine the survival 
status of cows at any particular time. Accurate and complete recording of termination data will 
improve timelines and reliability of EBVs. 

CONCLUSIONS 
This current study showed that EBV of bulls are more reliable and stable when longevity is 

defined as survival rate rather than months in milk, although the h2 was lower. Prediction ability for 
unobserved data of cows was also higher when survival rate is used compared to months in milk. 
Overall accuracy of genetic evaluation for longevity is higher when it is defined as survival score 
than as months in milk which means there is no justification to change the trait used for genetic 
evaluation of longevity in the current production environment.  
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SUMMARY 

Methane is a by-product of digestion in ruminants and is an important greenhouse gas linked to 
global warming. There is considerable interest in reducing methane emissions from ruminants. One 
method is through selection of sires with low methane emissions in their offspring. This research 
aimed to characterise genetic variation in methane emissions and dry matter intake (DMI) in growing 
dairy bulls identified from genomic prediction as genomic sires or participants in progeny testing 
schemes. Estimates of heritability and repeatability for methane emissions and DMI were low to 
moderate. Genetic and phenotypic correlations between methane emissions and DMI were positive, 
suggesting selection for reduced methane emissions would be associated with reduced DMI. After 
accounting for genetic variation in DMI, there was 77% of the genetic variation in methane 
emissions remaining, indicating there is scope to reduce daily methane emissions while maintaining 
DMI. 

 
INTRODUCTION 

Methane gas is generated as a by-product of digestion in ruminants and is one of the important 
greenhouse gases that have been linked with global warming (Herrero et al. 2016). There are global 
research efforts to reduce methane emissions from ruminants, especially dairy cattle (Herrero et al. 
2016), one such method is through selection. Given that genetic progress is permanent and 
cumulative, it is an attractive option to reduce methane emissions. Methane emissions and dry matter 
intake (DMI) in ruminants have been reported to be positively phenotypically correlated (Breider et 
al. 2018; Herd et al. 2014), and genetically correlated (Manzanilla-Pech et al. 2021). Breeding dairy 
cattle for lower methane emissions may have an unfavourable impact on production and profitability 
through a correlated reduction in DMI. Measuring either methane or DMI is expensive and 
logistically challenging, especially in lactating dairy cattle, but unlike milk production traits can be 
measured in sire candidates. 

The long-term goal of this project is to breed dairy cattle who produce less methane per kg DMI. 
This phase of the research aimed to characterise genetic variation in methane emissions and DMI in 
the dairy population using growing dairy bulls identified from genomic selection as genomic sires 
or participants in progeny testing schemes. Additionally, a genetic residual methane emissions trait 
was calculated using a restricted selection index (Kennedy et al. 1993) to assess the proportion of 
genetic variance in methane emissions that was genetically independent of DMI. 

 
MATERIALS AND METHODS 

Approval for animal experiments was granted by the AgResearch Animal Ethics Committee 
(#15176 and 15533). Experiments were conducted by LIC between February and June of each year 
(2021 and 2022) and by CRV between July and December 2021. Both farms were located in 
Waikato, New Zealand. Bulls were housed for 35 days, with the first 7-days as an acclimation period. 
The number of bulls per pen ranged from 5 to 12. Lucerne hay cubes (Multicube Stockfeeds, 
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Yarrawong, Vic) were fed in the week prior to the bulls entering the pens and then fed ad lib. in 
Hokofarm RIC2Discover Feed Intake (Hokofarm Group, Emmeloord, AX) bins, allowing individual 
animal intakes to be recorded. Methane emissions were measured using Greenfeed systems (GF; C-
Lock Inc, Rapid City, SD). Animals were allowed to visit a GF device up to 6 times in each 24-hour 
period. CRV Youngstock Blend (SealesWinslow Ltd, Morrinsville, Waikato) pellets were fed as the 
bait feed in the GF, with animals allowed up to 24 drops of around 40g/drop in each 24-hour period.  

Data handling. To obtain one daily methane “yield equivalent” value per bull, all visits within 
a day were summed to obtain the total methane and total time in seconds a bull was measured for 
methane. The calculation was as follows: 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑑𝑑𝑎𝑎𝑚𝑚 =  
∑𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑑𝑑𝑎𝑎𝑚𝑚 𝑝𝑝𝑚𝑚𝑝𝑝 𝑣𝑣𝑑𝑑𝑣𝑣𝑑𝑑𝑚𝑚
∑ 𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚 (𝑣𝑣𝑚𝑚𝑠𝑠) 𝑑𝑑𝑚𝑚 𝐺𝐺𝐺𝐺

∗ 𝑣𝑣𝑚𝑚𝑠𝑠 𝑑𝑑𝑎𝑎 𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 

 
Daily DMI was calculated as the sum of the daily lucerne intake measured from the feed intake 

bins plus the concentrate intakes measured by the GF device. 
After daily methane emissions and DMI data from the acclimation week were discarded, there 

were 13,109 daily methane emissions phenotypes and 12,687 daily DMI phenotypes from 486 bulls. 
Breeds represented were Jersey, Holstein, Friesian and crossbreeds of varying degrees. 

Genotypes. The bulls included in the study were genotyped on a variety of SNP bovine panels. 
After applying a minor allele frequency filter of 0.1, there were 6,383 autosomal SNPs in common 
across panels for the 486 bulls. 

Statistical analysis. A bivariate repeatability model was fitted using a Bayesian Monte Carlo 
Markov chain (MCMC) approach with the Julia for Whole-genome Analysis Software (JWAS 
v1.1.1) package (Cheng et al. 2018) run in a Julia computing environment (julialang.org). Inference 
was based on MCMC chains of 200,000 samples, retaining every 10th sample, after a burn-in of 
25,000 samples which had been discarded. 

The model equations were: 
𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑑𝑑𝑎𝑎𝑚𝑚 =  𝐶𝐶𝐺𝐺 + 𝑌𝑌𝑚𝑚𝑑𝑑𝑝𝑝 + 𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝐵𝐵𝑚𝑚𝑝𝑝𝑚𝑚 +  𝑀𝑀α +  𝑚𝑚 
𝐷𝐷𝑀𝑀𝐷𝐷 =  𝐶𝐶𝐺𝐺 + 𝑌𝑌𝑚𝑚𝑑𝑑𝑝𝑝 + 𝐵𝐵𝐵𝐵𝑑𝑑𝑑𝑑𝐵𝐵𝑚𝑚𝑝𝑝𝑚𝑚 +  𝑀𝑀α +  𝑚𝑚 

where 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑑𝑑𝑎𝑎𝑚𝑚 and 𝐷𝐷𝑀𝑀𝐷𝐷 are the daily measurements on methane emissions (n=13,109 records on 
474 bulls) and DMI (n=12,687 records on 485 bulls), respectively; CG was the fixed class effect of 
contemporary group of location-group-pen-day the bull was measured with; Year was the season-
year the bull was measured in (2021 or 2022); BullPerm is the random permanent effect of bull 
assumed to be independently and identically normally distributed with variance 𝜎𝜎𝑐𝑐2; 𝑀𝑀 is a matrix 
whose columns are additive dosage covariates for all of the 6,410 autosomal loci with effects 
independently and identically normally distributed with variance 𝜎𝜎𝑎𝑎2; α is a vector of the additive 
effects at each locus; and 𝑚𝑚 is the residual effects independently and identically normally distributed 
with variance 𝜎𝜎𝑒𝑒2. 

The 95% credibility intervals were calculated by taking the 97.5th percentiles of the MCMC 
samples (or functions of them that construct heritability or correlation samples from each sample of 
variance parameters) as the upper bounds and the 2.5th percentiles as the lower bounds. 

Prior values for genetic, permanent environment and residual variances and covariances were 
based on dairy cattle literature (Berry and Crowley 2013; Breider et al. 2019; van Breukelen et al. 
2022; Difford et al. 2020; Lassen et al. 2012; López-Paredes et al. 2020; Pickering et al. 2015). 

 
RESULTS AND DISCUSSION 

Estimates of heritability for daily methane emissions and daily DMI were low (Table 1). For 
methane emissions, this is on the lower end of estimates for heritability in dairy cattle of 0.12 to 0.45 
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(Breider et al. 2018, 2019; van Breukelen et al. 2022; Difford et al. 2020; López-Paredes et al. 
2020). A study using sniffers reported that when recorded as a mean daily value the heritability of 
methane emissions was 0.13, similar to the 0.10 reported in the current study.  Whereas heritability 
was higher at 0.32 if the records were averaged over a week due to a large decline in the residual 
variance when averaging records (van Breukelen et al. 2022). In young beef cattle the heritability 
of methane was reported as 0.27 based on 2 consecutive 24-hour periods in respiration chambers 
(Donoghue et al. 2016). 

Similar to methane emissions, the estimate for the heritability of DMI was at the low end of the 
range previously reported in dairy cattle of 0.11 to 0.43 (Berry and Crowley 2013; Difford et al. 
2020; Pickering et al. 2015). 

Table 1. Phenotypic mean and standard deviation (SD) of daily methane emissions (g/d) and 
dry matter intake (DMI; kg/d) and posterior means (95% credibility intervals) for the genetic 
variance, heritability, repeatability and genetic and phenotypic correlations 

Trait  Methane DMI 
Mean ± SD 229.7 ± 52.7 10.3 ± 3.0 
Genetic variance 177 (101, 272) 0.39 (0.20, 0.65) 
Heritability  0.10 (0.06, 0.15) 0.09 (0.05, 0.15) 
Repeatability 0.31 (0.28, 0.34) 0.37 (0.33, 0.40) 
Correlations 
Genetic 0.47 (0.15, 0.71) 
Phenotypic 0.28 (0.24, 0.31) 

Estimates of repeatability for both methane and DMI were moderate (Table 1) but lower than 
that reported elsewhere in dairy cattle (Breider et al. 2019; Difford et al. 2020; López-Paredes et al. 
2020), with the exception of Lassen et al. (2012) and van Breukelen et al. (2022) who reported 
repeatabilities of 0.3 to 0.34 for daily methane emissions. 

The phenotypic correlation between methane emissions and DMI was 0.28 and was in the 
range of 0.01 to 0.49 based on reports in lactating dairy cattle by others (Breider et al. 2018; 
Difford et al. 2018, 2020; Manzanilla-Pech et al. 2021). To our knowledge there are no literature 
estimates of the correlations between methane emissions and DMI in young growing dairy bulls. 
Studies in young beef cattle have reported phenotypic correlations between methane emissions and 
DMI of 0.65 (Herd et al. 2014) and 0.71 (Donoghue et al. 2016), higher than that reported in the 
current study. Both of those studies in beef cattle were conducted over 2 consecutive 24-hour 
periods using respiration chambers.  

Based on studies in growing beef cattle, a positive genetic correlation between methane and DMI 
was expected in growing dairy bulls (Donoghue et al. 2016). The posterior mean of the genetic 
correlation between methane emissions and DMI in the current study was 0.47 with a 95% 
credibility interval of 0.15 to 0.71, similar to 0.42 reported by Manzanilla-Pech et al. (2021), 
based on 2,990 lactating dairy cattle and 0.42 reported by Richardson et al. (2021) based on 379 
lactating dairy cattle. Difford et al. (2020) reported the genetic correlations between methane and 
DMI based on two populations of Holstein-Friesian cattle in either Denmark or The Netherlands. 
For the Danish population, they reported a genetic correlation of 0.6 but for the Dutch 
population the found the correlation to be -0.09 between the two traits (Difford et al. 2020). The 
authors postulated that the difference in estimates between the two populations studied may have 
been due to the influence of stage of lactation and differences in diet composition between the two 
countries (Difford et al. 2020). 

 After accounting for genetic variation in DMI by using partial genetic regression (Kennedy et 
al. 1993), the genetic variance of methane reduced from 177 (g/d)2 to 136 (g/d)2, which is 77% of 
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the genetic variation in methane remaining. The resulting heritability of methane after accounting 
for variation in DMI was 0.08 and the genetic correlation with DMI was zero, indicating there is 
scope to reduce daily methane emissions while maintaining DMI. 

CONCLUSIONS 
There is genetic variation in methane emissions and in DMI for growing dairy bulls. 

Additionally, there are positive genetic and phenotypic correlations between methane emissions and 
DMI, suggesting that selection to decrease methane emissions would lead to reduced DMI. 
Nevertheless, there is opportunity to reduce daily methane emissions from dairy bulls, whilst 
maintaining DMI due to a considerable proportion of the genetic variance in methane emissions 
being independent of DMI. 
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SUMMARY 

The aim of this project is to enable Australian sheep breeders to select for reduced enteric 
methane emission, allowing industry to achieve a permanent and cumulative 4.2% reduction (0.8 
MtCO2e) in methane emissions from sheep by 2030 and 15% reduction (2.6 MtCO2e) by 2040. A 
mobile field test using portable accumulation chambers for measuring methane emissions on 10,000 
sheep across research and breeder flocks is being rolled out. Five thousand sheep will have feed 
intake, rumen microbiome and volatile fatty acids profiles recorded to better understand and improve 
CH4 emission predictions. Combined with their genotype information, this data will allow genomic 
prediction of breeding values on selection candidates. Work to date has demonstrated that the 
protocol for methane measurement is robust and the preliminary data gathered has shown that there 
is sufficient variation in methane production among animals to enable selection for reduced methane 
production. Different technologies used to measure emissions data are highly correlated. 

 
INTRODUCTION 

Meat & Livestock Australia (MLA) has set a Carbon Neutral Target for 2030 and has initiated a 
number of programs to reduce the carbon footprint from the Australian livestock industry, including 
an Emissions Avoidance Program (EAP). The EAP aims to provide various strategies to mitigate 
methane, including feed additives, new forages and selection for low methane livestock. A program 
for selecting for more methane efficient sheep was initiated in collaboration between the University 
of New England, the NSW Department of Primary Industries and MLA. The aim of the project is to 
collect a large number of phenotypes for methane production and feed intake and to use that data to 
1) estimate genetic parameters, including genetic correlations of these traits with production and 
reproduction traits, and 2) to predict genomically informed breeding values of young rams and ewes 
in order to select for these traits in studs and commercial enterprises. 

Previous work in New Zealand and Australia has shown that there is variation between sheep in 
how much methane they produce, and this variation is heritable (Pickering et al. 2015), i.e. it is 
possible to change the average methane output via selection. Further modelling work shows that 
selection for methane alongside selection for other traits can simultaneously improve methane and 
production efficiency (Robinson and Oddy 2016; Rowe et al. 2019). Methane efficiency in dairy 
cattle has been shown to be positively correlated with feed efficiency, measured as residual feed 
intake (Manzanilla-Pech et al. 2022), but results in sheep have showed a less clear relationship (Muir 
et al. 2020). Furthermore, recent studies have shown that additional information about the methane 
phenotype of sheep can be obtained from VFA and rumen microbiota (Rowe et al. 2019; Ross et al. 
2020). Based on reliable genetic parameters selection index theory can help clarify the best strategy 
for selection on productivity as well as feed- and methane efficiency. 

 
* A joint venture of NSW Department of Primary Industries and the University of New England 
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Various trait definitions have been proposed for selection and for assessing the objective of a 
breeding program for methane (Johnson et al. 2022). We propose to simply measure methane output 
per head, and feed intake, and optimise a breeding objective via bioeconomic modelling, where 
minimizing the methane production per unit of product is likely to be an overall objective.  

Sustainable genetic improvement in methane efficiency of the national sheep flock will require 
ongoing trait measurement and a data pipeline to turn this information into selection criteria for 
breeders. Developing a reference population with methane measured animals will allow genomic 
prediction of breeding value as well as provide more accurate estimation of genetic parameters, 
including correlations with other traits needed to accurately optimize selection across all 
economically relevant traits. This requires the development and validation of estimated breeding 
values and routine measurement of the trait phenotype in a model akin to the MLA resource flock. 
Thus, the project aims to collect methane and feed intake data on 10,000 and 5,000 animals over 5 
years. Lambs from the MLA Resource Flock will be measured as well as ewes in breeders’ flocks. 
The study commenced in 2022. This paper reports on the measurement protocols and some early 
results of lambs and ewe measurements. 

 
MATERIALS AND METHODS 

Methane measurement. Methods and protocols for practical use of portable chambers to 
measure methane production by sheep are well established and have been validated (Robinson et al. 
2020). The animals to be measured are held on feed and water until a known time prior to 
measurement, generally 1 hour. Measurement of gases takes place over a period of 40-60 minutes 
per animal with methane measurement, oxygen consumption and carbon dioxide output all recorded.  

Animals are weighed as close to measurement as possible and a sample of rumen fluid is obtained 
by stomach tube, after measurement of gas exchange. Rumen fluid is stored for subsequent analysis 
of volatile fatty acid (VFA) composition and rumen microbial composition. 

For this preliminary study, 500 lambs from the MLA Resource Flock cohort were measured at 
the Kirby Research Station in Armidale (NSW). The Resource Flock design and the proportion of 
animals from the various sheep breed types is described by van der Werf et al. (2010). Animals were 
born in October 2021 and measured in early April 2022 at approximately 6 months of age. Their 
average body weights were 29.2 (SD = 6.3) kg. Sheep were removed from the paddock at the 
beginning of each day and kept in a holding yard with access to feed and water. There were up to 
four runs each day with 12 animals in each run housed in individual methane accumulation chambers 
(48 animals in total per day). Lambs were taken off feed 1 hr prior to entering the chambers and gas 
measurements were taken at 25 and 50 minutes after entering the chamber.   

Approximately 500 adult (2016 and 2017 drop) ewes from the Merino Lifetime Productivity 
(MLP) project were measured at “The Vale”, Temora from 31 October -5 November 2022. Their 
average body weights were 67.6 (SD = 10.3) kg. A total of 84 sheep were removed from the paddock 
at the beginning of each day and kept in a holding yard with access to feed and water. Each day 
there were seven runs of twelve animals (84 animals in total each day). Ewes were taken off feed 1 
hr prior to entering the chambers and gas measurement on ewes were taken at 20 and 40 minutes 
after entering the chamber. 

For both groups of animals, measurements taken included methane (CH4, using a micro-Flame 
Ionisation Detector), CO2 and O2 (both using a FoxBox-Pro). Data obtained from these validated 
instruments were compared with data collected using an Eagle2 Gas Monitor (RKI Instruments).  

Feed Intake. Information on methane phenotypes as well as feed intake on about 1,000 animals 
per year will be collected. The “Masteryard” feed intake system designed and implemented by 
Crown Agriculture will be installed at Kirby Research Station. The system consists of 50 feed intake 
units with Calan gates and EID readers, each capable of measuring approximately 6 animals at a 
time. Animals will be tested for a defined test period (likely 7 weeks total) and all feeding events as 
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well as body weight will be recorded, allowing estimation of daily feed intake as well as feeding 
behaviour. The diet will be as close as possible to a pasture, i.e. with a high proportion of roughage, 
while lambs will have a higher energy diet to allow maximum growth. 

Implementation. All phenotypic and genotypic data collected in this project will be submitted 
to the Sheep Genetics database. We are also collaborating with other groups in Australia that collect 
such data to ensure consistency in measurement protocols and experimental designs that include 
links sires between data sets.  

Collaboration. We are collaborating with research partners in Western Australia at the 
Department of Primary Industries and Regional Development DPIRD and Murdoch University, with 
the aim of creating a larger genomic reference population. We are also collaborating internationally 
(with partners in New Zealand, Uruguay and Ireland) in order to develop more accurate estimates 
of genetic parameters. 

Quantitative genetic and genomic analysis of methane and feed intake phenotypes will be 
undertaken, initially to understand sources of variation, to determine the best model for analysis and 
to estimate variance components and genetic parameters. Microbiome data will be analysed and 
association studies with methane phenotypes undertaken.  

After preliminary data analysis in the first year, trait definitions and a model for genetic 
evaluation will be proposed. This will then be tested through the OVIS software for single step 
analysis and predictions will be validated and further developed. This includes data to generate 
estimated breeding values for methane emission as well as feed intake.  

The pipeline also involves development of best methods for genomic prediction, including 
research on genetic markers that might have a large effect on the traits for which genomic prediction 
is tested. Such marker identities will be made available to genotyping service providers such that 
they can add them to their genotyping arrays.  

Existing data on genotypes and full genome sequence will be used to impute genotypes on 
animals with new phenotypes. Collaboration with AGBU and Sheep Genetics will develop selection 
indices and help deliver this information to breeders and let them achieve the desired genetic change. 
The modelling work will result in clear messages to breeders on what can be achieved with selection 
on methane and/or feed efficiency ASBVs and how they can best implement that information in 
their breeding strategies. 

RESULTS AND DISCUSSION 
Means and standard deviations for body weight and emission traits for Kirby lambs and Temora 

ewes as measured by the FoxBox-Pro and EAGLE-2 are shown in Table 1 and 2 respectively.  

Table 1. Means and standard deviation of lamb and ewe emission traits at Kirby and 
Temora 

Lambs Measure FID/FoxBox Ewes Measure FID/FoxBox 
Time (mL/min) Mean SD Time (mL/min) Mean SD 
25 mins CH4 8.45 4.88 20 mins CH4 6.24 7.00 

CO2 241.4 71.4 CO2 498.1 153.9 
O2 -513.5 103.3 O2 -1152.0 180.6 

50 mins CH4 10.56 4.51 40 mins CH4 8.96 7.88 
CO2 225.0 52.3 CO2 409.9 108.6 
O2 -358.7 68.1 O2 -787.0 122.6 

Methane output (mL/min) was significantly positively correlated with body weight for Kirby 
lambs (0.575, Figure 1a) but not ewes at Temora (0.11, Figure 1b). The same measurements on 
different machines were generally well correlated. Correlations between the FID/FoxBox-Pro and 
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the Eagle for CH4, CO2 and O2 were 0.951, 0.956 and 0.948, respectively for lambs at Kirby and 
0.977, 0.970 and 0.905, respectively for ewes at Temora. Although the correlations were high, the 
slope of the regression was not one, which was more pronounced for CH4, hence there is still a small 
scaling difference between measurements with the instruments. 

Table 2. The correlation (unadjusted) between CH4 and O2 and CO2 in Kirby lambs 

Lambs CH4 O2 CO2 
CH4 - 
O2 -0.682 - 
CO2 0.749 -0.922 - 

A B 
Figure 1a and 1b the relationship between Methane output (ml/min) and body weight in a) 
lambs at Kirby; and b) mature ewes at Temora 

CONCLUSIONS 
The protocol for methane collection appears robust and the preliminary data gathered to date has 

shown that there is enough variation in methane production among animals which should enable the 
sheep industry to select for lower methane production without negatively impacting other traits. 
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SUMMARY 

Obtaining phenotypic measures of feed efficiency requires measuring intake levels and growth 
rates over a period of approximately 8 weeks (2 weeks of adaption and 6 of measurement), which is 
expensive and low-throughput. Rumen microbial community (RMC) profiles have shown to be 
associated with feed efficiency traits in ruminants and so may be a suitable proxy. Using a dataset 
of 1298 animals across 4 genetically linked flocks that were measured through a feed intake facility 
(FIF), we predicted feed efficiency from RMC profiles and obtained higher prediction accuracies 
compared to host genomic prediction. The genetic and phenotypic correlations between feed 
efficiency traits measured from the FIF and predicted from RMC profiles were estimated as 0.64 
and 0.33 for mid-trial intake and 0.47 and 0.30 for residual feed intake (RFI). These results suggest 
RMC profiles have the potential to be used as a proxy for feed efficiency traits in ruminants. 

 
INTRODUCTION 

Feed efficiency relates to the amount of feed an animal consumes to produce a fixed amount of 
product. There are many economic and environmental benefits from breeding for more feed efficient 
animals, such as reduced feed costs and reduced greenhouse gas emissions per unit of product. Feed 
efficiency traits are likely to play an important role in future breeding programs as competition for 
land resources intensifies and targets for greenhouse gas emissions are introduced. Various traits 
have been proposed to quantify feed efficiency, but all generally require measuring intake levels 
over an extended period. Although specialised facilities have been developed to measure intake, 
they are expensive to operate and only a limited number of animals can be measured at a given time. 
A potential proxy for feed efficiency in ruminants is the rumen microbial community (RMC) profile, 
as the fermentation process in the rumen, responsible for breaking down feed to produce volatile 
fatty acids that provide the majority of energy to ruminants, is driven by the microorganisms in the 
RMC. Previous studies have found associations between the rumen microbiome and feed efficiency 
in cattle (Li et al. 2019) and sheep (Hess et al. 2022). RMC profiles have previously been shown by 
Bilton et al. (2022) to be a viable proxy for methane traits. In this study, we extend this work to 
investigate the feasibility of RMC profiles as a proxy for feed efficiency. 

 
MATERIALS AND METHODS 

Experimental animals and protocols applied in this study were approved by the AgResearch 
Grasslands (Palmerston North, NZ) AgResearch Ruakura (Hamilton, NZ) Animal Ethics 
committees (approvals 13563, 13892, 14221, 15047 and 15386). 

Animals & phenotypes. Data from 4 genetically linked performance-recorded sheep flocks 
were obtained and consisted of 1298 ewe lambs that were born between 2014 and 2020 (Table 1). 
Feed efficiency traits were measured using a sheep Feed Intake Facility (FIF) based near 
AgResearch’s Invermay campus, Mosgiel, New Zealand. The lambs were measured at 
approximately 9 months of age in cohorts of approximately 200 animals across 42 days after a 14-



Novel Traits: Environment and Greenhouse Gas 

183 

day introductory period and were feeding on alfalfa pellets from automated feeders. The cohorts for 
the animals born in 2014 and 2015 were also separated into five pens of equal size. A full description 
of the experiment and data collection is given in Johnson et al. (2022). Feed efficiency traits that 
were calculated were mid-trial intake (MidIntake), mid-trial metabolic liveweight (MidLWT), and 
residual feed intake (RFI) was computed as described in Johnson et al. (2022). The mid-trial traits 
were obtained as predictions at day 21 of the measurement period from a linear model of the 
measured trait values. Additional animal information and measurements were downloaded from the 
Sheep Improvement Limited database (Newman et al. 2000). The animals used in this study are a 
subset of the animals used by Bilton et al. (2022). 

 
Table 1. Sample numbers by flock and year of birth 
 

Flock Dataset Year of Birth Total 
  2014 2015 2016 2019 2020  
1 Training 87 145 154   386 
2 Training 103 141 140   384 
3 Training  95 93   188 
4 Validation    158 182 340 
Total  190 381 387 158 182 1298 

 
Rumen microbial sampling & profiles. Rumen samples were collected from all animals via 

stomach intubation after the animals had been in the FIF for at least 4 weeks (2-week introductory 
period and 2 weeks of measurements). The protocol described in Bilton et al. (2022) was used to 
preserve, process and sequence the samples. The freeze-dried method (Kittelmann et al. 2014) was 
used for all samples except for the born 2020 samples from flock 4, which were preserved using the 
TNx2 solution (Budel et al. 2022). Sequencing was performed using a restricted enzyme-reduced 
representation sequencing approach (Hess et al. 2020) using PstI and run across multiple flowcells 
on an Illumina HiSeq2500 or NovaSeq6000. The reference-free pipeline developed by Hess et al. 
(2020) was used to generate a count matrix of tags (unique raw sequences trimmed to 65 bp) from 
which a microbial relationship matrix (MRM) was computed.  

Animal genotyping. To investigate prediction of feed efficiency traits from host genomics and 
comparing to the RMC profiles, a subset of the genomic relationship matrix (GRM) computed in 
Bilton et al. (2022) for animals included in this study was used. This GRM was computed in KGD 
(Dodds et al. 2015) using VanRaden method 1 with non-missing SNPs for each matrix entry and 
assuming missing data is at random. Animals were genotyped on a variety of nested SNP arrays. 
SNPs with a call rate of 70% were retained, resulting in 14,923 SNPs in the combined dataset. 

Statistical models. Data was split into (a) a training set consisting of the 958 ewes from flocks 
1 to 3, and (b) a validation set consisting of the 340 animals from flock 4. Univariate mixed models 
fitted to the training data were of the form: 

yijkl = μ + cgj + aodk + brrl + ai + eijkl      (1) 
yijkl = μ + cgj + aodk + brrl + mi + eijkl      (2) 

where μ is the overall mean, cgj is the jth contemporary group based on the interaction of flock, birth 
year, cohort and pen, aodk is the effect of the kth age of dam (2, 3, 4+), brrl is the effect of the lth 
birth/rear rank group (1/1+, 2/2, 2+/1, 3/2, 3+/3+), yijkl denotes the feed efficiency trait (MidIntake, 
MidLWT, RFI), mi ~ N(0,σm

2M), ai ~ N(0,σg
2G), eijkl ~ N(0,σe

2I), M denotes the MRM, G denotes 
the GRM and I is the identity matrix. We refer to the microbial values, mi, as the “RMC feed 
efficiency trait” since it provides an estimate of the feed efficiency trait yijkl (MidIntake, MidLWT, 
RFI) from the RMC profiles. Predictions of the microbial values (𝑚𝑚�𝑖𝑖) and the animals direct genomic 
breeding values (𝑎𝑎�𝑖𝑖) were made for the animals in flock 4 (validation set). Prediction accuracies 
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were computed as the correlation between 𝑚𝑚�𝑖𝑖 or 𝑎𝑎�𝑖𝑖 and the adjusted phenotype (yi
*) defined as the 

residuals from the linear model: 
yijkl = μ + cgj + aodk + brrl + eijkl       (3) 

fitted using both the training and validation sets. The microbiability (the proportion of variance of 
feed efficiency trait explain the RMC profiles) was computed as 𝜎𝜎�m

2/(𝜎𝜎�m
2 + 𝜎𝜎�e

2), and the heritability 
was computed as 𝜎𝜎�g

2/(𝜎𝜎�g
2 + 𝜎𝜎�e

2) using all 1298 animals from both the training and validation sets.  
   To assess the heritability and genetic correlation of the FIF and RMC feed efficiency traits for the 
validation animals, a bivariate model of the form: 

𝑚𝑚�𝑖𝑖 = μ1 + a1i + e1i 
 yi

* = μ2 + a2i + e2i 
was fitted using only the animals from the validation set, where μ1, μ2 are the overall means, a1i ~ 
N(0,σ1g

2G), a2i ~ N(0,σ2g
2G), e1i ~ N(0,σ1e

2I), and e2i ~ N(0,σ2e
2I). All models were fitted in ASREML 

v4.2 (Gilmour et al. 2015). The estimated heritability was computed as 𝜎𝜎�1g
2/(𝜎𝜎�1g

2 + 𝜎𝜎�1e
2) for the 

RMC traits and 𝜎𝜎�2g
2/(𝜎𝜎�2g

2 + 𝜎𝜎�2e
2) for the FIF traits. 

 
RESULTS AND DISCUSSION 

Prediction accuracies of the feed efficiency traits for each birth year of flock 4 and overall from 
RMC profiles and host genomics is given in Table 2. The RMC profiles yielded higher accuracies 
for the individual cohorts for all three traits compared to host genomics with accuracies ranging 
between 21% and 42%. These accuracies were similar to those observed for methane traits predicted 
form RMC profiles in sheep (Bilton et al. 2022). The microbiability estimates, which ranged 
between 0.41 and 0.68, were also larger than the corresponding heritability estimates for all traits 
when computed using both the training and validation animals.    
 
Table 2. Prediction accuracies for feed efficiency traits predicted from RMC profiles (M) and 
host genomics (G) for the animals in flock 4 

 
Trait Model Equation  Accuracy  Microbiability  Heritability 
   b19 b20 b19 & b20 (All; n=1298) (All; n=1298) 
MidIntake M 1 0.410 0.257 0.316 0.68 ± 0.06  
 G 2 0.096 0.145 0.123  0.34 ± 0.06 
MidLWT M 1 0.312 0.210 0.244 0.41 ± 0.08  
 G 2 0.230 0.101 0.163  0.39 ± 0.06 
RFI M 1 0.417 0.220 0.313 0.54 ± 0.07  
 G 2 -0.047 0.058 0.007  0.32 ± 0.05 

 
Table 3 reports the genetic parameter estimates from the bivariate analysis using the validation 

animals from flock 4. Heritability estimates for feed efficiency from FIF were slightly higher than 
previous reported (Johnson et al. 2022) and roughly double the heritability estimates of the 
equivalent RMC feed efficiency trait. The genetic correlation between the FIF and RMC feed 
efficiency traits were moderate at 0.64 (MidIntake) and 0.46 (RFI), while the phenotypic correlations 
were lower at around 0.32 (MidIntake) and 0.30 (RFI). These results are very similar to those 
reported by Bilton et al. (2022) for methane traits, except that the genetic correlations are lower for 
the feed efficiency traits. A bivariate analysis for MidLWT trait was also performed but the 
heritability estimate for the RMC trait was close to zero and so the results are not reported here. 
Nevertheless, these results suggest there is potential for using RMC profiles as a proxy for feed 
efficiency traits, although the small number of animals used in this study means follow-up studies 
are needed to confirm these results. 
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Table 3. Heritability, genetic and phenotypic correlations and phenotypic variances from a 
bivariate analysis of feed efficiency measured from the FIF and predicted from RMC profiles 
using flock 4 validation animals 

Parameter MidIntake RFI 
FIF RMC FIF RMC 

Heritability 0.44 ± 0.16 0.15 ± 0.11 0.45 ± 0.14 0.26 ± 0.13 
Phenotypic variance 76785 ± 6610 7772 ± 606 19166 ± 1625 1094 ± 87 
Genetic correlation 0.64 ± 0.30 0.46 ± 0.26 
Phenotypic correlation 0.33 ± 0.05 0.30 ± 0.05 

CONCLUSION 
Our results provide evidence that microbial predictors are a suitable proxy for feed efficiency. 

As determining feed efficiency in ruminants via direct phenotypic measures is difficult and 
expensive, RMC profiles provide opportunities for ranking animals based on their feed efficiency 
for application in breeding programs. 
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SUMMARY 

Genetics is a tool which can reduce methane emissions, and a concerted effort is required to 
make this technology available to ram breeders and commercial sheep producers. As a technically 
demanding trait to measure there is a need for a combination of cheaper and more scalable proxy 
measures coupled with a genomic selection strategy. Roll out will require some technical challenges 
within the evaluation to be addressed, particularly around genomic evaluations in multi-breed 
populations when phenotype records are limited. Incentives to address methane emissions using 
genetic selection will require different approaches to many other traits as methane is an externality 
to sheep production business and not directly observable. Consequently, approaches to indirectly 
quantify genetic reduction in methane emissions, and to incorporate these reductions into 
assessments of farm level methane emissions will be required to incentivise uptake.  
 
INTRODUCTION 

Methane emissions from ruminant livestock form a significant proportion of greenhouse gas 
emissions (GHG) in New Zealand, and so research to identify ways to reduce GHG without 
significant reductions in productivity has been undertaken in New Zealand and elsewhere for 
approximately two decades. Genetic selection of sheep to reduce methane output has been shown to 
be feasible, and to generate real reductions in methane with few antagonisms apparent with 
production and health traits (Rowe et al. 2019). The challenge is to implement this selection 
opportunity on an industry-wide scale to achieve verified reductions in the national GHG inventory. 
Some of the opportunities, approaches and challenges to achieving this are outlined. 

 
CHALLENGES IN PHENOTYPING, GENOTYPING AND EVALUATIONS  

Methane is, at least with current technology, a “hard to measure” trait requiring both significant 
expertise and capital equipment for phenotype collection. This limits the scale at which phenotyping 
can be applied, and a strategy (breeding scheme design) utilising genomics is the obvious 
mechanism to maximise the benefits from the phenotypes collected to the wider breeding population. 

Phenotyping. There are multiple ways of measuring methane emissions, but many are not 
scalable or portable, and so not well suited to on-farm measurement of methane in industry breeding 
flocks. The method that has been chosen and developed with industry in New Zealand is to use 
Portable Accumulation Chambers (PAC) mounted on a trailer that is shifted between properties 
(Goopy et al. 2011, Jonker et al. 2018). In New Zealand this method as currently configured has 
capacity to measure 12 animals concurrently for a 30-minute period. The protocol requires animals 
to be fully fed prior to measurement and it is feasible to measure approximately 168 animals over 
1.5 days per property. It has been successfully used for the past 10 years, and the total number of 
animals phenotyped per year has been more than 7,000 up to 2016 in research and resource flocks 
and 2,328, 3,029, and 5,574 from 2020 to 2022 respectively and the capacity is effectively fully 
utilised currently. A second trailer will effectively double the capacity for PAC phenotypes to be 
collected, and the potential will exist to collect approximately 10,000 phenotypes per year in the 
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future. Notwithstanding the success of the PAC phenotype approach, it is logistically challenging, 
requires specialised technical expertise, has limited capacity, and costs NZ$40 per animal.   

The challenges around PAC measurements mean that a proxy measure would have significant 
benefits. Ideally the proxy measure would be cheaper, able to be scaled to many more animals and 
utilise more widely available expertise while maintaining a high genetic correlation with the target 
trait. Currently the use of a metagenomics approach based on a rumen sample looks promising 
(Bilton et al. 2022). It requires expertise to sample animals while maintaining welfare requirements, 
but this is widely available in the veterinary and animal technician community (and readily 
trainable). The throughput of animals is determined mainly by the time taken to sample 
(approximately 2 minutes per animal) and laboratory capacity, and so can be scaled to a significantly 
greater number of animals than the PAC measurement. The genetic correlation with the PAC 
measurement is 0.76±0.14 (Bilton et al. 2002) so is sufficiently high as to be a useful indirect 
criterion. The estimated cost is currently around $50/sample, which will likely limit implementation 
unless technology can drive cost down (or alternative ways of funding the proxy phenotype are 
developed). Rumen microbiome samples have not yet been used in routine genetic evaluations. 

A related approach might be to undertake a similar rumen microbial meta-biome analysis based 
on buccal swab samples (Kittlemann et al. 2015). This could further reduce the welfare cost to the 
animal (via less invasive sampling procedure relative to rumen fluid sampling) and make it feasible 
as an on-farm test without requiring highly trained technicians for sample collection. The cheaper 
and easier sampling could encourage further scale-up for phenotype measurement. However, 
currently there are several technical challenges implementing the preferred rumen metagenomics 
approach on buccal samples and this is under active development. 

Genotyping. The challenge around genotyping is firstly to ensure that the methane phenotypes 
are matched with genotypes so that they contribute to methane genomic predictions, and then 
secondly to enhance the wider adoption of genotyping. The latter is not a methane-specific 
challenge, although demand for predictions on methane could conceivably assist with genomic 
technology uptake. Currently approximately 55,000 sheep are genotyped annually from a total of 
approximately 343,000 new animal identities loaded onto the national sheep genetic evaluation 
(nProve) database (averages per year born over 2020-2022 period). To date, all lambs with methane 
phenotypes collected are also genotyped, as industry subsidies for methane phenotype collection are 
conditional on the animal also having a genotype available in the analysis. 

Evaluations. Currently research genomic breeding values (gBVs) for methane are produced in 
a single-step genomic BLUP (ssGBLUP) analysis, with the trait defined as absolute emissions. To 
make gBVs available widely across industry, key evaluation challenges will need solutions. 

Firstly, a strategy will be required to enable gBV calculations across as many maternal breeds of 
sheep (and then Terminal breeds as the next priority) as possible. At present the NZ Genetic 
Evaluation (NZGE) for maternal worth uses genotypes for Romney, Perendale, Coopworth, Texel, 
and composites containing significant proportions of these breeds (being the most widely used 
maternal breeds in the NZ sheep flock), while genotypes from other breeds are excluded. A terminal 
evaluation is planned which will use genotypes from Suffolk, Texel and some other meat-oriented 
breeds. However, the NZ sheep flock is increasing in breed diversity, including moving towards 
fine-wool composites or shedding breeds. A strategy relying on genomics to select for methane 
across the wide range of breeds will require a solution which allows genotypes from multiple breeds 
to be used. This will depend on sufficient animals in these other breeds having both methane 
phenotypes and genotypes, and an evaluation solution which allows these genotypes to be 
incorporated and used to predict phenotypes for animals with genotypes only. This may require 
additional custom evaluations using genotypes from specific sets of breeds not currently included in 
the standard runs. In the long-term it would be desirable to include all breeds into a single analysis, 
but this may be more aspirational than realistic with available analysis techniques. 
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The ratio of phenotypes to genotypes is important to achieve stable evaluations using ssGBLUP 
analyses with current software. Methane will have a relatively low number of phenotypes relative 
to the number of animals currently genotyped, and within the current evaluation pipeline this leads 
to challenges in producing stable analyses with good convergence properties. Genotyping is likely 
to increase relative to methane phenotypes. Consequently, a different approach to evaluating 
methane and other sparsely recorded traits is required. One option to explore restricting the 
genotypes going into the ssGBLUP evaluation to animals from flocks actively recording methane 
phenotypes, and using a SNP co-efficients based approach to calculate gBVs for methane on animals 
whose genotypes are not included in the ssGBLUP. 

Methane EBV definition and indexes. At present the research version of a methane BV is being 
calculated based on the absolute value of methane in nProve. In contrast, methane per kg dry matter 
intake, calculated from the same information, has been used to successfully create high and low 
methane selection lines in an experimental setting. However, it is still an open question as to how 
the methane BV should be formatted and expressed for use in industry, and the overall direction of 
the breeding program needs to account for the desired goals, regulatory environment and likely 
farmer responses. Regulatory authorities either want absolute values of methane per animal or 
preferably methane emitted per kilogram of dry matter ingested to be compatible with IPCC 
reporting conventions. In practice counting sheep and their classification is currently easier than 
estimating the dry matter production per farm. If the overall effect of the breeding program is mainly 
to improve the efficiency of production relative to methane emissions (i.e.. reduce emissions 
intensity), absolute methane emissions will only be reduced if production is capped and efficiency 
gains are used decrease the total feed consumed. Alternatively, a breeding objective which focusses 
on reducing the methane produced per kg of dry matter consumed could result in reduced absolute 
methane emissions without reducing the feed base or productivity. The latter approach is more 
desirable as drivers for financial sustainability of farm businesses tend to be directed towards 
maximising quantity of feed grown and utilised. 

While the ultimate outcome of a breeding program is determined by the actual selection 
decisions, the format of BVs and indexes used can influence the direction substantially. Different 
formats of BVs can result in equivalent outcomes providing the index is generated consistently with 
the BV format, but a format which is easily understood and best aligns to the desired selection 
outcome will enhance uptake and utility. Different BV format options exist, including using the 
absolute value, using a percentage reduction relative to contemporary group mean, or using a 
residual approach (analogous to residual feed intake) by adjusting methane (on either a genetic or 
phenotypic basis) for another trait (e.g. total respiration, feed intake or weight) to lower the 
correlation between methane and size or production. Factors to consider include the ability of users 
to understand the trait definition and intuitively assess trait relationships, availability and accuracy 
of the trait data used in adjustments, and the suitability of the EBVs for use in GHG calculators.  

 
INCENTIVISING UPTAKE 

As an expensive and technically demanding trait, GHG measurement will only be sustained in 
the long-term if a commercial model emerges where breeders can extract sufficient additional 
revenue (or non-financial benefits) to cover measurement costs. This requires demand for improved 
rams in terms of methane production from commercial farmers. For most traits where genetic 
improvement results in better financial performance in the business (either cost savings, improved 
production or market premiums) the demand for improvement occurs from within the business. 
However, GHG emissions are an externality to farm businesses, and are not directly measured or 
observable, so improvement is unlikely to occur without other interventions.  

The New Zealand government has proposed to levy agricultural businesses based on their 
methane emissions, which effectively converts methane emissions from an externality to having a 
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direct financial impact on farm businesses. Industry has expressed a strong preference for this to 
occur at the individual farm level based on a specific farm’s emissions profile calculated using 
models and farm performance levels as inputs to an approved emissions calculator. To incentivise 
using genetics as a mitigation, it will be important to develop a mechanism where genetic reduction 
in emissions from sheep can be accounted for and reduce the emissions levy payable for farm 
businesses using methane improved rams. An estimate of the flock level genetic merit for methane 
emissions would be required as an input to the calculator.   

Calculation of improvement at the national and individual flock level might use information on 
ram sales/purchases over time and a gene flow model. This will need to be backed by some sort of 
verification system to ensure information making its way into both the individual farm level 
calculator (for levy calculation purposes) and the national GHG inventory (to meet international 
reporting obligations) is accurate. Direct measurement of methane for verification is unlikely to be 
viable, but there is likely to be a role for genomics in the verification processes. Genomics could be 
used to directly estimate flock level methane emissions from co-efficient-based predictions, or could 
be used to estimate the genetic contribution of rams with methane EBVs to the flock (to verify claims 
based on gene flow models). Both approaches would utilise information held in the national sheep 
genetics database (nProve). Investment in information systems to implement this will be required. 

With a strong government/public interest in climate mitigation, and a real need to accelerate the 
uptake of genetic improvement of methane emissions, there have been joint industry/government 
programs to offset 50 to 100% of methane recording costs. This has led to significant uptake of 
phenotyping, and also removes much of the “freeloader” objection to phenotyping when competitors 
benefit via genomics. However, once methane phenotyping becomes routine and not subsidised 
longer-term strategies will be required. Much of the further work described here will be incorporated 
into a new “Cool Sheep” program funded by Beef + Lamb NZ and the NZ government to accelerate 
the application of this proven GHG mitigation technology. 

CONCLUSION 
Implementation and uptake of selection to improve methane emissions is a priority within the 

New Zealand sheep industry and is supported by Government. Challenges in improving methane 
are similar to other difficult to measure traits, but with additional issues which are unique to methane. 
These unique challenges revolve around the fact that methane is an externality to the business, while 
the societal and governmental drive to address greenhouse gas emissions provides opportunity to 
take different approaches to implementing selection to reduce methane emissions.  
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SUMMARY 
Stochastic simulation was used to test the hypothesis that optimum-contribution selection with 

genomic relationships using marker loci with low minor allele frequency (MAF) below a predefined 
threshold (referred as TGOCS) to control inbreeding maintained more genetic variation than 
pedigree relationships (POCS) at the same rate of true genetic gain (∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). Criteria to measure 
genetic variation were the number of segregating QTL loci (quantitative trait loci) and the average 
number of founder alleles per locus. Marker alleles having a MAF below 0.025 were used in forming 
the genomic relationships in TGOCS strategy. For centering in establishing genomic relationships, 
when the allele frequency of marker loci with low MAF set to 0.5 the TGOCS strategy maintained 
66% fewer founder alleles than POCS and there were 30% fewer QTL segregating. This TGOCS 
strategy maintained 61% fewer founder alleles than GOCS and 28% fewer segregating QTL loci. 
When the allele frequency of marker loci with low MAF was set to observed allele frequency these 
figures were 8%, 2%, 5% and 2%, respectively. Using marker loci with low MAF in the TGOCS 
strategy was inferior to both GOCS and POCS. Both TGOCS and GOCS were affected by the same 
constraint that is LD (linkage disequilibrium) between markers and QTL. Therefore, POCS is a more 
efficient method to maintain genetic variation in the population until a better way to use genomic 
information in optimum-contribution selection is identified.  

 
INTRODUCTION 

Optimum-contribution selection (OCS) can use either pedigree or genomic relationships to 
control inbreeding. Simulation studies showed that using pedigree relationships to control 
inbreeding in OCS realise more true genetic gain (∆G) than genomic relationships at the same rate 
of true inbreeding (∆F), where the true inbreeding coefficient of an individual is the observed 
proportion of marker loci in its genome with alleles that are identical-by-descent (IBD) (Sonesson 
et al. 2012, Henryon et al. 2019). Using pedigree relationships to control inbreeding in OCS 
(referred to as POCS) realises more ∆G than using genomic relationships based on all markers 
(GOCS) because POCS manages expected genetic drift without restricting selection at QTL 
(Henryon et al. 2019). By contrast, GOCS penalises changes in allele frequencies at marker loci 
generated by genetic drift or selection. Because these marker alleles are in linkage disequilibrium 
with QTL alleles, it restricts changes in favourable QTL alleles. This implies that GOCS in its 
current form is unlikely to realise more genetic gain than POCS at the same rate of true inbreeding. 

 
* A joint venture of NSW Department of Primary Industries and University of New England 
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An alternative strategy is needed for using genomic information to control inbreeding. One possible 
strategy is to carry out GOCS by establishing genomic relationships using only marker loci with low 
minor-allele frequencies (MAF) in the generation under selection. All other marker loci are excluded 
in this form of GOCS. Focusing on marker alleles with low MAF is of interest because it is these 
marker alleles that are particularly susceptible to being lost through selection or genetic drift. While 
most changes in allele frequencies due to drift or selection will be reversible, the extinction of a 
particular allele constitutes an irreversible loss of variation. Using marker loci in establishing 
genomic relationships, the genotypes of animals at each locus are centred around a pre-defined allele 
frequency; it could reduce the loss of alleles by promoting a shift in allele frequencies towards the 
pre-defined frequencies. Assuming allele frequency of 0.5 for all marker loci in establishing 
genomic relationships, more weight will be given on the heterozygotes by moving allele frequency 
towards 0.5 (Meuwissen et al. 2020). In case of using calculated allele frequency other than 0.5, rare 
alleles will be given more weight than common alleles (Forni et al. 2011). Preventing the loss of 
minor alleles may maintain more segregating loci that contribute to genetic variation in the 
population. Since markers are in LD (linkage disequilibrium) with QTL, both the number of 
segregating QTL and the number of founder alleles maintained in the population can be used as 
criteria to assess loss of genetic variation, at least in simulation studies. This reasoning leads to the 
hypothesis that GOCS using marker loci with MAF below a predefined threshold in the generation 
under selection – hereafter referred to as TGOCS- maintains more segregating QTL and founder 
alleles than POCS at the same ∆G. 
 
MATERIALS AND METHODS 

Procedure. Stochastic simulation was used to estimate the number of segregating QTL and 
founder alleles (the average number of founders that contributed alleles to each locus, averaged over 
all founder loci) realised in the last generation after applying TGOCS, GOCS or POCS and making 
comparisons at the same  ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. TGOCS included all low frequency alleles at the marker loci when 
MAF at the marker was below 0.025 in the first generation under selection. Marker allele frequencies 
were calculated in the OCS candidates but the allele frequencies used for the centering of genotypes 
was set to either 0.5 (Scenario, TGOCS_0.5) or to the allele frequency found in the base population 
(scenario, TGOCS_base). GOCS used genomic relationships calculated from all markers having a 
MAF above 0. The criterion for selection was the true breeding value (TBV) of a single trait with a 
genetic variance of 1. Each breeding scheme was run for ten discrete generations. Each replicate 
was initiated by sampling a unique base population from the founder population. Selection 
candidates were genotyped before selection. 

Breeding scheme. A total of 25 matings were made from 250 selection candidates by OCS in 
each generation. Animals were selected randomly in generations 1 to 3. Selection based on TBV 
was introduced in generations 4 to 10. Males that we selected were allocated up to 25 matings. All 
male candidates were considered potential parents by OCS. The top 25 females were allocated a 
single mating each. The 25 sire and 25 dam matings were paired randomly. Each dam produced ten 
offspring resulting in 25 full-sib families and 250 offspring. Offspring were assigned as males or 
females with a probability of 0.5. 

Genetic models. The founder population was established using a Fisher-Wright inheritance 
model to generate LD between QTL and markers following the study of Henryon et al. (2019). The 
genome was 30 Morgan and consisted of 18 pairs of autosomal chromosomes; each chromosome 
was 167 cM long. A total of 7,702 QTLs and 54,218 markers were located across the genome and 
were all segregating in generation 𝑡𝑡 = −1 . An additive effect of every mutant allele at each QTL 
followed an exponential distribution. No major QTL was simulated. Markers were distinct from 
QTL and were used to form genomic relationships in TGOCS and GOCS. A total of 6,012 founder 
loci were placed evenly across the genome in the base population (generation=0). These founder 
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loci were not used in establishing genomic relationships. 
Optimum-contribution selection. POCS was carried out by maximising 𝑼𝑼𝑡𝑡(𝒄𝒄) = 𝒄𝒄′𝒂𝒂 −

 𝜔𝜔 𝒄𝒄′𝑨𝑨 𝒄𝒄, where c is a vector of genetic contributions to the next generation, a is a vector of TBV, 𝜔𝜔 
is a penalty applied to the average estimated relationship of the next generation, and A is a pedigree 
relationship matrix (Henryon et al. 2019). The penalty, ω, was constant across generations. It was 
calibrated to realise approximately 1.00 ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in all scenarios. GOCS was carried out by replacing 
A with a genomic-relationship matrix, G, which was calculated as 𝒁𝒁𝒁𝒁′

�2𝒑𝒑′(1−𝒑𝒑)
, where Z =𝑴𝑴−

𝟏𝟏(2𝒑𝒑)′and M is a matrix of count of mutant alleles with element 𝑀𝑀𝑖𝑖𝑖𝑖=0, 1 or 2 for each animal at 
each marker. Allele frequency p, was calculated using all OCS candidates in the generation under 
selection for GOCS_base and TGOCS_base while the p was set to 0.5 for centering in TGOCS_0.5 
and GOCS_0.5.  

Data analysis. The number of founder alleles, segregating QTL and number of markers below 
the threshold maintained in the last generation for each of the five scenarios were calculated for each 
replicate. ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 was calculated as the linear regression of Gt  on t, where Gt is the average TBV of 
animals born at generations, t=4...10 for each replicate. All results were expressed as the mean of 
300 replicates.  

Software. The breeding program was simulated using the software package ADAM (Pedersen 
et al. 2009) then OCS was carried out using EVA software (Berg et al. 2006).  

RESULTS AND DISCUSSION 
The results did not support the premise that TGOCS maintains more segregating QTL or founder 

alleles than POCS at the same rate of ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Results showed that POCS maintained more QTL 
alleles and IBD alleles than TGOCS (Table 1). This makes POCS a robust method to use in animal 
breeding. Similar to GOCS, using marker information in TGOCS does not help to maintain more 
alleles in the population. In addition, TGOCS_0.5 maintained significantly fewer (66% and 8%) 
founder alleles and (30% and 2%) segregating QTL than TGOCS_base and POCS (Table 1). To the 
best of our knowledge, the proposed method TGOCS has not been investigated while GOCS has 
been investigated previously (e.g. Sonesson et al. 2012; Henryon et al. 2019). Results show that 
TGOCS maintained significantly fewer founder alleles and segregating QTL than GOCS (Table 1). 
Consequently, TGOCS was inferior to both GOCS and POCS. GOCS was also inferior to POCS in 
this study, which is supported by the results found in the study of Sonesson et al. (2012) and Henryon 
et al. (2019). Therefore, POCS remains the worthy method to maintain more QTL alleles and 
founder alleles in the population.  

Table 1. Numbers (N) of founder, QTL or markers alleles maintained in the last generation 
(standard errors) realised by scenarios of alternative optimum-contribution selection (OCS) 
at the same rate of true genetic gain 

OCS scenarios N founder 
alleles 

N favourable QTL 
alleles 

N marker alleles 
with MAF<0.025 

N marker alleles 
with MAF>0.025 

POCS 20.19 (0.03) 2617.17 (2.01) 3221.15 (10.48) 32840.08 (17.08) 
TGOCS_0.5  6.78 (0.04) 1825.11 (5.24) 2129.75 (20.82) 24039.93 (57.37) 
TGOCS_base 18.54 (0.13) 2557.70 (5.72) 4580.87 (36.17) 30779.85 (106.63) 
GOCS_0.5 17.25 (0.04) 2541.87 (2.12) 2581.27 (10.78) 32509.65 (17.75) 
GOCS_base 19.59 (0.09) 2596.90 (2.50) 3266.68 (10.69) 32565.85 (20.69) 

Abbreviations: POCS: Optimal contribution selection (OCS) based on pedigree relationships; GOCS: OCS 
with genomic relationships using all marker loci; TOCS: OCS with GOCS using marker loci with low minor 
allele frequency (MAF) below a predefined threshold (MAF<0.025). Allele frequencies were set either to 0.5 
(TGOCS_0.5/GOCS_0.5) or base population allele frequency (TGOCS_base/GOCS_base).  
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TGOCS_base did not maintain more IBD and favourable QTL alleles than GOCS_base. The 
reason could be that we simulated very small populations and LD between markers and QTL. Even 
if we used only a subset of markers having MAF below 0.025, still there are enough markers. 
Therefore, TGOCS_base could not overcome LD between markers and QTL. If we would simulate 
more matings, we believe that TGOCS_base and GOCS_base would produce similar results. 
TGOCS_0.5 also could not maintain more minor alleles than GOCS by attempting to increase allele 
frequency towards 0.5 at markers with low MAF. A possible reason could be that only 25 matings 
were simulated in this study. It had less flexibility to move allele frequency of all markers towards 
0.5. However, simulating more matings might not help because allele frequency towards 0.5 is 
suboptimal when genetic gain is concerned. So, by giving more weight to markers with low MAF, 
TGOCS_0.5 ultimately lost more markers which consequently lost more QTL alleles. Therefore, 
TGOCS_0.5 maintained fewer favourable segregating QTL alleles than TGOCS_base. It indicates 
that it is difficult to maintain more genetic variation by using genomic information in its current 
form in OCS because of LD between markers and QTL.  

By contrast, POCS can manage the expected genetic drift without restricting selection at QTLs 
(Henryon et al., 2019). Since POCS does not depend on the markers, POCS can increase the allele 
frequency at some favourable QTL without much affecting allele frequency at other QTLs. Thus, 
POCS could maintain more favourable QTL alleles in the population than TGOCS. Since QTL and 
founder alleles are in LD, POCS maintained more founder alleles than TGOCS at the same ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 
So, genomic information used in TGOCS in its current form could not help maintain more QTL and 
founder alleles than POCS at the same ∆𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. This study gives more insight into the underlying 
mechanisms of why use of pedigree relationships in OCS is superior to using genomic relationships 
in OCS to maintain genetic variation in the population. However, this study assessed genetic 
variation across the whole genome but controlling genetic diversity in specific regions of genome 
might also be of interest. Research should be conducted how genomic relationships can be used to 
control genetic diversity in different regions of the genomes while maintaining rate of true genetic 
gain in the population.  
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SUMMARY 
The 50K genotypes of 2,935 animals from the 5 most common temperate beef breeds in Australia 

were used to identify genomic footprints of selection based on fixation index (FST). A principal 
component analysis on genomic relationships between all individuals showed that Angus, Hereford 
and Wagyu are the most genetically differentiated breeds. Therefore, 3 pairwise FST comparisons 
were implemented between Angus vs. Wagyu, Angus vs. Hereford and Hereford vs. Wagyu. 
Genome-wide comparison of patterns of the FST values revealed 14 candidate regions under 
selection on chromosomes 2:6, 8, 12, 13, 20, and 24. Several of the identified candidate regions in 
this study have been previously reported for different economically important traits in beef cattle. 
In addition, our identified candidate regions for signatures of selection harboured genes in several 
enriched annotation clusters. If validated, the results from this study can be incorporated in genomic 
selection of the Australian beef cattle population. 

 
INTRODUCTION 

Understanding the genetic architecture of productivity is necessary for designing efficient 
breeding programs. Intensive artificial selection to increase profitability in Australian beef breeds 
has generated distinctive patterns at specific regions of their genome, referred to as signatures of 
selection (SoS). The identification of SoS may help to uncover genes and biological mechanisms 
responsible for breed differences in the Australian beef cattle population. 

A simple, yet effective, approach to identify SoS is to compare differences between breeds in 
allele frequencies of their genome-wide single-nucleotide polymorphisms (SNPs) based on the 
fixation index (FST). A high FST value indicates large differences between the breeds of interests 
resulted from distinctive selection pressures. Therefore, the comparison of genome-wide patterns of 
FST values can help to map genomic regions contributing to the phenotype differences between 
Australian beef cattle breeds. 

The Southern Multibreed (SMB) project has generated genomic data across the 5 most common 
temperate beef breeds in Australia including Angus, Charolais, Hereford, Shorthorn and Wagyu 
(Walmsley et al. 2021). The aim of this study was to use the genotypes collected in the SMB project 
to detect SoS in temperate Australian beef breeds using the FST method. 

 
MATERIALS AND METHODS 

Data. The genotypes of 2,938 animals were obtained by Zoetis ZBU medium density 50K 
(Zoetis, Kalamazoo, MI). The genotype calls with a score of <0.15 were assumed as missing (Edriss 
et al. 2013). Further quality control was undertaken using PLINK 1.9 (Chang et al. 2015) to remove 
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SNPs and animals with a call rate lower than 90%, SNPs that were monomorphic across all animals 
and those located on sex chromosomes (X and Y). Finally, 47,264 SNPs and 2,935 animals including 
845 Angus, 493 Charolais, 495 Hereford, 623 Shorthorn and 479 Wagyu cattle were used in this 
study. The mapping information for all markers was available on the basis of ARS-UCD 1.2 bovine 
genome assembly. 

Data Analysis. To investigate the population structure of different beef breeds, a principal 
component (PC) analysis based on a genomic relationship matrix (GRM) constructed using GCTA 
1.94.1 (Yang et al. 2011) was implemented. The first and second PCs were plotted to visualize the 
distribution and explore the relationships among different beef cattle breeds. 

The FST values were calculated by comparing the allele frequencies of pairwise SNPs between 
the breeds that showed the highest genetic differentiation based on the first two PCs. PLINK 1.9 
(Chang et al. 2015) was used to calculate FST values according to the Weir and Cockerham (1984) 
method. To reduce the noise in estimates, and to account for linkage disequilibrium between adjacent 
SNPs, the ‘runmed’ R function was used to smooth FST values across a moving window of 75 
markers within each chromosome (Haerdle and Steiger 1995). The SNPs with smoothed FST values 
that were greater than 3 times the standard deviation from the mean of all smoothed FST values (the 
suggestive threshold) were deemed as being under selection pressure. A candidate region for SoS 
was defined by first identifying SNPs under selection and then searching within the 500-Kbp interval 
downstream and upstream (1 Mbp window) of the identified SNP for SNPs that passed the 
suggestive threshold. The detected region (with a 500-Kbp step size) was extended until there was 
no SNP with an FST value greater than the suggestive thresholds within the 500-Kbp interval from 
the last identified SNP. The boundaries of the candidate region were determined based on the base 
pair positions of the last-identified SNP in each direction. To visualize the distribution of FST values 
across the genome, Manhattan plots were created using the qqman 0.1.4 (Turner 2014) R package. 
The cattle Quantitative Trait Loci (QTL) database (https://www.animalgenome.org/cgi-
bin/QTLdb/BT/index) was used to compare our identified candidate regions to literature. The 
candidate regions were further investigated for identification of genes residing in them using the 
biomaRt 2.46.3 (Durinck et al. 2009) R package. The identified genes were compared to the whole 
bovine genome background using functional annotation clustering by DAVID 2021 online 
bioinformatics resource (Huang et al. 2009) to find the biological pathways that are significantly 
overrepresented. 

 
RESULTS AND DISCUSSION 

Figure 1 illustrates that all animals were clearly clustered within their respective breed based on 
the first two PCs. The PC1 explained around 7.5% of total variation in the GRM and separated 
Angus and Wagyu breeds from other breeds, while PC2 explained around 5.5% of variation and 
showed Hereford is genetically more different to Angus and Wagyu than to the other breeds. The 
Shorthorn and Charolais seemed to be genetically closer to each other based on both PC1 and PC2. 

Based on the results from the PC analysis, FST values were calculated between Angus vs. Wagyu 
(AW), Angus vs. Hereford (AH) and Hereford vs. Wagyu (HW). The averages of raw FST values 
were 0.15, 0.11, 0.16 from the AW, AH and HW comparisons, respectively. This showed that Angus 
and Hereford are genetically more similar than either is to Wagyu. 

The distribution of genome-wide FST values for the 3 pairwise comparisons are shown in Figure 
2. In total, 14 candidate regions on Bos taurus autosomes (BTA) 2:6, 8, 12, 13, 20, and 24 were 
found (Table 1). Here, we only focus on candidate regions that overlapped with previously reported 
regions in the literature from beef cattle QTL and association studies. 

 

https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
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Figure 1. Plot of Principal Component 1 (PC1) vs. PC2 for 5 Australian beef cattle breeds 

Figure 2. The Manhattan plot of genome-wide Fixation Index (FST) values. The black and grey 
dots show the raw FST values and the red line shows the smoothed FST values 

Table 1. Candidate regions for selection 

Candidate regions* 
AW 4:69.96:74:30 12:79.81:79:87 13:46.24:50.91 20:51.45:82:74  
AH 3:49.54:54.27 4:67.15:78.32 5:55.99:56.80 5:76.29:76.92 6:67.32:78.89 8:90.69:95:74 
HW 2:62.71:69:75 2:89.65:98.45 6:71.42:72.94 24:33.36:34.58  
*Chromosome:Start(Mbp):End(Mbp);

Several candidate regions found in this study have been previously reported for different 
economically important traits in beef cattle. One candidate region on BTA 4 overlapped between 
AW and AH and another candidate region on BTA 6 overlapped between AH and HW comparisons. 
The candidate regions on BTA 4 have been reported to contain QTLs for feed intake (Lu et al. 2013) 
and body weight (Seabury et al. 2017) traits in Angus and Hereford beef breeds. The candidate 
regions on BTA 6 intersected with regions reported to be associated with meat quality (Mateescu et 
al. 2017) and body weight (Lu et al. 2013) traits in Angus cattle. The candidate regions on BTA 2 
from the HW comparison have been found by Snelling et al. (2010) to harbour variations affecting 
body weight in a crossbred population of different beef breeds including Hereford. A candidate 
region on BTA 5 between 55.99 to 56.80 Mbp from the AH comparison was also found that 
comprises several important genes, e.g. INHBC, INHBE and PTGES3, that are involved in growth

196 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 194 - 197 

197 

and metabolism in humans. Another candidate region on BTA 8 found in this study has been 
associated with feed intake (Rolf et al. 2012) and intramuscular fat content (Bolormaa et al. 2011) 
in Angus and Hereford cattle breeds. Mateescu et al. (2017) performed a genome-wide association 
study for meat quality traits in Angus cattle and found significant associations within the candidate 
region on BTA 13 found here from the AW comparison. 

The candidate regions in Table 1 together encompassed 40, 197 and 91 cattle genes from the 
AW, AH and HW comparisons, respectively. The functional annotation clustering of the identified 
genes resulted in 3, 25 and 15 annotation clusters from the AW, AH and HW comparison of which 
only 7 clusters from the AH comparison and 2 clusters from the HW comparison were significantly 
enriched (enrichment score ≥ 1.3). These enriched annotation terms are associated with some 
biological functions e.g. embryonic skeletal system morphogenesis and protein functional domains 
e.g. Insulin-like growth factor-binding proteins.

CONCLUSIONS 
Genome-wide screening of FST patterns provides a straightforward method to identify genomic 

regions under selection. Although the results here need to be validated, several candidate regions 
were found that may be involved in genetic differentiation between Angus, Hereford and Wagyu 
cattle and could explain phenotypic differences among these breeds. The candidate regions found in 
this study largely overlap with previously reported regions for economically important traits in beef 
cattle and might be useful to be incorporated in future genomic selection of Australian beef cattle. 
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SUMMARY 
Developing value propositions that resonate with farmers can improve on-farm adoption of 

genetic tools. Our aim was to illustrate differences in the performance of high and low genetic merit 
cows in a way that was understandable to farmers and service providers. Cows (n=10,734) with 
lifetime performance data from 29 herds were ranked into quartiles within herd-year contemporary 
groups based on parent-average derived genetic merit for the Balanced Performance Index (BPI), a 
multi-trait index that incorporates traits contributing to farm profit. Chi-squared tests were 
conducted within and across herd comparing genetic merit and lifetime number of calves and 
presence in the herd (present =1 or absent =0) after 100 days, 12, 18 and 24 months. On average, 
5.3% and 6.1% more high BPI cows (top 25%) remained in the herd after 18 and 24 months, 
respectively, compared to low BPI cows (bottom 25%). Over one quarter of low BPI cows only had 
one calf, while 55% of high BPI cows had 3 or more calves. These differences were significant 
(p<0.05) in the across-herd analyses, but few (≥20%) of the within-herd analyses. Average 
differences in fertility and survival breeding values of high and low BPI cows were small (<1 
standard deviation). This, coupled with a small sample size for within-herd analyses limited the 
ability to detect differences from within-herd analyses. This study demonstrates how selection on 
the BPI leads to favourable responses in health and fertility, in a way that is easy for farmers to 
understand. Demonstrating and detecting these benefits at the individual farm level remains 
challenging. Studies like this one that use datasets that are representative of the information farmers 
are using in decision making are important to help develop meaningful case studies to support 
extension and engagement efforts.  

 
INTRODUCTION 

Adoption of genetic and genomic tools can be facilitated through the development of value 
propositions that resonate with farmers. Previous studies (i.e., Ramsbottom et al. (2012)) that sought 
to demonstrate the link between genetic potential and performance present data collated from many 
farms. While this approach is valuable, farmers prefer localised, region-specific examples (Nettle et 
al. 2010). The long period between investment and impact on-farm and the fact that differences in 
traits expressed over a lifetime (i.e., survival, fertility) cannot easily be visualised add to the 
complexity of demonstrating the value of genetic and genomic tools. This study has focused on 
detecting differences in survival and fertility as these are traits of key importance in dairy production 
systems. The aim of this study was to quantify differences in the performance of high and low 
genetic merit cows in datasets representative of the information available on-farm.  

 
MATERIALS AND METHODS 

Cow performance, pedigree and breeding value (EBV) records were extracted for 29 dairy herds 
for a 10-year period from the national database housed by DataGene, first described in Newton et 
al. (2017). Updated EBVs (from May 2021 genetic evaluation) were extracted from the national 
database to incorporate updates to individual EBVs and the Balanced Performance Index, BPI, the 
Australian dairy industry’s national multi-trait selection index (Axford et al. 2021). Only cows with 
records for their entire productive life as well as parentage recorded were retained for analysis. After 
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removal of cows with incomplete records, 10,734 cows remained. Average herd size was 370 cows 
but ranged from 122 to 1,320 cows. Lifetime number of calves, and herd persistence, defined as 
present (1) or absent (0), 100 days, 12, 18 or 24 months after joining the milking herd was calculated 
for all cows. To reduce bias from cow’s own information in EBVs, parent average EBVs were 
derived from multi-breed models facilitating across-breed analyses. Cows were grouped into 
quartiles within herd-year contemporary groups based on their genetic merit for the Balanced 
Performance Index (BPI) (n=10,734), survival (n=10,488) and fertility EBVs (n=10,459). Quartile 
1 (Q1) contained cows ranked in the bottom 25%, quartile 2 (Q2) contained cows ranked in the 26th 
to 50th percentiles, quartile 3 (Q3) contained cows ranked in the 51st to 75th percentiles and quartile 
4 (Q4) contained cows ranked top 25%. Genetic merit was treated as a categorical variable with 4 
levels. Chi-squared tests were conducted within and across herds to test if there was a relationship 
between genetic merit and lifetime number of calves or herd persistence (present =1 or absent =0) 
after 100 days, 12, 18 and 24 months.  

RESULTS AND DISCUSSION 
Chi-squared tests detected statistically significant associations between genetic merit and 

number of calves and herd persistence in across-herd analyses but few within-herd analyses. On 
average, 5.3% and 6.1% more high BPI cows (Q4) remained in the herd after 18 and 24 months 
respectively, compared to low BPI cows (Q1) (Table 1). These differences were significant at both 
18 (χ2 = 18.22, df = 3, P <0.001) and 24 (χ2 = 22.12, df = 3, p <0.001) months in the across-herd 
analyses. However, for the within-herd analyses, the association between herd persistence at 18 and 
24 months and the BPI was only significant in 4 herds and 3 herds, respectively. When cows were 
grouped on Survival EBV, significantly (P <0.001) more Q4 cows remained in the herd at 12, 18 
and 24 months; 5.2%, 8.9% and 9.8% more compared to Q1 cows, respectively. Although this was 
larger than grouping cows on BPI, significant differences in herd persistence were only found in 5 
within herd analyses. After 100 days, differences in herd persistence were ~1% across quartiles with 
no statistical differences found in the across or within herd analyses. 

Table 1. Percentage (and number) of cows present or absent 100 days, 12, 18 and 24 months 
after entering milking herd where cows were grouped into quartiles based on BPI and survival 
breeding value (EBV); bottom 25% (Q1), 26-50% (Q2), 51%-75% (Q3), top 25% (Q4)1  

Quartile 100 days 12 months 18 months 24 months 
absent present absent present absent present absent present 

Grouping based on BPI 
Q1 3.8 (102) 96.2 (2608) 21.8 (590) 78.2 (2120) 34.1 (923) 65.9 (1787) 45.6 (1236) 54.4 (1474) 
Q2 4.1 (107) 95.9 (2481) 21.1 (546) 78.9 (2042) 31.8 (822) 68.2 (1766) 43.0 (1112) 57.0 (1476) 
Q3 3.6 (95) 96.4 (2562) 20.4 (542) 79.6 (2115) 30.9 (820) 69.1 (1837) 41.5 (1103) 58.5 (1554) 
Q4 3.1 (86) 96.9 (2693) 19.2 (533) 80.8 (2246) 28.8 (800) 71.2 (1979) 39.5 (1098) 60.5 (1681) 

Across χ2= 4.32, df=3, p=0.23 χ2=6.16, df=3, p=0.10 χ2=18.22, df=3, p<0.001 χ2=22.12, df=3, p<0.001 
Within 0 significant herds 0 significant herds 4 significant herds 3 significant herds 

Grouping based on survival EBV 
Q1 4.3 (95) 95.7 (2140) 22.6 (506) 77.4 (1729) 35.9 (803) 64.1 (1432) 47.8 (1069) 52.2 (1166) 
Q2 3.6 (86) 96.4 (2329) 21.8 (526) 78.2 (1889) 32.4 (783) 67.6 (1632) 43.7 (1056) 56.3 (1359) 
Q3 3.8 (102) 96.2 (2606) 21.6 (584) 78.4 (2124) 32.0 (867) 68.0 (1841) 42.1 (1141) 57.9 (1567) 
Q4 3.1 (98) 96.9 (3032) 17.4 (546) 82.6 (2584) 27.0 (846) 73.0 (2284) 38.1 (1191) 61.9 (1939) 

Across χ2= 4.86, df=3, p=0.18 χ2= 28.33, df=3, p<0.001 χ2= 50.6, df=3, p<0.001 χ2= 52.97, df=3, p<0.001 
Within 1 significant herd 1 significant herd 5 significant herds 4 significant herds 

1Chi-squared test of genetic merit and herd persistence reported across and within herds 
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Around 26% of low BPI and low fertility EBV cows only had 1 calf (Table 2). In contrast, 54.8% 
of high BPI cows and 56.1% of high fertility EBV cows had 3 or more calves. As genetic merit 
increased, the proportion of cows who had 1 or 2 calves decreased and the proportion of cows who 
had 3 or more calves increased. These differences were significant in the across-herd analyses (BPI 
χ2 = 38.2, df = 6, p = <0.001; Fertility EBV χ2 = 60.4, df = 6, p = <0.001). In the within-herd analyses 
these differences were significant in 1 and 6 herds when cows were grouped on BPI and fertility 
EBV, respectively.  

Table 2. Percentage (and number) of cows who have 1, 2, or 3+ calves over their lifetime where 
cows were grouped into quartiles based on BPI and fertility breeding value (EBV); bottom 
25% (Q1), 26-50% (Q2), 51%-75% (Q3), top 25% (Q4)  

Quartile BPI Fertility EBV 
1 2 3+ 1 2 3+ 

Q1 25.8 (700) 27.1 (735) 47.0 (1275) 26.1 (614) 27.8 (654) 46.2 (1087) 
Q2 24.0 (622) 25.7 (666) 50.2 (1300) 23.6 (584) 27.7 (684) 48.7 (1205) 
Q3 23.1 (614) 25.9 (688) 51.0 (1355) 22.9 (598) 25.7 (671) 51.5 (1346) 
Q4 20.3 (563) 24.9 (693) 54.8 (1523) 20.6 (622) 23.3 (702) 56.1 (1692) 

As the BPI places substantial weight on fertility and survival (Axford et al. 2021) it was expected 
high BPI cows would be more fertile and last longer. The statistically significant relationship 
between the BPI and lifetime number of calves and herd persistence in the across-herd analyses 
undertaken in this present study support this. Although there were few significant differences in the 
within-herd analyses, high BPI cows had more calves in 90% of herds (26/29) and had a higher 
proportion of animals present after 18 and 24 months in 76% of herds (22/29) which supports the 
across-herd analyses. These findings also align with our earlier studies (Newton et al. 2017; Newton 
et al. 2018), which used a previous iteration of the BPI. Here we also found few herds (<8%) had 
significant differences in fertility, expressed as number of calves/cow/year or calving interval. These 
previous studies analysed performance at the individual cow level whereas this present study was 
conducted at the herd level.  

We have previously focused on productive life, the total length of time an animal remained in 
the milking herd as a key measure of survival (i.e. Newton et al. 2018). While this approach was 
able to consistently illustrate that high BPI cows lasted longer in the herd overall, survival is multi-
faceted. The probability of culling due to infertility is high in early parities (Workie et al. 2021) so 
getting heifers back in calf for their second lactation can be a challenge on-farm. The measures of 
herd persistence, which used the binary definition of present or absent in the herd at a series of time 
points, chosen in consultation with industry were designed to test this. This approach successfully 
showed that improved survival of high BPI cows (and high survival EBV cows) begins to be 
expressed during the period of getting cows back in calf for the second lactation (12-18 months). As 
one of the barriers to uptake of genetics is the long period between investment and impact on-farm 
(Axford et al. 2015), the ability to show that the impact of genetic selection for survival can be seen 
as soon as 12 months after entry to the milking herd will be particularly helpful in extension 
activities.  

Few statistically significant differences in herd persistence or number of calves were found in 
within-herd analysis in this current study. While there was 2.3 standard deviation units difference in 
BPI between Q1 and Q4 cows, average differences in fertility and survival EBVs were small, 0.6 
and 1.1 standard deviation units, respectively. This may have limited the ability to detect differences 
from within-herd analyses. Herds where significant differences were detected, were generally larger 
than the average herd size and had above average variation in fertility or survival EBVs. This 
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suggests that a small sample size, coupled with lower within-herd and within-herd-year 
contemporary group variation in fertility and survival EBVs limits the ability to detect significant 
differences at the individual herd level. Encouraging accurate reporting of reproduction and health 
events on-farm and ensuring pipelines exist to facilitate transfer of data captured on-farm into 
centralised databases will not only improve routine genetic evaluation but also improve our ability 
to illustrate the impact of genetics in farm businesses. Developing case studies on the value of 
genetics that are 1) scientifically robust, 2) accessible to non-scientific audiences, 3) use easily 
accessible data and 4) that align to farmer preferences for region- (or farm-) specific case studies 
remain a challenge. By working collaboratively with service providers and farmers and seeking 
iterative feedback, it is possible to develop case studies that align with this. 

CONCLUSION 
This study aimed to illustrate differences in the performance of high and low BPI cows in a way 

that was understandable to farmers and service providers. We focused on survival and fertility 
measures, as it has previously been found to be particularly challenging to detect and demonstrate 
the impact of genetic improvement on these traits. We demonstrated how selection on the multi-trait 
index, BPI, leads to favourable responses in survival and fertility. Significant differences in lifetime 
number of calves and herd persistence after 18 and 24 months were seen in across-herd analyses. 
Given the lag between investment in genetics and impact is a barrier to uptake of genetics, the ability 
to show genetic merit impacting survival as soon as 12 months after entry to the milking herd will 
be particularly helpful in extension activities. Detecting differences within-herd was made difficult 
by small sample size and low variation within contemporary groups. Trends in the within herd 
analyses were in support of across-herd analyses though. Illustrating significant differences at an 
across-herd level and showing similar trends at within-herd level can support the development of 
case studies that are scientifically robust, but also met farmer need for localised, regionally specific 
case studies.  
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SUMMARY 
Several animal industries, including cattle, have built population scale whole-genome reference 

databases of genetic variants, SNPs and small INDELs, that have been discovered using short-read 
sequencing. These databases have proved invaluable: enabling development of genetic tools to breed 
healthier and more productive animals. However, while accurate and cost effective, short-read 
sequencing is not well suited to the discovery of larger genetic variants called structural variants 
(defined as > 50 base pairs in length). Thus, there is interest in creating population scale long-read 
databases for structural variant discovery and downstream applications. Ideally, for cost efficiencies, 
these would also contribute to the sequence database of SNPs and INDELs and enable imputation 
of all variants. Therefore, we explored the effect of long-read coverage on accuracy of SNP and 
INDEL discovery compared to a truth set from short-read sequence. The results show that at all read 
depths, recall and precision of SNP was considerably higher than for INDEL. At ≥ 10X read depth, 
SNP recall was 0.95 and reached 0.99 at 50X cover. The precision for SNPs and particularly INDELs 
suggested that the long-read variant calls included a relatively high, but likely overestimated 
proportion of false positives. We conclude that SNP and INDEL discovery in long-read data is 
useful, particularly if extensive 'truth’ variant sets exist that could help remove false positives. 

 
INTRODUCTION 

Several animal industries, including cattle, have built population scale whole-genome reference 
databases of small genetic variants (SNPs, and INDELs < 50 base pairs) that have been discovered 
using short-read sequencing (Daetwyler et al. 2017). These databases have proved invaluable for 
the detection of recessive deleterious mutations, for sequence imputation and enabling the 
development of genetic tools to breed healthier and more productive animals. However, while short-
read sequencing is highly cost effective and accurate for SNP and INDEL discovery, it is not well 
suited to the discovery of larger genetic variants (> 50bp in length) called structural variants (SVs). 
Instead, long-read sequencing is much better suited to genome-wide SV discovery. Limited research 
in livestock, and experience from human genetics research suggests that SVs may often have large 
effects on both mendelian and quantitative traits (reviewed by Nguyen et al. 2023a).  

Until recently, two major deterrents for long-read sequencing have been the higher cost and 
lower per base accuracy, where the latter resulted in low quality SNP and INDEL calls compared to 
short-read sequencing. However, two key competitors in the field of long-read sequencing, Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), have made significant 
improvements in both per base accuracy and cost. Thus, there is now considerable interest in 
exploring the SV landscape at a population scale in cattle (Chamberlain et al. 2023) and potentially 
other livestock. For livestock studies, it is critical to consider how to reduce costs per individual 
without unduly compromising on the accuracy of variant discovery. The sequencing read depth is a 
key factor regulating cost, and Nguyen et al. (2023b) have used ONT long-read sequencing to 
explore the impact of read depth on the accuracy of SV discovery. Additionally, to maximise the 
cost effectiveness of long-read sequencing and to enable SV imputation, it is desirable to use these 
same sequences to develop new, or expand existing, whole-genome SNP and INDEL databases. 
Therefore, the aim of this paper was to explore the accuracy of SNP and INDEL discovery in long-
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read sequencing at a range of read depths. Additionally, the paper considers the impact of incomplete 
discovery of these variants for population scale studies or smaller scale studies of recessive 
deleterious mutations. 

 
MATERIALS AND METHODS 

Three Holstein animals were each sequenced at approximately 50X coverage using an ONT 
PromethION sequencer, with flow cell 9.4.1 and ligation kit LSK110. To achieve maximum 
accuracy, the bases were re-called using Guppy v6.1.7 with the ‘super high accuracy’ setting (SUP). 
The output FASTQ files were trimmed using Filtlong (default settings: 
https://github.com/rrwick/Filtlong). Filtered reads were mapped to the ARS-UCD 1.2 reference 
genome (Rosen et al. 2020) using Minimap2 (Li 2018). Clair3 software was used to call SNPs and 
INDELs in individual sequences (default settings: Zheng et al 2022) and for comparison, Longshot 
software was also used to call SNPs (default settings: Edge and Bansal 2019).  

Next, mapped reads at 50X coverage for each individual were subsampled using Sambamba 
(default settings: Tarasov et al 2015) to 3X, 5X, 10X, 15X and 20X coverage and the data at each 
read depth was processed as for the 50X coverage to re-call SNPs and INDELs. For each of the three 
animals, three chromosomes were chosen as technical replicates (chromosome 1, 19 and 25) to 
investigate the accuracy of SNP and INDEL discovery at each of these read depths. The same three 
animals had also been sequenced using short-read Illumina technology at approximately 12X, 15X 
& 18X read depth and were previously processed in Run8 of the 1000 Bull Genomes Project 
according to project guidelines (Daetwyler et al. 2017) with GATK joint variant calling according 
to GATK best practices (DePristo et al. 2011). The SNPs and INDELs discovered in the short-read 
data of the three animals were used as the gold standard ‘truth set’ of variants for comparison with 
the SNPs and INDELs discovered in the long-read sequencing for the same animals. To ensure a 
high quality truth set, we retained only biallelic variants with minor allele count of  > 3, GATK 
Variant Quality Score Recalibration Tranche < 99.0, and indel < 50bp.  

Hap.py software (https://github.com/Illumina/hap.py) was used to compare the variant truth set 
with the SNPs and INDELs discovered in the long-read sequencing that passed default software 
filters at each read depth (‘query sets’). The following three sets of variants were identified from 
this comparison: 1) true-positive variants/genotypes (TP) that match in truth and query variant sets, 
2) false-negative variants (FN) missed in the query set but present in the truth set, and 3) false-
positive variants (FP) that have mismatching genotypes or alternate alleles in query versus truth set. 
The summary statistics calculated were; Recall = TP/(TP+FN) and Precision = TP/(TP+FP). 

  
RESULTS AND DISCUSSION 

The results were calculated for the combined truth variant sets across the three animals and three 
chromosomes, resulting in comparisons for a total of 1,894,775 SNPs and 158,338 INDELs at each 
read depth. As expected, accurate discovery of both SNPs and INDELs in long-read sequence was 
affected by read depth: declining more rapidly once read depth fell below 10X coverage, compared 
to higher read depths of 15X, 20X and 50X. The “recall” statistic (Figure 1A) indicates the 
proportion of variants that were discovered in the long-read data that were also in the truth set (“true 
positives”: TP). There was excellent recall of SNPs from the long-read sequencing at 10X to 50X 
read coverage using Clair3 software, plateauing at between 0.95 to 0.99 (i.e. only 1 to 5% of SNPs 
in the truth set were not detected in the long-read sequence). Even at 5X coverage, Clair3 only 
missed 14% of SNPs. Longshot software showed much lower SNP recall, particularly at lower read 
coverage and even at 50X read depth 17% of SNPs were missed. This was expected because 
Longshot implements a less sophisticated variant calling approach (pileup only) compared to Clair3 
which combines both pileup and full alignment in a deep learning-based variant calling algorithm 
(Zheng et al. 2022). Furthermore, Longshot is recommended for use with at least 30X read depth 
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and it cannot be used to call INDELs. The precision of SNP discovery was very similar for both 
Clair3 and Longshot (Figure 1B) and suggested that the proportion of false positives among all SNPs 
discovered in long-read sequences was between 12 to 28%. The precision was lower than for high 
quality human data reported to be 0.99 at 20X coverage (Zheng et al. 2022). However, there are 
several reasons why we would expect our precision to be lower: (1) our strict filtering of variants to 
create the ‘truth set’ from the short-read data would likely result in a proportion of real SNPs and 
INDELs being excluded so if found in the long-read data they appear to be false positives, (2) the 
human field has put tremendous effort into creating high quality truth sets through the “Genome in 
a Bottle Consortium” with higher short-read depth (35X) (e.g. Olson et al. 2022) while our lower 
coverage short-read data likely missed some real variants, and (3) Clair3 software algorithms were 
trained on human data with difficult to map regions excluded. Thus, our less accurate truth set 
compared to the human field will inflate the estimated false positive rate and this biases downwards 
our estimate of precision. There is clearly a need for high accuracy truth sets in cattle for improved 
benchmarking. 

The recall and precision for INDELs using Clair3 was much lower than for SNPs, for example, 
recall ranged from 0.27 at 3X to 0.89 at 50X read depth (Figure 1a). Additionally, the recall rate 
kept improving with increased coverage compared to the plateau observed for SNP at around 15X 
coverage. As mentioned above, there is likely to be some downward bias in the estimate of precision. 
However, even in more accurate human data the precision for INDELs at 20X coverage was lower 
than for SNPs at around 0.87.  INDEL calls in long-read data are known to be more error prone than 
for short-read sequence, particularly in homopolymer regions (consecutive repeat bases) where 
sequencing difficulty creates false positives (Amarasinghe et al. 2020; Delahaye and Nicolas 2021). 

The high recall rates for SNPs suggests that long-read data of at least 10X coverage is likely to 
be of considerable value in augmenting or developing whole-genome SNP databases at population 
scale. This would be convenient because the study by Nguyen et al. (2023b) also suggested that read 
depth of ≥ 10X is preferable for population scale structural variant discovery. Furthermore, if the 
false negative rate for SNP in long-read data is around 10% or less and is largely sporadic (i.e., there 
is a different set of SNPs missing in each animal) this should enable highly accurate imputation of 
the missing SNPs where there are reasonable sized sequence databases. We examined the 
distribution of missing variants in our animals at 10X read depth (Chromosome 1) and found that 
only 4% of missing SNPs overlapped between each pair of animals on average. However, the 
overlap of the missing INDEL sets was much higher than for SNPs, averaging 16% between pairs 
of animals at 10X coverage. Therefore, if these INDELs are missed in most or all individuals and 
given the higher overall missing rate of INDELs compared to SNPs, then accurate imputation would 
require an existing reference population with accurately genotyped INDELs. If SNPs and SVs are 
accurately genotyped in long-read data then it will be possible to impute SVs into large populations 
of cattle with SNP panel genotypes using a reference population with long-read sequences. 

Although the results suggest relatively high false positive rates, if there are existing short-read 
databases of variants (such as the 1000 Bull Genomes project: Hayes and Daetwyler 2019) then 
these could be used as a filter/training set to help remove false positive SNPs and INDELs from 
long-read data.  In the case where research may be undertaken to discover a mendelian mutation of 
large effect in a small cohort of animals, Nguyen et al. (2023b) recommend long-read sequencing at 
≥ 20X coverage for high accuracy discovery of a causal SVs in the data. Thus, if the mendelian 
mutation might equally be a SNP or INDEL, and no short-read sequence was available on the same 
animals, then sequencing (≥ 20X) of parent-offspring trios would be necessary to filter putative false 
positive variants (particularly INDELs) that do not show mendelian inheritance (although this would 
remove de novo mutations). Although INDELs constitute around 10% of all variants in Run8, they 
are important. For example, in Run8 of the 1000 Bull Genomes project Variant Effect Predictor 
software (VEP: McLaren et al. 2016) annotated 0.28% of INDEL, versus only 0.01% of SNP, to 
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have a high impact on a protein (i.e. loss of function, truncation and/or triggering nonsense mediated 
decay). A caveat of our study is that the ONT flow cell 9.4.1 used here for long-read sequencing is 
now superseded by a newer flow cell that should increase accuracy. Nonetheless, our results provide 
a useful benchmark, with the expectation that a range of advances will result in improved accuracy. 

Figure 1. Recall (A) and precision (B) for SNP and INDEL discovery in long-read sequence of 
different read depths, using Clair3 (SNP and INDEL) and Longshot software (SNP only) 

CONCLUSIONS 
This study shows that with the use of existing truth sets of SNPs and INDELs, we can curate 

useful SNP and INDEL databases from long-read sequences. While there are some limitations 
particularly for small INDEL discovery in long-read sequence, it is likely that this will continue to 
improve with modifications in hardware, chemistry and variant calling algorithms. Also, there is a 
need to further develop truth sets in cattle of sequence variants for future benchmarking studies. 
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SUMMARY 
Understanding the epigenetic repression role in regulating genes involved with the ribeye area 

(REA) of bovine muscle can help us to predict this trait in the future. Here, we identified genes 
putatively regulating REA in Nelore cattle and divergently epigenetically repressed between 
contrasting sample groups. For that, we applied the TRIAGE method with a Rank Product analysis 
using bovine muscle expression data on high versus low REA groups. Further, we identified over-
represented pathways and biological processes linked to candidate genes, searching for their 
regulatory direction. This result advances the knowledge about how epigenetic regulation may 
impact production traits in Nelore cattle.  

 
INTRODUCTION 

The ribeye area (REA) of the bovine Longissimus dorsi muscle is used as an indirect measure of 
carcass composition (Miar et al. 2013). The complete regulation of this trait is not known. As such, 
identifying candidate genes modulating REA is important. Additionally, delineating the mechanisms 
underlying the modulation of candidate genes would lead to a better understanding of this complex 
trait. Based on that, we aimed to identify genes regulating REA and that are also being putatively 
epigenetically repressed in one of the contrasting sample groups for REA. The lack of data on 
epigenetic repression mechanisms linked to bovine muscle tissue is a limitation. However, our 
approach can predict genes discordantly activated by epigenetic repression mechanisms considering 
only expression data. This methodology, named TRIAGE, consists of a repressive tendency score 
calculated for human genes. We applied this score to the expression value for each gene, in each 
sample, to calculate a bovine discordant score that can predict genes being affected by repressive 
mechanisms in each sample (Shim et al. 2020). TRIAGE was then expanded using a Rank Product 
analysis (Afonso et al. 2023) to allow us to compare discordant scores between the REA contrasting 
groups.  
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MATERIALS AND METHODS 
Samples, phenotypes and expression. The genetic estimated breeding values (GEBV) for 

Ribeye area (REA) from contrasting Nelore steers groups and their Longissimus thoracis muscle’s 
expression data from an RNA-Seq experiment were previously described by Silva-Vignato et al. 
(2017). In short, we used the RNA-Seq data of 12 Nelore steers muscle samples representing 
contrasting GEBV groups for REA. These 12 animals were selected out of 385 samples from a 
research population from Embrapa (Brazilian Agricultural Research Corporation, São Paulo, SP, 
Brazil), representing the Brazilian breeding lineages in 2009.  

DRGs identification. We implemented a combination of the TRIAGE method (Shim et al. 
2020) with the RankProd R package (Hong et al. 2006) using the expression data to identify 
putatively epigenetic repressed genes affecting the REA trait, called herein discordantly regulated 
genes (DRGs). The TRIAGE method is based on the inverse relationship between H3K27me3 
histone modification and human gene expression and can be extrapolated to any species (Shim et al. 
2020). The outputs of this analysis are ranks of genes per sample regarding their discordant score 
(DS). These DS represent the discordance between the expected expression and the real one based 
on the chance of this gene being epigenetically repressed. These DS were compared between the 
contrasting groups with the RankProd R package to identify the DRGs. 

Putative relationship between DRGs and REA. In search of the link between the DRGs and 
REA, we used the PCIT algorithm (Reverter et al. 2008) and the Cytoscape software (Shannon et 
al. 2003) to construct a correlation network. The correlation analysis with PCIT was made with all 
the expression data and REA GEBV for all 12 samples. The correlated pairs containing at least one 
DRG or the REA GEBV were considered for the network analysis. The genes significantly 
correlated with each DRGs were used in separate functional annotation analysis with the STRING 
software (Pertea et al. 2015) to retrieve GO terms and metabolic pathways from known protein-
protein interaction, considering the product proteins of the DRGs. Subsequently, different sources 
of information were used to characterize genes present in the network: 1) enriched terms from our 
functional annotation analysis; 2) previously published differentially expressed genes (Silva-
Vignato et al. 2017); 3) bovine transcription factors (de Souza et al. 2018); 4) bovine known 
miRNAs. Thus, we identified putative regulatory processes by the functional annotation analysis 
and other known regulatory (miRNA or TF) or REA related genes (DEG or correlated to REA), 
depending on their attributes and their correlation with REA or a DRG.  
 
RESULTS AND DISCUSSION 

DRGs for REA. We identified six DRGs for REA. The DRGs are the candidate regulators for 
REA that are also putatively being affected by a repressive epigenetic mechanism. They were 
differentially ranked between contrasting groups by our choose method because they have a high 
tendency to be repressed in several tissues but presented an expression between contrasting groups 
for REA. This is an indicator of epigenetically repression. One DRG was significant in the 
comparison considering High REA x Low REA and five DRGs were significant in the comparison 
considering Low REA x High REA (pfp < 0.01). The difference in expression between both 
contrasting groups shows that the only DRG for the comparison High REA x Low REA (CDH22) 
presented higher expression in the Low REA group. Based on the methodology assumption, this can 
be interpreted as an indication of epigenetic repression of this DRG in the High REA group. The 
same is valid on the contrary for the other five DRGs, being DRGs for the comparison Low REA x 
High REA and presenting a higher expression in the High REA group. Figure 1 shows the DRGs, 
the percentage of false positive (pfp) indicating its significance in the analysis (A) and their 
expression differences between the groups (B). DRGs can affect the trait in the study by regulating 
biological processes, while being epigenetically repressed by H3K27me3 or other epigenetic 
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repressive mechanisms (Afonso et al. 2023), proposing a new layer of understanding regarding the 
biological regulation linked to REA.  

Putative relationship between DRGs and REA. Figure 2 presents the correlation network 
considering the significant correlations containing at least one DRG or REA, and its attributes 
pointing to regulatory functions (miRNAs, TFs and DRGs) and its known relationship with REA 
(previously published Differentially expressed genes, DEGs, for REA, Silva-Vignato et al. 2017). 
No DRG for REA was previously published as DEG for REA (Silva-Vignato et al. 2017).  

 

 
Figure 1. Discordantly regulated genes (DRGs) for Ribeye area (REA) in Nelore      

 
Figure 2. Correlation network focused on the first neighbours of Discordantly Regulated 
Genes (DRGs) and Ribeye Area (REA) in Nelore aGenes downregulated or upregulated in the Low 
REA group when compared to the High REA group. 
 

All five DRGs for the comparison Low REA x High REA are correlated to at least one DEG for 
REA, showing its previously known link to REA. Three of the six DRGs are TFs (ZIC4, LBX1 and 
EN1), and two of these TFs are correlated to miRNAs (ZIC4 and LBX1), indicating its regulatory 
nature. Considering our network (Figure 2), the expression of the DRGs is not directly correlated to 
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the REA GEBV, but there are two genes directly correlated to REA that are correlated to two 
different DRGs (the TF ZNF180 correlated to the DRG CNTFR and TATDN3 correlated to the DRG 
and TF EN1), which are also candidate regulators to the REA, with all the DRGs.  

The DRG correlated to more DEGs for REA (Silva-Vignato et al. 2017) is LBX1, a TF also 
correlated to genes enriched for the two pathways enriched for the DEGs related to REA (Silva-
Vignato et al. 2017): MAPK signalling and endocytosis pathways. Considering all the results from 
the functional annotation analysis, we noted that the ZIC4 and CDH22 DRGs were mainly correlated 
to genes enriched for pathways and processes related to immunity and metabolism. The CNTFR 
gene was involved with protein and DNA regulation, EN1 to histone modification, protein transport 
and chromatin regulations, LBX1 to protein, transcription, DNA-template, growth and cell death 
regulations, and COL2A1 to an extracellular matrix organization, synthesis and degradation and 
protein digestion and absorption. All these pathways and processes can be related to muscle growth, 
organization, degradation and fat deposition, which are key biological process to REA (Silva-
Vignato et al. 2017).  

CONCLUSIONS 
Our approach helped us to point to candidate regulatory genes for REA, also being putatively 

epigenetically regulated. Also, we identified the possible pathways and biological processes being 
regulated by each DRG and other candidate regulatory genes underlying REA. 
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SUMMARY 

Consumer satisfaction has become a key focus for beef producers as eating quality traits such as 
tenderness and flavour dictate purchasing choices and, ultimately, the price consumers are willing 
to pay. Due to the difficulty in measuring eating quality traits and the inability to predict those traits 
prior to slaughter, beef producers opt to select for correlated traits and indirectly select for eating 
quality. Genotyping of animals offers the opportunity for the selection of cattle with superior eating 
quality directly for both breeding and market allocation. The aim of this study was to determine the 
accuracy of genomic prediction along with heritabilities for eating quality traits; tenderness, 
juiciness, flavour and overall liking as well as the overarching consumer satisfaction trait known as 
MQ4 in a 10-fold cross validation. Phenotypes from 1,701 cattle recorded in eating quality trials 
held across Australia were collected for the 5 eating quality traits. Those same cattle were genotyped 
using varying Illumina SNP arrays between 50k and 100k density and then imputed up to high 
density 700k using a reference set of 4,506 cattle representing most breeds and crossbreds 
composites of the Australian beef herds. A linear mixed model was used with cohort, days aged, 
carcase weight, principal components 1-4 and heterozygosity fit in the model. Heritabilities ranged 
from 0.21 to 0.32 between juiciness and tenderness respectively, while tenderness and MQ4 had the 
highest accuracy of 0.27 from the cross validation and juiciness and flavour having the lowest 
accuracies of 0.23. While accuracies observed in this study were low, moderate heritabilities indicate 
selection for eating quality traits is feasible.  

  
INTRODUCTION 

Beef eating quality has been identified as the leading factor in Australian consumer purchasing 
habits (Bonny et al. 2018). This has led to an increased emphasis on the selection for eating quality 
traits such as tenderness, juiciness, flavour and overall liking in beef herds for both domestic and 
export beef herds (Watson et al. 2008a). Consumer derived eating quality traits are expensive to test 
so large-scale measurement is not viable. Processors currently rely on the Meat Standards Australia 
(MSA) model to predict consumer satisfaction based on objective carcase measurements such as 
intramuscular fat (IMF), ossification (physiological maturity), paying producers based on meeting 
phenotype thresholds. This results in producers having to rely on selection of related traits such as 
IMF content which is known to increase tenderness through muscle fibre dispersion as well as 
impacting flavour due to modified fatty acid profiles. Genomic analysis offers opportunities to select 
for eating quality traits prior to slaughter with the possibility of the implementation of genomic 
estimated breeding values (GEBVs) in commercial Australian beef herds. The aim of this study is 
to examine the heritability and accuracy of genomic prediction for beef eating quality traits within 
the diverse Australian cattle herd using Genomic Best Linear Unbiased Prediction (GBLUP) 
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MATERIALS AND METHODS 
Phenotypes. The Striploin muscle (longissimus lumborum) was collected and consumed by 

Australian consumers from 1,701 genotyped Australian cattle between 1997 and 2019. The animals 
were from 65 cohorts and encompass a diverse breed profile to represent the Australian beef herds. 
Breeds represented in this research covered tropical Bos indicus (261 Brahman), Bos taurus (285 
Angus, 274 Hereford, 38 Shorthorn), composite breeds (100 Belmont Red and 83 Santa Gertrudis), 
dairy Bos taurus (72 Holstein, 23 Jersey), 121 crossbred cattle and 444 cattle with unidentified breed 
profiles. The study used steers (n=1319), heifers (n=345) and bulls (n=37) however breed and sex 
were found to be completely confounded with cohort. Carcase weight ranged from 50.6kg to 576kg, 
averaging 261.4kg. Steak samples were grilled to protocol as described in Watson et al. (2008). 
Steak samples from each animal were consumed by ten consumers for tenderness, juiciness, flavour 
and overall liking on a sliding bar scale from poor to excellent. Scores were clipped by removing 
the top and bottom two scores with the remaining six averaged. Consumers were given seven 
samples during the sitting with the first sample (link) being removed from analysis (Watson et al. 
2008b). The four eating quality traits are then used to calculate a singular satisfaction score known 
as Meat Quality 4 (MQ4) which is based of weightings to reflect Australian consumers preferences; 
MQ4 = 0.3 x tenderness + 0.1 x juiciness + 0.3 x flavour + 0.3 x overall liking (Thompson et al. 
2010). Animal phenotypic data included cohort, days aged (post slaughter proteolysis period), and 
carcase weight. 

Genotypes. The genotypes for the 1,701 animals were obtained using five different Single 
Nucleotide Polymorphism (SNP) chips (Illumina BovineSNP50 Genotyping Beadchip v1, v2, 
GeneSeek Genomic Profiler (GGP) Bovine 50K, GGP Bovine 100K and the TropBeef chip). SNP 
densities ranged between 50k and 100k with the TropBeef SNP chip having approximately 19k 
overlap with those used for bos taurus. Cleaning of genotypes removed any SNP with missing rates 
>0.1, minor allele frequencies (MAF) <0.01 and those departing from Hardy-Weinberg equilibrium
at p < 1x108. All genotypes were imputed to high density 709,068 SNP  with findhap4 (VanRaden
et al., 2013) utilising a reference set of 4,506 individuals of which were originally genotyped with
Illumina HD array. This reference set spans most breeds, composites and crossbreds in Australia
and was adequately suited for the imputation of this dataset. The first four principal components
from a genomic relationship matrix (GRM) based on GCTA (Yang et al., 2011)  explained around
25% of the genetic variance and were used to represent the breed proportion effect in the model.
The proportion of heterozygous loci for animals were calculated from the imputed genotypes to be
used in the model.

Analysis. A univariate mixed linear model based on GBLUP approach was performed using 
airemlf90 from the BLUPf90 family of programs (Aguilar et al., 2018) for each of the five eating 
quality traits to obtain estimates of fixed effects along with heritability of the trait: 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆               (1) 
Where y is the phenotype, b is the estimated fixed effect of group and effect of covariates; days 
aged, carcase weight, principal components 1-4 and heterozygosity, u is the vector estimated 
genomic breeding values (GEBV) of animals, e is the residual term. X and Z are incidence matrices 
relating to observations to effects fitted in the model. It was assumed that 𝑣𝑣(𝑢𝑢) = 𝐺𝐺𝜎𝜎2 where G was 
the genomic relationship matrix based on VanRaden (2008) and σ2 is the additive genetic variance. 

Animals were randomly assigned into ten groups of equal size. A 10-fold cross validation was 
performed by removing the phenotypes of each fold allowing the information from the 
approximately 1,530 animals to estimate breeding value for the remaining 170 animals with deleted 
phenotypes. Correlations between the EBV and adjusted phenotypes for each group were calculated 
and averaged across the ten folds to calculate accuracies based on the trait heritability. 
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RESULTS AND DISCUSSION  
Estimated heritabilities were moderate for all five traits (0.21-0.32; Table 1) with tenderness 

having the highest observed heritability. Heritabilities were similar to other studies for both 
Australian and international herds suggesting the potential for selection for eating quality traits 
directly in commercial herds (O'Connor et al. 1997; Johnston et al. 2003). Johnston et al. (2003) 
reported heritabilities for temperate Bos Taurus and tropical Bos indicus separately and found that 
tropically adapted cattle had higher heritabilities (0.2 – 0.32) across all traits while temperate breeds 
had markedly lower heritabilities (0.05 – 0.15) for all traits. The current study reports heritabilities 
from commercial herds in Australia which resembles mixed breed profiles of temperate, tropical and 
composite animals. Re-estimation of heritabilities of eating quality traits for different breeds may 
benefit the industry in the future as many commercial herds still have singular classes of cattle to 
reflect the market and climate.  

Accuracies were low with tenderness and MQ4 having the highest accuracy of 0.27, while 
juiciness and flavour had the lowest accuracies of 0.23. This dispersal of accuracies is reflected in 
Forutan et al. (2023) who used the same data set to examine four separate strategies for prediction 
through a BayesR model. Observed accuracies were between 0.2 and 0.5 for tenderness with 
Strategies 2,3 and 4 outperforming the GBLUP model used in this study with juiciness repeatedly 
having the lowest accuracies of >0.3 (Forutan et al. 2023). Miller et al. (2014) used GBLUP method 
for the prediction of breeding values for mechanical tenderness (shear force) in a Canadian beef herd 
consisting of Bos Taurus breeds (predominantly European breeds) and found correlations of 0.1 to 
0.5 between GEBV’s and adjusted phenotypes but they observed a lower heritability of 0.19 for 
shear force tenderness. However, due to the correlation between mechanical tenderness and panel 
tenderness being approximately -0.72 it is expected that studies utilising shear force as a phenotype 
would differ in heritability estimates than that of panel derived tenderness (Destefanis et al, 2008). 
There is valid argument as to utilising shear force over consumer tenderness scores due to most 
consumers being able to only differentiate changes of around 1kg of force rather than the minute 
increments detectible by machine. Zwambang et al. (2013) examined the heritability of beef 
tenderness (shear force) at differing aging points and found that the heritability of beef tenderness 
reduced from 0.19 to 0.05 when comparing the same beef at 7 and 21 days aged suggesting that 
genetic variance is reduced by longer days aging. However, the study examined only Bos Taurus 
breeds (predominantly European breeds) and did not need to consider the declined aging potential 
of Bos indicus breeds due to their altered enzyme production. The increased heritabilities in this 
study may be owed to the diverse breed profile of the data set. 

Table 1. Means (± SD), heritabilities (± SE) and accuracy of GBLUP prediction of phenotype 
(± SE) for tenderness, juiciness, flavour, overall liking and MQ4 

Trait Mean h2 Accuracy 

Tender 57.35 ± 16.5 0.317 ± 0.07 0.27 ± 0.04 

Juiciness 57.72 ± 14.18 0.213 ± 0.07 0.23 ± 0.03 

Flavour 59.11 ± 12.24 0.268 ± 0.07 0.23 ± 0.03 

Overall liking 58.34 ± 14.19 0.272 ± 0.07 0.25 ± 0.04 

MQ4 57.81 ± 13.76 0.301 ± 0.07 0.27 ± 0.04 

The current study was hindered by the confounding nature of cohort, where both sex and 
identified breed were completely confounded by the group ID. Other difficulties identified in this 
research was the lack of uniformity of phenotypes when utilising a large number of datasets where 
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the effects being observed differ. This was evident when age (days) was available for a proportion 
of the cattle in this study but not for others. While this could have been addressed in the same way 
that the MSA model utilises ossification as an indication of physiological age or maturity, it was 
decided that only effects that can be measured or predetermined prior to slaughter be used. Carcase 
weight as an effect in this study could be interpreted in multiple ways as the effect of size or maturity 
due to the large range in recorded weight. For simplicity however, it was used as an indication of 
size alone however further manipulation on the way carcase weight could be fitted will be examined 
in further research. Although breed was confounded with cohort, there were a large proportion of 
animals unidentified, or misidentified when examining a plot of the first two principal components. 
Principal components were fitted to rectify the lack of breed information for a proportion of the 
dataset by also giving an indication of breed proportion. Even though it is likely that breed would 
still be confounded with group due to the nature of these projects not assessing breed effect, a reliable 
identification of breed or cross for all animals would have been of value in assessment.  

CONCLUSION 
 Economically important traits such as tenderness and consumer satisfaction can be predicted 

and selected for through GBLUP models in diverse beef herds. However, improvements to the model 
and data structure with increased consistency of phenotype records, reduced data collection periods 
and a controlled breed profile may strengthen the low accuracies observed in this study. Genomic 
prediction of eating quality traits is a financially viable option for both commercial and seed stock 
breeding herds. 
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SUMMARY 
Regression coefficients were estimated of sensory and objective eating quality (EQ) traits on sire 

Australian Sheep Breeding Values (ASBVs) for a range of Merino production traits to identify if 
genetic relationships were likely to exist between these traits. The sire ASBVs were not associated 
with either overall liking scores of loin, knuckle and topside cuts, or intramuscular fat and shear 
force of the loin. This preliminary study has shown that it is likely that selection on sire ASBVs to 
improve Merino production traits would yield negligible responses in EQ traits. 

INTRODUCTION 
For the current MERINOSELECT indexes where the breeding objective includes improvement 

of carcass traits (Dual Purpose+ and Dohne+), it is predicted that small unfavourable responses in 
eating quality (EQ) traits would occur (A.A. Swan, personal communication). With around 30% of 
Merino breeding ewes being mated for crossbred lamb production (MLA and AWI 2021), 
considering EQ traits in these Merino breeding objectives is warranted. Like the lamb EQ indexes 
for Terminal sires (Swan et al. 2015), refinement of these indexes would contribute to ensuring that 
lamb produced by Merino dual purpose production systems are of acceptable quality, when eaten 
by consumers. For those Merino ewes mated to Terminal sires to produce crossbred lambs, it would 
be prudent to know if the MERINOSELECT objectives used to generate those ewes are consistent 
with the EQ objectives of the LAMBPLAN Terminal sire indexes. Based on low to negligible 
genetic correlations, Mortimer et al. (2017) had concluded that Merino breeding programs 
emphasising wool production would have little or no effect on the objectively measured EQ traits 
of intramuscular fat and shear force. The genetic relationships of wool production traits with sensory 
scores for EQ traits have not yet been reported.  

The diversity of the sires selected to generate progeny of Australian Wool Innovation’s Merino 
Lifetime Productivity (MLP) project (Ramsay et al. 2019) and the availability of data from consumer 
testing of sensory EQ traits of meat samples from MLP wether carcasses provide a means to detect 
if genetic relationships exist between EQ traits and sire Australian Sheep Breeding Values (ASBVs) 
for production traits. This preliminary study estimated relationships between ASBVs for a range of 
MERINOSELECT breeding objective traits and EQ traits, sensory and objective, assessed on 3 cuts 
of Merino lamb sampled from carcasses produced at 2 MLP sites. 

∗ A joint venture of NSW Department of Primary Industries and the University of New England 



Meat Quality 

215 

MATERIALS AND METHODS 
The design of the MLP project (Ramsay et al. 2019) and the pre-slaughter procedures (Mortimer 

et al. 2021) that produced the carcasses for this study have been described elsewhere. Sensory EQ 
data were recorded on loin, knuckle and topside samples aged for 5 days taken from carcasses of 
2018-born F1 wethers at the Macquarie (fine/medium ewe base) and New England (ultrafine ewe 
base) MLP sites. Sample collection and preparation, cooking procedures and sensory testing 
protocols applied to the grilled samples and tasted by panels of untrained consumers have been 
described by Pannier et al. (2014). Briefly, for each consumer tasting session (57 sessions), 10 sub-
samples were prepared from each meat sample following grilling under standardised conditions and 
provided to 10 consumers. The EQ traits were assessed by the consumers using a 0-100 scale (100 
being most preferred) and included tenderness, juiciness, liking of flavour and overall liking of loin, 
topside and knuckle cuts, respectively. The EQ record for each sample was then based on the mean 
of the 10 consumer responses. For this study, the overall liking scores for the loin (llike), knuckle 
(klike) and topside (tlike) samples only were analysed; 408, 409 and 403 records respectively were 
available from the Macquarie carcasses, while 152, 156 and 157 records were available from the 
New England carcasses. Objective EQ data were recorded on samples taken from the other loin of 
each carcass. Intramuscular fat (imf, %) was measured using procedures described by Hopkins et al. 
(2014), while shear force (sf5, N) was tested as described by Hopkins and Thompson (2001). 

The ASBVs were available for 14 (extracted from MERINOSELECT analyses 21 September 
2017) and 12 (extracted from MERINOSELECT analyses 21 January 2018) of the sires used to 
generate progeny at the Macquarie and New England sites (Table 1), respectively. The ASBVs for 
the production traits included: yearling (ycfw) and adult (acfw) clean fleece weight (%); yearling 
(yfd) and adult (afd) fibre diameter (micron); yearling (yfdcv) and adult (afdcv) coefficient of 
variation of fibre diameter (%); yearling (yss) and adult (ass) staple strength (N/ktex); yearling (ysl) 
and adult (asl) staple length (mm); yearling (ywt) and adult (awt) live weight (kg); yearling 
ultrasound fat depth (yfat, mm); and yearling ultrasound eye muscle depth (yemd, mm).  
 
Table 1. Summary statistics for eating quality and ASBV (minimum and maximum in 
brackets) traits for Macquarie and New England samples 
 

 Macquarie samples New England samples 
Eating quality trait    
 Mean (SD) Range Mean (SD) Range 
llike 68.7 (8.20) 42.3 - 88.8 69.5 (8.16) 49.0 - 87.6 
klike 65.0 (7.10) 40.4 - 84.2 65.6 (6.97) 43.3 - 88.0 
tlike 53.7 (9.08) 26.6 - 73.8 52.2 (8.99) 28.1 - 74.3 
imf 4.7 (1.39) 2.2 - 10.8 4.5 (1.34) 2.2 - 8.2 
sf5 24.5 (5.28) 14.1 - 41.4 24.1 (4.91) 13.4 - 41.4 
Australian Sheep Breeding Value    
 Yearling Adult Yearling Adult 
cfw 22.98 (10.35, 41.63) 17.95 (5.35, 37.67) 13.37 (-34.96, 30.95) 8.29 (-34.94, 21.23) 
fd -1.21 (-2.71, 0.05) -1.13 (-2.79, 0.05) -2.29 (-4.19, -0.78) -2.55 (-4.78, -1.02) 
fdcv -0.14 (-1.95, 1.65) -0.08 (-1.73, 1.52) -0.69 (-2.17, 1.63) -0.60 (-2.04, 1.36) 
ss -0.80 (-5.9, 5.35) -0.88 (-5.96, 3.27) -1.06 (-5.58, 2.57) -1.33 (-6.46, 2.45) 
sl 5.96 (0.62, 13.31) 5.75 (-1.4, 12.54) 3.82 (-12.62, 17.31) 2.96 (-18, 14.8) 
wt 6.33 (1.94, 13.55) 5.20 (0.66, 12.42) 3.36 (-5.81, 6.62) 2.04 (-6.50, 5.59) 
fat -0.03 (-1.06, 2.15) - -0.08 (-0.96, 1.70) - 
emd 0.17 (-1.72, 2.39) - -0.11 (-1.30, 2.72) - 

 
Separate analyses for each site’s data were performed to estimate the regression coefficients of 

each EQ trait on sire ASBV for each production trait using ASReml (Gilmour et al. 2021). The 
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model fitted to the data included a fixed effect of contemporary group (accounting for management 
and slaughter group effects) and a random effect of sire. Although fixed effects of birth type, rearing 
type, dam age and their interactions were also tested, these effects were found to be not significant 
and were excluded from the model. 

 
RESULTS AND DISCUSSION 

Average scores tended to be similar for overall liking for each of the 3 cuts across the sites (Table 
1). The average scores for overall liking of topside samples were lower than scores for loin samples 
from both sites, with differences of 10 units for Macquarie samples and 17 units for the New England 
samples. Average overall liking scores for knuckle samples were 4 units lower than the average 
scores for loin samples at both sites.  

For both data sets, significant (P < 0.05) regression coefficients were not detected for any of the 
EQ traits with the sire ASBVs for wool traits (Table 2). Nonetheless across the 3 cuts from the  
 
Table 2. Regression coefficients for eating quality traits of Macquarie and New England 
samples on sire ASBVs 
 

 llike klike tlike imf sf5 
Macquarie samples     
ycfw 0.09 ± 0.09 0.13 ± 0.08 0.12 ± 0.10 -0.01 ± 0.02 -0.05 ± 0.74 
acfw 0.07 ± 0.08 0.05 ± 0.08 0.09 ± 0.09 0.00 ± 0.02 -0.02 ± 0.07 
yfd -0.17 ± 0.95 0.34 ± 0.94 0.10 ± 1.08 0.10 ± 0.21 -0.56 ± 0.77 
afd -0.10 ± 0.92 -0.07 ± 0.92 0.01 ± 1.05 0.10 ± 0.20 -0.38 ± 0.76 
yfdcv 0.62 ± 0.65 0.02 ± 0.67 0.49 ± 0.76 -0.09 ± 0.15 0.03 ± 0.56 
afdcv 0.79 ± 0.75 0.30 ± 0.78 0.89 ± 0.87 -0.09 ± 0.17 -0.09 ± 0.65 
yss -0.21 ± 0.21 0.17 ± 0.21 0.00 ± 0.25 -0.01 ± 0.05 -0.05 ± 0.18 
ass -0.35 ± 0.27 0.13 ± 0.28 -0.19 ± 0.32 0.01 ± 0.06 -0.07 ± 0.24 
ysl -0.09 ± 0.18 0.00 ± 0.18 -0.05 ± 0.21 0.03 ± 0.04 -0.03 ± 0.15 
asl -0.02 ± 0.20 -0.07 ± 0.2 0.00 ± 0.23 0.04 ± 0.04 -0.04 ± 0.16 
ywt -0.02 ± 0.22 -0.03 ± 0.22 -0.17 ± 0.24 -0.02 ± 0.05 0.20 ± 0.17 
awt 0.02 ± 0.21 -0.11 ± 0.21 -0.16 ± 0.23 -0.02 ± 0.05 0.21 ± 0.16 
yfat -0.40 ± 0.77 0.10 ± 0.78 -0.39 ± 0.89 -0.08 ± 0.17 0.28 ± 0.65 
yemd -0.48 ± 0.56 -0.46 ± 0.56 -0.71 ± 0.63 -0.17 ± 0.12 0.47 ± 0.46 
New England samples     
ycfw 0.01 ± 0.05 -0.03 ± 0.04 -0.02 ± 0.05 -0.01 ± 0.01 0.01 ± 0.04 
acfw 0.00 ± 0.05 -0.03 ± 0.05 -0.01 ± 0.06 -0.01 ± 0.02 0.00 ± 0.04 
yfd 0.84 ± 0.64 0.18 ± 0.62 0.76 ± 0.71 0.00 ± 0.22 -0.21 ± 0.50 
afd 0.63 ± 0.50 0.10 ± 0.48 0.65 ± 0.55 0.01 ± 0.17 -0.20 ± 0.39 
yfdcv -0.57 ± 0.53 -0.25 ± 0.51 -0.07 ± 0.26 -0.15 ± 0.18 0.10 ± 0.42 
afdcv -0.67 ± 0.60 -0.22 ± 0.58 0.41 ± 0.68 -0.15 ± 0.20 0.14 ± 0.47 
yss 0.46 ± 0.29 0.16 ± 0.28 0.13 ± 0.34 0.06 ± 0.10 -0.06 ± 0.23 
ass 0.44 ± 0.28 0.17 ± 0.27 0.20 ± 0.33 0.04 ± 0.09 -0.10 ± 0.22 
ysl 0.09 ± 0.09 -0.06 ± 0.08 -0.07 ± 0.10 -0.02 ± 0.03 0.08 ± 0.06 
asl 0.09 ± 0.09 -0.07 ± 0.08 -0.07 ± 0.10 -0.02 ± 0.03 0.07 ± 0.07 
ywt 0.15 ± 0.23 -0.12 ± 0.21 -0.07 ± 0.26 0.00 ± 0.08 0.09 ± 0.17 
awt 0.05 ± 0.22 -0.14 ± 0.20 0.07 ± 0.24 0.01 ± 0.07 0.06 ± 0.16 
yfat 0.83 ± 0.92 0.76 ± 0.84 -1.07 ± 0.96 0.29 ± 0.29 -0.07 ± 0.69 
yemd 0.98 ± 0.60 0.53 ± 0.58 -0.88 ± 0.65 0.10 ± 0.21 0.17 ± 0.47 

 
Macquarie carcasses, there may be a possibility that improving sire ASBVs for clean fleece weight 
and fibre diameter variability could lead to slight favourable and unfavourable responses, 
respectively, in overall liking scores. For the New England cuts, improving sire ASBVs for fibre 
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diameter may lead to slight unfavourable responses, while improving sire ASBVs for fibre diameter 
variability and staple strength may yield slight favourable responses. In the case of the objective EQ 
traits (imf, sf5), the lack of associations was consistent with the negligible to low genetic correlations 
of imf and sf5 with wool production traits reported by Mortimer et al. (2017), which were generally 
less than 0.20 in size.  

No significant regression coefficients were detected for any of the EQ traits with the sire ASBVs 
for the live weight and ultrasound traits (Table 2). The effect of increasing sire ASBVs for yfat and 
yemd on overall liking scores, though, may vary between data sources: slightly unfavourable effects 
on the scores on cuts from the Macquarie carcasses versus slightly favourable effects on scores of 
loin and knuckle cuts and slight unfavourable effects on scores of topside cuts from New England 
carcases. For imf and sf5, negligible genetic correlations have been estimated for these objective EQ 
traits with ywt, awt, yfat and yemd (Mortimer et al. 2018). 

CONCLUSION 
This preliminary study suggests that selection on sire ASBVs to improve Merino production 

traits would yield negligible responses in sensory and objective EQ traits. Estimation of genetic 
correlations among the traits will verify if at most weak genetic associations do exist between EQ 
and wool production traits. Based on a combination of data from the Macquarie and New England 
flocks and data from other resource flocks that have assessed eating quality of Merino lamb cuts, 
analyses are underway to estimate the accurate genetic parameters needed to include an EQ breeding 
value in MERINOSELECT indexes.  
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SUMMARY 

In recent years, the 1000 Bull Genomes Project has brought together short-read sequence for 
more than 6,000 cattle, playing a key role in detection of small variants and generating improved 
accuracy of genomic prediction for complex traits. While this continues to be an invaluable resource 
for SNP and small INDEL studies, it is not suited to detecting more complex structural variants (SV: 
variants with length > 50bp). However, SV often show large and sometimes deleterious effects on 
phenotypes and remain largely unexplored in livestock. Here, we use long-read sequences of two 
bovine parent-offspring trios to explore the optimal read depth to be cost effective whilst still 
maintaining a high chance of detecting SVs. This study shows that while sequencing from between 
10X to 15X coverage resulted in some reduction in the SV discovery rate versus higher read depth, 
this may be an acceptable compromise for population scale studies to spread sequencing costs over 
a larger number of animals. However, if the purpose of using long-read sequencing is to discover a 
deleterious Mendelian mutation among a small group of known affected or carrier animals, the 
results here suggest that at least 20X cover would be preferable. 
 
INTRODUCTION 

Structural variants (SV) are genetic variations that involve the insertion, deletion, or 
rearrangement of large segments of DNA, typically affecting > 50 base pairs (Freeman et al. 2006). 
These types of variants can have significant impacts on gene function and expression, but their 
detection in livestock has been challenging due to limitations of short-read sequencing technology. 
To improve the accuracy and sensitivity of SV detection, several livestock genomics studies have 
deployed long-read sequencing technologies, mostly using PacBio and Oxford Nanopore 
Technologies (ONT) platforms. These studies have generally sequenced a relatively small sample 
of individuals at high read coverage, either to build reference pan-genomes or to pinpoint a 
deleterious SV (reviewed in Nguyen et al. 2023). Long-read sequencing is still relatively expensive 
for large population scale analyses, therefore it is critical to optimise read-depth for cost effective 
SV discovery. Therefore, we conduct a pilot experiment to study the effect of read-depth on 
discovery rate statistics of SV using two cattle parent-offspring trios.  
 
MATERIALS AND METHODS 

A flowchart of the methodology is illustrated in Figure 1. In brief, two Holstein trios (parents 
and offspring) were sequenced at ~60X coverage using ONT PromethION sequencer (flow cell 9.4.1 
and ligation kit LSK110) following the manufacturer’s recommendations. Post sequencing, the 
FAST5 files were re-basecalled using Guppy (v6.1.7) with the super high accuracy setting (SUP). 
The output FASTQ files were then trimmed using Filtlong (https://github.com/rrwick/Filtlong) with 
the default setting. Filtered reads were mapped to the ARS-UCD 1.2 + Btau5.0.1 Y reference 
genome ARS-UCD1.2 (Rosen et al. 2020) with additional  Btau5.0.1 Y (Bellott et al. 2014)  using 
Minimap2 aligner (Li 2018). Post sequencing and alignment, the recorded mapped coverage is 
estimated at 50X, so we considered this as the “baseline” read coverage. The aligned reads were 
used to detect SV with Sniffles2 (Sedlazeck et al. 2018) in individual samples and then merged using 
Sniffles2 joint genotyping function (default settings). Next, mapped reads at 50X coverage were 
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scaled down using Sambamba (default settings: Tarasov et al. 2015) to an estimate of 3X, 5X, 10X, 
15X, 20X coverage. These alignment files were re-exported to FASTQ format. The scaling down of 
read coverage was replicated three times for each animal at each coverage and replicate samples 
were then subjected to the same SV detection pipeline described above. For ease of analysis, we 
only considered SVs detected from autosomes (Chr 1 – 29). Finally, we deployed RTG Tools 
(https://github.com/RealTimeGenomics/rtg-tools) and its Mendelian plugin on merged SV calls to 
count the number of Mendelian consistent and inconsistent SV calls across each of the two trios (per 
replicate at each read cover). This plugin only counts SV that are genotyped in all individuals (i.e. 
excluding SV where one or more of the trio had a missing genotype).  
 

 
Figure 1. Schematic workflow of the experiment to detect structural variants (SV) with 
different read coverage. Software used is shown with underlined text 
 
RESULTS AND DISCUSSION 

Table 1 summarises the SV discovery statistics at each scaled back read depth compared to the 
50X cover. For example, on average at 3X we discover approximately 20% fewer SV, 93% fewer 
SVs with high quality genotypes (GQ > 10), and the sporadic missing genotype rate can be up to 
21%. Missing rate is an important statistic to consider because the missing rate may impact the 
accuracy of imputing these sporadic missing for downstream use of SV genotypes. At 15X cover 
the summary statistics are much closer to the 50X cover compared to the 3X or 5X. In Table 2 we 
summarise the observed proportion of SV that violate Mendelian consistency at each scaled back 
read depth. Interestingly, the rate of Mendelian inconsistency only slightly increased with lower read 
cover: varying from 3-11% with larger variability between replicates at lower read depth. This 
estimate has some bias because we can only assess SV for which no individual in the trio has a 
missing genotype. Given that this number is relative to the total SV discovery at each coverage, this 
demonstrates that even at lower read-depth, if the SV are confirmed, the majority would be 
accurately genotyped in all animals. This might be expected because as coverage reduces it is likely 
that the merged set will be those SV that are relatively the easiest to detect.  

It is important to note that a small number of Mendelian inconsistencies may arise from de novo 
mutation: for SNP this is in the order of ~30 given a bovine genome size of 3 Gb and a per base per 
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generation mutation rate of 1x10-8. It is likely that the number due only to SV would be similarly 
low. Therefore, here we made no attempt to differentitate de novo mutation from false positive SV 
as it would have no impact on our conclusions.  

Table 1. Summary of Structural Variant (SV) discovery for different scaled back read 
depths, averaged across 2 trios of parent-offspring bovine (3 replicates) after join calling as 
well as in the original 50X read coverage.  Average standard deviation between 2 trios is 
shown in brackets 

Number of SV called % non-missing genotypes 
among trio individuals 

% genotypes where of all 
trio individual genotypes 

had GQ score1 > 10  
3X 30,484.7 (40.4) 78.3 (0.1) 3.3 (0.1) 
5X 37,015.5 (60.5) 93.9 (0.04) 29.4 (0.2) 
10X 38,042.7 (57.8) 98.6 (0.04) 59.3 (0.1) 
15X 38,292.7 (31.1) 99.2 (0.01) 73.9 (0.2) 
20X 38,507.3 (8.5) 99.3 (0.02) 87.1 (0.1) 
50X 38,513.5 (0) 99.3 (0) 96.1 (0) 

1 GQ is a composite mapping quality score that estimate the quality of the identified SV 

Table 2. Summary of Structural Variants (SVs) observed in the offspring of two parent-
offspring trios that show Mendelian consistency (Cons.) or inconsistency (Incons.)  for a 
range of scaled back sequence coverage (average of 3 replicates) and in the original 50X 
coverage. Average standard deviation between the 2 trios is shown in brackets 

 Number of Cons. SV Number of Incons. SV Rate of Incons.(%) 
3X 21,585 (68.8) 2,189 (35.4) 9.2 (0.11) 
5X 30,698 (29.7) 3,912 (58.3) 11.3 (0.13) 

10X 34,470 (47.9) 3,001 (32.2) 8.0 (0.07) 
15X 35,682 (43.4) 2,269 (26.3) 6.0 (0.06) 
20X 36,616 (38.5) 1,598 (25.8) 4.2 (0.06) 
50X 37,064 (0) 1,194 (0) 3.1 (0) 

Our results demonstrate that the lower coverage of mapped reads increases the difficulty for the 
SV detection software to confidently call the genotype across multiple animals, particularly at 3X 
and 5X cover. This is likely partly due to the merging approach relying on there being at least one 
individual with good evidence of the SV and there being at least 5X cover of the SV region to call 
the genotype in each animal (as we are running with default settings), this perhaps explain the poor 
result of these two read depth coverages. Observing the missing rate, we can see that even at the 
highest read depth, in the merged calling of SV there are still around 1% of sporadically missing 
genotypes. We believe some of these missing genotypes are due to (i) complex SV that perhap 
require manual curation for accurate genotype calling, (ii) false positive SV that were either merged 
and/or joint called incorrectly. In addition, this study shows that while sequencing from between 
10X to 15X coverage resulted in some reduction in the SV discovery rate versus higher read depth, 
this may be an acceptable compromise for population scale studies to spread sequencing costs over 
a larger number of animals. However if the purpose of using long-read sequencing is to discover a 
deleterious Mendelian mutation among a small group of known affected or carrier animals, the 
results here suggest that at least 20X cover would be preferable.  

In  this pilot study it is important to note that we deployed just one SV discovery program 
(Sniffles2), while there are several other programs currently available for this purpose. However, at 

220



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 218 - 221 

221 

the time of running this analysis, Sniffles2 was the software recommended for ONT long-read 
sequence with the best accuracy. In addition, Sniffles2 has an automated global/joint calling module 
that can automate calling of SV across population scale samples. Undoubtedly, results from this 
pilot study highlight the needs for further studies in resolving precise breakpoints and therefore, 
leading to more accurate genotyping of SV. 

CONCLUSIONS 
This study analysed the impact of sequencing read-depth on the detection of SV using two deeply 

sequenced bovine trios. Our results provide a means for future research to make decisions on 
optimising cost effective long-read sequencing cover for SV detection of either: (i) specific 
deleterious SV in a few individuals (iii) population scale genome-wide SV discovery or (iii) 
characterize an original set of SV such as for pan-genomes.  
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SUMMARY 

Recombination and de novo mutations generate genetic diversity in a population, which is the 
key element for evolution and selective breeding. The variation in recombination rate across the 
genome and the recombination hotspots can be estimated by haplotype analysis. However, the 
crossing-over rate is not uniform across different individuals. In this research, we estimated the 
recombination rate across the autosomal chromosomes of 4 Australian beef cattle breeds. Further, 
we estimated variance components, heritability and repeatability of recombination rate within each 
breed. 

 
INTRODUCTION 

During meiosis, haplotypes exchange Deoxyribonucleic acid (DNA) strands as a result of 
recombination processes, which contribute to the genetic diversity of the next generation. Genetic 
diversity is an essential element for natural and artificial selection. The change in genetic diversity 
across generations mainly depends on selection, the reduction in genetic variation due to genetic 
drift and inbreeding, and the amount of generated variation as a result of de novo mutations and 
recombination events (REs). In humans, recombination rates vary by gender and on average there 
are 1.65 times more autosomal crossing-over events in maternal than paternal haplotypes. In 
addition, recombination rate is higher near centromeres in females and near telomeres in males 
(Kong et al. 2002). In male beef cattle, mutations in REC8 (Sandor et al. 2012), CLPX1, (Ma et al. 
2015) and RNF212 (Kong et al. 2002; Sandor et al. 2012) genes have been reported to affect 
genome-wide recombination rates. Progeny of sires with high recombination rates may have higher 
genetic diversity at each chromosome. Hence, depending on the selection criteria, the recombination 
rate of paternal chromosomes can be considered in selecting superior individuals to produce the next 
generations.  

Based on phased data generated by Beagle (Browning and Browning 2007) and DAGPHASE2 
(Druet and Georges 2010), Weng et al. (2014) estimated the recombination rates in Angus and 
Limousin cattle breeds. They tried to minimise the effect of wrong phasing in their results by 
removing anomalies in the phased genotypes like double crossover at short intervals, more than three 
crossovers per chromosome, and haplotype mismatch. These factors could substantially affect the 
ability to identify the number of REs correctly. Ferdosi et al. (2016) developed a maximum 
likelihood algorithm to identify paternal haplotype REs. This method was an extension to hsphase 
(Ferdosi et al. 2014) to identify REs in the paternal strand of half-sib families. It is robust to 
genotyping errors and does not require phased genotypes to identify REs. Our aim in this study was 
to estimate the heritability and variation of genome-wide recombination numbers in paternal 
haplotypes (GRNP) of Brahman, Hereford, Santa Gertrudis, and Wagyu without phasing their 
genotypes. 
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MATERIALS AND METHODS 
Genomic Data and estimation of recombination rate. The genomic data for this study was 

extracted from the BREEDPLAN genomic pipeline (Connors et al. 2017). The BREEDPLAN 
genomic pipeline was developed at the Animal Genetics and Breeding Unit (AGBU) and is 
commercialised by the Agricultural Business Research Institute (ABRI). This pipeline performs 
several quality control steps and consolidates several marker densities together. For example, the 
individuals were removed if they failed parent verification due to Mendelian inconsistency or other 
issues, had less than 79% calls with GC score less than 0.6, less than 80% call rate, average GC less 
than 0.6 or had more than 80% homozygosity rate (for more details, please refer to (Connors et al. 
2017). To be able to estimate the paternal chromosomal REs accurately, the sires with more than 
eleven genotyped progenies were used in our study (Table 1). The pedigree was also extracted from 
the BREEDPLAN genomic pipeline for the selected individuals up to 3 generations. The GRNP was 
estimated in each offspring using hsphase 2 (Ferdosi et al. 2016). 
 
Table 1. Number of sires and genotyped progeny and range of half-sib family size in 
different beef breeds after quality control and removing half-sib families with less than 12 
progenies 
 

Breed Number of 
Sires 

Range of Half-sib family size 
(mean ± s.d.) 

Number of 
Individuals 

Brahman 789 12 to 288 (33.65 ± 26.54) 26,491 
Hereford 1,125 12 to 584 (34.32 ± 37.96) 38,609 
Santa Gertrudis 164 12 to 145 (34.28 ± 23.88) 5,622 
Wagyu 1,760 12 to 3245 (61.23 ± 148.22) 107,763 

 
Variance components – repeatability model. The heritability and repeatability of 

recombination rate for each breed were estimated using the following model: y = Xb + Zu + Wp + 
e, where X, Z and W are design matrices that relate observations to their corresponding effects, and 
y, b, u, p, and e are the vectors containing the number of REs of paternal autosomal chromosomes 
in progeny, fixed effects (mean), predicted breeding values, sire permanent environment effects (PE) 
and random residual terms, respectively. The variance of EBVs, PE and residual effects were 
assumed to be normally distributed with u ~ N(0, Aσ2u), p ~ N(0, Iσ2pe), and e ~ N(0, Iσ2e), 
respectively, where A is the Numerator Relationship Matrix (NRM) built using pedigree and I is an 
identity matrix. ASReml-R was used to estimate the variance components, heritability and 
repeatability of GRNP (Gilmour et al. 2015). 
 
RESULTS AND DISCUSSION 

The estimated GRNP in four cattle breeds using hsphase 2 in Santa Gertrudis, Wagyu, Hereford, 
and Brahman had on average 28, 27, 25, and 25 REs in autosomes, respectively. The normal 
distributions of estimates and the range of GRNP were in line with the previously published articles 
(Chowdhury et al. 2009; Weng et al. 2014). Weng et al. (2014) reported GRNP of 27.4 and 26.9 for 
Angus and Limousin, respectively. The number of genome wide REs ranged from 0 (Brahman and 
Hereford) to 59 (Wagyu). Figure 1 shows the median, first quartile and third quartile of REs in each 
half-sib group. There was large variation in GRNP across half-sib groups, which could be partially 
explained genetically (Table 2).  

The boxplot of the number of REs by chromosome is shown in Figure 2. The average number of 
REs in chromosomes 1 to 20 was higher (close to 1) than other autosomal chromosomes (close to 
0). Weng et al. (2014) removed the individuals with more than three REs in each chromosome from 
their study. However, the individuals which had high GRNP in Figure 2 were not removed in our 
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study due to the high reliability of the hsphase 2 algorithm in detecting crossing-over events. 

Figure 1. First quartile, median and third quartile of number of recombination events in 
different half-sib families sorted by median of number of genome-wide recombination 
numbers in paternal haplotypes 

Figure 2. Boxplot of number of recombination events in 29 autosomal chromosomes in 
different breeds  

The GRNP in some Brahman individuals was higher than our expectations. These individuals 
must be investigated further to identify the possible reason behind their strangely high 
recombination number estimates. This issue may be caused by the Bos Taurus map assemblies, as 
this map may not be adequate for mapping SNPs in the Bos Indicus cattle genome. However, 
removing these individuals had a negligible effect on the variance component estimation. 

Variance components, heritability and repeatability of the number of REs are shown in Table 2. 
Weng et al. (2014) have reported heritability of 0.26 ± 0.030 and 0.23 ± 0.042 for recombination 
rate in Angus and Limousin sires, respectively, which were higher than our estimates. The rate of 
chromosome recombination is proportional to chromosome length and also varies between 
individuals. However, the identification of crossing-overs can be influenced by the level of 
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heterozygosity in the parents (Weng et al. 2014). Assuming the sire is completely homozygous, no 
REs can be detectable in the progeny. High homozygosity caused by low quality genotypes was not 
a concern in our study, as the BREEDPLAN genetic data passed the stringent quality control 
pipeline, and any individual with greater than 80% homozygosity was eliminated from the dataset. 
For example, although Australian Wagyu had very low haplotype diversity (Ferdosi et al. 2021), the 
number of detected REs in Wagyu was very similar to other breeds in our study.   

Table 2. Additive genetic (σ2u), permanent environment (σ2pe) and residual (σ2e) variances, and 
the estimated heritability (h2) ± s.e., and repeatability (r) ± s.e. of genome-wide recombination 
numbers in paternal autosomal chromosomes of different beef breeds 

Breed σ2u σ2pe σ2e h2 r 
Brahman 1.57 ± 0.68 4.80 ± 0.67 19.10 ± 0.17 0.06 ± 0.03 0.25 ± 0.01 
Hereford 3.08 ± 0.43 1.21 ± 0.31 17.90 ± 0.13 0.14 ± 0.02 0.19 ± 0.01 
Santa Gertrudis 3.84 ± 2.03 3.56 ± 1.77 21.86 ± 0.42 0.13 ± 0.08 0.25 ± 0.09 
Wagyu 2.97 ± 0.38 2.30 ± 0.25 20.33 ± 0.09 0.12 ± 0.02 0.21 ± 0.02 

CONCLUSIONS 
There was a large variation in the frequency of GRNP across individuals. The heritability of the 

number of REs was similar in different beef cattle breeds in our study, except Brahman, which was 
lower and could be a result of the Bos Taurus genome assembly used. A high GRNP in sires may 
contribute to an increase in population diversity. However, the underlying mechanisms and 
consequences of variation in REs in different individuals need to be investigated in future studies. 
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SUMMARY 
A pedigree inbreeding coefficient is the probability that two alleles in an individual will be 

identical by descent which requires them to be homozygous for that locus. Homozygosity at the non-
pseudo autosomal region (nPAR) of the sex chromosomes is complicated by their unique inheritance 
patterns. Heterozygosity at the nPAR X chromosome region is frequently used to predict the sex of 
genotyped animals for quality control purposes but the characteristics of the X chromosome in the 
Australian Wagyu population can make such sex predictions inconclusive. 

 
INTRODUCTION 

Managing the trade-offs between genetic diversity, inbreeding, and genetic gain is a known 
challenge in animal breeding programs. Pedigree based inbreeding coefficients provide an on-
average indication of inbreeding across the entire genome but do not reflect the true genomic 
diversity, especially in specific genome locations that may be under more intense selection pressure. 
For example, non-identical twins, just like any siblings, will inherit different combinations of their 
parents' genomes. When their parents are related, it increases the chance of the twins inheriting more 
regions that are identical by descent (IBD). However, the specific IBD regions each twin inherits 
could differ due to the random assortment of genes, leading to unique genetic variations between 
the twins. 

The X chromosome has a unique inheritance pattern in that mammalian males inherit only one 
copy of the X chromosome, from their dam. Loss of genetic diversity in the X chromosome can be 
exacerbated by widespread usage of a small number of sires, particularly in closed populations 
where a historical population bottleneck has reduced diversity. In other words, the X chromosome 
has a smaller effective population size than the autosomes which are not involved in determining 
the sex of an individual. A smaller effective population size means a faster accumulation of 
homozygosity for the same selection strategy. 

Mammalian females inherit one X chromosome from each parent and typically inherit alleles 
that result in some of the loci being heterozygous, e.g., “AB”. Meanwhile males who inherit one X 
and one Y chromosome are said to be hemizygous and will appear to exhibit homozygosity at loci 
that are unique to the X chromosome, known as the non-pseudo autosomal region (nPAR).  

When parents are related the offspring will exhibit increased rates of homozygosity and reduced 
genetic diversity relative to offspring of matings from unrelated parents. Consider the extreme case 
where a female’s father was also her maternal grand sire, i.e., her mother’s father. In that case, in 
the absence of recombination along the X chromosome, there would have been a 50% probability 
that two identical X chromosomes would have been inherited. 

Reduction in genetic diversity and an increase in inbreeding within a population can have 
negative effects on the adaptability or fitness of the population. It can also impact genomic 
predictions which rely on X chromosome data. The X chromosome is routinely used to predict the 
likely gender of a genotype sample in order to assist with sample identification and quality control 
for curation and animal evaluation purposes (McClure et al. 2018). The heterozygosity of the nPAR 
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X chromosome SNPs is commonly used where a threshold value (or values) of heterozygosity 
indicates whether the “genotype sex” of a sample can be determined as male, female, or ambiguous. 
Reduced diversity in the X chromosome can lead to a higher rate of ambiguous or incorrect sex 
predictions for genotype samples of legitimate females. 

This research characterises heterozygosity of X chromosomes in Australian Wagyu cattle. 
 

MATERIALS AND METHODS 
The data utilised in the study is the Australian Wagyu Association’s genotype database 

containing > 323,000 SNP genotype samples representing more than 3,600 different chips or 
manifests.  

The 280 nPAR X chromosome SNPs, the 101 PAR X SNPs, and 7 Y nPAR chromosome SNPs 
provided by McClure et al. 2018 were utilised for the study. The data set was first reduced to those 
samples with a raw locus call rate >= 0.95. Second, samples had to have been recorded as males or 
females in the pedigree and whose genotype samples were predicted as male or females respectively 
using the Irish Cattle Breeding Federation (ICBF) Y chromosome sex prediction described by 
McClure et al. 2018. This resulted in a final set of 73,814 female and 48,818 male samples. The test 
checks for called Y chromosome SNPs only on samples genotyped on chips where at least 6 Y 
chromosome SNPs were present, i.e., samples where no Y chromosome SNPs were available on the 
chip were discarded. The Y chromosome test was chosen due to its greater accuracy over the X 
chromosome sex test according to McClure et al. 2018 and Garrick 2019.  Males required 6 or 7 
called Y chromosome SNPs to be verified and females could not have more than 1 called Y 
chromosome SNP. The chrX sex test considers the heterozygosity of the nPAR X SNPs where if the 
heterozygosity is low (<= 5%) the sample is considered male, if high (>= 15%) considered female, 
with moderate heterozygosity (>5% and <15%) considered ambiguous. 
The complete Australian Wagyu Association pedigree was utilised to compute pedigree inbreeding 
coefficients for all animals. 

The heterozygosity of each sample was computed as the percentage of loci with heterozygote 
AB calls divided by the total number of loci with called values, e.g. #AB/(#AB+#AA+#BB ).  

The average pedigree inbreeding and chrX heterozygosity by birth year were computed as the 
simple mean of those coefficients across the sex verified genotyped animals born in that year.  

The pedigree inbreeding coefficient calculation, genotype database extracts, sex tests, 
manipulations and analysis of genotype data were all undertaken using the “helical” command-line 
software package (Garrick et al. 2023). 
 
RESULTS AND DISCUSSION 

The animals with sex verified genotypes were examined by plotting the pedigree inbreeding 
coefficient against the nPAR and PAR X chromosome heterozygosities for females (Figure 1), and 
males (Figure 2). There is no evidence of a relationship between pedigree inbreeding and 
heterozygosity. The Pearson correlation for chrY verified females between pedigree inbreeding and 
heterozgosity was -0.28 for PAR X SNPs and -0.09 for nPAR X SNPs. For males the PAR and 
nPAR correlations with inbreeding are -0.009 and. -0.001 respectively.  Interestingly, while the -
0.28 correlation for PAR X SNPs for females is considered a low correlation, the value is notably 
higher compared to the nPAR X SNPs. The pedigree inbreeding coefficient is limited by recorded 
pedigree information, and while only 3,632 of the 73,814 genotyped females were missing either 
sire or dam information in the pedigree, without a complete pedigree inbreeding coefficients will be 
underestimated for some animals. 
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Figure 1. nPAR (left) and PAR (right) chrX heterozygosity versus pedigree inbreeding 
coefficients for chrY verified females 

Figure 2. nPAR (left) and PAR (right) chrX heterozygosity versus pedigree inbreeding 
coefficients for chrY verified males 

Comparing Figures 1 and 2 highlights the capability of the nPAR X chromosome SNPs to 
help confirm genotype samples originating from males and demonstrates no relationship 
between inbreeding and heterozygosity. However, using nPAR X chromosome heterozygosity 
alone, no clear demarcation point can be identified to accurately classify all females as some 
legitimate females exhibit low heterozygosity. 

Consider a heifer who inherits two haplotypes on the nPAR X chromosome – one from the single 
copy in her sire, and one from one of the two copies in her dam. Cases of inbreeding where the X 
carried by her sire is unrelated to the X carried by the mother – for instance if her paternal and 
maternal grand sires were the same animal – then inbreeding will not be related to homozygosity. 
This is because her sire inherits his nPAR X chromosome from his mother. If however the heifers 
sire is also her maternal grand sire, then she may have inherited the same X regions from her sire 
and dam, and inbreeding will be related to homozygosity. A pedigree-based measure to characterise 
the unique inbreeding associated with the nPAR inheritance pattern may help management of nPAR 
X chromosome diversity.   

Table 1 summarises nPAR X heterozygosity and inbreeding by year of birth for chrY 
verified females grouped by the chrX nPAR sex predictions of low, medium, and high 
heterozygosity. Approximately 1.2% of the females are not distinguishable from males 
according to the chrX sex prediction, while approximately 9.9% are ambiguous. The 
average inbreeding in the low heterozygosity group is over double that in the high 
heterozygosity group at 0.13 versus 0.06, 
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compared to 0.09 for the medium heterozygosity (ambiguous) group. The average pedigree 
inbreeding increased from roughly 0.03 to 0.07 over the last 20 years for the high heterozygosity 
group, while at the same time the number of females classified into this group dropped from ~98% 
to 90%.  

Table 1. Grouped by the X chromosome heterozygosity as per chrX sex prediction class, we 
calculate: the average pedigree inbreeding (F), the mean heterozygosity of chrX (hm), and the 
percentage of total individuals N within a birth year that are chrY verified females  

nPAR 
X 

h <= 0.05 
(predicted male 

sex) 

0.15 > h > 0.05 
(ambiguous) 

h >= 0.15 
(predicted 
female sex) 

Birth 
yr. 

hm F % of N hm F % of N hm F % of N N 

2000 0 0 0.0 0.09 0.06 2.2 0.22 0.03 97.8 45 

2002 0.05 0.03 0.9 0.11 0.1 2.6 0.2 0.03 96.6 117 

2004 0 0 0.0 0.12 0.14 8.5 0.2 0.05 91.5 141 

2006 0.03 0.09 0.8 0.12 0.08 5.1 0.2 0.05 94.1 389 

2008 0.03 0.12 1.3 0.12 0.08 8.1 0.21 0.05 90.7 1190 

2010 0.04 0.14 1.0 0.11 0.1 10.0 0.21 0.06 89.0 1171 

2012 0.03 0.12 0.9 0.12 0.09 7.0 0.21 0.06 92.1 1716 

2014 0.02 0.15 1.3 0.11 0.09 9.4 0.21 0.06 89.2 2965 

2016 0.03 0.11 1.5 0.12 0.08 10.4 0.21 0.06 88.1 5153 

2018 0.03 0.13 1.3 0.11 0.09 11.2 0.21 0.06 87.5 8523 

2019 0.03 0.13 1.3 0.11 0.09 11.5 0.21 0.07 87.2 9211 

2020 0.03 0.13 1.3 0.11 0.1 10.0 0.21 0.07 88.8 10914 

2021 0.03 0.13 1.1 0.11 0.1 9.3 0.21 0.08 89.6 12412 

2022 0.03 0.12 0.9 0.12 0.09 9.4 0.21 0.07 89.7 2584 

CONCLUSIONS 
The nPAR X chromosome has a unique inheritance pattern which means standard pedigree 

inbreeding coefficients cannot accurately characterise the probability of identical inheritance by 
descent of two alleles. A new pedigree-based inbreeding measure could account for the fact that 
homozygosity in the non-pseudoautosomal (nPAR) region of the X chromosome is expected only 
when both parents of an offspring share a common ancestor. This allows for the inheritance of 
identical nPAR X chromosome segments from both the sire and dam. Reduction in the 
heterozygosity of the nPAR X chromosome in the Australian Wagyu population over the last 20 
years creates challenges in sex prediction associated with genotype quality control.  
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SUMMARY 

New South Wales Department of Primary Industries’ second-most western station, Condobolin 
Agricultural Research and Advisory Station will be host to the “Measured Goats in the Rangelands 
project”. This five-year co-investment between New South Wales Department of Primary Industries 
and the Meat and Livestock Donor Company project will also work collaboratively with the Animal 
Genetics and Breeding Unit. The project will utilise three goat breeds – Boer, Kalahari Red and wild 
“Rangeland”, both in purebred and crossbred forms to become a multi-breed genomic reference 
population. All project animals born will have a goat specific 70k SNP genomic test to identify 
parentage, breed composition and heterozygosity. Furthermore, performance, health, reproduction 
and structural traits will be recorded in large contemporary groups. The aim is to breed and measure 
over 8,000 animals in a self-replacing style breeding nucleus over 4 years. This project aims to 
provide trait and breed means, update genetic parameter estimates for meat goats, obtain heterosis 
estimates, and provide new links into the KIDPLAN database. The project will also generate new 
traits and knowledge to update the assumptions used for the KIDPLAN analysis. Finally, the project 
has a major adoption and extension focus to increase the uptake and adoption of KIDPLAN breeding 
values at a seedstock and commercial level.  

 
INTRODUCTION 

Currently little is known about the phenotypic and genetic performance of Rangeland goat 
(captured feral goats) and their crossbred progeny. The Australian Rangeland goat population, 
however, underpins the Australian goat meat industry which is an export industry valued at $235 
million per annum (MLA 2020). Rangeland does will continue to be the basis of the goatmeat 
industry owing to their numbers relative to the limited number of pure or crossbred does. To date, 
the majority of goatmeat is supplied from harvest enterprises that capture goats from a semi-feral 
state. However, the National Goat Meat Forecasting Committee and other industry sources, as well 
as an industry survey (Williams and Williams 2019), are reporting a rapid and unprecedented 
increase in the number of producers in NSW and Queensland operating managed and semi-managed 
goat enterprises. 

Given the limited numbers of animals contributing to genetic parameter estimations in a single 
breed for meat goats, producers want to know whether crossbreeding approach will achieve 
production gains within their herds while maintaining the rangeland goat’s hardiness and suitability 
to semi-arid and arid environments. Well-designed Research and Development programs can 
capitalise on this interest to engage producers in herd improvement using genetic strategies. There 
is also a need to investigate the performance and genetic variation within rangeland herds to 
determine and demonstrate the potential for production gains through selection. 

 
* A joint venture of NSW Department of Primary Industries and University of New England 
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This proposal has been developed through a consultation process with goatmeat producers from 
NSW and Queensland who operate a range of enterprises (including extensive commercial, 
seedstock and harvesting) typical of the industry. With the industry focused on increasing national 
supply, transitioning harvest enterprises to managed production systems, improving farm profit and 
meeting consumers preferences, there is a clear need to prioritise working with producers to establish 
and implement selection and crossbreeding strategies that will realise the potential within rangeland 
herds for relatively rapid genetic gain in production and welfare traits.  

There is considerable potential for genetic improvement in Rangeland herds, although the 
benefits from research in genetics and genomics are yet to be realised (Kijas 2012; Aldridge and 
Pitchford 2018). Kijas (2012) reported that the Rangeland population was one of the most 
genetically diverse in domesticated species in the world. One of his main conclusions was “if 
selection pressure was applied to almost any trait, the population would quickly respond and exhibit 
strong genetic gain.”. Both Aldridge and Pitchford (2018) and Williams and Williams (2019) 
suggest that performance recording and understanding genetic parameters of Rangeland goats would 
help increase breeding goat enterprise’s profitability by better understanding the genetic capability 
of Rangeland goat genetics and hence make more informed selection decisions. 

Currently a small population of 400-600 Boer goats (KIDPLAN database) are performance 
recorded annually where KIDPLAN breeding values are calculated by Sheep Genetics (MLA). This 
pipeline needs to be used more as the benefits of genetic selection to improve performance, 
reproductive, health and survival traits has been well documented across all domestic livestock 
species farmed around the world. Given the potential for rapid gains due to high diversity, Rangeland 
goat production systems can rapidly increase performance and hence on-farm profitability.  

This project aims to collect a dataset of up to 9,000 animals that will be genome tested using a 
70k goat specific SNP chip while also recorded for phenotypes. The data collected will also be 
submitted to the KIDPLAN database. The dataset will include 3 breeds (Boer, Rangeland and 
Kalahari) so breed-by-breed comparisons can be made for an eventual multi-breed evaluation. 
Furthermore, the project has a comprehensive adoption and extension arm to help deliver a larger 
uptake of breeding values at a seedstock and commercial breeder level. Finally, the project will be 
available to overlay/sister projects eliciting considerable interest has been made if this project 
proceeds. This includes but not limited to providing links between current KIDPLAN participants, 
a potential KIDPLAN analysis upgrade and “Going Ahead with Goats” project led by Local Land 
Services and meat science overlays.    

 
MATERIALS AND METHODS 

Site. Condobolin Agricultural Research and Advisory Station will host the project in central-
west New South Wales, Australia. The site is a New South Wales Government research station. 
Condobolin has a semi-arid climate with median annual rainfall of 386mm with a pasture growing 
profile between Autumn and Spring and is well-suited for goat research.  

Time. The project will be run over 5 years starting in 2024. The project will require four years 
to achieve five kidding events and grow progeny out for performance recording. The final twelve 
months will be used for data analysis and adoption activities. 

Breeds and numbers. Up to 1,000 breeding does will be joined 5 times in a self-replacing style 
breeding nucleus. The initial 1,000 breeding does will as near as possible equally representing the 
following breeds. 

1) Rangeland goat population that have been sourced from multiple wild-harvest depots 
2) High Boer content  
3) High Kalahari Red content 
Three breeds of bucks will be mated via artificial insemination and then back up syndicate mated 

in a self-replacing style reference population over the 4 years. Both purebred and crossbred 
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(including reciprocal crosses) matings will be undertaken. Link sires to the KIDPLAN database will 
be used so all data can be used in future KIDPLAN analyses.  

Does born in the project will be first eligible for mating at eight months of age. Female progeny 
will only be culled from the project for one of the following reasons: 

1) Animal ethics issue where a physical and health affliction affects the animal’s state of 
health 

2) If a doe is scanned empty after two consecutive mating events  
3) If a doe is unsuccessful in raising kids at two consecutive events 

Traits recorded including genomics. Traits measured on project progeny are defined in Table 
1. All parents and progeny in the project will be genotyped on Neogen’s 70k goat specific panel via 
a tissue sample unit. This will allow pedigree to be assigned. Furthermore, genomic testing of each 
project animal will facilitate genomic based analysis including genetic parameter estimation, 
genome wide association studies, and estimation of breed composition and heterosis.    
 
Table 1. List of traits to be measured on experimental animals. Wt: weight 
 

Growth Birth & 
Reproduction Carcase & EQ Hard to Measure Others 

Weaning Wt Conception Fat Depth Faecal egg count1 Temperament 

Post-weaning Wt Litter size Eye muscle 
depth 

 Structure 

Yearling Wt Kids weaned Condition score  Body condition score 

Adult Wt Udder score   Horn Score 

    Coat colour 
1Where enough phenotypic variation is available 
 

Sire selection. Sires will be used via artificial insemination and natural mating. Artificial 
insemination sires will be nominated by industry for a fee like the Merino Central Test Sire 
Evaluation (Swan et al. 1998) systems. Nominated bucks will be accepted according to their 
influence in industry and/or pedigree supplied and/or genetic diversity and/or a breeder seeking a 
genetic links to the KIDPLAN database to begin submitting performance records. Eligibility for 
inclusion in artificial insemination will require bucks who are currently in KIDPLAN and/or sires 
or sons of sires who have contributed significantly to the goatmeat population. This will provide sire 
linkage between databases. In addition, naturally mated back-up bucks will be purchased by NSW 
DPI from key industry seedstock herds according to selection criterion similar to that adopted for 
the selection of AI sires. Sire purchasing will also strive to capture as much of the goat meat 
population’s genetic diversity. Given there is little pedigree recorded in meat goats, the project 
accepts it will not capture all the diversity of the goat meat population. However, it will be a 
foundation block to build on over time, like the beginnings of the Sheep CRC Information Nucleus 
Flock (van der Werf et al. 2010). As the project progresses, more sophisticated approaches to sire 
selection can be used such as optimisation of current and future contributions using optimal 
contribution methods (Wray and Goddard 1994).   

Base dam selection. Base dams will be sourced from commercial breeders who can provide as 
high a content of each breed (Rangeland, Kalahari Red, Boer) as possible. The project will aim to 
source from no more than three properties each. If a depth of pedigree can be obtained (e.g. sires of 
the sourced females are genotyped to provide sire pedigree), this would be advantageous. Prior to 
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the project beginning, dams will be given time to kid any potential existing pregnancies. This is 
necessary given many goat producers have little control of bucks (owned or feral entering properties) 
mating does.  

Statistical analysis. Univariate animal models for single and/or repeated measures will be fitted 
using linear mixed model equations to do genetic parameter estimation of each trait. Genomic 
relationships will then be added to further refine estimations where breed proportions and heterosis 
can be accounted for.  

Once univariate models are finalised, multi-trait analysis will be undertaken to better understand 
genetic relationships among traits. 

Furthermore, genomic information will facilitate genome wide association (GWAS) analysis to 
investigate genetic markers that have large phenotypic effects such as horns, coat colour, muscling 
and potentially ovulation rate.  

A feasibility study will also be conducted to examine whether data from this reference population 
will be suitable to become part of the KIDPLAN database. If successful, the KIDPLAN database 
would be expected to grow by 80% through this project, thereby providing key genetic links for 
existing and new studs and breeds into the KIDPLAN analysis. It will be key to providing a 
foundation to improve and update the KIDPLAN analysis plus adding new traits and industry 
relevant indexes. 

CONCLUSION 
The Measured Goats in the Rangelands project will form a valuable resource population for the 

growing goat meat industry. The project will introduce new breeds Kalahari Red and wild 
“Rangeland” to the KIDPLAN database as well as providing a well-structured genomic reference 
At the time of writing this paper, the project is at the stage of sourcing females and sires.  
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SUMMARY 

A bioeconomic model was developed to predict outcomes of scenarios to select for methane 
efficiency in Merino sheep. The model determines economic values for trait improvement according 
to different breeding objectives. A selection index approach is used to predict response to selection, 
assuming knowledge or assumptions about genetic parameters, economic values of breeding 
objective traits and phenotypic measurement information used to select animals, including 
information from reference populations for genomic selection. Breeding objectives were based on 
profit per DSE, reduction in overall flock methane output and methane production per kg lamb 
produced (defined here as methane efficiency). Results showed that methane production to produce 
a certain amount of lambs is affected not only by methane production per head, but also by 
reproductive rate. Methane output per kg lamb produced can be decreased by 3.5% per annum, with 
the effect of improving production and reproduction efficiency being stronger than the effect of 
reducing methane production per head. 
 
INTRODUCTION 

In the need to reduce the production of enteric methane by ruminants breeding programs can be 
used to select for sheep that produce less methane. However, reducing methane emission per head 
might not be the most optimal strategy, as methane production is correlated to feed intake and 
productivity traits. Bio-economic modeling of sheep production systems can be used to determine 
breeding objectives and economic values of traits in multiple trait selection indices. An overall 
breeding goal is required and this can optimize profit per unit of production, e.g. profit per ha or 
profit per product. Equally we can minimize methane output, either per head or per kg product. How 
these various breeding objectives compare can be explored by deriving the index weights for the 
various traits in the breeding objective and predicting selection response when applying these 
weights. The purpose of the paper is to compare various selection strategies in sheep breeding 
programs with special emphasis on reducing overall methane output in sheep production systems.  
 
MATERIALS AND METHODS 

Increasing reproduction rate and other output traits for a fixed number of breeding ewes results 
in more lambs per breeding ewe and more feed requirement and more output overall. Therefore, it 
is relevant to calculate profit and output for a fixed amount of feed resource input, i.e. profit per dry 
sheep equivalent (DSE). The methane production of the flock was calculated for a fixed number of 
breeding ewes, in which case an increased reproductive rate increases the number of lambs produced 
by the flock, which increases the overall methane yield. However, the methane yield per kg lamb 
carcass produced could be lower, as fewer ewes are needed to produce the same number of lambs. 
Therefore, methane yield, assessed as the amount of CO2 Eqvt (kg) produced per kg of lamb carcass 
is a relevant measure of measuring methane efficiency.  

A production model was used to calculate profit and outputs based on the average phenotypic 
value of breeding objective traits. A model was based on a Merino flock with 100 breeding ewes, 
focusing on ten key traits that define profitability. Note that the flock size of 100 is just for 
convenience and actual size is not relevant as outputs are scalable per breeding ewe. All assumptions 
in the production model are initial ‘ballpark’ guesses with the aim to compare different breeding 
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objectives and their associated selection response. The average methane production (MP) per mature 
ewe per day in the base situation was 24 g/day which was 8.76 kg/year. The MP of a slaughter lamb 
was assumed to be 90% of that of an adult ewe. The methane yield per breeding ewe, including the 
slaughter and young replacement ewes associated with each breeding ewe is then 15.35 kg/per 
breeding ewe per year which is 42.98 CO2 Eqvt tonne per year for a flock with 100 breeding ewes. 
The MEMJ requirement for different periods in the life of lambs, replacement ewes and mature ewes 
were derived from Thompson et al. (1985), with a price of feed ($/MJME) between $0.01 and $0.03. 
It was assumed that 1 kg feed contains on average 10 MJME, with some variation in feed quality 
leading to differences in MJME cost for different ages. The price for lamb carcass was $6.50/kg 
whereas the wool price was $10/kg. The carbon price was assumed to be $40 per tonne CO2 Eqvt. 
Variation in fleece weight and fibre diameter did not contribute to differences in methane production 
and neither was any variation in carcase fat and carcass eye muscle depth assumed to be related to 
feed requirement or methane production. It is important to note that a bioeconomic model for the 
purpose of deriving economic weights for genetic improvement requires partial derivatives of the 
profit, or any other objective, with respect to the trait means. This means that to calculate the 
economic value of one trait, only one trait at a time is changed, assuming that other traits are 
constant. This might seem counter-intuitive, e.g. for mature body weight, as typically one would 
expect more feed intake if animals become larger. However, these relationships are captured by the 
correlations applied in the selection index model that determines optimal trait responses for a given 
set of economic values and a given amount of information measured to select animals. Note that 
only changes in the mean of reproduction traits affect the methane production in the flock as for the 
same number of breeding ewes, more lambs per ewe will lead to more methane production. The ten 
breeding objective traits modelled are given in Table 2 along with their means in the base situation. 

Economic values were calculated as partial derivative of a breeding objective criterion with 
respect to trait means. Breeding objective criteria were i): optimising profit per ewe for a fixed feed 
resource, i.e. per dry sheep equivalent (DSE) (BrObj1) ii) total methane production of a 100-ewe 
flock (BrObj2) and iii) the amount of methane (kg CO2 Eqvt) produced per kg of lamb (BrObj3). 
Table 1 gives the results for economic weights of some objective traits for these three breeding 
objectives. The weights in BrObj2 suggest that to reduce methane, one should select against more 
reproductive ewes as fewer lambs per breeding ewe produce less methane per breeding ewe overall. 
The third breeding objective is more relevant where kg CH4 per kg lamb carcase is minimized. This 
objective results in positive weights for slaughter weight and reproduction traits and a negative 
weight for methane production per ewe. 

 
Table 1. Economic weight (standardized) for four different breeding objectives 
 

 Profit per head for 
fixed DSE 
(BrObj1) 

Methane yield 
per ewe 

(BrObj2) 

kg methane/ kg 
carcass (BrObj3) 

Slaughter Weight (9 mo) $3.03 0.00 3.03 
Fertility (pregnancy rate) $146.03 -89.00 173.01 
Lambing rate (lambs weaned/lambing) $72.81 -44.50 85.48 
Mature ewe Weight kg $0.75 0.00 0.00 
Daily DM Feed Intake (kg/day) -$34.98 0.00 0.00 
Methane production (g per ewe/day) -$0.89 -6.29 -6.29 

 
Selection response was calculated based on selection index theory. Genetic and phenotypic 

parameters were taken from Brown and Swan (2015) with parameters related to methane yield and 
feed intake largely based on Robinson et al. 2016. The genetic correlation between feed intake and 
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methane production (MP) was assumed to be 0.8 and genetic correlations of MP with mature weight, 
fertility and lambing rate were 0.6, 0.10 and 0.10, respectively. Selection of breeding animals was 
optimised across age classes with information used for selection typical for traits routinely measured 
on-farm and MP and feed intake traits predicted from a reference population via genomic testing, 
assuming a reliability (accuracy-squared) of 0.10. 

RESULTS AND DISCUSSION 
Selection response per annum are given for breeding objective traits in Table 2. The results of 

genetic change in the MP per ewe, the MP per 100 ewe flock and MP per kg lamb are also given in 
Table 2. Results show that a breeding objective that maximizes profit per head for a fixed amount 
of DSE increases the methane output per breeding ewe because ewes have more lambs and there is a 
correlated response to selection for larger ewes and lambs. However, the methane yield per kg 
lamb carcase produced is about 2.7% lower than without selection. 

Selecting only for lower MP per ewe in BrObj2 leads to lower methane production per ewe, but 
all traits respond negatively, such that profit decreases by $5.52 per annum, rather than increasing 
by $6.65 per annum. Note that BrObj2 only uses (negative) weights for reproduction traits and 
methane yield (Table 1), but these traits are correlated to weight traits. BrObj3 leads to the largest 
reduction in methane yield per kg lamb carcase produced. Under this scenario, the methane yield 
per breeding ewe increases because of an increase in mature size and because each breeding ewe 
produces more lambs, but the increase is about half of that when selection for profit (BrObj1). The 
increased productivity under BrObj3 means that every year of genetic improvement gives a 3.5 
percent reduction in methane for the same amount of lamb meat. The profit increase due to genetic 
improvement is about 17% lower than under BrObj1. This indicates that the carbon price of $40 per 
ton CO2 Eqvt is not having a large effect on the selection response.  

The predicted response under BrObj1  varies little between no price on carbon and a carbon price 
of $400, with the response of MP changing most, from 0.22 to 0.14 g/day. A carbon price of ~$900 
would be required for zero response in MP under BrObj1. A very high carbon price would result in 
a similar response as BrObj2. In a scenario under BrObj3 where MP and feed intake are not 
measured in a reference population, the increase in MP would be 35% higher compared to results in 
Table 2, whereas the increase in feed intake would be 10% higher. This would also allow a slightly 
higher (~3%) response in production and reproduction trait responses, and the overall effect on 
methane output per kg lamb produced would be small. However, the effect on profit increase per 
annum would be 14% lower, mainly due to the higher cost of MP. Therefore, measuring MP and 
feed intake has a limited effect on methane/kg lamb, but it allows more improvement in productivity 
and reproduction traits while limiting and increase in methane output per kg lamb produced .  

Knowledge of genetic parameters of feed intake and MP in sheep is still limited and a current 
MLA-EPA project aims to collect a lot more data on these traits. It is also unclear how methane 
production changes between lamb and ewe stages and whether the genetic correlation between MP 
measured in these different stages is close to 1. Therefore, results in this paper are preliminary. 
However, they already give a clear picture of the various perspectives from which methane 
efficiency breeding objectives can be based on. The paper has not considered functions of traits such 
as residual methane production (methane production adjusted for body weight and production traits) 
or methane yield (methane production per kg feed intake). Whereas breeding objectives can be 
defined as productivity ratios, it is not useful to define objective traits as function of traits. Especially 
ratios of traits have undesirable properties in selection index schemes as they tend to be less normally 
distributed and could give rise to non-linearity in the breeding objective.  

Previous studies such as Robinson et al. (2016) and Gebbels (2022) have also shown that optimal 
breeding strategies do not aim to reduce methane production per ewe, as this tends to result in lower 
feed intake, lower growth rates and lower reproductive performance, hence overall reducing 
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efficiency of lamb production. Therefore, sheep production systems that aim for less overall methane 
output should aim for genetic improvement resulting in increased productivity and reproductive 
performance. Including feed intake and MP in the breeding strategy is now possible due to genomic 
selection and the creation of reference populations.  Such a strategy allows for maintaining selection 
for increase productivity while limiting the increase in methane production. In that aspect, this is 
akin to selection strategies to improve feed efficiency, where optimal genetic improvement will not 
result in lower feed intake per animal, but rather in improved productivity while limiting the 
correlated increase in feed intake. 

Table 2. Breeding objective traits, their means before selection, their annual change with 
three different breeding objectives, and the effect on methane efficiency parameters  

Breeding Objective 

Breeding Objective Trait (units) 
Profit / 
DSE 

Reduce CH4/ 
ewe 

kg CO2 Eqvt/ 
kg lamb 

Current mean Annual change (trait units) 
Slaughter Weight (9 mo) 47.27 0.97 -0.79 0.77 
Carcase Eye Muscle Depth (mm) 28.00 0.31 -0.17 0.12 
Carcase Fat Depth (mm) 7.00 0.10 -0.05 0.00 
Fleece Weight (kg) 4.00 0.01 -0.01 -0.01
Fibre Diameter (micron) 18.00 -0.04 0.00 0.03
Fertility (pregnancy rate) 0.75 0.01 -0.01 0.01
Lambing Rate (lambs weaned/lambing) 1.50 0.01 -0.01 0.01
Mature ewe Weight (kg) 55.00 1.27 -1.11 1.13
Daily DM Feed Intake (kg/day) 1.20 0.02 -0.02 0.01
Methane Production (g per ewe/day) 24.00 0.22 -0.28 0.10

Change in profit (p.a.) $6.65 -$5.52 $5.47

Change in CH4 output /ewe (% of mean) 0.92% -1.16% 0.43%

100 ewe flock CO2 Eqvt tonne/yr 53.33 101.8% 98.6% 100.8%

kg CO2 Eqvt per kg lamb produced 28.04 97.3% 102.5% 96.5%

CONCLUSION 
Breeding strategies to reduce the amount of methane produced in sheep production systems rely 

mainly on improving productivity and reproductive performance while measuring and selecting for 
methane production and feed intake allow increased productivity while limiting an increase in 
methane production and feed intake. The amount of methane produced per kg lamb product can be 
reduced via genetic improvement by about 3.5% per annum. 
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SUMMARY 
Wry Face (WF) is a mammalian condition resulting in facial asymmetry. It is most obvious in 

long-faced species (e.g. horses and cattle) and ranges in severity. A mild hereditary form of WF is 
seen at a low frequency in the Australian Jersey cattle population. To investigate the underlying 
genetics and mode of inheritance of WF, a pilot study was performed. Four WF Australian Jersey 
cows and one unaffected half-sibling were whole genome sequenced (WGS) and included in Run 9 
of the 1000 Bull Genomes Project (1kbulls). A subset of genetic variants found in the WF cows 
compared to the unaffected half-sibling were in or near genes associated with disorders involving 
facial deformities. This study is being expanded to validate these results and increase the power to 
detect more potential WF causal variants. Identifying WF causal variants and including them in 
routine DNA testing may allow farmers to avoid high risk matings that could result in WF offspring. 

 
INTRODUCTION 

WF is a mammalian condition causing facial asymmetry. WF is typically congenital, resulting 
in maxilla deviation and sometimes involves the mandible. It is most obvious in long-faced species 
such as horses and cattle (Abdelhakiem and Elrashidy 2017). The condition ranges in severity from 
a slight < 5o lateral deviation, only impacting aesthetics, to severe > 60o lateral deviation impacting 
breathing and feeding (Aiello and Moses 2016). Individuals with severe WF often do not survive to 
adulthood. A mild hereditary form of WF is seen at low frequency in the Australian Jersey cattle 
population, but at high frequency within some herds (mode of inheritance is unclear). This form of 
WF does not appear to impact quality of life or production of affected cattle. 

Despite the incidence of WF in cattle, there have been few studies examining the inheritance 
mode or underlying genetics. Here we present a small study examining WGS from four WF 
Australian Jersey cows (two different herds) and one unaffected half-sibling cow. We demonstrate 
that we can identify candidate genetic variants and genomic regions which may underlie WF. We 
suggest that it would be advantageous to expand this study to validate these results and increase the 
power to determine the inheritance mode and detect the most likely candidate causal variants. 

 
MATERIALS AND METHODS 

Tail hair samples were obtained from four Australian Jersey cows that had been visually assessed 
as having WF by conformation classifiers and one unaffected half-sibling Australian Jersey cow 
(two different herds). DNA was extracted using the DNeasy Blood and Tissues Kit (Qiagen) and 
WGS libraries prepared with the NEBNext Ultra II DNA Library Prep Kit. Libraries were sequenced 
in a 150 cycle paired-end run on a NovaSeq6000 (Illumina). Raw sequence reads were processed 
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according to the 1kbulls guidelines and submitted for inclusion in 1kbulls-Run9 (reviewed in Hayes 
and Daetwyler 2019). 

Jersey cattle genotypes in 1kbulls-Run9 were obtained (179 individuals) and filtered for variants 
that were homozygous for the reference allele in the unaffected half-sibling and either heterozygous 
or homozygous for the alternate allele in all four WF cows. Assuming there may be more WF 
individuals in 1kbulls unknown to us (at low frequency), further filtering was applied so that the 
alternate allele would be seen in ≤10 individuals (~5% of individuals). Remaining variants were run 
through a haplotype detector (custom in-house program) and annotated using Ensembl Variant 
Effect Predictor (VEP) (McLaren et al. 2016). Bos taurus genes identified by VEP as being 
associated with these variants were included in over-representation analysis of GO Biological 
Processes (BPs) and KEGG pathways using DAVID (Huang et al. 2009). MalaCards (Rappaport et 
al. 2013) was used to determine if these genes had an association with human diseases affecting 
craniofacial skeletogenesis and/or other disorders involving maxillofacial dysmorphism.  

To investigate the WF inheritance mode, pedigree information for the four WF cows was 
provided by DataGene Limited and interrogated to identify common ancestors (manually and using 
custom scripts). The pedigree was visualised using the R package visPedigree (Luan 2018). 
 
RESULTS AND DISCUSSION 

Pedigree analysis revealed all five cows could be traced to two common ancestors: “Secret Signal 
Observer” (paternal line) and “Soldierboy Boomer Sooner of CJF” (combination of maternal and 
paternal ancestry) (Figure 1). However, we cannot confirm that either bull had WF as there are no 
phenotypic records and only side-profile photographs available. In an early study by Ewing (1957) 
examining frequency (21.5%) and inheritance mode of “twisted face” (presumably WF) in a North 
American Jersey cattle herd, it was concluded that “twisted face” was most likely a simple recessive 
trait. Our pedigree cannot definitively corroborate this conclusion as there is an insufficient number 
of animals and inadequate phenotypic information. While it appears not to be a dominant trait, we 
cannot rule out a reduced (or “incomplete”) penetrance inheritance mode. Also, while Secret Signal 
Observer from our pedigree is an American Jersey bull, he was born in 1953, and if WF was at high 
levels in Ewing’s 1957 study (21.5%), WF is highly unlikely to have arisen initially from him. 

Filtering 1kbulls-Run9 Jersey cattle genotypes found 16,771 variants homozygous for the 
reference allele in the unaffected half-sibling and heterozygous or homozygous for the alternate 
allele in all four WF cows (and at <5% of the total 179 Jersey cattle). We observed these variants 
tended to cluster in regions, most likely the result of high linkage disequilibrium as Australian Jersey 
cattle are particularly inbred (Scott et al. 2021). Interrogating these variants with VEP identified 84 
variants within 66 genes as having either a low, moderate or high impact. Most variants were intronic 
(49%) or intergenic (39%) with no impact assigned. Of the coding variants, 53% were synonymous, 
42% were missense, 2% were nonsense, and 2% were frameshift mutations. 

The only high impact variant within an annotated gene was a C/A SNP at Chr6:13249536 which 
creates a stop codon in the AP1AR gene (Table 1). AP1AR is involved in negative regulation of 
receptor recycling and vesicle targeting between the trans-Golgi network and endosomes (Stelzer et 
al. 2016). While there is no known link between AP1AR and diseases affecting craniofacial 
skeletogenesis or maxillofacial dysmorphism, several genes associated with variants classified as 
having a “moderate” impact do have known associations (Table 1), including SCARF1, BANK1 and 
RAB2A (Rappaport et al. 2013). SCARF1 is expressed in endothelial cells and regulates the uptake 
of chemically modified low density lipoproteins (Stelzer et al. 2016). It has been implicated in Van 
Den Ende-Gupta syndrome, a congenital autosomal recessive malformation syndrome that effects 
facial features and the skeletal system in humans (Rappaport et al. 2013). BANK1 is associated in 
humans with both Parry-Romberg syndrome (facial hemiatrophy), a rare condition involving 
atrophy of facial components (including the jaw) and Potocki-Shaffer syndrome which effects 
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craneo bones and facial appearance (Rappaport et al. 2013). RAB2A belongs to the Rab family, 
membrane-bound proteins involved in vesicular fusion and trafficking (Stelzer et al. 2016). RAB2A 
has been implicated in cleft palate malformation as well as Warburg Micro syndrome 1, a rare 
autosomal recessive syndrome effecting facial appearance (Rappaport et al. 2013). Interestingly, 
examining the region around this RAB2A variant revealed a large cluster of variants which were 
heterozygous in the WF cows and homozygous for the reference allele in the unaffected half-sibling. 

Most variants were in intronic and intergenic regions (49% and 39% respectively). Regulatory 
elements (e.g. enhancers) are also located in these regions, therefore these variants should not be 
completely dismissed. Another unexplored category of variants in this study are structural variants 
(>50 bp long) that can be more accurately detected using long read sequencing. 

Over-representation analysis of VEP genes identified several significantly implicated GO BPs 
and KEGG pathways (P<0.05). Of particular interest were those genes involved in “endochondral 
ossification” and “positive regulation of osteoblast differentiation”, both essential for bone 
formation. The ENSBTAG00000037710 gene (unannotated) containing a “high” impact frameshift 
and ZNF536 containing two missense SNP with a “moderate” impact were linked to “regulation of 
transcription, DNA-templated” (Table 1). Also of interest was the KEGG pathway “folate 
biosynthesis” involving the ENSBTAG00000016748 gene (unannotated) which has two “moderate” 
impact missense SNP (Table 1). Folate (vitamin B9) is an essential nutrient long acknowledged as 
important for foetal growth and development and plays an important role in maintaining bone health. 
  

  
Figure 1. Simplified pedigree for wry face affected cows 
Green circles represent the four affected cows, blue circles represent sires and yellow circles represent dams. 
Common ancestors are highlighted by red boxes. To visually simplify the pedigree, sires and dams not 
connecting back to common ancestors have been removed. 
 
CONCLUSION 

This small study has demonstrated that it may be possible to uncover the genetic cause for WF 
in the Australian Jersey population. Since multiple putative causal genes have been identified, extra 
sequencing, including long read sequencing, of affected and unaffected relatives is required to 
identify the causal mutation(s). This study is being expanded to validate these results and increase 
the power to detect more potential WF causal variants. Inclusion of causal variants in routine DNA 
testing may allow farmers to avoid high risk matings that could result in WF offspring. 
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Table 1. Variants classified as having high or moderate impact 

Chr Position Variant Consequence Impact Gene Ensembl ID 
6 13249536 C/A stop codon gained HIGH AP1AR ENSBTAG00000003941 
12 71304228 C/T splice donor  HIGH - ENSBTAG00000026070
18 57221530 G/GA frameshift HIGH - ENSBTAG00000037710
2 117389921 T/A missense MODERATE DNER ENSBTAG00000016063
2 120041472 C/G missense MODERATE - ENSBTAG00000016748
2 120041475 C/G missense MODERATE - ENSBTAG00000016748
3 60257454 C/T missense MODERATE TTLL7 ENSBTAG00000003322
3 76782778 C/T missense MODERATE DEPDC1 ENSBTAG00000001343 
4 116914236 G/C missense MODERATE PAXIP1 ENSBTAG00000017505 
4 118147886 G/A missense MODERATE RNF32 ENSBTAG00000020335 
6 22868432 T/A missense MODERATE BANK1 ENSBTAG00000015297 
9 13265164 G/C missense MODERATE CD109 ENSBTAG00000013222 
12 72839314 C/A missense MODERATE - ENSBTAG00000023309 
13 23414943 C/T missense MODERATE - ENSBTAG00000051361 
13 27934712 A/G missense MODERATE - ENSBTAG00000047869 
13 42905566 G/A missense MODERATE - ENSBTAG00000035572 
13 43143962 C/T missense MODERATE CALML5 ENSBTAG00000013854 
14 8564112 C/T missense MODERATE TMEM71 ENSBTAG00000017138 
14 26252117 A/T missense MODERATE RAB2A ENSBTAG00000000948 
14 76196018 T/C missense MODERATE RMDN1 ENSBTAG00000015734 
15 6405728 T/G missense MODERATE BIRC3 ENSBTAG00000024918 
15 81534709 T/A missense MODERATE OR5B12 ENSBTAG00000049719 
18 36479140 G/A missense MODERATE COG8 ENSBTAG00000001665 
18 38353565 C/G missense MODERATE ZFHX3 ENSBTAG00000014636 
18 41070602 C/T missense MODERATE ZNF536 ENSBTAG00000007262 
18 41071302 C/T missense MODERATE ZNF536 ENSBTAG00000007262 
18 62698984 C/T missense MODERATE - ENSBTAG00000049820 
18 62921228 C/G missense MODERATE - ENSBTAG00000050536 
18 62972057 G/C missense MODERATE - ENSBTAG00000038797 
18 62972059 A/G missense MODERATE - ENSBTAG00000038797 
19 22747077 G/A missense MODERATE SCARF1 ENSBTAG00000011483 
23 13275715 T/C missense MODERATE KIF6 ENSBTAG00000027197 
28 35535151 G/T missense MODERATE - ENSBTAG00000048082 
28 35647259 C/T missense MODERATE SFTPA1 ENSBTAG00000023032 
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SUMMARY 

Obtaining individual feed intake data under pastoral grazing studies is important for work 
relating to feed efficiency and greenhouse gas emissions, but is nearly impossible to obtain. 
Accelerometer technology has been used to determine the duration of grazing events, but data from 
feed intake facilities suggests that between-animal variation in feeding rate makes duration alone a 
poor proxy for feed intake. This study explored in detail the trait of feeding rate (feed eaten/feeding 
duration) on data collected through a feed intake facility. Feeding rate was demonstrated to be a very 
consistent trait of an individual animal across their feeding events with a high heritability (0.60 ± 
0.14) and considerable between-animal variation. Using feeding rate and feeding duration accurately 
predicted feed intake. Future accelerometer work to predict feed intake should therefore emphasise 
whether or not feeding rate can be accurately determined in addition to feeding duration. 

 
INTRODUCTION 

There is increasing interest in being able to accurately determine the individual feed intake for 
use within studies relating to feed efficiency and greenhouse gas emissions. Whilst this can be 
achieved in feed intake facilities through either cut and carry of feed, or the use of feed intake 
recorded against electronic identification tags, limited options are available when animals are 
grazing at pasture. One possible approach in which the feed intake of animals grazing at pasture 
could be estimated is through the use of accelerometer data that can be classified to describe the 
behaviour of the animal at any point in time. Smith et al. (2016) used “the head of the cow is tilted 
downwards and positioned near the ground. The cow is either taking bites of the pasture or searching 
for the pasture” to classify animals as grazing. This definition was used by Greenwood et al. (2017) 
to estimate the individual intake of animals by multiplying the length of time an animal was 
classified as grazing by a constant to estimate intake. However, such a model assumes that all 
individuals consume feed at a constant rate. In feed intake facility studies, significant between 
animal variation in the rate at which animals eat has been demonstrated (Durunna et al. 2011; 
Johnson et al. 2022). Johnson et al. (2022) estimated the heritability of feeding rate to be 0.29 ± 
0.10. Utilising the data set described by Johnson et al. (2022), the question of whether feeding rate 
could be a useful metric, together with feeding duration, to predict feed intake is explored.  

 
MATERIALS AND METHODS 

All animal experiments were conducted to meet the guidelines of the 1999 New Zealand Animal 
Welfare Act and were approved by the AgResearch Animal Ethics committees. Specific approval 
numbers were AEC13563, AEC13892, and AEC14221. 

Animals. The data used in this study is described in detail by Johnson et al. (2022). In brief, 
individual feed intake data over 42 days (after 14 days adaptation) was collected on 986 ewe lambs 
in a feed intake facility utilising automated feeders which captured the weight of individual feeding 
events and their duration through the feeders being fitted with RFID readers which recorded which 
animal was in the feeder during a feeding event. Five cohorts of lambs recorded over three years 
made up the data set, with the animals sourced from two progeny test flocks and the AgResearch 
methane selection line flock. The animals were fed a lucerne pellet ad libitum. 
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Data cleaning and analysis. In the study of Johnson et al. (2022), data cleaning was carried out 
at the population level. In this study, data editing was carried out at the individual animal level as 
follows. For each animal, intake was regressed on duration, the upper and lower bounds of the 95% 
confidence interval determined, and any values lying outside of the bounds were deleted and the 
regression step was repeated to estimate the model goodness of fit (R2). Approximately 6% of the 
data was deleted. From this revised data set, an estimate of feeding rate (FR) was determined, 
calculated as feed eaten divided by the duration of the individual feeding event. The overall FR was 
calculated as the average of all FR data across the 42 days for each individual. 

To determine the consistency and utility of FR, the data set was split into two equal time periods 
of 21 days (PER1 and PER2). The measured average daily intake in PER2 was calculated. The 
average FR was calculated for each time period independently. The FR value from PER1 was 
multiplied by daily feeding duration (FD) in PER2 to provide an estimate of intake in PER2. The 
derived trait data were subsequently analysed to determine their relationships. 

The heritability of FR across all of the data was estimated using a model fitted as described by 
Johnson et al. (2022) including fixed effects of birth-rearing rank, age of dam, contemporary group 
(cohort*flock) and a covariate of birthday deviation.  

 
RESULTS AND DISCUSSION 

The potential for accelerometers to generate feed intake data has been explored but models to 
date have been limited to using grazing duration as a proxy for intake. Whilst the dataset used in this 
study is generated from a feed intake facility it allows the value of the inclusion of FR to better 
predict intake to be assessed. Figure 1 demonstrates that feeding event duration alone is not an 
accurate predictor of the intake.  

Figure 1. Average daily feeding duration for all animals plotted against their daily feed intake 
across full 42 day time period (R2 = 0.14) 

 
Figure 2 demonstrates between-animal differences in FR, and the consistency with which it 

presents for an individual animal. Contrasting between one animal which exhibited a low FR and as 
such for a FD of 500 seconds it only consumed 132g, compared with another animal exhibiting a 
high FR, consuming 327g of feed over 500 seconds. The R2 of the associated regression models for 
these two animals was more than 0.86 indicating that the concept of rate is highly consistent across 
the 42 days of measurement for each animal. Across all animals, the average R2 after one round of 
data cleaning was 0.89 with a range of 0.61 to 0.96, with the R2 value greater than 0.80 for 96% of 
the animals. The average FR across all animals was 0.40 with a standard deviation of 0.11 and a 
coefficient of variation of 29%. Combined, these results indicate that for the majority of animals in 
the dataset, there is a very consistent relationship between the length of time that they are feeding 
and the amount of feed they are consuming within that time, but that individual animals feed at 
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different rates such that some animals are “nibblers” with a very sow feeding rate and others are 
“guzzlers” with a very high feeding rate. 

 
Figure 2. Examples of animals with high (black) feeding rate (model R2 = 0.87) and low feeding 
rate (model R2 = 0.95). Data points plotted are all feeding events across 42 days of individual 
feed intakes being measured, with outlier data points removed (beyond 95% confidence 
interval of original regression removed) 

 
The next step was to explore the potential of FR to more accurately predict feed intake than FD 

alone.  The dataset was split into two 21-day periods and FR was calculated for each period. 
Estimated feed intake in PER2 was calculated by multiplying the FR of PER1 trait by the daily FD. 
Figure 3 a) shows that FR for PER1 and PER2 were highly correlated. Although PER1 and PER2 
were contiguous periods, it does demonstrate the consistency of the trait over 42 days. Figure 3 b) 
shows that by utilising the PER1 FR and FD an improved estimate of feed intake was obtained 
compared with using FD alone, and that FR at the individual animal level calculated on one data set 
was robust enough to be used with independent data.  

 

a) b)  
Figure 3. a) Average feeding rate calculated using data from the first 21-day time period 
plotted against the average feeding rate calculated using data from the second 21-day time 
period (R2 = 0.87); b) Predicted average daily feed intake for the second 21-day period (using 
feeding rate calculated from the first 21 day period feeding rate multiplied by the average 
daily duration of feeding from the second 21 day period) plotted against the average measured 
feed intake for the second 21 day period (R2=0.78) 

 
The heritability estimate for FR was 0.60 ± 0.14. This value is considerably higher than 0.29 ± 

0.10 reported for the same data set in Johnson et al. (2022), however, in that dataset rate data was 
cleaned at the population level, versus the individual animal level as was carried out in this current 
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study, highlighting that whilst some values might be within population limits, they are inconsistent 
and anomalous for an individual animal. 

Using the two animals in Figure 1 the intake predictions using FD or FD and PER1, FR are given 
in Table 1. Whilst both animals were measured to have eaten nearly identical amounts of feed, their 
FD were over two-fold different and as such a model only considering FD resulted in very different 
estimates of intake for the two animals, whereas the model incorporating FD and FR improved the 
estimates relative to their measured intakes.  

Table 1. Predicting feed intake using feeding duration with and without feeding rate (FR) data 
for two animals with similar total measured intakes but very different durations and one 
animal exhibiting a high FR (Guzzler) and the other a low FR (Nibbler). FR was calculated on 
two consecutive 21-day subsets of the full dataset (PER1 and PER2) 

Trait/Model Description High FR Low FR 

PER1 Feeding Rate (g/sec) 0.65 0.27 

PER2 Feeding Rate (g/sec) 0.63 0.26 

Daily Feeding Duration (sec/day) 4540 11235 

Model: Intake=Dur (g) 2079 2907 

Model: Intake=Dur* PER1 Rate (g) 2951 3033 

Actual Intake (g/day) 2950 2949 

CONCLUSION 
This work demonstrates that feeding rate is a unique attribute of an individual and is a highly 

heritable trait. As such future work on accelerometer, or other, technology used to predict feed intake 
should place a strong emphasis on determining whether or not the rate at which an animal is feeding 
can be determined versus just predicting feeding duration. If the accelerometer data can predict FR, 
models combining FD and FR will result in improved predictions of feed intake. 
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SUMMARY 
A total of 173 heifers were fitted with SenseHub™ collars and recorded for their activity and 

rumination behaviour over a 530-day period. Daily averages and their change over time were 
plotted in a heat map for each heifer. Patterns in the plots were assessed by five scorers 
independently to determine the date of each heifer’s first oestrus event. Her age was referred to as 
collar-determined age at puberty (CollarAP). Heifers were also regularly ultrasound ovarian 
scanned to determine age at first observed corpus luteum (AGECL), this was used to assess the 
relationship with CollarAP. The results from this study show the collars can accrue large amounts 
of data but interpretation was not simple and differences existed between the five scorers. 
However, mean CollarAP and AGECL were the same and correlations were positive and strong, 
ranging from 0.69-0.83 across scorers. When observations on CollarAP were pooled across 
scorers, the correlation with AGECL was 0.86. Further, least squares means for sires for the two 
traits were also highly related (R2=0.89). This study has shown the collar data can be used to 
determine age at puberty in tropical beef heifers. 

 
INTRODUCTION 

Heifer age at puberty is a highly heritable trait (Johnston et al. 2009) and is an early in life 
genetic predictor of lifetime reproductive performance in tropical beef cattle (Johnston et al. 
2014). However, measuring the trait currently requires serial ovarian scanning measures that are 
costly, invasive and require regular musters and handling. The SenseHub™ collars and associated 
algorithms and software system DataFlow™ (www.allflex.global/au/wp-content/uploads 
/sites/3/2021/06/SH_4_A4_Eng_March-2020_low-1.pdf) have been optimised for mature Bos 
Taurus dairy cattle for monitoring their health and reproductive status. This project investigated 
the off-label use of the collars in tropical beef heifers managed in an extensive northern grazing 
environment. The aim of the project was to establish if the collar data could be used to assign each 
heifer’s age at puberty and compare that to age at first observed corpus luteum (CL) determined by 
serial ultrasound ovarian scanning. 

 
MATERIAL AND METHODS 

Animals. Heifers used in this study were the 2019 cohort of the Repronomics Project 
(Johnston et al. 2017) at the DAF managed Brian Pastures Research Facility, Queensland. Heifers 
were born between September and December 2018 and comprised of 62 Brahman, 49 
Droughtmaster, and 62 Santa Gertrudis. Heifers were managed as a single group from birth. The 
SenseHub™ collars were deployed at the start of November 2019 when the average age of the 
heifers was 13 months and they remained on until 19th April 2021. Collars recorded activity and 
rumination every 20 minutes, and this was compressed into daily averages. During the recording 
period the heifers were rotated through a range of paddocks that were generally open grazing 
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native pastures, undulating, with some trees. Watering was mainly troughs or dams with some 
gullies and intermittent water courses. Receivers were positioned to gain maximum coverage of 
each paddock and required the use of mobile solar booster stations with an average distance of 2.7 
km between stations and the largest coverage was 240 hectares. A daily activity log was 
maintained to record all group cattle movements (e.g. change of paddock, muster) and any known 
interactions with individuals that may have influenced the data from a given day.  

Collar data. At the completion of the recording period the daily files were downloaded and the 
daily activity log file was used to remove records for all animals for a particular day (e.g. a 
mustering event) or the record for an individual (e.g. 3-day sickness). A total of 13 heifers lost 
their collars during the period. Of these three occurred early in the recording period and three 
stopped working and these animals and their data were deleted. The remainder had their collars 
replaced or the loss occurred sufficiently late in the recording that cycling had already commenced 
and had been detected. This yielded a final dataset for analysis of 167 heifers with collar data. 

The change in the daily activity and rumination time in dairy is used to identify individual cow 
oestrus behaviour based on increased activity and decreased rumination. In these data the change 
in activity and rumination for each heifer was combined into a single metric for each day. Excel 
heat maps were developed to visualise the change in this daily parameter over the 530-day period 
for each heifer. The heat map for each heifer was examined by five novice scorers to visually 
assign the date of her first oestrus event. This was based on examination of the entire period and 
establishing if a cyclic pattern (between 16-28 days) existed, and if so, traced back until to the date 
of the initial occurrence. The ability to call the first cycling event varied greatly due to differing 
strength of signals and the amount of “noise”, so each scorer allocated a confidence score (viz. 
0=unable to call, 1=very uncertain, 2=uncertain, 3=moderately certain, 4=very certain) for the 
calling of each record. This whole process was done completely independently of each other and 
without knowledge of the ovarian scanning data.  

Ovarian scanning. Ovarian scanning of the heifers also commenced in November 2019 and 
were scanned by two experienced ultrasonographers. Heifers were scanned approximately every 
four weeks, until an individual heifer was observed to have a CL on two successive scanning 
events. After this she was no longer scanned but was still mustered and yarded at each subsequent 
scanning event. In total, there were 14 scanning events over the duration of the collar experiment. 
Heifer age at puberty (AGECL) was computed as their age at their first observed CL. Any heifer 
not pubertal at the completion of the collar study were assigned a CL date as the completion date. 
Likewise, if a collar record determined no detectable oestrus event it was also assigned the 
completion date. 

Analyses. Individual CollarAP was compared to AGECL from each scorer separately and was 
also pooled across scorers. Firstly, averaged across scorers for each heifer (MEAN) and secondly, 
as the average after deleting scorer records that deviated more than 100 days from the median 
value for each heifer (CLIP). In this process there were four animals where only records from two 
scorers remained and these animals had their record deleted. Sire (n=22) least squares means were 
computed using SAS (SAS Institute Inc., Cary, NC, USA) for the entire dataset for AGECL 
(n=173) and for the pooled CollarAP and plotted for those with more than three daughters 
recorded. 

 
RESULTS AND DISCUSSION 

The study showed the collars were effective in recording vast amounts of behavioural data over 
a large period from an extensive grazing system. In general, the retention of collars was good, 
however there were loss of data due to periodic system failure primarily related to storms and wet 
weather. There were also issues with some collars/individuals that failed to read effectively. 
Removal of whole day data also occurred for all heifers due to the frequent mustering and 
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handling, particularly for the monthly ultrasound ovarian scanning and changing paddocks. 

Table 1. Correlations between scorers for collar-determined age at puberty (above diagonal) 
and correlations between scores for confidence score in assessment of the collar record 
(below diagonal)  

Scorer 1 Scorer 2 Scorer 3 Scorer 4 Scorer 5 
Scorer 1 0.57 0.67 0.75 0.75 
Scorer 2 0.32 0.59 0.56 0.47 
Scorer 3 0.35 0.24 0.73 0.59 
Scorer 4 0.37 0.30 0.25 0.67 
Scorer 5 0.63 0.42 0.36 0.38 

Table 1 presents the pairwise correlations between each of the scorers for CollarAP and 
correlations of their calling confidence scores. The CollarAP correlations between scorers were 
moderate to high ranging from 0.56 to 0.75 with scorer 2 generally lower than the others. The 
confidence score correlations were generally low (0.25-0.62) and reflected the naivety in this 
process and the overall difficulty experienced by novice assessors. 

Table 2. Mean, standard deviation of the difference (std diff) and correlation (corr) for 
collar-determined age at puberty (CollarAP) and age at first CL (AGECL), by each scorer 
(1-5) and combined (MEAN and CLIP) 

Variable Scorers Combined 
1 2 3 4 5 MEAN CLIP 

N collar records 166 166 155 154 159 167 163 
mean Confidence Score 2.8 1.7 2.6 2.5 3.1 
mean CollarAP, d 610.0 607.1 599.7 573.5 587.6 598.3 595.8 
mean AGECL, d 599.1 597.5 592.5 599.5 593.0 599.8 597.5 
std diff (AGECL-CollarAP) 83.9 116.5 62.7 69.4 75.3 56.7 57.5 
corr (CollarAP, AGECL) 0.72 0.60 0.83 0.81 0.69 0.85 0.86 

Results in Table 2 show that for each of the five scorers their mean CollarAP and AGECL 
were very similar, and correlations ranged between 0.60 and 0.83. Scorer 2 had the lowest mean 
confidence score, the lowest correlation and the largest standard deviation of the difference 
between the two measures. When records were pooled across scorers, the mean CollarAP and 
AGECL were almost identical and the high correlations (e.g. 0.86) show the collars were 
accurately determining age at puberty with an average standard deviation of the difference of 57 
days. Removing of outlier scorer records had little effect on the results.  

Biologically it might have been expected that CollarAP would be on average lower than 
AGECL, given the frequency of scanning. This was the case for scorers 4 and 5 and may reflect 
the other scorers not being as confident in assigning the first oestrus event. However, breed 
differences may have existed, with Brahmans averaging 7.9 days older for CollarAP compared to 
AGECL average across all scorers, whereas Santa Gertrudis were 11.9 days younger. This may be 
due to differences in the strength of the first oestrus event or issues with the operation of the collar 
(e.g. amount of dewlap) for the three breeds. It is also possible that in some cases the first collar-
detected oestrus was removed if it coincided with a scanning event where the first CL was 
observed. Therefore, any subsequent first collar event would be greater than the AGECL. Also, the 
ovarian scan data is not 100% accurate as the frequency of scanning was only every four weeks, 
thus there is a chance a heifer was pubertal but had no observable CL on the day of scanning. 

248 
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Sire least squares means based on daughter records pooled across scorers showed a strong 
relationship between CollarAP compared to AGECL. This relationship was improved using CLIP 
(R2=0.89, b=0.96 d/d see Figure 1) vs MEAN (R2=0.86, b=0.86 not plotted) and suggest that even 
though assigning CollarAP could be difficult, it was closely related to ultrasound determined 
AGECL, especially when pooled across scorers and averaged across the daughters of a sire. 

Figure 1. Sire least squares means for collar-determined age at puberty and age at first CL 

CONCLUSIONS 
This study has shown the continuous recording of heifer activity and rumination using collars 

is an alternative method of obtaining individual heifer age at puberty. However, the use of 
untrained scorers probably was not the best approach as each scorer developed their own method 
and confidence scoring. Collar assessment could be improved by having a basic tutorial, however 
a better approach will be to develop automated algorithms to interpret this beef application of the 
collars. Collar data accuracy could be improved by decreasing the amount of cattle handing, but at 
this stage this was not possible given the importance of ovarian data to the overall project.  

Opportunities exist to use the collar data to study other aspect of reproduction such as cycle 
length, cycle strength and relationships with mating outcomes. This study has shown collars can 
determine heifer puberty, however it now requires a full cost assessment compared to serial 
ovarian scanning and the collection of more data to determine its utility as a trait in a genetic 
evaluation. 
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SUMMARY 
Maintaining genetic diversity and variation in livestock populations is critical for allowing 

natural and artificial selection genetic improvement well as for avoiding inbreeding. The Laotian 
government and farmers are concerned that there has been a decrease in genetic diversity and an 
increase in inbreeding among native goats in their village-based smallholder system. The objective 
of this study was to investigate the genetic diversity of Lao native goats in a small-scale farming 
system in central Laos using genotype data. The results showed that there was a close genetic 
relationship between Lao native goats with Chinese goat breeds and a low to moderate genetic 
differentiation among goat populations in Central Laos ranging from 0.0112 to 0.0427. This goat 
population had close to zero inbreeding coefficients (-0.093 to 0.052). 

 
INTRODUCTION 

In developing countries, local livestock breeds are crucial for the welfare of rural communities 
producing a wide range of products and requiring low levels of management and health care. The 
genetic diversity of goat populations has been studied in Asia (Tarekegn et al. 2019; Hermes et al. 
2020), Africa (Nandolo et al. 2019; Tarekegn et al. 2019), Europe (Oget et al. 2019; Danchin-Burge 
et al. 2012) and Oceania (Brito et al. 2017). These studies used genetic indexes such as genetic 
differentiation (FST) and inbreeding coefficient (FIS) to describe population characteristics and 
history. French goat breeds are genetically very well described with an average FST and FIS of 0.092 
and 0.0213 respectively, between breeds and regions in France (Oget et al. 2019). However, the 
genetic diversity of goats in other Asian countries like the Lao People’s Democratic Republic (Laos) 
has not been investigated, and detailed information about this population would benefit its 
management and production. In Laos, almost all goat production comes from smallholder systems 
with 2 to 5 goats per household (Windsor et al. 2018). Goat production is an essential source of 
income for household incomes and in recent years, Lao’s goat population has significantly increased 
due to the high demand of goat meat to export to neighbouring Vietnam (Stür and Gray 2014). The 
objective of this study was to identify the genetic diversity of Lao’s native goats and assess levels 
of inbreeding.   

 
MATERIALS AND METHODS 

Sample collection and genotyping. During the period from February to April 2022, a total of 
420 ear-notch samples were collected in the Savannakhet province of Laos. These samples were 
obtained from 140 households situated in seven villages located in Phin, Songkhone, and Sepon 
districts (Figure 1). The samples were then genotyped using the goat 50K Illumina BeadChip at 
GenomNZ in New Zealand. 

Reference population. To assess the diversity at a Asian level, a reference dataset comprising 
genotype information from 1132 goats, including 185 indigenous goats from Mongolia (Mukhina et 
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al. 2022), 237 local Russian goats (Deniskova et al. 2021), 193 
Chinese goats (Berihulay et al. 2019), 416 Pakistan goats, 16 Iranian 
goats and 85 goats from Turkey (Colli et al. 2018).  

Quality control. A quality control assessment of genomic data 
was performed in PLINK v1.9 (Purcell et al. 2007). SNPs on the sex 
chromosomes, unmapped location, minor allele frequency (MAF) 
lower than 0.05, call rate lower than 90% and a deviation from 
Hardy-Weinberg equilibrium of p < 10-6 were excluded from the 
analysis. Individuals with more than 10% missing SNPs were also 
excluded. After quality control, 419 genotyped goats with 42666 
SNPs remained in the analysis. The Laos goat dataset was merged 
with the reference population which, after quality control included 
43429 autosomal SNPs and 1546 individuals.  

Genetic diversity and inbreeding analysis. A principal 
component analysis (PCA) was performed in PLINK and visualized 
with the R package “ggplot2”. Pairwise genetic differentiation (FST; 
Weir and Cockerham 1984) and inbreeding coefficient (FIS; Wright 
1965) as well as expected and observed heterozygosity for each 
population were calculated in R using the “hierfstat” package 
(Goudet 2015).  
 
RESULTS AND DISCUSSION 

The principal component analysis of the combined Laos and reference population showed clear 
differentiation between indigenous Lao goats and other Asian breeds (Figure 2A). The first principal 
component (PC1) accounted for 35.36% of the total variation and separated Lao native goats and 
Chinese breeds from other Asian breeds. The PCA for Lao goats suggested that genetic structure 
exists within this population with goats in Sepon clearly differentiated from those in the Phin and 
Songkhone districts in the PC1 and PC2, which accounted for 12.64% and 8.75% of the total 
variation, respectively (Figure 2B). 

Figure 2. Principal component analysis for (A) Lao goats and Asian goat breeds, and (B) goat 
populations from different districts in Laos  

Figure 1. Geographical location of 
goat samples used in this study 



Understanding and Utilising Genetic Diversity 

Table 1. Pairwise FST values for goats from different Asian countries 

China Iran Laos Mongolia Pakistan Russia 

Iran 0.0408 - 

Laos 0.0481 0.0731 - 

Mongolia 0.0135 0.0327 0.0512 - 

Pakistan 0.0351 0.0433 0.0507 0.0291 - 

Russia 0.0295 0.0195 0.0614 0.0197 0.0371 - 

Turkey 0.0385 0.0201 0.0703 0.0292 0.0418 0.0143 

The average pairwise FST values between breeds in seven Asian countries were 0.0418, and 
ranged from 0.0135 to 0.0731 (Table 1), indicating a low to moderate genetic differentiation among 
these populations. The Mongolian and Chinese goat breeds showed the lowest level of 
differentiation (0.0135), while the highest level of differentiation (0.0731) was observed between 
Laos and Pakistan goat breeds. Results from the pairwise FST between Lao goats and other goat 
breeds from Asia confirmed the PCA results as there was a low genetic difference between Laos and 
Chinese goat breeds (FST = 0.0481), and there were moderate genetic differences between Lao goat 
breeds with other goat breeds in Asia (FST > 0.05).  

In this study, the FST for Laos was 0.0223 and ranging from 0.0211 to 0.0815 which is slightly 
higher than the FST reported in Mongolia (0.009 to 0.035; Mukhina et al. 2022), but lower than FST 
in Russia (0.06 to 0.11; Deniskova et al. 2021) and Chinese goat population (0.02 to 0.16; Berihulay 
et al. 2019).  

Table 2. Pairwise fixation index (FST) among districts in Laos 

Phin Sepon 
Sepon 0.0404 - 
Songkhone 0.0112 0.0427 

Genetic differentiation among goats from three districts in Central Laos revealed low genetic 
differentiation with greater differentiation between Sepon and Phin and Songkhone districts than 
between Phin and Songkhone (Table 2). This was supported by the PCA results that showed a gene 
flow between goats in Phin and Songkhone districts. Berihulay et al. (2019) described that genetic 
differentiation between two populations could be explained by natural geographic isolation. Phin 
and Songkhone were not located far from each other and they both have access to the main road, 
known as Route 13. The farmers in these two districts were able to easily trade goats between each 
other's locations in Xathamua town which is located almost halfway between the two districts and 
is close to the Savannakhet province centre. On the other hand, Sepon is more culturally isolated, 
being of a more distinct ethnic and linguistic group (Mong Kong), which may reduce the trade with 
other two districts. Additionally, Sepon is closer to the Vietnam border and it is easier for farmers 
to trade goats with Vietnamese dealers.  

Overall, the observed heterozygosity values were less than the expected heterozygosity, excepted 
in Sepon (Table 3). The Ho and He in three Lao districts were lower than those in any Asian country. 
The average value of Ho and He in Asia were 0.3655 and 0.3956, respectively. The average Ho and 
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He in three districts in Laos were very similar, varying from 0.288 to 0.299 (Ho), and from 0.264 to 
0.308 (He), respectively.  

Table 3. Genetic diversity indices for goats from seven Asian countries and three districts in 
Laos. Ho: observed heterozygosity, He: expected heterozygosity, FIS: inbreeding coefficient 

Asian country Districts in Laos 
China Iran Mongolia Pakistan Russia Turkey Laos Phin Sepon Song 

Ho 0.3672 0.343 0.4006 0.3379 0.409 0.408 0.292 0.299 0.288 0.2888 
He 0.4023 0.419 0.4071 0.3831 0.434 0.421 0.303 0.308 0.264 0.3046 
FIS 0.0873 0.181 0.0158 0.118 0.056 0.03 0.037 0.028 -0.093 0.052

In general, FIS were close to zero with positive FIS values for Laos population (FIS=0.0367), Phin 
(0.0283) and Songkhone (0.052), while a negative value was observed for Sepon (-0.093) indicating 
low outbreeding depression in this district. Similarly, low FIS was found in Mongolian goat breeds, 
ranging from -0.013 to 0.025 (Mukhina et al. 2022) and it varied from -0.014 to 0.062 in the Chinese 
goat breeds (Berihulay et al. 2019). Those values were close to zero, indicating low levels of 
inbreeding in Lao natives. However, additional genomic analysis can assess the levels of relatedness 
between individuals and give insights into the history of Laos populations. 

CONCLUSION 
The results of Lao native goats revealed a closer genetic relationship with Chinese goat breeds 

than with other Asian goat breeds. Low to moderate genetic differentiation within Lao native goats 
was found, especially between Sepon and other locations. Inbreeding coefficients were close to zero 
being negative in Sepon and low but positive in Phin and Songkhone districts. These findings are 
not consistent with inbreeding depression being a major cause of small body size and low 
productivity in Lao native goats. Further analyses such as run of homozygosity are needed to identify 
levels of homozygosity in genomic regions.  
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SUMMARY 

The aim of this study was to estimate the genetic relationship between immune competence and 
micro-environmental sensitivity (ES) of weaning weight, eye muscle area, and rib and rump fat 
depth. Variation in micro-environmental sensitivity among livestock leads to variability of 
phenotypes. The genetic correlations indicated that animals with higher immune competence tended 
to have lower micro-ES of weaning weight and eye muscle area, and higher micro-ES of rib and 
rump fat depth. 

 
INTRODUCTION 

Selecting to improve the immune competence (IC) of livestock could potentially lead to 
increased health and welfare of the animals, and decrease the livestock industry’s reliance on 
antibiotics (Dominik et al. 2019; Hine et al. 2019; Hine et al. 2021; Reverter et al. 2021a; Reverter 
et al. 2021b). Furthermore, improved immunity could reduce the production loss and cost of medical 
intervention associated with disease incidences thus increasing profits (Hine et al. 2021).  

The immune system is a complex system affecting many other systems in the animals, which 
can influence many phenotypes. The relationship between IC and live weight traits, growth and eye 
muscle area have been found to be unfavourable, while carcass traits and dry matter intake have a 
less straight forward relationship with IC (Reverter et al. 2021b). Aside from the direct relationship 
between IC and production traits, it is possible the IC affects the variability of production traits. The 
variability of phenotypes can vary between animals of different genetic backgrounds, in which case 
the genotypes exhibit micro-environmental sensitivity (micro-ES). Animals with less micro-ES are 
expected to respond less to disturbances in their environments and can be quantified at a genetic 
heterogeneity of the environmental variance (SanCristobal-Gaudy et al. 1998; Hill and Mulder 
2010). The relationship between IC and micro-ES has not yet been reported. 

The aim of this study was to investigate the relationship between IC and some production traits 
and between IC and the micro-ES of production traits in Australian Angus cattle. 

 
MATERIALS AND METHODS 

Data. Antibody- and cell-mediated immune response (AMIR, CMIR) were the IC component 
traits. The AMIR and CMIR records were provided by CSIRO and Angus Australia. The records 
were collected in 2012-2020 in accordance with the procedures described by Hine et al. (2019). The 
AMIR phenotypic values represent the level of antigen-specific serum IgG1 antibody in response to 
vaccination with Ultravac 7in1 vaccine (Zoetis) and were calculated from the square root 
transformed optical density values generated using an enzyme-linked immunosorbent assay and 
corrected for inter-plate variation. The CMIR phenotypes were calculated from the log-transformed 
ratio between the measured double skinfold thickness at test (intradermal vaccine injection) and 
control site (intradermal saline injection) (Hine et al. 2019). To account for initial double skinfold 
thickness, the pre-injection log-transformed ratio between the double skinfold thickness at test and 
control site was used as a covariate in the analysis.  
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Production traits consisted of weaning weight (WW), scan eye muscle area (EMA), scan rib fat 
depth (RIB) and scan rump fat depth (P8). The production traits were provided by Angus Australia 
and were part of the routine recording scheme between 2012 and 2020. 

For the IC records, contemporary groups (CG) were constructed by concatenating herd, year and 
test cohort. For the production traits, trait specific CGs were concatenations of herd, birth year, 
observation date for the trait, breeder defined management group, birth type and embryo transfer 
status. Age slicing further subdivided CGs for WW, RIB, P8 and EMA. Age slices covered 45 days 
for WW and 60 days for RIB, P8 and EMA as per Graser et al. (2005), and slices were symmetric 
around the average age of the CG. Summary statistics are shown in Table 1. Two pedigrees were 
used for analysis, one for sire (10948 animals) and one for rearing dams (98151 animals).  

 
Table 1. Summary statistics for the final dataset 

 
Parameter Statistic WW (kg) RIB (mm) P8 (mm) EMA (cm2) AMIR CMIR 

Records Count 31699 83034 83314 83486 3910 3908 
Phenotype Mean 254.60 6.11 7.89 80.49 0.85 1.89 

SD 51.63 2.76 3.73 17.56 0.43 0.42 
Range 77-496 1-22 1-33 31-157 0.01-2.13 0.85-4.92 

 
Analysis. The data was analysed using 8 two-trait models with an IC trait as one trait and a 

production trait as the second trait. The production traits were fitted with a double hierarchical 
generalised linear model (DHGLM) for estimating the micro-ES of the production traits resulting in 
a trivariate model. The general model was: 
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where 𝒚𝒚𝑰𝑰𝑰𝑰, 𝒚𝒚𝑷𝑷𝑷𝑷 and 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 were the IC trait (AMIR or CMIR), the production trait phenotype and 
calculated micro-ES phenotype of the production trait, respectively. 𝒃𝒃𝑰𝑰𝑰𝑰 contained the fixed effects 
of sex and CG for AMIR and the fixed effect of CG and the pre-injection covariate for CMIR, 𝒃𝒃𝑷𝑷𝑷𝑷 
and 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 contained the fixed effects of sex and CG and covariate of age for the production traits 
(and the covariate of dam age and squared dam age for WW). 𝒔𝒔𝒙𝒙 and 𝒆𝒆𝒙𝒙 were the fixed effects, 
additive genetic sire effects and residuals of trait x (𝑥𝑥 ∈ (𝐼𝐼𝐼𝐼, 𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚)). The micro-ES phenotype 
was calculated as 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒆𝒆�𝑷𝑷𝑷𝑷𝟐𝟐  /(𝟏𝟏 − 𝒉𝒉𝑷𝑷𝑷𝑷) , where 𝒉𝒉𝐏𝐏𝐏𝐏 was the diagonal element of the part of the 
hat-matrix corresponding to 𝒚𝒚PT (𝒚𝒚�𝑷𝑷𝑷𝑷 = 𝑯𝑯𝒚𝒚𝑷𝑷𝑷𝑷) also known as the leverage (Hoaglin and Welsch 
1978). For models where WW was the production trait, the model also included maternal genetic 
(𝒄𝒄) and permanent environmental (𝒑𝒑𝒆𝒆) effects.  

The distribution assumptions for the random genetic sire effects were 
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matrix among sires  based on the sire pedigree and ⊗ is the Kronecker product. The distribution 
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𝑰𝑰 was an identity matrix of appropriate size, and 𝑾𝑾𝑷𝑷𝑷𝑷 and 𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎 were matrices containing weights 
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for the residual variances of the DHGLM. 𝑾𝑾𝑷𝑷𝑷𝑷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎� )−1 and 𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((1 −
𝒉𝒉𝑷𝑷𝑷𝑷)/2).  

Post analysis corrections of variance components to obtain additive genetic and residual 
variances on the animal level were applied as described in Madsen et al. (2021). The variation and 
heritability of micro-ES (ℎ𝑚𝑚𝑚𝑚𝑚𝑚2∗ ) was converted from the logarithmic to the measurement level 
following Mulder et al. (2007) and Mulder et al. (2009). 

RESULTS AND DISCUSSION 
The results showed additive genetic variance of micro-ES in all production traits (Table 2). The 

heritabilities were in line with the heritabilities reported for production traits in Nellore beef cattle 
by Neves et al. (2011) and Iung et al. (2017). The genetic coefficient of variation (GCV) of micro-
ES was low to moderate, with higher values for the fat traits. The higher GCV of RIB and P8 indicate 
that some response to selection could be obtained. 

The heritability of AMIR and CMIR were in line with those previously reported (Dominik et al. 
2019; Hine et al. 2019; Reverter et al. 2021a; Reverter et al. 2021b). Likewise, the heritabilities of 
EMA and P8 were within previously reported values for Australian beef cattle, while the heritability 
of RIB was slightly higher than previously reported (Meyer et al. 2004; Jeyaruban et al. 2009). In 
contrast, the heritability of WW was higher than the 0.13-0.35 reported for Australian beef cattle 
(Meyer et al. 2004; Jeyaruban et al. 2009; Torres-Vázquez et al. 2018). Slightly larger heritabilities 
can be expected when a trait is fitted with a DHGLM as the genetic variation due to micro-ES is 
removed from the observed residual variance of the phenotype reducing the denominator used to 
calculate the heritability. 

Table 2. Estimated heritabilities and genetic coefficient of variation  

AMIR CMIR WW RIB P8 EMA 
𝒉𝒉𝟐𝟐 (%) 36.18 35.62 43.50 34.58 35.11 25.13 
𝒉𝒉𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐∗ (%) 0.03 1.22 1.42 0.35 
𝑮𝑮𝑰𝑰𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎 (%) 13 24 27 11 

Table 3. Genetic correlations between the production and immune traits in Angus cattle* 

AMIR CMIR 

𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃 𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃 𝑟𝑟𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚 

WW -0.35 -0.12 0.18 -0.26 -0.15 0.18 

RIB 0.11 0.14 0.87 0.15 0.09 0.87 

P8 0.06 0.00 0.90 0.16 0.12 0.90 

EMA -0.13 -0.34 0.30 0.04 -0.17 0.31 

*Italic values had 95% confidence intervals not including 0

The genetic correlations between the IC traits and RIB and P8 indicated that animals with higher 
fatness also tended to have higher IC (Table 3). In contrast, the genetic correlations indicated that 
animals with higher IC had lower WW, showing that immune response may be utilising resources 
that would otherwise have contributed towards growth. The genetic correlations between micro-ES 
of production traits and IC tended to be moderately negative for WW and EMA and non-existing to 
lowly positive for RIB and P8. The genetic correlations involving the IC traits had large SEs and 
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therefore only the genetic correlations between WW and either IC trait had a 95% confidence 
interval not including 0. The larger SEs were likely due to the small data size of the two IC traits. 

The genetic correlations between the production traits and their micro-ES were strongly positive 
for RIB and P8 fat showing that selection to reduce fatness would have a correlated decrease in the 
micro-ES of fatness and vice versa.  

CONCLUSIONS 
All production traits showed micro-ES. The heritabilities and genetic coefficient of variance of 

micro-ES was higher for RIB and P8 than the other production traits. Selection to decrease micro-
ES may be possible for these traits.  

Results showed that mounting immune responses might direct resources away from growth. 
The positive genetic correlation between the fat and IC traits indicated that animals with higher 

fatness also have higher ICs.  
The genetic correlations between the IC traits and micro-ES of production traits showed a 

tendency for animals with higher genetic potential for IC to have lower micro-ES of WW and EMA 
and higher micro-ES of RIB and P8. 
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SUMMARY 

Previous South African studies on faecal worm egg count (FWEC) in South African Merinos 
have been limited to analyses within flocks. This study details an across-flock-season analysis of 
FWEC at the Tygerhoek and Elsenburg research farms using 9080 records collected between 1995 
and 2016. Two discrete environments were identified, namely an autumn lambing season at 
Tygerhoek, and a winter lambing season at Elsenburg. The exchange of sires across environments 
allowed the estimation of the sire x site variance as an indication of a genotype x environment 
interaction for FWEC. At 0.12 ± 0.02, FWEC was lowly heritable across environments. 
Additionally, variance ratios for the dam permanent environment and sire x site contributed 
respectively 0.03 ± 0.01 and 0.014 ± 0.006 to the observed phenotypic variation. Selection for a 
reduced FWEC across flocks would likely result in genetic gains, while the probability of a major 
reranking of sires across sites appears to be small.  

  
INTRODUCTION 

So far, research in South Africa has focused on deriving genetic parameters for faecal worm egg 
count (FWEC) and on correlations of FWEC with other traits of economic importance within flocks 
or localities. For FWEC to be considered as an indicator of resistance to round worm infection in 
South Africa (as advocated by Cloete et al. 2014) it is important to conduct analyses across flocks. 
Across-flock analyses allow for the estimation of genotype x environment interactions (G x E; van 
Wyk et al. 2008). Such analyses became commonplace for FWEC in other sheep producing 
countries such as Australia (Brown et al. 2016; Brown and Fogarty 2017) and New Zealand 
(Pickering et al. 2012). Sheep farmers in these countries are thus benefiting from advances brought 
about by using across-flock genomic breeding values for FWEC for the selection of replacements 
with resistance to gastro-intestinal nematodes. South Africa has been lagging with respect to these 
advances. This study, therefore, reports the first across-flock analysis for FWEC in South African 
sheep. Linkage provided by sires across flocks additionally allowed the estimation of the sire x 
flock/season variance as an indication of G x E as hypothesized for FWEC.   

 
MATERIALS AND METHODS 

The study combined data from Merino flocks maintained on the Tygerhoek and Elsenburg 
research farms. Both farms are situated in the Mediterranean region of South Africa, Tygerhoek at 
34˚08’ S and 21˚11’ E and at an elevation of 425 m. Elsenburg is located at 33˚51’ S and 18˚50’ E, 
at an elevation of 177. Rainfall averages 425 mm at Tygerhoek and 606 mm at Elsenburg, with 
respectively 60% and 77% of the precipitation recorded from April to September (Cloete et al. 
2016). The management, breeding and husbandry of both flocks are well described (Tygerhoek: 
Cloete et al. 2007; Elsenburg: Mpetile et al. 2015). Further information on these topics will thus be 
omitted. Faecal grab samples were obtained from the rectum of individual sheep and counted at an 
accuracy of 100 eggs per gram (epg) wet faeces at the Regional Veterinary Laboratory at 
Stellenbosch. Worm challenge at the respective localities was not quantified, but Cloete et al. (2016) 
suggested that a mixed challenge of Teladorsagia spp, Trichostrongylus spp and Nematodirus spp 
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was more likely at Tygerhoek. A greater reliance on irrigated pastures at Elsenburg resulted in 
hematophagous parasites like Haemonchus contortus becoming more important (Cloete et al. 2016). 
Data at Tygerhoek were recorded from 1995 to 2016, except for 2004 when no data were available 
(Cloete et al. 2007). The data at Elsenburg were recorded over the same period, except for 1997 to 
1996 and 2000 (Mpetile et al. 2015). Flock data at Tygerhoek and Elsenburg contributed 
respectively 6,527 hogget and 2,563 yearling records to the study. Age at recording (± s.d.) was 498 
± 38 days at Tygerhoek and 322 ± 30 days at Elsenburg. 

Mpetile et al. (2017) reported that season had a profound effect on genetic variation of FWEC 
at Tygerhoek, with the heritability of FWEC using spring samples being substantially higher than 
for samples collected in autumn. As lambs were born in autumn at Tygerhoek and winter at 
Elsenburg, samples for FWEC were taken during spring at Tygerhoek and autumn at Elsenburg. 
This seasonal effect was confounded with location, but eight sires with progeny at both locations 
and having, on average, 40 ± 12 recorded offspring at Tygerhoek and 17 ± 5 recorded offspring at 
Elsenburg linked the data recorded on the two locations.  

Given the well-established deviations from normality in FWEC data, individual records were 
transformed to natural logarithms after 100 was added to account for zero counts. Previous studies 
on the respective resource flocks also tested the cube root transformation at Tygerhoek (Cloete et 
al. 2007) and Elsenburg (Mpetile et al. 2015). Genetic parameters stemming from the alternative 
approaches did not differ and the analysts preferred the log transformation for its lower coefficient 
of variation. The data so derived were analysed by single-trait analyses using ASREML (Gilmour 
et al. 2015). Fixed effects fitted included contemporary group (90 levels involving year-site-season-
sex combinations), age of dam (2-6+ years) and birth type (single vs. multiple). Random effects 
were sequentially added to the fixed-effects analysis as described in Table 1.  

Likelihood Ratio tests (LRT) were used to test the significance of random effects. A random 
effect was considered significant when its inclusion in the model improved the log likelihood ratio 
using the Chi2 distribution as a test statistic. When models had the same number of random effects, 
the model with the highest log likelihood was preferred. After the the most appropriate model was 
determined, the random effect of sire x site (encompassing 566 levels) was added to the model by 
fitting an identity matrix linking sire x site effects to the data (see Table 1). The LRT was then 
conducted additionally to assess this effect for significance. Phenotypic variance was expressed as 
the total of all the estimated variance components. Variance ratios were derived by dividing 
significant (P < 0.05) variance components by the phenotypic variance. The pedigree file used in all 
analyses contained 14832 animals, the progeny of 830 sires and 4342 dams.   

   
RESULTS AND DISCUSSION 

The raw data were leptokurtic and skewed with extreme individual variation of FWEC records 
ranging from 0 to 32700 epg of wet faeces and an overall mean of 1960 ± 2599. The log 
transformation improved the distribution of the data appreciably resulting in a normal distribution 
(skewness = -0.32; kurtosis = -0.58) and a coefficient of variation of 17.9% with a mean of 6.97 ± 
1.25. These results were consistent with previous studies on these flocks (Cloete et al. 2007; Mpetile 
et al. 2015) and are not discussed. Contemporary group exerted a marked effect on the data (P < 
0.001), while FWEC depended less on age of dam (P = 0.57) and birth type (P = 0.07).  

The LRT suggested that the log likelihood improved markedly from a model consisting of only 
fixed effects to a model including additive genetic effects (Table 1). Compared to this model with 
only one random effect, the addition of maternal additive effects did not result in an improvement 
(P > 0.05). Adding dam permanent environmental (PE) effects improved the log likelihood, though. 
Including both maternal genetic and PE effects did not change the log likelihood when added to the 
latter model. Adding the sire x site variance to the model including additive and dam PE effects 
resulted in a further improvement in the log likelihood.   
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Table 1. Log likelihood ratios for the various models fitted in the across-flock analysis 
conducted on the Tygerhoek and Elsenburg Merino flocks (Chi² values are for the more 
comprehensive model compared to the simpler model with 1 less random effect)   

The phenotypic variance components and variance ratios for additive genetic, dam genetic, dam 
PE and sire x site effects are presented in Table 2 for the respective models. The across flock 
heritability of FWEC ranged from 0.12 for Model 5 (the model of choice) to 0.16 for Model 1. Dam 
PE consistently contributed 0.03 to the phenotypic variation, while the sire x site variance amounted 
to somewhat more than 1% of the phenotypic variance. As FWEC was variable and heritable, genetic 
gains across flocks seems feasible although these gains may not necessarily be fast. The estimated 
heritability is within the ranges of 0.00 to 0.52 reported in the literature (Greeff et al. 1995; Safari 
and Fogarty 2003; Snyman 2007) and a fair reflection of previous heritability estimates within the 
flocks contributing data to this study (Cloete et al. 2007; Mpetile et al. 2015). The across-flock 
heritability of FWEC amounted to 0.16 for Australian meat sheep (Brown et al. 2016) and to 0.16 
and 0.17 for Australian Merino yearlings and hoggets, respectively (Brown and Fogarty 2017). 
Maternal effects were not important in both latter studies. More comprehensive data on FWEC in 
the South African small stock industry is needed to allow the incorporation of this important input 
trait in the formal genetic evaluation scheme. 

Table 2. The estimated phenotypic variance components and variance ratios for FWEC in 
across-flock analyses on Tygerhoek and Elsenburg Merinos for the random models fitted 

Random model σ²p h² m² pe² sire.site 
Model 1 0.817 0.16 ± 0.02 NA NA NA 
Model 2 0.816 0.15 ± 0.02 0.02 ± 0.01 NA NA 
Model 3 0.815 0.14 ± 0.02 NA 0.03 ± 0.01 NA 
Model 4 0.815 0.14 ± 0.02 0.00 ± 0.00 0.03 ± 0.01 NA 
Model 5 0.815 0.12 ± 0.02 NA 0.03 ± 0.01 0.014 ± 0.006 
σ²p – phenotypic variance; h² – heritability; m² – dam genetic effect; pe² – dam permanent environmental 
effect; sire.site – sire x site variance ratio; NA – not applicable 

The dam PE estimate of 0.03 is somewhat lower than comparable estimates for FWEC of around 
0.05 derived previously for the Tygerhoek flock (Cloete et al. 2007). It may well be that the accrual 
of additional pedigree information as well as sire x site effects partitioned animal variances away 
from dam PE in the present study. Corresponding values for PE effects sourced from the literature 
were variable from 0.02 to 0.16 (Safari and Fogarty 2003). 

Although the observed variation for sire x site/season was significant in a Mediterranean climate, 
it contributed less than 2% to the overall phenotypic variation. Baker et al. (2004) did not find a 
significant G x E for FWEC in Red Masaai and Dorper sheep maintained under either sub-humid or 
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Effect fitted Random effects Log likelihood value #Chi² 
Fixed effects (FE) only 0 -3708.39 NA 
FE + σ²a (Model 1) 1 -3641.62 133.54** 
FE + σ²a + σ²m (Model 2) 2 -3640.21 2.82ns 
FE + σ²a + σ²pe (Model 3) 2 -3637.75 7.74** 
FE + σ²a + σ²m + σ²pe (Model 4) 3 -3637.75 0.00ns 
FE + σ²a + σ²pe + σ²sire:site (Model 5) 3 -3635.17 5.16* 
σ²a = additive variance; σ²m = maternal genetic variance; σ²pe = dam permanent environmental variance; 
σ²sire:site = sire x site variance; #Critical values: 3.84 (P = 0.05); 6.64 (P = 0.01); * P < 0.05; ** P < 0.01; ns – 
not significant   
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semi-arid conditions. Carrick and van der Werf (2007) reported highly variable genetic correlations 
between extreme quintiles for FWEC in Australian Sheep Genetics data. Some correlations 
involving FWEC were below 0.8, thus indicating the possibility of G x E. Since different methods 
were used, it is difficult to relate the present results to those of Carrick and van der Werf (2007). 
Both studies suggest the possibility of G x E for FWEC, although reranking among sires may be 
considered as small when the outcome of the present study is considered. The sire x site variance 
ratio in this study was on the lower end compared to previous estimates of between 2.2 and 2.5% of 
the variation attributed to sire x contemporary group for production traits in an across-flock analysis 
on South African Dohne Merinos (van Wyk et al. 2008). To our knowledge, there are no comparable 
studies exploring G x E for FWEC. An alternative approach that is worthy of exploration in future 
is the usage of random regression methods (Pollot and Greeff 2004; Hollema et al. 2018).  

CONCLUSION 
This study confirmed significant across-flock genetic variation in FWEC in South African sheep 

flocks. It therefore paves the way for further exploration of the genetic improvement of FWEC as 
an input trait in the local sheep industry. The derived heritability was not particularly high but backed 
by sufficient phenotypic variation to sustain genetic progress. Moreover, it is foreseen that further 
across-flock studies incorporating more flocks will provide more accurate estimations of other 
sources of variation, such as maternal effects and sire x flock effects.  
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SUMMARY 

Facial eczema is a disease of ruminant animals, caused by a fungal toxin that grows on pastures 
and causes liver damage. The objective of this study was to investigate the genetic variation for 
susceptibility to facial eczema (FE) in dairy cattle using phenotypes collected under on-farm 
conditions. Weekly vat milk samples from progeny test herds were monitored for a marker of liver 
damage, to identify when to blood sample cows in the herd. Gamma-glutamyltransferase (GGT) 
enzyme concentrations in blood were used as the proxy to measure response to the fungal toxin on 
the animals. Log transformation (logGGT) and Box-Cox transformation (boxGGT) were applied to 
GGT before running the genetic analysis. The highest heritability found was for the logGGT (0.26). 
Genetic correlations between logGGT and production traits were all weak and positive, ranging from 
0.02 to 0.12 indicating that, the trait is almost independent from production and selection for 
tolerance to FE could be performed without compromising milk production. The moderate 
heritability for logGGT indicates that 26% of the total variation of tolerance to FE among animals 
was attributable to genetic variance breeding values for this trait could be predicted with accuracy, 
enabling the identification of sires with tolerance to FE to be used in the breeding program in dairy 
cattle in New Zealand. 

 
INTRODUCTION 

Facial eczema (FE) is caused by the ingestion of the spores of the fungus Psuedopithomyces 
chartarum (Di Menna et al. 2009; Ariyawansa et al. 2015). The mycotoxin sporidesmin A causes 
damage to the liver (Smith and Towers 2002). Affected animals have reduced milk production 
(Mason et al. 2022); the worst affected animals may die or require euthanasia. Diagnosis of FE is 
typically via measurement of gamma glutymyltransferase (GGT) in the serum (Towers and Stratton 
1978). The disease has been reported in grazing systems in Australia, South Africa, Brazil and parts 
of Europe (Di Menna et al. 2009). FE has traditionally been a problem on farms located in the North 
Island of New Zealand. 

Genetic variation in susceptibility to sporidesmin has been demonstrated in sheep and cattle 
(Mcrae et al. 2016; Morris et al. 2013). In sheep, the Ramguard programme, dosing rams with 
sporidesmin and measuring the GGT response, is used to identify resistant sires (Amyes et al. 2018). 
However, this is not feasible for dairy sires with greater value than an individual ram. Nor acceptable 
to public. Previous research in cattle has demonstrated that blood sampling herds that have 
experienced a ‘natural challenge’ can be used to gather data for the estimation of genetic parameters. 
However, given the primarily subclinical nature of the disease, it is not easy to identify herds that 
have been exposed. A biomarker that can be used to screen herds that have liver damage has been 
identified. The aim of this work was to use the biomarker as a screening technique to identify herds 
where there has been a natural FE challenge and confirm that these phenotypes can be used to 
estimate genetic parameters.   

 
MATERIALS AND METHODS 

This work was carried out with the approval of the AgResearch Animal Ethics Committee, 
approval numbers 15236 and 15576. Herds were identified via screening the bulk tank milk for what, 
or by veterinarians volunteering herds for the study. Blood samples were collected from 9,866 
animals from 34 commercial dairy herds that were naturally challenged by FE between April 2021 
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and May 2022. Tolerance to FE was evaluated based on gamma-glutamyltransferase (GGT) enzyme 
concentrations in blood as evidence of liver damage caused by sporidesmin. Genetic analysis in the 
present study applied to the raw GGT measurements, log-transformed GGT (logGGT) and Box-Cox 
transformed GGT (boxGGT) (Box and Cox 1964). 

To estimate the genetic correlations between tolerance to FE and production traits, average first 
lactation 305-d test days yield deviations for milk, fat, and protein were extracted from the animal 
evaluation database after adjusting for the lactation stage included in the analysis. Descriptive 
statistics of each trait are summarised in Table 1. 

 
Table 1: Mean, standard deviation, minimum, and maximum of all traits in the present study 
 

Trait Mean SD Min Max 
GGT (IU/L) 402.5 831.26 2.0 5352 
logGGT (IU/L) 3.98 2.066 0.69 8.59 
boxGGT 2.88 1.13 0.66 4.97 
Milk (litre) 12.5 3.49 2.99 34.12 
Fat (kg) 6.16 1.48 0.88 12.48 
Protein (kg) 4.96 1.26 1.27 14.95 

 
Genetic analyses were performed with AI-REML algorithm in ASReml-R v4 statistical package 

(Butler et al. 2017). A univariate animal model was performed to estimate variance components and 
heritability for each trait separately, whereas bivariate model was performed to estimate genetic 
correlations among traits. The following animal model was used for the analysis: 

𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙 + 𝐞𝐞, 
where y is the vector of phenotypes, X is the matrix relating fixed effects to phenotypes, b is the 
vector of fixed effects, Z is the matrix relating phenotypes to animals, and a is the polygenic random 
additive genetic effect which was assumed to be normally distributed following var(a) ∼N(0, A𝜎𝜎𝑎𝑎2), 
where 𝜎𝜎𝑎𝑎2 is the additive genetic variance and A is the average numerator relationship matrix (Wright 
1922), and e is the vector of random residual, ~ND (0, I 𝜎𝜎𝑒𝑒2), where I is the identity matrix and 𝜎𝜎𝑒𝑒2 
is the residual variance. The fixed effects in the model include cow age category, contemporary 
groups (herd-year-month of blood sampling), cow breed proportions (proportion of cow’s breed 
ancestry that was Jersey, Holstein, Friesian, Ayrshire), heterosis effects (Friesian × Jersey, Jersey × 
Ayrshire, Jersey × Holstein) and cow’s inbreeding coefficients. The genetic correlations between 
traits (ra) were estimated as: 𝑟𝑟𝑎𝑎 = 𝜎𝜎𝑎𝑎1𝑎𝑎2

�𝜎𝜎𝑎𝑎1
2 𝜎𝜎𝑎𝑎2

2
where 𝜎𝜎𝑎𝑎1𝑎𝑎2  is the additive genetic covariance among 

traits; and 𝜎𝜎𝑎𝑎1
2  and 𝜎𝜎𝑎𝑎2

2  are the additive genetic variances. 
 

RESULTS AND DISCUSSION 
The laboratory defined ‘adequate’ range for GGT is 3-47 IU/L (Gribbles Veterinary, Hamilton). 

Herds that were sampled had elevated GGT concentrations, averaging 402.5 IU/L across all herds 
sampled, indicative of liver damage. Figure 1 shows the difference of distribution between raw GGT, 
logGGT and boxGGT. Both logGGT and boxGGT were able to remove the skewness of the raw 
data so the distribution was more suitable for genetic analysis.  
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Figure 1. Distribution of raw GGT, logGGT, and boxGGT from cow blood samples with the 
mean represented in the dotted red line 

Figure 2 shows associations between each of age (years) and breed and GGT. Average serum 
GGT concentrations were highest for 3-year old animals (515.6 IU/litre), and lowest for 10-year old 
animals (278 IU/litre) indicating that younger animals are more susceptible to FE. Holsteins and 
Jerseys had similar average serum GGT concentrations (approximately 48x IU/litre for each breed), 
but crossbred animals (Holstein x Jersey) had lower GGT (363.9 IU/litre), suggesting a possible 
heterosis effect on tolerance to FE. 

Figure 2. Associations between each of age and breed and raw GGT presented as means with 
the number of observations in each class annotated above the bars 

Variance components and genetic parameter estimates. Variance components and 
heritability estimates for GGT, logGGT and boxGGT are presented in Table 2. The highest 
heritability estimate was for the logGGT (0.26). The raw GGT had the lowest heritability estimate 
(0.15). The heritability estimate for logGGT was slightly lower than previously reported heritability 
estimates in dairy cattle in New Zealand (Cullen et al. 2011; Morris et al. 1990; Morris et al. 1998), 
which ranged from 0.29 to 0.34. The moderate heritability for logGGT indicates that selection for 
tolerance to FE is possible in dairy cattle after a natural challenge from infected pasture. 

Table 2. Variance components and heritability estimates with their standard errors between 
parentheses for raw GGT, logGGT and boxGGT 

Trait σa 2 σe 2 h2 
GGT 72026.05 408747 0.15 (0.02) 
logGGT 0.76 2.21 0.26 (0.03) 
boxGGT 0.24 0.70 0.25 (0.03) 

Estimates of genetic correlations between production traits and logGGT are shown in Table 3. 
Genetic correlations between logGGT and production traits were generally weak, and positively 
correlated for all traits ranging from 0.02 ± 0.03 (fat) to 0.12 ± 0.03 (volume). Morris et al. (1990), 
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reported opposite results where the genetic correlations between logGGT and production were 
negative in Jersey cattle in New Zealand. The positive genetic correlations in the current study were 
unfavourable when selecting for tolerance to FE, given that the goal is to reduce logGGT. However, 
the estimate for fat was close to zero. Furthermore, for milk, volume and protein, these weak genetic 
correlations indicate that logGGT is almost independent of production traits and one could select for 
tolerance to FE without compromising milk production. 

Table 3. Estimates of genetic correlations (rg) between logGGT and production traits, with 
their standard errors between parentheses  

Trait rg 
Milk volume 0.12 (0.03) 
Milk fat 0.03 (0.03) 
Milk protein 0.09 (0.03) 

CONCLUSIONS 
Bulk milk screening for the biomarker was able to identify herds with elevated GGT in individual 

animals. Tolerance to FE in naturally challenged dairy herds is moderately heritable and genetic 
gain would be expected with selection for improved tolerance to FE. The genetic correlations 
between tolerance to FE and production traits are weak, indicating that FE tolerance is almost 
independent of production and selection for sires with tolerance to FE is possible without affecting 
milk production. 
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SUMMARY 

Microorganisms inhabiting the gut (gut microbiota) have been shown to influence immune 
responsiveness of the host in a variety of species. It has also been discovered that specific species of 
gut microbiota may contribute to immunity in multibreed cattle. In this study, faecal samples were 
obtained from Angus cattle that were concurrently phenotyped for cell-mediated and antibody-
mediated immune responsiveness (IR) at weaning. Both IR phenotypes, and an ImmuneDex score, 
were calculated and used to identify high, medium and low IR cohorts (n=20/group). 16s rRNA gene 
sequence data was used to infer the relative abundances of different phyla in the sampled animals. 
A total of 6 phyla were found to significantly differ in relative abundances for at least one of the IR 
phenotypes. Of these, Bacteroidota, Euryarchaeota and Proteobacteria may be biologically relevant 
due to their relationship with gut health and disease.  
 
INTRODUCTION 

Gut microbiota play an important role in modulating host immune responses. Specifically in 
livestock, recent studies indicate that host immune responsiveness is linked with gut microbiota 
profiles in both pigs and multibreed cattle (Fan et al. 2021; Ramayo-Caldas et al. 2021). Gut 
microbiota have also been reported to differ between different cattle breeds (Fan et al. 2021), and 
there is evidence indicating the relative abundance of some groups of gut microorganisms may be 
heritable (Fan et al. 2021). Therefore, the aim of this study was to determine whether there were 
significant differences in the faecal microbiota profiles of Angus cattle cohorts with high, medium, 
or low immune responsiveness. This could be used to develop a better understanding of microbial 
profiles and specific gut microorganisms differing between IR cohorts and could further lead to the 
development of a variety of selection or intervention tools that makes Angus production more 
profitable. 

 
MATERIALS AND METHODS 

Rectal faecal samples were collected from 444 Angus weaners (6months of age) run on pasture 
at Charles Sturt University and Talooby farms over 2021 and 2022. Rectal faecal samples were put 
on dry ice immediately after collection and stored in the laboratory at -20°C until further processing. 

Measurement of immune responsiveness. During rectal faecal sampling, all weaners were 
concurrently phenotyped for cell-mediated and antibody-mediated immune responsiveness. A 
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measurement representing a combined cell-mediated and antibody-mediated response, known as 
ImmuneDEX, was also estimated as previously described (Reverter et al. 2021).  

DNA extractions and 16s rRNA gene sequencing. Quick-DNA™ Fecal/Soil Microbe 
Miniprep Kit (Zymo Research, Irvine, CA) was used to extract genomic DNA from faecal samples 
as per manufacturer’s instructions. NanoDrop 2000 Spectrophotometer (Thermo Scientific, 
Australia) was used to determine final yield and quality of extracted DNA. Finally, samples were 
subjected to paired end 16s rRNA gene sequencing at the Novogene sequencing facility in 
Singapore. 

Statistical analysis. All IR phenotypes were calculated via linear regression after accounting for 
contemporary groups (based on herd ID, calf year of birth, cohort, sex, dam year of birth), age at 
measurement and weaning weight. These phenotypes were subsequently transformed into z-scores, 
and 20 animals with the highest, lowest, or z-scores closest to zero, were classified into high, low 
and medium IR cohorts respectively. Sequence data was used to create relative abundance graphs in 
R (using packages ggplot2 and ggpubr), and analysis was limited to the taxonomic level of phyla 
due to space limitations. Statistical analyses was performed using MANOVA in R to identify 
significant differences in relative abundances of the top 15 most abundant phyla between different 
IR cohorts. 

RESULTS AND DISCUSSION 
The average z-scores along with standard deviations are presented in Table 1. While there were 

some animals shared between high, medium and low cohorts of different IR phenotypes, a majority 
of animals were different. For instance, only one animal was common between the antibody-
mediated and cell-mediated IR phenotypes in the high IR cohort. On the other hand, ImmuneDEX 
which is strongly correlated with the other two IR phenotypes, had more animals shared in common 
in its high cohort when compared to the high antibody-mediated IR cohort (8 animals) and the high 
cell-mediated IR cohort (7 animals).  

Table 1. Z-scores (Mean ± Standard deviation) for high (n=20), medium (n=20) and low (n=20) 
IR cohorts for each of the three IR phenotypes 

IR Cohorts IR phenotypes 
Antibody-mediated Cell-mediated ImmuneDEX 

High 2.084 ± 0.21 2.285 ± 0.31 2.736 ± 0.49 
Medium 0.008 ± 0.04 -0.006 ± 0.03 -0.003 ± 0.02
Low -1.969 ± 0.21 -1.909 ± 0.26 -2.452 ± 0.35

The average relative abundances of different phyla, inferred based on 16s rRNA gene sequences 
(Figure 1), revealed Firmicutes and Bacteroidota to be the two most abundant phyla, which is 
consistent with scientific literature (Fan et al. 2021). Together these phyla account for ~ 90% of all 
microorganisms represented in the faecal samples. Analysis of the relative abundance data also 
revealed several significant differences between phyla of high, medium and low cohorts of different 
IR phenotypes. These differences have been presented in Table 2.   

Bacteroidota was the only phylum whose relative abundance was found to significantly differ in 
the antibody-mediated IR phenotype. Bacteroidota have been previously reported to contribute to 
the development of the immune system, and to anti-inflammatory responses (Gibiino et al. 2018). 
They have also been linked to the activation of Th1 systemic immune responses, as well as 
stimulation of B cells (Ivanov et al. 2008).  
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 The cell-mediated IR phenotype had two phyla that were found to significantly differ in terms 
of relative abundance, Euryarchaeota and Fusobacteriota. Existing evidence suggests Euryarchaeota 
are comprised of methanogenic species existing in the gut. In humans, it is possible that these 
methanogens have either a direct or indirect contribution to the development of gastrointestinal 
disorders and therefore, can adversely impact host health (Horz et al. 2010). 

In the ImmuneDEX IR phenotype, Proteobacteria, Fusobacteriota and Acidobacteriota were 
found to differ significantly. Proteobacteria have previously been reported to increase in abundance 
in the gut of individuals with a compromised immune system and could potentially be indicative of 
a diseased state (Shin et al. 2015). 

Figure 1. Phylum-level faecal microbiota assortment. Bar chart representing the average 
relative abundance of all bacterial ASVs taxonomically classified for A) antibody-mediated B) 
cell-mediated and C) ImmuneDEX, high, medium and low cohorts 



Infectious Diseases/Disease Resistance 

Table 2. Represents the phyla that significantly differed between high, medium and low 
cohorts for antibody-mediated, cell-mediated and ImmuneDEX phenotypes 

Antibody-mediated (P=0.05) 
      Phyla P-value

Bacteroidota 0.044*
Cell-mediated (P=0.05) 

      Phyla P-value
Euryarchaeota 0.035*
Fusobacteriota 0.040*

ImmuneDEX (P=0.05) 
      Phyla P-value

Proteobacteria 0.022*
Fusobacteriota 0.002*
Acidobacteriota 0.049*

Note. * Indicates a significant value (P=0.05) 

CONCLUSION 
Overall, 6 phyla out of the top 15 phyla, in terms of relative abundances, were found to 

significantly differ between the high, medium and low cohorts of the three IR phenotypes. The 
presence of Bacteroidota in the antibody-mediated phenotype, Euryarchaeota in the cell-mediated 
phenotype and of Proteobacteria in the ImmuneDEX phenotype, could be biologically relevant and 
warrants further in-depth investigation including investigating the heritability of these abundances 
and how much variation is explained by the host. Characterising microbiome-based signatures of 
different IR states could help identify at-risk animals and afford opportunities for early intervention 
that could improve animal health, welfare and productivity.     
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SUMMARY 
The objective of this study was to perform a multi-trait meta-analysis of summary statistics of a 

single-trait genome-wide association study (GWAS) on 10 body weight, carcase composition and 
eating quality traits in Australian sheep. Meta-analysis was performed based on an approximate chi-
squared test according to estimated SNP effects and their associated standard errors obtained in a 
single-trait GWAS. Single-trait association testing was based on single-marker regression analysis 
in linear mixed models using imputed whole genome sequence data and between 2,707 and 135,022 
adjusted phenotypes across the traits studied. Meta-analysis showed higher power of QTL detection 
compared to single trait GWAS, it confirmed the highly significant QTL regions in single-trait 
GWAS and revealed numerous pleiotropic QTLs on chromosomes 1, 3, 6, 8, 11, 16 and 18, affecting 
two or more traits. In total meta-analysis showed 4,823 SNPs in strong association with at least one 
trait (-Log P≥6.0) but did not show any new highly significant QTL regions across the traits. 

 
INTRODUCTION 

Identification and estimation of the genetic parameters of Quantitative Trait Loci (QTLs) is 
valuable for understanding the biology of traits and is useful to accelerate the rate of genetic gain of 
economically important traits in plant and livestock breeding programs. Literature shows higher 
genomic evaluation accuracy and hence faster genetic progress by prioritizing and weighting genetic 
variants with larger effect in genomic prediction statistical models (e.g. MacLeod et al. 2017). 
Moghaddar et al. (2019) showed improvement in prediction accuracy of weight and eating quality 
traits in a combined dataset from multiple research and commercial sheep populations using 
information about polymorphisms affecting the genetic variation of the traits.  

Identification of QTLs in polygenic traits has been broadly based on single-trait GWAS. 
However, when multiple correlated phenotypes are available, a joint analysis of multiple traits 
enabled via meta-analysis, could increase the statistical power of detecting genetic associations. This 
could be more important for traits with smaller numbers of observations which show weaker 
associations with the genetic variants in single-trait GWAS (Fang & Pausch, 2019).  The objective 
of this study was to perform a multi-trait GWAS meta-analysis using summary statistics of single-
trait GWAS which was performed on two growth trait, four carcase trait and four eating quality traits 
using imputed whole genome sequence data. 
 
MATERIALS AND METHODS 

Studied population and phenotypes. Phenotypic records of two body weight, four carcase 
composition and four eating quality traits were derived from the Australian national Sheep Genetics 
database (https://www.sheepgenetics.org.au/). Table 1 shows the names of the traits studied, 
phenotypic summary statistics and heritability estimates derived from phenotypes and pedigree 
information. The phenotypes belonged to a multi-breed/admixed sheep population from both 
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research (Information Nucleus Flocks and MLA resource flock) and industry flocks (Sheep 
Genetics). More than 30 breeds were represented in the data set which was constructed by merging 
data from three separate Sheep Genetics evaluations, for maternal breeds, terminal sire breeds and 
Merinos. The dominant breeds represented in the data either as purebreds or crossbred/admixed with 
other breeds were Border Leicester, Coopworth and maternal composites, White Suffolk, Poll 
Dorset, Suffolk, Texel, and Merino. The definition and measurement of the traits between research 
and industry flocks and within maternal breeds, terminal sire breeds and Merinos were based on the 
same standard. 

 
Table 1. Trait abbreviation and definition, phenotypic summary statistics and heritability 
estimates for studied traits 
 

Trait N of Records* Average sd h2(se)** 
PWT (post weaning weight, kg) 92,586 45.44 12.65 0.30 (0.001) 
CWT (carcass weight, kg) 
CCFAT (carcass scanned fat, mm) 
CEMD (carcass scanned eye muscle depth, mm) 
DRESS (dressing percentage,%) 
IMF (intra muscular fat, %) 
LMY (lean meat yield, kg) 
PCF (post weaning scanned fat, mm) 
PEMD (post weaning EMD, mm) 
SF5 (shear force at day5 aging, Newton) 

20,831 
20,281 
20,393 
15,977 
20,320 
2,707 
51,319 
51,597 
20,474 

21.889 
3.84 

31.32 
44.34 
4.47 

56.58 
2.84 

27.15 
33.45 

3.29 
1.96 
4.23 
2.86 
1.15 
9.69 
0.79 
3.85 

13.57 

0.31 (0.001) 
0.27 (0.001) 
0.31 (0.001) 
0.30 (0.001) 
0.55 (0.001) 
0.48 (0.02) 

0.26 (0.001) 
0.31 (0.001) 
0.32 (0.001) 

*: number of records with both phenotypes and genotypes, sd: standard deviation, **: heritability (standard 
error)  

 
Genotypes. The whole genome sequence data on 26 Ovine autosomes which were imputed from 

a mixture of different low, medium and high-density SNP genotypes were used in this study. In the 
imputation pipeline, research and industry data with low and medium density SNP genotypes (12k, 
15k and 50k) were imputed to a common 60k genotype based on a large reference set. In the next 
step the 60k genotypes were imputed to high-density genotypes (500k) using a multi-breed reference 
set of 2,266 animals. Animals with high-density genotypes were then imputed to whole genome 
sequence using 726 multi-breed animals as a reference set. Genotype phasing and imputation was 
performed in Beagle 5.3 (Browning et al. 2021). The final set of sequence data was comprised of 
31,154,249 genetic variants after applying quality control on genotypes and removing genetic 
variants with low imputation accuracy based on a significant threshold level suggested by software 
(r < 0.63).  

Statistical analysis. Phenotypes used in single-trait association studies were obtained as outputs 
of the multi-trait industry evaluation analyses for Merino, maternal breeds, and terminal breeds 
respectively run by AGBU (Animal Genetics Breeding Unit). These analyses use phenotypes 
corrected for known environmental effects such as age and birth/rearing status, then fit a multi-trait 
mixed model with contemporary group fitted as a fixed effect, and genetic groups, direct and 
maternal genetic effects, maternal permanent environment, and sire by flock-year fitted as random. 
The three analyses were run with genetic effects fitted with a pedigree relationship matrix, and pre-
corrected phenotypes derived as the sum of the estimated breeding values for direct genetic effects 
and residual values (𝒚𝒚∗ = 𝒂𝒂� + 𝒆𝒆�). 

Single-trait GWAS was performed by single SNP regression analysis in a linear mixed model 
using Gemma V0.96 software (Zhou et al. 2014) and based on the following equation: y*=Xb + Zu 
+ e. In this equation y* refers to the pre-corrected phenotypes explained above, b includes a fixed 
effect modelling the mean of each of the three analyses described above and the SNP effect at each 
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marker, u refers to the random additive genetic effect of the animal fitted by genomic relationship 
matrix (G), and e is the residual effect. G was calculated according to Yang et al. 2011 using 50k 
genotypes and X and Z are incidence matrix which relate fixed and random effects to phenotypes. 

Meta-analysis was performed based on multi-trait approximate chi-squared test for each SNP, 
distributed according to chi-square distribution and estimated as 𝛘𝛘𝑑𝑑𝑑𝑑,𝑛𝑛

2 = t'V−1t (Bolormaa et al. 
2014). In this equation n is number of traits, t is the signed t-value derived from single trait GWAS 
SNP effect and its standard error across all 10 traits (t=b/se(b)), and V-1 is the inverse of correlation 
matrix derived from SNP effect (signed t-values between traits). An arbitrary p-value of equal or 
less than 1.0×10-6 was considered as the SNP significance threshold level. Significant SNPs were 
pruned for high LD in Plink (Purcell et al.2007) according to window size of 5000 SNPs, sliding 
window of 200 SNPs and LD≥0.95). 

RESULTS AND DISCUSSION 
Figure 1 shows the results of the multi-trait meta-analysis as a plot of SNP p-values versus 

chromosomal position. The significant regions in Figure 1 are those which are significant for at least 
one trait. Compared to p-values derived in a single-trait GWAS and meta-analysis, meta-analysis 
showed higher power of QTL detection which was in line with results of comparison of single-trait 
GWAS and a meta-analysis in cattle (Bolormaa et al. 2014). Meta-analysis confirmed the highly 
significant regions in single trait GWAS, and furthermore showed stronger association for some 
regions that had weaker association with phenotype. However, there were regions around significant 
thresholds with weak association with phenotypes in single-trait GWAS which were not significant 
in the meta-analysis, particularly for traits with smaller number of phenotypes. Numerous highly 
significant pleiotropic QTL region were found across the studied traits, including regions on 
chromosome 1 (CCFAT, PCF, IMF and PEMD), chromosome 2 (CWT, CWT, CCFAT and IMF), 
chromosome 3 (affecting both weight traits), chromosome 6 (weights and EQ traits except SF5 and 
CEMD), chromosome 8 (PWT, PCF and PEMD), chromosome 11 (PWT, CWT, PCF and PEMD), 
chromosome 16 (weights and PCF traits) and chromosome 18 (PWT, IMF, CEMD and SF5). Meta-
analysis did not reveal new significant QTL regions across these traits compared to single-trait 
GWAS on sequence data. In total, meta-analysis discovered 4,823 SNPs that were in significant 
association with at least one trait (-log p≥6.0) after pruning for high LD.  

Figure 1. Manhattan plot of results of multi-trait GWAS meta-analysis of weight, carcase 
composition and eating quality traits 
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Comparison of genetic correlations between traits based on signed t-values derived from p-
values, and the genetic correlation obtained based on pedigree information showed a similar 
correlation direction. However, the strength of correlation coefficients was different in some cases, 
most particularly for traits with smaller number of records. LMY had the smallest number of 
phenotypes and genotypes in the meta-analysis which showed the most different correlation 
estimated in meta-analysis in comparison to the genetic correlation estimated from pedigree. 

Meta-analysis uses information in summary statistics of the results of single-trait GWAS on 
genetically related traits to improve the power of QTL detection, and together with single-trait 
GWAS is useful to confirm pleiotropic QTL effects. In this study meta-analysis showed notably 
stronger evidence of QTL affecting the traits with moderate to high genetic correlations. Meta-
analysis was also useful to flag those regions which were close to the significance threshold in 
single-trait GWAS. Meta-analysis did not show new highly significant regions. This could be related 
to a high resolution in the single-trait GWAS due to strong linkage disequilibrium provided by using 
whole genome sequence data.  

CONCLUSIONS 
Multi-trait meta-analysis of weight and eating quality traits using SNP effects derived from 

single-trait GWAS on imputed whole genome sequence data showed higher power of detecting 
genetic variants in significant association with phenotypes compared to single-trait GWAS. Meta-
analysis was also useful to flag those genetic markers which were close to the significance threshold 
in single-trait. GWAS Results of meta multi-trait analysis and single-trait GWAS revealed numerous 
pleiotropic QTL regions affecting two or more traits in this study. In total, meta-analysis showed 
4,206 genetic variants in significant association with at least one trait (-log p>7.0), however, it did 
not show new highly significant QTL compared to results of single-trait GWAS on whole genome 
sequence data.  
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SUMMARY 
Structural variation has been posited to contribute equal or greater diversity at the nucleotide 

level than any other form of genetic variation. Short read sequencing technologies are limited in 
their ability to characterise structural variants (SVs), however long read sequencing, which is now 
cost effective, poses as a solution to this problem. The Bovine Long Read Consortium (BovineLRC) 
aims to use long read sequencing technologies to sequence cattle at population scale to characterise 
the structural variation of the bovine genome for downstream applications. This pilot study 
sequenced 41 animals from two breeds in an effort to understand how much SV variability exists 
within and across breeds. A total of 76,572 SVs were detected across all samples, one third of which 
were segregating in only one breed. Insertions and deletions tended to be smaller and duplications 
larger. Insertions and deletions more often segregated across both breeds, while inversions were 
more often breed specific. Few duplications were detected but they tended to be slightly more likely 
to be breed specific. The results highlight that it would be beneficial to have a dataset with large 
numbers of animals and breeds to understand the structural variation that exists and explore the 
impact of SVs on traits of interest. 

 
INTRODUCTION 

The 1,000 bull genomes project has had a massive impact on cattle genomics worldwide 
cataloguing single nucleotide polymorphisms (SNPs) and small insertions and deletions (INDELs) 
in more than 6,000 cattle genomes (Daetwyler et al. 2014; Hayes, Daetwyler 2019). However, 
limitations of short read sequencing technologies mean that SVs are not easy to characterise. SVs 
can be large INDELs (>50 basepairs), inversions, translocations, copy number variations or 
segmental duplications and studies in human estimate that SVs together occupy a proportion of the 
genome that is equal to or greater than that of SNPs and small INDELs (Feuk et al. 2006; Ho et al. 
2020) and contribute greater diversity at the nucleotide level than any other form of genetic variation 
(Chaisson et al. 2019). Multiple studies in cattle have demonstrated that SVs impact classic 
mendelian traits, quantitative traits and gene expression (Kadri et al. 2014; Rothammer et al. 2014; 
Lee et al. 2021). 

Long read sequencing, such as nanopore sequencing from Oxford Nanopore Technologies 
(ONT) and single molecule real time sequencing from Pacific Biosciences (PacBio), have recently 
become cost-effective. Both claim costs of <$1,000US per genome at 30x coverage and have the 
advantage of being able to sequence across large SVs and therefore better characterise them 
compared to short read technology (Chaisson et al. 2019).  

To date genome wide SV detection in cattle at population scale has largely used short read 
sequence data (Boussaha et al. 2015; Mesbah-Uddin et al. 2017; Mielczarek et al. 2018; Hu et al. 
2020; Mei et al. 2020; Chen et al. 2021; Upadhyay et al. 2021) or limited long read sequence data 
(Low et al. 2020; Crysnanto et al. 2021) or a combination of the two (Couldrey et al. 2017). Like 
the Human Genome Structural Variation Consortium (Chaisson et al. 2019) the Bovine Long Read 
Consortium (BovineLRC) (Nguyen et al. 2023) aims to use long read sequencing technologies to 
sequence cattle at population scale to characterise the structural variation of the bovine genome. 
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Such a reference dataset will empower imputation of SVs into larger populations to examine their 
impact on quantitative traits as well as better resolve segmental duplication regions with copy 
number variants, understand the evolution of SVs and identify deleterious causal variants. 

As a pilot study we have sequenced 41 animals from two breeds with ONT in an effort to 
understand how much variability exists within and across breeds in SV. 

 
MATERIALS AND METHODS 

DNA sequencing. 19 Holstein and 22 Jersey animals were selected, avoiding full and half sib 
relationships to maximise diversity. High molecular weight DNA was extracted from semen, liver 
tissue or whole blood using Gentra Puregene kit (Qiagen). Sequencing libraries were prepared using 
ligation sequencing kit v9 or v10 (ONT) according to manufacturer’s instructions and sequenced on 
R9.4.1 flowcells on a MinION or PromethION (ONT). Super high accuracy basecalling was 
undertaken with Guppy v6.1.7 and reads with q-score greater than 7 retained for analysis. 

Data analysis. Reads were quality trimmed using FiltLong (https://github.com/rrwick/Filtlong 
accessed December 2022) with default settings and samples with short reads (6 Holstein and 6 
Jersey, 150 cycle paired reads) polished. Filtered reads were then mapped to ARS-UCD1.2 (Rosen 
et al. 2020) with additional Btau5.0.1 Y (Bellott et al. 2014) using Minimap2 (Li 2018). Sniffles2 
(Sedlazeck et al. 2018) was used to detect SVs for each sample and subsequently merge SVs from 
multiple individuals and re-genotype. SVs larger than 3Mb or with a genotype quality score less 
than 20 were excluded. 
 
RESULTS AND DISCUSSION 

A mean of 26x and 20x read coverage was achieved with mean read length N50 of 30kb and 
26kb for Holstein and Jersey samples respectively. On average 20,770 deletions, 19,620 insertions, 
234 inversions and 38 duplications were detected for each Holstein and 19,815, 18,458, 177 and 39 
respectively for each Jersey. After merging and filtering data from all animals a total 76,572 SVs 
were detected. This is more than studies using short read data with similar sample numbers 
(Boussaha et al. 2015; Couldrey et al. 2017; Mesbah-Uddin et al. 2017; Mielczarek et al. 2018; Hu 
et al. 2020; Upadhyay et al. 2021) and similar to small studies using long read data in a pangenome 
approach (Crysnanto et al. 2021) but less than the largest pangenome approach with short read data 
and almost 900 samples (Zhou et al. 2022) which detected greater than 3.6 million SVs. 14,526 SVs 
were segregating in Holstein only and 11,264 only in Jersey (Figure 1A). 50,782 (66%) were 
detected in both breeds, therefore one third of all SVs were breed specific.  

 
Figure 1. A Venn diagram showing SVs detected across or within Holstein (HOL) or Jersey 
(JER) breed (A). The relationship between allele frequency and length of SVs for Holstein 
specific SVs (B), those that occurred in both breeds (C) and Jersey specific SVs (D) 

 



GWAS 

Figures 1B-1D show a trend of longer SVs with lower allele frequencies in the population, for 
both breed specific as well as across breed SVs. As expected, high allele frequency SVs were more 
likely across breeds. Other studies have estimated the proportion of breed specific SVs at 66% 
(Boussaha et al 2015) when comparing 3 breeds, 15% (Mielczarek et al. 2018) in 13 breeds, 48% 
(Hu et al. 2020) in 10 breeds, 54% (Mei et al. 2020) in 8 breeds and 76% (Low et al. 2020) in 3 
breeds. While others found different allele frequencies of the same SV in different populations of 
taurine, indicus and zebu cattle (Upadhyay et al. 2021). This variation reflects the variable power of 
the different studies, driven by the numbers of samples, breeds included and breed definitions. Large 
numbers of samples and large numbers of breeds are likely required before we can be certain of the 
proportion of SVs that are breed specific.  

Figure 2. Numbers of deletions (A), insertions (B), inversions (C), and duplications (D) of 
different length for across breed (shared) and breed specific (unique) SVs. Note x-axis is not to 
scale 

In agreement with other studies (Boussaha et al. 2015; Upadhyay et al. 2021; Zhou et al. 2022) 
insertions and deletions tended to be smaller and duplications larger (Figure 2). In this study we 
found insertions and deletions more often occurred across both breeds (Figure 2A and 2B), while 
inversions were much more often breed specific (Figure 2C). Few duplications were detected but 
they tended to be slightly more likely to be breed specific. However, reads that span the structural 
variant are required to call them accurately, therefore this dataset with read N50 of 26-30Kb has 
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limited power to detect very large SVs, likely partially accounting for the low numbers of duplicates 
found. Other studies also find lower numbers of large duplications compared with insertions and 
deletions (Mei et al. 2020; Zhou et al. 2022). It’s also likely that many duplications were removed 
when SVs were merged across animals due to difficulty deciphering breakpoints for SVs. Given the 
small population size used here, read length N50 and the difficulties associated with accurate 
annotation of large and complex SVs this study had limited power to detect large and rare SVs. 

CONCLUSION 
This small pilot study in 2 breeds highlights that it would be beneficial to have a dataset with 

large numbers of animals and breeds to understand the structural variation that exists in the bovine 
genome. The BovineLRC has been formed to achieve this. It also highlights that more work is 
required to accurately annotate and genotype large and complex SVs. Further work is required to 
understand the impact of the SVs detected in this study on traits important to the dairy industry. 
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SUMMARY 
In 2018 genomic information was incorporated in the Australian Wagyu BREEDPLAN analysis. 

This development necessitated the implementation of genotype quality assurance (QA) checks to 
ensure the genotypes which were included in the genomic relationship matrix (GRM) were from 
samples collected from the same registered animals as the phenotypes in the analysis. One of the 
quality assurance checks is to compare the recorded sex of the registered animal to that of the 
predicted sex from the genotype. The Australian Wagyu population developed from a relatively 
small number of founder animals which limited the genetic diversity of the breed. Lower levels of 
genetic diversity reduce the usefulness of X chromosome heterozygosity to predict the sex of the 
animal from which the sample was collected. Modern SNP chips include Y chromosome data, the 
use of which in sex prediction can greatly increase the accuracy of sex-based quality control checks. 

 
INTRODUCTION 

The Wagyu breed in Australia was established from 221 Fullblood foundation animals mostly 
exported from Japan between 1990 and 1997. In comparison to other breeds, this is a relatively small 
number of foundation animals which results in the risk of increased subsequent inbreeding and lower 
levels of genetic diversity (Ferdosi et al. 2019). In populations where the effective population size 
is relatively small, the diversity on the X chromosome could be expected to be half of that of the 
autosomes (Schaffner 2004), while Mészárosová et al. (2022) found that X chromosome 
heterozygosity could vary significantly in the same population. 

In 2018 genomic information was incorporated in the Australian Wagyu BREEDPLAN analysis. 
An important component of utilising genomic information is to ensure the genotype is associated 
with the correct registered animal and corresponding phenotypes. The Animal Genetics and 
Breeding Unit (AGBU) developed a data pipeline which incorporates a range of QA checks to ensure 
genotype integrity (Connors et al. 2017).  

An important genotype QA check which should be implemented by genetic analysis service 
providers is to compare the recorded sex of the registered animal to the sex predicted from the 
animal’s genotype (Connors et al. 2017, ICAR Guidelines 2022, McClure et al. 2018). Not every 
commercial chip includes chromosome Y SNPs, however, they typically contain chromosome X 
markers. Both the X and Y chromosomes contain a pseudo-autosomal region (PAR) and it is 
important to ensure only SNPs from the non-PAR (nPAR) region are used in sex prediction analysis.  

The sex of the genotype can be predicted by evaluating the nPAR X chromosome heterozygosity 
and/or the presence or absence of calls on nPAR Y chromosome SNPs. Normally females have two 
copies of the X chromosome while males have one X chromosome and one Y chromosome.  

Combining the X and Y chromosome results sometimes lead to conflicting sex prediction 
outcomes. In the very rare occurrence where an animal has Turner (X0) or Klinefelter’s syndrome 
(XXY), the X and Y chromosome results will conflict. Also, when a semen sample only report X 
chromosome SNPs, it could indicate a female sex selected semen sample was submitted for 
genotyping.  
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When the early bovine chips were manufactured, the sequence information on sex chromosomes 
were not well assembled, and no Y chromosome SNPs were on the chips. These issues, as well as a 
low genetic diversity on the X chromosome can result in registered females having low X 
chromosome heterozygosity and their genotypes incorrectly excluded from the genetic analysis. 
This paper investigates the use of nPAR X and Y chromosome data in estimating genotype sex and 
considers results where the X and/or Y predicted sex of the genotype and the recorded sex of the 
registered animal may conflict.  The aim is to determine population specific thresholds for Australian 
Wagyu to improve accuracy of sex prediction and reduce incorrect exclusion of valid female 
genotypes from genomic analyses.  
 
MATERIALS AND METHODS 

The Australian Wagyu Association (AWA) has more than 325,000 animals genotyped, from 
more than 3,600 different chips or manifests.  These data are stored in their genotype database hosted 
by the Helical Company (Garrick et al. 2023). More than 50% of these genotypes are from research 
or commercial animals which are not registered in the AWA’s registration database hosted by the 
Australian Business and Research Institute. 

The samples can be categorised based on their number of SNPs. Table 1 shows the different 
categories of chips, the number of animals genotyped for each category, their number of SNPs as 
well as the numbers of nPAR X and Y chromosome SNPs present.  

 
Table 1. Number of genotypes in each chip category with number of SNPs, number of nPAR 
X chromosome SNPs and number of nPAR Y chromosome SNP. 

 
Chip Category #Genotypes #SNPs #X Chrom #Y Chrom 
Parentage 59,620 180 to 641 0 0 
10K 7,821 6,900 to 10,000 218 to 271 0 to 7 
30K 5,444 19,000 to 35,000 634 to 919 0 to 7 
50K 86,313 35,000 to 49,000 291 to 1,893 0 to 189 
70K 17,730 50,000 to 77,000 288 to 1,561 6 to 239 
100K 148,006 93,000 to 96,000 2,091 269 
140K 272 137K to 140K 2,015 25 
770K 187 777,963 2,821 267 

 
Genotypes were extracted and analysed to compare the accuracy of predicting the sex of the 

animals from which the sample was collected. Animals genotyped using chips with no nPAR X 
chromosome SNPs or less than six nPAR Y chromosome SNPs or a call rate lower than 95% were 
excluded from the analysis.  The first analysis included all animals that had nPAR X and at least six 
nPAR Y chromosome SNPs present on the chip which resulted in a total of 247,057 genotyped 
animals. The second analysis excluded all genotypes of animals not registered in the AWA 
Herdbook, which reduced the total to 104,860 genotypes. An animal must be parent verified to both 
its parents to be registered in the AWA’s Herdbook, which ensure a high level of quality assurance. 

Traditionally the focus has been on using the nPAR X chromosome to predict the sex of the 
animal from which the sample was collected. The increasing number of Y chromosome SNPs on 
more recently developed chips make it possible to consider the number of called nPAR Y 
chromosome SNPs to improve the accuracy of the prediction.  If the genotype has a high proportion 
of nPAR Y chromosome SNPs reported, it could indicate that the sample was collected from a male 
while a very low proportion or no called nPAR Y chromosome SNPs would be suggestive the animal 
was a female.  

The sex prediction accuracies of three different methods were assessed by comparing the 
predicted sex of the genotype with the sex of the associated registered animal. The three methods 
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are presented in Table 2 where Method 1 only used the nPAR X chromosome heterozygosity, 
Method 2 use both the nPAR X chromosome heterozygosity (Method 1) as well as the number of 
called nPAR Y chromosome SNPs (McClure et al. 2018, Garrick 2019) and Method 3 use nPAR X 
and Y chromosome SNPs in a stepwise approach where the proportion of nPAR Y chromosome 
SNPs are first used and only if that doesn’t predict a clear result, the nPAR X chromosome 
heterozygosity of Method 1 is considered.  

Table 2. The criteria used to determine the sex prediction accuracy of three different methods 

Predicted Male Predicted Female Ambig. 

1 nPAR X ≤ 5% Heterozygosity nPAR X > 5% Heterozygosity 

2 Method 1 + nPAR Y > 5  Method 1 + nPAR Y < 2 X ≠ Y 

3 nPAR Y < 0.4 or 
nPAR Y = 0.4 to 0.6 + Method 1 

nPAR Y > 0.6 or 
nPAR Y = 0.4 to 0.6 + Method 1 

RESULTS AND DISCUSSION 
Table 3 shows the distributions of the proportion of nPAR Y called SNPsfor all genotypes and 

registered animals. The results show there is a wide continuum of proportions observed across all 
the samples tested with no clear cut-off between what may be expected as male vs. female samples 
for the nPAR Y SNPs used. To determine if earlier chips which tended to have fewer Y SNPs 
available are disproportionally contributing to this observed variation, genotypes with less than 100 
Y SNPs on the chip were removed from the analysis containing all genotypes (96,348 genotypes 
removed). The results still indicate no clear break in the observed proportions.  

Table 3. Distribution of the numbers of animals with various proportions of called Y 
chromosome SNPs when all genotyped animals (All Genos), only chips with more than 100 Y 
SNPs (> 100 Y), or only registered animals (Registered) were analysed 

Proportion of called Y chromosome SNPs 

<0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1.0 

All Genos 141,762 885 315 141 43 92 1,686 101 13,009 89,023 

> 100 Y 85,045 601 194 79 24 7 2 10 68 64,679 

Registered 78,266 489 189 96 30 13 286 33 4,018 21,440 

Figure 1 shows the distribution of the proportion of genotypes after genotypes with nPAR X 
chromosome heterozygosity of zero (expected males based on X chromosome only) were excluded, 
resulting in 144,308 and 79,147 from all and registered animal genotypes respectively. The graph 
on the left in Figure 1 displays the distribution of the number of animals genotyped relative to the 
heterozygous proportion of nPAR X chromosome. The graph on the right includes only that subset 
of animals with low X chromosome heterozygosity excluding animals with the proportion of 
genotypes with nPAR Y > 0.5 (1,725 which are expected to be male). The same reduction was 
observed when genotypes from registered animals were analysed. 

280 
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Figure 1. Number of genotyped animals exhibiting X chromosome heterozygosity (left) and 
animals with <0.1 proportion X chromosome heterozygosity after genotypes with more than 
0.5 proportion of called Y chromosomes were excluded (right) 

Using the three methods presented in Table 2 to predict the sex of the 104,860 genotypes of 
registered animals (78,906 females and 25,689 males) found that Method 1 incorrectly predicted 
975 (1.23%) females to be males and 165 (0.65%) males to be females. Method 2 predicted 2,955 
(3.75%) females to be ambiguous and 513 (0.65%) females to be males while 312 (1.21%) and 147 
(0.57%) of males were predicted to be ambiguous and females respectively. Method 3 incorrectly 
predicted 508 (0.64%) females to be males and 433 (1.6%) males to be female.  

Inspection of the “problem” genotypes suggests that some batches of samples exhibited little or 
no variation in the number of called Y chromosome SNPs, perhaps due to problems with the cluster 
files used for SNP calling at those loci in those batches.  

CONCLUSIONS 
Reduced genetic diversity negatively impacts the usefulness of X chromosome heterozygosity 

as the only criteria to predict animal sex from called SNPs.  
Combined use of X and Y chromosome SNPs reduces the number of animals with incorrectly 

predicted sex. However, consideration of the chip content and careful scrutinization of variation and 
distribution of results will be required as additional criteria to reduce the percentage of incorrectly 
predicted sex from genotype calls to less than 0.5% of all animals.  
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SUMMARY 

Ram semen traits influence conception outcomes, which in turn, may influence reproductive 
efficiency in sheep. As such, this study aimed to estimate genetic parameters and identify 
Quantitative Trait Loci (QTLs) associated with ram semen traits including volume (VOL), gross 
motility (GM), concentration (CONC), and percentage post thaw motility (PPTM) in a resource 
population consisting of five sheep breeds common to Australia. Over 11,000 semen collection 
records were used to estimate the heritability of semen traits (h2 = 0.081–0.170). Genome-wide 
association (GWA) analysis was subsequently performed using a subset of genotyped animals with 
5,363 semen collection records. A total of 34 QTLs located on 16 chromosomes were found to be 
significantly associated with semen traits. Several candidate genes that have previously been linked 
to male fertility were identified within these QTLs. 
 
INTRODUCTION 

Ram semen traits like GM (David et al. 2015), CONC (D’Alessandro et al. 2001), and PPTM 
(Morris et al. 2001) may influence conception outcomes in sheep following artificial insemination 
(AI). Moreover, in natural mating, litter size has been reported to be significantly influenced by the 
ram (Holler et al. 2014). Therefore, assessment of semen quality or breeding soundness should be 
widely practiced by sheep breeders. However, the genetic and physiological drivers contributing to 
variability in ram semen traits are not fully understood. Identifying genetic determinants that 
underlie variability in these traits, could aid in better understanding of these traits, and help devise 
novel strategies to improve conception outcomes.  

Past sheep studies using Spanish dairy sheep (Pelayo et al. 2019) and Ethiopian rams (Rege et 
al. 2000) have found semen traits which are routinely assessed for use in artificial breeding to be 
lowly heritable. Comparable studies have not yet been performed in Australian sheep populations. 
Similarly, only one GWA study has been previously undertaken to identify genomic regions 
associated with semen traits such as volume, gross motility, and concentration in Assaf rams 
(Serrano et al. 2021). Therefore, the aim of this study was to estimate heritability and identify QTLs 
associated with ram semen traits in an Australian population comprising of five sheep breeds.  
 
MATERIALS AND METHODS 

Phenotypic data. Semen phenotypes for VOL, GM, CONC, and PPTM were provided by an 
artificial breeding facility for Dohne, Dorper, Merino, Poll Dorset, and White Suffolk rams. Semen 
collection, assessment, and initial quality control have been previously described (Hodge et al. 
2022).  

Genetic parameter estimation. A total of 11,470 semen collection records from 864 rams were 
used to estimate genetic parameters, which has been previously described (Hodge et al. 2022). 

 
* A joint venture of NSW Department of Primary Industries and University of New England 
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GWA. Genotype data was available for 330 rams, as such, a subset of 5,363 semen collection 
records were used to perform a GWA study via R package RepeatABEL (Rönnegård et al. 2016). 
Quality control for genotype data was performed as previously described (Moghaddar et al. 2015). 
Modified Bonferroni was used to identify significant single nucleotide polymorphisms (SNPs), and 
genes within ±0.5 Mega base (Mb) of these SNPs were identified via the National Centre of 
Biotechnology Information (NCBI) Genome Data Viewer (Rangwala et al. 2021), using the Ovis 
aries genome assembly (Oar_v3.1). SNPs with overlapping ±0.5 Mb regions were considered to 
represent the same QTL region. 
 
RESULTS AND DISCUSSION 

Semen traits were found to be lowly heritable (0.081-0.170) (Table 1), and genetic and 
phenotypic correlations ranged from -0.630 to 0.321 and -0.074 to 0.347, respectively.  

 
Table 1. Estimated heritability, genetic and phenotypic correlations along with standard 
errors (heritability in bold on the diagonal, and genetic and phenotypic correlations on upper 
and lower of the diagonals, respectively) 
 

 VOL GM CONC PPTM 
VOL 0.161 (0.041) -0.071 (0.206) 0.153 (0.227) -0.262 (0.274) 
GM 0.215 (0.020) 0.170 (0.058) 0.321 (0.282) -0.630 (0.238) 

CONC 0.228 (0.022) 0.347 (0.019) 0.089 (0.051) -0.351 (0.286) 
PPTM 0.113 (0.024) -0.074 (0.024) 0.100 (0.024) 0.081 (0.040) 

 
Overall, the heritability estimates of semen quality traits were found to be low, indicating that 

environmental variance significantly contributed to phenotypic variance. This is consistent with the 
fact that the data used in this study was collected over a 20-year period. Furthermore, heritability 
estimates in the present study largely align with past studies in livestock (Wolf 2009; Berry et al. 
2019). Ultimately, results of genetic parameter estimation indicate that semen traits have the 
potential to be improved by selective breeding, as variability in semen traits is partially due to 
genetics.  

A total of 34 QTLs were significantly associated with semen traits, including 8 QTLs for VOL, 
9 for GM, 12 for CONC, and 5 for PPTM (Figure 1).  

 
Figure 1. Manhattan plot for VOL, GM, CONC, and PPTM 
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Several candidate genes were identified within QTLs associated with semen traits (63 for VOL, 
105 for GM, 60 for CONC, and 21 for PPTM). Table 2 presents candidate genes identified in the 
top two most significant QTLs associated with each semen trait. Noteworthy candidate genes found 
within QTLs associated with VOL, GM, CONC, and PPTM include ANKRD17, LAMB1, YTHDC2, 
and CYLC2, respectively. Proteomic analysis of pig semen found ANKRD17 to be significantly 
expressed in the post sperm-rich fraction (one of three parts which constitutes pig semen) of higher 
fertility boars compared to lower fertility (Martine et al. 2022). LAMB1 was identified as a candidate 
gene associated with progressive motility following a GWA study in pigs (Gao et al. 2019). 
YTHDC2 is reported as significantly upregulated in murine testes during spermatogenesis (Wojtas 
et al. 2017). Furthermore, YTHDC2 null mice have significantly smaller testes, which ultimately 
resulted in infertility (Hsu et al. 2017). Finally, CYLC2 was abundantly expressed in cryopreserved 
semen from bulls with high conception rates proven by AI (D'Amours et al. 2019). Several key 
positional candidates identified within genomic regions associated with semen traits have also been 
reported in past studies to have functional roles influencing semen quality, spermatozoal motility, 
and conception outcomes following AI. Thus, such genes may be important putative candidates for 
semen quality and potentially influence to conception outcomes in sheep. 

Table 2. Top two most significant QTLs and candidate genes associated with different semen 
traits 

Trait Position 
(Chromosome:Mb) Candidate Gene 

VOL 
6: 87.69 - 88.69 ANKRD17A, ALB, AFP, AFM, RASSF6, CXCL8, CXCL5, PPBP, 

PF4, CXCL1A, TRNAS-GGAA, TRNAC-GCAA 

16: 23.63 - 25.23 PPAP2AA, SKIV2L2A, DHX29, CCNOA, MCIDASA, CDC20BA, 
GPX8A, GZMKA, ESM1, SNX18, HSPB3, ARL15A 

GM 4: 48.58 - 49.58 COG5, DUS4L, BCAP29, SLC26A4, CBLL1, SLC26A3A, DLDA, 
LAMB1A, LAMB4, NRCAM 

10: 68.09 - 69.09 GPC6, TRNAE-UUC 

CONC 
7: 2.20 - 3.20 YTHDC2A, KCNN2 

8: 39.75 - 40.75 KLHL32A, NDUFAF4A, GPR63A, FHL5, UFL1, FUT9, TRNAH-
GUG, TRNAF-GAA 

PPTM 2: 19.27 - 20.27 CYLC2A 
18: 45.66 - 46.66 PAX9, SLC25A21, MIPOL1, FOXA1 

Note: Genes with superscript A were previously found to be associated with male fertility 

There has only been one past GWA study identifying QTLs associated with semen traits 
published in sheep. This study involved the analysis of semen traits like VOL, GM, and CONC 
collected from Assaf rams (Serrano et al. 2021). There was no overlap in QTLs significantly 
associated with any of the semen traits identified in the present study and those genomic regions 
significantly associated with semen traits in Assaf rams. Unlike the present study, which used 
Modified Bonferroni, only QTLs associated with GM in Assaf rams passed significance (10% false 
discovery rate), which is likely due to use of a more stringent significance threshold as well as using 
semen collected only from Assaf rams. Given Australian sheep breeds exhibit higher rates of linkage 
disequilibrium (LD) decay (Al-Mamun et al. 2015), and single breed resource populations exhibit 
higher rates of LD (van de Berg et al. 2016), the present study used a multi-breed population to 
identify QTLs significantly associated with ram semen traits in breeds common to Australia.  

284 
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CONCLUSIONS 
Semen quality traits including VOL, GM, CONC, and PPTM are lowly heritable, and as such, 

may be improved via selective breeding. Furthermore, several of the candidate genes identified in 
the present study have been previously found to influence spermatogenesis and normal 
morphological development and may be putative candidates influencing ram semen traits. Thus, 
validating such genes would be beneficial to determine their impact on semen traits, and in turn 
potential subsequent influence on conception outcomes and reproductive efficiency in sheep. 
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SUMMARY 
Online Mendelian Inheritance in Animals (OMIA) is a freely available curated knowledgebase 

that contains information and facilitates research on inherited traits and diseases in animals. For the 
past 27 years, OMIA has been used by animal geneticists, breeders, and veterinarians worldwide as 
a definitive source of information. Recent increases in curation capacity and funding for software 
engineering support have resulted in software upgrades and commencement of several new 
initiatives, which include the review of variant information and links to human diseases caused by 
orthologous genes, and the introduction of phenotype and breed ontologies. We provide an overview 
of current information and recent enhancements to OMIA and discuss how we are expanding the 
integration of OMIA into other resources and databases via the use of ontologies. 

 
INTRODUCTION 

OMIA (https://omia.org) is a freely available, curated, online knowledgebase which provides 
users with up-to-date summary information on the known harmful and beneficial variants in animals, 
together with background information on known inherited disorders and beneficial traits. OMIA is 
modelled on and reciprocally hyperlinked to Online Mendelian Inheritance in Man (OMIM, 
https://www.omim.org), and provides further links to PubMed and Gene records at the National 
Center for Biotechnology Information and the European Bioinformatics Institute’s Ensembl.). 

OMIA focuses on traits and diseases (‘phenes’) with confirmed or suspected Mendelian modes 
of inheritance. However, several phenes with unknown or complex modes of inheritance and phenes 
caused by somatic mutations, genetic modifications or genome editing are also included. 
Furthermore, OMIA highlights ‘landmark’ papers (reporting major advances) and lists reviews and 
papers describing genetic maps and reference genomes. While most OMIA entries are for the major 
domesticated animal species, more than 370 (mainly vertebrate) animal species have entries in 
OMIA. Information about humans and model organisms such as mouse, rat, and zebrafish are not 
included, as they have dedicated species-specific resources. 

Since the beginning of 2021, the curation team has increased from one (FWN) to two main 
curators (FWN and IT) and bequest funding has enabled software engineering support (MM). In this 
paper we provide an overview of OMIA data and a summary of recent software updates, major 
enhancements to likely causal variant tables and OMIA-OMIM hyperlinks, and the launch of 
Pioneers of Mendelian Inheritance in Animals (PMIA). We provide an update on current initiatives 
that focus on the use of ontologies to expand the interoperability of OMIA with other resources such 
as the Anstee Hub for Inherited Diseases in Animals (AHIDA, 
https://ahida.sydney.edu.au/app/home).  

 
MATERIALS AND METHODS 

OMIA software upgrade. Since August 2010, the OMIA database and website have been using 
Django software, a high-level Python Web framework. In July 2021, software packages were 
upgraded from Python 2 to Python 3 (https://www.python.org/) and from Django 1.9 to 3.2 

https://omia.org/
https://www.omim.org/
https://ahida.sydney.edu.au/app/home
https://www.python.org/
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(https://www.djangoproject.com/), and coding was reviewed and refined with the aim of future-
proofing OMIA and improving homepage response times. Furthermore, search options were refined 
to increase the number of fields that are searched in a ‘quick’ search to improve user experience. 

Likely causal variant tables. ‘OMIA variant ID’ and ‘Source of Genetic Variant’ fields were 
added to variant tables to provide unique numerical variant identification and to facilitate inclusion 
of variant information for genome-modified or edited variants. In collaboration with many 
colleagues (see OMIA’s acknowledgement page for details: https://omia.org/acknowledgements/) 
variant information for cats, dogs, cattle, sheep, horse, pigs and goats has been reviewed and updated 
to Human Genome Variation Society (HGVS) nomenclature (https://varnomen.hgvs.org/). New site 
administration tools were introduced to facilitate automated ‘liftover’ of variant information to 
newer reference genome assemblies, and to enable export of variant information in variant call 
format (VCF) for submission to the European Variant Archive (EVA, https://www.ebi.ac.uk/eva/). 

Review of OMIA-OMIM hyperlinks. Since 1997, OMIA has been reciprocally hyperlinked to 
OMIM. Links to OMIM are created by OMIA curators when new phenes are entered into OMIA. In 
the past, this focused on adding OMIM phenotype identifiers (IDs), while OMIM gene IDs were 
rarely added. OMIM automatically downloads OMIA phene IDs that have an OMIM ID link once 
a week and updates OMIM accordingly. In OMIA, separate fields for ‘OMIM phene’ and ‘OMIM 
gene’ hyperlinks were recently created, and we reviewed OMIA-OMIM hyperlinks for all OMIA 
phenes for which a likely causal variant has been identified in at least one species. OMIM links were 
confirmed, deleted, or added. 

Pioneers of Mendelian inheritance in animals (PMIA). In 2022, PMIA was added to OMIA, 
accessible from the home page. This project comprises a series of commentaries on papers that 
illustrate the early discoveries of Mendelian inheritance in animals. 

Integration of phenotype, disease and breed ontologies. OMIA previously included a home-
grown list of 20 ‘phene categories’ that could be used in ‘Advanced Search’ and in the ‘Browse’ 
page to create category-specific phene lists, but many OMIA phenes did not have a phene category 
specified. To allow for comprehensive categorisation, OMIA’s 20 phene categories have been 
replaced with 28 major biological system headers from the Mammalian Phenotype (MP) Ontology 
(Smith and Eppig 2009) and two headers from the Mondo Disease Ontology (Mondo, 
https://mondo.monarchinitiative.org/). The MP ontology headers are included in Mondo, a global 
disease ontology that aims to harmonise disease definitions across the world. To facilitate this, the 
‘category’ field has been included in phene-species pages and each phene has been linked to at least 
one category by a curator (IT). In addition, a new field enables inclusion of hyperlinks between 
OMIA disease entries and the corresponding homologous disease in Mondo. 

Recognising the need to replace OMIA’s home-grown breed list with a computable 
comprehensive list of standardised breed names, the OMIA team instigated the creation of the 
Vertebrate Breed Ontology (VBO, https://github.com/monarch-initiative/vertebrate-breed-
ontology) in a project led by the Monarch Initiative (https://monarchinitiative.org/), with key 
personnel funded by the University of Colorado, in collaboration with colleagues from Iowa State 
University and with FAO colleagues responsible for the Domestic Animal Diversity Information 
System (DAD-IS). Curation tools relating to ‘breed’ in OMIA have been updated to allow inclusion 
of hyperlinks to VBO. 
 
RESULTS AND DISCUSSION 

OMIA is a globally used knowledgebase. Google Analytics user data for 2022 identified 41,803 
users (94,579 sessions) from 163 countries. Until recently, curation was predominately conducted 
single-handedly by one curator, and limited funding restricted access to urgently needed software 
upgrades and modifications. Increased curation capacity and bequest funding support to upgrade 
and refine the underlying software is improving curator and user experiences and has resulted in the 

https://www.djangoproject.com/
https://omia.org/acknowledgements/
https://varnomen.hgvs.org/
https://www.ebi.ac.uk/eva/
https://mondo.monarchinitiative.org/
https://github.com/monarch-initiative/vertebrate-breed-ontology
https://github.com/monarch-initiative/vertebrate-breed-ontology
https://monarchinitiative.org/
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commencement of several innovations while maintaining ongoing curation activities. In February 
2023, OMIA included information on 2,327 phenes across 377 species, contained 4,336 phene-
species entries and included a total of 29,453 references. Core statistics for key livestock species are 
summarised in Table 1. 

 
Table 1. Summary of OMIA information relating to key livestock species (22/3/2023)  
 
 Dog Cattle  Cat Pig Sheep Horse Chicken Goat All 

Total phenes  863 628 404 355 300 259 239 102 4336 

Mendelian phenes 397 297 136 133 117 61 135 24 1778 
Mendelian phenes with at 

least one likely causal 
variant known 

336 204 103 65 54 48 56 17 1012 

Likely causal variants 
known 491 269 171 72 86 105 71 30 1486 

 
During 2022 the daily automated PubMed literature search resulted in 17,653 hits, of which 719 

papers were identified to be added to OMIA. Additional references were added as part of other 
curation activities. We are currently trialling other literature search strategies to reduce the number 
of false-positive ‘hits’, including use of the machine learning tool LitSuggest (Allot et al. 2021) and 
an AI-based tool developed in house from Microsoft’s PubMedBERT (Gu et al. 2021).  

Likely causal variant tables. We reported the introduction of variant tables in OMIA in 2018 
(Tammen and Nicholas 2018) and indicated that the ultimate aim would be to provide an EVA ID 
for all variants to reduce the need to standardise and update variant information in OMIA. However, 
EVA does not accommodate all types of variants, very few authors of OMIA-relevant papers submit 
variant information to EVA, and new EVA IDs are allocated infrequently. With the help of many 
colleagues (https://omia.org/acknowledgements/) we reviewed and standardised historic variant 
information in OMIA using HGVS nomenclature, with the aim to report location information based 
on a recent reference genome assembly where possible. In October 2021, variants listed in OMIA 
that were lacking an EVA ID but had standardised location information were submitted to EVA 
using a new OMIA pipeline for export of variant information in VCF for submission to EVA. The 
need for more standardised nomenclature for variants has been widely discussed to ensure greater 
transparency in relation to DNA testing. To this end, OMIA numerical variant IDs are now presented 
in the first column of all OMIA variant tables. An OMIA variant ID provides a unique unchanging 
ID for each likely causal variant, including those complex variants for which there is no HGVS 
nomenclature or no EVA ID. Review papers have started to include OMIA variant IDs in their tables. 

Review of OMIA-OMIM hyperlinks. For phenes in OMIA that had at least one causal variant 
identified the review of OMIM links resulted in confirmation of 607 OMIM links, addition of 683 
OMIM links and deletion of 46 OMIM links. Most of the added OMIM links were OMIM gene IDs 
(n=493), as these were in the past not routinely added to OMIA. OMIA currently lists 2424 models 
of human traits based on links to OMIM. 2119 OMIM entries have a link to OMIA. The revision of 
OMIA-OMIM hyperlinks will facilitate comparative-medicine-related research approaches. 
However, a large list of OMIA phenes without known likely causal variants have not yet been 
reviewed, as it is more speculative to identify homology between human and animal phenes if the 
underlying genetic cause is unknown. 

Pioneers of Mendelian Inheritance in Animals. PMIA was first announced on Mendel Day (8 
March) in 2022, and launched as part of OMIA on the 8th of July 2022, two weeks before the 

https://omia.org/acknowledgements/
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bicentenary of Mendel’s birth on the 22nd. Currently PMIA includes detailed commentaries by 
FWN on 15 papers that illustrate the early discoveries of Mendelian inheritance in animals. 

Integration of phenotype, disease and breed ontologies. Three major current projects relate to 
the introduction of phenotype, disease and breed ontologies to OMIA. Ontologies are controlled 
vocabularies that represent knowledge both by their meaning and their relationship to each other and 
provide unique numerical identifiers to enable advanced computational analysis. We aim to 
harmonize breed and disease definitions in OMIA in a computer-accessible format, thus enabling 
integration with other global online resources and integration with the submission portal of AHIDA, 
(Tammen et al. 2021) which is currently under development.  

So far, home-grown OMIA phene ‘categories’ have been replaced with 28 MP ‘major biological 
system headers’ and 2 Mondo categories. These categories are visible on phene-species pages in 
addition to visibility in advanced searches and in the OMIA browse page (https://omia.org/browse/). 
At least one category has been added to each OMIA phene, so that it is now possible, e.g., to search 
OMIA for all entries categorised as ‘pigmentation phenotype’ (MP:0001186). Further curation work 
is needed to add multiple categories as required. 

Breed information in OMIA phene-species entries and in variant tables has been replaced with 
links to the VBO. VBO is based on FAO’s Domestic Animal Diversity Information System (DAD-
IS) breeds list and has been updated (especially for cat and dog breeds) with information from other 
international organizations, communities, and experts. 

Finally, in a second collaboration with the Monarch Initiative, we are working towards 
integrating OMIA information into Mondo. So far, a new field has been created to enable addition 
of hyperlinks to Mondo, we have commenced adding Mondo links in OMIA and are currently 
discussing how to integrate OMIA information into Mondo. 

CONCLUSION 
Our vision for the future is that in addition to summarising information about inherited conditions 

in animals, OMIA becomes a global repository for standardised information on likely causal variants 
for diseases to allow transparent delivery of DNA diagnostics, and in linkage with the currently 
under-development Anstee Hub for Inherited Diseases in Animals, becomes a tool that enables 
semiautomated diagnosis for rare or emerging inherited conditions in animals.  

A key remaining challenge is how best to harness automation and engage a wider contribution 
to curation efforts to ensure sustainability for the next 25 years. We always welcome feedback on 
current information presented in OMIA.  
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SUMMARY 
Animals with sleeker coats are commonly considered to have better heat tolerance, tick 

resistance, and a lower incidence of dags in feedlot environments. The objective of this study was 
to estimate genetic parameters for coat type traits and to estimate genetic correlations between coat 
type and scan and carcass weight traits using single-step methods. Two coat type traits were defined 
based on the month of scoring where scores recorded in April to October were considered as coat 
type 1 (CT1) and those recorded in November to March were categorized as coat type 2 (CT2). The 
coat type traits were moderately heritable, and the heritability of CT1 (0.36 ± 0.04) was higher than 
CT2 (0.32 ± 0.03). Genetic correlations between coat type traits and steer and heifer ultrasound scan 
traits (eye muscle area, intramuscular fat) were either low to moderate in strength, but favourable in 
direction. The outcomes of this study suggest selection for sleeker coat type is possible without any 
associated detrimental effect on scan and carcase traits.  

INTRODUCTION 
It is common for domestic livestock to shed their hairy coats for a sleeker coat at the onset of 

summer in preparation for warmer months. A lower core body temperature and greater perspiration 
have been previously observed among sleeker coat-typed cattle showing superior heat tolerance 
ability (Yeates 1955; Dikmen et al. 2008). Sleeker and shorter coats are also associated with tick 
resistance since hairy and thicker coats support tick attachment and prevent the removal of ticks via 
the animal’s self-grooming (Hansen 2004). Therefore, Bos taurus cattle with a predominantly 
sleeker coat are advantaged over hairy coat cattle during summer or in tropical or sub-tropical 
conditions where the heat and tick infestations are the highest. In addition, beef cattle with sleeker 
hair types have a lower incidence of dags in a feedlot environment, with less associated challenges 
of dag removal prior to slaughter, particularly in colder and wetter climates.  

Since 2019 Angus Australia has published a research breeding value (RBV/RBVs (plural)) for 
the coat type through the TransTasman Angus Cattle Evaluation (TACE). This has enabled the 
selection of a desirable coat type to match with the beef cattle production systems. Preliminary data 
analyses for coat type in Australian Angus cattle showed that the coat type is moderately heritable, 
however, the association between coat type and other economically important traits are yet to be 
explored. Therefore, the objective of this study was to estimate the genetic parameters and genetic 
correlations between coat type and live-animal ultrasound assessed traits and carcass weight using 
single-step methods. 

MATERIALS AND METHODS 
Data and traits. Coat scores were collected assessing the animal’s hair length, fibre diameter, 

and handle based on a one to seven numbered scoring guide according to Turner and Schleger 
(1960). Scores range from; score one, animals with extremely short sleek hair similar to the hair 
found in Bos indicus to score seven being a very hairy coat.  

Coat scores of 6188 animals were extracted from the Angus Australia database for progeny from 
the Angus Sire Benchmarking Program (Parnell et al. 2019). Data was collected year-round, and 
scores were available from animals born from 2008 to 2021. Since coat type may vary as the animal 
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ages (Durbin et al. 2020), coat scores collected after 720 days were excluded from the analyses. 
Only purebred Angus animals were used in the analyses by selecting animals with an Angus breed 
percentage of 87.5 or above. Multiple records per animal were excluded by keeping only the earliest 
record. The contemporary groups were constructed by concatenating the year-month of 
measurement, herd, and the breeder-defined management group. The contemporary groups with at 
least ten individuals were selected for the analyses. The data cleaning process resulted in 6177 
records for analysis. Individuals scored for coat type were the progeny of 401 sires and included 
2115 females and 4062 males. Coat score measures were broadly classified into two traits based on 
the phenotypic averages and variation in each month of scoring. Accordingly, coat scores recorded 
from April to October were identified as coat type 1 (CT1) and the scores collected during the rest 
of the year as coat type 2 (CT2).  

Live-animal ultrasound scan traits and carcass weight were also extracted for animals with a coat 
type record from the Angus Australia database to estimate the genetic correlations with coat type 
traits. The live-animal ultrasound scan traits extracted were eye muscle area (EMA, measured in 
cm2), intramuscular fat (IMF, measured in %), and P8 fat (P8, measured in mm). The data cleaning 
process was similar to that described for coat type traits. The contemporary groups for the scan and 
carcass weight traits were formulated as described by Graser et al. (2005). The live-animal 
ultrasound scan traits were separated as steer (S) and heifer (H) traits. Genomic information for 
animals with a phenotypic record of which were imputed for 45364 markers per genotype (Aliloo 
and Clark, 2021) was also extracted.  

Statistical analyses. The genetic parameters for different traits were estimated using single-step 
univariate and bivariate animal models. The contemporary group and sex were fitted as the fixed 
effects, linear and quadratic effects of age were fitted as the covariates, and the animal effect was 
fitted as the random effect in animal models for coat type traits. Sire by herd interaction was not 
significant for CT1 and CT2, therefore, was not included in the final models. The model parameters 
used for scan traits and carcass weight were as described by Graser et al. (2005). The variance 
components were estimated using the single-step method implemented in airemlf90 (Misztal, et al. 
2018). 

RESULTS 
Descriptive statistics of different traits used in the analyses are given in Table 1. The mean CT1 

was higher than CT2 (2.8 vs. 2.0), and scores for CT1 and CT2 ranged from 1 to 5 and 1 to 4.5, resp- 

Table 1. Descriptive summaries of coat type traits, 1 and 2 

Traita No. of records % Genotyped Mean SD Minimum Maximum 
CT1 2221 98 2.8 0.6 1 5 
CT2 3956 98 2.0 0.5 1 4.5 
SEMA 3861 99 70.6 11.2 38 100 
SIMF 3824 99 6.7 1.2 3 8.3 
SP8 3838 99 10.5 4.4 1 22 
HEMA 1912 97 61.5 7.3 41 82 
HIMF 1901 97 6.2 1.3 2.5 8.3 
HP8 1899 97 8.7 3.4 1 19 
CWT 4084 99 422.7 68.9 238 607 

aCT1: coat type scored for 04-10 months; CT2: coat type scored for 11-03 months; SEMA: Scan steer eye 
muscle area (cm2); SIMF: Scan steer intramuscular fat (measured in %); SP8: Scan steer P8 fat (mm); HEMA: 
Scan heifer eye muscle area (cm2); HIMF: Scan heifer intramuscular fat (ether extract %); HP8: Scan heifer P8 
fat (mm); CWT: Carcass weight (kg). 
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-ectively. There were at least three scores in each coat type trait with more than 18% animals 
recorded.  Therefore, there was an adequate coat score variation and an adequate number of records 
in each score to fit linear models for each coat type trait. More than 97% of animals recorded for all 
traits were also genotyped.

The heritability for CT1 (0.36 ± 0.04) was similar to CT2 (0.32 ± 0.03) (Table 2). Across all 
traits used in this study, the highest heritability was observed for CWT (0.45 ± 0.03) and the lowest 
was for HEMA (0.25 ± 0.05). The heritabilities of S-scan traits were higher than H-scan traits, and 
the heritability of scan traits was highest for P8 fat.  

The correlation between CT1 and CT2 was 0.76 ± 0.08. The genetic correlation estimates 
between coat type traits and other traits were negative (i.e. favourable) except for CT1in SP8 and 
CT1 and CT2 in HP8 where a very small positive correlation was obtained (Table 3). The genetic 
correlation coefficients between coat type and scan and carcass weight traits ranged from -0.26 to 
0.03 in CT1 and -0.27 to 0.06 in CT2. The genetic correlations between scan and carcass traits and 
coat type traits were slightly lower for CT2. 

Table 2. Additive genetic (Va), sire by herd (Vsxh), and residual variances (Ve), and heritability 
± standard deviations (h2 ± SD) from univariate single-step analyses  

Traita Va Vsxh Ve h2 ± SD 
CT1 0.10 - 0.17 0.36 ± 0.04 
CT2 0.06 - 0.13 0.32 ± 0.03 

SEMA 6.89 0.81 13.44 0.33 ± 0.03 
SIMF 0.13 0.00 0.27 0.32 ± 0.01 
SP8 2.20 0.09 2.62 0.45 ± 0.03 

HEMA 4.47 0.92 12.62 0.25 ± 0.05 
HIMF 0.22 0.00 0.53 0.29 ± 0.01 
HP8 1.64 0.11 3.11 0.34 ± 0.05 
CWT 449.14 35.48 505.57 0.45 ± 0.03 

aTraits and units are as given in Table 1. 

Table 3. Genetic correlations (± standard deviations) for CT1 and CT2 with steer and heifer 
live-animal ultrasound scan traits and carcass weight from bivariate single-step analyses 

Traitsa No. of animals Genetic correlations 
CT1 CT2 CT1 CT2 

SEMA 4819 5219 -0.22 ± 0.09 -0.26 ± 0.07
SIMF 4793 5208 -0.26 ± 0.01 -0.27 ± 0.01
SP8 4808 5207 0.03 ± 0.08 -0.12 ± 0.07
HEMA 4133 5868 -0.11 ± 0.10 -0.22 ± 0.09
HIMF 4122 5857 -0.06 ± 0.01 -0.13 ± 0.01
HP8 4120 5855 0.06 ± 0.10 0.06 ± 0.08
CWT 4928 5333 -0.25 ± 0.07 -0.25 ± 0.06

aTraits and units are as given in Table 1. 

DISCUSSION 
Coat type traits were moderately heritable in this study, therefore, genetic improvement towards 

a desired coat type can be achieved in breeding programmes. Angus Australia reports the RBVs for 
CT2 that are based on the coat scores recorded during the Australian summer. Studies based on a 
coat scoring system that records the extent of hair shedding at the onset of summer in the United 
States yielded similar heritability estimates to our study. For example, heritability estimates for 
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American Angus and Limousin cattle in the United States were 0.34 to 0.40 (Durbin et al. 2020) 
and 0.33 (Williams et al. 2006), respectively.  

Genetic correlation estimates between coat type traits and scan and carcass traits were favourable 
in this study. Selecting animals with a sleeker coat using either CT1 and CT2 could result in 
improvements in CWT, EMA, and IMF in subsequent generations. These results are aligning with 
the anecdotal feedback from breeders suggesting that sleeker coats are associated with superior 
performance.The favourable genetic correlations are slightly stronger in CT2 than CT1 for most 
scan traits other than for heifer P8 fat. Therefore, CT2, which is used to produce an RBV, would be 
an agreeable trait to select for sleeker coat type while also improving the meat quality and carcass 
weight. However, this needs further investigations including more animals and estimation of genetic 
correlations for other production traits including weight and fertility traits. 

CONCLUSIONS 
Coat type traits were moderately heritable. Selecting animals for a sleeker coat type can lead to 

simultaneous improvements in both carcass weight and meat quality. 
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SUMMARY 
Genetic parameters are reported for 18 linear type traits recorded by the National Association of 

Charolais Breeders in Hungary: back width (BW), chest width (CW), rump width (RW), shoulder 
width (SW), back-loin length (BL), rump length (RL), thigh length (TL), canon girth (CG), heart 
girth (HG), width of hip bones (HW), width of thigh (TW), roundness of thigh (RT), loin thickness 
(LT), development/frame (DF), top line straightness (TS), muzzle width (MW), fore legs (FL) and 
hind legs (HL). All traits were scored by Association staff using a linear scale from 1 to 10 based on 
the system developed by the Institut de L’Elevage in France. Animals averaged 508 days in age 
when scored. Bivariate models with weight at weaning (WW) were investigated for each trait using 
BLUPF90, with inclusion of genomic data. There were 2,524 animals with linear trait scores, 42,442 
animals with a weight at weaning and 7,660 animals with a genotype. Of animals with trait scores, 
88% had a weaning weight and 61% were genotyped. Six generations of pedigree were used, giving 
a total of 55,928 animals in the analyses. Trait heritability ranged from 0.11 for FL to 0.41 for CG. 
Genetic correlations with WW ranged from -0.36 for HL to +0.50 for RL. These traits could be 
incorporated into future genetic analyses of the breed. 

INTRODUCTION 
The National Association of Hungarian Charolais Cattle Breeders (MCTE) was officially formed 

in 1992 and currently has 236 members registering around 6,000 calves per year on average. Of 
calves registered, approximately 61% are recorded for weight at weaning (WW). The MCTE have 
utilised the BREEDPLAN genetic evaluation service provided by the Agricultural Business 
Research Institute (ABRI) since 2002, with their most recent evaluation representing 80,954 
animals, a multi-trait analysis of gestation length, birth weight, post-birth growth (including WW), 
scrotal and ultra-sound scan records and a separate analysis of calving ease using birth difficulty 
scores, birth weights and gestation length records. In late 2019, the MCTE launched its Genome 
Program to members, with genotypes incorporated in their August 2022 BREEDPLAN evaluation 
using a Single-Step model (Johnston et al. 2008). 

In 2016, the MCTE initiated a program of assessing Charolais cattle for 18 structural traits related 
mainly to the muscularity and skeletal attributes of the animal. ABRI reviewed the data to determine 
what, if any, level of genetic variation was expressed in the linear type scores. This paper provides 
preliminary estimates of heritability for the 18 linear traits and their genetic correlation with WW. 

MATERIALS AND METHODS 
Records for WW were extracted from the August 2022 BREEDPLAN evaluation, these having 

been pre-adjusted to a constant age at weighing (200 days) and constant age of dam (5 years) as 
outlined by Graser et al. (2005). The contemporary group for WW consisted of herd of origin, sex, 
year of birth, birth number (single vs twin), birth type (natural vs ET), breeder-defined management 
group and weigh date. Extracted records were pruned to remove single-animal contemporary groups 
and those comprising ET calves. The final data set contained 42,442 records for WW (mean 234.3 
± 45.8 kg), with contemporary group size ranging from 2 to 284 (mean of 43). 
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Linear scores were available on 2,524 animals for 18 type traits: back width (BW), chest width 
(CW), rump width (RW), shoulder width (SW), back-loin length (BL), rump length (RL), thigh 
length (TL), canon girth (CG), heart girth (HG), width of hip bones (HW), width of thigh (TW), 
roundness of thigh (RT), loin thickness (LT), development/frame (DF), top line straightness (TS), 
muzzle width (MW), fore legs (FL) and hind legs (HL). Age at scoring ranged from 176 to 1,334 
days (mean 508.0 days, SD 147.2) and a majority (69%) of the animals scored were female. All 
scoring was undertaken by a single MCTE-approved technician using a linear scale from 1 
(small/weak/thin/worst) to 10 (big/strong/wide/best) according to the guidelines approved by the 
MCTE (Institut de L’Elevage 2014). Contemporary group was defined as herd of origin, year of 
birth, breeder-defined management group for WW and date of scoring. After the removal of records 
for single animal contemporary groups (n=10), group size ranged from 2 to 115 (mean of 19). Sex, 
birth number and age at scoring to be fitted explicitly in subsequent models. 

Genotypes on 8,934 animals were available, coming from a 50K SNP panel (BovineSNP50 
BeadChip, Illumina Inc., San Diego, CA.). QC of genomic data was conducted using PLINK 
software (Chang et al. 2015), with SNPs removed at a minor allele frequency of <0.05, a deviation 
from Hardy–Weinberg equilibrium of p<1E-6 and call rates <90%. Only those SNPs located on 
autosomal chromosomes were used. Individual genotypes were excluded if the call rate for all loci 
was <85%. Sporadic missing SNPs were imputed using FImpute v3 (Sargolzaei et al. 2014) and 
pedigree information for the genotyped population was included. Genotypes were excluded when a 
parentage conflict was detected. The final data set comprised 7,660 genotypes and 42,854 SNPs. 
Most of the genotypes (82%) were from females. 

Bivariate models comprising each linear type trait and WW were conducted using the 
AIREMLF90 program in the BLUPF90 family of software (Misztal et al. 2018). The model for type 
traits included scoring contemporary group, sex and birth number (single or twin) as fixed effects 
and age at scoring as a linear covariate, with the variance being partitioned into additive genetic and 
residual components. The model for WW included WW contemporary group only as a fixed effect, 
with variance being partitioned into additive genetic, maternal genetic (uncorrelated) and residual 
components. Preliminary analysis of WW fitting an additional random effect for the dam’s 
permanent environment suggested a small variance component (54.8±10.2) that was dropped from 
subsequent bivariate models. Six generations of pedigree were included, giving 55,928 animals in 
each analysis. A genotype file and associated map file were included in the analysis, with 20% of 
genotyped animals having a linear score record and 82% having a WW record. 88% of scored 
animals were recorded for WW. Default values were used in creating the H matrix (Aguilar et al. 
2010). 

RESULTS AND DISCUSSION 
Average scores for type traits ranged from 4.72 for Thigh Length (TL) to 6.09 for Top Line 

Straightness (TS), with the standard deviation in scores ranging from 0.93 for Heart Girth (HG) to 
1.20 for Roundness of Thigh (RT). No scores of 10 were allocated. Score distributions approximated 
normality within trait, suggesting a linear analysis of scores was appropriate. 

The additive genetic variance and heritability for each linear type trait are summarised in Table 
1. Most traits related to the muscularity and skeletal attributes were associated with moderate
heritability, while functional traits like FL and HL were low. These are comparable to estimates
reported by Doyle et al. (2018) for a range of subjectively assessed muscularity, skeletal and
functional traits in Irish Charolais cattle. The genetic variances reported by Berry et al. (2019) were
higher for a range of similar traits in a large population comprising 3 European and 2 British breeds,
yet the direct heritability estimates were similar to those presented here.

Variance estimates for WW averaged over the 18 bivariate analyses were 581.7, 183.4 and 819.5 
kg2 for the direct genetic, maternal genetic and residual components, respectively. Both the 
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phenotypic variance (1,584.6 kg2) and the direct heritability (0.37) seem inflated compared to 
estimates from considerably larger Charolais datasets (Donoghue and Betrand 2004; Phocas and 
Laloe 2004). In contrast, estimates ranging from 0.30-0.39 were reported for smaller populations of 
Charolais (El-Saied et al. 2006; Herrera-Ojeda et al. 2019; Rezende et al. 2022) and may partially 
reflect the heterogeneity of variances reported for WW in the Charolais breed (Quintanilla et al. 
2002; Donoghue and Bertrand 2004). The maternal genetic heritability (0.12) obtained in this study 
agrees with estimates reported by others. 

The genetic correlations between WW and each linear trait are given in Table 1. Most traits were 
positively correlated with WW, in the order of 0.30 to 0.50. The correlation for TS, MW and FL was 
close to zero, while for HL was negative. It is not surprising that positive correlations with body 
weight are evident in this population, given that most of the linear traits relate to body size and 
dimensions. Strongly positive genetic correlations between live weight and a range of muscularity 
and skeletal traits were reported by Berry et al. (2019). 

Table 1. Estimates of additive variance (VA) and direct heritability (h2) for 18 linear type 
traits and the genetic correlation (rG) between each trait and weight at weaning 

Trait VA h2 rG 
Back width (BW) 0.269 ± 0.046 0.305 ± 0.049  0.228 ± 0.080 
Chest width (CW) 0.181 ± 0.035 0.227 ± 0.042  0.386 ± 0.089 
Rump width (RW) 0.278 ± 0.047 0.296 ± 0.046  0.345 ± 0.082 
Shoulder width (SW) 0.249 ± 0.045 0.268 ± 0.046  0.343 ± 0.086 
Back loin length (BL) 0.236 ± 0.051 0.206 ± 0.043  0.451 ± 0.087 
Rump length (RL) 0.196 ± 0.043 0.207 ± 0.043  0.498 ± 0.089 
Thigh length (TL) 0.279 ± 0.047 0.295 ± 0.047  0.274 ± 0.083 
Canon girth (CG) 0.298 ± 0.040 0.412 ± 0.049  0.395 ± 0.066 
Heart girth (HG) 0.144 ± 0.034 0.199 ± 0.045  0.364 ± 0.097 
Width of hip bones (HW) 0.260 ± 0.044 0.291 ± 0.046  0.396 ± 0.081 
Width of thigh (TW) 0.300 ± 0.053 0.278 ± 0.046  0.381 ± 0.083 
Roundness of thigh (RT) 0.306 ± 0.052 0.291 ± 0.046  0.322 ± 0.083 
Loin thickness (LT) 0.236 ± 0.046 0.259 ± 0.047  0.345 ± 0.088 
Development/frame (DF) 0.207 ± 0.046 0.213 ± 0.046  0.342 ± 0.091 
Top line straightness (TS) 0.135 ± 0.044 0.123 ± 0.040 -0.013 ± 0.034
Muzzle width (MW) 0.230 ± 0.046 0.246 ± 0.047 0.152 ± 0.090
Fore legs (FL) 0.094 ± 0.033 0.109 ± 0.039 -0.170 ± 0.144
Hind legs (HL) 0.161 ± 0.047 0.142 ± 0.041 -0.357 ± 0.130

These results indicate that subjectively assessed muscularity and skeletal traits have potential 
use in Hungarian Charolais breeding programs where the breeding goal includes improvements in 
the physical appearance of animals. Linear scores for front and hind leg structure show less utility, 
a similar outcome reported in other EU populations (Doyle et al. 2018). While the moderate genetic 
correlations with live weight suggest that selection for improved growth rate may bring some 
improvements in animal appearance, there is sufficient scope for gains in muscularity to be achieved 
without pursuing growth. Berry et al. (2019) reported genetic correlations in the order of 0.44 to 
0.66 between muscularity traits in registered live animals and carcase conformation in commercial 
cattle. Positive correlations were also evident between muscularity traits and carcase primal cut 
yields. Similar results were reported by Bonfatti et al. (2013) for Italian Piemontese cattle, with live 
animal scores for muscularity type traits having a positive genetic correlation with European carcase 
conformation grades. The genetic correlations reported by Bouquet et al. (2010) for Blonde 
d’Aquitaine and Limousin cattle were considerably stronger (0.54-0.78), suggesting the use of linear 
muscularity trait scores as indirect criteria for genetic improvements in carcase conformation grade. 
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CONCLUSION 
There is evidence for genetic variation being expressed in the linear type traits recorded in the 

Hungarian Charolais population - particularly those relating to the muscularity and skeletal attributes 
– that could facilitate genetic improvements in animal appearance. Although moderately correlated
with live weight, these linear type traits may also provide indirect predictors of genetic merit for
carcase conformation. This might allow Hungarian breeders to better target the European carcase
grading system beyond a weight-based breeding goal.
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SUMMARY 
Livestock production often involves raising animals in environments which can vary 

substantially between locations and years. It could be beneficial to select animals that have genetic 
merit which is more robust to environment variation, rather than animals that are more sensitive. 
This study attempts to validate breeding values for robustness estimated using reaction norm models. 
Reaction norm models were used to regress breeding values for body weight across different growth 
environments in the Information Nucleus Flock. The same model was fit to MERINOSELECT data, 
and the rank-correlation for EBVs of sires with progeny in both datasets was calculated. The pattern 
of genetic variance and heritability across environments was very similar between datasets. The rank 
correlation of breeding values for a subset of sires with the best distribution of progeny in both 
populations was 0.60, 0.22 and 0.17 for the intercept, slope and scale-corrected slope, respectively. 
The results indicated that the genetic variation in robustness across growth environments was, to 
some extent, repeatable across the two datasets. Genotypes that re-ranked more in the INF/RF also 
tended to re-rank more in MERINOSELECT, although the relationship was weak. The analysis 
could benefit from the inclusion of genomic data to increase linkage across environments and 
between datasets.   

INTRODUCTION 
Genotype-by-environment (GxE) interactions occur when the effect of an animal’s genotype is 

dependent on the environment it exists in. This can result in variation between individuals in the 
robustness of their genetic effect to different environments. In extensive livestock systems where 
environments can vary substantially between years, genotypes that consistently rank highly for 
important traits across environments (i.e., robust genotypes) could be more valuable than sensitive 
genotypes who tend to change in rank.  

Reaction norm (RN) models have been used widely to study GxE and rank individuals based on 
their robustness to environmental variation. Unlike univariate models, RN models allow the 
estimated breeding value (EBV) of genotypes to change as a function of an environmental covariable 
(EC), which describes the quality of the environment. When a linear function is used, the change in 
EBV across the EC is given by the slope. The slope can be directly used as an EBV for how robust 
the performance of a genotype is across the EC, while the slope can be ‘scale-corrected’ to yield an 
EBV for how much a genotype re-ranks across the EC (Waters et al. 2022). 

Although some research has demonstrated RN models can increase the accuracy of phenotypic 
predictions (Oliveira et al. 2018; Mota et al. 2020), it could also be useful to explore whether RN 
variance components and individual breeding values (e.g., intercept, slope and scale-corrected slope) 
are repeatable in independent, but genetically linked populations. This would provide some guidance 
on how reliable EBVs based on linear RN models might be if applied in practice to select for 
robustness. The Australian Sheep CRC Information Nucleus Flock (INF) and the Meat and 
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Livestock Australia Resource Flock (RF) contain the progeny performance of sires across several 
locations representative of the Australian sheep environments (Van der Werf et al. 2010). Many of 
these same sires also have progeny recorded across several locations and years in the wider 
MERINOSELECT population (Brown et al. 2007). This data structure presents the opportunity to 
investigate such a question.The aim of the study was to investigate whether RN breeding values for 
the robustness of performance in post-weaning weight to different growth environments in the 
INF/RF can be validated in the MERINOSELECT data.  

MATERIALS AND METHODS 
The analysis consisted of two parts. The environmental covariable (EC) was first estimated for 

each animal in the INF/RF and MERINOSELECT data. Reaction norm models were then fit 
separately to both datasets to estimate breeding values for robustness across growth environments, 
which were then compared for sires with the most progeny in both data sets. All models were fit 
using ASReml 4.2 (Gilmour et al. 2021). 

Estimate the EC. MERINOSELECT and INF/RF animals with a weaning weight (WWT) 
recorded between 50-120 days of age and a post-weaning weight (PWT) recorded between 120-329 
days of age, along with a recorded sire and dam were extracted. Animals were excluded from the 
analysis if they were born or reared as quadruplets or greater, and if the age of dam was more than 
12 years old at the time of recording. Contemporary groups were formed based on a flock × year × 
management group combination and required at least 15 animals from at least 3 different sires.  

The best linear unbiased estimation (BLUE) of the post-weaning growth rate (PWGR) of each 
contemporary group was used as the EC for each animal. PWGR was calculated as the difference 
between PWT and WWT measurements, divided by the number of days between the measurements 
and expressed in grams per day. Animals with less than 40 days between WWT and PWT 
measurements were removed, along with animals deviating more than 3 standard deviations (SD) 
from their contemporary group mean for PWGR. This left 12,087 and 277,060 animals in the 
INF/RF and MERINOSELECT populations respectively. An animal model with PWGR as the 
response variable was fit jointly to the INF/RF and MERINOSELECT data to obtain a BLUE of 
PWGR for each contemporary group, forming the EC. The EC was centred to a mean of zero. 

Independent reaction norms. Contemporary groups more than 3 SD from the population mean 
EC, and individuals more than 3 SD from their contemporary group mean PWT were excluded from 
the analysis. To reduce the number of uninformative animals in the MERINOSELECT data, 
contemporary groups were only included if they contained 1) at least one direct progeny of a sire 
with progeny or grand-progeny in the INF/RF, or 2) more than 25% of the animals were related to 
the INF/RF, with the minimum relationship being a grandsire with grand-progeny in the INF/RF. 
This left 11,638 and 206,733 animals in the INF/RF and MERINOSELECT data, respectively.   
The linear RN models were of the form: 

𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝟏𝟏𝐚𝐚𝟎𝟎 + 𝐙𝐙𝟐𝟐𝐚𝐚𝟏𝟏 + 𝐙𝐙𝟑𝟑𝐜𝐜 + 𝐐𝐐𝐠𝐠 + 𝐞𝐞       (1) 
Where 𝐲𝐲 is the vector of PWT records, 𝐗𝐗 is an incidence matrix for the fixed effects 𝐗𝐗, 𝐙𝐙𝟏𝟏 and 𝐙𝐙𝟐𝟐 
are matrices relating records to the additive genetic effects for the intercept (𝐚𝐚𝟎𝟎) and slope (𝐚𝐚𝟏𝟏) 
respectively, 𝐙𝐙𝟑𝟑 is an incidence matrix relating records to the additive maternal effects (𝐜𝐜), which 
were estimated independently of the additive genetic effects,  𝐐𝐐 is a matrix of the proportion of each 
animal’s genome originating from 451 genetic groups, 𝐠𝐠 is the vector of random genetic group 
effects, and 𝐞𝐞 is the vector of the residual effects. Fixed effects included age at measurement, birth 
type and rear type interaction, sex, and contemporary group. The residual variance was estimated 
independently at four and six intervals along the EC for the INF/RF and MERINOSELECT 
population respectively. The variance of the intercept and slope was modelled as follows: 
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� and 𝐀𝐀 is the pedigree relationship matrix. The 

genetic variance across the EC was obtained using G = 𝜦𝜦K𝜦𝜦′, where 𝜦𝜦 contained two columns; the 
first was a vector of 1’s, and the second was a vector of EC values. The heritability of PWT at a 
given EC level was obtained by dividing the genetic variance at the EC by the sum of the genetic, 
maternal and residual variance.  Scale-corrected EBVs for the slope were estimated using a genetic 
regression (Waters et al. 2022), which makes the slope EBVs independent of the intercept EBVs. 

RESULTS AND DISCUSSION 
Animals were normally distributed across the EC in both datasets (Figure 1), although there was 

a larger range in MERINOSELECT. The pattern of genetic variance and heritability across the EC 
was very similar between the two datasets (Figure 1), although the genetic variance and heritability 
were slightly lower in MERINOSELECT. Overall, the RN models estimated very similar levels of 
GxE in both populations. 

Figure 1. Distribution of animals across the EC in the INF/RF and MERINOSELECT data 
sets 

Figure 2. Genetic variance (a) and heritability (b) of PWT across the EC in INF/RF and 
MERINOSELECT data estimated using the independent reaction norm models  

The rank-correlation of EBVs for sires with progeny in both populations was small but positive 
for the slope and scale-corrected slope (Table 1), and higher for the intercept. The difference in 
correlation between the intercept and slope is likely a function of the accuracy of the EBVs, as the 
intercept in generally easier to estimate accurately than the slope. The correlations were considerably 
higher when considering a subset of 56 sires with the best distribution of progeny in both 
populations, highlighting the importance of data structure when estimating RN parameters. Unlike 

300 



Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 298 - 301 

301 

the slope EBVs, the scale-corrected slope EBVs were uncorrelated with the intercept, so they 
represented the slope variation available for selection independent of the overall performance.  

Table 1. Rank correlation of RN EBVs for sires with direct progeny in both populations (a), 
and a subset of 56 sires with progeny in at least 4 contemporary groups ranging by at least 50 
g/day (b) 

While these results imply that selection based on RN EBVs could yield a response in the 
robustness of performance across growth environments while simultaneously increasing the mean 
(intercept), the relationship between datasets was weak to moderate. This was most likely influenced 
by the distribution of progeny across the EC. To accurately estimate EBVs for the slope (robustness), 
sires require progeny across a wide range of EC values (Calus et al. 2004). Because only a relatively 
small number of sires had progeny widely distributed across the EC in both datasets, the power to 
detect a relationship between robustness in the two datasets was probably limited. Utilising genomic 
data to increase genetic linkage across the EC could help address this issue.  

Overall, it appears that the success of breeding for robustness will be dependent on the structure 
of data available to estimate it accurately. If robustness is to be considered in genetic evaluations, 
breeders should be encouraged to ensure even stronger genetic linkage across years and locations. 
Other traits and environmental descriptors should also be explored to better understand the total 
variation available for selection of robustness.   

CONCLUSION 
The analysis demonstrated that the RN models estimated very similar levels of GxE across the 

two populations. The rank-correlation of EBVs for sires with the best distribution of progeny in both 
populations was low but positive for the slope EBVs. The results indicated that genetic variation in 
the RN slope was repeatable the two datasets, so selection based on these EBVs should lead to a 
response for robustness across growth environments. However, the relationship was not strong. The 
analysis could be improved by using more accurate EBVs for the slope, which could be achieved by 
increasing the linkage between environments with genomic data.  
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SUMMARY 
This study investigated the genetic association of intramuscular fat predicted with the MEQ 

probe (MEQIMF) and the SOMA NIR device (SOMAIMF) with Near Infra-Red analysed 
intramuscular fat (IMF%), tenderness, carcass eye muscle, fat and tissue depth. MEQ and SOMA 
NIR predicted IMF have only just became available to Australian processors, with data on genetic 
resources limited to 1,380 and 1,320 records, from research and seedstock flocks, respectively. 
Genetic analysis showed that MEQIMF has a moderate heritability (0.42 ± 0.1) and a high genetic 
correlation (0.95 ± 0.07) with chemical intramuscular fat. Similarly, SOMAIMF was estimated to 
have a moderate heritability (0.42 ± 0.1) and a strong genetic correlation with IMF% (0.94 ± 0.03). 
The results of the genetic analysis for IMF measured with the new technologies are likely to facilitate 
identifying the high intramuscular fat carcasses and in turn animals that have genetically superior 
eating quality. 

INTRODUCTION 
Eating quality in lamb is positively influenced by intramuscular fat, which has been found to 

increase tenderness, flavour and juiciness (Stewart et al. 2021). It is accepted that animals with 
higher levels of intramuscular fat produce meat which will be favoured by consumers (Pannier et al. 
2014). Negative genetic correlations between intramuscular fat and lean meat yield (Gardner et al. 
2018) also suggest that selection to improve the later needs to be undertaken with consideration for 
eating quality, because of its genetic correlation with intramuscular fat (Mortimer et al. 2018). 
Unlike beef, there is no visual marble score routinely used in the grading of lamb carcasses, with 
intramuscular fat percentage records (IMF%) in the national genetic evaluation determined by 
applying chemical analysis laboratory methods, which are time consuming and expensive. New 
technologies for measuring intramuscular fat objectively can facilitate adoption of Meat Standards 
Australia (MSA) grading in lamb (Pannier et al. 2014) because they offer fast, cheap, objective, on 
chain and non-destructive methods to measure the trait. For this study, two new technologies: i) the 
Meat Eating Quality (MEQ) probe (Carbone 2022), and ii) the SOMA Near Infra-Red (NIR) device 
were evaluated. The aim was to investigate the genetic relationship between lamb intramuscular fat 
measurements obtained with the MEQ probe and the SOMA NIR device, with IMF%, and, where 
possible, with other eating quality metrics (e.g. shear force) and carcass traits. 

MATERIALS AND METHODS 
Chemical IMF data. Eating quality and carcass traits were collected from 32,735 Merino and 

Merino-crossed lambs from the MLA Resource Flock (RF) and from seedstock ram breeding flocks. 
Mean lamb age was 264 (±76) days. Traits included intramuscular fat percentage (IMF%), shear 

* A joint venture of NSW Department of Primary Industries and the University of New England
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force 5 days after slaughter (SF5), eye muscle (M. longissimus thoracis et lumborum (LL)) depth 
(CEMD), fat at 45 mm from spine midline over the 12th rib (c site, CFAT) and total tissue depth 
measured at the 12th rib (GRFAT). Carcass traits were measured after slaughter in commercial 
abattoirs according to the procedure described by Mortimer et al. (2018). The percentage of 
intramuscular fat (IMF%) at the eye muscle was determined using a near infrared procedure (NIR) 
as described by (Perry et al. 2001). Shear force (SF5) at 5 days after slaughter was measured on a 
section of the LL as described by Hopkins et al. (2010). 

MEQ probe data. For a subset of 1,380 of the above lambs, intramuscular fat was predicted 
using the MEQ probe (MEQIMF). MEQIMF was measured on the hot carcass where the MEQ probe 
was inserted in the area around the 13th rib and scans were completed to estimate intramuscular fat 
(Carbone 2022). The lambs with MEQIMF measures were born in 2021 and were measured between 
2021 and 2022 (mean age at slaughter was 182 ±67 days) and originated from eight different flocks 
and 95 sires.  

SOMA NIR data. SOMA NIR predicted intramuscular fat records (SOMAIMF) were collected 
from a different subset of the RF animals which included 1,307 lambs born in 2021 and measured 
between May and July 2022. The lambs were from the MLA resource flock and were progeny of 
152 sires. They were slaughtered in commercial abattoirs, carcasses were chilled overnight (3 – 4 ⁰ 
C) and intramuscular fat was measured with the SOMA NIR device positioned directly over the
surface of the loin at a cut between the 12th and 13th rib, based on the procedures described by Stewart
et al. (2022). The number of animals and mean values for each trait and data set are illustrated in
Table 1. Both MEQ probe and SOMA NIR device had previously been validated on independent
data, not included in this study.

Table 1. Number of records (N) for each data set and mean trait values (standard deviation). 
HCWT: hot carcase weight, IMF%: chemical intramuscular fat percentage, MEQIMF: MEQ 
probe predicted IMF, SOMAIMF: SOMA NIR predicted IMF, SF5: shear force 5 days after 
slaughter, CEMD: eye muscle depth, CFAT: fat at the c-side, GRFAT: fat at the GR site 

Data 
set N HCWT IMF% MEQ 

IMF 
SOMA 

IMF SF5 CEMD CFAT GRFAT 

IMF%  32,735 23.63
(4.0) 

4.49 
(1.2) - - 32.40

(11.9)
30.93 
(5.0) 

4.37 
(2.5) 

14.02 
(6.1) 

MEQ 
probe 1,380 24.95 

(4.4) 
3.77 
(1.0) 

3.92 
(1.0) - 37.99

(14.1) 
34.14 
(4.6) 

4.64 
(2.2) 

14.24 
(6.0) 

SOMA 
NIR 1,307 21.41 

(3.6) 
3.87 
(1.1) - 4.23

(1.1) - 30.72
(5.0)

3.35 
(2.0) 

11.91 
(5.2) 

Statistical analysis. Variance components and genetic parameters for IMF, MEQIMF and 
SOMAIMF were estimated using a linear mixed model and REML methods with ASReml software 
(Gilmour et al. 2015). Fixed effects included type of birth, contemporary group, age of the animal 
and the age of dam (in days). The quadratic function of hot carcass weight was included to adjust 
all traits. The model also included the random effect of animal and genetic group (Swan et al. 2016). 
Maternal effects were not fitted since preliminary analysis showed they were non-significant. For 
all data sets, contemporary group was defined by breed, flock, management group, sex, date of 
measurement and kill group (Huisman et al. 2008).  

To estimate genetic correlation and covariance of MEQIMF and SOMAIMF with other carcass 
and eating quality traits, a series of bivariate analyses were performed in ASReml. Due to 
convergence difficulties genetic groups were not fitted in the bivariate analysis and only animal was 
included in random effects.  
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RESULTS AND DISCUSSION 
Heritability for MEQIMF and SOMAIMF was moderate (Table 2) and thus both traits display 

genetic variation and can be used effectively in selection. These estimates were similar to the 
heritability for IMF% data set (Table 1), which was also moderate (0.50 ± 0.03) and similar to 
estimates previously reported for the trait in Merino and Merino-cross lambs (Mortimer et al. 2010; 
Mortimer et al. 2014; Mortimer et al. 2018). Variance components of MEQIMF and SOMAIMF 
were consistent with those for IMF. However, smaller number of records in the MEQ probe and 
SOMA NIR data sets have limited ability to account for genetic groups. In this case more data is 
needed to clarify how these effects may impact variance estimates.    

Table 2. Estimates of phenotypic (𝝈𝝈�𝒑𝒑), additive (𝝈𝝈�𝒂𝒂), and residual (𝝈𝝈�𝜺𝜺) variance and heritability (h2) 
for chemical IMF (IMF) and IMF predicted with MEQ probe (MEQIMF) and SOMA NIR device 
(SOMAINF). Variance components were estimated separately for each data set. Standard error in 
parentheses 

Trait Data 𝒉𝒉𝟐𝟐 𝝈𝝈�𝒑𝒑 𝝈𝝈�𝒂𝒂 𝝈𝝈�𝜺𝜺 

IMF% IMF% 0.50 (0.03) 1.12 (0.06) 0.57 (0.02) 0.37 (0.02) 

MEQIMF 
MEQ probe 

0.42 (0.10) 0.61 (0.03) 0.25 (0.06) 0.35 (0.05) 

IMF 0.71 (0.10) 0.77 (0.04) 0.55 (0.10) 0.22 (0.10) 

SOMAIMF 
SOMA NIR 

0.42 (0.07) 0.81 (0.03) 0.34 (0.07) 0.47 (0.07) 

IMF 0.51 (0.06) 0.93 (0.04) 0.48 (0.07) 0.45 (0.06) 

Genetic correlations between MEQIMF and IMF, and between SOMAIMF and IMF were strong 
and positive (0.95 ± 0.07 and 0.94 ± 0.03, respectively), and suggest that both could be used as 
objective measurements to select for intramuscular fat in breeding programs. 

Table 3. Genetic correlations between MEQIMF, SOMAIMF, IMF and other traits, with standard 
error in parentheses. MEQIMF: MEQ probe predicted IMF, SOMAIMF: SOMA NIR predicted 
IMF, IMF: chemical IMF, SF5: shear force 5 days after slaughter, CEMD: eye muscle depth, 
CFAT: c- side fat, GRFAT: GR site fat 

MEQ probe data SOMA NIR data Chemical IMF data 

Trait MEQIMF SOMAIMF IMF 

IMF 0.95 (0.07) 0.94 (0.03) - 

CEMD 0.06 (0.21) 0.20 (0.11) 0.11 (0.03) 

CFAT 0.32 (0.20) 0.40 (0.12) 0.20 (0.03) 

GRFAT 0.35 (0.17) 0.22 (0.11) 0.20 (0.03) 

SF5 -0.26 (0.17) - -0.39 (0.03) 

Genetic correlations for MEQIMF and other carcass and eating quality traits in general were 
aligned to the ones estimated for IMF% (Table 3). Moderate genetic correlations of MEQIMF and 
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SOMAIMF have been observed for CFAT and GRFAT. These correlations were stronger than the 
ones estimated on the IMF% data set and higher than the ones previously observed by Mortimer et 
al. (2018) between CFAT, GRFAT and IMF%. The same authors reported slightly negative genetic 
correlations between IMF% and CEMD. In this study, the genetic correlation between IMFSOMA 
and CEMD was moderate positive and stronger than the correlation between IMF% and CEMD. On 
the other hand, the correlation between MEQIMF and CEMD was low but with high standard error, 
indicating more records are needed to determine the genetic relationship between these two traits. 
The genetic correlation between intramuscular fat and SF5 was moderate and negative for both the 
MEQ probe and IMF% data sets (Table3), and similar to estimates between IMF% and SF5 reported 
in previous studies (Mortimer et al. 2014). There was no correlation estimate for SOMAIMF and 
SF5 due to limited SF5 records for this cohort. 

When more data becomes available, the genetic relationship between MEQIMF and SOMAIMF 
and other traits will be re-estimated, and their suitability to select for intramuscular fat will be re-
assessed. More MEQIMF and SOMAIMF data will also help to define the capacity of the different 
technologies evaluated to predict intramuscular fat. 

CONCLUSIONS 
New technologies to measure intramuscular fat are becoming available and both MEQ probe and 

SOMA NIR device provide an opportunity to capture more intramuscular fat phenotypes as they 
provide a fast, cheaper and non-destructive alternative to laboratory procedures. The genetic 
variance and heritability of MEQ probe and SOMA NIR predicted intramuscular fat were generally 
similar to the ones observed for IMF% on the same animals. MEQIMF and SOMAIMF traits were 
found to be highly genetically correlated with IMF%, which suggests that intramuscular fat 
measured with the new technologies investigated for this study could be treated as the same trait as 
IMF% in genetic evaluation. More research is needed to determine the genetic association between 
MEQIMF and SOMAIMF, and other traits. 
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SUMMARY 
Dual-energy X-ray absorptiometry (DEXA) is rapidly gaining acceptance as a reference method 

for analysing body composition. Since initial developments in 2017, as part of the Advanced 
Livestock Measurement Technologies project, there has been an influx of DEXA measurements and 
some additional computed tomography (CT) measurements on genetically informative animals via 
the MLA funded Resource Flock and companion industry satellite flocks. Although more data is 
required, the results suggest that the DEXA lean meat yield is likely to be the same genetic trait as 
the CT measured lean meat yield. These results are promising and plans regarding the utilisation of 
DEXA data within Sheep Genetics national evaluation should begin. However, improving hook 
tracking technologies and data transfer pathways concurrently is also required. 

INTRODUCTION 
The financial value of a carcase is influenced by its saleable meat yield, which differs across 

supply chains, markets and cutting specifications. Historically, consumer preferences in domestic 
and international markets has driven the industry to produce meat cuts that are larger and leaner 
(Banks 2002). Terminal sheep breeders in Australia have been able to sustain genetic gains over a 
long period (Swan et al. 2017), partly due to breeding objectives targeting increased growth and 
lean meat yield. These traits can be accurately evaluated from a young age using selection indexes 
based on body weight, along with eye muscle and fat depth scanned on live animals (Swan et al. 
2015). Due to a limited supply of carcase recording in seedstock flocks, the majority of genetic gain 
achieved in lamb lean meat yield has been reliant on a correlated response from index selection 
(Swan et al. 2015). This has driven interest and research funding to develop carcase based lean meat 
yield measuring technology within the supply chain. 

Dual-energy X-ray absorptiometry (DEXA) has recently been accredited for commercial use in 
Australian lamb abattoirs for predicting carcase lean %. This accreditation is based upon its capacity 
to predict the carcase lean% reference standard measured using computed tomography (CT). This 
has excellent synergy with the existing Sheep Genetics databases in Australia which offer a lean 
meat yield breeding value that is also based upon the CT measurement of whole carcase lean% and 
is more cost effective and easier to implement within the processing environment. 

Since initial developments in 2017, part of the Advanced Livestock Measurement Technologies 
(ALMTech) project (Gardner et al. 2021), DEXA technology and the algorithms behind the 
conversion of the DEXA image to measures of lean, bone and fat have been updated (Connaughton 
and Gardner 2023). Coinciding with these recent developments, there has been an influx of DEXA 
measurements and some additional CT measurements on genetically informative animals via the 
MLA funded Resource Flock (van der Werf et al. 2010) and companion industry satellite flocks. 

* A joint venture of NSW Department of Primary industries and the University of New England
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This study determines the genetic variation and the suitability of using DEXA lean meat yield as 
part of the National Genetic Evaluation, alongside or in conjunction with current CT lean meat yield 
records. 

MATERIALS AND METHODS 
Data. The analysis utilised carcase and lean meat yield records collected as part of the MLA 

funded Resource Flock and its previous iteration, the Information Nucleus Flock (van der Werf et 
al. 2010). As part of the broader Resource flock project, data was also collected on commercial 
(seedstock, non-research) animals as satellite flocks to the MLA Resource flock (Alexandri et al. 
2022). This process involved animals from two sources: i) surplus animals – animals not selected 
for breeding based on phenotypic or genetic performance, and ii) structured progeny test – where 
dams were joined to sires to generate progeny for phenotyping. Consequently, to date, approximately 
44 thousand lambs, of primarily a Merino ewe base but including both pure maternal and terminal 
breeds and their Merino cross progeny have been slaughtered and phenotyped. Carcases were 
measured for key carcase characteristics, including but not limited to carcase eye muscle depth 
(CEMD), carcase fat depth at the c-site (CFAT) and chemical intramuscular fat (CIMF) (Table 1).  

As a component of the larger project, a sub-section of lambs was measured for lean meat yield 
via CT and/or DEXA. The CT records on lambs were primarily observed on a subset of the Resource 
Flock animals recorded since 2007, for a total of 3,646 carcases. The CT scanned lamb carcases 
represented 22 different sire breeds and 936 sires, with a mean CT lean of 57.8% (SD = 3.5). DEXA 
measurements were primarily collected on the accompanying satellite flocks. Consequently, only 
1,018 carcases (320 sires represented) from the Resource Flock had both a CT lean and DEXA lean 
record. There were 4,104 lamb carcases recorded via DEXA representing 750 sires and 22 sire 
breeds. The mean lean meat yield from DEXA was 55.7 (SD = 5.4).  

Table 1: Summary of carcase and lean meat yield records analysed within this study (count of 
contemporary groups = CGs) 

Trait Records CGs Sires Mean SD 
Carcase Eye Muscle Depth (mm) 37,278 1,341 2,646 31.0 5.1 
Carcase Fat Depth (mm) 36,624 1,328 2,623 4.3 2.4 
Chemical Intramuscular Fat (%) 33,874 1,298 2,634 4.5 1.2 
CT lean meat yield (%) 3,646 212 936 57.8 3.5 
DEXA lean meat yield (%) 4,104 86 750 55.7 5.4 

Statistical Analysis. The DEXA and CT lean meat yield records were analysed using univariate 
models in ASReml (Gilmour et al. 2015). Genetic correlations between the lean meat yield 
technologies (DEXA and CT) with a subset of carcase traits, carcase eye muscle depth (CEMD), 
carcase c-site fat depth (CFAT) and intramuscular fat (IMF), were estimated from a series of bi-
variate models in ASReml. 

The analyses were carried out with an animal model that incorporated all pedigree available on 
phenotyped animals within the LAMBPLAN database (Brown et al. 2007). Maternal effects were 
not fitted within this analysis, as is the standard approach for carcase traits in the LAMBPLAN 
analysis. Fixed effects in the model included birth type, age, age of dam (linear and quadratic 
covariates) and sire breed. The bi-variate analysis between trait pairs were completed with hot 
carcase weight fitted as a covariate to all carcase traits. Contemporary group was fitted as a sparse 
fixed effect and defined by flock, management group, sex, date of measurement and kill group 
(Huisman et al. 2008). The model did not include genetic group effects to avoid issues with analyses 
converging due to the small number of records. Due to the low number of records and the diversity 
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of breeds and genetic makeup represented in the sires, the inability to correctly account for genetic 
group effects is likely to lead to some inflation of the heritability estimates. 

RESULTS AND DISCUSSION 
Heritability estimates for the DEXA and CT lean meat yield measures were high and similar, 

0.51 and 0.50, respectively (Table 2). Including hot carcase weight as a covariate resulted in a slight 
increase in heritability for both traits. Estimates within this study are consistent with previous 
heritability estimates of CT measured lean meat yield, where moderate to high heritabilities were 
reported in Charolais (0.47), Suffolk (0.45), Texel (0.46; Jones et al. 2004), Norwegian White (0.57; 
Kvame and Vangen 2007) and Scottish Blackface (0.48; Karamichou et al. 2006). Heritability for 
CT lean meat yield, in a smaller subset of this population, has previously been reported as 0.53 (0.63 
if carcase weight fitted as a covariate) (Walkom et al. 2021). Unfortunately, whilst the heritability 
and variances observed are similar (Table 2) between the two technologies, the small number of 
animals recorded with both is a limitation, and further examination is required to be able to declare 
that lean meat yield technologies are interchangeable in the genetic evaluation. 

Table 1. Estimates of phenotypic (𝝈𝝈 ), additive (𝝈𝝈 ) and residual (𝝈𝝈𝒆𝒆𝟐𝟐) variance and heritability 
(h2) for DEXA and CT recorded lean meat yield (LMY). Standard error in parentheses 

Trait Model 𝒉𝒉𝟐𝟐 𝝈𝝈𝒑𝒑𝟐𝟐 𝝈𝝈𝒂𝒂𝟐𝟐 𝝈𝝈𝒆𝒆𝟐𝟐 
DEXA LMY 0.51 (0.06) 5.36 (0.13) 2.71 (0.34) 2.65 (0.29) 
DEXA LMY HCWT co-variate 0.58 (0.06) 3.99 (0.10) 2.32 (0.27) 1.67 (0.22) 
CT LMY 0.50 (0.06) 5.82 (0.15) 2.88 (0.39) 2.94 (0.34) 
CT LMY HCWT co-variate 0.54 (0.06) 4.90 (0.13) 2.63 (0.33) 2.27 (0.29) 

The phenotypic correlation between DEXA and CT lean meat yield was 0.81 ± 0.01, but as 
highlighted, this is based on only 1,018 carcases. The corresponding genetic correlation between 
lean meat yield recorded with the two technologies was 0.87 ± 0.03 (Table 3). The correlation is 
very high but significantly different from each other, suggesting that there may be differences in 
how lean meat yield is measured across the two technologies despite the fact that DEXA has been 
trained to predict the CT measurement. However, this discrepancy may also be due to differences in 
samples measured by each method and the low number of sires with significant numbers of progeny 
recorded for both traits. 

Genetic correlations between the two lean meat yield measures and a subset of key carcase traits 
are relatively consistent between the two technologies for estimating LMY (Table 3). The similarity 
of genetic correlations with the other carcase traits suggests that whilst the two technologies have 
primarily been recorded on separate sub-populations, they seem to capture the genetic (co)variation 
in lean meat yield consistently.    

To make use of commercially available DEXA data it will be crucial to ensure that these records 
are correctly linked to the corresponding animal. This can be challenging in an abattoir environment 
where routine processing practices (ie. retain for trimming) can affect carcase sequences and 
identification. Therefore, until hook tracking is reliably implemented in plants with DEXA, 
collection of these data should be observed by technical staff to ensure animals’ identities are 
correctly linked to the carcase and DEXA data. To assist with quality control, all consignments 
should have pre-slaughter weights and condition scores immediately prior to the kill. 
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Table 3. Genetic correlations between DEXA LMY and CT LMY and other carcass and meat 
quality traits. Standard error in parentheses. HCWT: hot carcase weight, IMF: chemical 
intramuscular fat, CEMD: eye muscle depth, CFAT: fat at the c-site 

Trait DEXA LMY CT LMY 
CT LMY  0.87 (0.03) - 
CEMD  0.36 (0.06)   0.46 (0.05) 
CFAT -0.60 (0.05) -0.63 (0.04)
IMF -0.34 (0.05) -0.37 (0.04)

CONCLUSION 
Although more data is required, very high genetic correlations suggest that the DEXA lean meat 

yield is likely to be the same trait as the CT measured lean meat yield. These results are promising 
and plans regarding the utilisation of DEXA data within Sheep Genetics national evaluation should 
begin. Rigorous data collection protocols are also required to ensure efficient collection of accurate 
data. 

ACKNOWLEDGEMENTS 
This work was part of the Advanced Measurement Technologies for globally competitive 

Australian meat project, funded by the Australian Government Department of Agriculture and Water 
Resources and many industry partners. The authors thank the teams behind the Sheep CRC 
Information Nucleus Flock, MLA resource flock and industry flocks which contributed to this study. 

REFERENCES  
Alexandri P., Walkom S.F., Swan A.A., van der Werf J.H.J. and Brown D.J. (2022) Proc. World 

Cong. Genet. App. Livest. Prod. 12 
Banks R.G. (2002) Wool Tech. Sheep Breed. 50: 584. 
Brown D.J., Huisman A., Swan A.A., Graser H-U, Woolaston R., Ball A., Atkins K.D. and Banks 

R.G. (2007) Proc. Assoc. Advmt. Anim. Breed. Genet 17: 187. 
Connaughton S. and Gardner G.E. (2023) Report on DXA Accreditation algorithm update. An 

Advanced measurement technologies for globally competitive Australian meat project. 3.11.5c  
Gardner G.E., Apps R., McColl R. and Craigie C.R. (2021) Meat Sci. 181: 108556. 
Gilmour A., Gogel B., Cullis B., Welham S. and Thompson R. (2015) Hemel hempstead: VSN 

International Ltd 
Huisman A., Brown D.J, Ball A. and Graser H.-U. (2008) Aus. J. Exp. Ag. 48: 1177. 
Jones H., Lewis R., Young M. and Simm G. (2004) Livest. Prod. Sci. 90: 167. 
Karamichou E., Richardson R., Nute G., McLean K. and Bishop S. (2006) Anim. Sci. 82: 151. 
Kvame T. and Vangen O. (2007) Livest. Sci. 106: 232. 
Pietrobelli A., Wang Z., Formica C. and Heymsfield S. B. (1998) Am. J. of Phys. Endocrinol. Metab. 

274:  E808. 
Scholz A.M., Bünger L., Kongsro J., Baulain U. and Mitchell A.D. (2015) Anim. 9: 1250. 
Swan A.A., Banks R.G., Brown D.J. and Chandler H.R. (2017) Proc. Assoc. Advmt. Anim. Breed. 

Genet 22: 326. 
Swan A.A., Brown D.J. and van der Werf J.H.J. (2015) Anim. Prod. Sci. 56: 87. 
van der Werf J.H.J., Kinghorn B.P. and Banks R.G. (2010) Anim. Prod. Sci. 50: 998. 
Walkom S.F., Gardner G.E., Anderson F., Williams A. and Brown D.J. (2021) Meat Sci. 181: 

108524. 



310 

Novel Phenotypes and Phenotyping Tools A

PROGRESS OF THE SOUTHERN MULTIBREED RESOURCE POPULATION: HARD-
TO-MEASURE PHENOTYPES TO DRIVE GENOMIC SELECTION 

B.J. Walmsley1,2, K.L. Moore1, S.F. Walkom1, S.A. Clark3, T. Granleese4 and K.A. 
Donoghue5  

1Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia 
2NSW Department of Primary Industries, Livestock Industries Centre, Armidale, NSW, 2351 

Australia 
3School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351 

Australia 
4NSW Department of Primary Industries, Grafton Primary Industries Institute, Grafton, NSW, 

2460 Australia 
5NSW Department of Primary Industries, Agricultural Research Centre, Trangie, NSW, 2823 

Australia 

SUMMARY 
This paper describes the progress in the first half of a large, 5-year breeding project run across 

New South Wales involving five temperate beef breeds and the Brahman breed. The project’s 
purpose is to generate up to 8,000 progeny that allows the benefits of genomic selection to be 
captured, particularly for traits that are lowly recorded due to being difficult or costly to record or 
which are yet to be routinely included in genetic evaluations, e.g., fertility, health, and resilience. 
The project has generated 4,886 progeny from three cohorts, with another 1,990 females to calve 
in mid-2023. Cohort one, born in 2020, has now had all steers complete feedlot finishing with 
carcass traits recorded, with the heifers having completed their first calving and subsequent 
rebreed. Details concerning the recording of hard-to-measure traits to this point in the project are 
provided. The high-density SNP genotypes collected, and the recording of these traits will 
contribute to the genomic reference populations and BREEDPLAN evaluations of the breeds 
involved. 

INTRODUCTION 
The potential exists to significantly increase profitability in the Australian beef industry using 

EBVs and selection indexes by capturing the benefits of genomic selection. In 2018, the 
BREEDPLAN genetic evaluation system implemented single-step GBLUP (Johnston et al. 2018), 
which was a significant step toward realising these gains. Achieving the full benefits of genomic 
selection is contingent on a number of other factors. The impacts effective population size, relative 
size of the reference population, trait heritability (Goddard and Hayes 2009), the relatedness 
within the reference population and its relatedness to selection candidates (Pszczola et al. 2011) 
have on the success of genomic selection have been well described. To successfully improve 
profitability, genomic selection must provide predictive accuracy for all traits that impact 
profitability and form the basis of current and future selection indexes. For this reason, the size of 
the reference population required is a function of not only the number of animals with genotypes 
and phenotypes but also the types of phenotypes recorded. This is particularly the case for traits 
that are difficult or costly to record or are economically important but yet to be routinely included 
in genetic evaluations, e.g., fertility, health, and resilience traits. The Southern Multi-breed project 
(SMB: Walmsley et al. 2021), initiated in 2020, and the RepronomicsTM project (Johnston et al. 
2017), initiated in 2013, are two industry research initiatives that have been developed to address 
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these needs across multiple breeds. The relatedness of the animals in the SMB project to the wider 
respective Australian breed populations has been examined by Moore et al. (2023). This paper 
provides a brief update on the progress of the SMB Project with a focus on the hard-to-measure 
and lowly recorded BREEDPLAN traits that are being evaluated as part of SMB. 

BRIEF OVERVIEW 
The SMB project is being conducted across the New South Wales Department of Primary 

Industries research facilities; Trangie Agricultural Research Centre; Grafton Primary Industries 
Institute; Tocal Agricultural Centre; Glen Innes Agricultural Research and Advisory Station; 
Elizabeth MacArthur Agricultural Institute (EMAI); Menangle and the University of New England 
(UNE) research feedlot, “Tullimba” (Kingstown). The project is focused on the five numerically 
largest temperate breeds (viz. Angus, Charolais, Hereford, Shorthorn, and Wagyu) in southern 
Australia and the Brahman breed, which is commercially relevant in the sub-tropics of NSW and 
links SMB to the RepronomicsTM project (Johnston et al. 2017). A critical design feature is that all 
breeds are managed in mixed breed groups, which allows valid breed comparisons to be made. 
Walmsley et al. (2021) describe the design and initiation of the SMB project. 

PROGENY GENERATED 
The aim was to generate up to 8,000 progeny across the project’s lifetime. To date, the project 

has generated progeny in 2020, 2021, and 2022, with a fourth cohort due to begin calving in mid-
2023. The number of calves in cohorts 1 to 3 are shown in Table 1. The progeny were generated 
by a combination of artificial insemination (AI) programs followed by natural mate back-ups over 
the base cows and natural mate bulls over all female progeny generated by the project. In total, AI 
programs included 265 sires (Angus=74; Brahman=30; Charolais=30; Hereford=55; 
Shorthorn=33; Wagyu=43) with 141 natural mate sires used (Angus=46; Brahman=10; 
Charolais=16; Hereford=34; Shorthorn=15; Wagyu=20). 

Table 1. Number of progeny generated by year (cohorts 1 to 3) and sex, in the Southern 
Multibreed project, and the number of pregnancies for cohort 4 

Progeny generated Confirmed Pregnancies 
Year 2020 2021 2022 Total 2023 
Steers   710   784   965 2459 - 
Heifers  694  758   975 2427 - 
Overall 1404 1542 1940 4886 1990 

TRAITS RECORDED 
All calves are intensively recorded from birth following BREEDPLAN protocols for the 

current standard BREEDPLAN traits. These include birth (BW), weaning (WW), yearling (YW) 
and finished (FW) weights, calving ease (CE), ultrasound scan traits (eye muscle area (EMA), rib 
fat (RIB), rump fat (RUMP) and intramuscular fat (IMF)), carcass traits (Carcass Weight, EMA, 
RIB, RUMP and IMF) including retail beef yield (RBY), days-to-calving (DTC) and temperament 
(TEMP – docility and crush scores). Table 2 presents the number of records for these traits across 
all breeds for the first three cohorts. Birth weight and calving ease are the first traits recorded in an 
animal’s life and as such have the largest number of records to date (n=4,880 and 4,886, 
respectively). Both traits relate to the probability of calf survival through the birthing process and 
as such have important impacts on profitability. Mean birth weight was 38 kg (±7.9 SD) and 
ranged between 8.5 kg and 69.5 kg, with 88% of records between 25 and 50 kg. Although the 
majority of calving ease scores were category 1, all five categories have been observed. 
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In addition to those in Table 2, other traits are important for improving profitability. The 
increasing importance of animal welfare and pressure to reduce dehorning means that poll status 
has the potential to be an important economic trait. Horn/poll status has been recorded at marking 
(n = 4,545), with assessments also conducted at weaning (n = 2,700) to capture late developing 
horns/scurs. Phenotypes have been observed for all horn/poll classifications described by Connors 
et al. (2021). Animal health traits that impact welfare and productivity have also been recorded. 
Worm egg counts (WEC) have been measured at weaning (n = 2,681) as well as prior to heifer 
joining and steers entering the feedlot (n = 2,487) in the first two cohorts. Figure 1 shows the 
average cube root transformed WEC for sites and years at weaning. Immune competence (Wilkie 
and Mallard, 1999) has been proposed as a trait that could increase general disease resistance 
through selection to reduce the incidence of diseases such as bovine respiratory disease. Currently, 
only cohort two has been recorded for immune competence (n = 1,412) at weaning.  

Table 2. Number of progeny per cohort recorded* for current BREEDPLAN traits in the 
Southern Multibreed project for the first three cohorts 

Cohort BW CE WW YW FW Scan Carc. RBY DTC TEMP. 
2020 1402 1403 1291 1278 1248 1278 628 157 505 1282 
2021 1541 1543 1412 1394 170 868 - - - 1138 
2022 1937 1940 - - - - - - - - 

*See text for trait descriptions.

Figure 1. Average weaning worm egg count (cube root transformed) for each research site 
(designated A to E) and years (R-2020 and S-2021) for the first two cohorts of Southern 
Multibreed calves (n=2,681) 

The importance of fertility as a driver of profitability, and the relatively low levels of DTC 
recording in the beef industry (Gudex and Millen, 2019) have created the need to examine new 
traits for inclusion in genetic evaluations. Regular ovarian scans have been conducted using real-
time ultrasound to identify puberty in heifers or return to oestrous in first-lactation females by the 
presence of a corpus luteum. Currently, 1,321 heifers have had puberty assessments conducted, 
with 465 first-lactation females assessed for return to oestrous. Analysis of ovarian activity records 
is described by Donoghue et al. (2023). Prior to joining, heifers and first-lactation females have 
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had body condition score assessments, hip height measurements and ultrasound body composition 
scans taken, following the protocols described by Wolcott et al. (2023), for evaluation as potential 
indicators of the capacity to maintain body condition during periods of high energy demand. 
McKiernan (1990) described a muscle score scale that has a significant association with RBY and 
can be used to assess live animals for increasing profitability. Progeny (n = 2,703) were assessed 
using this scale when ultrasound scanning has been conducted. Feed is the major direct cost in 
beef production meaning that profitability is a direct function of changes in feed efficiency. In an 
effort to address this steer feed intake has been recorded (n = 628) in the feedlot (Torres-Varquez 
et al. 2018). 

CONCLUSIONS 
The SMB project has produced 4,886 progeny in the first 2.5 years with another 1,990 

pregnant females to calve in mid-2023. An extensive recording program has focused not only on 
traits routinely recorded in BREEDPLAN but also those which are difficult or costly to record or 
are yet to be routinely included in genetic evaluations, e.g., health and resilience. A significant 
body of high-quality data is being produced from the investment made by industry and 
government. This represents a valuable resource to benchmark across-breed performance and 
capture the benefits of genomic selection, particularly for hard-to-measure traits. As such, the 
project will enable more effective selection for those traits contributing to value chain profit. 
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SUMMARY 

Many animals are culled from the herd on dairy farms annually due to health problems, and this 
involuntary culling causes significant economic losses to the dairy industry. This study aimed to 
identify the trend of culling reasons and lifespan and estimate their genetic parameters. The cow 
history records and pedigree files of 11 large commercial dairy farms with cows culled from 1995 
to 2015 were used.  It is estimated that 18.6% of cows are culled voluntarily by farmers, while 81.4% 
of cows leave the herd involuntarily. Three main reasons for involuntarily culling were reproductive 
problems (25.9%), death and others (16.7%), and infectious diseases (14.3%). Over time, the 
distributions of culling reasons have altered with a reduction in "death and others", suggesting a 
better or more precise diagnosis of culling reasons and improvement in dairy farm recording 
systems. The average lifespan of cattle was 4.42 years with heritability of 0.14. The heritabilities of 
culling reasons were very low and ranged from 0.03±0.02 (metabolic and digestive disorders) to 
0.08±0.03 (mastitis and udder problems). The significance of the maternal effect for some traits like 
mastitis indicates that it may be possible to improve an individual's health and, therefore, farm 
profitability genetically. 

 
INTRODUCTION 

Dairy cows are expected to remain economically useful in their herds for a much shorter period 
of time than the natural lifespan of cows, which is approximately 20 years. The length of lifespan 
from birth until culling (Hu et al. 2021) varies from 4.9 years in US (De Vries 2017), to 6.3 years in 
UK (Pritchard et al. 2013) or 6.75 years in Australia (Wondatir Workie et al. 2021). An increase in 
lifespan can increase profitability by reducing the annual costs of replacement of cows, which 
indicates the economic importance of lifespan for dairy farmers. 

Farmers have several reasons for culling cows from their herds which can be generally classified 
as voluntary or involuntary culling (Weigel et al. 2003). Compared to voluntary culling, which is 
based on optimal economic decisions, the involuntary culling occurs when farmers have to remove 
their productive, profitable cows due to illness, injury, infertility, or death (Wondatir Workie et al. 
2021). Due to improvements in genetic trends for fertility and adding health disorders such as 
mastitis as well as longevity in the selection index for dairy cattle, culling rate is expected to change 
over time. In addition, it might be possible that some genes related to health disorders that lead to 
culling in dairy cattle pass over the generations. The objective of this study was to estimate the trend 
and genetic parameters of lifespan and culling reasons of dairy cattle.    
 
MATERIALS AND METHODS 

The cow history records of 11 commercial dairy farms in Iran, which included cows culled 
between 1995 to 2015 were extracted from an on-farm record-keeping software. The variables 
extracted included herd, parity number, cow ID, birth date, culling date, culling reason, and the ID 
of sire and dam (for known parents). Data was edited by SQL Server Management Studio 
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(Microsoft, 2012). Cows with missing parity numbers, birth dates, culling dates, unknown dam, milk 
period >10, date of birth greater than their dams’ birth date, or missing culling details were removed 
from the original dataset. Culling reasons were categorized into seven groups as described in Table 
1. Cow lifespan was calculated as the interval between birth date and culling date. The final dataset 
used for this study was 67,287 records of 13,616 heifers and 53,671 cows. For the analysis of culling 
reasons and estimation of the genetic parameters, each culling reason was considered as a different 
phenotype as a binary variable (1 or 0) indicating whether a cow left the herd for that reason or not. 
The trend of culling reasons over time was plotted in R using ggplot2 package (Wickham 2016). 

 Using ASReml (Gilmour et al. 2015), a binomial model with a logit link function was applied 
to the dataset to estimate the genetic parameters of each culling reason. For lifetime, however, a 
continuous model was used in which the data were tested for normality using Shapiro-Wilk test and 
then log- transformed to approach normality. A range of systematic effects, including herd, year of 
birth, the season of birth, year of culling, season of culling and their interactions and milk period 
were tested for significance for each trait (results not shown). Four combinations of random effects 
for direct genetic, maternal genetic, and maternal permanent environmental effects were compared 
via univariate analysis for each trait separately. The covariance between direct genetic and maternal 
genetic effects was ignored. The four models including 1) direct animal genetic effect, 2) direct and 
maternal effect, 3) direct and maternal permanent environmental effect, and 4) model including all 
above random effects were tested and then compared using likelihood ratio tests (LRT) between the 
full and reduced models.  

 
Table 1. Description of the culling reason (and their proportion) of used dairy cattle in this 
study 

 
Group Descriptions Proportion 

(%) 
Voluntary Low milk production, old age, dairy purpose 18.6 
Reproductive 
problems  

Infertility, recurrent abortions, mummy (wax) abortion, stillbirth, 
ovarian cysts, uterus problems (rupturing, bleeding, infections, and 
diseases) 

25.9 

Feet and leg 
disorders 

Lameness, joint infection, dislocation and fracture of the hands, legs 
and hip, crippling, hoof diseases and spinal cord injuries 

7.8 

Mastitis and udder 
problems  

Mastitis, protracting and rupturing ligaments of the gland, complete 
teat-cistern obstruction, udder gangrene and bleeding 

8.3 

Metabolic and 
digestive disorders 

Bloating, acidosis, ketosis, fatty liver, milk fever, displaced 
abomasum, obstruction and twisting of gut, omasum accumulation, 
abomasum and rumen, diarrhea 

8.4 

Infectious diseases Leucosis, foot-and-mouth disease, brucellosis, pneumonia, 
tuberculosis, black leg, Bovine Johne's disease, lung and liver 
infections/abscess, Bovine Viral Diarrhea Virus (BVDV) 

14.3 

Death and others Death, peritonitis, injury, blindness, toxication    16.7 
 
RESULTS AND DISCUSSION 

According to data available over 21 years, 18.6% of cows were culled voluntarily by farmers. 
This was less than that reported (27.1%) by Ghaderi-Zefrehei et al. (2017), who studied the culling 
reason in one farm in Iran. The main reason for involuntarily culling was reproductive problems 
(RP) which accounted for almost a quarter (25.9%) of culling reasons (Table 1). The other major 
involuntary reasons for culling the cows from the herd were "death and others"  (D&O) (16.7%), and 
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infectious diseases (14.3%) (Table 1). RP and infectious diseases have been reported as the most 
significant reasons of culling the dairy cows in Iran (e.g., Ghaderi-Zefrehei et al. 2017). The 
remarkable percentage of culling due to RP can be explained by the genetic selection performed on 
milk yield for many years and negative association exits between these traits (De Vries and Risco 
2005). Regarding infectious diseases, Holstein cows are expected to be sensitive to some pathogens 
in Iran. Furthermore, this study is also included the heifers that have not calved and are mainly culled 
due to infectious diseases, and reproductive abnormalities not becoming evident until after first 
calving. The average lifespan was 4.42 years, which is close to US (4.9 years, De Vries 2017) and 
German dairy cattle (~5 years, Martens and Bange 2013), but lower than Australian cows (6.75, 
Wondatir Workie et al. 2021).     

The trend of major involuntary culling reasons for Holstein cows over the period of 21 years is 
presented in Figure 1. Although there were fluctuations, the level of culling for RP remained high 
throughout the whole study period. Over the time, culling for D&O showed a downward trend, 
suggesting better, or more precise, diagnosis of culling reasons and improvement in dairy farm 
recording systems. There was an increase in involuntary culling of animals due to infectious diseases 
over time, with a sudden rise in 2002. Factors that may have led to this observation may be increasing 
the density of animals, which may result in disease spread; improved diagnosis of the culling reason 
over time (part of this group might come from the D&O group); decreased immunity caused by 
selection for low somatic cell counts; and the emergence of new diseases.   

Figure 1. Proportion of involuntary culling reasons by year of culling 

For all traits, maternal permanent environment effects were not significant (Table 2). For culling 
due to "mastitis and udder problems"(M&U), RP and D&O, the maternal genetic effect had small 
effects with significant likelihood ratio tests (LRTs), and because of the nature of dam effects on 
reproduction traits, it was retained in the model. Based on the results, heritabilities of culling reasons 
were low, ranging from 0.03 (metabolic and digestive disorders) to 0.08 (M&U) (Table 2). The 
heritability for lifespan was higher (0.14) which agrees with Van Pelt et al. (2015), however the 
definition of this trait differed (time from first calving to the last test date for milking production in 
Van Pelt et al. (2015) and time from birth to culling in this study). There is a lack of study on genetic 
parameters for culling reasons, however the heritability of some of these traits like clinical mastitis 
(0.01 to 0.42; Nash et al. 2000) and lameness (0.15 to 0.22; Weber et al. 2013) has been reported.  

CONCLUSIONS 
This study shows that 81.4% of culling is out of the farmer’s control (involuntary culling). Over 

time, culling reasons have altered with a reduction in "death and others"  suggesting the better or 
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more precise diagnosis of culling reasons and improvement in dairy farm recording systems. Despite 
fluctuations, the rate of culling for Reproductive problems remained high throughout the study 
indicating the need for improving fertility management and consequently reproductive efficiency. 
Although the heritabilities of culling reasons were low, our results suggest that some opportunity 
may exist for genetic improvements in individual’s health (e.g., mastitis and reproductive problems) 
in Iranian Holsteins and therefore improve animal welfare and farm profitability. 

Table2. Genetic variance (σ2g), maternal variance (σ2m), direct heritability (h2), maternal 
heritability (m2) (and their standard error (SE)) and likelihood ratio tests (LRT) and degrees 
of freedom (df) for the selected model when running a univariate animal model 

Trait 1 σ2g (SE) σ2m (SE) h2 (SE) m2 (SE) LRT 2 df 
3

F&L disorders (%) 0.17 (0.04) 0.05 (0.03) 0 0 
M&U problems (%) 0.27 (0.04) 0.01 (0.03) 0.08 (0.03) 0.00 (0.02) 213 *** 1 
M&D disorders (%) 0.11 (0.03) 0.03 (0.02) 0 0 
Reproductive problems (%) 0.15 (0.02) 0.01 (0.01) 0.04 (0.02) 0.01 (0.01) 116 *** 1 
Infectious diseases (%) 0.15 (0.02) 0.04 (0.02) 0 0 
Voluntary (%) 0.30 (0.03) 0.08 (0.02) 0 0 
Death and others (%) 0.16 (0.02) 0.02 (0.02) 0.05 (0.02) 0.00 (0.02) 149*** 1 
Lifespan (yrs)4 0.02 (0.00) 0.14 (0.01) 0 1 
1 All traits except lifespan were fitted in the binomial model on the logit scale (σ2e=3.29). F&L= Feet, and 
leg; M&U= Mastitis and udder; M&D = Metabolic and digestive.  
2 *** P <0.001, ** P <0.01, * P <0.05, P <0.1, ns or non-significant.  
3 df- the difference in the number of parameters between full and reduced models as 0, 1, 2 –for the base 
model (direct random effect), when maternal genetic effects or maternal permanent environmental effects or 
both were added. 
4 Lifestyle is reported as genetic standard deviation  (σg) instead of genetic variance (σ2g).  
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SUMMARY 

Appropriate genetic parameters are essential for accurate selection of animals with improved 
genetic merit for economically important traits. In recent years, Merino breeders have tended to 
record animals earlier in life making it important to characterise post-weaning measurements. 
Additionally, genomic information is used in Australian Merino genetic evaluations to obtain more 
accurate estimations of genetic merit using single-step GBLUP, utilising a weighting factor to 
partition polygenic and genomic variance, hereby referred to as lambda (λ). This study aimed to 
estimate genetic parameters and lambda values for production traits measured at the post-weaning 
stage in Merino sheep. Phenotypic records were obtained at the post-weaning stage for weight 
(PWT), eye muscle depth (PEMD), fat depth (PFAT), greasy fleece weight (PGFW), clean fleece 
weight (PCFW), fibre diameter (PFD), fibre diameter coefficient of variation (PDCV), and staple 
length (PSL). Genetic parameters were estimated with univariate and bivariate analyses, while a 
genomic REML analysis was performed to calculate the lambda value for each trait. Moderate to 
high heritability estimates were observed, ranging between 0.25 to 0.56. Genetic correlations were 
moderately positive between PWT and PCFW, PGFW, PFD, and PSL and negative for PDCV. 
Lambda values were on average (0.64) slightly higher than the current value used for genomic 
evaluation (λ = 0.5) and ranged from 0.51 to 0.90. Genetic parameters reported in this study are 
generally consistent with previous studies and will be used to update the genetic parameters used 
by Sheep Genetics for the MERINOSELECT analyses. 

 
INTRODUCTION 

The Australian sheep industry has significantly improved sheep production through the 
establishment of breeding programs. Genetic parameters are essential to accurately estimate 
breeding values and to predict the genetic and economic gain of the traits in breeding programs. 
Previous studies have shown that heritability increases as the age of measurement increases 
(Brown et al. 2013; Mortimer 2017), raising the need to estimate genetic parameters for each 
relevant stage of the developmental period. Previous studies estimated genetic parameters for live 
weight, ultrasound fat and muscle and wool traits at different stages in Merino sheep. Heritability 
estimates for wool traits were moderate for the yearling, hogget, and adult stages (Greeff et al. 
2008, Brown et al. 2013, Mortimer et al. 2017), high for ultrasound traits (Mortimer et al. 2017) 
and moderate for live weight (Greeff et al. 2008; Mortimer 2017). However, Sheep Genetics 
recently revised the methods used to classify traits to each stage and redefined more accurate 
intervals for birth, marking (days 1-39), weaning (days 40-149), post-weaning (days 150-299), 
yearling (days 300-449), hogget (days 500-659), and adult (days 660-6059). These changes 
influence how the data is used in the analysis and therefore, it is necessary to estimate new genetic 
parameters to be used especially for the post-weaning stage as more data are now available. 

In recent years, more accurate estimations of the genetic merit have been achieved by including 
genomic information in a single-step genomic BLUP (ssGBLUP). The use of this method requires 
a lambda (λ) for partitioning pedigree and genomic information. Moreover, Gurman et al. (2021) 
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reported lambda values higher than 0.5 for carcass traits were required for ssGBLUP pointing to 
the importance of further studies. This project aims to estimate the genetic parameters, including 
heritabilities, correlations and lambda values for live weight, ultrasound, and wool traits recorded 
at the post-weaning stage in Australian Merino sheep.  
 
MATERIALS AND METHODS 

Animals and traits recorded. Flocks with the most complete data recorded were selected 
from the MERINOSELECT database applying the following thresholds: age of dam known and 
less than 12 years; date of birth known and with multiple dates recorded within each flock and 
year; sex; birth type and rear type; more than 5 years of records; flocks with at least 75% of 
animals with full pedigree; and phenotypes recorded between 2000 and 2022. This selection 
resulted in 307,815 animals (Table 1) from 175 flocks with measurements at the post-weaning 
stage (P; between 150 to 299 days of age) for body weight (PWT; kg), live ultrasound eye muscle 
depth (PEMD; mm) and live ultrasound fat at the C site (PFAT; mm), greasy fleece weight 
(PGFW; kg), clean fleece weight (PCFW; kg), fibre diameter (PFD; µm), fibre diameter 
coefficient of variation (PDCV; %), and staple length (PSL; mm). Animals were the progeny of 
6,748 sires and 148,420 dams with up to 5 generations of pedigree used in the analysis.  

 
Table 1. Descriptive statistics for live weight, wool and ultrasound traits at the post-weaning 
stage in Merino sheep 
 

 PWT PEMD PFAT PCFW PGFW PFD PDCV PSL 

Records 210,832 60,363 60,148 77,584 73,755 44,424 43,233 23,085 
Genotype 9,446 25,697 8,613 7,657 12,974 6,220 6,207 15,447 
Mean  35.1 24.6 2.3 2.2 3.1 16.5 18.3 72.4 
SD 4.7 4.3 0.5 0.4 0.6 1.0 2.6 14.3 
Min 12.4 9.7 0.5 0.4 0.8 11.9 10.6 25 
Max 63.6 42.7 5 4.4 6.7 21.9 32 140 
CV (%) 13.5 17.3 22.2 19.2 17.9 6.3 14.4 19.8 
* For the trait abbreviations, see text. 
 

Genetic parameters. For the univariate analysis, a linear mixed animal model was fitted in 
ASReml v4.2 (Gilmour et al. 2015) with fixed effects as birth type (4 levels), rear type (4 levels), 
age, sex (female and male), age of dam (12 levels), contemporary groups (between 344 to 2,266 
levels), and weight fitted for PFAT and PEMD. The random effects consisted of genetic groups 
(defined by flock and time period as per MERINOSELECT), animal genetic, maternal genetic and 
permanent environmental.  

Genome-base restricted maximum likelihood (GREML). The variance components were 
estimated using only the animals with genotype information (imputed 60k SNP chip) in a 
univariate GREML via MTG2 software (Lee and van der Werf 2016). The model included 
adjusted phenotypes for fixed effects and contemporary groups, with random effects fitted for 
pedigree, genetic groups and genomic relationship matrices. Lambda was calculated as the ratio of 

; where σG is the genetic variance and σA22 is the variance explained by the numerator 
relationship matrix. 

 
RESULTS AND DISCUSSION 

Genetic variances and heritabilities. Moderate to high heritabilities were estimated for live 
weight, ultrasound and wool traits ranging between 0.25 (0.01) and 0.56 (0.01) (Table 2). The 
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heritabilities for PFAT (0.25), PEMD (0.27) and PWT (0.32) were consistent with previously 
reported estimates for PEMD (0.20 to 0.25), PFAT (0.15 to 0.22) adjusted with weight and PWT 
(0.31) (Mortimer et al, 2014 and 2017; Huisman et al. 2008). However, a lower permanent 
environmental effect was observed for PWT (0.05) compared with the 0.11 reported by Mortimer 
et al. (2017). The heritability estimates for post-weaning wool traits were moderate to high, 
ranging from 0.29 to 0.56, agreeing with the estimates reported previously at the hogget stage 
ranging between 0.27 to 0.60 (Greeff et al. 2008). Fibre diameter had a higher heritability at post-
weening (0.56; Table 2), similar to previous studies at hogget and yearly (0.60 to 0.61; Greeff et 
al. 2008; Brown et al. 2013) but lower than the reported by Mortimer et al. (2017) at the yearling 
stage (0.74). There was a low maternal permanent environment effect for PGFW and PCFW (0.04 
to 0.05), which was also observed by Mortimer et al. (2017) at the yearling stage. 

Table 2. Estimates of phenotypic (σ2p) variance, heritabilities (h2) and ratios of maternal 
genetic (m2) and maternal permanent environmental effect (Pe2) variances, and the ratio of 
genetic group:additive variance (σGG:G) for live weight, wool, and ultrasound traits in Merino 
sheep (standard error) 

Trait σ2p h2 m2 Pe2 σGG:G 

PWT 19.9(0.08) 0.32(0.01) 0.06(0.0) 0.05(0.0) 1.14(0.17) 
PEMD 3.69(0.02) 0.27(0.01) 0.18(0.08) 
PFAT 0.21(0.0) 0.25(0.01) 0.29(0.12) 
PCFW 0.15(0.0) 0.29(0.02) 0.03(0.01) 0.05(0.01) 0.27(0.08) 
PGFW 0.25(0.0) 0.32(0.01) 0.03(0.01) 0.04(0.01) 0.06(0.07) 

PFD 1.11(0.01) 0.56(0.01) 0.37(0.1) 
PDCV 4.3(0.03) 0.29(0.01) 0.04(0.04) 
PSL 69.45(0.82) 0.47(0.02) 0.65(0.21) 

* For the trait abbreviations, see text.

Table 3. Phenotypic (below diagonal) and genetic (above diagonal) correlations between live 
weight, wool and scan traits in Merino sheep 

PWT PEMD PFAT PCFW PGFW PFD PDCV PSL 

PWT -0.03 0.05 0.21 0.23 0.25 -0.17 0.14
PEMD 0.12 0.48 -0.13 -0.13 0.09 -0.16 0.12
PFAT 0.12 0.32 -0.17 -0.16 0.12 -0.29 0.06
PCFW 0.45 -0.02 -0.09 0.89 0.38 0.11 0.55 
PGFW 0.42 -0.01 -0.03 0.91 0.34 0.08 0.40 

PFD 0.21 0.07 0.11 0.25 0.26 -0.13 0.26
PDCV -0.13 -0.09 -0.09 -0.01 0.02 -0.10 -0.11
PSL 0.17 0.07 0.07 0.32 0.30 0.25 -0.12

* For the trait abbreviations, see text. Standard errors ≤ 0.01 and 0.02 to 0.05 for phenotypic and genetic 
correlations, respectively.

Genetic and phenotypic correlations. Among the wool traits, PGFW and PCFW were highly 
genetically correlated (0.89), while PGFW had a small genetic correlation with PDCV (0.08). 
Moderate and positive genetic correlations were observed between PWT with PCFW (0.21), 
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PGFW (0.23), and PFD (0.25), whereas PWT was negatively correlated with PDCV (-0.17). These 
genetic correlations suggest that selection for higher live weight will result in an increase in 
PCFW, PGFW and PFD, but a decrease in PDCV. Mortimer et al. (2017) reported higher genetic 
correlations between PWT with yearling GFW (0.46), CGW (0.46) and SL (0.21). Ultrasound 
traits (PEMD and PFAT) had moderate phenotypic (0.32) and genetic (0.48) correlations. Low 
negative genetic correlations were observed between ultrasound traits and PCFW, PGFW and 
PDCV, consistent with the negative correlations observed by Mortimer et al. (2014) and Huisman 
and Brown (2009) between yearling GFW and PFAT (-0.26 to -0.48) and PEMD (-0.06 to -0.26). 
The phenotypic correlations were higher for PWT with the other traits but lower for ultrasound 
and wool traits. 

Genomic REML. Heritability and lambda values were also estimated for all traits (Table 4). 
Lambda values averaged 0.70 but ranged from 0.51 to 0.90. Heritabilities ranged from 0.28 to 0.56 
for the traits slightly differing from the heritabilities estimated from the pedigree models. Overall, 
these results suggest that lambda of λ = 0.5 used in the routine analyses could be adjusted slightly, 
but this needs to be investigated further for a greater range of traits.  

Table 4. Estimation of heritabilities, phenotypic variances and lambda for live weight, wool 
and scan traits in Merino sheep 

Trait PWT PEMD PFAT PCFW PGFW PFD PDCV PSL 

Lambda 0.66 0.67 0.76 0.51 0.62 0.86 0.90 0.62 

σ2p 13.24 4.21 0.14 0.12 0.21 1.06 4.52 66.19 

h2 0.34 0.28 0.33 0.44 0.47 0.56 0.30 0.39 
* For the trait abbreviations, see text. σ2

p: phenotypic variance; h2: heritability.

CONCLUSIONS 
This study provides estimates of genetic parameters and correlations between economically 

essential traits such as live weight, wool, and ultrasound traits at a post-weaning stage. The genetic 
parameters described in this study can be incorporated into the routine evaluation. Lambdas 
differed from 0.5, indicating that further research will be needed to investigate new strategies to 
incorporate this information in the ssGBLUP analysis, its impact on prediction accuracies and its 
use for multi-breed evaluations. 
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SUMMARY 
The Angus Sire Benchmarking Program (ASBP) remains the cornerstone genomic reference 

behind Angus Australia’s TransTasman Angus Cattle Evaluation (TACE). The success of industry 
funded genomic reference populations depends on the ability to maintain a strong relationship of 
the seedstock population with the sires selected for the reference population. Results from a review 
of the ASBP show that, for hard to measure traits (eg. feed intake), the ASBP is influencing the 
accuracy of breeding value estimation across the registered population. However, the evolution of 
the genetic make-up of the Trans-Tasman herd means that the continued collection of hard to 
measure phenotypes via the ASBP or similar programs is essential. 

 
INTRODUCTION 

In recent decades, Angus breeders in Australia have achieved genetic improvement in 
profitability through the application of performance-based selection programs, using a highly 
effective genetic evaluation pipeline underpinned by BREEDPLAN software (Graser et al. 1995). 
Coinciding with the emergence of genomic technology and the foreseen transition to a 
genomically enhanced evaluation, Angus Australia commenced the Angus Sire Benchmarking 
Program (ASBP) in 2010 (Parnell et al. 2019). Since then 12 cohorts (11 cohorts have provided 
data to date) of sires have produced progeny to help build a relevant genomic reference for 
Australian and New Zealand Angus Cattle. To capture all of the potential value genomic selection 
presents, genomic reference populations should have a low average relationship between the 
reference animals, while ensuring that the relationship between the reference population and the 
animals being evaluated is high (Clark et al. 2012; Pszczola et al. 2012). A key design feature of 
the ASBP has been the development of a genomic reference of 4,000 – 6,000 animals recorded for 
hard to measure traits, with reference sires refreshed annually (Parnell et al. 2019) to account for 
the decay in linkage disequilibrium over time (Porto-Neto et al. 2014). The Trans-Tasman Angus 
population is managed by a multitude of breeders predominantly spread across southern Australia 
and New Zealand, encapsulating a diversity of environments, production systems and breeding 
objectives. Consequently, without a nucleus breeding program controlling the dissemination of 
genetic material, the sires represented in the ASBP needs to align with the past and future selection 
decisions of Angus breeders. Consequently, this paper endeavours to quantify the importance of an 
evolving reference population which changes to reflect current (and future) genetics each year. 

 
MATERIALS AND METHODS 

Angus Sire Benchmarking Program. The key objective of the ASBP was to establish a 
contemporary reference population, and the associated genotypes and phenotypes for economically 
important traits to facilitate the application of genomic selection for the Angus breed. Parnell et al. 
(2019) described the initiation of the ASBP, which commenced in 2010, with 35 Angus bulls 
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joined by fixed-time AI to 1,640 cows across 5 co-operator herds. Subsequently, between 21 to 47 
bulls have been joined to 1,000 to 2,500 cows annually. For each year’s matings (subsequently 
referred to as a cohort, with cohort 1 identifying matings from 2011 and so on), a genetically 
diverse range of bulls were nominated by breeders from all states of Australia and New Zealand. 
Sires from the USA and the UK were also included in some cohorts. Sires represented in each 
cohort were predominately young bulls (2 – 3 years of age), with some older influential sires also 
included. 

Relationship metrics. Numerator relationship matrices (NRM) were constructed with 
unpublished AGBU nrmblock software as per Moore et al. (2022), based on algorithms by Aguilar 
et al. (2011) and Sargolzaei et al. (2005). For each sire in the breed’s pedigree which produced 
progeny in each year from 2010 to 2021, the relatedness to animals generated for the eleven ASBP 
cohorts was calculated based on the off-diagonal elements of the NRM. This component of the 
study focused on three relationship metrics, 1; the sires’ relationship to their closest relative, 2; the 
sires’ average relationship with their 10 closest relatives, and 3; the sires’ average relationship 
with the animals in the reference population cohort. Summary statistics across sire groups were 
weighted by the number of progeny sired by the individual within the Trans-Tasman pedigree. 

Accuracy estimates. Breeding values for Angus Australia’s TransTasman Angus Cattle 
Evaluation (TACE) are estimated using BREEDPLAN software which applies ssGBLUP models 
as per Johnston et al. (2018), with the accuracy estimations for this study based on the 
BREEDPLAN methodology reported by Li et al. (2017). To test the influence of ASBP data on 
the accuracy of breeding values for sires represented in the TACE pedigree, a series of modified 
evaluations were conducted where the genetic evaluation was completed with subsets of the ASBP 
data excluded based on the TACE pedigree, genotypes and data available in August 2022. The 
analyses were 1; no ASBP data, 2; Cohort 1-3 data only, 3; Cohort 1-6 data only, 4; Cohort 1-9 
data only, and 5; All ASBP data. 

 
RESULTS AND DISCUSSION 

The relationship of the progeny in Cohort 1 with the sires which had progeny present in the 
TACE pedigree declined over time. The average relationship remained reasonably consistent 
between the cohort progeny and the industry sires (blue line, Figure 1), and this is a by-product of 
the effective population size and that the top 10 genetically influential ancestors explain 42% of 
the genetic diversity in the population (Clark et al. 2019). However, whilst the average 
relationship remains relatively constant, the relationship metrics focusing on the strength of the 
relationship with the closest relatives were shown to noticeably decline (Figure 1). This rate of 
decline, while not uniform, was relatively consistent across all the cohorts. This suggested that the 
evolution of the Trans-Tasman Angus population is largely constant as a result of the effective 
population size and limitations on sourcing outside genetics. The merit of the ASBP ultimately 
depends on its ability to produce accurate breeding values for hard to measure and economically 
important traits among future selection candidates. 

The importance of the ASBP reference population to the accuracy of selection candidate 
estimated breeding value (EBV) accuracy is largely governed by the baseline accuracy which, in 
turn, is driven by the size of the reference population and the effective population size (Clark et al. 
2012). It should be noted that within a ssGBLUP analysis the reference expands beyond the ASBP 
and includes all animals from the broader industry which have both phenotypes and genotypes. 
Consequently, for highly recorded traits like 400-day weight, the contribution of the ASBP data is 
minimal. For the sires used across the Angus breed in 2012, 2016 and 2020, the mean change in 
accuracy was less than 1% (Figure 2). In contrast, for carcase intramuscular fat the mean impact of 
the ASBP data for single trait accuracy of the sires from the same three years was an accuracy 
increase of 5.7%, 7.5% and 8.2% (Figure 2), respectively. These estimates are inclusive of the 
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contribution to EBV accuracy of correlated traits, which is a feature of the BREEDPLAN multi-
trait analysis. After accounting for this, the impact of the ASBP data to carcase intramuscular fat 
EBV accuracy was reduced for the three drops to +1.5%, +2.4% and +3.8%, respectively. The 
value of the ASBP data was most noticeable for net feed intake, where there is minimal recording 
outside of the reference, with the ASBP data leading to an average change in single trait accuracy 
(BREEDPLAN reported multi-trait analysis in brackets) of +8.7% (+2.0%), +10.3% (+3.2%) and 
+11.3% (+4.8%) for the 2012, 2016 and 2020 sires (Figure 2), respectively.

Figure 1. The average relatedness metrics, weighted by the sires progeny count within year, 
between ASBP cohort progeny and sires of calves born n years after the cohort mating: 
Cohort 1 (2011) = blue, Cohort 4 (2014) = red, Cohort 7 (2017) = green with other cohorts in 
grey   

Figure 2. Impact of including ASBP phenotypes from Cohorts 1-3 (purple), Cohorts 1-6 
(orange), Cohorts 1-9 (yellow) and All Cohorts (blue), compared to when no ASBP 
phenotypes (green) are available on the single trait accuracy of breeding values of the sires of 
the 2012, 2016 and 2020 progeny for 400-day weight, carcass Intramuscular Fat and Net 
Feed Intake – Feedlot   
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The impact on EBV accuracy of the decline in relatedness between ASBP cohorts and sires 
appearing in the TACE pedigree in later years is most clearly observed for net feed intake (Figure 
2). For industry sires used in 2012, the inclusion of ASBP data provided an extra 8.7% accuracy, 
however if the ASBP had concluded after either the 3rd, 6th or 9th cohort this gain would have only 
been +5.6%, +7.5% and +8.5%, respectively. As expected, the majority of the accuracy gain 
observed in the 2012 sires comes from the earlier cohorts with cohorts 1-3 accounting for 67% of 
the overall accuracy improvement. In comparison, for 2020 sires, cohorts 1-3 only provide 46% 
(+5.2%) of the overall accuracy improvement observed when including the ASBP data, with 94% 
of the gains in accuracy achieved from cohorts 1-9 data. This suggests that, for traits which Angus 
breeders aren’t able to readily measure on farm, the ASBP recording makes a valuable 
contribution and shows that investment in the reference needs to continue to reflect the diversity of 
genetics represented in the current selection candidates.  

CONCLUSIONS 
To maximise the contribution to EBV accuracy provided by reference population projects, this 

study demonstrates that relationships between reference animals should be low, but that they need 
to be sufficiently genetically diverse that their relationship to the broader population is high. As 
relatedness between ASBP cohorts and subsequently used industry sires declined, there was a 
corresponding fall in accuracy gains from the ASBP phenotypes. This shows that for traits which 
are lowly recorded in the broader Angus population, the ASBP remains highly valuable. It also 
clearly demonstrates that investment in reference populations needs to be ongoing to reflect the 
diversity of genetics represented within selection candidates. 
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SUMMARY 
Angus BREEDCHECK is a genomic based tool that predicts breed composition for 11 breeds 

with a focus on Angus content. In this study we compare the Angus BreedCHECK genomic breed 
composition (GBC) estimates to pedigree-based breed content estimates (PBC) for five animal 
classes (AC) recorded on the Angus Australia database. The AC populations being Herd Book 
Register (HBR), Angus Performance Register (APR), Angus Commercial Register (ACR), Angus 
HeiferSELECT (AHS) and the Multi Breed Register (MBR), including 143,879, 75,369, 6,379, 
25,710, and 2,780 animals, respectively. Additionally, comparisons were made within a subset of 
Angus cross Bos indicus (n=1,201) and Angus cross Hereford (n=365) cattle, as determined by PBC, 
from the MBR. Across the 254,117 animals in this study, there is close alignment in the mean and 
standard deviation of Angus content as derived by GBC and PBC, with a mean of 99.3% and 99.4% 
and standard deviation of 3.6 and 4.1, respectively. While 97.7% of the study animals fell within 
±10% in Angus content when comparing GBC to PBC. Within the AC populations, and across the 
sub-set of Angus cross Bos indicus and Angus cross Hereford cattle, close alignment was also 
observed in the comparative statistics. Using a large industry dataset, this study has validated the 
precision of Angus BreedCHECK to estimate beef cattle breed content, with an emphasis on Angus 
content.  

 
INTRODUCTION 

Understanding breed composition is important in many beef cattle breeding programs, such as 
those linked to beef supply chains with branded beef schemes or with structured crossbreeding 
programs. This information is also important for understanding the potential effectiveness of 
genomic breeding values that are based on breed specific reference populations, like those provided 
in the Angus HeiferSELECT product (Alexandre et al. 2022; Angus Australia 2023).  

Breed composition of beef cattle is historically assessed by documenting the breed of foundation 
sires and dams (usually pure-bred), which facilitates the calculation of breed composition in 
subsequent generations through simple mode of inheritance i.e. 50% of the breed from the sire and 
50% breed from the dam (Sölkner et al. 2010). More recently, genomic prediction of breed 
composition, based on a breed-based genomic reference population, has allowed for breed 
composition estimation where breed composition is unknown through documentation, particularly 
where no or limited pedigree is available (i.e., commercial animals or beef products). Importantly, 
current studies have shown that genomic prediction can offer precision to breed composition 
estimation in livestock (Sölkner et al. 2010; Gurman et al. 2017; Reverter et al. 2020: Ryan et al. 
2022). 

Angus BREEDCHECK is a genomic based tool that predicts breed composition for 11 breeds 
with a focus on Angus content. It was developed by Angus Australia in collaboration with the 
CSIRO, Australia’s national science agency. It is currently available via Angus HeiferSELECT 
which is a genomic selection tool to help inform the selection of Angus replacement females (of 
87.5% Angus content or greater) in a commercial beef breeding operation.  

The objective of this study is to compare the breed composition values from Angus 
BreedCHECK on a large industry dataset of genotyped Angus influenced animals, to their known 
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breed background. 
 

MATERIALS AND METHODS 
Data for the 254,117 animals in this study was accessed from the Angus Australia database. For 

each animal the data included genomic estimates of breed composition from Angus BreedCHECK 
(GBC), pedigree estimated breed composition (PBC) and the animal class (AC).  

The method used to estimate the GBC values (%) is described in detail by Reverter et al. (2020). 
In short, a linear regression model was used to estimate the GBC of individuals where the SNP 
genotypes are regressed on the allele frequencies from a reference population of 11 breeds. More 
specifically, this is based on a genomic profile for each animal containing 45,364 autosomal SNPs 
and a breed based genomic reference population including Angus (n=868), Brahman (n=330), 
Charolais (n=71), Hereford (n=111), Holstein (n=144), Limousin (n=53), Murray Grey (n=62), 
Santa Gertrudis (n=53), Shorthorn (n=88), Simmental (n=27) and Wagyu (n=43).  

The method used within the Angus Australia database to estimate the PBC values (%) involves 
breeders and Angus Australia staff documenting the breed of foundation sires and dams in the 
pedigree, followed by calculating breed composition in subsequent generations by summing 50% of 
the breed content inherited from the sire and dam. 

The AC categories extracted for this study are Herd Book Register (HBR), Angus Performance 
Register (APR), Angus Commercial Register (ACR), Angus HeiferSELECT (AHS) and Multi Breed 
Register (MBR). The ACs are applied within the Angus Australia database to primarily cater for 
service delivery flexibility, however they also broadly categorise the levels of expected Angus breed 
purity. For example, HBR animals, considered the highest purity of Angus, can only bred from HBR 
sires and dams. APR or ACR animals can be bred from foundation (or base) Angus animals, AHS 
are wholly commercially bred Angus, while MBR, as the name suggest, includes components of 
non-Angus breeds.  

To validate Angus BreedCHECK, this study compared the GBC values to the PBC values for 
the different AC populations. Additionally, a similar comparison was made in a subset of Angus 
cross Bos indicus cattle (n=1,201) and Angus cross Hereford cattle (n=365), as determined by PBC, 
recorded on the MBR.   

  
RESULTS AND DISCUSSION 

Across the 254,117 animals in this study, there is close alignment in the mean and standard 
deviation of Angus content as derived by GBC and PBC, with a mean of 99.3% and 99.4% and 
standard deviation of 3.6 and 4.1, respectively (Table 1). This also highlights the high Angus content 
represented in the overall study population. Additional to the summary statistics, the proportion of 
animals with an Angus content difference equal to or less than 10%, when comparing GBC to PBC 
estimates, were calculated. Accordingly, 97.7% of the study animals fell within ±10% when 
comparing Angus contents.  

Close alignment is also observed for mean and standard deviation values between GBC and PBC 
within the AC groups (Table 1). The largest difference being between the MBR GBC and PBC 
Angus content means of 84.2% and 79.8%, respectively, but with similar standard deviations. This 
may be explained by limitations in the current breed reference population underpinning the GBC 
estimates or, more likely, inaccurate PBC values stemming from incorrect foundation breed 
allocations for some animals in the MBR study group.     

When comparing the mean GBC and PBC values by AC (Table 1), the findings follow industry 
expectations of the HBR being the highest mean Angus content followed closely by the APR. The 
ACR and AHS have marginally lower means, and are in close alignment with one another, which is 
expected given the commercial nature of both animal classes (i.e., non-seedstock). Also as expected, 
the MBR, which is a multi-breed population, has the lowest mean Angus content and largest standard 
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deviation by both GBC and PBC estimation methods. This is further outlined in Table 2 showing 
99.9% of HBR animals are at least 87.5% Angus content by GBC estimation. Conversely, and as 
expected, a significantly lower 46.6% of MBR animals are categorised in the highest Angus content 
level.    

Table 1. Angus content statistics by animal class (AC) and estimation methods of genomic 
breed content (GBC) and pedigree breed content (PBC) 

ACa # Animals GBC (%) Mean GBC SD PBC (%) Mean PBC SD Difference 
(<±10%) 

HBR 143,879 99.8 1.2 99.9 1.0 99.8 % 

APR 75,369 99.5 2.5 99.1 5.5 96.4 % 

ACR 6,379 98.2 6.9 99.2 3.5 91.1 % 

AHSb 25,710 98.0 6.1 - - - 

MBR 2,780 84.2 14.3 79.8 14.9 81.2 % 

All 254,117 99.3 3.6 99.4 4.1 97.7 % 
aAC: Animal Class, HBR: Herd Book Register, APR: Angus Performance Register, ACR: Angus 
Commercial Register, AHS: Angus Heifer Select, MBR: Multi Breed Register. 
bPBC is not calculated on AHS animals. 

Table 2. Proportion of animals by animal class (AC) and Angus content levels from genomic 
breed content estimation (GBC) 

Angus Content Levels 

ACa ≥87.5% ≥75% ≥50% <50% 

HBR 99.9% 100.0% 100.0% 0.0% 

APR 99.1% 99.9% 100.0% 0.0% 

ACR 95.5% 98.5% 99.6% 0.4% 

AHS 94.8% 98.4% 99.8% 0.2% 

MBR 46.6% 75.4% 98.6% 1.4% 

All 98.5% 99.5% 100.0% 0.0% 
a See Table 1. 

There was also close alignment of mean and standard deviation values when comparing GBC to 
PBC estimates for Angus (Table 3), Bos indicus or Hereford (Table 4) content within the subset of 
MBR animals. For example, in the Angus cross Bos indicus group the Angus breed content mean 
by GBC and PBC was 78.0% and 77.1% respectively (Table 3). For the Bos indicus component 
(Table 4) in the same animals, the means were 22.9% and 21.4% respectively. Similar results were 
observed in the Angus cross Hereford population.   

Additionally, most animals (93%) had Angus breed content estimates that fell within the ±10% 
difference range (Table 3). A similar result was observed for the Bos indicus and Hereford content 
estimates (Table 4) with 90.2% and 99.7% respectively falling with the ±10% difference range. The 
correlations presented (Table 3 and 4) between the GBC and PBC estimates also support general 
alignment with the values being moderate to strong and positive in direction.  
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Table 3. Angus content statistics by estimation methods of genomic breed content (GBC) and 
pedigree breed content (PBC) for multi breed register (MBR) animals  

Breeda 
# 

Animals 
GBC (%) 

Mean 
GBC 
SD 

PBC (%) 
Mean 

PBC 
SD 

Difference 
(<±10%) Correlation 

AA*BI 1201 78.0 9.1 77.1 7.4 89.3% 0.69 

AA*HH 365 91.8 3.0 93.9 3.5 99.4% 0.66 

All 1566 81.2 10.0 81.0 9.8 93.0% 0.86 
aAA*BI: Angus Cross Bos indicus (Brahman or Santa Gertrudis), AA*HH: Angus Cross Hereford. 

Table 4. Bos Indicus or Hereford content statistics by estimation methods of genomic breed 
content (GBC) and pedigree breed content (PBC) for multi breed register (MBR) animals 

Breeda 
# 

Animals 
GBC (%) 

Mean 
GBC 
SD 

PBC (%) 
Mean 

PBC 
SD 

Difference 
(<±10%) Correlation 

AA*BI 1201 21.4 7.4 22.9 8.7 90.2% 0.72 

AA*HH 365 6.9 3.8 6.1 3.5 99.7% 0.63 
a See Table 3. 

CONCLUSIONS 
This study has validated the precision of Angus BreedCHECK to estimate beef cattle breed 

content, with a close alignment of the comparative statistics when comparing GBC to PBC estimates, 
as well as an alignment with industry expectations of the Angus content differences across the ACs 
from the Angus Australia database. Therefore, Angus BreedCHECK provides potential value as a 
tool for the estimation of breed content in Angus or Angus influenced breeding programs, 
particularly commercial herds, or within Angus beef supply chain initiatives. Angus BreedCHECK 
can also be used in the assessment of the effectiveness of the genomic breeding values provided 
from Angus HeiferSELECT.  
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SUMMARY 

Southern Multi-Breed (SMB) is a landmark five-year project, collecting high-quality phenotypes 
and genotypes on animals from six breeds, managed in multi-breed groups at five NSW Department 
of Primary Industries research herds. Data collected will enhance genetic evaluations and facilitate 
the development of a multi-breed genetic evaluation. The project design focussed on selecting 
foundation cows and sires to represent the breed’s populations. This paper aimed to quantify the 
linkage between the genetics represented in the SMB project and the breed populations. Within each 
breed, the average relationship coefficient of each animal to SMB foundation cows and sires and all 
animals in the breed was calculated and plotted to form a visual metric of the linkage. Regression 
slopes between 1.11 and 1.37 and correlations between 0.86 and 0.99 were calculated from the plots. 
The visual and quantitative metrics indicated that the genetics in SMB represent the breed 
populations. Therefore, the reference data collected as part of SMB will benefit the broader industry. 

 
INTRODUCTION 

The potential benefits of genomic selection are directly impacted by the size of the reference 
population, trait heritability, and effective population size (Goddard and Hayes 2009), relatedness 
amongst the reference animals, and relatedness to selection candidates (Pszczola et al. 2011). 
Therefore, when designing reference data projects, multiple design principles must be balanced to 
maximise the value of the collected data.  

Southern Multi-Breed (SMB) is a landmark five-year reference data project involving six beef 
cattle breeds. Calves are born and managed in mixed-breed groups across five NSW Department of 
Primary Industries (DPI) sites (Walmsley et al. 2021). Progeny is intensively performance recorded 
for BREEDPLAN traits and other traits of economic importance (Donoghue et al. 2001, Walmsley 
et al. 2023). The over-arching goal of SMB is to collect high-quality reference data - particularly for 
hard to measure traits - to enhance genetic evaluations and facilitate the development of a multi-
breed genetic evaluation. As such, the design of the SMB project is of critical importance, not just 
to ensure fair head-to-head across breed comparisons but also to ensure that the generated reference 
data genetically represents the breed populations. Moore et al. (2022) presented a metric to describe 
and compare the relatedness of reference populations to a whole breed. A key element of the SMB 
project design was the selection of foundation cows and sires to maximise relationships between 
SMB and the wider breed. This paper aims to assess if the choice of foundation cows and sires has 
been effective in ensuring that SMB data is genetically linked to the whole population within the 
respective breeds.  
 
MATERIALS AND METHODS 

Commencing in 2020, three cohorts of SMB progeny have now been born across five DPI 
 

* A joint venture of NSW Department of Primary Industries and University of New England 
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locations (Trangie Agricultural Research Centre, Trangie; Grafton Primary Industries Institute, 
Grafton; Tocal Agricultural Centre, Tocal; Glen Innes Agricultural Research and Advisory Station, 
Glen Innes; Elizabeth MacArthur Agricultural Institute (EMAI); Menangle) from six purebred 
breeds (Angus, Brahman, Charolais, Hereford, Shorthorn and Wagyu). In addition to the purebred 
matings, at Grafton, a small amount of cross-breeding involving Brahman reciprocal matings to 
Angus and Hereford also occurred. Walmsley et al. (2021; 2023) provide details about the SMB 
project design, and Walkom et al. (2021) outline the mating strategy within the project. At the 
commencement of SMB, foundation cows were purchased from industry seedstock herds. These 
were identified as herds that BREEDPLAN recorded and were influential in the breed (either using 
a wide range of sires or selling their genetics to other seedstock herds). Groups of cows were sourced 
from these herds. All cows were BREEDPLAN performance recorded with pedigree information 
and were selected to be representative of the national population (assessed via 400-day weight and 
reproduction EBVs), but especially if their sires were current influential sires (i.e. a large number of 
progeny). Angus foundation cows were also retained from the NSW DPI muscling (McKiernan and 
Robards 1997) and feed efficiency selection (Arthur 1997) herds. Female progeny are retained in 
the project, with foundation cows exiting the project as the number of project-born females 
increases. Project sires were also BREEDPLAN performance recorded with pedigree information. 
Natural mate sires were purchased from industry herds, and nominations were sought by the industry 
for artificial insemination sires. In both sire mating types, sires were selected to represent the breed, 
with an emphasis on using current or immerging influential sires. This involved studying the 
pedigrees to identify sire lines not already represented in the SMB foundation animals and 
undertaking MateSel (Kinghorn 2011) analysis to identify new and important genetics to include in 
the project. Several sires were also used that provide genetic links with other reference data projects 
(past and present, i.e. Repronomics, Beef CRC and existing within-breed reference data projects). 
Sires were used across sites and years, with new sires also purchased each mating. This study 
considered the cows and sires that produced the first two cohorts of calves, with Donoghue et al. 
(2021) providing details on the first two cohorts of calves produced.  

Moore et al. (2022) described a methodology to assess how related reference populations are to 
a wider population. This method was used to assess how the SMB foundation cows and sires are 
related to the breed population for five of the six breeds represented in the project. All known 
pedigree information was available for breeds A, B, C and E, but pedigree was only available for a 
subset of breed D. Of the 267 breed D foundation animals, 116 foundation cows and sires were 
present in the available pedigree subset, and these animals were considered in the current study. No 
pedigree was available for the breed not included in this study. A whole breed numerator relationship 
matrix was constructed for each breed in the study based on the breed’s recorded pedigree. The 
average relationship coefficient for each animal in the breed was calculated with 1) SMB foundation 
cows and sires and 2) all animals within the breed. A visual metric (Figure 1) was produced for each 
breed, where the average relatedness to SMB animals (y-axis) was plotted against the average 
relatedness to all animals (x-axis) in the breed. The regression slope and Pearson correlation 
coefficient were also calculated for each plot to quantify the relationships between SMB and the 
whole breed population. 

 
RESULTS AND DISCUSSION 

Table 1 summarises by breed the 1,149 foundation cows and 277 sires. Cows were from similar 
age structures and sourced from 5 to 13 herds per breed. The number of foundation cows per breed 
varied depending on the number of sites the breeds were present at. Breed C had the largest number 
of cows (n=370) due to being present at four of the sites. Breeds B, D and E were located at two or 
three project sites, while breed A was located at only one site. The number of sires per breed 
depended on the number of cows and sites the breeds were present at, and mating was from natural 
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mating or artificial insemination. 
Figure 1 describes how animals in the breed were related to SMB foundation cows and sires and 

the breed population. The average relatedness to all animals in the breed ranged between 0.0 and 
0.05. The exception was breed E, where the average relatedness to all animals was much higher (0.0 
to 0.2), reflecting breed E’s reduced diversity due to being founded from a limited number of 
animals. These plots demonstrate that the genetics represented in SMB are well linked to the breed 
population for all five breeds considered in this study. The shapes of the plots indicate that the 
animals with higher average relationship coefficients to all animals in the breed also demonstrated 
higher average relationship coefficients to SMB animals. Data points in the plots generally followed 
the 1:1 line marked, although they tended to be slightly above the line. The 1:1 line is the expected 
relationship between both axes when the reference population is the same as the whole population 
(Moore et al. 2022).  

Table 1. A summary of the SMB project foundation cows and sires 

Breed A B C D E 
Number of site locations 1 2 4 2 3 
Number of foundation cows 166 182 370 219 212 
Number of herds  7 5 13 10 9 
Year of birth range 2008-18 2009-19 2009-18 2010-17 2010-18 
Number of project sires 41 36 89 48 63 

Figure 1. The average relatedness to all animals (x-axis) compared with animals in the SMB 
reference population (y-axis), regression coefficient (b) and correlation (r) for all animals born 
after 2010 (n) in five of the breeds represented in SMB 

Regression slopes were estimated to be 1.11, 1.27, 1.13, 1.36 and 1.16, respectively, for breeds 
A, B, C, D and E. Moore et al. (2022) reported that a regression slope close to 1 was considered 
optimum. For each breed, the regression slope was slightly greater than 1. A regression slope above 
1 indicates that the reference population (in this case, SMB founder cows and sires) contains a higher 
proportion of animals with high relatedness to all animals. The above 1 regression coefficients found 
align with the strategy to target high-impact and diverse genetics when sourcing foundation cows 
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and sires and suggest that when selecting future project sires, more emphasis can be placed on 
increasing diversity as high-impact animals are currently represented. These regression slope values 
were comparable to those found for the live weight reference populations assessed by Moore et al. 
(2022). Live weight is generally one of the better-recorded traits, but only between 30 and 74% of 
the breed population was recorded for live weight. Selection strategies for SMB cows and sires 
required that animals were BREEDPLAN recorded. Similar regression slopes for the SMB 
foundation animals and the breed’s live weight references appear sensible. Pearson correlations of 
0.88, 0.86, 0.89, 0.95 and 0.99 were estimated for breeds A, B, C, D and E, respectively. These 
correlations indicate a very strong relationship between the relatedness of SMB and the breed 
population. This correlation was especially high for breeds D and E, and this could suggest that 
foundation animals contain a more even representation of different relatedness levels to the whole 
breed. Lower correlations can be seen in the plots (particularly for breeds A and B) where animals 
that were the highest related to all animals showed a narrower range in relatedness values to SMB, 
i.e. the width of the cluster was smaller for higher related animals, and this aligns with the strategy
of targeting cows with influential sires, and current or emerging influential sires themselves.

CONCLUSIONS 
SMB is a landmark project collecting reference data to enable across-breed comparisons and 

provide valuable reference data for within-breed genomic evaluations. As part of the project design, 
foundation cows and sires were identified to be representative of the breed. This study confirmed 
that these foundation cows and sires used in SMB are related to the breed population. Therefore, the 
reference data collected will benefit the development of multi-breed genetic evaluations and within-
breed genomic selection programs.  
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SUMMARY 
The flock profile product by Sheep Genetics allows commercial Merino breeders to benchmark 

their flock’s genetic merit based on the genotypes of 20 animals. Sheep breeders collect DNA 
samples from their sheep using Tissue Sampling Units, which are then sent to the DNA laboratory 
and converted into genotypes for the 20 animals, which are used to calculate individual animal 
breeding values. The final reported value provided to the breeder is the mean of the estimated 
ASBVs for the 20 animals. This study documents an in-silico investigation to determine if the 
individual animal genotypes can be combined into an allele frequency, which is used instead to 
estimate the flock profile breeding value. The mean correlation across traits was 0.99999, while the 
mean regression slope was 0.9999 These results show that it is possible to calculate the flock profile 
breeding values based on the allele frequencies. Further research is now required to research and 
develop procedures on a commercial scale and examine the correlation between a genotype from a 
pooled sample and the allele frequencies calculated from individual genotypes at this scale.  

 
INTRODUCTION 

The flock profile test is a genomic test offered to Australian Merino sheep breeders, which 
provides a benchmark of their flock’s genetic merit compared to the MERINOSELECT analysis  
(Swan et al. 2018). This product requires that DNA samples are collected using Tissue Sampling 
Units (TSU) on 20 randomly selected sheep from the most recent drop, which are then sent to a 
genotyping laboratory and analysed as 20 individual animals. The resulting genotypes are then used 
to calculate Australian Sheep Breeding Values (ASBVs) for each animal based on the reference 
population of genotyped and phenotyped animals from the MERINOSELECT single-step analysis 
(Swan et al. 2018), assuming unknown pedigree. The ASBVs for the individual animals are then 
averaged to estimate the flock profile. This process results in ASBVs that are directly comparable 
to ASBVs reported in the full MERINOSELECT single-step analysis and validated by leaving the 
data of one flock out of the analysis at a time and estimating breeding values from the remaining 
data (Swan et al. 2018). This service has been used since its inception in 2016 for over 600 
commercial flocks.  

Currently, the cost of a flock profile includes the cost of genotyping 20 animals. One option for 
reducing the cost of this product and increasing its adoption is to pool the DNA from the 20 animals. 
The pooled sample can then be processed by the genotyping laboratory to obtain the dosage/allele 
frequency based on these 20 animals. For this to be a viable option, the ASBV estimated from a 
pooled sample needs to be equivalent to the ASBV calculated from the mean of the 20 animals 
calculated separately. This study examines if the mean of the 20 animal’s ASBVs as is currently 
done to calculate a flock profile is sufficiently like the ASBV calculated from the mean of the 
individual genotypes (allele frequency) from the 20 animals, which would be available from a single 
genotype from a pooled DNA sample in practice.     

 
MATERIALS AND METHODS 

In this study, previous flock profile tests (n flocks = 673, n animals = 13,017) were used, 
extracting the genotypes for each individual animal from the MERINOSELECT analysis. These 
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genotypes have previously been cleaned (individual call rate 90+%, heterozygosity <=50%) and 
imputed to fill in sporadic missing SNP calls using all available genotypes for the chip on which the 
animal was genotyped.  The genotypes were then imputed to the 4 other separate SNP chips that 
have significant reference populations (n>10000 Australian and New Zealand genotypes for each 
reference set).  The separate imputation results were then combined into a set of 60,410 SNP 
genotypes, starting from the original genotype and adding the SNPs from the other chips that were 
not already present. All imputation was performed using Beagle (Browning et al. 2018; 2021). 
Genotypes for the animals included in the MERINOSELECT analysis were then used to calculate 
SNP effects based on their ASBVs. The reference population for the traits analysed ranged from 
11,192 to 143,356 genotyped and phenotyped animals with a mean of 74,338 animals. Genotypes 
for each flock profile were then used to calculate the mean of the genotypes for each flock profile, 
i.e. twice the allele frequency for each flock profile, and the resulting genotype values as double 
precision floating point values between 0 and 2 were used to calculate an ASBV based on Swan et 
al. (2018). These new pooled results were then compared to the traditional method as part of the 
current MERINOSELECT analysis. Analyses were performed for all traits which are reported for 
flock profile tests and traits used in current selection indexes, (body weight at weaning, post-
weaning, yearling and adult age stages; greasy fleece weight at adult and yearling, clean fleece 
weight at yearling; fibre diameter, its coefficient of variation, staple length and curvature at yearling 
and adult; carcase fat and eye muscle depth at post-weaning and yearling; early breed cover and 
breech wrinkle and late body wrinkle. Metrics examined between the two sets of ASBVs included 
Pearson correlations, dispersions calculated as 𝑐𝑐𝑐𝑐𝑐𝑐(𝒖𝒖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝒖𝒖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝)/𝑐𝑐𝑣𝑣𝑣𝑣(𝒖𝒖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝) and the scaled 
bias as 

𝒖𝒖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�����������−𝒖𝒖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐�������������

𝜎𝜎𝑔𝑔
. Data preparation, calculation of EBVs and statistical analysis of the results 

was performed using Python 3.10 and the Pandas library 1.5.0. 
 

RESULTS AND DISCUSSION 
The mean correlation across traits between the current flock profile ASBVs and those obtained 

from allele frequencies was 0.999985±6.17 × 10−5, with these correlations presented in Figure 1. 
The outlier trait was post-weaning faecal egg count (PWEC), which had a correlation of 0.9997. The 
mean dispersion was 0.9999±0.003. For most traits, there was a slight increase in the dispersion of 
the ASBVs estimated, with the dispersions presented in Figure 2. PWEC was again the outlier with 
a lower variation in the ASBVs estimated from the allele frequency. Finally, the mean scaled bias 
was -0.0180±0.108, though this deviation from zero was largely driven by the PWEC bias value (-
0.67). The scaled biases are presented in Figure 3. These results show little difference between the 
ASBVs estimated from the mean of the ASBVs from individual animals and those estimated from 
the allele frequencies. This is not surprising as the calculation of breeding values is a linear function 
of the SNP effects. The reason for the slightly reduced precision in PWEC is likely, in part, due to 
the non-normality of the phenotypic distribution of PWEC data. While the transformation of the 
data used, largely addresses this problem, the slightly lower precision is unlikely to have a realised 
effect on selection decisions on farm. 
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Figure 1. Correlations between ASBVs obtained from allele frequencies and from the mean of 
the individual animal genotypes for all flock profile traits 

Figure 2. Dispersions between ASBVs obtained from allele frequencies and from the mean of 
the individual animal genotypes for all flock profile traits 

Figure 3. Biases scaled by the genetic standard deviation between ASBVs obtained from allele 
frequencies and from the mean of the individual animal genotypes for all flock profile traits 

Various potential issues arise in processing the DNA for a pooled sample. One issue is having 
all individuals being represented equally within the pooled sample. High volume genotyping labs 
don’t normalize the concentration of DNA when processing individuals (Neogen Australia, pers 
comms). The additional cost of normalization of DNA concentrations before pooling would mean 
that a direct 95% reduction in price of the flock profile would not be feasible. We expect that the 
cost reduction, would still be at a point where it would be beneficial, as other uses for DNA pooling 
have demonstrated (Bell et al. 2017; Aldridge et al. 2022). This could also allow for a larger 
proportion of the flock to be included, rather than the current 20 individuals, which would potentially 
be a better representation of that flock. 

While in this paper we have used the mean of the genotype, extracting the frequency from the 
data generated by the genotyping platform may not be as straight forward. Janicki et al. (2008) 
present multiple methods for extracting or calculating the SNP allele frequencies. One method 
indicates that the Illumina Genome Studio Genotyping Module (Illumina Inc) automatically 
produces the B allele frequency in its reporting which was demonstrated to be acceptable as the 
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frequency. Alternative platforms (e.g. Affymetrix or genotyping by sequence) would need to explore 
alternative methods. 

Imputation of the pooled genotype is another issue. The current version of the Beagle software 
requires genotypes as input, coded 0,1,2. Version 4 of Beagle is capable of accepting a genomic 
likelihood, which may be usable for imputing the pooled genotype, and providing a genomic 
probability (Browning et al. 2016). Wen et al. (2010) have also presented algorithms specifically 
for pooled genotype data. 

This paper demonstrates that flock profile ASBVs may be able to be calculated from a pooled 
genotype, however validation of the pooled sample methods would require individual and pooled 
genotyping results. The most cost-effective way of achieving this would be to resample existing 
flock profile animals using the pooling process, or to attempt this new method on breeder submitted 
flock profile tests alongside the current individual animal genotyping process. 

CONCLUSION 
This research suggests that collapsing genotypes down to the mean of the genotypes has little 

impact on the ASBV calculated for a flock profile. Further research is needed to determine if the 
pooling of DNA samples before genotype estimation can be used to reduce the costs of calculating 
a flock profile, including challenges of application in a commercial environment.  
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SUMMARY 
The Correlation Scan (CS) identifies local genomic regions that disproportionately contribute to 

the genetic correlation between traits using SNP effects generated from GBLUP. BayesR, has been 
shown to precisely localise SNP effects, and the BayesR SNP effects size are often less shrunk than 
GBLUP. Therefore, we aimed to compare the SNP effects generated from GBLUP and BayesR 
models on the resulting localised genomic regions using the CS method. Single-trait and bivariate 
models were used to analyse fertility data from Brahman cows (age at detection of first corpus 
luteum; 996 animals) and bulls (insulin-like growth factor measured from blood; 1022 animals) 
genotyped with the Illumina BovineHD (770K) SNP chip. We observed that the local correlation 
(r) estimates were larger with GBLUP than BayesR. There were considerable differences in the r 
estimates on chromosome 5, 14, and X. Further analysis into the distribution of the SNP effects of 
a QTL region on chromosome 14 highlights the effect that each method had on CS results. GBLUP 
spread the effect across neighbouring SNPs, while BayesR localised the effect to a small number of 
SNPs, reducing the r estimates. The differences between GBLUP and BayesR were reduced with 
BayesR bivariate model. As BayesR bivariate model tended to select common SNPs as having non-
zero effects on both traits compared to BayesR single-trait, the patterns of the r estimates were larger 
in the bivariate model. Other metrics from the BayesR bivariate model identified similar regions as 
the GBLUP in CS results. Our results showed that BayesR SNP effects can be used in our CS, but 
the bivariate model is recommended. 

 
INTRODUCTION 

Estimated genetic correlations between traits are useful parameters for developing and 
optimising animal breeding programs (Petrini et al. 2016). However, little is known about the local 
genomic regions that disproportionately contribute to these overall genetic correlations. With the 
widespread use of genomic data, the knowledge of local regions affecting trait correlations could 
allow breeders to make a more targeted genomic selection. The Correlation Scan (CS) identifies 
local genomic regions that contribute to estimates of the genetic correlations between traits (Olasege 
et al. 2022). The CS framework was developed using SNP effects generated from GBLUP, but it is 
possible to extend it for Bayesian approaches. BayesR has been shown to precisely localise SNP 
effects and the effect sizes are less shrunk than GBLUP (Kemper et al. 2015). Therefore, we used 
BayesR (single and bivariate models) to generate the SNP effects for the CS and compared the 
observed results with those obtained from GBLUP.  
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MATERIALS AND METHODS 
The two traits used for this study were age at detection of first corpus luteum in cow (AGECL, 

n=980) and blood concentration of insulin-like growth hormone measured in bulls (IGF1b, n=964) 
from a Brahman population. A detailed description of the traits is provided by Olasege et al. (2021). 
The estimated genome-wide genetic correlation between these traits was -0.65 (Olasege et al. 2021). 

SNP effects for the CS were calculated using single-trait and bivariate GBLUP (Olasege et al. 
2022) and BayesR (Breen et al. 2022) models, with BovineHD 770K SNP chip. The posterior 
inclusion probability (PIP) and Q2 probability (the probability that the SNPs are associated with 
either of the traits) were also obtained from bivariate BayesR. Then local correlations (r) were 
estimated using the SNP effects using each model. The method to estimate r (correlation of 500 
SNP effects in sliding windows between the two traits) has been previously detailed by Olasege et 
al. (2022).  
 
RESULTS AND DISCUSSION 

Single- and bivariate r estimates for the BayesR model are presented in Figure 1. The GBLUP 
single-trait result has been published (Olasege et al. 2022). The bivariate result for the GBLUP 
model looks identical to the single trait (result not shown). GBLUP yielded larger r estimates than 
BayesR. While both models identified similar windows, there were considerable differences in the 
r estimates on chromosome 5, 14, and X. For example, a QTL region including PLAG1 (Fortes et 
al. 2012; Hawken et al. 2012) on chromosome 14 was not identified by the BayesR single-trait 
model. However, with BayesR bivariate model, this region was signalled.   
 
A 

 
B 

 
Figure 1. Genome-wide plots of the local correlation (r) estimates for age at first corpus luteum 
and blood concentration of insulin growth hormone for BayesR model using SNP effects from 
single-trait (A) and bivariate model (B) 
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By investigating the 100 SNP effects surrounding the PLAG1 region between GBLUP (single-
trait) and BayesR (single- and bivariate model), we found that GBLUP (Figure 2A; r = 0.96) spread 
the effect across neighbouring SNPs, while BayesR SNP effects were localised to a small number 
of SNPs. BayesR bivariate (Figure 2C; r = 0.76) identified similar SNPs for each trait as having 
non-zero effects whereas BayesR single trait (Figure 2B; r =0.23) often picked different sets of 
SNPs. Leveraging on the PIP and Q2 probability from BayesR bivariate model, the regions identified 
as the most significant from GBLUP CS were also signalled using Q2*PIP, showing that these two 
metrics could complement the CS method (Figure 3). 

A 

 
B 

 

C 

 
Figure 2. The regression of the distribution of the 100 SNP effects within the boundary of the 
PLAG1 gene between age at first corpus luteum and (AGECL) and blood concentration of 
insulin growth hormone (IGF1b) using GBLUP single-trait (A), BayesR single-trait (B), and 
BayesR bivariate Model (C) 
 
CONCLUSIONS 

The differences in model assumptions led to differences in local correlations estimated using 
GBLUP and BayesR. GBLUP spreads the effect across neighbouring SNPs, whereas BayesR 
localised the effect to a small number of SNPs. With bivariate BayesR, SNP effects tend to be 
allocated to common SNPs across the traits, while BayesR single trait may select different SNPs for 
each trait, resulting in reduced r estimates. Our results showed that BayesR SNP effects can be used 
for the CS, but the bivariate model is recommended. Q2 and PIP from BayesR bivariate model could 
complement the CS method for insights into important QTLs. 
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A 

B 

Figure 3. The posterior inclusion probability (PIP) weighted by the Q2 probability for age at 
detection of first corpus luteum (A) and blood concentration of insulin growth hormone (B) 
from BayesR bivariate model 
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SUMMARY 
This study used data from the Sheep CRC Information Nucleus Flock (INF), a Merino Lifetime 

Productivity (MLP) flock, and a ram breeding flock (Connemara) to evaluate the prediction of 
breeding values for breech strike between and within datasets. Cross-validation was used to 
evaluate the accuracy, predictability and dispersion of estimated breeding values. Validation 
between datasets had low predictability due to low linkage (pedigree-based) across flocks, but 
validation within datasets was encouraging. Considering the poor linkage between the three 
datasets and the low incidence of breech strike across flocks, the industry needs to continue 
investing in building and maintaining suitable sheep reference populations with a wide range of 
traits, including flystrike observations, to develop accurate predictions required to underpin direct 
and indirect selection. In addition, quantifying the value of genomic information to improve the 
accuracy of predictions will be the subject of ongoing research.  

INTRODUCTION 
Flystrike is estimated to be the fifth highest cost to the Australian sheep industry ($170 million 

per year, Lane et al. 2015), with breech strike identified as the most common type. Resistance to 
flystrike is a priority research area for Australian Wool Innovation (AWI). To make genetic 
progress in flystrike resistance, accurate and standardised data collection of phenotypes for 
flystrike, probably combined with genotyping is the first step. Establishing a well-designed sheep 
reference population is a crucial step (van der Werf et al. 2010) for developing Australian sheep 
breeding values (ASBVs; Brown et al. 2010), especially considering the different incidence rates 
of flystrike in various environments (Bird-Gardiner et al. 2013; Greeff et al. 2014; Smith et al. 
2009). Therefore, this study used data from the Sheep CRC Information Nucleus Flock (INF), one 
of the Merino Lifetime Productivity (MLP) flocks, and a ram breeding flock (Connemara) to 
estimate the accuracy, predictability and dispersion of pedigree-based breeding values within and 
across datasets.  

MATERIALS AND METHODS 
Data. A phenotype for breech strike was defined as a binary trait with 0/1 indicating 

“struck”/“not struck” within a defined shearing period (described in detail by Dehnavi et al. 2023). 
Three datasets including animals phenotyped for breech strike (struck or non-struck) were used for 
this study. The first dataset was from the Sheep CRC Information Nucleus Flock (INF), including 
1,335 Merino lambs born between 2008 and 2011, recorded across six research stations (Trangie, 
NSW; Cowra, NSW; Rutherglen, VIC; Hamilton, VIC; Struan, SA and Turretfield, SA). A second 
dataset with 2,115 animals from 28 sires from the New England sire evaluation site hosting a 
Merino Lifetime Productivity (MLP) flock at the CSIRO “Chiswick” research station at Uralla, 

* a joint venture of NSW Department of Primary Industries and University of New England
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NSW. The MLP animals were born in 2017 and 2018. The last dataset was 1,941 lambs born 
between 2017 and 2021 in the “Connemara” Merino ram breeder flock, which were the progeny of 
31 sires. Routine screening for flystrike is done primarily from birth to crutching time (6-7 
months) for the Connemara flock but continued for a longer period in the other flocks. For this 
study, all animals were assessed and considered for flystrike up to yearling age. Pedigree data for 
animals with phenotypes were extracted from the Sheep Genetics MERINOSELECT database. 

Cross-validation analyses. Breeding values (EBVs) were estimated using a binomial model 
with a probit link function in ASReml (Gilmour et al. 2015). Models included contemporary 
groups (CGs) and the interaction of birth type and rearing type as significant fixed effects, and the 
direct animal genetic effect was considered a random effect (Dehnavi et al. 2023). To estimate the 
differences in the accuracy of predictions, an internal cross-validation procedure within each 
dataset and external cross-validation between datasets were tested as described by Legarra and 
Reverter (2018). The MLP and Connemara (CON) datasets were separated into four cross-
validation groups, and INF data were grouped into three groups of approximately the same size. 
All animals were randomly assigned to subgroups based on their CGs (Table 1).  

Table 1. The number of animals (N), sires (Sire), sires per contemporary group (Sire/CG), 
average incidence (Mean) and standard deviation (SD) for breech strike (0/1) for subgroups 
used in the cross-validation analysis 

Group N Sire Sire/CG Mean SD 
INF dataset 
INF1 473 66 15.67 0.19 0.40 
INF2 383 80 13.89 0.07 0.26 
INF3 479 109 16.10 0.13 0.34 
MLP dataset 
MLP1 579 28 11.91 0.05 0.21 
MLP2 459 28 12.20 0.05 0.23 
MLP3 692 28 11.09 0.05 0.22 
MLP4 385 28 10.55 0.09 0.28 
Connemara dataset 
CON1 368 23 6.25 0.24 0.43 
CON2 562 20 6.75 0.21 0.41 
CON3 511 28 7.50 0.25 0.43 
CON4 500 21 7.67 0.16 0.37 

Prior to generating EBVs, variance components were computed separately within each dataset, 
and in the combined dataset. These components were then used for the best linear unbiased 
prediction (BLUP) analysis and calculation of accuracy. Breeding values were estimated in the full 
dataset using pedigree and phenotype information for all animals. Following the analysis of the 
full dataset, six validation scenarios were investigated (Table 2). First, EBVs were calculated for 
each internal validation group (Table 1) after their phenotypes were removed, using data from the 
other groups of that dataset as a training population (INF – INF analysis, replicated three times; 
MLP – MLP and CON – CON analyses, replicated four times). Second, the prediction of each 
dataset was carried out using two other grouped datasets as a training population (INF+MLP – 
CON analysis and INF+CON – MLP analysis, each replicated four times; MLP+CON – INF 
analysis, replicated three times).  

For each scenario, validation metrics were calculated and averaged across replicates. Accuracy 
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and dispersion metrics were computed using the LR method (Legarra and Reverter 2018). The 
accuracy (LRacc) was calculated as the covariance between EBVs from the full and part analysis 
corrected for kinship matrix and genetic variance. The dispersion (LRslop) was calculated as 
regression slopes between the EBVs from each of the analyses (partial) with EBVs from the full 
analysis (whole) in the validation set. The LRslop parameter is expected to have a value close to one 
if there is no over or under-dispersion. Pearson correlation between partial and whole EBVs was 
also considered as an indicator of the predictability of EBVs.  

RESULTS AND DISCUSSION 
Validation results followed similar patterns for two of the three different internal validation 

scenarios (Table 2). For the CON – CON and MLP – MLP scenarios, correlations between EBVs 
of each analysis and EBVs of full analysis in the validation set were 0.89 and 0.83, respectively 
and for the INF – INF scenario the correlation was 0.53. The LRacc was low ranging from 0.14 for 
INF – INF to 0.37 for MLP – MLP internal scenarios. The LRslop for all internal validation 
scenarios was more than one. However, validation within the INF and MLP datasets was closer to 
one (1.06 and 1.05, respectively). CON and MLP could not predict breech strike in the INF dataset 
accurately. This scenario had a low correlation (0.35), very low accuracy (0.08) and a high LRslop 
(1.21). INF alone could not predict animals externally (results not shown in Table 2). INF with 
CON predicted MLP (INF+CON – MLP scenario) with a correlation of 0.51, accuracy of 0.13 and 
dispersion of 0.83 compared to the prediction of CON using INF and MLP (INF+MLP – CON 
scenario) with a correlation, accuracy and dispersion of 0.16, 0.06 and 0.59, respectively (Table 2).  

Table 2. The number of records (NTrain and NValid), the percentage of progeny in the training 
group having common sires with the validation group (FProg), genetic variance (σ2g), Pearson 
correlation, linear regression coefficient (LRslop) and accuracy (LRacc) for each validation 
scenario (training – validation) averaged across replicates 

Scenario NTrain NValid FProg σ2
g Correlation1 LRacc

1 LRslop
1 

INF – INF 890 445 65.76 0.12 0.53 (0.09) 0.14 (0.01) 1.06 (0.14) 
CON – CON 1456 485 71.40 0.09 0.89 (0.04) 0.37 (0.03) 1.12 (0.06) 
MLP – MLP 1586 529 100 0.09 0.83 (0.02) 0.24 (0.01) 1.05 (0.02) 
MLP+CON – INF 4056 445 1.25 0.10 0.35 (0.07) 0.08 (0.03) 1.21 (0.35) 
INF+MLP – CON 3450 485 4.45 0.10 0.16 (0.12) 0.06 (0.03) 0.59 (0.05) 
INF+CON – MLP 3276 529 4.49 0.10 0.51 (0.10) 0.13 (0.02) 0.83 (0.11) 

1 Standard deviation for evaluation metrics is presented within parenthesis. 

The internal-validation scenarios for MLP and CON resulted in higher prediction accuracy 
compared to the INF dataset. This may be because the INF dataset consists of different flocks 
subjected to different fly control regimes across a range of environments with a large degree of 
between-strain genetic variances (Swan et al. 2016), whereas the other two scenarios were 
performed within one flock (Connemara and New England sites), and in the case of CON, without 
pre-emptive fly control. However, the genetic variance of breech strike was low for all datasets 
with slightly more variation for INF (Table 2). Additionally, INF had a lower percentage of link 
progeny from common sires between training and validation data (66% for INF compared to 71% 
and 100% for CON and MLP, respectively; Table 2). 

The accuracy of genomic predictions (Habier et al. 2010) and parameter estimation (van der 
Werf et al. 2010) can benefit from larger reference populations. Accurate and consistent data 
recording in seed stock flocks can contribute to establishing a reference population for the industry 
(Alexandri et al. 2022). In this study, there were low levels of linkage which contributed to low 
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correlations and accuracy when predicting breeding values between datasets. 
Overall, the predictability of breeding values for validation animals was lower between 

datasets than within datasets. This shows the necessity of strategic data collection, especially from 
flocks that are well-linked externally to be able to predict animals across flocks with different 
incidence rates accurately. It is important to note that the effectiveness of data also depends on the 
quality of the trait measured, its incidence rate and diversity within and between flocks as well as 
the influence of environmental effects recorded on the flock. Genomic information can fill the 
gaps in the pedigree-based relationship matrix and this is likely to lead to better genetic 
connections between data sets. Therefore, investigating the impact of genomic versus pedigree 
information on predictions between datasets will be a focus of ongoing research. 

CONCLUSIONS 
This study demonstrated that flystrike was predictable within each of the three datasets used 

for this study, but predictions between datasets were not feasible due to the low genetic linkage 
established through pedigree alone. In order to build a reference population for predicting flystrike 
it is critical to establish well-linked flocks across environments. The ideal flock has accurate and 
standardised data collection including phenotypes for different flystrike types (breech and body 
strike), along with phenotypes for production and indicator traits and genotypes for a large number 
of animals.  
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M.L. Wolcott, D.J. Johnston, M.G. Jeyaruban and C.J. Girard

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia. 

ABSTRACT 
This study presents a new method to describe body composition in lactating cows which is under 

examination as the basis for a new BREEDPLAN EBV. A phenotypic prediction model was applied 
to generate predicted cow body composition (CBC), fitting body condition score in 1252 lactating 
Brahman females at their second mating as the dependent variable, with cow liveweight weight 
(WT), hip height (HH), scanned P8 fat depth (P8) and eye muscle area (EMA), as predictors, along 
with significant fixed effects. All main effects were significant in the final model as were the effects 
of P8*P8 and LWT*EMA. The final model included these terms, along with significant fixed 
effects, and had an r2 of 0.82. CBC was calculated applying coefficients generated from the final 
model, when fitted with animal as random to account for genetic effects. Heritabilities for objective 
cow body composition traits ranged from 0.43 to 0.75 and CBC had a heritability of 0.52. This was 
substantially higher than the heritability estimated for cow body condition score submitted to 
BREEDPLAN for lactating Brahman cows at weaning of their calves (0.16). CBC presents a new 
opportunity to include a trait in the BREEDPLAN evaluation to describe the genetic difference in 
body composition for breeding females, and an indirect means for selection to improve cow survival. 

INTRODUCTION 
Australia’s beef producing environments are characterised by seasonal feed quality and quantity, 

which can see females enter the mating season in sufficiently low body condition to impact 
reproductive performance and, in extreme situations, survival. Fordyce et al. (1990), in a rare study 
of actual cow survival under extreme drought conditions in northern Australia, showed a strong 
phenotypic relationship of lower cow body condition score at the start of supplementary feeding 
with lower chance of survival (P < 0.05) to the end of the study. Results from the Beef CRC (Wolcott 
et al. 2014) showed that cow body condition score assessed by experienced technicians was heritable 
in Brahman females at first calving, and at the start of their second annual mating as first lactation 
cows, 3.4 months later (h2 = 0.27 and 0.48 respectively). That study also showed that body condition 
across the lifetime of a cow was at its lowest at the start of mating 2, with first-lactation cows  losing 
an average of 52kg liveweight, 14cm2 scanned eye muscle area, 5mm scanned P8 fat depth while 
gaining 0.6cm hip height from pre-calving measurements to the start of their second annual mating. 
The inclusion of cow body condition in the BREEDPLAN evaluation has been a topic of research 
for some time, and early results (Johnston et al. 1996) showed the trait was moderately heritable (h2 
= 0.14 to 0.21) when assessed by breeders scoring lactating Angus and Hereford females recorded 
at the weaning of their calves. As a consequence, breeders submitting mature cow weight records, 
at the weaning of their calves, for BREEDPLAN analysis have been encouraged to collect and 
submit body condition score (evaluated on a five point, 1 – 5 scale) at the same time. The study also 
concluded that including objective cow fat depth may be a better means of describing cow body 
composition than condition score for genetic evaluation. More recently, Granleese and Clarke 
(2019) evaluated body condition scores submitted by Angus breeders at the weaning of their calves, 
and reported a very similar heritability (h2 = 0.16), and concluded that adequate genetic variation 
existed for the trait to be improved by selection in that breed. 

* A joint venture of NSW Department of Primary Industries and University of New England
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This study aimed to develop a new means of describing cow body composition based on 
objective measurements collected in the reference population for Australian beef breeders, and to 
contrast the genetic parameters for this new trait with those for body condition score assessed by 
breeders, in lactating females, at the weaning of their calves.  

MATERIAL AND METHODS 
Reference population cow management and body composition traits. The animals evaluated 

for this component of the study were from the Beef CRC’s Northern Breeding Project, and the 
subsequent RepronomicsTM project (n = 535 and 717 respectively) and comprised lactating Brahman 
females, as they entered their second annual mating. Breeding and management of Beef CRC 
females up to their first mating was described by Barwick et al. (2009), and Johnston et al. (2014) 
described cow management and traits recorded from their second annual mating, while Johnston et 
al. (2017) described management and recording protocols for RepronomicsTM cows. In both 
projects, females were first mated as two year olds, at an average age of 25 months.  

At the start of the second annual mating period (at an average of 37 month of age) objective body 
composition measurements of liveweight (LWT) hip height (HH), scanned P8 fat depth (P8) and 
eye muscle area (EMA); along with a subjective body condition score (BCS on a 15 point, 1- to 5+ 
scale) were recorded for all females (Wolcott et al. 2014). Models for cow body composition traits 
included fixed effects which described cohort (year and location of birth), property of origin, month 
of birth with the age (in months) and sex of the calf at foot at the time of recording, and all first order 
interactions. Final models for each trait were determined by sequentially removing non-significant 
terms (P> 0.05) terms. Variance components were estimated using ASReml (Gilmour et al. 2009), 
fitting animal as random with relationships described using a three generation pedigree.  

Predicted cow body composition (CBC). A phenotypic prediction equation was developed in 
SAS (SAS Institute Inc., Cary, NC, USA). Cow condition score assessed in lactation females at the 
start of their second mating season (BCS) was fitted as the dependant variable with the initial models 
including LWT, HH, P8 and EMA as covariates, and their first order interactions. The initial models 
also included fixed effects, which described the cows’ year of birth and the location in which they 
were managed (cohort), their month of birth and property of origin, along with the month of birth of 
their calf at foot and its sex. The final model was arrived at by sequentially removing non-significant 
terms (P> 0.05) terms, and contained the main effects of LWT, EMA, P8 and EMA, and interactions 
of P8*P8 and LWT*EMA (r2 = 0.82). Significant fixed effects described the cows’ cohort, their 
property of origin, the month in which they were born, along with the month of birth and sex of their 
calf at foot, and first order interactions of cohort*month of birth, property of origin*month of birth 
and cohort*calf month of birth.  

This model was fitted in ASReml, with animal as random to account for genetic effects, and with 
the specification that solutions for fixed effects and covariates be estimated setting the mean to zero. 
CBC was calculated applying the resulting solutions for LWT, EMA, P8 and EMA, P8*P8 and 
LWT*EMA to produce a prediction of lactating cow into mating 2 body composition in the units of 
body condition score. A particular advantage of this method is that it allowed the application of 
nonlinear relationships of objective traits with body condition score, which would not be 
accommodated in a multi-trait genetic model where objective traits were included in the evaluation 
and genetic co-variances allowed to describe their relationship with body condition score. 

Industry cow body condition score. Breeders have been encouraged to submit condition score 
recorded on a six point 1 (poor) to 6 (fat) scale for lactating females at the weaning of their calves 
(WBCS), to allow genetic parameters for the trait to be estimated (BREEDPLAN 2022). Records 
for the trait collected from 2010 were extracted from the BREEDPLAN database for these analyses. 
The records analysed for this component of the study were limited to those assessed and submitted 
by breeders (N = 1,693), and excluded WBCS recorded in reference and research populations, by 
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more experienced technicians, to specifically describe the genetic parameters for records coming 
from the industry. An important difference between the mating 2 records analysed for the reference 
population and those from industry was the range in ages at which the latter were collected, with 
industry females ranging from 2.5 to 10.5 years of age. A very small proportion of females had 
multiple records, but those beyond their first record were removed from the analysis as there was 
insufficient data to run an effective repeatability model. Estimation of genetic parameters for WBCS 
applied the modelling methods described by Graser et al. (2005) for mature cow weight, fitting 
contemporary group, age at measurement, the age of the cow’s dam at her birth, and the age and sex 
of the calf weaned when the record was collected. Variances were estimated in ASReml (Gilmour 
et al. 2009), fitting animal as random with relationships described using a three generation pedigree. 

RESULTS AND DISCUSSION 
By focusing on body composition in lactating cows as they enter their second annual mating, the 

intention was to describe females at the time of greatest challenge to their ability to maintain energy 
reserves. Table 1 presents descriptive statistics, variance components and the resulting heritability 
(and its standard error) for the traits examined in this study. Lactating first calf Brahman cows 
averaged 402.5kg liveweight, had an average of 3.5mm of P8 fat, 43.7cm2 EMA, and an average 
BCS of 2.5 at this critical stage in their development. 

Table 1. Number of records (N), mean and standard deviation (sd), additive (σ2a) and 
phenotypic (σ2p) variances, heritabilities (h2) and their standard error (se) for predicted 
mating 2 body composition in lactating first calf Brahman females, and it’s component traits, 
and for industry submitted cow body condition score at weaning (of their calves) 

Trait1 Units N Mean sd σ2a σ2p h2 se 
LWT kg 1,252 402.5 56.5 734.7 1301.9 0.56 0.10 
HH cm 1,252 138.5   7.8   13.2     18.3 0.72 0.09 
P8 mm 1,252     3.5   2.6     1.7       3.9 0.45 0.09 

EMA cm2 1,252   43.7   9.9   16.8     38.9 0.43 0.10 
BCS 0-15 score 1,252    2.5  0.6       0.06  0.15 0.43 0.07 

CBC 0-15 score 1,252     2.4   0.4       0.05   0.09 0.52 0.10 

WBCS 1 to 6 1,693     3.1   0.6       0.05   0.33 0.16 0.06 
1 LWT, HH, P8, EMA and BCS describe measures of liveweight, hip height, ultrasound scanned P8 fat depth 
and eye muscle area, and body condition score recorded in lactating females as they enter their second annual 
mating respectively. CBC is predicted cow body composition at mating 2, and WBCS is body condition score 
submitted by Brahman breeders for lactating females at the weaning of their calves. 

Predicted lactating cow into mating 2 body composition. Phenotypic prediction presents 
opportunities to describe relationships of objective cow body composition traits with BCS which are 
not available when all traits are included in the genetic evaluation and associations exploited via 
their co-variances. The most important was the capacity to model the significant non-linear 
relationships identified for P8 fat depth and the interaction of liveweight with scanned eye muscle 
area. The coefficients generated to estimate lactating cow body compositon showed that higher WT, 
EMA and P8 were associated with higher CBC, while the regression cofficients for HH, P8*P8 and 
LWT*EMA were negative. The magnitude of coefficients meant that the negative solutions for 
P8*P8 and LWT*EMA had a moderating effect on positive linear effects for the main traits, 
resulting in a unit increase in LWT, P8 and EMA being associated with greater increases in CBC in 
animals at the lower end of the distribution, than was the case for heavier, fatter and better muscled 
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cows. A negative coefficient for HH reflects industry perceptions that taller females require greater 
energy input to maintain condition, and highlight the importance of having some description of 
frame size in the breeding objective, and the gentic evaluation, for Australia’s beef breeders. 

Genetic parameter estimates. Genetic parameters for LWT, HH, EMA, P8 and BCS (Table 1) 
were consistent with those reported by Wolcott et al. (2014) (h2 = 0.65, 0.62, 0.42 0.67 and 0.48 
respectively). Johnston et al. (1996) reported a heritability of 0.14 to 0.21 for breeder recorded BCS 
in Angus and Hereford cows at the weaning of their calves, and this was consistent with the result 
presented by Granleese and Clarke (2019) (h2 = 0.16), and that reported here for WBCS submitted 
by Brahman breeders (h2 = 0.16). CBC was more heritable (h2 = 0.52) than BCS (h2 = 0.43), which 
reflected the higher heritabilities estimated for component HH and LWT traits (h2 = 0.72 and 0.56). 
The capacity of lactating females to have adequate body condition at mating is prominent in the 
breeding objective for almost all beef breeds and production systems in Australia. A description of 
cow condition that incorporates objective body composition information is very closely aligned to 
this objective and presents new opportunities for breeders to select and improve genetic gains.  

CONCLUSIONS 
CBC describes cow body composition in the units of condition score, which is familiar to 

Australia’s beef breeders, while providing a more objective and heritable description of the trait at 
a critical time for beef females. By making it a trait of lactating cows only, it is independent of the 
effects of reproduction and, as such, can be a basis for selection to reduce the risk of wet cows falling 
to critically low body condition. It also presents the opportunity to monitor genetic cow body 
composition as selection pressure is applied to improve other aspects of female productivity. 
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SUMMARY 
The transition to lactation often results in health issues that impact on longevity of a dairy cow 

in the herd. Physiological processes involved in energy metabolism and immune response during 
this period can be measured by blood health biomarkers. These processes are partly genetically 
driven. In this study, we aim to determine gene expression patterns in circulating leukocytes and 
investigate associations with serum health biomarkers during the transition period. A single blood 
sample was collected within 21 days of calving from 110 commercial dairy cows, located on 5 farms 
in south-eastern Australia. Samples were used for RNA sequencing and serum analysis for glucose, 
β-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA), urea, albumin, globulin, albumin to 
globulin ratio (A:G), triglycerides, bilirubin, cholesterol and total protein content. Of the 12470 
expressed genes, 2641 were significantly correlated with serum biomarkers. Immune response 
pathways associated with serum health biomarkers included the chemokine signalling pathway 
being significantly correlated with total protein and albumin and the NOD-like receptor signalling 
pathway being significantly correlated with triglycerides. Urea was enriched with the most 
pathways. We also identified genes previously associated with negative energy balance (NEB) and 
several genes correlated with multiple biomarkers. This study adds to our understanding of the 
pathways that are contributing to transition cow health. Future work will identify which of these 
gene expression changes are under genetic control and the associated variants that can be used in a 
genomic prediction for transition health.  

INTRODUCTION 
The transition period from late pregnancy to early lactation for dairy cows coincides with 

considerable metabolic stress and impacts longevity of a dairy cow in the herd. During this period, 
the energy requirements of lactating dairy cows cannot be met from feed. This leads to nutrient 
shortages and NEB when body reserves are mobilised. A prolonged period of NEB is associated 
with dairy production diseases like mastitis, metritis, retained fetal membranes, abomasum 
displacement, milk fever and ketosis (LeBlanc et al. 2006). The transition period is also often 
accompanied by overt inflammation response that occurs shortly after parturition and normally is 
resolved within 3-4 days. However, the immune and inflammatory response is often dysregulated 
during early lactation. The failure to adapt to metabolic changes and resolve inflammatory reactions 
may reduce future lactation and reproduction performance (Bradford et al. 2015). 

Improved animal health and resilience during early lactation could be achieved through genetic 
selection. Blood is widely used readily accessible multi-organ biofluid. Gold standard blood serum 
metabolic profile tests include biomarkers associated with energy balance (glucose, BHB and 
NEFA), immune status (A:G, globulins), protein nutritional status (urea, albumin) (Overton et al. 
2017), lipid metabolism (triglycerides, cholesterol) and liver function (bilirubin). These biomarker 
levels are heritable traits and could be used for genomic prediction to improve animal health during 
the transition period (Luke et al. 2019). They also can provide accurate data for both clinical and 
subclinical health disorders. The mainly positive genetic correlation between the traits suggests that 
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selective breeding can improve the overall health of dairy cows during the transition period (Pryce 
et al. 2016). 

Gene expression in blood leucocytes can help to identify biological processes underlying 
metabolic changes during the transition period. The gene expression pathways can help to identify 
candidate genes of biological significance for further genome-wide association studies (Pryce et al. 
2020). The present study was performed to increase the understanding of metabolic adaptation of 
the dairy cow during the transition period. The aim was to determine gene expression patterns in 
circulating leukocytes and investigate their associations with serum health biomarkers during the 
transition period.  

MATERIALS AND METHODS 
Blood samples were collected within 21 days after calving from 110 multiparous cows in 5 dairy 

herds in south-eastern Australia. All farms had pasture-based feeding systems with supplementary 
forages and concentrates fed during milking time. A single blood sample (approx. 8 mL) was 
collected from the coccygeal vein. Whole blood (0.5 mL) was immediately subsampled into 
RNAprotect Animal Blood Tubes (QIAGEN) containing RNA protectant. The remaining sample 
was incubated for 30-60 min at 220 C in the dark to optimise clotting, then centrifuged at 1,500 g 
for 10 minutes and serum retained. Quantification of serum biomarkers was performed in either 
Regional Laboratory Services (Benalla, Victoria, Australia) or AgriBio (Melbourne, Victoria, 
Australia). RNA was isolated using the RNeasy Protect Animal Blood Kit (Qiagen), libraries 
prepared using Nextflex Rapid Directional RNA-Seq Kit 2.0 (Perkin Elmer) and sequenced in a 150 
cycle paired end run on the NovaSeq6000 (Illumina Inc).  

All paired reads that passed trimming and quality filtering were aligned to the bovine genome 
ARS-UCD1.2 merged with Btau5 Y and its associated annotations using STAR v2.5.3 (Dobin et al. 
2013) 2-pass mapping and default settings. Alignment files (.bam) with greater than 15 million read 
pairs and greater than 83% mapping rate were used for gene count matrix generation. A gene count 
matrix was generated using Subread v1.5.1 (http://subread.sourceforge.net/). Gene expression data 
quality was assessed by generating a multidimensional scaling plot. The gene count matrix was 
normalised with the Bioconductor software package edgeR in R Studio (Robinson et al. 2010).  

Statistical analysis was performed using R version 4.2.1 (R Core Team 2022). A fixed effect 
model was fitted to assess the effect of parity, farm, breed, and days in milk on the gene counts and 
blood biomarkers.  

𝑦𝑦ijklm =𝜇𝜇+𝑃𝑃+𝐹𝐹+𝐵𝐵 +𝐷𝐷𝐷𝐷𝐷𝐷+𝑒𝑒ijklm, 
where 𝑦𝑦 is the biomarker concentration (BHB, NEFA, glucose, albumin-globulin ratio, albumin, 

globulin, total protein, bilirubin, cholesterol, triglycerides, urea), 𝜇𝜇 is the mean, 𝑃𝑃 is parity (1 to 4 
and 5+), 𝐹𝐹 is the effect of farm, 𝐵𝐵 is the effect of breed, 𝐷𝐷𝐷𝐷𝐷𝐷 is days in milk (from 1 to 21) and 𝑒𝑒 is 
the random error term. Residuals adjusted for fixed effects of parity, farm, breed and DIM indicated 
between cow variation in biomarkers and gene expression.  

The relationship between serum biomarkers and normalised gene count was investigated by 
calculating the Pearson correlation between the residuals. As correlation between residuals was not 
normally distributed, the correlation between the raw gene counts and raw biomarkers were also 
investigated. Genes with significant correlation with both raw data and the residuals were identified 
for pathway analysis. Enrichment analyses of biological pathways (KEGG) and gene ontology terms 
(GO) were conducted using DAVID Bioinformatics resources (https://david.ncifcrf.gov/). 

RESULTS AND DISCUSSION 
In our study, 2,641 out of 12,470 genes were significantly correlated (P<0.05) with serum 

biomarkers. Ninety-eight of these genes had unknown function. The highest number of genes was 
significantly correlated with total protein (830), followed by albumin (458), urea (433), BHB (419), 

https://david.ncifcrf.gov/
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A:G (394), globulin (359), triglycerides (252) and glucose (207). The lowest number of genes were 
correlated with cholesterol (109), NEFA (79) and bilirubin (74). The number of biomarkers used for 
all samples was unequal due to the differences in time of blood collection which might affect the 
power of different tests (Table 1).  

Table 1. Descriptive statistics of the datasets used in this study, including number of samples, 
mean and standard deviation of serum health biomarkers, number of genes significantly 
correlated with biomarkers and significant KEGG pathways 

Serum biomarkers Number 
of 
samples 

Mean 
(SD) 

Number 
of genes 

KEGG pathways (FDR) 

BHB (mmol/L) 110 0.78 (0.36) 419 
NEFA (mmol/L) 110 0.57 (0.25) 79 
Albumin-Globulin ratio 82 1.12 (0.22) 394 

Globulin (g/L) 82 32.97 (6.11) 359 
Glucose (mmol/L) 34 2.74 (0.46) 207 
Bilirubin (mmol/L) 34 6.52 (3.12) 74 
Cholesterol (mmol/L) 34 2.14 119 

Triglycerides (mmol/L) 34 0.15 (0.08) 252 NOD-like receptor signalling pathway 
(<0.01) 

Albumin (g/L) 82 35.76 (3.07) 458 Chemokine signalling pathway (<0.05) 
Total Protein (g/L) 108 67.98 (6.52) 830 Chemokine signalling pathway (<0.01) 
Urea (mmol/L) 

All genes 

110 5.12 (1.60) 433 

2641 

Cell cycle (< 0.01)         
p53 signalling pathway (< 0.01)  
Oocyte meiosis (< 0.05)  
Progesterone-mediated oocyte 
maturation (<0.5)        
Cellular senescence (< 0.01)  
Human T-cell leukemia virus 1 infection 
(<0.05) 
Homologous recombination (<0.05) 
Cell cycle (< 0.01) 
Chemokine signalling pathway (< 0.01) 
Oocyte meiosis (< 0.01) 
Progesterone-mediated oocyte 
maturation (< 0.01) 
Osteoclast differentiation (< 0.01) 

The 2,570 genes that were correlated with biomarkers were included in an enrichment analysis 
of KEGG pathways and GO terms. Genes correlated with urea were enriched for cell cycle, p53 
signalling pathway and cellular senescence (FDR <0.01), and for oocyte meiosis, progesterone-
mediated oocyte maturation (FDR <0.05). Pro-inflammatory chemokine signalling pathway was 
associated with albumin and total protein and inner immune system NOD-like receptor signalling 
pathway was associated with triglycerides. This association may indicate the interconnection 
between lipid mobilisation and immune response during the transition period. In addition, 17 genes 
correlated with NEFA were enriched in metabolic pathways (FDR < 0.05). Moreover, we identified 
genes that are known to participate in several metabolic pathways and have been previously 
identified as important candidate genes for NEB (Soares et al. 2021). These genes (AKT2, CPT1A, 
CPT1B, PPARA, PPARG, PPP1R3B, PPP2R3C) are involved in insulin resistance pathway, fatty 
acids metabolism, PPAR signalling pathway, AMPK signalling pathway, adipocytokine signalling 
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pathway, and glucagon signalling pathway. Several genes in our study were associated with multiple 
biomarkers. For instance, 52 genes were correlated with both urea and BHB. The correlation 
between leukocyte gene expression and the levels of serum health biomarkers is not clearly 
understood and requires further investigation. Presumably, the metabolic changes in transition cow 
alter the gene expression in leukocytes. In our study, 178 genes negatively correlated with BHB 
were associated with cell cycle KEGG pathway and RNA binding molecular function which is 
important in the regulation of gene expression. This is in line with Minuti et al. 2020 who identified 
pathways involved in genetic information processes inhibited by BHB. 

The results of this study may be limited by the small sample size and unequal number of 
biomarkers used for all samples.  

CONCLUSION 
In this study, we examined the correlation between serum health biomarkers and genes expressed 

in leukocytes during the transition period of dairy cows. The results of this study provide evidence 
for the hypothesis that serum health biomarkers are significantly correlated with genes expressed in 
leukocytes during the transition period. This investigation identified 2641 genes significantly 
correlated with 11 serum health biomarkers. Some genes were correlated with several biomarkers. 
Significant correlations between genes that have been previously associated with the negative energy 
balance were found. The findings in this investigation suggest that gene expression analysis can 
provide a better understanding of physiological processes during NEB. The genes that are correlated 
with changes in metabolic health were used to identify pathways that may be associated with 
transition health. Further studies are needed to validate the findings and understand causation and 
effect of the revealed correlations.  
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SUMMARY 
This study explored the phenotypic and genetic variation in breech flystrike and its relationship 

with production traits in the Connemara Merino ram breeding flock. Yearling breech strike 
(struck/non-struck) had a low heritability of 0.09±0.04 when using a binomial model. Heritability 
estimates for production traits ranged from 0.12±0.04 (for faecal worm egg count) to 0.70±0.07 
(for staple length). Genetic correlations between breech strike and production traits varied from 
negative (-0.25±0.24 for fibre diameter) to high positive (0.70±0.21 for dag score), illustrating 
both favourable and unfavourable relationships that will have implications for future selection 
programs incorporating breech strike resistance with production traits.  

INTRODUCTION 
Flystrike, one of the most significant costs facing the Australian sheep industry, is a parasitic 

infection caused by the larvae of the sheep blowfly (Lucilia cuprina) and can cause production 
losses, chronic disease, and mortality (Lane et al. 2015). Breech flystrike is the most common type 
of flystrike and is a priority research area for Australian Wool Innovation Ltd (AWI). Australian 
Sheep Breeding Values (ASBVs) for indicator traits of breech flystrike resistance, such as wrinkle, 
breech cover, dag and other visual wool traits are available through Sheep Genetics (Brown et al. 
2010) and provide the industry with tools to improve flystrike resistance through indirect selection. 
There is also interest in using direct measures of flystrike to further improve the accuracy of 
selection and also animal welfare.  Furthermore, understanding the relationship between flystrike 
and production traits is also essential for predicting response to selection. Therefore, this study was 
conducted using an existing Merino sheep industry dataset to explore breech flystrike trait 
definition, genetic variation and its association with production and visual traits. 

MATERIALS AND METHODS 
Flystrike dataset. The initial dataset used for this study was 2,692 animals from the 

Connemara Merino ram breeding flock, located at Tarcutta, NSW, born between 2017 and 2021. 
There were 3,232 records from 1,364 ewes and 1,328 rams available to check the status of 
flystrike (including struck and non-struck animals). Routine screening for flystrike is done 
primarily from birth to crutching time (6-7 months) and mulesing of lambs ceased in this flock in 
2018 since then regular monitoring and treatment of flystrike have been undertaken. For this study, 
all animals were assessed and considered for flystrike from birth to yearling age. Animals who 
were not affected by flystrike were identified by matching contemporary groups (CG) of affected 
animals based on wool traits submitted to MERINOSELECT. The contemporary groups (defined 
as flock, year, sex, date of measurement and management group conducted by Sheep Genetics; 
Brown et al. 2010) of these traits were used as a fixed effect for breech strike. The traits for 
finding CGs included records for curvature, fibre diameter, fibre diameter CV, and clean and 
greasy fleece weight traits. The combination of site/flock and year of birth was used to set 
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minimum thresholds of 0.05 and 20 for frequency of flystrike and number of animals within each 
class combination, respectively. Further restrictions were applied to remove contemporary groups 
within the site/flock-years with less than 5 animals and with no variation. After filtering, 1,941 
animals with breech strike phenotypes (Table 1) were retained for analysis where most struck 
animals were observed in summer and early autumn at an average of 184 days. 

Flystrike definition. Breech strike, which is an infection of fly larvae in the breech area of 
sheep, was defined as “struck” or “not struck”, coded as 1 or 0 respectively, within a defined 
shearing period, in this case, birth to yearling (Table 1). Periods were bounded by shearing events 
and consequently, recorded animals that fall within shearing intervals were assigned a phenotype.  

Production traits. Overall, the number of observed records ranged from 1,536 to 5,732 for 
production and visual traits recorded at the weaning to yearling stages. These traits included 
breech wrinkle (BWR), dag score (DAG), clean fleece weight (CFW), fibre curvature (CUV), fibre 
diameter CV (DCV), fibre diameter (FD), faecal worm egg count (FEC), greasy fleece weight 
(GFW), staple length (SL), staple strength (SS), weaning weight (WWT) and yearling weight 
(YWT) that were available and sufficient to analyse. Records for production traits were only 
included for the birth years where breech strike was observed (2017 to 2021). After adding CGs to 
the fixed part of the model, a range of systematic effects, including birth and rear type (single and 
multiple), lamb age and age of dam (linear and or quadratic) were tested for significance for each 
trait and included in the models for variance component estimation accordingly. 

Statistical analyses. Results presented in this study were analysed in ASReml (Gilmour et al. 
2015) using a binomial model with a probit link function for the trait breech “struck” (BRS), and a 
continuous model for all production traits. Models included random effects for direct genetic and 
maternal genetic effects, and maternal permanent environmental effects were fitted where they 
were significant, as shown in Table 2. The univariate models were tested and compared using 
likelihood ratio tests (LRT) between the full and reduced models. The best models were used for 
bivariate models between breech strike and other traits. 

RESULTS AND DISCUSSION 
Breech strike incidence across years of birth indicates that 2020 and 2021 were the lowest 

(8.0%) and highest (33.7%) flystrike challenge years in this flock, respectively (Table 1). New 
South Wales had its 6th wettest year on record (720.6mm overall) in 2021, with rainfall 30% 
above average since 2010 based on the annual climate summary for New South Wales 2023.  

Table 1. Descriptive statistics of breech strike across years of birth. %Struck is the 
percentage of animals with the presence of breech struck (1 vs non-struck, 0) from birth to 
the yearling shearing 

Year of birth N SD Min Max %Struck 
2017 402 0.46 0 1 30.1 
2018 389 0.35 0 1 14.6 
2019 399 0.43 0 1 24.6 
2020 451 0.27 0 1 8.0 
2021 300 0.47 0 1 33.7 

The heritability of breech strike for this dataset was estimated as 0.09±0.04 on the probit scale 
(Table 2) and 0.13 from a threshold model using a Gibbs sampling method (Tsuruta and Misztal 
2006; results not shown in Table 2). These estimates were lower than values reported in other 
studies. Early breech strike heritability (up to 8 months of age) was reported to be 0.32±0.11 
(Smith et al. 2009) from a linear model on the logarithm-transformed breech strike, and 0.57±0.13 
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from a threshold model using the Gibbs sampling method (Greeff et al. 2014). However later, 
Greeff et al. (2021) reported a heritability of 0.07±0.01 using the linear model on the logarithm-
transformed breech strike counts and a heritability of 0.51±0.10 on the logistic underlying scale in 
adult Merino ewes from the same flock. They also found the heritability of 0.44±0.07 and 
0.69±0.18 for Merino ewes at hogget age on the normal and logistic underlying scale respectively, 
both using a binomial model (Greeff et al. 2021). Bird-Gardiner et al. (2013) observed heritability 
of 0.33 ±0.15 for breech strike using a sire linear model in Merinos and 0.30±0.10 across breeds. 
These differences may be related to the models applied (the binomial model in this study) and 
scales (the probit underlying scale in this study), and differences between the environmental 
conditions and management practices across sites contributing to varying levels of expression. 

Another aspect to consider is the collection and accuracy of the data, particularly inferences 
about unaffected animals. In this study, unaffected animals were determined from their 
contemporary groups (described in the material and method section) recorded for wool traits. 
Using wool traits is currently the only method for identifying unaffected animals in each group 
since there is no ‘roll-call’ as such to identify all animals that were present and the infection by 
flystrike usually occurs when the animal is in wool. However, this inference may miss animals that 
disappear and are not recorded for wool traits. 

Table 2. Descriptive statistics of traits and direct heritability (h2), maternal heritability (m2), 
and the proportion of maternal permanent environmental to the total variance (Pe2) using a 
univariate animal model. Standard errors are in parentheses 

Trait1 Unit N Mean SD h2 m2 Pe2 
BRS2 1/0 1941 0.21 0.41 0.09 (0.04) 
BWR 1-5 score 3896 2.46 0.78 0.27 (0.06) 0.05 (0.03) 
CFW Kg 4399 1.96 0.51 0.36 (0.06) 0.04 (0.03) 
CUV Degree/mm 5399 86.73 20.03 0.42 (0.05) 
DAG 1-5 score 1536 1.75 0.84 0.37 (0.08) 
DCV % 5727 18.38 2.37 0.27 (0.06) 0.06 (0.03) 
FD μm 5732 15.45 1.40 0.52 (0.07) 0.07 (0.03) 
FEC Eggs/gm 2851 7.13 4.13 0.12 (0.04) 
GFW Kg 5711 2.92 0.77 0.39 (0.06) 0.02 (0.02) 
SL mm 1914 84.97 11.51 0.70 (0.07) 
SS N/Ktex 2100 30.02 10.05 0.18 (0.05) 
WWT Kg 3125 19.04 4.09 0.16 (0.06) 0.02 (0.03) 0.12 (0.04) 
YWT Kg 2024 36.71 9.21 0.40 (0.12) 0.01 (0.05) 

1 Traits are ordered alphabetically and their abbreviations are explained in the text. 2 Breech strike was fitted 
in the binomial model on the probit scale. 

Phenotypic and genetic correlations of breech strike (BRS) with most traits were consistent 
with Bird-Gardiner et al. (2013), except that of Greeff et al. (2014) who estimated low and non-
significant correlations with wool traits. However, the result of this study was more in line with 
their later research (Greeff et al. 2021). DAG, FEC, and BWR had the highest genetic correlations 
(>0.60) with BRS supporting the value of these traits as indirect selection criteria in this flock, 
which is also supported by the other two studies. Among wool traits, clean and greasy fleece 
weights and fibre diameter CV had moderate positive correlations (rg≈0.50) with BRS, and SL had a 
low positive correlation (rg=0.27) with BRS, all of which were stronger than other studies (Table 3). 
The antagonism between fleece weight and breech strike incidence is problematic given the 
importance of fleece weight in industry breeding objectives and profit. Low, negative genetic 
correlations for FD, SS, CUR, and YWT (-0.09 to -0.25; P> 0.05) with breech strike indicate that 
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selection for resistance to breech strike may have lower impacts on wool quality and growth traits. 

Table 3. Phenotypic (rp) and genetic (rg) correlations between breech strike and production 
traits estimated in this study and in the literature 

Trait This study Bird-Gardiner et al. (2013) Greeff et al (2014) 1 
rp rg rp rg rp rg 

BWR -0.01 (0.03) 0.64 (0.21) 0.17 (0.03) 0.65 (0.22) 0.20 0.18 (0.17) 
CFW 0.04 (0.03) 0.50 (0.18) 0.03 (0.04) 0.28 (0.26) 0.01 0.05 (0.12) 
CUV 0.02 (0.03) -0.09 (0.22) -0.02 (0.04) -0.07 (0.28) -0.08 -0.04 (0.12)
DAG 0.09 (0.04) 0.70 (0.21) 0.08 (0.03) 0.84 (0.49) 0.45 0.81 (0.15)
DCV 0.06 (0.03) 0.59 (0.20) 0.08 (0.03) 0.45 (0.27) 0.05 -0.27 (0.13)
FD -0.04 (0.03) -0.25 (0.24) -0.04 (0.03) -0.05 (0.19) 0.04 0.14 (0.12)
FEC 0.05 (0.03) 0.69 (0.29) 0.06 (0.03) 0.60 (0.30) 0.01 0.27 (0.12)
GFW 0.05 (0.03) 0.49 (0.18) 0.07 (0.03) 0.32 (0.22) 0.02 0.06 (0.11)
SL 0.02 (0.03) 0.27 (0.22) -0.09 (0.04) -0.10 (0.20) -0.05 0.02 (0.14)
SS -0.07 (0.03) -0.21 (0.29) -0.03 (0.03) -0.05 (0.30) -0.01 0.15 (0.16)
WWT 0.04 (0.03) 0.07 (0.28)
YWT -0.03 (0.14) -0.15 (0.28)

1 Standard errors are in parentheses except those that are not published. Figures are presented only in stages 
similar to the present study. 

CONCLUSIONS 
Breech strike had a low heritability while its correlation with production and visual traits 

varied depending on the trait. Although indirect selection on indicator traits is of value to improve 
flystrike resistance, direct selection on the trait itself may help to increase response, particularly in 
combination with genomic information. The results of this study can be used to predict changes in 
flystrike resistance and production traits in response to selection for a range of breeding objectives 
in industry ram breeding programs. Further analysis has commenced combining data from this 
flock, the Sheep CRC Information Nucleus Flock (INF), the AWI Breech Flystrike Genetics 
flocks, sire evaluation flocks and other available research and industry flocks. 
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SUMMARY 
In New Zealand about 55% of dairy herds are milked twice daily (TAD) and about 9% of herds 

are milked once daily (OAD) for their entire lactation, with the balance of herds using variable 
milking frequencies across lactation. The objective of this study was to investigate fertility of spring-
calved Holstein-Friesian (F), Jersey (J) and crossbred of Holstein-Friesian × Jersey cows (F×J) 
milked either OAD or TAD from 2015-2016 to 2017-2018 in New Zealand using data provided by 
Livestock Improvement Corporation. The dataset comprised 113 OAD and 531 TAD herds. Eight 
fertility traits were evaluated: submission in the first 3 weeks (SR21) and 6 weeks (SR42) of mating, 
in-calf in the first 3 weeks (PR21) and 6 weeks (PR42) of mating, conception to first service (PRFS), 
not in-calf at end of the breeding season (NIC), 3-week calving (CR21) and 6-week calving (CR42) 
rates. Cows milked TAD produced greater milk, fat, protein and lactose yields than cows milked 
OAD, but fat (FP) and protein percentages (PP) were lower in cows milked TAD. Cows milked 
OAD had better fertility with a higher SR21, PR21, PR42, PRFS, CR21, CR42 and a lower NIC 
than cows that were milked TAD. Breeds differed in fertility traits in both milking regimens. Jersey 
and F×J cows had higher SR21, SR42 and PRFS than F cows in OAD milking herds, whereas J 
cows were mated earlier in the mating season than F and F×J cows in TAD. Fertility of F×J cows 
was better than purebred cows in both milking populations, evidenced by these cows having the 
highest PR21, PR42, PRFS, CR21, CR42 and lowest NIC. Once daily milking herds benefited from 
higher FP and PP and better fertility than TAD herds.  

 
INTRODUCTION 

Once-daily milking is becoming popular among New Zealand dairy farmers because it benefits 
the farmers lifestyle, animal welfare, management of feed shortfalls and reduces the cost of labour 
(Bewsell et al., 2008). In the production year 2015-2016, about 9% of herd-tested herds milked OAD 
for the whole lactation in New Zealand (Edwards 2018). Improved reproductive performance was 
reported with spring-calved cows milked OAD for the entire lactation compared to cows milked 
TAD for the entire lactation in New Zealand (Jayawardana et al. 2022). 

The New Zealand dairy herd is comprised of crossbreed of F×J cows (49.6%), F (32.5%), J 
(8.2%), other breeds and crosses (9.3%) and a small proportion of Ayrshire (0.4%), (LIC and 
DairyNZ, 2021). Grosshans et al. (1997) reported breed differences in reproductive performance of 
New Zealand dairy cows, including shorter intervals from calving and mating to first service and 
conception, and higher 6-wk in-calf rates in J cows compared to their F counterparts. Lembeye et 
al. (2016) reported J cows milked OAD for their entire lactation were more efficient per kg of live 
weight than F and F×J cows milked OAD, but suggested that F×J cows are more suitable for OAD 
milking due to greater total milk solids production, intermediate feed conversion efficiency and 
biological efficiency. The information of breed differences in reproductive performance in OAD 
milking system is scare at cow level. The objective of present study was to evaluate the reproductive 
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performance of F, J and crossbred F×J cows milked either OAD or TAD in New Zealand using data 
from a national herd-testing database. 
 
MATERIALS AND METHODS 

Data. Herd test milk yields, calving, mating, and pregnancy diagnosis information of spring-
calved dairy cows from 2015-2016 to 2017-2018 production seasons were obtained from the animal 
database of Livestock Improvement Corporation. Selected herds had at least 50 cows per herd, herd 
tested four or more times per lactation, pregnancy test results recorded for at least 80% of cows that 
calved in the 12-month period, and “early aged pregnancy testing” (tested on or between 35 and 122 
days of pregnancy) and fetal age estimated for at least 80% of cows in the herd. Herd test-day 
milking frequency was used to classify herds into OAD or TAD. If more than 90% of the tested 
cows on a herd-test date were milked either OAD or TAD in a herd, then it was classified as OAD 
or TAD milking herd on that herd-test date. Likewise, all herd tests were classified. If all herd tests 
were OAD throughout the season, then the herd was identified as an OAD milking herd. Likewise, 
if all herd tests were classified as TAD, then the herd was identified as a TAD herd. Finally, 113 
OAD and 531 TAD herds were identified. Herds that were OAD at some herd tests and TAD at 
other herd tests were excluded. 

Breeds. Information of breed composition (expressed in sixteenths) for each cow was used to 
classify the cows into 3 breed categories; F, J, and crossbred of F×J. Herds without F, J or crossbred 
of F×J cows were excluded. Cows with either less than 100% known breed proportions or more than 
12.5% of any breed other than F or J were excluded. Cows were classified as F or J if they had breed 
compositions of F ≥14/16 or J ≥14/16, respectively and remaining cows were classified as crossbred 
of F×J. 

Production traits. Milk production data included yields of (MY), fat (FY), protein (PY), lactose 
(LY) and percentages of fat (FP), protein (PP), and lactose (LP). Lactation records with days in milk 
ranging 150-305 days were analysed. 

Fertility traits. Eight fertility traits were defined: submission for artificial insemination in the 
first 3 weeks (SR21) and 6 weeks (SR42) of the breeding season, in-calf in the first 3 weeks (PR21) 
and 6 weeks (PR42) of the breeding season, conception to the first service (PRFS), not in-calf at end 
of the breeding season (NIC), calving by first 3 weeks (CR21) and 6 weeks (CR42) from the planned 
start of the calving. Conception dates were calculated as the date of pregnancy diagnosis minus the 
estimated foetal ages with a pregnancy status of ‘pregnant’. If the estimated foetal ages were not 
available but cows calved in the following season, their conception date was calculated as calving 
date in the following season minus 282 days. Submission by 3 weeks or 6 weeks of the breeding 
season was coded as 1 if the first mating date was in the first 21 days or 42 days from the start of 
mating date, respectively, otherwise coded as 0. Likewise, in-calf by 3 weeks or 6 weeks of the 
breeding season was coded as 1 if the cow was pregnant in the first 21 days or 42 days from the start 
of breeding season, respectively, otherwise coded as 0. The variable PRFS was only calculated for 
cows whose first service was to artificial breeding, and was coded as 1 for cows where date of first 
service equalled date of conception, and 0 otherwise. Pregnancy status at the last pregnancy testing 
after the end of the breeding period was used to classify the NIC, cows with pregnancy status ‘empty’ 
were coded as 1 whereas cows with pregnancy status ‘pregnant’ were coded as 0. Cows with last 
pregnancy status as doubtful but calved in the subsequent season were coded as 0, otherwise 1. 
Planned start of calving date was obtained for a herd by adding 282 d to the herd’s mating start date 
in each calving season. If a cow calved in the first 3 weeks or 6 weeks from the planned start of 
calving date then it was coded as 1, otherwise 0. The detailed description of editing the fertility traits 
and calculation of conception in the present study was described in Jayawardana et al. (2023). Cows 
in their first four parities were considered separately and cows of parity five and above were 
combined into one category. 
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Statistical analysis. The statistical analyses were undertaken using SAS version 9.4 software. 
The production traits were analysed using HPMIXED procedure and all fertility traits with binomial 
distribution were analysed using the GLIMMIX procedure after a logit transformation. 
Contemporary groups were defined as the group of cows calving in the same herd and year. The 
model included the fixed effects of milking regimen, breed, parity, interaction of milking regimen 
and breed, linear and quadratic effects of deviation of calving date from the herd median calving 
date (within-herd in each calving year) as covariates, and the random effects of herd-year and 
residual. Least-squares means with logit scale were back-transformed into the nominal scale for 
interpretation of the results.  

RESULTS AND DISCUSSION 
Cows milked TAD produced greater yields of milk, fat, protein and lactose and higher LP than 

cows milked OAD, but had lower FP and PP and poor fertility outcomes. Results indicate that a 
higher proportion of cows milked OAD were mated (by 4.6%) in the first 3 weeks of the breeding 
season, conceived in the first 3 weeks (by 10%) and 6 weeks (by 8.6%) of the breeding season, 
pregnant to their first service (by 6.8%), calved by 3 weeks (by 6.2%) and 6 weeks (by 4.6%) of the 
following calving season with a lower percentage not in-calf (by 3.7%) at end of the breeding season 
compared with TAD milking cows. The better reproductive performance of OAD milking cows is 
hypothesised to be due to OAD milking reducing the extent of negative energy balance in the early 
lactation cows (Kay et al. 2013). 

Table 1: Least-squares means of milk production and fertility traits of Holstein-Friesian (F), 
Jersey (J) and their crossbred cows (F×J) milked in once daily (OAD) or twice daily (TAD) 

Traits1 OAD TAD OAD TAD P-value
F J F×J F J F×J MF Breed MF × 

Breed 
MY(kg) 3291 4708 3595a 2936c 3368b 5115d 4102f 4828e <.001 <.001 <.001 
FY(kg) 170.4 228.9 171.1b 165.2c 175.9a 230.1e 220.4f 235.2d <.001 <.001 <.001 
PY(kg) 134.6 182.1 141.2a 125.3c 138.8b 190.6d 166.7f 187.1e <.001 <.001 <.001 
LY(kg) 162.1 236.4 176.4a 145.5c 166.4b 255.6d 207.1f 242.6e <.001 <.001 <.001 
FP(%) 5.29 4.98 4.82c 5.68a 5.28b 4.55f 5.51d 4.93e <.001 <.001 <.001 
PP(%) 4.13 3.91 3.95c 4.29a 4.14b 3.75f 4.10d 3.89e <.001 <.001 <.001 
LP(%) 4.94 5.03 4.90c 4.96a 4.94b 5.00f 5.06d 5.04e <.001 <.001 <.001 
SR21(%) 85.3 80.7 83.9b 86.6a 86.8a 78.5e 82.5c 81.2d <.001 <.001  0.30 
SR42(%) 93.9 93.7 92.4b 94.8a 94.7a 92.4e 94.9c 94.0d   0.65 <.001  0.11 
PR21(%) 55.4 45.4 53.7b 55.7b 57.8a 43.8e 45.1d 47.1c <.001 <.001  0.94 
PR42(%) 76.5 67.9 74.1c 77.1b 78.9a 65.9f 67.8e 69.7d <.001 <.001  0.28 
PRFS(%) 62.1 55.3 60.0b 62.9a 63.5a 54.4d 54.5d 56.6c <.001 <.001  0.06 
NIC(%) 9.8 13.5 10.5a 9.5a 8.6b 14.8c 13.4d 12.4e <.001 <.001  0.92 
CR21(%) 64.2 58.0 64.0a 64.1a 65.8a 57.0c 57.0c 59.6b <.001 <.001  0.69 
CR42(%) 86.6 82.0 85.7b 86.5b 87.9a 81.0d 82.2c 82.9c <.001 <.001  0.35 
a-f Means with different superscripts in the same row are significantly different across milking regimen and
breeds (P < 0.05).
1MY = milk yield; FY = fat yield; PY = protein yield; LY = lactose yield; FP = fat percentage; PP = protein 
percentage; LP = lactose percentage; SR21 = cow inseminated in the first 3 weeks from the start of mating; 
SR42 = cow inseminated in the first 6 weeks from the start of mating; PR21 = cow conceived in the first 3 
weeks from the start of mating; PR42 = cow conceived in the first 6 weeks from the start of mating; PRFS = 
cow conceived to first service; NIC = cow not in-calf at end of the breeding season; CR21 = cow calved in the 
first 3 weeks from the planned start of the calving; CR42 = cow calved in the first 6 weeks from the planned 
start of the calving; MF= milking frequency.
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In both milking systems, F cows had greater MY, PY and LY compared with J and F×J cows, 
but FY was higher for crossbred F×J cows than purebred F and J cows. Jersey cows were less 
affected than F and F×J cows by OAD milking with a reduction in MY, PY and FY ranged 25-28%, 
whereas in F and F×J cows the reduction ranged between 26% to 30%. Fat, protein and lactose 
percentages were higher in J cows and lowest in F cows in both milking populations. Sneddon et al. 
(2015) reported that J milk was most valuable per litre in New Zealand under the milk product 
portfolios of whole-milk powder, skim-milk powder, cheese and butter. Milk from J milked OAD 
has the highest value per litre, due to the increase in fat and protein percentage. Significant 
interactions were found between milking frequency and breed for milk production traits in this study. 
However, no milking frequency × breed interactions were detected for any fertility traits. Similarly, 
in the experimental study by Clark et al. (2006), J and crossbred F×J cows were submitted for mating 
at similar rates, but F×J cows had superior PR42 and NIC rates than J cows. This suggests that 
conception rates were higher in F×J cows than J cows. Jayawardana et al. (2023) reported that 
heterosis effects of F×J cows for SR21 was lower than PR21 and PR42 in OAD (SR21=2.8% vs 
PR21=5.5% and PR42=4.1%) and TAD (SR21=3.1% vs PR21 and PR42=5.8%) milking systems. 
Across both milking regimens crossbred F×J cows had the best overall reproductive performance, 
and F cows had the worst reproductive performance.    

CONCLUSIONS 
Cows milked OAD for the entire lactation had higher FP, PP and better fertility outcomes than 

cows milked TAD during the entire lactation. Fertility differed among breeds in both milking 
systems. Jersey cows were presented earlier for mating than F cows. Crossbred F×J cows had better 
fertility than purebred F and J cows, they became pregnant sooner in the mating season, and calved 
earlier in the following season than F and J cows in both milking populations. 
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SUMMARY 

Genetic evaluation of dairy cow fertility in New Zealand is currently based on calving season 
day, defined as the number of days from planned start of calving for the herd to cow calving date. 
This phenotype has gestation length embedded in it. Recently, a concern has been raised that 
shortened gestation lengths are the driving force behind good reproductive performance, as opposed 
to the cow’s ability to conceive in a timely manner. Therefore, the goal of this research was to 
explore a range of possible alternative fertility phenotypes to find a replacement for calving season 
day that would be, at least on a phenotypic level, independent from gestation length. Using data 
from herds with good data quality, alternative conception-based fertility trait definitions were 
evaluated and compared. Variance components were estimated using ASReml software. Binary six-
week in-calf rate was suggested as the best trait definition due to the relatively high genetic variance, 
desirable genetic and residual correlations with other fertility traits evaluated, and practicality of 
data recording. Further testing and validation are planned before a new conception-based fertility 
trait is finalised for inclusion in routine genetic evaluation. 

 
INTRODUCTION 

Over the past decade, research into calving date-based approaches to the NZ fertility evaluation 
has demonstrated a substantial improvement in validation accuracy for a wide range of key fertility 
metrics of commercial relevance to NZ dairy farmers, relative to previous prediction methods. 
However, the implementation of the new fertility breeding value has not been fully endorsed by all 
industry partners. Of particular concern was an increased role of short gestation length (GL) in 
driving the superior fertility predictions for new animals. When information is scarce or inaccurate 
on submission and conception rates, fertility breeding value estimates are likely to be dominated by 
GL. It can be argued that GL is not a true fertility trait, and some concerns exist about deployment 
of strong selection pressure for short GL. Therefore, it would be advantageous to separate fertility 
breeding values into three separate components: (1) resumption of cyclicity and oestrous expression 
(submission rate); (2) probability of getting pregnant (conception rate); and (3) GL. Submission rate 
(PM21) and GL are currently being evaluated in NZ. The goal of this research was to examine 
alternative definitions of conception-based fertility traits and recommend one that would be most 
suited for New Zealand dairy farming systems. 

 
MATERIALS AND METHODS 

Data. Fertility phenotypic data were extracted from New Zealand’s national dairy database. This 
data included records from 2005 to 2014 calving seasons. Mating and calving records from the first 
five parities were considered. Extensive data filters were applied to obtain data from herds with good 
recording practices and sufficient animals. A random sample of around 30,000 cows with phenotypic 
records was drawn from herds meeting these criteria. Data edits and current fertility trait (CSD0 - 
heifer, CSD - cow and PM21) definitions were described in detail by Stachowicz et al. (2014). Ten 
conception-based fertility phenotypes were derived for testing (Table 1). They incorporate a variety 
of attributes, including the timing of conception (i.e., continuous - CR1 and CR2; binary versions – 
CR7 to CR10), the number of inseminations required to achieve conception (i.e., CR3), and 
conception outcomes associated with various categories of insemination (i.e., CR4 to CR6). Two 
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versions of each phenotype were tested; one as defined as per Table 1, and one which included 
penalties for ‘poor’ fertility cows – i.e., carryover cows and cows that had been culled for infertility. 
For continuous traits, penalties were defined as the maximum value for the contemporary group, 
plus an additional 21-day oestrus cycle (for interval traits) or insemination (for number of 
inseminations), whereas cows with a binary trait penalty were set to 0. Conception confirmation is 
currently defined by non-return and the presence of a subsequent calving rather than the use of 
pregnancy diagnosis data; this is likely to change in the future because of industry data coordination 
initiatives. 

Table 1. Conception-based fertility traits definitions 

Trait Trait name Definition Unit Min. Max. 
CR1 Time of conception day Days from PSM to conception days -21 100 
CR2 Interval from first to last 

insemination 
Days from first insemination to 
conception 

days 0 100 

CR3 Number of inseminations Number of inseminations within season score 1 10+ 
CR4 Pregnant to first service Confirmed pregnant to first service binary 0 1 
CR5 Pregnant to any service Confirmed pregnant to any service binary 0 1 
CR6 Pregnant to AI Confirmed pregnant to AI binary 0 1 

CR7 Three-week in-calf rate Confirmed pregnant within three weeks 
of PSM binary 0 1 

CR8 Six-week in-calf rate Confirmed pregnant within six weeks of 
PSM binary 0 1 

CR9 Three-week in-calf rate Confirmed pregnant within three weeks 
of first mating binary 0 1 

CR10 Six-week in-calf rate Confirmed pregnant within six weeks of 
first mating binary 0 1 

Genetic analysis. Variance components estimation was carried out using ASReml software 
(Gilmour et al., 2009). Traits that are currently evaluated in the New Zealand genetic evaluation of 
fertility traits were analysed using models described by Amer et al. (2016) and Stachowicz et al. 
(2015, 2021). Conception-based fertility traits were analysed with a repeated records animal model, 
which in a simplified linear version can be represented as: 

CR1-10 = CG + Age*Breed + Age2*Breed + TR + FR + HO + Inbr +Het + Rec + a +pe + e 
where: 

- CG is the fixed contemporary group effect of herd-year-parity,
- Age*Breed & Age2*Breed are the fixed linear and quadratic regressions of age at calving

nested within breed,
- TR is the fixed effect of pregnancy termination reason (normal, abortion, induction,

premature),
- FR & HO are fixed linear regressions of New Zealand Friesian and foreign Holstein breed

composition,
- Inbr is fixed linear regression of inbreeding,
- Het is fixed linear regression of heterosis,
- Rec is fixed linear regression of recombination loss,
- a is a random animal effect,
- pe is a random permanent environmental effect,
- e is a random error term.

Each of the conception-based traits was first analysed with a univariate model. Next, five traits were 
chosen for further work and were analysed using pairwise bivariate models with traits from the 
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current evaluation system (CSD0, CSD, PM21). Finally, three traits of interest were analysed in 
three-trait models with CSD0 and PM21, with these new conception traits considered as alternative 
potential replacements for CSD. 

RESULTS AND DISCUSSION 
The results of initial univariate analysis of conception-based fertility traits defined with and 

without penalties are presented in Table 2. Heritabilities were consistently higher for phenotypes 
with penalties applied compared to phenotypes without penalties. This is the opposite trend to what 
was found for calving season day (CSD) in the past (Stachowicz et al., 2014). We hypothesise that 
using penalties to account for carryovers and cows that were culled due to fertility issues leads to 
higher estimates of genetic variance. Traits derived using planned start of mating as opposed to using 
a cow’s first mating as a base had higher heritability. This is consistent with observations from 
seasonal calving herds in Ireland (Stachowicz et al., 2022). Based on the univariate results, five traits 
were chosen for bivariate runs. Genetic correlations were estimated between those traits and traits 
in the current genetic evaluation of fertility (CSD0 - heifer, CSD - cow, PM21; Table 2). Pregnant 
to first service (CR4) had the lowest genetic correlations with CSD and PM21, whereas the 
remaining traits had values ranging from 0.90-0.96. Genetic correlations with CSD0 ranged from 
0.45-0.63. Phenotypic correlations (data not shown) between PM21 and conception-based traits 
were much lower than genetic correlations. This suggests that the extra records from conception 
phenotypes should add value, over and above submission data, when bulls have lower numbers of 
daughters. 

Table 2. Heritabilities (h2) and repeatabilities (rep) of conception-based fertility traits with (*) 
and without penalties, and their genetic correlations (rG) for a subset of 5 selected traits with 
calving season rate heifer (CSD0), calving season day cow (CSD) and submission rate (PM21) 

Trait h2 rep h2* rep* rGCSD0 rGCSD rGPM21 
CR1 0.018 0.089 0.030 0.139 0.56 0.96 -0.90
CR2 0.008 0.054 0.017 0.093 
CR3 0.008 0.060 0.014 0.081 
CR4 0.012 0.047 0.014 0.046 -0.50 -0.86 0.63 
CR5 0.007 0.007 0.012 0.054 
CR6 0.013 0.058 0.014 0.068 -0.47 -0.96 0.91 
CR7 0.020 0.060 0.028 0.066 -0.63 -0.95 0.95 
CR8 0.011 0.064 0.020 0.081 -0.45 -0.96 0.91 
CR9 0.008 0.045 0.014 0.053 
CR10 0.006 0.025 0.013 0.042 

Three traits (CR1; timing of conception and CR7/CR8; three- and six-week in-calf rates) were 
chosen as potential replacements for CSD and included in three-trait variance components 
estimation with CSD0 and PM21. This decision was based on estimates of genetic and residual (data 
not shown) correlations as well as on within-season data availability and naming conventions 
already used by farmers. Results are presented in Table 3. With multiple trait models, estimates of 
heritabilities tend to increase compared to univariate runs. Genetic correlations between conception-
based traits and CSD0 were comparable to current estimates for CSD (Amer et al., 2016). Three-
week in-calf rate had the highest genetic correlation with PM21 (0.94) compared to timing of 
conception and six-week in-calf rate (0.91). this indicates that three-week in-calf rate would be least 
preferred conception-based phenotype as it would provide less additional information on top of 
three-week submission rate compared to the other definitions. The binary six-week in-calf rate 
would likely be preferable to the continuous timing of conception trait because as soon as the six-
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week period from planned start of mating is complete the entire contemporary group’s phenotypes 
are available and can be used immediately for evaluation. However, there may be a trade-off 
between timely data availability and potential biases introduced to evaluation if phenotypes of poor 
fertility contemporaries were not included in evaluation of the binary trait. 

Table 3. Heritabilities (repeatabilities; on diagonal) and genetic correlations (off diagonal) for 
conception-based fertility traits (with penalties (*) with calving season rate heifer (CSD0) and 
submission rate (PM21) 

CSD0 CR1* PM21 CSD0 CR7* PM21 CSD0 CR8* PM21 
CSD0  0.023 CSD0  0.022 CSD0  0.021  
CR1*  0.64  0.048 

(0.13) 
CR7*  -0.66  0.044 

(0.07) 
CR8*  -0.59  0.033 

(0.09) 
PM21 -0.58 -0.91  0.067 

(0.16) 
PM21 -0.56 0.94  0.065 

(0.16) 
PM21 -0.55 0.91  0.063 

(0.16) 

CONCLUSION 
The goal of this research is to construct a more accurate conception-based fertility trait, as well 

as to determine whether greater overall economic advantage could be achieved with inclusion of this 
new trait in an economic index. This requires a more comprehensive definition of how the different 
components of fertility genetics contribute to farm profitability than is available in the current 
genetic evaluation system so they can be weighted accordingly. Based on our results, the continuous 
time of conception trait and binary three- and six-week in-calf rates are recommended for further 
testing in full GE univariate and multivariate runs. Next steps will include validation work, where 
phenotypes of the validation cow cohort are set to missing in prototype genetic evaluations, with the 
predictive ability of test models then evaluated across a range of fertility phenotypes, including the 
impact on GL. High genetic correlations between conception traits and CSD indicate that there might 
still be GL effects embedded in the new conception-based fertility trait. Correlations between 
conception-based fertility traits and GL EBVs will be assessed during validation and testing work. 
After the final conception-based fertility phenotype is chosen, the next step will be to incorporate 
the new trait in the economic index alongside GL which will have a non-linear economic weight to 
help ensure that any further shortening trend in GL will not pass the point after which short GL 
might have negative impacts on calf health and survival. 
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SUMMARY 

Predicting the fertility of dairy cows is a powerful tool for the dairy sector, giving farmers more 
confidence in making breeding and culling decisions. This study aimed to determine how animals 
ranked as high probability of conception to first insemination by a previously published model (i.e., 
MIR fertility model) differed from that of low-ranking individuals for various phenotypic and 
genotypic traits.  

Data including MIR spectral data, herd test data, and genotypic breeding values were obtained 
for 18,831 cows located in Australia. Cows were ranked based on the probability of conception 
estimated by the MIR fertility model, and subsets of animals were created from the top and bottom 
10% of animals. The mean values for phenotypic and genotypic traits of each group were compared 
using two-way t-tests. High MIR-predicted fertility (MFERT) cows were found to have significantly 
better reproductive performance and reduced somatic cell counts. High MFERT animals were found 
to have lower 305-day milk, fat, and protein yields compared to average, but this difference was 
reduced by correcting for parity. Conversely, high MFERT cows had higher milk production ABVs 
compared to average. Finally, high MFERT cows showed improved balanced performance index 
and health weighted index scores compared to the data average, and the low MFERT cows. Future 
studies should investigate how high and low MFERT cows differ in terms of other health traits, and 
how the model performs in conjunction with other breeding and management tools.  

 
INTRODUCTION 

Historical selection for milk production has resulted in poor fertility among the Australian dairy 
herd, with factors such as nutritional subfertility, where a cow must dedicate her energy resources 
either to her current calf through milk production or her future calf by maintaining body condition, 
as one of the possible contributors (Friggens et al. 2010). Whilst genetic selection has allowed for 
improvement in fertility, predicting the likelihood of pregnancy early on in the joining period would 
be helpful for farmers in making informed breeding decisions. Ho et al. (2019) developed an MIR 
model as a means of predicting an animal’s likelihood of conception to first insemination. To offer 
more insight into the predicted outcomes of using the MIR model, this study aimed to determine the 
phenotypic and genotypic differences between animals with a high likelihood of conception as 
predicted by the model, and animals with a low likelihood of conception.  

 
MATERIALS AND METHODS 

Data collection. Data from 18,831 cows, collected between 2016 and 2020, from 50 farms in 
Victoria, Tasmania, and New South Wales were obtained from DataGene (Bundoora, Victoria, 
Australia). Herd size ranged from 69 to 1,217 head. Breed proportions were 59.80% Holstein, 4.88% 
Jersey, and 35.32% other breeds. Data included milk production parameters from 1st herd test after 
calving and 305-day cumulative lactation estimates, calving age, calving to first AI interval, calving 
date, pregnancy outcomes and date of birth, BPI, HWI, and Australian breeding values (ABVs) for 
milk production traits, overall type, condition score, survival, calving ease, somatic cell count, 
daughter fertility, feed saved, heat tolerance, and gestation length. MIR spectral data were obtained 
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directly from herd test centres. For animals with multiple previous lactations prior to the 
insemination event, data from the first record were used.  

Data analysis. The MIR fertility model uses MIR spectral data and other herd testing data to 
derive a fertility prediction (pMIR) for each cow. Further details of this model have been described 
by Ho et al. (2019), but briefly, a training population of cows were categorised as having good or 
poor fertility based on whether they conceived to their first insemination. This training population 
was then used to train the model using partial least squares discriminant analysis. The model was 
used to assign the pMIR values. Data were split into 96 herd-year groupings to minimise the 
potential effects of environmental and management factors. Within each herd-year, cows were 
ranked on pMIR, and the most fertile top 5, 10, or 20% of animals and least fertile, bottom 5, 10, 
and 20% of animals were placed in subgroups. The mean and standard deviations of the ABVs, 
indices and phenotypic traits for each of the subgroups, as well as the overall dataset were calculated. 
To compare potential biological differences between cows predicted to have poor and good fertility, 
two-way t-tests were conducted in R (R Core Team 2021) between the top subgroups and the 
average, the bottom subgroups and the average, and the top and bottom subgroups. Results with a 
p-value of less than 0.05 were deemed statistically significant. Similar differences between the high 
fertility and low fertility animals were seen regardless of what proportion of the population was 
selected. Therefore, data for the top and bottom 10% of animals are presented here, as this proportion 
has the highest prediction accuracy (Ho and Pryce 2020). 

 
RESULTS AND DISCUSSION 

This study found that groups of dairy cows predicted as having a high likelihood of conception 
by the MIR fertility model (high MFERT) differed from animals predicted as having a low 
likelihood of conception (low MFERT) on several traits.  

Relationship between MIR fertility ranking and phenotypic performance. High MFERT 
animals had significantly higher mean pregnancy rates compared to the population average whereas 
low MFERT cows had significantly lower mean pregnancy rates (Table 1), indicating that high 
MFERT cows had a higher chance of reproductive success. This is consistent with the findings of 
Ho et al. (2019) when the model was first developed and tested. High MFERT cows also had 
decreased calving to first and second AI intervals compared to the average (Table 1). This is highly 
desirable in a seasonal production system as these traits allow cows to become pregnant early in the 
joining season and subsequently calve early in the season (Berry et al. 2013). 
 
Table 1. Mean and standard deviation of phenotypic traits related to fertility for high MFERT 
subgroup, average (all animals) and low MFERT subgroup 

 
 High Average Low 
Pregnant after joining period rate 0.84 ± 0.37ᵃ 0.75 ± 0.43ᵇ 0.53 ± 0.5ᶜ 
Pregnant after 1st AI rate 0.48 ± 0.5ᵃ 0.42 ± 0.49ᵇ 0.30 ± 0.46ᶜ 
Pregnant after 2nd AI rate 0.71 ± 0.46ᵃ 0.63 ± 0.48ᵇ 0.43 ± 0.5ᶜ 
Calving to first AI interval (days) 81.46 ± 26.05ᵃ 93.68 ± 49.93ᵇ 114.72 ± 82.8ᶜ 
Calving to last AI interval (days) 125.1 ± 90.04ᵃ 143.46 ± 105.53ᵇ 163.29 ± 122.4ᶜ 

a,b,c denotes where means are significantly different (P<0.05)  

 
Low MFERT cows had a significantly elevated SCC (774,640±1,560,500 cells/mL, P<0.001) 

compared to the average (176,840±594,300 cells/mL), whereas high MFERT cows had a 
significantly lower SCC (56,890±83,700, P<0.001). Lomander et al. (2013) reported an increased 
calving to first AI interval of cows with high SCC compared to their contemporaries, corresponding 
with the findings above.  
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There was no significant difference between the 305-day milk, and milk fat and protein yields 
for low MFERT cows and the average, whereas high MFERT animals had a significantly lower 305-
day yield compared to the data average. However, these differences were no longer significant after 
correcting the data for parity.  

Table 2. Mean and standard deviation of phenotypic traits related to milk production for high 
MFERT subgroup, average and low MFERT subgroups  

High Average Low 
305-day milk yield (litres) 6304.6 ± 2007.8ᵃ 6794.3 ± 2138.0ᵃᵇ 7094.7 ± 2122.9ᵇ 
305-day fat yield (kg) 256.1 ± 73.8ᵃ 270.06 ± 80.05ᵃᵇ 282.84 ± 81.36ᵇ 
305-day protein yield (kg) 220.1 ± 67.4ᵃ 231.6 ± 70.6ᵃᵇ 238.5 ± 69.0ᵇ 

a,b,c denotes where means are significantly different (p<0.05) 

Relationship between MIR fertility ranking and genetic merit. Apart from comparing the 
phenotypic performance of high versus low MFERT cows, we also analysed how genetic merit 
differed. There was no significant difference in daughter fertility ABV in any of the subgroups, 
which may be due to the low heritability of fertility (Tenghe et al. 2015). However, high MFERT 
cows were found to have a significantly lower gestation length ABV (-0.84±2.24, P<0.05) than 
average (-0.55±2.28), and low MFERT animals had a higher gestation length ABV (-0.16±2.19, 
P<0.001) compared to the average. The gestation length BV has been shown to be correlated with 
rate of conception to first AI (Vieira-Neto et al. 2017), which was the value being predicted by the 
MIR fertility model.  

High MFERT cows were shown to have a significantly increased SCC ABV (119.9±16.85, 
P<0.001) compared to average (115.3±17.99), whereas low MFERT cows had a significantly lower 
SCC ABV (107.73±17.11, P<0.001) than average, consistent with the phenotypic SCC values 
presented above. Favourable genetic relationships have been previously shown between SCC and 
various fertility traits, including calving interval and days to first service (Wall et al. 2003), which 
are closely related to rate of conception to first AI.  

High MFERT cows were found to have significantly higher production ABVs compared to 
average, whereas low MFERT cows had significantly lower production values compared to average 
(Table 3). This demonstrates genetic potential for the high MFERT cows to produce a high quality 
and quantity of milk, which further demonstrates that the phenotypic differences in production 
presented above are more likely the result of differences in parity. The ASI, which combines protein, 
fat, and milk yield ABVs based on their economic value, was also included in the analysis. High 
MFERT cows in were found to have a significantly higher ASI than the average, whereas low 
MFERT cows had a significantly lower ASI.  

Table 3. Mean and standard deviation of breeding values related to milk production for high 
MFERT subgroup, average (all animals) and low MFERT subgroups  

High Average Low 
Milk ABV 107.3 ± 460.8ᵃ 89 ± 453.12ᵃ 36.32 ± 453.17ᵇ 
Fat ABV 12.88 ± 15.01ᵃ 7.56 ± 15.38ᵇ 4.08 ± 15.39ᶜ 
Protein ABV 11.39 ± 10.42ᵃ 7.51 ± 10.89ᵇ 4.55 ± 11.29ᶜ 
ASI 91.11 ± 71.31ᵃ 56.67 ± 73.89ᵇ 35.09 ± 74.24ᶜ 

a,b,c denotes where means are significantly different (p<0.05) 

Australia’s two main selection indices were used to look at the combined effects of health, 
fertility, and production ABVs on the genetic merit of high and low MFERT cows. This study found 
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that high MFERT cows had a significantly higher mean BPI (123.6±79.16, P<0.001) compared to 
the average (82.9±82.58), whereas the BPI for low MFERT animals was significantly lower than 
average (45.6 ± 78.59, P<0.001). Animals with increased BPIs have been shown to live longer 
productive lives and have greater chance of conception which lowers AI costs (Newton et al. 2017). 
As a result, cows in the high MFERT group could generate an average additional profit of $41 per 
cow per year compared to the average. High MFERT animals also had a significantly higher mean 
HWI value of 91.35±61.41 (P<0.001) compared to the average (64.28±63.04). The low MFERT 
animals had a mean HWI of 35.81±58.96, which was significantly lower than the data average 
(P<0.001). This was expected due to the heavy weighting of health and fertility in the HWI, but was 
included in the study to quantify the difference in profitability of low and high MFERT cows.   

Applications. These findings should give farmers confidence to use the MIR fertility model 
along with other existing tools (e.g., daughter fertility breeding values or BPI) to make decisions on 
farm, particularly to improve fertility without affecting milk production. For example, the model 
can be used as an additional tool to support optimised semen allocation, where high predicted 
fertility cows can be assigned sexed semen, and low predicted fertility cows can be assigned beef or 
conventional semen (Newton et al. 2021). Additionally, farmers could use the model to identify high 
BPI cows with low predicted fertility, and implement management strategies such as nutritional 
adjustments to improve the profitability of these cows before the mating period starts. 

CONCLUSIONS 
This study shows that high MFERT cows as ranked by the MIR fertility model had improved 

reproductive performance, lower SCCs, and higher BPI, ASI, and HWI values, showing potential 
for improved lifetime profitability. There were no significant differences in milk production between 
groups, but high MFERT cows had above average milk solid percentages. Further studies should be 
undertaken into how the model can be used in conjunction with other commonly used breeding and 
management tools, as well as how high and low MFERT animals differ with regard to other health 
traits. 

ACKNOWLEDGEMENTS 
This study was undertaken as part of the DairyBio research program, which is funded by Dairy 

Australia (Melbourne, Australia), the Gardiner Foundation (Melbourne, Australia), and Agriculture 
Victoria (Melbourne, Australia). It formed part of A. Bird’s MAgSc at University of Melbourne. 

REFERENCES 
Axford M., Santos B., Stachowicz K., Quinton C., Pryce J.E. and Amer P. (2021) Anim. Prod. Sci. 

61: 1940. 
Berry D.P., Kearney J.F., Twomey K. and Evans R.D. (2013) Irish. Agr. Food Res. 52: 1  
Friggens N., Disenhaus C. and Petit, H. (2010) Animal 4: 1197. 
Ho P., Bonfatti V., Luke T. and Pryce J. (2019) J. Dairy Sci. 102: 10460. 
Ho P. and Pryce J. (2020) J. Dairy Sci. 103: 11535. 
Lomander H., Svensson C., Hallén-Sandgren C., Gustafsson H. and Frössling J. (2013) J. Dairy 

Sci. 96: 6315.  
Newton J.E., Ho P.N. and Pryce J.E. (2021) Proc. Assoc. Advmt. Anim. Breed. Genet. 24: 263. 
Tenghe A., Bouwman A., Berglund B., Strandberg E., Blom J. and Veerkamp R. (2015) J. Dairy 

Sci. 98: 5763. 
Vieira-Neto A., Galvão K., Thatcher W. and Santos J. (2017) J. Dairy Sci. 100: 316. 
Wall E., Brotherstone S., Woolliams J.A,, Banos G. and Coffey M.P. (2003) J. Dairy Sci. 86: 

4093. 



Genetic Evaluation B 

370 

APPROPRIATENESS OF COMBINING CARCASS DATA FROM ANGUS SIRE 
BENCHMARKING PROGRAM AND BREEDER HERDS IN A SINGLE GENETIC 

EVALUATION 
 

A.M. Samaraweera, A. Byrne and C.J. Duff 
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SUMMARY 

The objective of this study was to investigate whether the two different sources of abattoir 
carcass phenotypes that are currently submitted for inclusion in the TransTasman Angus Cattle 
Evaluation are genetically the same trait, being abattoir carcass phenotypes measured on cattle in 
the Angus Sire Benchmarking Program (ASBP), and abattoir carcass phenotypes measured on 
Angus animals in breeder herds. The abattoir carcass traits used were carcass MSA marble score 
(CMMS), carcass fat depth at p8 rump site (CP8, measured in mm), and dressed carcass weight 
(CWT, measured in kg). Additive genetic correlations between the same traits across the two sources 
were estimated with bivariate animal models. The additive genetic correlations for CP8, CMMS, 
and CWT were 0.99 ± 0.17, 0.84 ± 0.24, and 0.73 ± 0.23, respectively. Therefore, the two different 
sources of abattoir carcass phenotypes can be considered genetically to be the same trait and can be 
included in a unified genetic evaluation as the same trait. 
 
INTRODUCTION 

Variations in breeding goals and data collection processes can yield different heritability 
estimates for the same trait even though the same phenotype is collected. Further, the genetic 
correlations between the same trait from two different data sources can be low raising concerns 
regarding the genetic similarity of the traits and the validity of combining data from various sources 
in a single genetic evaluation. Currently, phenotypes from two different sources are submitted for 
inclusion in the TransTasman Angus Cattle Evaluation (TACE), i.e., phenotypes from the Angus 
Sire Benchmarking Program (ASBP) (Parnell et al. 2019), and phenotypes measured on Angus 
animals in breeder herds. This study was formulated to investigate whether the carcass phenotypes 
collected on the two different data sources are genetically the same trait. Therefore, the objective of 
this study was to estimate the heritability and additive genetic correlations among the same traits 
between ASBP and breeder herds to determine the suitability of combining abattoir data from both 
sources in the TACE. 

 
MATERIALS AND METHODS  

Data. Phenotypic records of carcass traits and pedigree were extracted from the Angus Australia 
database. Among the different carcass traits, carcass MSA marble score (CMMS), carcass fat depth 
at p8 rump site (CP8, measured in mm), and dressed carcass weight (CWT, measured in kg) were 
selected based on the availability of an adequate number of records in both ASBP and breeder herds 
(Table 1).  

Extracted carcass records were used in the analyses if, they were pure Angus i.e., Angus 
percentage is higher than or equal to 87.5 %; the animals were born after 2010; the age at slaughter 
is available for carcass weight, and a carcass weight record is available for other carcass records; the 
sire is known, and if the observations are within three standard deviations from each trait mean 
which is calculated within each data source. Furthermore, contemporary groups with less than five 
animals and single-sire contemporary groups were discarded from the analyses. Contemporary 
groups were formed as described by Graser et al. (2005). The number of contemporary groups 
formed in CWT for ASBP and breeder data were 75 and 271, respectively. The average number of 
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individuals within a contemporary group was greater in ASBP data than breeder data (39 vs. 16 for 
CWT). The data cleaning process excluded ASBP data by 16% and breeder herd data by 29%, 
respectively. After data cleaning, a total of 3,041 animals from ASBP herds originating from 329 
sires and 2,502 dams, and 4621 animals from breeder herds originating from 352 sires and 3,796 
dams were used in the study.  

Estimation of genetic parameters. Genetic parameters for each trait were estimated with 
univariate animal model, and the model fitted was as follows.  

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒆𝒆 
Where 𝒚𝒚 is the vector of observations for CMMS, CP8, and CWT, 𝑿𝑿 is the vector of fixed effects of 
contemporary group and linear and quadratic effects of the slaughter age (for CWT) or linear and 
quadratic effects of CWT (for CMMS and CP8) as covariates, 𝒁𝒁 is the vector of random animal 
effects, 𝒆𝒆 is the vector of random residual effects, and 𝑿𝑿 and 𝒁𝒁 are design matrices which relate 
records to fixed effects and random animal effects, respectively. The covariates fitted in the model, 
slaughter age and CWT were adjusted for 750 days of slaughter age or 400 kg of CWT as specified 
in TACE (Angus Australia 2023). The variance components for the random effects were denoted as 
𝑉𝑉𝑉𝑉𝑉𝑉(𝒁𝒁)  =  𝑨𝑨𝜎𝜎𝑎𝑎2 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝒆𝒆)  =  𝑰𝑰𝜎𝜎𝑒𝑒2, where 𝑨𝑨 is the numerator relationship matrix, 𝜎𝜎𝑎𝑎2 is the 
additive genetic effects variance of the animal, 𝑰𝑰 is the identity matrix, and 𝜎𝜎𝑒𝑒2 is the residual 
variance. The pedigree consisted of only the animals with records for analysis plus the previous four 
generations. Additive genetic correlations between the same trait across the two data sources were 
estimated with bivariate animal models. Variance components for univariate and bivariate models 
were estimated using the WOMBAT software (Meyer 2007). 
 
RESULTS  

The descriptive statistics of the carcass traits are shown in Table 1. On average, animals in 
breeder herds were slaughtered 26 days later, and they were 7 kg heavier than ASBP animals. 
Marbling trait mean (CMMS) was also higher for animals in breeder herds by comparison to ASBP 
animals but not for CP8.  
 
Table 1. Descriptive statistics of four carcass traits in Angus Sire Benchmarking Program 
(ASBP) and breeder herds  
 

Traits1 No of 
animals Mean SD CV Min Max Mean 

age 
Mean 
weight 

ASBP         
CMMS 3026 523.98 120.82 0.23 160 890 757 453 
CP8 3017 22.94 6.42 0.28 4 42 758 453 
CWT 2940 457.73 36.91 0.08 315 571.5 762 458 
Breeder         
CMMS 2011 568.57 101.31 0.18 230 900 774 449 
CP8 4454 21.43 6.07 0.28 6 40 785 464 
CWT 4520 464.96 45.21 0.10 279.4 580.5 788 465 

1CMMS, carcass MSA marble score; CP8, carcass p8 fat (measured in mm); CWT, dressed carcass weight 
(measured in kg). 
 

The additive genetic variances and heritability estimates for all carcass traits were higher in 
ASBP herds than breeder herds (Table 2). The additive genetic correlations between the same trait 
across ASBP and breeder herds were highest for CP8 (0.99 ± 0.17), followed by CMMS (0.84 ± 
0.24) while the additive genetic correlations for CWT was the lowest (0.73 ± 0.23, Table 3). The 
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additive genetic correlations between the two data sources increased with an increasing number of 
common sires between the two herds.  

Table 2. Additive genetic (𝝈𝝈𝒁𝒁𝟐𝟐 ) and residual (𝝈𝝈𝒆𝒆𝟐𝟐) variances, and heritability ± standard errors 
(𝒉𝒉𝟐𝟐 ± 𝑺𝑺𝑺𝑺), from univariate analyses of carcass traits for Angus Sire Benchmarking Program  
(ASBP) and breeder herds   

Traits1 ASBP Breeder 
𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 ℎ2 ± 𝑆𝑆𝑆𝑆 𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 ℎ2 ± 𝑆𝑆𝑆𝑆 

CMMS 5218 6388 0.45 ± 0.06 2234 4730 0.32 ± 0.08 
CP8 14.85 15.24 0.49 ± 0.06 12.28 14.68 0.46 ± 0.06 
CWT 676 374 0.64 ± 0.07 297 624 0.32 ± 0.05 

1Traits and units are as given in Table 1. 

Table 3. Additive genetic correlations ± standard errors (SE), number of common sires, and 
number of offspring per sire between ASBP and breeder herds   

Traits1 Genetic correlations ± SE No. of common sires No. of offspring per sire 
ASBP Breeder 

CMMS 0.84 ± 0.24 8 98 59 
CP8 0.99 ± 0.17 11 133 152 
CWT 0.73 ± 0.23 10 124 156 

1Traits and units are as given in Table 1. 

DISCUSSION 
This study aimed to evaluate whether the phenotypes collected for carcass traits in ASBP and 

breeder herds are genetically the same trait by estimating additive genetic correlations among the 
same traits between ASBP and breeder herds. If the additive genetic correlations are closer to one, 
then the traits from two herds can be declared as being sufficiently similar for analysis as the same 
trait in the TACE. In this study, the proportion of additive genetic variance shared between the same 
trait across two data sources were high and significantly different from zero indicating that the 
genetic influences on the same trait across two herds are almost identical. Therefore, CWT, CP8, 
and CMMS are genetically the same trait across ASBP and breeder herds.   

The variance components and heritability estimates are higher than 0.32 for all carcass traits 
across the two herds and consistent with past studies on carcass traits (Duff et al. 2021; Samaraweera 
et al. 2021; Torres-Vázquez et al. 2018; Börner et al. 2013; Reverter et al. 2000). Accordingly, the 
heritability for CWT varies from 0.41 ± 0.04 (Börner et al. 2013) to 0.75 ± 0.06 (Duff et al. 2021); 
for CP8 ranges from 0.36 ± 0.04 (Börner et al. 2013) to 0.56 ± 0.06 (Duff et al. 2021) for Australian 
Angus. 

In this study, the additive genetic variances and the heritability estimates were higher in ASBP 
herds than breeder herds particularly for CWT and CMMS. Similar to this study, higher values have 
been reported for ASBP collected data, for example, an additive genetic variance of 709 and a 
heritability of 0.75 ± 0.06 were reported for CWT by Duff et al. (2021). This may be a result of the 
project design of minimal harvesting prior to slaughter (i.e. whole contemporary group) and the 
general focus on phenotype quality. Conversely, the lower additive genetic variance in the carcass 
data from breeder herds may be explained by general pre-slaughter harvesting or the commercial 
nature of the phenotype collection.  
The TACE utilizes the variances estimated across all herds, and the herd origin is accounted for in 
the contemporary group formation, hence in the genetic model as described by Graser et al. 
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(2005). The genetic similarity of the carcass traits between ASBP and breeder herds used in this 
study further confirms the ability to use them as the same trait in TACE.  

CONCLUSION 
Phenotypically collected abattoir carcass traits are genetically consistent across ASBP and 

breeder herds based on the genetic correlations between the same trait across the two herds. 
Therefore, the abattoir carcass traits used for this study can be treated as identical traits in the TACE. 
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SUMMARY 
The New Zealand (NZ) dairy industry is serviced by two key sources of genetic evaluations; 

firstly, the national evaluation delivered by DairyNZ via its subsidiary NZAEL, and secondly, the 
private evaluations delivered via the major breeding companies (LIC and CRV). The genetic 
evaluation ecosystem is changing, with genomic selection (GS) enhancing the accuracy of 
predictions across a wider range of traits. Improving rates of genetic progress and pursuing outcomes 
which assist with the industry’s social license to operate, such as animal welfare and environmental 
impacts, via genetic pathways are some of the potential benefits of genomics for the dairy industry. 

This study presents some of the benefits of an industrywide GS strategy underpinned by a modern 
and independent pipeline that integrates a source of genomic and phenotypic data. This source – 
known as the Infoherds programme – would act as a genomic reference population, with dairy herds 
managed under commercial conditions supplying data to improve prediction accuracy and to 
facilitate the development of novel traits within existing genetic evaluations.  

The results demonstrate that GS could unlock between NZ$185 and NZ$245M in additional 
value of genetic gain per year to the NZ dairy industry – a 60-80% increase in the value of historic 
rates of improvement. Realising this potential requires a strategy for successfully implementing 
genomics via an independent information infrastructure co-ordinated by NZAEL. 

INTRODUCTION 
DairyNZ via its subsidiary NZAEL is investigating a programme to engage industry information 

herds (Infoherds) as a source of data contributing to the future genomic evaluations of strategically 
important traits, including those to be incorporated in the national economic selection index, 
Breeding Worth (BW). To develop a road map for rolling out the programme, we must value the 
implementation of genomic selection (GS) to the NZ dairy industry, and then identify potential data 
sources and integration needs. 

The successful implementation of GS depends on the existence of a reference population. 
Information herds can be large and complex projects requiring an overarching strategic vision to 
ensure they achieve their key objectives. Disparate priorities, such as building farmer confidence in 
GS by improving accuracy of prediction, the introduction of novel traits, and support of on-farm 
management decisions, must all fit into an overarching goal of building a platform for industry 
genetic evaluations and shared data. 

In many countries, the integration of genomic information into genetic evaluation systems 
underpinned by the collection of phenotypic and genotypic data has improved and accelerated 
genetic trends (García-Ruiz et al. 2016). However, this has not been observed in New Zealand, which 
might reflect the substantial breed admixture in the national herd as well as the pasture-based 
production, not common in most countries. Until the industry can integrate genomic information 
into a standard industrywide platform, the potential value of genomics to the broader industry is 
unlikely to be fully exploited. This potential value comprises a combination of: 

1) Increased genetic progress via the adoption of superior young genomic sires instead of older
daughter-proven (DP) sires,
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2) Increased prediction accuracy through the estimation of genomic variant effects and more
reliable parentage information, and

3) Increased industry engagement, introduction of new traits, cost-effective use of novel
phenotypes in selection and decision making on-farm, and improved R&D collaboration.

In New Zealand, Infoherds would contribute to the national Dairy Industry Good Animal 
Database genetic evaluations as well as to the private evaluations delivered via major breeding 
companies (LIC and CRV). These companies will also benefit from Infoherds, as an additional 
source of phenotypic and genotypic data to their traditional herd testing programs and sire proving 
schemes. The information herd project therefore aligns with these breeding programs and creates a 
platform for better industry integration to support farmers.  

This study presents some of the benefits of an industrywide GS strategy underpinned by a modern 
and independent pipeline that integrates a source of genomic and phenotypic data. This source – 
known as the Infoherd programme – would act as a genomic reference population, with dairy herds 
managed under commercial conditions supplying data to improve prediction accuracy and to 
facilitate the development of novel traits within existing genetic evaluations. 

MATERIALS AND METHODS 
This paper uses a geneflow modelling framework to analyse the combined effects of increased 

adoption of young genomic sires (by 5, 10 or 30% per year) in conjunction with an increased 
selection differential between GS and DP sires (20 and 40 BW units until 90% adoption). These 
parameters were used because commercial GS sires had an average initial superiority of 30 BW units 
over DP sires available in the same year (2021). The difference at 20 BW was deliberately chosen 
to be conservative, given the inflation issues around GS sires that have been experienced in many 
dairy industry evaluations around the world. The proportional use of GS sires in 2021 was set at 
30%, with increments of 5% from 2016 to 2021. The increased adoption of GS sires and increase in 
the SD of the BW from new trait additions enabled by Infoherds, were assumed to be intertwined. 

GS increases prediction accuracy for young sires, enabling farmers to select younger sire teams 
and avoid the need for progeny testing of prospective sires within sire proving herds.  This shortens 
the generation interval and subsequently accelerates the rate of genetic progress (Lush 1937).  

To estimate the economic impact of a higher adoption rate of young GS sires in the dairy 
industry, we created a model following the principles of recursive geneflow model methodology 
outlined by Matthews et al. (2019) and Fetherstone et al. (2021). It assumes that the average merit 
of calves born in a given year is half the merit of the sires available for use that year and half the 
merit of the cow herd, where the sire merit is a weighted combination of DP and GS sires, and the 
cow merit is set as a weighted combination of calf merit from 2 to 9 years prior. 

The model was parameterised with the current BW genetic trend in dairy cows and a base status 
quo scenario where there is a 30% adoption rate of young GS sires. The results are calculated as the 
net present value (NPV) of the cumulative increase in merit of the cow herd over the base year value. 
The NPV was calculated using a discount rate r of 5%, and 4.9M breeding cows. The annualised 
NPV of genetic improvement was calculated as the cumulative NPV divided by the sum of the 
discount factors from year 0 to 20.  

RESULTS AND DISCUSSION 
The results of the geneflow modelling showed that the current uptake in adoption of young GS 

sires should lead to an 18% increase in genetic trend and a 39% increase in the annualised benefits 
after 20 years. However, a more aggressive increase in adoption and higher selection differential 
between DP and GS sires through improved evaluation systems could result in a 50% increase in 
genetic trend over historic and annualised benefits of genetic improvement of up to $495M.  

375 
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Genetic trend in cows increased from 12.5 BW/year in the status quo to 13.3 and 15.8 BW/year 
after 20 years for the two levels of bull selection differential, 20 and 40 BW units/year, respectively. 

The higher level of trend was attained earlier with faster adoption leading to increased benefits 
(Figure 1), resulting in total cumulative benefits for genetic improvement over the 20-year timeframe 
modelled of over $5.8B (differential of 20 BW/year) and $6.6B (40 BW/year). Relative to the status 
quo base scenario, the increase in total cumulative benefits ranged between $89M and $243M with 
different rates of adoption of GS bulls at the same 20 BW differential. This resulted in annualised 
benefits between $423M and $434M. The higher initial selection differential between GS and DP 
sires (40 BW) led to an increase in cumulative benefits between $658M and $1,065M, and 
annualised benefits between $465 and $495M (Table 1), depending on the adoption rate. 

Figure 1. Difference in mean cow BW over the status quo base scenario for each of the 
increased adoption scenarios, under 20 and 40 BW differential scenarios 

Table 1. Value of increased adoption of young sires and higher BW to the NZ dairy industry 

The impact of improving fertility and survival evaluations, as well as adding clinical mastitis and 
lameness in BW, and recording high-quality phenotypes with the Infoherds structure, were 
incorporated into the model. The benefits of increased adoption of young GS sires, the addition of 

Scenario 
Genetic trend 

after 20 
years 

NPV Benefits 
after 20 years 

(NZ$M) 

NPV of cumulative 
benefits (NZ$M) 

Annualised 
benefits 
(NZ$M) 

Historic 10.6 $4,038.66 -$1,569.64 $300.00 
Base: max adoption of 50% of GS 
sires, 20 BW difference 12.5 $5,608.31 $416.60 

Adoption of GS sires by 5% per 
year up to 90%, 20 BW diff 13.3 $5,697.30 $89.00 $423.21 

Adoption of GS sires by 10% per 
year up to 90%, 20 BW diff 13.3 $5,778.74 $170.44 $429.26 

Adoption of GS sires by 30% per 
year up to 90%, 20 BW diff 13.3 $5,851.73 $243.43 $434.68 

Adoption of GS sires by 5% per 
year up to 90%, 40 BW diff 15.8 $6,266.39 $658.09 $465.48 

Adoption of GS sires by 10% per 
year up to 90%, 40 BW diff 15.8 $6,481.26 $872.95 $481.44 

Adoption of GS sires by 30% per 
year up to 90%, 40 BW diff 15.8 $6,673.98 $1,065.67 $495.76 
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new traits, and enhanced accuracy of existing traits to BW, could unlock $185-$245M in additional 
value of genetic gain per year, a 60 to 80% increase on the value of genetic improvement.  

Berry (2019) identified areas of benefit with the integration of genomics to livestock breeding 
programs. For the NZ dairy industry, potential areas of benefit from adoption of GS, supported by 
Infoherds, involve improved rates of genetic gain and industry engagement. These represent key 
areas of interest for NZAEL alongside prompt development of systems to monitor genetic diversity, 
inbreeding and recessive gene frequencies across the entire population, and developing strategies to 
support the sustainable management of the national genetic resource.  

Implementation of genomics within NZAEL also provides several intangible benefits. This 
includes an independent benchmark of sire offerings from each breeding company. It also enables 
farmers to review breeding value data on their commercial milking cows and heifers. However, in 
the current absence of a national genomic evaluation platform, the independent benchmark function 
is severely compromised until young bulls marketed based on genomic information have daughter 
records included in the conventional pedigree based NZAEL evaluation. Thus, these intangible 
benefits comprise a) helping NZAEL to fulfil a crucial role as an independent source of genetic 
improvement information for the dairy industry, which at the moment does not own, control or have 
access to a genomic data pipeline to support its R&D programmes; b) supporting industry 
compliance to underpin more robust assessments of individual farm emissions, shifting from generic 
parameter estimates of emissions to estimates based on the actual genetic profile of individual herds; 
and c) industry-wide added value from GS, as the broader industry fully benefits from the genomic 
resource only when the data and information is available for use by all herds and service operators. 

CONCLUSIONS 
Whilst genomics has been implemented within the NZ dairy industry for approximately 10 years, 

the potential value of the technology is yet to be fully realised. This might be reflecting the 
substantial breed admixture in the national herd as well as the pasture-based production which 
requires a specific reference population to explore the full effectiveness of genomic selection. A 
concerted collaborative effort at national level to overcome these limitations is now essential to 
ensure that the full industry benefits are realised. Additional benefits have also been identified from 
supporting sustainable management of genetic diversity within the national herd.  

It is currently uncertain how funding and data flows will be managed, but stakeholders and 
potential partners must be engaged for the project to succeed. The value proposition for Infoherds 
has been previously identified. Communicating this clearly to potential stakeholders, as well as the 
opportunity cost associated with inaction, will be essential for building productive partnerships. 
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VALIDATION OF CALVING EASE EBVS EXAMINING THE IMPACT OF 
GENETIC GROUPS AND SINGLE-STEP ON PREDICTIVE ABILITY 

P.M. Gurman, L. Li, M.G. Jeyaruban, D.J. Johnston, C.J. Girard, and A.A. Swan

Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia 

SUMMARY 
Calving difficulty scores recorded in beef cattle are challenging to analyse due to low frequency 

of difficult births and the scored nature of the trait, requiring analysis in a threshold model, typically 
in combination with two linear traits, birth weight and gestation length. Previous software to 
calculate estimated breeding values (EBVs) for calving ease was not able to include single-step 
methods or fit genetic groups in models of analysis. In this study, we examined the value of including 
genetic groups and genomic information via single-step genomic BLUP (ssGBLUP) in the 
TransTasman Angus Cattle Evaluation (TACE) BREEDPLAN and Hereford BREEDPLAN 
analyses, by forward-validation in genotyped animals. The greatest improvements in accuracy were 
observed when including genomic information, with increases of 0.169 and 0.106 in the Angus and 
Hereford analyses respectively. Adding genetic groups to models had no impact on accuracy, but 
increased the bias of CE EBVs in ssGBLUP analyses for both breeds. 

INTRODUCTION 
Traits that are measured as scores are often difficult to analyse, especially if the distribution of 

the scores is skewed. A linear model can be used in some cases if the scores approximate normality, 
but a threshold model is typically used to address the imbalance in measurement between categories 
(Hoeschele et al. 1995; Gilmour et al. 1998). Mixed-model threshold analyses add extra complexity 
to solving for fixed and random effects due to the requirement of estimating both the threshold values 
and the weights to apply to each categorical phenotype.  

Calving difficulty scores in BREEDPLAN analyses are characterised by low frequencies of 
difficult births. Analyses of this trait are performed using a categorical threshold model with birth 
weight and gestation length included as correlated linear traits to improve prediction for overall 
calving ease. Since 2017, BREEDPLAN analyses for most traits have been transitioning to 
ssGBLUP. In November 2019, a ssGBLUP implementation for calving ease was developed in new 
software for the BREEDPLAN component of the TransTasman Angus Cattle Evaluation (TACE, 
herein Angus), including genetic groups.  

As part of the process of developing these enhancements, the utility of genetic groups came into 
question. The addition of genetic groups was observed to substantially increase convergence times 
of the model in the Angus evaluation, and when applied to Hereford BREEDPLAN, resulted in 
changes in EBVs that were difficult to interpret. 

This paper examines the predictive ability of threshold model calving ease EBVs in Angus and 
Hereford BREEDPLAN with the inclusion of genetic groups and single-step using forward 
validation procedures. 

MATERIALS AND METHODS 
Calving ease (CE) data from the March 2022 Angus and May 2021 Hereford BREEDPLAN 

calving ease analyses after cleaning were used in this study. CE is scored as 1: no assistance required, 
2: easy pull, 3: hard pull. Genetic parameters used for these models were adapted from Jeyaruban et 
al. (2015), with the genetic group variance assumed to be equal to the genetic variance. Genetic 
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groups were fitted as routinely constructed in BREEDPLAN based on year window, breed, and 
country for the main analysis traits, with 20 groups for Angus and 16 for Hereford. There groups 
were included to improve prediction for animals with missing pedigree. Each data set was split into 
two groups, “training” and “validation”, based on year of birth. The training set included animals 
born before 2019, while the validation set included animals with phenotypes born from 2019 
onwards. BLUP analyses were performed in a factorial design, with and without genetic groups, and 
with and without genotypes. These four analyses were performed, first using all phenotypes, with 
the resulting EBVs for validation animals denoted as 𝒖𝒖�𝑤𝑤. Phenotypes for the validation animals 
were then removed and the analyses repeated, with the resulting EBVs denoted as 𝒖𝒖�𝑝𝑝. The subscripts 
“𝑤𝑤” and “𝑝𝑝” refer to “whole” and “partial” analyses respectively, with the partial EBVs of validation 
animals (𝒖𝒖�𝑝𝑝) informed through their pedigree and genomic relationships with the training animals. 
Maternal effects were fitted as routinely calculated in BREEDPLAN, but were not examined in the 
cross-validation, because the validation animals were not chosen to remove all phenotypes 
connected to the dam. EBVs were analysed on the underlying scale. 

Correlations were used to examine the change in EBVs between each analysis. Cross-validation 
metrics were calculated using the method of Legarra et al. (2018). Traditional phenotype-based 
cross-validation metrics were not considered for this analysis due to the categorical nature of the 
calving ease trait. Accuracies were calculated by the formula  

𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤,𝒖𝒖�𝑝𝑝�

�𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑(𝑲𝑲)�����������  −  𝑲𝑲��𝜎𝜎𝑢𝑢,∞
2

 

where 𝑲𝑲 is the appropriate relationship matrix for the validation animals with phenotypes for each 
trait and 𝜎𝜎𝑢𝑢,∞

2  is genetic variance in the validation animals, assumed to be the genetic variance. The 
dispersion was estimated by 𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = 𝑎𝑎𝑐𝑐𝑐𝑐�𝒖𝒖�𝑤𝑤 ,𝒖𝒖�𝑝𝑝�/𝑐𝑐𝑎𝑎𝑣𝑣(𝒖𝒖�𝑝𝑝) and the bias was estimated as 𝑏𝑏𝑑𝑑𝑎𝑎𝑑𝑑 =
�𝒖𝒖�𝑝𝑝���� − 𝒖𝒖�𝑤𝑤����� /�𝜎𝜎𝑢𝑢2, which was modified by Legarra et al. (2018) to allow for comparison between 
traits. While the validation animals included both genotyped and pedigree-only animals, metrics 
calculated only included genotyped animals due to computational difficulties. Metrics were also 
only calculated on direct effects, without consideration of maternal effects. Analyses were 
performed with the AGBU commercial solver on a computer with 2 x Intel(R) Xeon(R) E5-2697 v3 
CPUs. 

Table 1. Summary of the data used in the cross-validation studies 

Angus Hereford 
# animals in pedigree 3,006,655 2,247,767 
# animals genotyped 200,259 34,585 
# phenotypes 
    Birth weight (BWT) 1,707,804 781,505 
    Calving difficulty score (CDS) 482,565 325,978 
    Gestation length (GL) 519,274 119,468 
# validation animals with phenotypes 
    Birth weight (BWT) 125,780 48,064 
    Calving difficulty score (CDS) 37,383 23,818 
    Gestation length (GL) 47,865 8,345 
Proportion of CDS scores: 1,2,3 96.1, 2.7, 1.2 93.2, 4.7, 2.1 

RESULTS AND DISCUSSION 
A summary of the data used in the forward cross-validation is presented in Table 1. The 

correlation between EBVs from pedigree models with and without genetic groups for all animals 
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was 0.912 for both the Angus and Hereford analyses. When considering animals born from 2019 
onwards, this correlation increased to 0.995 and 0.990 for the Angus and Hereford analyses, 
respectively. For the models without genetic groups, the correlations between pedigree and 
ssGBLUP models were 0.994 and 0.990 for the Angus and Hereford analyses, respectively. This 
decreased for the 2019-born animals to 0.886 and 0.961 for the Angus and Hereford, respectively. 
For recent animals most likely to be used for selection, inclusion of genomic information had a larger 
impact on changes in EBVs than inclusion of genetic groups. 

Table 2. Cross-validation metrics for the Angus and Hereford analyses calculated based on 
genotyped animals born in 2019 or later 

EBV n Pedigree Pedigree GG Single-Step Single-Step GG 
Angus 

Accuracy BWT 45,613 0.475 0.475 0.840 0.839  
CE 14,606 0.340 0.340 0.533 0.534 
GL 19,351 0.441 0.442 0.672 0.676 

Dispersion BWT 45,613 0.983 0.982 1.030 1.029  
CE 14,606 0.997 0.999 1.025 1.026 
GL 19,351 0.941 0.950 0.992 0.995 

Bias BWT 45,613 0.002 -0.024 -0.002 -0.033 
CE 14,606 -0.013 -0.051 -0.010 -0.056
GL 19,351 0.021 -0.029 0.001 -0.057

Hereford 
Accuracy BWT 10,285 0.677 0.672 0.869 0.863 

CE 5,715 0.401 0.413 0.516 0.526
GL 2,670 0.555 0.646 0.655 0.718

Dispersion BWT 10,285 0.968 0.965 1.010 1.012 
CE 5,715 0.942 0.917 1.008 0.992
GL 2,670 1.149 1.019 1.127 1.052

Bias BWT 10,285 -0.014 -0.003 -0.015 0.006 
CE 5,715 0.015 0.017 0.001 0.014
GL 2,670 0.138 0.038 0.133 0.029

The forward cross-validation results for the Angus and Hereford analyses are presented in Table 
2. For the Angus analyses, adding genetic groups to either pedigree or ssGBLUP models had
virtually no impact on accuracy. Adding genomic information on the other hand improved accuracy
substantially over pedigree-only analyses, by 0.365, 0.194, and 0.231 for BWT, CE and GL EBVs
respectively in the ssGBLUP model without genetic groups. Little change was also observed in the
dispersion, with all analyses close to the expected value of 1, indicating little evidence of over- or
under-prediction. An increase in bias was observed for genetic group models for all traits, especially
CE, with the bias increasing from -0.013 to -0.051 in the pedigree model, and from -0.01 to -0.056
in the ssGBLUP model.

For the Hereford analysis, the addition of genetic groups to the pedigree model increased 
accuracy for CE and GL EBVs, respectively, but as with the Angus analysis, adding genomic 
information had the largest impact on accuracy. Dispersion was improved for ssGBLUP models, 
with evidence for over-prediction in pedigree models (regressions < 1). The pattern of changes in 
bias was not consistent across traits and analyses, but for the CE trait itself, the ssGBLUP model 
without genetic groups had the least bias.  

Based on these validation results, the inclusion of genomic information in ssGBLUP had a large 
benefit to prediction by increasing accuracies, and in some cases correcting dispersion and 
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minimising bias. Similar benefits were not apparent from the addition of genetic groups, which had 
no or minor benefit for accuracy and increased bias in CE EBVs for both analyses. Dispersion was 
largely unaffected by the model, but there was evidence for over-prediction for pedigree models in 
Herefords. While the pedigree accuracy for Angus is lower than Hereford, this is likely due to 
differences in the data structure for the two validation groups and warrants further investigation. 
While large increases in accuracies were observed for the genotyped validation animals, a smaller 
increase in accuracy is expected for the non-genotyped animals. Animals directly related to a 
genotyped animal will experience the greatest benefit from single-step, while animals less related 
will derive a lower benefit. It should also be noted that these validation metrics reflect the expected 
change for animals without a phenotype, and that individual animal results will vary. These results 
need to be verified for maternal effects but will require modifications to the validation set design. 

Computation times for the models, including genomic information or genetic groups, had a large 
impact on the commercial viability of these analyses. For the Angus analyses, the model without 
genomics or genetic groups took 10,377 iterations to converge and 2.03 hours. The addition of 
genetic groups to this model required 19,986 iterations and 5.9 hours. The genomic model without 
genetic groups required 11,375 iterations and 20 hours to converge, while the addition of genetic 
groups increased this to 20,038 iterations and 37.34 hours. While the increase in computation times 
from the addition of genomic information is large, there is a corresponding increase in accuracies. 
The addition of genetic groups had no benefit to accuracies and almost doubled the number of 
iterations required. Therefore, inclusion of genetic groups constructed with the current strategy in 
this analysis is not recommended. 

Calculating the mean of the 𝑲𝑲 matrix for each trait makes using the Legarra et al. (2018) method 
challenging for pedigree-only animals when validating a single-step analysis. While an algorithm 
exists for calculating the diagonal of the ssGBLUP relationship matrix 𝑯𝑯 (Legarra e t  a l . 2020), 
summary statistics for blocks of 𝑯𝑯 are a challenge. For genotyped animals, the block of the 𝑯𝑯 matrix 
required is a sub-matrix of the genomic relationship matrix 𝑮𝑮, which can be calculated easily, but 
the other subblocks of 𝑯𝑯 are more complex. One approach could be to solve the equation 𝒗𝒗′𝑯𝑯−1𝒗𝒗 
by conjugate gradient, where 𝒗𝒗 is a vector of zeros, except in the positions of the validation animals, 
which are set to 1/𝑛𝑛, where n is the number of validation animals.    

CONCLUSION 
Clear improvements in predictive ability were obtained for genotyped animals with the addition 

of genomic information in ssGBLUP models. However, the addition of genetic groups did not 
provide any improvements in calving ease direct predictions. Given the significant increase in 
computation time required to add genetic groups to the model, this term can be left out of the model 
without impact on recently born animals who are candidates for selection.    
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REMODELLING THE GENETIC EVALUATION OF NFI IN BEEF CATTLE – PART 1: 
DEVELOPING AN EQUIVALENT GENETIC MODEL 

L.Vargovic1, K.L. Moore1, D.J. Johnston1, G.M. Jeyaruban1, C.J. Girard1, J. Cook1, J.A.
Torres-Vázquez2 and S.P. Miller1 

1 Animal Genetics Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia 
2 Department of Animal and Avian Sciences, University of Maryland, College Park 20742 USA 

SUMMARY 
Net feed intake (NFI) is the residual portion of daily feed intake (DFI) not explained by growth 

or maintenance requirements. The NFI phenotype (NFIp) is based on a 70-day test period where 
DFI and fortnightly weights (to calculate average daily gain (ADG) and maintenance as metabolic 
mid-weight (MMWT)) are measured. Recording NFIp is costly, and shortening the test length would 
be advantageous. However, research has shown that ADG cannot be accurately measured from a 
shortened test. Genetic NFI EBVs (NFIg) were calculated using DFI EBV adjusted for ADG and 
MMWT EBV and were shown to have a Pearson correlation of 0.99 with the NFIp EBV from 3,088 
Angus steers. The regression slope between NFIg and NFIp EBVs was 1.14. Alternative NFIg 
models where growth and maintenance requirements were obtained from BREEDPLAN live weight 
traits instead of live weights recorded in the test period, demonstrated high Pearson correlations 
(r=0.87 to 0.93) and regression slopes between 0.63 and 0.97 with NFIp EBVs. Results suggest that 
genetic NFI EBVs can be obtained, with growth and maintenance requirements being determined 
from BREEDPLAN live weight traits. This provides the opportunity to determine if the length of 
the test to measure DFI can be shortened, reducing the cost of recording NFI per animal. 

INTRODUCTION 
Net feed intake (NFI) measures feed efficiency and is the residual portion of daily feed intake 

(DFI) adjusted for growth and maintenance (Koch et al. 1963). Over a 70-day feed efficiency test, 
individual DFI and fortnightly live weight have been recorded in beef cattle in Australia (Arthur et 
al. 2001). Recording NFI is costly due to the test length. Previous studies (Culbertson et al. 2015; 
Clark and van der Werf 2017) demonstrated that DFI could be measured from a shorter test, but to 
measure average daily gain (ADG), a minimum of 56 test days was required (Archer et al. 1997; 
Culbertson et al. 2015), and this represents a limiting factor to reducing the test length. Estimating 
genetic NFI EBVs (NFIg) has been proposed as an alternative to EBVs based on NFI phenotype 
(NFIp) (Kennedy et al. 1993; MacNeil et al. 2011). The method utilises genetic (co)variances and 
EBVs from tri-variate (DFI, ADG and metabolic mid-weight (MMWT)) analysis to construct a 
genetic NFI EBV. This study aimed to develop NFIg EBVs to compare against NFIp EBVs and 
assess if NFIg models may be a suitable alternative for genetic evaluation of feed efficiency when 
NFIg EBVs were developed using growth and maintenance recorded from a 70-day test or derived 
from BREEDPLAN live weight traits. 

MATERIALS AND METHODS 
Data preparation. Feed intake data and the NFI contemporary group (NFI CG; defined as the 

birth herd, birth year, sex, trial cohort, and previously recorded BREEDPLAN trait CG (i.e. 200-day 
live weight)) were extracted from the Angus Australia BREEDPLAN database for 3,215 steers. The 
data was recorded at Tullimba Research Feedlot (Torryburn, NSW) between 2012 and 2021. 
Individual DFI was measured using the VYTELLE-SENSE system, formerly known as GrowSafe 
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Feeders, and the Ruddweight system (www.vytelle.com/vytelle-sense). Animals were fed a standard 
feedlot diet (energy level of 12 MJ/kg). DFI was recorded over 70 – 77 days, after an initial 21-day 
acclimatisation period. Weight was recorded fortnightly, up to six times, during the test period. The 
average DFI, ADG and MMWT were computed across the full test period. ADG during the feed 
intake test was computed as the linear regression across all trial weights, and MMWT 
=((𝐴𝐴𝐴𝐴𝐴𝐴∗𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙𝑡𝑡ℎ

2
) + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑠𝑠)0.73. Animals with fewer than 56 days of feed intake data over 

the 70-day test duration, or with fewer than four live weights recorded during the test were removed 
(n=31). Animals in an NFI CG with fewer than three animals (n=96) were also removed. The final 
dataset included 3,088 steers from 35 trial groups with DFI, ADG and MMWT records. Steer age at 
the start of the test (SAGE) was on average 513 ± 73 days (range: 373 – 767 days). These were the 
progeny of 327 sires and 2,523 dams, and an up to five-generation pedigree containing 9,497 animals 
built.  

To develop NFIg EBVs when ADG and MMWT are not available from the test period (i.e. from 
a proposed shortened test), BREEDPLAN live weight traits (W200, W400 and W600) and their 
respective CG at 200, 400 and 600 days of age were extracted from the Angus Australia 
BREEDPLAN database for all animals in the final NFI dataset. Where there were multiple weights 
per trait, the weight closest to the target age (i.e. 200 days) was used. These live weight traits were 
pre-adjusted for heifer factor, animal age and dam age using standard BREEDPLAN procedures 
(Graser et al. 2005). Using BREEDPLAN live weight phenotypes, three ADG terms were 
constructed to represent gain between 200 and 600 days of age, 200 and 400 days of age and 400 
and 600 days of age, i.e. ADG200-600 = (W600 – W200) /400. At 200, 400 and 600 days of age, 
metabolic weights (MWT) were constructed based on BREEDPLAN live weight phenotypes, i.e. 
MWT200 = WT2000.73. Descriptive statistics for the traits used in this study are shown in Table 1.  

Statistical analyses. The NFI phenotype (NFIp) was calculated by adjusting DFI for growth and 
maintenance, as per Koch et al. (1963.). NFIp = DFI - µ – (βadg x ADG) – (βmmwt x MMWT), where 
µ, βadg and βmmwt were regression coefficients obtained from the model DFI = µ + NFI CG + (βadg x 
ADG) + (βmmwt x MMWT) + SAGE. Linear mixed animal models were fit in ASReml (Gilmour et 
al. 2015) to estimate variance components and animal solutions (EBVs). The model to predict NFIp 
EBVs fitted SAGE and NFI CG as fixed effects in the model. 

Genetic NFI (NFIg) EBVs were derived following the procedure of Kennedy et al. (1993) using 
the EBVs of DFI, ADG and MMWT from a tri-variate model. NFIg EBV = DFI EBV – (βadg x ADG 

βadg
EBV) – (βmmwt x MMWT EBV). The genetic regression coefficients �βmmwt� = G-1c, where G was 
the genetic covariance matrix of ADG and MMWT from the tri-variate model and c was the vector 
of the genetic covariance of DFI with ADG and MMWT. 

Six alternative NFIg EBVs (denoted A through to F) were derived from replacing feed test ADG 
and MMWT with alternative measures derived from BREEDPLAN weight records. The same 
procedure described for NFIg EBVs was used for these alternative genetic NFI EBVs, and Table 2 
describes these models. To avoid autocorrelation issues for the alternative NFIg EBVs, 
BREEDPLAN-derived MWT recorded at the end of the specified ADG period was not considered. 
The alternative NFIg models were evaluated using Pearson correlation coefficients (r), regression 
slope of NFIg EBV on NFIp EBV (b) and difference of means (𝑢𝑢� − 𝑢𝑢��) between NFIp EBV and 
NFIg EBVs, and these were reported in Table 2.  

RESULTS AND DISCUSSION 
A Pearson correlation of 0.99 was calculated between NFIp and NFIg EBVs, and EBV means 

was similar with a difference of means of 0.01 (Table 2). This indicates that NFIg EBVs were 
unbiased, but the standard deviation was smaller than NFIp EBVs. The regression slope was 1.14, 
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suggesting that the spread of NFIg EBV is narrower and animals at the edge of the distribution may 
be overestimated. These results demonstrate that NFIg was an equivalent model to NFIp when the 
same ADG and MMWT terms were modelled. These results agreed with Hoque and Oikawa (2004), 
who estimated a correlation of 0.97 for a similar comparison in Wagyu cattle.  

Table 1. Descriptive statistics for average daily feed intake (DFI), average daily gain (ADG) 
and metabolic mid-weight (MMWT) measured from a 70-day feed intake test and ADG 
representing different periods between 200 and 600 days of age (ADG200-600, ADG200-400 
and ADG400-600) and metabolic weight at 200 (MWT200), 400 (MWT400) and 600 
(MWT600) days of age from BREEDPLAN records for Angus steers 

Trait Unit N Mean SD Range 
1) Feed test records
DFI kg/d 3,088 14.8 1.99 6.89 – 22.6 
ADG kg/d 3,088 1.61 0.34 0.52 – 2.90 
MMWT kg0.73 3,088 104 6.83 81.8 - 135 
2) BREEDPLAN data
ADG200-600 kg/d 2,915 1.02 0.16 0.58 – 1.65 
ADG200-400 kg/d 2,360 0.82 0.29 0.07 – 1.90 
ADG400-600 kg/d 2,198 1.30 0.21 0.72 – 2.25 
MWT200 kg0.73 3,078 55.8 6.01 31.9 – 74.0 
MWT400 kg0.73 2,367 80.5 8.59 58.0 – 109.5 
MWT600 kg0.73 2,919 114.0 8.16 86.4 – 141.5 

Table 2. Models for genetic NFI (NFIg) EBVs when growth and maintenance were derived 
from feedlot weights or BREEDPLAN live weights, EBV summary statistics (mean and SD), 
the Pearson correlation (r), regression slope (b) and difference of means (𝒖𝒖� − 𝒖𝒖��) between NFIp 
EBV and genetic NFI EBVs  

EBV 
NFI EBV* Mean SD r b 𝒖𝒖� − 𝒖𝒖�� 
NFIp 0.02 0.41 
NFIg = EBV(DFI) – β1 x EBV(ADG) – β2 x EBV(MMWT) 0.02 0.37 0.99 1.14 0.01 
NFIgA = EBV(DFI) – β1 x EBV(ADG200-600) – β2 x EBV(MWT200)  0.01 0.44 0.93 0.89 0.02 
NFIgB = EBV(DFI) – β1 x EBV(ADG200-600) – β2 x EBV(MWT400) 0.01 0.45 0.91 0.86 0.01 
NFIgC = EBV(DFI) – β1 x EBV(ADG400-600) – β2 x EBV(MWT400) 0.02 0.46 0.90 0.84 0.00 
NFIgD = EBV(DFI) – β1 x EBV(ADG400-600) – β2 x EBV(MWT200) 0.01 0.44 0.87 0.84 0.01 
NFIgE = EBV(DFI) – β1 x EBV(ADG200-400) – β2 x EBV(MWT200) 0.04 0.59 0.88 0.63 -0.01
NFIgF = EBV(DFI) – β1 x EBV(ADG200-400) – β2 x EBV(MWT600) 0.01 0.40 0.93 0.97 0.01 

* see Table 1 for abbreviations; β1 and β2 were estimated for each model and varied across the models

Six alternative NFIg models were considered using ADG and MWT derived from BREEDPLAN
live weight traits (Table 2). For all alternative models, the Pearson correlation coefficient with NFIp 
EBVs ranged from 0.87 (model D) to 0.93 (models A & F). The highest correlations were observed 
when ADG200-600 and MWT200 or ADG200-400 and MWT600 were modelled. Models A, B, C and D all 
showed similar regression slopes (b=0.84 to 0.89) and a slightly higher standard deviation than the 
NFIp EBV. This suggests that EBVs for animals at the edge of the distribution may be over-
estimated. For all NFIg EBVs the bias was small (-0.01 to 0.02). The mean and standard deviation 
of the alternative NFIg EBVs were generally similar, although the NFIgE EBV showed a higher 
mean and standard deviation. NFIgE fitted ADG200-400 and MWT200. The regression slope was also 
much lower (0.63) than in other models. The reasons for these differences are not clear. ADG200-400 
had the smallest gain (0.82 kg/day) compared with ADG200-600 (1.02 kg/day) and ADG400-600 (1.30 
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kg/d) (Table 1). NFIgF also modelled ADG200-400, with MWT600 fitted instead of MWT200. The 
standard deviation of NFIgF EBVs was similar to NFIp EBVs with a regression slope of 0.97; this 
suggests that it is important to include WT600 in either the ADG or MWT term in the alternative 
NFIg model. Model F fitting ADG200-400 and MWT600 yielded the alternative NFIg EBV with the 
highest Pearson correlation with NFIp EBV, a regression slope close to 1 and EBVs with similar 
means and standard deviations compared with NFIp EBVs. 

Genetic NFI EBVs where the test period ADG and MMWT was replaced with ADG and MWT 
derived from BREEDPLAN live weight traits have shown potential as an alternative approach to 
computing feed efficiency. The next step of this research is to explore if the length of the test period 
to record DFI can be shortened and genetic NFI EBVs computed using the proposed alternative 
genetic NFI models. If the test length is reduced, this could lead to more animals being recorded for 
DFI, reduced cost of recording per animal, and an overall increase in selection response due to a 
larger number of recorded animals. Further research will be needed to investigate the method in a 
larger dataset where BREEDPLAN live weights from the whole breed will influence the component 
EBVs used in this study. In this study, the majority of animals had BREEDPLAN live weights 
recorded. If genetic NFI EBVs use BREEDPLAN live weights to model growth and maintenance, 
and especially if the feed intake test length is reduced, animals will potentially no longer be weighed 
at the feedlot, and BREEDPLAN live weights may be unavailable. More testing is required to ensure 
that the proposed approach for selecting for feed efficiency is robust for potential scenarios that 
could occur in practice. The current data structure could not consider maternal effects; with a larger 
dataset, the potential maternal effects of MWT200 and how best to model MWT200 can be tested.  

CONCLUSIONS 
When growth and maintenance terms in the NFIg model were the same as NFIp, phenotypic and 

genetically derived NFI EBVs were shown to be equivalent models. This study proves, in principle, 
that feed intake test ADG and MMWT could be replaced with growth and maintenance derived from 
BREEDPLAN live weights, and the next step is to test if the DFI test length can also be shortened. 
Before this research can be implemented into national genetic evaluations, further research will be 
needed using an expanded dataset and testing how robust the approach is in scenarios likely to occur 
in the industry if the feed intake test were shortened, i.e. missing weights. 
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SUMMARY 
BREEDPLAN net feed intake (NFI) EBV is derived from a phenotypic regression based on a 

70-day feed intake test. Genetic NFI (NFIg) EBVs have been proposed as an alternative EBV and
this recent development may also allow for a shortened feed intake test period. This study used feed
intake records of 3,088 Angus steers from the full 70-day test and compared them to daily feed
intake (DFI) from shortened test periods. Results showed DFI from shortened test periods had
similar means but increased phenotypic variation. Phenotypic correlation with DFI from the full test
period decreased as the test period decreased in weekly intervals and ranged between 0.75 and 0.99.
NFIg EBVs were predicted using DFI from different length tests. The mean of all NFIg EBVs was
close to zero, but the EBV standard deviation increased as the test period decreased. Pearson
correlations between NFIg EBVs from a full test period and reduced test periods ranged between
0.73 and 0.99, the regression slope of NFIg from reduced test periods on NFIg from the full test
period ranged between 0.73 and 0.95, and the bias ranged between 0.00 and 0.02. These results
indicate that as the test period decreases, the spread of EBVs increases, resulting in extreme animals
having overestimated NFIg EBVs. A shortened DFI test period could be used to estimate NFIg
EBVs.

INTRODUCTION 
BREEDPLAN net feed intake (NFI) EBV is derived from a phenotypic regression based on a 

70-day test with growth and maintenance measured from fortnightly body weight records during the
test period (Koch et al. 1963, Arthur et al. 2001), which is a costly protocol.  Reducing the test
period would reduce recording costs per animal and allow more animals to be tested. The current
NFI EBV requires average daily gain (ADG) to be recorded at regular intervals for a minimum of
56 days (Clark and van der Werf 2017; Archer et al. 1997; Culbertson et al. 2015). Kennedy et al.
(1993) proposed calculating NFI EBVs using genetic regression (NFIg), and Vargovic et al. (2023)
showed NFI EBVs could be predicted using genetic regression with a Pearson correlation of 0.99
between the current BREEDPLAN NFI EBV and NFIg. Vargovic et al. (2023) also explored
alternative NFIg models where growth and maintenance traits were derived from BREEDPLAN live
weight traits. The most promising alternative NFIg model considered DFI from the full test, ADG
between 200 and 400-day live weight and maintenance requirements based on 600-day live weight.
For this model, the Pearson correlation was 0.93, and the regression slope was 0.97 between the
alternative NFIg EBV and the current NFI EBV. To reduce the test length an alternative model is
required. This paper investigated the possibility of shortening the DFI test length using the
alternative NFIg model proposed by Vargovic et al. (2023).

MATERIALS AND METHODS 
Data preparation. Feed intake and BREEDPLAN live weight data were available for 3,088 

Angus steers from 35 trial groups, and data preparation details are provided in Vargovic et al. (2023). 

* A joint venture of NSW Department of Primary Industries and University of New England
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A series of average DFI traits were constructed (DFIn), where n was the cumulative number of feed 
test weeks (i.e. DFI4 was the average DFI recorded over the first four weeks of the test period). 
DFI10 was the average DFI recorded over the full test period, and was used to compare results when 
the test period was shortened. Growth and maintenance traits were defined using BREEDPLAN live 
weight traits where ADG was calculated between 200 and 400 days of age (ADG200-400 = (W400 – 
W200) /200) and metabolic weight was at 600 days (MWT600) (MWT600 = WT6000.73).  

Statistical analyses. Variance components were estimated for DFIn from univariate linear 
mixed animal models in ASReml (Gilmour et al. 2015), and bivariate models were used to estimate 
genetic and phenotypic correlations between DFI10 and DFIn traits. For all DFIn traits, the NFI CG 
defined by Vargovic et al. (2023) and test start age centred on the mean were fixed effects, and the 
animal was fitted as a random effect. Vargovic et al. (2023) describe the method for genetically 
derived NFI EBVs (NFIg) using BREEDPLAN live weight traits to model growth and metabolic 
weight. From this paper, the NFIgF model from Vargovic et al. (2023) was considered; NFIg EBV 
= EBV(DFIn) – β1 x EBV(ADG200-400) – β2 x EBV (MWT600). NFIg EBV was calculated for each 
DFIn phenotype to test the impact of reducing the test period, and the regression coefficients (β1 and 
β2) were calculated for each NFIg model. For each set of NFIg EBVs (DFIn, n=1 to 9), the Pearson 
correlation ® regression slope (b) and bias of means with NFIg EBVs (DFIn, n=10) were calculated. 

RESULTS AND DISCUSSION 
Decreasing the length of the feed test period resulted in an increase in DFI phenotypic variance, 

but the raw mean remained similar (Table 1). Heritability estimates were generally similar for DFI 
measured between 4 and 10 weeks and were slightly lower for DFI measured between 1 and 3 weeks. 
The phenotypic and additive variances increased as the test length reduced. Genetic correlations 
between DFIn (n=1 to 9) and DFI10 were not significantly different from 1indicating that all DFIn 
traits were genetically the same. Phenotypic correlation with DFI10 decreased as the test period 
decreased and ranged between 0.75 (DFI1) and 0.99 (DFI9). 

Table 1. Phenotypic Mean and standard deviation (SD), additive genetic (VA) and phenotypic 
(VP) variance components, heritability and genetic (rA) and phenotypic (rp) correlations with 
daily feed intake at 10 weeks (DFI10) for DFIn (n=1 to 10 weeks) 

Trait Phenotype Mean (SD) Va (SE) Vp (SE) h2 (SE) rA rP 
DFI10 14.8 (1.99) 1.10 (0.15) 2.39 (0.07) 0.46 (0.06)
DFI9 14.9 (1.99) 1.10 (0.16) 2.42 (0.07) 0.46 (0.06) 0.99 0.99 
DFI8 15.0 (2.00) 1.14 (0.16) 2.47 (0.07) 0.46 (0.06) 0.99 0.99 
DFI7 15.1 (2.02) 1.18 (0.17) 2.52 (0.07) 0.47 (0.06) 0.99 0.98 
DFI6 15.1 (2.06) 1.20 (0.17) 2.59 (0.07) 0.46 (0.06) 0.99 0.97 
DFI5 15.2 (2.12) 1.24 (0.18) 2.64 (0.07) 0.47 (0.06) 0.99 0.95 
DFI4 15.2 (2.12) 1.21 (0.18) 2.71 (0.08) 0.45 (0.06) 0.99 0.93 
DFI3 15.1 (2.15) 1.21 (0.18) 2.78 (0.08) 0.43 (0.06) 0.99 0.90 
DFI2 15.1 (2.23) 1.22 (0.19) 2.89 (0.08) 0.42 (0.06) 0.99 0.85 
DFI1 14.9 (2.29) 1.14 (0.20) 3.22 (0.09) 0.35 (0.06) 1.00* 0.75 

*estimate at bounds

The mean of all NFIg EBVs was close to zero, with standard deviations ranging from 0.38 to 
0.50 (Table 2). Generally, as the DFI test period reduced, NFIg EBVs showed more variation with 
standard deviations increasing. Pearson correlations between NFIg EBV (DFIn, n=10) and NFIg 
EBV (DFIn, n=1 to 9) ranged between 0.73 and 0.99, the regression slope ranged between 0.73 and 
0.95, and the difference of means ranged between 0.00 and 0.02. As the test period reduced, the 
Pearson correlation and regression slopes decreased, and the NFIg EBV standard deviation and the 
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difference of means between NFIg EBV (DFIn, n=10) and NFIg EBV (DFIn, n=1 to 9) increased. 
These results indicate that the bias increased as the test period decreased, and NFIg EBVs for 
animals at either end of the distribution were over-estimated. 

Table 2. Summary statistics for NFIg EBVs using daily feed intake (DFI) from reduced test 
lengths and BREEDPLAN live weight records to model growth and maintenance, the Pearson 
correlation (r), regression slope (b) and bias of means (bias) between NFIg EBVs when DFI 
was recorded over the full test period, and DFI recorded from a reduced test period  

DFIn modelled NFIg EBV 
Mean SD Min Max r b bias 

DFI10 0.01 0.41 -1.85 1.58
DFI9 0.01 0.41 -1.85 1.56 0.99 0.95 0.00
DFI8 0.01 0.44 -1.90 1.66 0.99 0.89 0.00
DFI7 0.01 0.46 -1.92 1.74 0.98 0.85 0.00
DFI6 0.00 0.48 -1.99 1.79 0.97 0.80 0.01
DFI5 0.00 0.50 -2.13 1.79 0.95 0.76 0.01
DFI4 0.00 0.49 -2.69 1.67 0.92 0.75 0.01
DFI3 -0.01 0.48 -2.64 1.82 0.89 0.74 0.02
DFI2 -0.03 0.46 -2.33 1.93 0.84 0.73 0.03
DFI1 -0.01 0.38 -1.74 1.99 0.73 0.77 0.02

The results in Table 2 demonstrate that reducing the feed intake test period may be possible 
using genetic NFI EBVs obtained where growth and maintenance are modelled using 
BREEDPLAN live weight traits. Results from Table 1 agree with earlier studies by Clark and van 
der Werf (2017), who suggested that the DFI test length could be reduced to 4 weeks. However, 
Table 2 showed that NFIg EBVs had a regression slope of 0.75 when DFI was measured from a 4-
week test and a larger spread of EBVs, especially for the more feed-efficient animals. Given the 
strong Pearson correlation, a degree of overestimation of extreme animals may be acceptable. 
Examination of the animal with the most negative NFIg EBV when DFI was recorded over 4 
weeks showed that the animal had lower DFI in the earlier weeks of the feed intake test. DFI in 
weeks 1 to 4 ranged between 5.32 to 6.11 kg/d and increased to between 10.26 and 10.98 kg/d 
in weeks 8 to 10. This may be because the animal was ill or took longer than usual to become 
acclimatised to the feeders. The difference in DFI at 4 and 10 weeks was extreme, across the 
dataset the difference between DFI at 4 and 10-weeks averaged 0.32 kg/d with a standard 
deviation of 0.77. Other animals with extreme negative NFIg EBVs consistently had negative 
NFIg EBVs overall test length periods. Figure 1 plots the NFIg EBVs for sires when the feed 
intake test period was 4 or 10 weeks and illustrates that although the correlation between EBVs is 
strong, there are changes in EBV at the distribution edges. 

Further research is needed to investigate the impact of reducing the test period in a larger 
dataset where BREEDPLAN live weights from the whole breed may contribute to the 
component EBVs used to estimate NFIg EBVs. In this study, the majority of animals had 
BREEDPLAN live weights recorded. If genetic NFI EBVs use BREEDPLAN live weights to 
model growth and maintenance, and especially if the feed intake test length is reduced, animals 
will potentially no longer be weighed at the feedlot, and BREEDPLAN live weights may be 
unavailable for ages occurring during the feed intake test. More testing is required to ensure that 
the proposal to shorten the DFI test period and estimate NFIg EBVs is robust for potential 
scenarios that could occur in practice. A challenge with NFIg EBVs is that variance components 
were unavailable, so the present study could not calculate correlated selection responses. 
Correlated selection response is expected to increase with increased selection intensity but will 
decrease as the genetic correlation between NFIg EBVs decreases. Reducing the test period 
potentially allows more animals to be tested. Allowing for a 21-day 
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acclimatisation period, reducing the DFI test to between 1 and 9 weeks potentially increases the 
number of animals recorded for DFI by 1.1 to 3.3 times, which may increase the selection intensity. 
However, as the test period is decreased, the genetic correlation between NFIg from full or reduced 
DFI tests also decreases, which may reduce the correlated selection response. Therefore, the increase 
in selection intensity and the decrease in genetic correlation will need to be balanced when 
determining the ideal test period, which will allow the financial savings of a reduced test but still 
allow effective NFIg EBVs to be estimated and genetic improvement for feed efficiency. 

Figure 1. The relationship between NFIg EBVs for sires when daily feed intake (DFI) was 
recorded from 4 or 10 week feed intake test period 

CONCLUSIONS 
This study showed that reducing the DFI test period and estimating genetic NFI EBVs with 

growth and maintenance derived from BREEDPLAN live weights may be possible. Preliminary 
results are promising, but before implementation, more testing needs to be done and implementation 
strategies explored. 
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SUMMARY 
Provision of feed in beef production systems is a major determinant of overall profitability as it 

typically accounts for over 75% of the variable cost. Thus, improving cattle feed efficiency by way 
of determining the underlying molecular control and subsequently selecting for feed efficient cattle 
through genomic selection provides a method through which feed costs may be reduced. The 
objective of this study was to undertake gene co-expression network analysis on RNAseq data 
generated from Longissimus dorsi tissue samples collected from steers divergent for residual feed 
intake (RFI) within two contrasting breed types (Charolais and Holstein-Friesian). Several gene 
categories, including differentially expressed genes (DEG) based on the contrasts of both breed and 
RFI phenotype as well as key transcription factors and proteins secreted in plasma were utilised as 
nodes of the gene co-expression networks. Significant network connections were identified using an 
algorithm that exploits the dual concepts of partial correlation and information theory (PCIT). 
Results revealed 530 and 531 DEG for the RFI and breed contrasts, respectively. PCIT network 
analysis resulted in the formation of one RFI specific cluster which included genes related to 
metabolic processes and cell cycle. A second cluster which included genes related to both RFI and 
breed was enriched for immune-related pathways such as coagulation system and the complement 
cascade. This latter network was of particular interest due to the potential identification of genes 
contributing to RFI that are sufficiently robust across breed type. Moreover, genes included within 
this network also encode proteins secreted in plasma, highlighting the potential use of these genes 
as blood-based biomarkers for RFI in beef cattle.  

INTRODUCTION 
Within beef production systems, provision of feed is a major determinant of overall profitability, 

as it accounts for up to 75% of the total variable costs of production (Kenny et al. 2018). 
Consequently, research related to the identification and subsequent breeding of beef cattle with 
improved feed efficiency has received attention to alleviate the high input costs and environmental 
footprint associated with beef production. In particular, residual feed intake (RFI), defined as the 
difference between an animal’s actual and predicted feed intake, has become the feed efficiency 
measure of choice due to its independence of both growth and body size (Fitzsimons et al. 2017). 
However, despite research efforts aimed at uncovering the molecular control of RFI in cattle, genes 
which are robust across varying breed type contributing to RFI are yet to be identified (Kenny et al. 
2018). This is undoubtedly due to the multifaceted nature of the RFI trait as well as the varying 
experimental parameters employed across different studies, such as breed types, dietary sources and 
stage of development evaluated, ultimately confounding the subsequent outcome.  

Thus, the objective of this study was to undertake gene co-expression network analysis on 
Longissimus dorsi (LD) transcriptomic data collected from steers divergent for RFI within two 
contrasting breed types (Charolais and Holstein-Friesian). Specifically, differentially expressed 
genes (DEGs) for both RFI and breed contrasts were used as nodes for the co-expression network 
analysis. The LD muscle was chosen as a target tissue due to its’ economic importance, in addition 
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to its responsiveness to variation in RFI in cattle (Fitzsimons et al. 2017). 

MATERIALS AND METHODS 
All procedures involving animals in this study were reviewed and approved by the Teagasc 

Animal Ethics Committee and were conducted under an experimental licence issued by the Irish 
Health Products Regulatory Authority (AE19132/P029). 

This experiment was conducted in Ireland under moderate non-extreme climatic conditions as 
part of a larger research programme designed to examine the within-animal repeatability of intake, 
growth, and feed efficiency between varying stages of development in Charolais and Holstein-
Friesian beef steers (Coyle et al. 2016). In total, 167 steers (90 Charolais and 77 Holstein-Friesian) 
were sourced from commercial farms in Ireland, parentage was included within the animal selection 
process so as to avoid selecting genetically related animals. At the start of the trial Charolais and 
Holstein-Friesian steers were on average 283 and 307 days of age, respectively. Following a dietary 
adaptation period, dry matter intake (DMI) and growth rate were measured over a 70-day feeding 
trial, during which all steers were offered the same high-energy diet consisting of ad libitum 
concentrates plus a restricted allowance of grass silage daily. Throughout the trial all steers were 
accommodated indoors, utilising a Calan gate feeding system. The residuals of the regression of 
DMI on average daily gain (ADG), and mid-test metabolic body weight within each breed were used 
to compute individual RFI coefficients for each steer (GLM procedure of SAS9.3). Residual feed 
intake was calculated for each animal as the difference between actual and predicted DMI. Within 
each breed, steers were ranked for RFI, with high-RFI (feed-inefficient; n=12) and low-RFI (feed-
efficient; n=12) steers selected for each breed separately. Samples of LD tissue were collected 
through punch biopsy from all high-RFI and low-RFI steers following completion of the 70-day 
dietary trial. Tissue samples were washed with sterile DPBS and immediately snap frozen in liquid 
nitrogen before subsequent storage at -80°C. 

Total RNA was purified from all tissue samples using the Qiagen RNeasy Universal kit 
(QIAGEN, UK), according to the manufactures instructions as previously described (Higgins et 
al. 2019). The quality of the resultant RNA was assessed using the RNA 6000 RNA Nano Lab 
Chip Kit and the Agilent Bioanalyser 2100 (Agilent Technologies Ireland Ltd., Dublin, 
Ireland). All samples passed quality control with RNA integrity numbers greater than 8. The 
Illumina TruSeq sample preparation kit (Illumina, San Diego, CA) was utilized to construct cDNA 
libraries for each sample, following which cDNA libraries were sequenced using the Illumina 
HiSeq 2500 sequencing platform (Illumina, San Diego, CA). Bioinformatic analysis was undertaken 
as previously described in Higgins et al. (2019) including the removal of sequencing adapters and 
low quality reads using cutadapt (v. 1.13) and quality control of sequencing reads undertaken 
using FastQC (v. 0.11.5). Trimmed sequencing reads were mapped to the bovine reference 
genome (ARS-UCD1.2) and also quantified using STAR (v.2.5.1). Differentially expressed genes 
were detected between each of the two main contrasts: (i) High-RFI versus Low-RFI; and (ii) 
Charolais versus Holstein-Friesian) using the Bioconductor package, EdgeR (v3.20.9). Gene 
expression was estimated as Counts Per Million (CPM) and genes were retained for subsequent 
analysis only when presented in at least 1 CPM in at least half of the samples for each contrast. The 
top 5% most significant genes (based on Benjamini-Hochberg corrected P-value of differential 
expression) in each contrast were considered DEG and were selected for subsequent inclusion in 
the co-expression network analysis. Additionally key transcription factors (TF) and proteins 
secreted in plasma were also utilised as nodes within the gene co-expression networks. For gene 
co-expression network analysis, genes selected based on differential expression, as key TF 
and secreted in plasma were used as nodes and significant edges between nodes identified using 
the Partial Correlation and Information Theory (PCIT) algorithm (Reverter and Chan 2008). 
The output of PCIT was then visualised using Cytoscape (V3.9.1) 
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(Shannon et al. 2003) including only significant correlations above 0.9 and their respective genes. 
Functional enrichment of gene networks was performed using Ingenuity Pathway Analysis (IPA).  

RESULTS AND DISCUSSION 
A significant difference (P<0.0001) in RFI value was evident for each breed (Charolais: Low-

RFI=-0.53, High-RFI=0.55; Holstein-Friesian: Low-RFI=-0.64, High-RFI=0.7). For the RFI and 
breed contrasts, 530 and 531 DEGs were identified, respectively. Of these 114 genes (12.4%) were 
common between both contrasts. A total of 1,061 DEG, 292 TF and 405 genes encoding proteins 
secreted in plasma were identified as associated with variation in both RFI and breed type. Gene co-
expression network visualisation of significant correlations between genes above 0.9 equated to 298 
genes with 5,625 connections, the main clusters of interest are presented in Figure 1.  

Figure 1. Gene co-expression network of genes related to RFI in Charolais and Holstein-
Friesian steers. Node colour are relative to the differential expression contrast: purple 
represents RFI only; green represents breed only and orange represents genes differentially 
expressed in both RFI and breed contrasts. Genes encoding transcription factors and proteins 
secreted in plasma are represented as triangle and diamond shapes, respectively 

Network visualisation highlighted a clear cluster of genes specifically related to RFI (purple), 
whilst a second cluster depicted genes related to both RFI and breed contrasts (RFI-Breed, orange). 
Functional analysis of the RFI specific cluster of co-expressed genes highlighted pathways related 
to mitochondrial fatty acid oxidation including fatty acid β-oxidation (adj.P<0.005) and 
mitochondrial L-carnitine shuttle pathway (adj.P<0.01), suggesting a role for mitochondrial fatty 
acid oxidation towards variation in RFI in beef cattle. Processes related to fatty acid oxidation have 
previously been implicated towards divergence in RFI in varying tissue types (subcutaneous 
adipose: McKenna et al. 2018: liver: Taiwo et al. 2022), with up-regulation of fatty acid oxidative 
processes within the feed efficient (low-RFI) cattle apparent in each study. Indeed, McKenna et al. 
(2018) postulated that the increased expression of fatty acid oxidative genes in the low-RFI animals 
may be due to the efficient cattle directing metabolic processes towards alternative substrate 
partitioning and fatty acid breakdown in order to facilitate their lower dietary intake.  
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A potential role for immune processes towards variation in RFI has been established across 
varying experimental designs (Fitzsimons et al. 2017; Kenny et al. 2018); however, specific immune 
related processes are conflicting across experimental designs. Pathway analysis of the network of 
co-expressed genes related to both RFI and breed revealed an enrichment of immune-related 
processes including coagulation system and complement cascade (P<0.001). Moreover, genes 
included within this network and pertaining to coagulation (FGA, FGB and FGG) and complement 
system (C3, C5, C9, CFH, CFI and CRP) pathways were previously reported as differentially 
expressed between cattle divergent for RFI across various breed types including Angus, Nellore, 
Holstein-Friesian and Charolais (Chen et al. 2011; Tizioto et al. 2016; Weber et al. 2016; Higgins 
et al. 2019). Moreover, the aforementioned genes also encode proteins secreted into plasma, 
suggesting a potential role for these genes as blood-based biomarkers for RFI in beef cattle.  

CONCLUSION 
Results from this study provide potential candidate genes, pathways and networks related to feed 

efficiency in beef cattle. The RFI-breed network is of particular interest for the potential 
identification of robust genes contributing to the RFI trait irrespective of breed type. Moreover, 
genes included within this network were also genes coding proteins secreted in plasma, highlighting 
the genes potential to be explored as blood-based biomarkers for the RFI trait in beef cattle. 
However, extensive functional experimental validation for the candidate genes and pathways 
identified in this study is warranted. 
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SUMMARY 
This study aimed to evaluate the potential use of data from Landsat 5 TM, 7 ETM+, and 8 OLI 

and meteorology SILO databases to characterise variation in environmental conditions across 
farms and identify resilient sheep with a low response in performance to changes in the 
temperature-humidity index (THI) and normalized difference vegetation index (NDVI). A total of 
44,848 Merino sheep from 27 farms across Australia were used in this study. The dataset included 
sheep with complete pedigree and measurements for weaning weight (WWT) and post-weaning 
weight (PWT). The average NDVI and THI values during the 9 months prior to the phenotypic 
measurement were used in a linear reaction norm (RN) model with heterogeneous residual 
variances. The results revealed genotype by environment (GxE) interaction for WWT and PWT 
between extreme environments with reranking of sires’ estimated breeding values along the NDVI 
gradient. Higher heritability and genetic variances were estimated in favourable environments. 
Accounting for GxE interactions could lead to a more accurate selection of resilient sheep to 
changes in climatic and vegetation variables in Australia, and existing environmental data is 
enabling for this purpose. 

INTRODUCTION 
The global rise in more variable and extreme climate conditions has demanded the 

development of strategies to identify and select resilient animals capable of thriving in challenging 
circumstances. Selection of resilient sheep will help maximise performance across multiple 
locations with variable conditions. Reaction norm (RN) models relate the genetic merit of animals 
to the environment, providing estimated breeding values (EBV) for each environmental condition 
and identifying genotype by environment (GxE) interactions (Schaeffer 2004). The intercept EBVs 
represent the overall production potential of the animals, while the EBVs for slope indicate their 
resilience to different environmental conditions. To characterise environments experienced by 
animals, the temperature-humidity index (THI) has been investigated as a measurement of thermal 
stress experienced by dairy and beef cattle (Ravagnolo and Misztal 2000; Bradford et al. 2016). 
Similarly, the availability of forage is expected to have a cumulative effect on animal growth, but 
direct measurements in extensive production systems are challenging (Johnson et al. 2018). As 
such, the normalized difference vegetation index (NDVI) has been used as a proxy of forage 
coverage (Johnson et al. 2018). The impact of thermal stress and forage coverage, as indicated by 
THI and NDVI, on the growth performance of sheep has not yet been investigated in extensive 
production systems. This study aimed to identify Merino sheep resilient to changes in THI and 
NDVI as indicators of environmental conditions.  

MATERIALS AND METHODS 

* A joint venture of NSW Department of Primary Industries and University of New England
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Data. A dataset of 44,848 Australian 
Merino sheep with weight and pedigree 
records was used in this study. The dataset 
includes a full pedigree from 1,420 sires and 
20,919 dams spanning four generations. Raw 
phenotypic measurements, taken between the 
years 2000 and 2020, included 44,335 
measurements for weaning weight (WWT), 
and 40,265 records for post-weaning weight 
(PWT). For both traits, records outside four 
standard deviations from the contemporary 
group mean were considered outliers and 
removed from further analysis. 

Study area. Flocks (N = 27) were located 
in New South Wales, Queensland, South 
Australia, Tasmania, Victoria, and Western Australia (Figure 1). Polygons with the coordinates 
(latitudes and longitudes) were traced on the boundaries of each farm to obtain precise information 
on climate and forage.  

Climatic data. Temperature (°C) and humidity (%) records were obtained for each location 
from the SILO database (www.longpaddock.qld.gov.au/silo/) to calculate the temperature-
humidity index (THI) according to Lallo et al. (2018): THI = (1.8T + 32) – ((0.55-0.0055Rh) 
(1.8T-26)); where T is the temperature (°C) and Rh the relative humidity (%). 

Satellite data. Landsat 5 TM, 7 ETM+, and 8 OLI surface reflectance data (Collection 2, Tier 
1) were processed in Google Earth Engine. The cloud mask was applied to all imagery. The red
(R) and near-infrared (NIR) bands were used to compute the normalised difference vegetation
index as NDVI = (NIR-R)/(NIR+R). NDVI values were multiplied by 100 to be used in the
following analyses.

Since a reliable association of environmental conditions with forage components can be 
expected only within a season (Johnson et al. 2018), we evaluated the daily THI and NDVI 
records and averaged the values across 9 months prior to the trait measurement to fit as continuous 
values in the RN model. 

Statistical models. Univariate sire reaction norm models were computed in ASReml v4.2 
(Gilmour et al. 2021) as a linear function of the environment (NDVI or THI averaged across 9 
months) and the traits (WWT or PWT) described in a general form by: 

 , 
where y is a vector with weight records, µ is the overall mean, X incidence matrices associating 
records with the fixed effects, b is a vector of fixed effects solutions for sex (2 levels), birth type (2 
levels), rear type (2 levels), age of dam (12 levels), contemporary groups (2,474 levels), covariate 
(s) for age at measurement, and regression for continuous values of NDVI and THI determined 
using the average in separate analysis across 9 months prior to the date of phenotypic 
measurement; ZInt is a matrix linking records to the breeding values to the intercept and ZSlp is an 
incidence matrix relating records of the breeding values to the slope, Zpm is an incidence matrix 
associating records with the maternal permanent environmental effect and e is the residual effect. 
Genetic variances were calculated across either NDVI or THI gradients as σ2

a = ΦGΦ’, while the 
breeding values were obtained with EBV = ΦE’; where G is the additive genetic co-variance 
matrix, E is the matrix with intercept and slope regression coefficients and Φ are the row vectors 
of a matrix with order one Legendre polynomials (order one) corresponding to the NDVI and THI 
levels. Genetic correlations across NDVI and THI gradients were defined as rij = Covij/√ σ2

ai + σ2
aj. 

The maternal permanent environmental effect was also modelled using order one Legendre 
polynomial. Heritability was calculated as h2 = σ2

a/σ2
p where σ2

a (sire variance x 4) is the additive
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genetic variance and σ2
p corresponds to the phenotypic variance calculated as σ2

p = σ2
a + σ2

e. The 
model fitted heterogeneity in residual variance, allocated based on NDVI (5 levels: 10 to 30, 31 to 
40, 41 to 50, 51 to 60, and 61 to 90) and THI (4 levels: 50 to 63, 64 to 67, 68 to 71, and 72 to 82).  

RESULTS AND DISCUSSION 
Environmental conditions across flocks. Figure 2 depicts changes in NDVI, THI, and 

temperature between 2000 and 2020 across the studied flocks. Years with favourable conditions 
are described by relatively high NDVI and moderate temperatures (i.e. 2016), and years with less 
favourable conditions have relatively high temperatures and low NDVI (i.e. 2019).  

Figure 2. Average monthly temperatures, NDVI, and THI between 2000 and 2020 in 27 
flocks located across Australia were normalised for visualisation. *Examples of favourable 
and unfavourable years are highlighted 

Heritability and variances estimated across environmental conditions. Genetic variances 
(σ2

a) for WWT and PWT increased with the NDVI (Figure 3A) and decreased for both traits across 
the THI (Figure 3B). The presence of a scale GxE interaction is evidenced by variation in 
heritability (h2) estimates across the environments (Figures 3 C and D). In both traits, h2 from the 
RN were higher in favourable conditions (i.e. high NDVI and low THI) and lower in less 
favourable conditions (i.e. low NDVI and high THI). Similar results were described by Bradford et 
al. (2016) in American Angus cattle with higher heritabilities (WWT) under no heat load (low 
THI) conditions.  

Figure 3. Additive genetic variances (σ2a) (A & B) and heritabilities (h2; linear trend) (C & 
D) along the NDVI (A & C) and THI (B & D) gradient for WWT (green) and PWT (blue)

The genetic correlations across NDVI and THI gradients were reduced as differences in the 
environment increased for WWT (Figure 4 A & D) and PWT (plot not shown). The weak genetic 
correlations between extreme NDVI values contribute to the GxE interactions observed, leading to 
a higher reranking of sires across NDVI compared to the THI.  
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Genetic correlations between the intercept and slope of the RN model were positive for WWT 
(0.17) and PWT (0.27) when NDVI was evaluated. The RN for THI resulted in negative genetic 
correlations between the intercept and slope for WWT (-0.60) and PWT (-0.24). These results 
suggested that sheep with higher intercept (EBV) had a more responsive phenotype to the forage 
coverage as suggested by NDVI. In contrast, such animals (with higher EBV values) exhibited a 
relatively small response (slope) to THI.  

Figure 4. Genetic correlations for WWT (A & D) and estimated breeding values (EBV) for 
WWT and PWT for eight influential sires (> 100 progeny) along NDVI (A, B & E) and THI 
(C, D & F) gradients 

CONCLUSIONS 
This study describes GxE interactions between extreme environments for WWT and PWT in 

Australian sheep along environmental gradients representing forage coverage (NDVI) and the 
temperature-humidity index (THI). There was more GxE interactions when NDVI was extremely 
different, resulting in higher EBV reranking in sires than when THI was considered. Higher 
genetic variances and heritabilities were estimated in favourable environments. Furthermore, these 
findings emphasised the opportunity to use climatic and satellite data to describe the environment 
and identify resilient sheep for THI and NDVI in a national or international context.  
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