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PRESIDENT’S MESSAGE

I wish you a very warm welcome to AAABG’s Ruby Anniversary meeting, the 23rd conference in 
Armidale, NSW. When the steering committee behind the AAABG held the very first conference in 
Armidale in 1979, they might not have expected the organisation to still be going strong 40 years 
later. Since then, 22 conferences have been held in all Australian states and both the North and South 
Islands of New Zealand. While other organisations have sometimes struggled with memberships, all 
AAABG conferences have attracted substantial numbers of contributors and delegates, with regular 
participants from around the globe as well. This highlights how important it is to provide a great forum 
for communication amongst scientists, educators, students and service providers, who traditionally 
make up the bulk of attendees, ultimately to increase knowledge and foster ideas and collaboration.

This year, we also introduce an extended program which starts with a student workshop and ends with 
a program which will contain some talks of interest to breeders. Allowing students to meet each other 
before the conference, and obtain some wise words from educators and extension specialists, should 
improve their conference experience and provide some valuable insight for their future progression. 
Additionally, the attendance of breeders at AAABG has dropped off compared to early years. This is 
in part due to the increasing complexity of livestock breeding, making many talks less accessible to 
a general audience and leading to an increasing distance between many researchers and those who 
benefit from their work. We hope to encourage more breeder participation this year and that there 
will be plenty of mix and mingle during the last 1.5 days of the program. 

This year also marks one of the most extensive droughts across large areas of Eastern Australia, 
with rainfall in the 2019 year to date the lowest on record for the New England-Northern Tablelands 
area. So, while we were hoping to dazzle you with some beautiful spring green at this conference, 
the reality is that conditions may still be very poor by the time delegates arrive, and high level water 
restrictions will be in place for Armidale. This is a timely reminder of the difficult conditions under 
which our livestock breeders and producers function, and I take off my hat to their resilience under 
these circumstances. In particular, I thank those breeders who are still able to welcome delegates to 
their properties on tours, and trust that delegates recognise the courage this must take.

The scientific program again reports a wide variety of research. The implementation of genomic selec-
tion is not without its challenges, but is becoming a more mature part of modern breeding programs. 
New technologies offer future opportunities, both in terms of novel phenotyping and techniques such 
as gene editing. These developments are combined with talks which touch on aspects important to 
effective implementation of breeding programs today in the livestock industries.

I wish to thank the sponsors who have supported the conference, and the willingness of both our local 
and overseas speakers to contribute to the conference program. I also thank staff at ASN (the event 
organisers), the committee who have helped organise the Armidale meeting, and Kathy Dobos for 
preparing this booklet. Thanks also go to reviewers of papers and the session chairs, as well as those 
involved in organising tours and assisting with the student program.

I trust you have an enjoyable conference.

Kim Bunter
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AAABG was formerly known as the Australian Association for Animal Breeding and Genetics. 
Following the 1995 OGM the name was changed when it became an organisation with a 
joint Australian and New Zealand membership. The Association for the Advancement of Animal 
Breeding and Genetics is incorporated in South Australia.

THE ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND 
GENETICS INCORPORATED

OBJECTIVES
(i)	 to promote scientific research on the genetics of animals;
(ii)	 to foster the application of genetics in animal production;
(iii)	 to promote communication among all those interested in the application of genetics to animal 

production, particularly breeders and their organisations, consultants, extension workers, educators 
and geneticists.

To meet these objectives, the Association will:
(i)	 hold regular conferences to provide a forum for:

(a)	 presentation of papers and in-depth discussions of general and industry-specific 
topics concerning the application of genetics in commercial animal production;

(b)	 scientific  discussions and  presentation of papers on completed research and on 
proposed research projects;

(ii)	 publish the proceedings of each Regular Conference and circulate them to all financial members;
(iii)	 use any such other means as may from time to time be deemed appropriate.

MEMBERSHIP
Any person interested in the application of genetics to animal production may apply for 

membership of the Association and, at the discretion of the Committee, be admitted to membership 
as an Ordinary Member.

Any organisations interested in the application of genetics to animal production may apply for 
membership and, at the discretion of the Committee, be admitted to membership as a Corporate 
member. Each such Corporate Member shall have the privilege of being represented at any meeting 
of the Association by one delegate appointed by the Corporate Member.

Benefits to Individual Members
•	 While it is not possible to produce specific recommendations or “recipes” for breeding plans that 

are applicable for all herd/flock sizes and management systems, principles for the development of 
breeding plans can be specified. Discussion of these principles, consideration of particular case 
studies, and demonstration of breeding programs that are in use will all be of benefit to breeders.

•	 Geneticists will benefit from the continuing contact with other research workers in refreshing 
and updating their knowledge.

•	 The opportunity for contact and discussions between breeders and geneticists in individual 
members’ programs, and for geneticists in allowing for detailed discussion and appreciation of 
the practical management factors that often restrict application of optimum breeding programs.
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Benefits to Member Organisations
•	 Many of the benefits to individual breeders will also apply to breeding organisations. In addition, 

there are benefits to be gained through coordination and integration of their efforts. Recognition 
of this should follow from understanding of common problems, and would lead to increased 
effectiveness of action and initiatives.

•	 Corporate members can use the Association as a forum to float ideas aimed at improving and/or 
increasing service to their members.

General Benefits
•	 Membership of the Association may be expected to provide a variety of benefits and, through 

the members, indirect benefits to all the animal industries.
•	 All members should benefit through increased recognition of problems, both at the level of 

research and of application, and increased understanding of current approaches to their solution.
•	 Well-documented communication of gains to be realised through effective breeding programs will 

stimulate breeders and breeding organisations, allowing increased effectiveness of application 
and, consequently, increased efficiency of operation.

•	 Increased recognition of practical problems and specific areas of major concern to individual 
industries should lead to increased relevance of applied research.

•	 All breeders will benefit indirectly because of improved services offered by the organisations 
which service them.

•	 The existence of the Association will increase appreciably the amount and use of factual information 
in public relations in the animal industries.

•	 Association members will comprise a pool of expertise – at both the applied and research levels – 
and, as such, individual members and the Association itself must have an impact on administrators 
at all levels of the animal industries and on Government organisations, leading to wiser decisions 
on all aspects of livestock improvement, and increased efficiency of animal production.

CONFERENCES
One of the main activities of the Association is the Conference. These Conferences will be 

structured to provide a forum for discussion of research problems and for breeders to discuss their 
problems with each other, with extension specialists and with geneticists.
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ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS 
FELLOWS OF THE ASSOCIATION

“Persons who have rendered eminent service to animal breeding in Australia and/or New Zealand 
or elsewhere in the world, may be elected to Fellowship of the Association…”

Elected February 1990
R.B.M. Dun

Elected September 1992
K. Hammond

Elected July 1995
C.H.S. Dolling
J.R. Hawker
J. Litchfield

Elected February 1997
J.S.F. Barker
R.E. Freer

Elected June 1999
J. Gough
J.W. James

Elected July 2001
J.N. Clarke
A.R. Gilmour
L.R. Piper

Elected September 2005
B.M. Bindon
M.E. Goddard
H.-U. Graser
F.W. Nicholas

Elected September 2007
K.D. Atkins
R.G. Banks
G.H. Davis

Elected September 2009
N. Fogarty
A. Fyfe
J. McEwan
R. Mortimer
R. Ponzoni

Elected September 2011
B.P. Kinghorn
A. McDonald

Elected October 2013
H. Burrow
P. Fennessy
G. Nicoll
P. Parnell

Elected October 2015
P. Arthur 
D. Johnson
K. Meyer
B. Tier
R. Woolaston

Elected October 2019
S.A. Barwick
H.T. Blair
S.W.P. Cloete
I.W. Purvis

HONORARY MEMBERS OF THE ASSOCIATION
“Members who have rendered eminent service to the Association may be elected to Honorary 
Membership…”

Elected September 2009
W.A. Pattie	 J. Walkley
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HELEN NEWTON TURNER MEDAL TRUST

The Helen Newton Turner Medal Trust was established in 1993 following an anonymous donation 
to the Animal Genetics and Breeding Unit. The Helen Newton Turner Medal is awarded to provide 
encouragement and inspiration to those engaged in animal genetics. The Medal is named after Dr Helen 
Newton Turner whose career with CSIRO was dedicated to research into the genetic improvement of 
sheep for wool production. The Medallist is chosen by Trustees from the ranks of those persons who 
have made an outstanding contribution to genetic improvement of Australian livestock.

The Helen Newton Turner Medal was first awarded in 1994 to Associate Professor John James 
and a list of all recipients to date is given below. The recipient of the Medal is invited to deliver an 
Oration on a topical subject of their choice. The Oration of the 2015 Medal recipient, Dr. Arthur 
Gilmour, is reproduced in these proceedings.

Trustees of the Helen Newton Turner Trust are:
•	 Dr Richard Sheldrake AM (Chairman), representing NSW Department of Primary Industries
•	 Professor Brian Kinghorn, representing the University of New England
•	 Mr Scott Dolling, representing the Association for the Advancement of Animal Breeding 

and Genetics
•	 Dr Roly Nieper, Representative of the National Farmers Federation
•	 Dr Robert Banks, Director, Animal Genetics and Breeding Unit

MEDALLISTS

1994	 J.W. James	 2001	 G.A. Carnaby	 2011	 R. Banks
1995	 L.R. Piper	 2003	 F.W. Nicholas	 2013	 M. Goddard
1997	 J. Litchfield	 2005	 K. Hammond	 2015	 A. Gilmour
1998	 J.S.F. Barker	 2007	 L. Corrigan	 2017	 A. Collins
1999	 C.W. Sandilands	 2009	 R. Hawker	 2019	 K. Atkins

HELEN NEWTON TURNER AO
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HELEN NEWTON TURNER MEDALIST ORATION 2017

Alf Collins
Alf Collins snr is one of the most innovative beef cattle breeders in the world. Building on the 
foundations established by his father, he has applied enormous dedication, careful recording and 
rigorous focus on breeding for profitability, to the continuous improvement of Brahman cattle.
Brahman cattle have to perform in very challenging environments, and breeding programs to deliver 
genetic improvement in those environments are challenging too – reflecting large scale of operations 
and variable climatic conditions.
Alf has met these challenges head on and collected performance records underpinning reliable EBVs, 
and used the information backed by hard-nosed practical understanding of functionality and survival 
ability, to generate very impressive genetic progress over several decades. Perhaps the most outstanding 
aspect of that genetic progress is that it includes very substantial progress in female fertility – something 
that has almost been treated as “too hard” by most breeders of tropically adapted cattle. CBV has 
actively participated in industry R&D, including significant contributions to Beef CRC I, II and III.
The breeding program includes several fertility traits within overall selection for profit: recording  
includes speed of re-breed, puberty threshold, calving interval, age at first calving, number of calves, 
speed of growth, dry season gain, wet season acceleration, as well as good temperament, and fleshiness.
Alf Collins is a deep thinker about what cattle need to do in the tropical environment, and has never 
been afraid to try novel approaches or include new traits if they will help breeding cattle better and 
better suited to the environment and to improving profit:
“At CBV, from 1981 to the present day, our management has been relentless in the development and 
multiplication of the traits that have greatest commercial significance. In total, this represents over 
50 years of development, using steadily improving tools of analysis and selection. 
We have absolutely no tolerance of cattle that do not earn every single year. We get our share of 
non-performing stock and have management strategies to convert them to beef carcases immediately 
when they fail.
The genetic trends reflect this strategy at CBV.
Reproduction and survival are paramount, coupled with gentle temperament, fleshy bodies and thrift 
at grazing.  CBV cattle are true examples of a highly adapted breed. This equates to a high speed 
beef machine at minimal cost.
We have received very high levels of support from researchers, scientists, clients, family and friends.  
Intellectual inputs have been considerable, along with personal effort. CBV has an ongoing involvement 
in research and analysis every year.
Our matings commence in the dry season on October 1, to identify the most efficient adapted females, 
by their ability to conceive whilst lactating in very dry grazing and to hold that pregnancy, calve 
un-assisted, raise a sound calf and to rebreed within our low cost management.  Our stocking rate 
of kilograms per hectare per 100mm of rainfall is high but ecologically responsible.
Consequently earnings per hectare per financial year are optimised.”
Alf Collins continues to be an outstanding pioneer and innovator in real-world application of genetics 
technology, and the demonstration that it is possible to breed genetically fertile, productive and 
profitable tropically adapted cattle is an inspiration.
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INVESTMENTS IN BREEDING TECHNOLOGIES AND ORGANIZATION TO 
MEET GLOBAL NEEDS

J.A.M. van Arendonk, M.C.A.M Bink, K. Peeters, B. Visser, N. Duijvesteijn and P. van As 

Hendrix Genetics, PO Box 114, 5830 AC Boxmeer, The Netherlands

SUMMARY
Animal breeding has a vital role to play in solving the global food challenge. This paper will 

concentrate on investments that are needed for animal breeding to meet the challenges of the future 
and begins with describing the global challenge. There is not a single solution that will work in all 
species in all regions, so solutions need to be tailored to the local conditions. There is a clear need for 
both more sustainable production of animal proteins and a reduction of waste in the food chain. There 
is regional diversity in emphasis on the different components of sustainability, but the general trend is 
towards animal protein production with a lower ecological impact, with a minimum use of antibiotics 
and with good animal welfare. This requires not only investments in genetic technologies like genomic 
selection but also in methods for phenotyping individual animals under commercial conditions.

INTRODUCTION
Animal breeding is a powerful tool to improve many aspects of animal production. In this paper, 

we describe the contributions of animal breeding to solving the global challenges when it comes to 
feeding the growing world population sustainably. 

Hendrix Genetics is a multi-species animal breeding company with breeding programs in turkeys, 
layers, swine, salmon, trout, shrimp and coloured broilers. To be a competitive animal breeding company 
in any species requires substantial investments in research and development. By working in multiple 
species, these investments can be more cost effective as there are many similarities between species. 
For example, the IT infrastructure for collecting and storing information on individual animals and 
the methods for performing genomic evaluations are very similar for different species. 

After a brief description of the global challenges and the expected changes in our value chains, 
we will describe in more detail the role of animal breeding and how new technologies can help to 
better meet the challenges. 

GLOBAL CHALLENGE
We face major global challenges when it comes to feeding the growing world population sus-

tainably. Rabobank has predicted that the animal protein market will grow by 45% in the next two 
decades and this global growth will be largely in Asia and to a lesser extent in Africa. We see more 
and more developing countries reaching middle income status, the inflection point for protein con-
sumption, leading to an increased need for locally produced animal protein. The contribution of 
species to animal protein production differs between regions. For example, currently close to 90% 
of aquaculture production takes place in Asia, which is also the biggest growth market for layers 
and swine. In contrast, North America remains a high value and volume market for poultry, pigs and 
cattle, whereas aquaculture is expected to remain limited.

There is a clear need for more sustainable methods of producing all animal proteins. There is 
regional diversity in emphasis of the different components of sustainability, but the general trend is 
towards animal protein production with a lower ecological impact, with a minimum use of antibiotics 
and with good animal welfare.

At all levels in our value chains we see scale increasing. The number of people working in animal 
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production is declining, the farms are getting bigger, and value chains are getting shorter and increas-
ingly coordinated. Innovative farming methods using robotics and data driven management support 
will help not only to meet the labour challenge but also to improve sustainability.

Worldwide, the use of technology and software is rapidly increasing. Already thousands of com-
panies offer data-based services to support farm management, increasingly making use of sensors, 
machine learning, and other decision-support tools. We also see increasing societal pressure in the 
developed world regarding environmental impact, livestock treatment and biotechnology. Also, large 
food companies and supermarket chains are forcing changes to production practices.

We anticipate the following changes in our value chains:
•	 Increased use of digital technology and software for managing farming operations, with 

large companies fulfilling this demand
•	 Increased mechanisation and automation, driving standardization
•	 Stronger presence of alternative sources of protein, including insects
•	 More and more varied animal protein “brands” differentiated by farming system, animal 

type, and product quality.
•	 More ready-to-eat providers, such as food delivery companies, and ready meals.

Animal protein production. There are many individuals on this planet who live relatively healthy 
lives consuming little or no animal protein, and many would argue that the challenge of feeding the 
human population could be met by reducing the amount of livestock products in our diet. However, 
the demand for animal protein, especially in developing countries, is expected to grow as they 
become more affluent. Part of the animals’ proteins are produced from feed, such as grain, that could 
be directly consumed by humans, while another part is produced from feed resources that would not 
feed humans directly, such as grass and by-products from the human food industry. 

According to the FAO, an estimated one third of all food produced globally is either lost or 
wasted. This represents a large inefficiency in the food system. Food loss refers to any food that is 
lost in the supply chain between the producer and the market. Food waste, on the other hand, refers 
to the discarding or alternative (non-food) use of food that is otherwise safe and nutritious for human 
consumption. Meeting the food challenge is not only about more sustainable production but also 
about reducing food loss and waste.

The challenge for livestock production is to meet the growing demand for animal protein while 
at the same time reducing the environmental impact. This implies that livestock production needs to 
improve the efficiency of production, robustness of animals and quality of animal products. Improve-
ment of efficiency of animal production needs to focus on improving lifetime productivity, which 
can be achieved by improving not only individual productivity but also by reducing losses through 
improved health and reproductive performance. Robustness of animals refers to the ability of animals 
to handle variation in the environment, in particular feed quality and climate. The quality of animal 
products refers not only to the food safety and taste but also to animal welfare.

THE ROLE OF ANIMAL BREEDING
Animal breeding has a vital role to play in solving the global food challenge. In the last 4 decades, 

animal breeding has halved the amount of feed required to produce animal proteins in poultry and pigs. 
Reducing the ecological food print is an important contribution to improved sustainability. Improving 
sustainability also requires reducing the feed-food competition, reducing the use of antibiotics, and 
improving animal well-being.

Breeding goal. The breeding goal summarizes the direction of change of a population. Over the 
years, the breeding goal has changed in response to the changes in production circumstances and 
the increased attention to sustainability. Commercial poultry and pig breeding goals have broadened 
widely since the 1970s (Neeteson-van Nieuwenhoven et al. 2013). Over time, the relative focus on 
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productivity has decreased and objectives such as efficiency, welfare, robustness and product quality 
have increased. Production circumstances and consumer demands will continue to change and impact 
the breeding goal not only in terms of the number of traits but also in terms of the relative emphasis.

Sustainability program: As a breeding company, we also keep many animals ourselves. That 
is why our efforts to achieving sustainability are not only directed towards our breeding program 
but also improving our own performance. For improving our own performance, we have established 
in 2013 a sustainability program comprising of three building blocks: animals, people and planet. 

•	 Animal welfare, biosecurity and genetic resources are the key priorities within the build-
ing block animals. Ensuring animals are treated with care and respect and are kept under 
the highest standards of welfare is essential. We ensure that taking good care of animals 
is embedded in our company culture. As global suppliers of breeding stock, we have a 
responsibility for ensuring biosecurity and animal health. In addition, we also have an 
obligation to protect our genetic resources. 

•	 People make our business and deliver our products and service to our customers. We 
started off with setting KPI’s for health and safety including illness percentage, accidents 
and time lost time due to accidents. More recently, we have added employee engagement 
and expertise. 

•	 Minimizing the environmental impact of livestock through improving input efficiency 
and helping to reduce the use of antibiotics are key parts of the building block planet. In 
addition, the company is investing in minimizing its own ecological footprint to preserve 
and improve the environment that its activities impact.

We have implemented a sustainability reporting cycle, which includes a regular program of data 
collection, target setting and evaluation which is aimed at making improvements year after year. In 
addition, we will publish a CSR report to increase the awareness on our activities both internally 
and externally.

DISSEMINATION
Not only generation but also dissemination of genetic progress plays an important role in an animal 

breeding organisation. In cattle, frozen semen is the most commonly used method of distributing 
genetic progress. In poultry and swine, frozen semen is not an option. In swine fresh semen and live 
animals are used for dissemination. In poultry hatching eggs and one-day old animals are used for 
dissemination. The use of live animals rather than frozen semen comes with logistic and biosecurity 
challenges. 

In poultry and swine, a multi-tier crossbreeding system is used. In a typical laying-hen program, 
pure-line birds are used to produce grandparents which are crossbred to produce the parent stock 
males and parent stock females. The parent stock is used to produce the commercial birds as illustrated 
in Figure 1. The genetic progress is generated in the pure lines under bio secure conditions. Subse-
quently this progress is disseminated from the pure line to the commercial offspring through several 
multiplication steps. The system also allows capturing the benefits of crossbreeding. Furthermore, it 
allows making the best combination of different pure lines to meet the needs of farmers operating in 
different countries and markets. This system also offers the breeding organisation two options to react 
to a change in product demand and to a change in production environment. First, there is the option 
to change the combination of lines to produce the commercial product. Second, there is the option 
to change the breeding goal in one or more pure lines. By changing the combination of lines, we can 
react more rapidly to changes compared to changing the breeding goal of a line. We continuously 
evaluate the expected developments to ensure that the product portfolio not only meets the current 
needs but also the expected needs in the years to come. 



4

﻿Plenary 1

 

Figure 1. Schematic diagram of the poultry production pyramid in which genetics of 4 pure 
lines (A, B, C and D) is used in a crossbreeding scheme to produce parent stock (PS) males (AB) 
and females (CD) and commercial products (ABCD). The relative size (multiplication) of each 
layer in the production pyramid is given for the female lineages (from pure line D hen through 
grandparents and parents to commercial hens and eggs produced by these hens)

TECHNOLOGIES
Our future is tied directly to product superiority, which requires the implementation of state-of-

the-art breeding technology for all our products. This implies that we invest in tools for collection 
of information on individual animals, in genomic selection to ensure that we make best use of the 
collected information and breeding scheme design. Investments in technology should also provide 
solutions for labour shortages on our breeding farms and on the farms of our customers.

We see many promising developments in the domains of phenotyping, digitalization, and genetics 
technologies. We will continue to make targeted investments in the most promising technologies 
starting from a business needs perspective. In the following sections, more background is given on 
activities in the domain on phenotyping and gene editing.

Phenotyping. We invest in phenotyping methods not only to collect novel traits in the domain of 
animal behaviour but also to measure performance of animals under commercial conditions. Remote 
sensors such as cameras, microphones, thermometers and accelerometers offer the opportunity to 
capture data from groups or individual animals. Data from remote monitoring sensors combined with 
individual animal identification can provide information regarding pig welfare, health and productivity 
(Benjamin and Yik 2019). 

Livestock are nowadays more frequently kept in larger groups, resulting in an increase in social 
interactions between individuals. Moreover, treatments to limit the consequences of adverse social 
interactions, such as beak trimming in poultry and tail docking in pigs, will probably be banned in the 
future (at least in EU countries), so that the negative effects of social interactions will likely increase 
unless action is taken to avoid that. Actions are needed to prevent or diminish the negative effects of 
social interactions. Bijma (2007) demonstrated that pecking in laying hens is a socially affected trait 
which not only depends on the hen’s ability to avoid being pecked (direct genetic effect) but also on 
the pecking behaviour of her group mates (indirect genetic effect). Using this knowledge, we have 
demonstrated that we can select animals that are less likely to perform damaging behaviour. Selection 
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can be further improved using sensor technologies that allow the identification of laying hens in large 
groups that show less pecking behaviour (Ellen et al. 2019).

Traditionally, egg production on laying hens is measured in single bird or family group cages. 
This housing system is needed to link the egg production to a single individual or parent. The housing 
system, however, does not reflect the commercial conditions for laying hens which are increasingly 
kept in cage-free conditions. The difference between selection and commercial environment might 
lead to genotype by environment interaction which would make selection less effective. To overcome 
this, we are investing in automatic nests for laying hens which allows the recording of individual 
egg production of animals kept in a group. These automatic nests are not available on the market and 
need to be developed internally.

Gene editing is a rapidly developing technology with many potential applications, including 
in animal breeding. Hendrix Genetics is committed to responsible farm animal breeding. We strive 
to meet growing global demands for food by supporting animal protein producers worldwide with 
innovative and sustainable genetic solutions. New technologies like gene editing can be part of our 
future solutions. Alongside delivering benefits to producers, our solutions must also meet the rigorous 
needs of consumers and society.

While we rely on genomic selection in our breeding programs, Hendrix Genetics does not currently 
use any form of gene modification. We, however, continue to closely monitor the rapid developments 
in gene editing and invest in research in this new technology to evaluate its potential application. Gene 
editing will help us to get a better understanding of genes and mutations in genes that contribute to 
genetic variation in traits. That knowledge can be used to improve genomic selection schemes pro-
vided that the desired variants are present in the population. When the desired variant is not present, 
genetic improvement via gene editing is an innovative solution.

Investment in research into gene editing does not imply that Hendrix Genetics will necessarily 
use this technology in the future. Before using a new technology, we need to understand the full 
impact of it on animals, animal products and humans. We must be convinced of the added value of 
gene editing before entering any discussion on commercial application. Such discussion will not only 
cover technical issues but more important ethical and regulatory issues. Now, Hendrix Genetics sees 
several critical challenges ahead for gene editing that must be resolved before commercial application 
can even be considered.

Even with satisfactory results from research, Hendrix Genetics would only ever consider gene 
editing for applications when it clearly outperforms any alternatives. The most likely application of 
gene editing appears to be to improve the health and welfare of farm animals (including fish). It is 
very unlikely that we will use gene editing for realizing higher production efficiency directly. We are, 
for example, involved in research on the opportunity to use gene editing to stop surgical castration 
of male pigs.

POULTRY BREEDING FOR AFRICAN SMALLHOLDER FARMERS
There is a wide variation in climate, production circumstances and consumer preferences around 

the world. This implies that when it comes to animal breeding, one size does not fit all. As an inter-
national breeding organisation, we need to have a product portfolio to meet that diversity. This can 
be illustrated when looking at smallholder farmers in Africa. To also meet their needs, we not only 
breed birds that are specialized in egg production but also dual-purpose birds, intended to produce 
both eggs and meat. 

Poultry constitutes an important economic activity for the rural poor in many African countries. 
Several researchers have shown that the performance of smallholder poultry production can be greatly 
improved by using improved genetics. The local indigenous breeds are inefficient and unproductive 
compared to other alternative breed options, such as Sasso and Kuroiler. In many instances the small-
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holder farmers in rural areas do not have access to improved genetics and are forced to use birds that 
have low levels of productivity and high mortality rates. The access to an improved low-input and 
dual-purpose chicken to supplement the local indigenous breeds has the potential to transform the 
rural poultry enterprise.

This situation can be changed as demonstrated by the African Poultry Multiplication Initiative 
(APMI) led by the World Poultry Foundation (WPF), with investments in Uganda, Ethiopia, Tanzania, 
and Nigeria as well as other poultry initiatives in Burkina Faso. The APMI model operates through 
capable local private companies to establish a parent stock and hatchery operation for the supply of 
improved genetics of low-input, dual purpose chicken breeds to farmers in their communities. These 
initiatives are dependent on access to poultry parent stock for the improved breeds. We have partnered 
with WPF to ensure reliable access to improved parent stock genetics. The supply of parent stock is 
frequently disrupted by outbreaks of diseases such as avian influenza. An outbreak of avian influenza 
in the source country leads to a ban on export of parent stock. A long-term sustainable solution to 
mitigate this risk is duplication of the germplasm at multiple locations. 

Although breeds such as Kuroiler and Sasso perform better than most local ecotypes, the pro-
ductivity and feed utilization efficiency of these breeds is far lower than current commercial breeds. 
Results from ILRI’s African Chicken Genetic Gain project shows that there is a wide variability in 
the performance of Kuroiler and Sasso in different agro ecologies. We have, therefore, implemented 
a genetic improvement program to further improve the productivity, adaptability, and resilience of 
the lines that are used to produce the dual-purpose breed. The genetic gain of the lines may be further 
accelerated by the application of genomics selection. However, implementation of this technology 
for the benefit of smallholder farmers in Africa has failed due a combination of two factors. First, 
the lack of support for such genetic improvement schemes to develop proper infrastructure (such as 
performance recording and genetic evaluation schemes). Second, the lack of a system to sustainably 
multiply and distribute the improved genetic material to the smallholders. We aim to overcome these 
factors due to our experience and knowledge and more importantly our access to a larger international 
market. The ability to sell genetic material in multiple countries is crucial for offsetting the cost of 
a breeding program to improve the dual-purpose chicken. With these improved breeds, smallholder 
farmers in Africa are not only able to increase their income but also to contribute to feeding the 
growing population with nutritious protein.

COLLABORATION
In order to find sustainable solutions for the global food challenge, we are continuously exploring 

innovations in the domain of measuring health, welfare and productivity of animals. These innova-
tions need to be based not only on a solid understanding of the underlying biology but also on an 
overall view on the issue at stake. Developing a solid understanding is an important but not the only 
driver to be involved in research collaboration with knowledge institutes. Equally important drivers 
for participation in a research project are creating awareness in the scientific community for the 
issues involved in improving sustainability and training a new generation of researchers. Solving 
sustainability issues often requires collaboration in multidisciplinary teams. Industry participation 
in research projects is expected to speed-up innovations and contribute to training of new talents 
that are focussed on generating solutions. Collaboration is therefore crucial for realizing sustainable 
solutions for the global food challenge.
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SUMMARY
Variables for achieving targeted gene knock-ins using CRISPR/Cas9 mediated gene insertion 

in bovine embryos following in-vitro maturation were tested to evaluate the rate of integration at a 
target genomic location, and the level of mosaicism. Guide-RNAs (gRNA) were developed targeting 
downstream of the Zinc Finger X-linked (ZFX) gene located on the bovine X-chromosome. One 
gRNA (ZFXg3) was found to cut with high frequency in-vivo (82%). Donor vectors utilizing different 
endogenous repair pathways: homologous recombination (HR) or homology-mediated end joining 
(HMEJ), were then designed to insert the sex determining region on the Y-chromosome (SRY) gene 
into the target cut-site of ZFXg3 to produce bulls that would sire all male offspring (XY males, and 
XSRYX males). CRISPR/Cas9 reagents were introduced into either MII oocytes, or six hours after 
in-vitro insemination (hpi). The HMEJ donor vector (hmejSRYp) showed a significantly higher inser-
tion rate compared to the HR donor vector (hrSRYp) (32.5% vs. 0%; p < 0.0001). Additionally, of 
those that were positive for the insert, 23.4% were non-mosaic hemizygous (males) or homozygous 
(female) knock-ins There was no significant difference in the level of mosaicism when injecting hme-
jSRYp in mature oocytes as compared to six hours post in-vitro insemination (hpi), although to date 
a limited number of blastocysts injected 6hpi have been analyzed. Finally, there was no significant 
difference between the knock-in efficiency, or the level of mosaicism when comparing XX and XY 
embryos (p > 0.05). Utilizing the HMEJ pathway in bovine embryos resulted in a significantly higher 
rate of CRISPR-mediated gene knock-in as compared to HR, and approximately a quarter of these 
X chromosome knock-ins were non-mosaic (hemizygous males or homozygous females) by PCR. 

INTRODUCTION
Genome editing technologies have the potential to have a positive impact on livestock genetic 

improvement (Van Eenennaam and Young 2019). However, for these tools to be implemented, 
they must seamlessly integrate into existing breeding program designs to maintain or accelerate 
the rate of genetic gain. Obtaining high rates of targeted gene knock-ins through homology-di-
rected repair (HDR) using site-directed nucleases in the presence of a repair template has proven 
difficult in livestock embryos, often resulting in a low integration rate and/or mosaic individuals 
(Georges et al. 2018). The primary method that has been trialed for HDR-mediated knock-ins in 
bovine embryos is the homologous recombination (HR) pathway. However, the primary method 
for double-strand break (DSB) repair in gametes and the early zygote is the end-joining pathway 
(Rothkamm et al. 2003). The HDR pathway is primarily restricted to actively dividing cells (S/
G2-phase) and only becomes highly active towards the end of the first round of DNA replication 
in the one-cell zygote (Hustedt and Durocher 2017). Consequently, gene knock-ins in livestock 
in livestock have typically been achieved by HR in cell culture, followed by somatic cell nuclear 
transfer (SCNT) cloning of the edited cell line. However, this method can be costly and inefficient 
(Tan et al. 2016). We describe an approach to achieve improved rates of knock-ins in developing 
bovine embryos using the alternative homology-mediated end joining (HMEJ) DSB repair path-
way, and a method to screen for non-mosaic founder individuals prior to embryo transfer, thereby 
avoiding the need for SCNT to obtain knock-in founders, and allowing the opportunity to edit the 
next generation of animals in a breeding program in a single step.
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MATERIALS AND METHODS
Four single–guide RNAs (sgRNAs) were designed for high specificity and limited off-target poten-

tial using the online tools sgRNA Scorer 2.0 (Chari et al. 2017) and Cas-OFFinder (Bae et al. 2014), 
respectively. In-vitro fertilized bovine embryos were produced using methods previously described 
(Bakhtari and Ross 2014). The sgRNAs (ZFXg1-4) Cas9 individually injected by laser-assisted cyto-
plasmic injection (Bogliotti et al. 2016) of a solution containing 67ng/μL of each sg-RNA alongside 
167ng/μL of Cas9 protein (PNA Bio, Inc., Newbury Park, CA) as ribonucleoprotein complexes (RNP) 
in three replicates of 30 embryos per guide. Embryos that reached blastocyst stage were collected, 
lysed, and analyzed using PCR (Table 1), followed by Sanger sequencing. 

Table 1. Sequence of primers used for PCR evaluation and confirmation of SRY knock-in and 
sex, and guide-RNA sequences (*sequences developed by Gokulakrishnan et al. 2012)

Name Sequence 5’- 3’ Tm (oC)
PCR primers ZFXgF TCCAAGGAGCTATGTCACAGAA 60.8

ZFXgR CACTAGCTTTGGGCGATATGA 60.8
ecZFXknF CCGCTTCAAATCAGTTTAATCC 58.9
ecZFXknR CCCCACCAGGAAAGTACAAA 60.4
srnckF TGGTCCTCTGTTAATCAGTTCTTTC 61.3
srnckR GGAACTGCTTGGGTACCAAG 62.4
DDX3-1F* AGGAAGCCAGGAAAGTAA 55.3
DDX3-1R* CATCCACGTTCTAAGTCTC 58.0

Guide RNA ZFXg1 ACAACCCAAAATGAAGGGGG -
ZFXg2 AATACAACCCAAAATGAAGG -
ZFXg3 CTCCCATGTCATAACTTCTG -
ZFXg4 GATATGAAATTACACTGGAC -

Figure 1. Schematic representation of donor vectors used to test knock-in efficiency in in bovine 
embryos

Donor vectors contained the 1.8kb Bos taurus SRY promoter and coding sequence (Accession: 
U145569), 1kb homology arms flanking each side of the Cas9 cut site, with (hmejSRYp) or without 
(hrSRYp) the CRISPR target site flanking each homology arm (Figure 1).

Oocytes were collected and in-vitro matured for 18 hours prior to injection or in-vitro fertilization 
(Bakhtari and Ross 2014). CRISPR/Cas9 reagents for each donor were introduced by laser-assisted 
cytoplasmic injection (Bogliotti et al. 2016) of a solution containing 67ng/μL of guide-RNA, 167ng/ 
μL of Cas9 protein (PNA Bio, Inc., Newbury Park, CA) and 133 ng/μL of circular plasmid after 
stripping of cumulus cells from mature oocytes. Injected mature oocytes were in-vitro fertilized and 
co-cultured with cumulus-oocyte complexes (COCs) for 16 hours. Un-injected in-vitro fertilized 
embryos were stripped of cumulus cells six hours after fertilization and injected as described above. 
Injected embryos were scored to developmental stage reached. Embryos that reached blastocyst stage 
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were collected, lysed and underwent whole-genome amplification using the REPLIg Mini Kit (Qia-
gen, Valencia, CA), PCR and Sanger sequencing. Data were analyzed with GLM in R to test which 
variables were statistically different. A χ2 test was used to test whether total knock-in and mosaicism 
rates differed between donor vector types.

RESULTS AND DISCUSSION
Four sgRNAs (ZFXg1-4) Cas9 ribonucleoprotein complexes (RNP) were individually injected into 

90 embryos resulting in in-vivo mutation rates of 38%, 57%, 82% and 40%, respectively. Based on 
these results, we selected sgRNA ZFX3 for the knock-in experiments. Treatment group did not affect 
overall mutation rate (P > 0.05), however embryos injected with ZFX3 RNP and donor hmejSRYp 
showed a significantly higher rate of total knock-ins (targeted SRY integration) compared to hrSRYp, 
which showed zero knock-ins (Table 2; P-value < 0.01). When comparing the effect of sex of the 
embryo, and the time of injection between MII injected oocytes and 6hpi, there was no significant 
difference on the knock-in efficiency or the level of mosaicism (Table 2; P > 0.05). Because we were 
targeting the X-chromosome, PCR-analysis of embryo biopsies limited our ability to differentiate 
between heterozygous and mosaic female embryos.

Table 2. Mutation, knock-in, and mosaicism rate of blastocysts after cytoplasmic injection of 
ZFX3 RNP hmejSRYp or hrSRYp at the MII oocyte, or Embryo (6 hpi) development stage

Knocked-in subset 
Sex n Donor Time of 

Injection
%Mutation 

Rate (n)
%Total 

Knock-In (n) 
%Hemi/

Homo (n)
%Hetero/ 

Mosaic (n)

Female
78 hmejSRYp MII oocyte  83a (65)  40a (31) 19a (6)   81a (25)
8 Embryo 88a (7) 25a (2) 0a (0)     100a (2)
6 hrSRYp MII oocyte 83a (5) 0b (0) n/a n/a
6 Embryo 67a (4) 0b (0) n/a n/a

Male
97 hmejSRYp MII oocyte 70a (68)   29a (28) 29a (8)    71a (20)
14 Embryo  86a (12) 21a (3) 33a (1)  67a (2)
10 hrSRYp MII oocyte    70a (7) 0b (0) n/a n/a
8 Embryo 75a (6) 0b (0) n/a n/a

Total
175 hmejSRYp MII oocyte  76a (133)  34a (59)    24a (14)     76a (45)
22 Embryo 86a (19) 23a (5) 20a (1)    80a (4)
16 hrSRYp MII oocyte 75a (12) 0b (0) n/a n/a
14 Embryo 71a (10)   0b (0)   n/a      n/a

Letters that differ in the same column are statistically different (P-value < 0.05)

This increased rate of knock-ins with donor hmejSRYp is likely the result of the DSB repair 
pathway triggered by the different donor vectors. The hrSRYp donor vector required initiation of 
the homologous recombination (HR) pathway for integration, which has been shown to have a 
low activity in early embryos. In contrast, hmejSRYp utilizes the homology-mediated end-joining 
(HMEJ) pathway (Yao et al. 2017). In mice zygotes, this pathway was found to have a significantly 
higher efficiency of targeted knock-ins as compared to HR, which is consistent with the end-joining 
pathway being the primary DSB repair mechanism in gametes and pre-S-phase zygotes (Rothkamm 
et al. 2003). It should be noted that the MII injected oocytes were observed to have lower post-ferti-
lization development rates compared to zygotes injected after insemination (12.1% (n=1,584) versus 
18.4% (n = 163), respectively), perhaps due to increased rates of polyspermy in the stripped oocytes. 
Targeting the HMEJ pathway in developing embryos, alongside a method to screen for non-mosaic 
founder individuals prior to embryo transfer (Figure 2), has the potential to be an alternative to SCNT 
cloning of genome-edited knock-in cells. The implementation of a gene editing approach such as this 
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alongside genetic breeding programs could enable the introduction of useful genetic variants such 
as polled (hornlessness), while maintaining the rate of genetic gain without increasing inbreeding 
above acceptable levels (Mueller et al. 2019). Recent Australian regulation would categorize the use 
of a donor template to guide the DSB repair to produce a cisgenic knock-in, as detailed in this paper, 
as resulting in a genetically modified organism (GMO) which may limit the use of this approach in 
animal breeding programs.

Figure 2. Schematic representation of CRISPR-mediated development of SRY knock-in bovine 
offspring by cytoplasmic injection (CPI)

Biopsies taken at day 7 and are analyzed via PCR to simultaneously detect sex, success of knock-in, 
and mosaicism prior to embryo transfer (ET) to synchronized recipients. Upper bands using ZFXgF/R 
PCR primers: wild type (WT) 520bp, knock-in 2349bp. Lower bands using DDX3-1F/R PCR primers: 
female 208bp, male 189bp and 208bp. IVF: in-vitro fertilization, IVC: in-vitro culture, het: heterozy-
gous, hemi: hemizygous male, homo: homozygous knock-in female. 

CONCLUSION
In-vitro production of bovine embryos combined with CPI of CRISPR Cas9 RNP in MII oocytes or 

6 hpi bovine embryos, along with a donor vector designed to target the HMEJ repair pathway, yielded 
a 32.5% knock-in rate of the 1.8 kb SRY target gene of which 23.4% were non-mosaic, hemizygous 
(males) or homozygous (females), targeted X-chromosome knock-ins.
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SUMMARY
In the animal breeding there is debate on whether knowledge of functional genomics is useful for 

genomic prediction. Black box approaches have worked well but technological change now allows 
for the generation of functional genomic and phenomic information at high resolution. This will allow 
us to come closer to actual functional variants, thereby increasing genomic prediction accuracy in 
animals less related to the reference population, such as across breeds and across generations. Here we 
demonstrate that even with current imperfect knowledge the use of functional information in genomic 
prediction results in immediate benefits to prediction accuracy and industry breeding decisions.

INTRODUCTION
Currently implemented industry genomic evaluations usually use single nucleotide polymor-

phisms (SNP) that are neutral and of medium density (e.g. 50k SNP chips in sheep and cattle). The 
evaluations rely on SNP being in linkage disequilibrium (LD) with causative mutations. This has been 
effective and has resulted in good prediction accuracy when reference populations are of sufficient 
size and when predictions are for animals that are relatively closely related to the reference. How-
ever, large LD blocks break down quite quickly across generations and LD is also only consistent 
across breeds at short distances that are not captured by medium density genotyping platforms. This 
reduces genomic prediction accuracy in these animal groups and imposes a shelf-life on reference 
populations. A solution is to find SNP that are not neutral but that are more closely linked to, or, are 
causative mutations. Purely statistical methods can do that with some success, but they are often 
limited in their ability to fine map causal variants and are susceptible to biases because it is difficult 
to keep association discovery and prediction reference populations independent. This is where addi-
tional independent functional information from other “omics” is helpful to prioritise SNP at finer 
scale. The overall idea is to reduce the millions of sequence SNP in whole genome sequence data 
to thousands, such that they can be routinely genotyped by industry and used in genetic evaluations 
without great computational challenges.

A plethora of high-resolution “omics” data can now be collected in relatively large numbers of 
animals providing newly defined intermediate phenotypes. Genome sequencing technologies have 
enabled several approaches to investigate regions of the genome that are associated with phenotypes 
as well as gene expression and regulation. Large global collaborative projects have created inven-
tories of sequence variants in cattle (1000 Bull Genomes Project) and sheep (SheepGenomesDB) 
(Daetwyler et al. 2014; Daetwyler et al. 2017; Bouwman et al. 2018). The advantage of sequence 
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data is that the vast majority of SNP and short insertions/deletions (Indels) will be contained in the 
dataset, thereby enabling quicker discovery of causative mutations or variants that are very closely 
linked to these mutations (Hayes and Daetwyler 2019). Next-generation genome sequencing also 
underpins most assays that aim to interrogate gene expression and regulation, for example RNA and 
chromatin immunoprecipitation (ChIP) sequencing. Regulators of gene expression have been found 
to be important and enriched in regions that have been associated with phenotypes (Wang et al. 2018). 
Regulatory regions can be identified with expression quantitative trait loci (eQTL) mapping, where 
variants are associated with gene and exon expression as well as with splice variants (Chamberlain 
et al. 2018; Xiang et al. 2018). Similarly, SNP in highly expressed genes in relevant tissues can be 
identified and such information can be utilized directly in genomic prediction (MacLeod et al. 2019). 
Another functional assay that provides insight into regulatory regions is ChIP sequencing, which can 
provide information on histones with specific modifications that indicate regions that are likely to be 
enhancers, promotors or repressors of gene expression. Finally, molecular phenomics (e.g. metabolite 
levels) can reveal the abundance of compounds in the pathway between gene expression signals and 
phenotypes and can also be genetically mapped.

Our aim was to combine information from several omics-derived datasets to prioritize variants to 
increase the accuracy of genomic prediction. We demonstrate the advantage of using this additional 
information to raise the accuracy of genomic prediction with examples in sheep and dairy cattle. 

MATERIALS AND METHODS
Sheep. 42 million sequence variants discovered by SheepGenomesDB Run2 (Daetwyler et al. 

2017) were imputed into 46,000 sheep (Bolormaa et al. 2019). Only the 31 million sequence variants 
with a Minimac R2 >0.4 were used for downstream analyses. RNA sequencing was carried out on 150 
wethers for muscle and liver tissues (Bolormaa et al. 2015). All data was aligned with the program 
STAR, counts were generated with the R package feature Counts, normalised for read depth. Expression 
QTL (eQTL) mapping was performed with gene and exon counts, as well as with splice variants at 
SNP 1 megabase (Mb) up and downstream of genes. A false discovery rate (FDR) threshold of 0.05 
was used to determine significant SNP, which were then overlapped with significant QTL regions 
from a genome-wide association study on meat and carcass traits (individual animal phenotypes) 
also imposing a FDR of 0.05 (Bolormaa et al. 2016) and pruned for LD > 0.9. The same multi-breed 
reference population and traits as Khansefid et al (2018) were used to test two SNP sets: i) the 50k 
Ovine SNP chip and ii) the 50k Ovine SNP chip with the 10,000 significant eQTL sequence SNP 
added. Genomic prediction accuracy was validated in approximately 1000 Merino and 500 Border 
Leicester/Merino cross sheep for 6 meat traits (individual animal phenotypes). Validation animals 
were chosen to not have half-sibs in the training set to restrict relationships (Khansefid et al. 2018).

Dairy Cattle. 17 million sequence variants identified in the 1000 Bull Genomes Project Run6 
were imputed into 44,260 animals (about 75% Holstein, 20% Jersey and 5% Australian Red breeds). 
Sequence variants associated with gene expression (eQTLs) and concentration of milk metabolites 
(mQTLs, phospholipids), and under histone modification marks (providing information on protein 
– DNA interactions) were discovered from multi-omics data in several tissues of over 400 cattle. 
Variants were also identified from 1000 Bull Genomes database (N=2,330) beef-dairy selection sig-
natures. These analyses defined 30 variant sets and for each set we estimated the genetic variance it 
explained across 34 complex traits in 11,923 bulls and 32,347 cows. Only sets that explained more 
variance than a random set were carried forward in the analysis leaving approximately one million 
variants. We defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the 
proportion of the variance explained by each variant (Xiang et al. 2019). Further LD pruning and 
variant classification reduced the set to 40,000 variants that were included on a new Illumina XT SNP 
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chip design. Finally, we tested whether this new variant set increased genomic prediction accuracy 
using Bayesian genomic prediction method BayesR across milk, fat and protein yield, somatic cell 
count and fertility, when compared to the standard Illumina 50k SNP chip in an independent cow 
dataset (N range 538 (Crossbreds) to 2740 (Holstein)). Similarly to sheep, validation animals were 
not allowed to have sires or half-sibs in the training set.

RESULTS AND DISCUSSION
Sheep. One million eQTL were detected with significant overlap of eQTL between gene, exon 

expression and splice variation. Overlapping the eQTL with significant GWAS peaks resulted in 
10,000 selected SNP that were added to the 50k Ovine SNP chip for genomic prediction. The increase 
in prediction accuracy from adding the 10,000 functional SNP was approximately 2 to 3% and var-
ied between traits (Figure 1). In most traits Bayesian methods attained higher prediction accuracy 
than GBLUP as they are better at accommodating SNP with large effects (data not shown). Bias of 
genomic breeding values (slope of phenotypes on genomic breeding values) was unaffected compared 
to Ovine 50k results. 

Figure 1. Genomic prediction accuracy when comparing standard 50k Ovine and Bovine SNP 
chips (50k) to SNP sets that include prioritised markers using functional information (50kPLus) 
in Merino and Border Leicester/ Merino cross sheep, as well as Holstein, Jersey, Aussie Red, 
and Holstein/Jersey crossbred cattle

Dairy Cattle. In the variant prioritisation work, the per-variant trait variance explained was highly 
consistent (r > 0.98) between bulls and cows across traits. Based on the per-variant heritability, the 
sets of mQTL, eQTL and variants associated with non-coding RNAs ranked the highest, followed 
by more recent mutations, those under histone modification marks, and selection signatures. A XT 
SNP chip with 40,000 variants from the prioritisation (as well as 8,000 markers overlapping with 
the Low-Density Dairy SNP chip) is currently in use for genotyping these variants directly (to avoid 
imputation errors). An early validation in cows not used in the prioritisation and using the imputed 
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high-value variants has increased prediction accuracy on average by 2.5% across all pure breed 
groups and traits (Figure 1). The increase in accuracy was more pronounced in crossbred, Jersey and 
Australian Red cattle, which is encouraging for these smaller breed groups, but could also be partly 
due to lower reference population sizes in those groups. Additional XT SNP chip results can be found 
in van den Berg et al. (2019).

CONCLUSIONS
A strategy to prioritize variants from whole-genome sequence using functional genomic, annotation, 

and phenomic information combined with target trait phenotypes has increased genomic prediction 
accuracy in animals that are less related to the reference population in both sheep and dairy cattle. 
This results in genomic breeding values that are more widely applicable across breeds (shown) and 
more robust across generations (not shown). The prioritized SNP sets can be utilized by industry 
immediately to increase prediction accuracy and genetic gain.
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MORE GENOTYPES THAN MARKERS: THE SS-T-BLUP MODEL IN ACTION.
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SUMMARY
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Multi-trait single step genetic evaluation is increasingly facing the situation of having more in-
dividuals with genotypes than an individuals’ genotype has markers. This leads to an algebraically 
impossible inversion of the genomic relationship matrix (G). Recent derivations in single step equa-
tions called SS-T-BLUP have provided an elegant way to circumvent the inversion of the G and 
therefore accommodate the described situation. In this paper we examine the applicability of the SS-
T-BLUP model to the multi-trait Australian Angus BREEDPLAN genetic evaluation and compare 
the results to applying two different ways of using G in a single step model. Results clearly show 
that SS-T-BLUP outperforms other single step formulations and allows users to avoid approximating 
the inverse of G.

INTRODUCTION
Within the last decade genotyping thousands of individuals with Single Nucleotide Polymor-

phism (SNP) chips at the commercial level has become common practice in many species of eco-
nomic relevance. However, due to cost effectiveness these individuals are being genotyped with 
low to medium density SNP chips, with usually not more than 50,000 markers. To date, genetic 
evalua-tion systems allow for SNP marker genotypes via the so-called Single Step model 
(Christensen and Lund 2010). In this model most often markers are used to pre-calculate a 
marker based relation-ship matrix which subsequently combined with the usual pedigree derived 
relationship matrix to a so-called H matrix (SS-H-BLUP). This requires the inverse of G as well. 
The described situation of having thousands of individuals genotyped at medium to low density has 
led to the situation where G is algebraically no longer invertible due to rank deficiencies. A possible 
solution is to abandon G and move to a model which incorporates the markers directly (SS-SNP-
BLUP). While SS-SNP-BLUP is generally equivalent to SS-H-BLUP many of its final 
implementations suffer from convergence problems with regard to iterative solving or demanding 
pre-conditioner computation. Recently an elegant intermediate model has been formulated which 
may be seen as a mix of SS-H-BLUP and SS-SNP-BLUP called SS-T-BLUP (Mäntysaari et al. 
2017). SS-T-BLUP does not need G nor its inverse and fits the markers directly. As it fits G 
implicitly, it is algebraically equivalent to SS-H-BLUP under certain assumptions. In addition, it 
provides EBVs at the individual level which can be readily transformed into marker solutions. In 
this paper we will examine the effect of SS-T-BLUP on the computational load to a Single Step 
genetic evaluation of Australian Angus. We will compare the results relative to the ordinary SS-H-
BLUP approach.

METHODS
Model. The “H” matrix (Christensen and Lund 2010) required for SS-H-BLUP can be written

as
A1,1 −AiA2,2A′

i +AiGwA′
i AiGw

GwA′
i Gw (1)
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where 1 is a vector indexing the subset of nng non-genotyped of individuals, 2 is a vector indexing
the subset of ng genotyped individuals, A is the pedigree-based relationship matrix, Ai = A1,2A−1

2,2,
and Gw is a genomic relationship matrix dimension ng × ng which is constructed from a centred
and scaled marker genotypes matrix M of dimension ng × nm and subsequently blended. Thus
Gw = γMM′ + λC, where C is an arbitrary but symmetric matrix and γ and λ are arbitrary non-
zero weights. For the sake of simplicity we will set C = A22 and 1 = γ +λ ,γ > 0, λ > 0. H−1 can
be written as

(
A1,1 A1,2

A2,1 A2,2

)
+




0 0

0 G−1
w −A−1

2,2


 (2)

(Christensen and Lund 2010) or as H̃−1 (Strandén et al. 2017)

(
A1,1 A1,2

A2,1 A2,2

)
+




0 0

0 G−1
w − (A2,2 −A2,1(A1,1)−1A2,1)


 , (3)

where A:,: is a respective block of the inverse of A. However, replacing Gw with γMM′ + λC in
equation 1 and inverting the resulting matrix yields matrix Ψ−1

(
A1,1 A1,2

A2,1 A2,2

)
+

(
0 0

0 λ−1(A2,2 −A2,1(A1,1)−1A2,1)

)
−

(
0 0

0 M∗M∗′

)
(4)

where M∗ = M†(Ku)
−1, M† = (λ−1(A2,2 −A2,1(A1,1)−1A1,2))M, (Ku)

−1 is an upper triangular
matrix derived from K−1 = (Ku)

−1(K
′
u)

−1, K = (γ−1D−1 + M′M†) and D−1 is the inverse of D
which is an arbitrary but symmetric and positive definite matrix of dimension nm ×nm (Mäntysaari
et al. 2017). Further D may contain marker specific weights, or allele frequencies if M is not scaled.
Given matrices H−1, H̃−1 and Ψ−1 one can define three different BLUP models, SS-H-BLUP, SS-H̃-
BLUP, and SS-T-BLUP, which differ solely in which formulation of the inverse of H is used (H−1,
H̃−1 or Ψ−1). However, the different formulations will have consequences for solver preparation
and iteration time.

Data. The SS-H-BLUP, SS-H̃-BLUP and SS-T-BLUP models were applied to an Australian An-
gus data set currently used in commercial genetic evaluation. The data set comprised of 35 traits
with a total of 9,565,814 records across all traits, and 2,621,403 individuals in the pedigree which
allowed for multiple sire mating. The number of animals with genotypes was 58,705 comprising
of SNP marker genotypes of various densities and panel manufacturers imputed to a common set
of 56009 SNPs. To increase the computational load additional 91,295 genotypes (data set 150k)
and 341,295 genotypes (data set 400k) were artificially imputed in a combined regression-sampling
approach. The 400k data set was only used for SS-T-BLUP because the other models were compu-
tationally infeasible.

The multi-trait model included a single fixed factor per trait, 27 correlated genetic factors, 27
correlated genetic groups factors with 19 genetic groups each, 3 correlated maternal permanent
environmental factors and 22 correlated sire-by-herd factors. The total number of equations was
76,823,378. λ and γ were set 0.05 and 0.95, respectively.

Software. The system of equations was solved with AGBU’s current large scale linear mixed
model library solver which uses the preconditioned gradient algorithm (PCG) for iteratively solving
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linear mixed models and integrates Intel(R) MKL(R), version 2017 update 8. Convergence was
achieved when the L2 norm of PCG residuals scaled by the L2 norm of the mixed model equations’
right hand side was ≤ 2.68e−9. All computationally relevant integer and all real numbers were
represented in a 64 bit. Computations for the 150k data set were carried out on a computer with two
sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v3 with 2.60GHz, a total of 28 cores, and
528GB of random access memory (RAM). Computations for the 400k data set were carried out on
a computer with two sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v4 with 2.30GHz, a
total of 36 cores, and 256GB of RAM.

RESULTS

Table 1: Processing time in real time seconds (hours) for various steps when iteratively solving
a SS-T-BLUP, SS-H-BLUP and SS-H̃-BLUP model using an Australian Angus BREEDPLAN
dataset

task SS-H-BLUP1
150 SS-H̃-BLUP150 SS-T-BLUP150 SS-T-BLUP2

400

G 1,756 1,756 - -
A2,2 250 250 - -
G−1 9,150 9,150 - -

A2,2
−1 3,500 - - -

M† and K - - 3,422 4,210
KL - - 352 320
M∗ - - 629 1170

A−1
2,2 diag3 - 262 262 219

preparation 14,656 (4) 11,418 (3.2) 4,665 (1.3) 5,919(1.6)

iteration 7.5 11.2 8.6 12

∑ iteration 19,123 (5.3) 28,716 (7.9) 22,134 (6.1) 30,809 (8.5)

run time 33,779 (9.4) 40,134 (11.1) 26,799 (7.4) 36,728 (10.2)
1: 150,000 individuals with genotypes. 2: 400,000 individuals with genotypes. 3: sampling of diagonal elements of A−1

2,2

using 10,000 samples.

Results for the different parts of the setup and solving steps are provided in Table 1. SS-H-
BLUP150, SS-H̃-BLUP150, SS-T-BLUP150 and SS-T-BLUP400 converged in equal number of rounds
which was �2,560. The major differences between SS-H-BLUP150, SS-H̃-BLUP150 and SS-T-
BLUP150 are the computation time for run preparation and the computation time per round of it-
eration. The preparation time for model specific parts for SS-T-BLUP150 was 1.3 hours, for SS-H-
BLUP150 4 hours and for SS-H̃-BLUP150 3.2 hours. Thus, compared to SS-T-BLUP, SS-H-BLUP
needed 3 times and SS-H̃-BLUP 2.5 times more real time for all necessary pre-calculations. In terms
of time per iteration SS-H-BLUP150 took 7.5 real time seconds for a single round of the precondi-
tioned gradient solver, followed by SS-T-BLUP150 with 8.5 real time seconds. With 11.2 seconds
per iteration SS-H̃-BLUP was slowest. Due to the huge time savings for run preparation and only
a slightly longer time while iterating SS-T-BLUP150 needed only 80 % of the total processing time
required by SS-H-BLUP150 and only 66 % of SS-H̃-BLUP150. The last column in Table 1 shows the
computing time for SS-T-BLUP400.
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DISCUSSION
SS-T-BLUP has been proposed as a single step model which can facilitate data sets where the

number of genotyped individuals exceeds the number of markers and the G matrix is algebraically
not invertible. These situations become more common in commercial plant and livestock species
where individuals are genotyped with low to medium density SNP chips (Mäntysaari et al. 2017).
This is achieved by reformulating the “H” matrix representation such that neither the G or A2,2
matrices nor their inverses need to be built or approximated. As shown by the results, SS-T-BLUP
clearly outperforms SS-H-BLUP in terms of total processing time which is mainly due to the huge
computational cost for setting up G, A2,2 and inverting both as the inversion cost grows cubicly with
ng, whereas at a constant nm the cost for generating M† grows less than linearly and the cost for
K grow (nm × nm + 1)/2× ng. In terms of seconds per iteration the main difference between SS-
T-BLUP, SS-H-BLUP and SS-H̃-BLUP is caused by the operations of Ψ−1, H−1 and H̃−1 times a
vector y. This can be narrowed down further to a single matrix vector operation ∆H−1

2,2 y = (G−1
w −

A−1
2,2)y in SS-H-BLUP, or one matrix vector operation ∆H−1

2,2 y = G−1
w y and one solver operation

y = (A2,2 − A2,1(A1,1)−1A1,2)x in SS-H̃-BLUP, or two matrix vector operations M�′M�y and one
solver operation y = (A2,2−A2,1(A1,1)−1A1,2)x in SS-T-BLUP. In the example given here operations
∆H−1

2,2 y and G−1
w y required ≈ 2.25e10 floating point operations (FLOPs), whereas operation M†′M†y

required ≈ 1.5e10 FLOPs. SS-T-BLUP and SS-H̃-BLUP have additional cost for solving y= (A2,2−
A2,1(A1,1)−1A1,2)x which offsets the FLOP advantage of SS-T-BLUP and produce an additional
overhead for SS-H̃-BLUP. For SS-H̃-BLUP these disadvantages whilst iterating are not balanced
due to not inverting A2,2, because its inverse can be calculated much quicker than the inverse of
G, resulting in almost 20% more total processing time compared to SS-H-BLUP. For SS-T-BLUP
the combination of an advantage in terms of FLOPs, extra burden for solving and huge saving in
preparation time resulted in a 20% and 33% decrease in processing time compared to SS-H-BLUP
and SS-H̃-BLUP, respectively.

CONCLUSION
These results support the conclusion that SS-T-BLUP provides a feasible algorithm to calculate

exact solutions for estimated breeding values when the number of genotyped individuals exceeds the
number of markers. A limitation to the number of genotyped individuals is solely set by the avail-
able RAM. Therefore SS-T-BLUP allows solving Single Step equation systems iteratively without
generating G or A2,2 or their inverse matrices or any approximation of these matrices.
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M.H. Ferdosi, N.K. Connors, V. Boerner and D.J. Johnston

Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia

*  A joint venture of NSW Department of Primary Industries and the University of New England



20

﻿Computational and Statistical 1



21

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:19-22

Table 3. Table shows GRM values when p = 0.5 (A) and when p approaches 1 (B) -by using the formula 
in Table 1-A 

Formula (A) - p = 0.5 and 2p(l -p) = 0.5 (B) - limp->J+ and 2p(l - p) = 0
Allele -1 0 -1 0 1 

-1
0

1/0.5 0 
0 

-1/0.5
0 

1/0.5 

0 -1 
00 

-2
00 

00 

Table 4. For different relationships (r) using formula in Table 2 the p would be 

Formula 

Allele 

-1
0

(A) - for 0.5 relationships (B) - for 0.25 relationships
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1/5 3/5 
_ vs-s vs+s 

10 ' 10 

-1 0 

1/9 5/9 
2/5 1/3,2/3 4/9 
4/5 8/9 

0.0 

For Allele Coding -1, O, 1 
I 
, I
! I

I, 
I! 
I I 
I I! I

! I
! I
I I
i I
i \
i \
i \ 
' \ 
'. \ 
'. \ \ \ '' 

I 

I , 
I !
I I 
I j 
I ' 
I I 
I j 
I ' 

I ! 
I I 

/ ,' 
/ 

... ,... ,,-' /, �._ / 
...... .. _��::::-:-:.- _,; ----... __ _ -- --------- ------

-1,-1 - • -1,0 --- -1,1 -- 0,0 - 0,1 - 1,1 

0.2 0.4 0.6 0.8 1.0 

Allele Frequency 
Figure 1. Effect of different allele frequencies on the GRM values using three individuals and one locus. 
The legend shows the genotypes pairs. 

For a single marker only GRM, as discussed in this article, allele frequencies have significant 
effects on the GRM values. As shown in Figure 1, the more extreme the allele frequency (i.e. 0 
or 1) the more extreme the GRM value. Table 3 - (B) shows that allele frequencies of O and 1 can 
result in infinite GRM values, demonstrated also in Figure 1. The lower limit of GRM for opposing 
homozygote is always -2, regardless of allele frequency. Figure 1 demonstrates how rare alleles and 
extreme allele frequencies can cause very large numbers in the GRM. This is amplified here due to 
only using a single marker. It should be noted that in practice, usually using thousands of markers, 
the effect of extreme allele frequencies will be minimized. This is dependent on SNP selection and 



22

﻿Computational and Statistical 1

the effect of extreme allele frequencies will be minimized. This is dependent on SNP selection and 
whether the population is multi-breed for example. This simple example shows the importance 
of choosing the appropriate allele frequency (e.g. base population allele frequency - VanRaden 
(2008)) in order to reflect the true relationship among individuals in a GRM. Removing SNPs with 
very high or low allele frequencies or replacing their allele frequencies with pre-set allele 
frequencies may lead to more compatible values in GRM (in comparison to NRM), with no or 
negligible effect on estimated breeding values kings (Tier et al. 2015). 

CONCLUSIONS 
In this article a simplified version of the GRM was presented to demonstrate the effect of allele 

frequency on GRM values. In addition, simple formula were presented to calculate GRM values based 
on the specific allele frequency, or what allele frequency to use to obtain a specific GRM relationship 
value. These formulas can further be used for simulation purposes and development of methods to 
build the GRM efficiently. 
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SUMMARY
SNP genotype data are increasingly employed across a range of species for routine use in parent-

age verification and identification, and single-step evaluations. Robust and automated quality control 
processes are a critical step in maximizing the value of genotype data in these, and other, applications. 
Prediction of “genotype sex” is a common quality control metric but can be problematic for example 
on mammalian chips that do not contain Y chromosome markers because methods based on hete-
rozygosity of X chromosome markers can incorrectly flag inbred females as male. A deep learning 
model is trained to predict “genotype sex” and validated and tested using real-world data routinely 
used in the American Hereford Association’s single-step evaluation. 

INTRODUCTION
A major challenge that comes with the advent of low-cost SNP genotyping is curation and management 

of the vast quantities of data that are produced. Take the case when the genotype sample for a particular 
animal fails to verify against its genotyped parents in a SNP based parentage verification.  If this was to 
occur, an ideal system would automatically initiate a search against other relevant genotype samples to 
try and find the true parent without any extra input from the user. If such functionality is not available, 
or if such a search fails to find a match, then there is the question of a) is the true parent not genotyped, 
or b) is one or more of the relevant genotypes involved in the parent verification a bad or mismatched 
sample. In either case this typically requires the breed society and/or breeder to be contacted in order to 
generate a list of potential parents or to query any potential issues with the sample. This can be compli-
cated by the use of non-standard or otherwise inconsistent animal, sample, and genotype identifiers. The 
length of time for this process can be significantly shortened by gleaning various information from the 
genotype sample(s) in question such as potential relatives or phenotypic characteristics. For example, 
if a genotype is clearly from a female and the animal in question is definitively male (or animal is black 
and horned and genotype indicates red and polled), it is reasonable to assume the sample in question is 
incorrect and the animal should have a new sample taken for regenotyping.

Prediction of “genotype sex” is an important quality control metric for genotype samples and 
is predicted from the sex chromosomes, i.e. in mammals the X and Y chromosomes for males and 
two X chromosomes for females. Females inherit one X chromosome from their mother, and one X 
chromosome from their father. With no inbreeding, the copy of each allele from each chromosome 
will not always be the same and the resulting SNPs will exhibit heterozygosity. As males only have 
one copy of the X and Y chromosomes, any alleles called from the unmatched parts of those chro-
mosomes should always be the same, resulting in homozygosity within that region. 

Deep learning is a subset of machine learning algorithms that passes an input training dataset 
through multiple layers of neurons in a neural network to successively transform and extract features 
from the output of the previous layer (Deng and Yu 2014). Leveraging the unique computational 
capabilities of Graphics Processing Units (GPUs) developed to render modern video games, deep 
learning approaches have gained significant media attention recently due to associated large tech-
nological advances in applications such as self-driving cars, image recognition and classification, 
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medical diagnostics, and many others.
Certain X chromosome SNPs, even those outside the pseudo autosomal region (PAR), can be 

heterozygous in males if they are located in regions exhibiting copy number variation. Further, X 
chromosome SNPs can be homozygous in females, especially inbred females who may have inherited 
the same X chromosome from both her sire and dam, e.g. if her sire is also her maternal grandsire. Thus 
in rules-based approaches selecting an appropriate subset of SNPs and male/female heterozygosity 
cut-offs can greatly affect the subsequent genotype sex prediction and without Y chromosome SNPs 
inbred females can be misclassified. On the other hand, given a suitable training dataset with realistic 
data and known true sex of the associated samples, a deep learning model can in theory account for the 
nuances and variation of specific SNPs in the given training dataset to generate accurate predictions. 
This is possible using a table containing the relevant sex SNPs and utilizing approaches for deep 
learning on tabular data via the fast.ai toolbox (Rachel Thomas 2018). The objective of this study 
was to determine if a deep learning approach can accurately predict the genotype sex of an animal 
and to assess the value of such a tool as a routine automated quality control step within a genomic 
database information system.

MATERIALS AND METHODS
The genotype data employed for the study consisted of a subset of those SNP genotypes from 

67,304 animals used in a recent single-step evaluation from the full American Hereford Association 
genomic database of >110,000 genotyped animals. The samples originate from several platforms, 
genotyping laboratories, and chips across a number of years but consist predominantly of GeneSeek 
50K and 30K genotypes. Of these, a subset of 15,619 “pedigree verified true” male and female gen-
otypes was determined by taking samples from only those animals who were recorded in the current 
pedigree as a sire or dam and who subsequently passed SNP-based pedigree verification with at 
least 1 genotyped offspring. For pedigree verification, no samples used in this study had less than 
5,000 called SNPs in common. Pedigree verified animals recorded as a sire in the pedigree were then 
considered a “true” male while those recorded as a dam were considered a “true” female totalling 
5,058 and 10,561 for males and females respectively. As the American Hereford Association has 
utilized the international ICAR ID format for many years, the pedigree recorded sex for each animal 
is recorded as the 7th character of the ID, e.g., HERUSAM000000000001 is recorded as a male and 
HERUSAF000000000002 is recorded as a female. Comparing a predicted genotype sex to its pedigree 
recorded sex is straightforward as a result.

Three approaches for computing “genotype sex” were examined. The first consists of a simple 
rule-based non PAR (nPAR) X-chromosome heterozygosity check using all available called nPAR X 
SNPs from a list of 3,035 SNPs which exist across a variety of genotyping chips and platforms. No 
sample used in this study had less than 700 called nPAR X SNPs. Samples with ≤5% heterozygosity 
amongst their called nPAR X SNPs were classified as males while samples with >5% were classified 
as females. The second approach tested is the rule-based protocol developed by ICBF and is as follows 
using only a specific small subset of 280 nPAR X chromosome SNPs as described by McClure et al. 
2018: 1) Determine heterozygosity rate (#AB/ (#AA+#AB+#BB)) for nPAR SNP; 2) If ≤5% het rate 
= male; 3) If ≥15% female; 4) If between 5 and 15%= ambiguous sex. Additionally, ICBF employs 
a subset of 7 Y chromosome SNPs: 1) Count nPAR chrY genotypes; 2) If 0–1 genotypes = female; 
3) If 6–7 =male; 4) If 2–5 = ambiguous sex. Between the X and Y chromosome predictions any 
non-conflicting unambiguous sex is reported, otherwise an ambiguous or conflicting sex is reported. 
The Y sex prediction is dependent on samples having been genotyped on a chip where Y SNPs are 
available and several thousand samples used in this study did not have Y SNPs available. Instead of 
excluding those samples a two-step ICBF (X+Y) sex prediction was utilised instead of the fully joint 
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ICBF(X+Y) sex prediction described above and by McClure et al. 2018, such that Y chromosome 
predictions were used only if the X chromosome predictions were ambiguous.

Finally, a deep neural network (DNN) genotype sex predictor was built utilizing the fast.ai deep 
learning tabular toolbox (Howard & others 2018) in conjunction with a dataset consisting of just 
the 280 ICBF X chromosome sex SNPs. Some 2,500 male and 5,000 female genotypes chosen at 
random from the “pedigree verified true” samples were used as the training data for the DNN while 
the remaining of the 15,619 samples were used as the validation data. The only dependent variable 
is the sex prediction while each called SNP was treated as an input categorical variable with values 
-1, 0, 1, or 5 (no call). Prediction accuracy was used as the training metric and neural networks with 
various numbers of hidden layers and neurons per layer were tested for training over 25 epochs which 
took ~5-6 minutes each.  The sex prediction is output as a probability of being male and a probability 
of being female. Sex predictions with ≥ 80% probability were taken as the predicted sex with the 
remaining assumed to be ambiguous.

RESULTS AND DISCUSSION
Table 1 summarises the number of predicted male, female, and ambiguous sex animals from each 

approach. An ambiguous male or female means the sex prediction was ambiguous and the pedigree 
recorded sex was male or female respectively. A conflicting male or female refers to the pedigree 
recorded sex being male or female respectively and the genotype sex predicted as female or male, 
respectively. The DNN results were reported from a network with 600 hidden layers and 300 neurons 
per layer which was found to have the most accurate results of those tested. However, other network 
sizes with neurons on the order of the number of SNPs (280) achieved very similar results. Perhaps 
unsurprisingly, the DNN achieves the highest accuracy on this “pedigree verified true” dataset as it 
is the same dataset that was used for training and validation of the neural network. 

Table 2 summarises the differences between the sex predictions from each approach compared 
to the pedigree recorded sex of each animal in the larger genotype database not including samples 
otherwise used in the training and validation set for the DNN consisting of 67,304-15,619=51,685 
samples. In both the “training” and “test” datasets, use of the ICBF Y chromosome data to augment 
otherwise ambiguous predictions using only the ICBF X chromosome results does appear to improve 
prediction accuracy. The nPAR X approach with the hard cut-off between male and female means 
no “ambiguous” sex samples are flagged, however, the overall percentage of animals matching 
their pedigree recorded sex is roughly the same as the ICBF approach. The DNN achieves a similar 
percentage of predictions matching the pedigree recorded sex in the test dataset as the rules-based 
approaches while using only the 280 ICBF X SNPs and after training with a dataset of only 2,500 
male and 5,000 female genotypes randomly selected from the 15,619 “true” sexed samples. The 
remainder of the 15,619 samples were used for cross-validation during training.

Table 1. Results summary against the “pedigree verified true” sex of 15,619 individuals used 
for training and validation of the DNN

nPAR (X) ICBF(X) ICBF(X+Y) DNN(X)
% Correctly Predicted 99.76 99.23 99.86 99.88
Total Predicted Female 10,525 10,444 10,542 10,549
Total Predicted Male 5,094 5,074 5,076 5,065
Ambiguous Female N/A 97 0 5
Ambiguous Male N/A 4 1 0
Conflicting Female 37 20 20 10
Conflicting Male 1 0 1 3
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Table 2. Genotype sex prediction results summary against the pedigree recorded sex of the 
animals in the 51,685 samples test dataset, which does not include any animals used in the 
training and validation set

nPAR (X) ICBF(X) ICBF(X+Y) DNN(X)
% Matching pedigree 99.79 99.40 99.82 99.70
Ambiguous Female N/A 197 2 10
Ambiguous Male N/A 37 14 46
Conflicting Female 57 53 53 61
Conflicting Male 51 23 25 82

CONCLUSIONS
This study shows deep learning approaches have potential as an accurate genotype sex prediction 

tool in routine and automated genotype sample quality control processes. The accuracy of a deep 
learning tool trained on a random subset of “pedigree verified true” gendered samples is found to 
be comparable to that of existing rules-based approaches. A purely X chromosome heterozygosity 
rules-based approach can benefit from using Y chromosome data to improve otherwise ambiguous 
predictions.

The benefits of a deep learning tool are that it can be integrated and automated with an existing 
suite of quality control protocols. In a production system the tool could be routinely tuned and further 
trained against new and verified data as it arrives. This in theory should allow it to better account for 
the nuances in the specific datasets of interest. 

There are a significant number of avenues for further investigation with regards to the deep 
learning approach. These include greater exploration of the effect of the deep learning parameters on 
prediction results, e.g. number of hidden layers and neurons per layer, as well as the size of the dataset 
used for training and validation both in terms of the SNPs included and the particular individuals that 
comprise the training and validation sets. Other avenues include incorporation of other data features 
into the deep learning model such as genotyping platform or chip, Y chromosome SNPs, recorded 
breed, sample call rate or individual SNP GC scores, inbreeding coefficients, and/or other pedigree 
information. If genotype data on individuals exhibiting sex chromosome defects or being intersex are 
available, these could also be incorporated. Extension of the model to additional prediction outputs 
(e.g. breed) would also be valuable.

Some drawbacks of the deep learning approach are that it does require a suitable training dataset, 
finding the optimal DNN architecture (e.g. number of layers and neurons per layer) and training 
parameters is unclear, it requires GPU-based hardware and expertise to run. Finally, even though the 
deep learning model returns the probability a given sample is male or female unlike the rules-based 
approaches, the abstract nature of the deep learning model can create extra challenges in communi-
cating prediction results back to breeders or other stakeholders.
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SUMMARY
Random Forest (RF) is one of the most popular machine learning methods for large genomics 

data analysis. It produces the variable important measures (VIMs) for individual features, which can 
be positive, zero or negative, indicating a positive or negative contribution of the feature. It is easy to 
interpret single nucleotide polymorphisms (SNPs) with positive or zero VIM values when applying 
RF for genomic prediction. However, little is known about the interpretation of SNPs with negative 
VIM values. Most importantly, what impact of these SNPs have on the genomic prediction accuracy 
of breeding values? In this study, using genotype information from 651,253 SNPs for 2,109 Brahman 
cattle with yearling weight phenotype, we applied the RF to identify 8,195 SNPs with negative VIM 
values and investigated their impact on genomic prediction. Specifically, we addressed the questions: 
1) How did these SNPs differ from the top SNPs chosen from the RF with positive VIM values or the 
SNPs randomly selected but evenly spaced along a genome? 2) Did these SNPs have any biological 
relevance? Our results show that 1) including the SNPs with negative VIM values in the genomic 
prediction would result in the increase in error variance and decrease in the accuracy of genomic 
prediction; 2) these SNPs had no biological functions. 

INTRODUCTION
Random Forest (RF, Breiman 2001) is one of the most commonly used machine learning methods 

for large genomics data analysis (Chen and Ishwaran 2012). One of its analysis output parameters is 
the variable importance measure (VIM). When applied to a continuous phenotype, RF generates the 
VIM - %IncMSE (percentage increase in Mean Squared Error). It measures an individual feature’s 
contribution to the prediction accuracy of decision trees, via the change of MSE when the data for 
a feature (here a SNP) is permuted while all others are kept constant, with valid VIM values being 
positive, zero or negative. The larger the value (i.e., more positive), the more important the feature is. 
When applying this method to a high-density SNP panel for genomic prediction of a quantitative trait 
with a moderate heritability, the questions are: 1) how do SNPs with negative VIM values behave? 
2) Do they have any biological relevance? In this study, we investigated the impact of SNPS with 
negative VIM values on the accuracy of genomic prediction and their possible molecular functions.

MATERIALS AND METHODS
Data. A Brahman cattle dataset, consisting of 2,109 genotyped animals with 651,253 SNPs per 

animal from the CRC for Beef Genetic Technologies (Porto-Neto et al. 2014), was used for this study. 
The animals were measured for yearling weight (YWT), which ranged from 115 to 353 kg with an 
average of 227.7 kg (±34.32kg). Since RF does not fit fixed effects into the process, prior to the RF 
analysis, the phenotypic values were adjusted for the fixed effects. These include contemporary group 
(combination of sex, year and location and 41 levels) and age (302-416 days). The residuals from the 
linear model of analysis of variance were then combined with the SNP information for the RF analysis.
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Identification of SNPs with negative VIM values (SNPnegvim) using RF. The detailed RF method 
can be found in Li et al. (2018). The algorithm incorporates both training and validation procedures 
in its process to build decision trees to examine individual SNP contributions to prediction accuracy. 
We carried out an initial hyper-parameter fine-tuning for tree size (NTree) from 10,000, 12,000, … 
20,000 using all SNPs, while the Mtry value was set as two times of the squared root of total number 
of SNPs.  A CSIRO high performance cluster computer with the R program (version 3.4.0) and the 
library randomForest was used for the analyses. 

Genomic prediction accuracy with and without SNPnegvim. A five-fold cross-validation scheme 
was applied to the RF and genomic prediction. The population was partitioned into 5 subsets and each 
time 4 subsets was used for training and the remaining subset was used for validating. In addition to 
the genomic prediction accuracy comparison between all SNPs with and without SNPnegvim, we also 
examined the results from the subsets of the top 1,000, 5,000, 10,000 and 50,000 SNPs with positive 
VIM values from the RF, and those of the same size but evenly spaced SNPs along the genome (denoted 
“Even”). A GBLUP model (VanRaden 2008) was used to estimate variance components and genomic 
breeding values (gEBVs), where the fixed effects in the model included the contemporary group and 
age. The accuracy of genomic prediction was calculated as the correlation between gEBVs and the 
adjusted phenotypic values, and then divided by the square root of heritability. The final estimates of 
genetic parameters were the average values from five validation analyses. The program AIREMLF90 
(Misztal et al. 2002) was used in the GBLUP analyses. 

Gene Ontology (GO) Enrichment Analysis. A locus-based gene ontology enrichment analysis 
using GREAT v3.00 (McLean et al. 2010) was undertaken. SNPs (±10 bp) were translated to human 
coordinates (GRC37/hg19) using UCSC’s liftOver tool (minMatch = 0.1) (Hinrichs et al. 2006). A 
binomial and a hypergeometric test were used to assess the enrichment of molecular function terms 
and biological process terms. 

Functional Enrichment Analysis. Cattle functional annotation was derived from i) histone 
chromatin marks in liver H3K27ac, and H3K4me3 (Villar et al. 2015); ii) ATAC-seq information 
from CD4+ and CD8+ from the Fr-AgENCODE (Foissac et al. 2018); iii) experimental in-house 
ATAC-seq in liver and muscle tissues; and iv) derived from current UMD3.1 annotation. To assess the 
significance of overlap between SNP datasets and functional genomic features we performed a Fisher’s 
exact test with false discovery rate correction using the R package LOLA (Sheffield and Bock 2016). 

RESULTS AND DISCUSSION 
Characteristics of the SNPs with negative %IncMSE values. The distribution of average VIM 

(%IncMSE) values (from 5-fold training datasets) for ranked SNPs (from the most important to the 
least important) is shown in Figure 1. Surprisingly, of the 651,253 SNPs, 180,056 (27.7%) were found 
to have a negative average VIM value. However, when investigated further, we found that only 8,195 
of these SNPs had the negative VIM values in all 5-fold datasets, and the remaining 171,861 SNPs 
varied between the datasets used. This clearly indicates that extreme caution needs to be taken when 
using the average of the VIM values from a cross-validation scheme as the criteria to identify the 
SNPs with negative VIM values. An extra step is required to validate the SNPs, because the SNPs 
with negative VIM values in one population could have positive VIM values in another population.

For these 8,195 SNPnegvim, the average MAF was 0.21 (with the range 0.01-0.50). We also checked 
the allele substitution effects from the previous GWAS study on this population (Porto-Neto et al. 2014) 
and found that these SNPs distributed along the whole genome, whereby 4,143 had positive effects 
and the remaining 4,052 had negative effects. However, the genotypes of these SNPnegvim were in fact 
imputed from an initial low-density panel of cattle 60k. These may reflect the quality of imputation.  
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Figure 1. Distribution of average variable importance measures of ranked SNPs 

Table 1. Average estimates of variance components and genomic prediction accuracy for dif-
ferent subsets of SNPs

Marker Additive Model
ha

2 σa
2 σp

2 †ACC
RF1,000 0.26±0.03 171.6±25.0 658.8±26.1 0.47
RF5,000 0.39±0.04 254.9±32.7 658.2±26.3 0.53
RF10,000 0.42±0.04 278.5±35.2 659.1±26.4 0.55
RF50,000 0.45±0.04 299.0±38.7 669.2±26.7 0.58
Even1,000 0.18±0.03 124.1±22.2 682.8±25.2 0.28
Even5,000 0.30±0.04 218.9±32.2 680.0±26.0 0.47
Even10,000 0.36±0.04 245.4±35.2 681.3±26.3 0.47
Even50,000 0.40±0.04 275.9±38.7 681.4±26.3 0.48
§643,058 0.41±0.05 281.4±39.4 679.5± 26.7 0.59
All SNPs (651,253) 0.41±0.05 281.0±39.6 679.6±26.7 0.55

§ All SNPs without 8,195 VIM negative SNPs; † Accuracy of genomic prediction

Genomic prediction accuracy with and without the negative VIM SNPs. Table 1 presents 
the estimates of variance components and the genomic prediction accuracies from using different 
sources of SNPs. In comparison to the accuracy results from using the whole panel (All SNPs, last 
row in Table 1, ACC = 0.55), the top SNPs from the RF (i.e. RF5,000 and RF10,000) showed very 
similar or higher (RF50,000) genomic prediction accuracy values. They significantly outperformed 
the same-size SNPs randomly selected but evenly distributed along the genome (Even-). Interestingly, 
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after removing 8,195 SNPnegvim, the genomic prediction with the remaining 643,058 SNPs (Table 1) 
resulted in an improved accuracy value (0.59) compared to the whole panel (0.55). This value was 
similar to that of using RF50,000. In addition, we discovered that all the evenly distributed SNP 
datasets contained about 20% SNPnegvim. These results suggest that including SNPnegvim in the whole 
panel would have caused the reduction in accuracy estimates.  

Gene Enrichment Analysis. When comparing the biological functions of the genes near 8,195 
SNPnegvim with those of RF5,000 or Even5,000, there was no significant enrichment found for 8,195 
SNPnegvim, nor for Even5,000. However, for RF5,000, were enriched for “RNA polymerase II core 
promoter sequence-specific DNA binding”, consisting of several transcription factors such as EGRF1, 
GATA3, GATA6, NFIL3, PAX6, PAX8 or SOX11. The latter, renowned for its role in embryonic 
development and determination of cell fate (Jiang et al. 2013). Finally, at the functional level, RF 
5,000 showed significant enrichment for experimental promoters and muscle regulatory regions.

CONCLUSIONS
In low commodity livestock or aquaculture species, a common practice in applying genomic 

selection is to genotype parents with a high-density SNP panel, genotype young progeny with a 
low-density panel and then impute the low-density panel to the high-density panel for genomic 
prediction. This study demonstrates that it is important to identify and remove the problematic SNPs 
(with negative VIM values) that increase the error variance and decrease accuracy of genomic pre-
diction. The machine learning method – Random Forest has merit in use as a pre-screening tool for 
i) identifying problematic SNPs; and ii) identifying subsets of SNPs that have biological functions 
for low-density panels.    
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SUMMARY
An analysis was undertaken to explore the potential impacts of increased frequency of heat stress 

events on New Zealand dairy production systems, with subsequent consideration of the implications 
for current breeding strategies. Based on current forecasts, the expected impact of climate change will 
increase the frequency of heat stress events. However, it is unlikely that the expected impacts of heat 
stress require major deviations from current practices and breeding objectives based on unmitigated 
impacts on milk production and the trade-offs associated with mitigation.

INTRODUCTION
Anthropogenic climate change represents a key threat to global agricultural industries and food 

production systems via increased temperatures, changes in rainfall patterns, more frequent extreme 
weather events, and exposure to new pests and diseases. Given the importance of the dairy industry 
to the New Zealand economy, understanding the impacts of climate change on domestic dairy pro-
duction is of national significance.

Increased frequency of hot weather could adversely affect the dairy industry via increased milk 
production losses due to heat stress. When exposed to hot conditions, cattle reduce dry matter intake 
to reduce production of metabolic heat, and partition energy into heat dissipation behaviours at the 
expense of production (Gaughan, Sejian, Mader, & Dunshea, 2019). Consequently, hot and humid 
weather is frequently associated with reductions in milk production because of heat stress. 

This paper explores the long-term climate change forecasts across key New Zealand dairy regions to 
estimate the potential impact of increased heat stress and implications for current breeding objectives.

MATERIALS AND METHODS
Dairy production occurs across all New Zealand regions, albeit with the largest concentrations 

of dairy cow numbers occurring in Waikato (23%) and North Canterbury (14%) (LIC and DairyNZ 
2018). With Waikato located in the north-western section of the North Island, and North Canterbury 
on the eastern coast of the South Island, these locations were selected as case studies in order to 
represent geographically diverse locations. 

NIWA, the National Institute of Water and Atmospheric Research, produces long range climate 
change forecasts for key New Zealand locations. Changes in the frequency of heat stress events for 
both Waikato and North Canterbury were obtained using NIWA datasets. Climate comparisons occurred 
between a historical average from 1970 to 2015 as a baseline and forecast future climate in 2090.

NIWA climate change forecasts were configured using three Representative Concentration Pathways 
scenarios (RCPs) – RCP2.6 (low), RCP4.5 (low-mid), and RCP8.5 (high)- representing hypothetical 
pathways for the accumulation of greenhouse gases within the earth’s atmosphere. These pathways 
broadly represent conservative (RCP2.6) through to extreme (RCP8.5) levels of climate change impacts 
on temperature and rainfall. Across each RCP scenario an average of six different global climate 
models was used to forecast changes in the number of annual ‘hot days’ above 25C (NIWA, 2019).

New Zealand dairy cattle have been reported to possess a threshold associated with the onset of 
heat stress over a Temperature Humidity Index (THI) range of 68 to 74 (Bryant et al. 2007). Based 
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on prevailing levels of relative humidity in both regions, this heat stress threshold overlaps neatly 
with a temperature of 25C whereby the THI value at 50% relative humidity is 72, and at 80% relative 
humidity the THI value is 75. Consequently, the forecast annual ‘hot days’ frequency was used as a 
proxy for the expected annual frequency of days exceeding heat stress thresholds. 

Regional milk solid production data was sourced for Waikato (358kg per cow per annum) and 
North Canterbury (413kg per cow per annum) from LIC and DairyNZ (2018). Future 2090 production 
levels were forecast by adjusting these baseline production levels to account for current genetic trends 
in milk solid production (National genetic progress of 2.15kg per year for milk solids). Consequently, 
future production was estimated to be 504kg per cow per year in Waikato, and 582kg per cow per 
year in North Canterbury. 

Berry et al. (1964) established a formula for the prediction of milk production impacts due to 
heat stress: Decline in milk production (kg/d) = -1.075 - 1.736 x NL + 0.02474 x NL x THI, where 
NL is normal milk production (kg/d) during exposure to temperatures between 10 to 18 °C. NL was 
derived from the previously reported regional milk solid production forecasts. 

Forecasts of current and future levels of milk loss attributable to heat stress were estimated using 
the above formula to determine daily losses at indicative THI values of 75 and 80. Annual losses were 
derived by multiplying these daily losses by the expected ‘hot day’ frequency for each RCP scenario. 
Due to the uncertainty surrounding average THI values across future ‘hot days’, a conservative average 
THI value (THI 75) and extreme average THI value (THI 80) were adopted. 

RESULTS AND DISCUSSION
Table 1. displays forecast changes in the forecast frequency of hot days (days exceeding heat 

stress thresholds) for each location under the three climate change RCP scenarios.

Table 1. Forecast change in annual hot days under climate change

Current annual 
hot days

Forecast hot day frequency
RCP2.6
(low)

RCP4.5
(mid)

RCP8.5
(high)

Waikato 30 40 60 100
North Canterbury 35 40 50 70

Table 2. displays estimated milk production losses associated with the increased frequency of hot 
days and subsequent heat stress effects. 

Table 2. Forecast annual milk solid production losses in year 2090 attributable to heat stress

Average 
THI on 

‘Hot 
Days’

Current annual 
milk solid loss

Forecast annual losses in milk solid production  
(2090)

RCP2.6
(low)

RCP4.5
(low-mid)

RCP8.5
(high)

Waikato 75 2.1kg (0.6%) 5.3kg 
(1.0%)

7.9kg 
(1.6%)

13.2kg 
(2.6%)

Waikato 80 7.2kg (2.0%) 14.9kg
(3.0%)

22.3kg
(4.4%)

37.2kg 
(7.4%)

North Canterbury 75 4.2kg (1.0%) 8.2kg
(1.4%)

10.2kg
(1.8%)

14.3kg
(2.5%)

North Canterbury 80 12.0kg (2.9%) 20.7kg
(3.6%)

25.9kg
(4.5%)

36.3kg
(6.2%)
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Current heat stress losses are approximately 0.5% to 2.0% of annual production in Waikato and 1% 
to 2.9% in Canterbury. Under the more moderate RCP scenarios, expected milk solid loss attributable 
to heat stress is proportionally similar to current losses after accounting for expected genetic progress 
in milk solid production (2.15kg per year) to 2090. Under the most extreme RCP scenario (RCP8.5), 
losses increase up to 7.4% of expected 2090 milk solid production in Waikato and 6.2% in Canterbury.

To provide perspective, under the most extreme THI and RCP scenario (RCP8.5 & THI80), 
additional heat stress losses will amount to 14% of expected genetic progress (at current genetic 
trends) for milk solid production for North Canterbury farmers, 21% of expected genetic progress 
for Waikato farmers. 

Mitigation of expected heat stress impacts on milk production could be undertaken via selection 
for heat tolerance. Research undertaken by Garner et al. (2016) and Nguyen et al. (2016) has led 
to the development of a genomic-based heat tolerance ABV for Australian dairy cattle to facilitate 
selection for improved heat tolerance. 

The Australian heat tolerance ABV is moderately to strongly antagonistically correlated to milk 
production traits (rg = -0.75 to the milk production index). In the absence of a very strong economic 
signal for improved heat tolerance it is likely that limited genetic progress will be made due to the 
relationship between heat tolerance and current key production traits. Diversion of index selection 
emphasis toward heat tolerance could also affect future genetic progress for production traits to an 
extent that is equivalent to the expected heat stress impacts. 

Based on our analysis of forecast heat stress impacts it is likely that insufficient economic incentive 
will exist to warrant the inclusion of a heat tolerance trait within the New Zealand dairy breeding 
objective. 

Some genetic mitigation of heat stress could be justified to mitigate potential impacts on cow 
fertility. The scale of potential impacts was on conception rates was not explored within this study 
and is more difficult to quantify and predict. Mitigation could be achieved by revising the index 
economic values for fertility based on potential conception rates under future climatic conditions as 
opposed to the development of a new trait. This would increase selection emphasis on fertility as a 
means of offsetting expected adverse heat stress impacts. 

Further options for genetic mitigation could include development of homozygous ‘slick’ sires. The 
‘slick gene’ represents an adaptive mechanism utilised by Senepol beef cattle, a tropically adapted 
Bos Taurus beef breed originating from Central America. The ‘slick gene’ represents a single gene 
haplotype located on chromosome 20 that produces a short, sleek coat and enhanced sweating capacity 
(Dikmen et al. 2014). However, validation is required of the heat tolerance benefits within a humid, 
pastoral environment with low evaporative cooling potential. 

CONCLUSIONS
The forecast impacts of climate change on the frequency of heat stress events do not warrant 

significant genetic adaptation strategies for New Zealand dairy farmers. Farmers are encouraged to 
understand the expected level of adaptation challenge they will face into the future and make rational 
and objective decisions about the relative importance of adaptation within a genetic context. Trading 
off significant differences in production for greater heat tolerance would be unwarranted in most New 
Zealand dairy regions under the climate change forecasts contained within this paper.
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GENOTYPE BY ENVIRONMENT INTERACTION FOR HEAT TOLERANCE IN 
AUSTRALIAN HOLSTEIN DAIRY CATTLE

E.K. Cheruiyot1,2, M. Haile-Mariam1, T.T.T. Nguyen1, B.G. Cocks1,2 and J.E. Pryce1,2

1Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
2School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia

SUMMARY
Genomic breeding values for heat tolerance in dairy cattle were first released in Australia in 

December 2017 to select animals with better tolerance to heat stress. It is also important to identify 
animals which perform well in a wide range of temperature and humidities, given the large seasonal 
and geographical variation in Australia. The aim of this study was to investigate the magnitude of 
genotype by environment interactions for heat tolerance in Australian Holsteins. A total of 2.5 mil-
lion test-day milk yield records from 823,055 cows and 6,615 sires were included in the analysis. 
The heritability estimates at 5th and 95th percentile of temperature-humidity index (THI) were: 0.27 
and 0.21, 0.21 and 0.14, and 0.19 and 0.14 for milk, protein and fat yield, respectively. The genetic 
correlations at the extreme THI values, that is THI = 60 and THI = 75 (equivalent to the tempera-
ture and relative humidity of around 20 oC and 45 and, 31 oC and 50, respectively) were: 0.87, 0.84, 
and 0.86 for milk, protein and fat, respectively. A re-ranking among sires was observed in different 
environments. These results could allow farmers to make decisions on whether to select sires which 
are best suited to specific environments, or those that are consistent across a range of environments.

INTRODUCTION
The desire to breed for robustness in the dairy industry is intensifying, driven in part by climate 

change. One of the key components of robustness is genotype by environment interactions (G × E), 
which refers to the change in performance or a change in the ranking of animals in different envi-
ronments. In Australia, dairying is carried out in a wide range of production systems and climatic 
conditions suggesting that reranking of genotypes may occur.

Various studies have demonstrated the presence of G × E due to heat stress in dairy cattle as 
reviewed by Carabaño et al. (2017). Previous studies in Australia using test-day records reported 
evidence of G × E for production traits due to heat stress for Australian Holsteins (Hayes et al. 2003; 
Haile-Mariam et al. 2008). These studies used first parity or whole lactation data.

Genetic selection for production traits in Australian dairy cattle has resulted in considerable genetic 
gains. However, this may have led to increased sensitivity to heat stress in dairy animals (Carabaño et 
al. 2017) and possibly increased G × E because of an unfavourable genetic correlation between heat 
tolerance and milk production traits (Ravagnolo et al. 2000). Nguyen et al. (2017) noted a declining 
genetic trend for heat tolerance in Australian Holstein and Jersey dairy cattle at a rate of 0.3%/year. 
This declining trend coupled with increasing temperature and frequency of heat events suggests the 
importance of revisiting the magnitude of changes in animal performance at different environmental 
temperature and humidities. The objective of this study was to investigate G × E for heat tolerance 
using test-day milk yield records in combination with temperature and humidity data from publicly 
available weather stations over a 15-year period.

MATERIALS AND METHODS
Test-day data. First lactation milk, protein and fat yield data (consisting of 6.6 million records 

for Holstein cows between 2003 to 2017) were obtained from DataGene (DataGene Ltd., Melbourne, 
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Australia). Data editing was as follows: (1) tests < 5d or > 305d days in milk (DIM) and herd test days 
with less than 10 cows were removed; (2) sires with daughters in less than 2 herds and herds using 
fewer than 2 sires were excluded and (3) only cows with at least 4 records were retained for analyses. 
The final dataset comprised 5.2 million records for 823,055 cows and 6,615 sires from 3,732 herds. 
The pedigree for these data included up to 15 generations. 

Climate data. Climate data included hourly dry bulb and dew point temperature and relative 

humidity obtained from the Bureau of Meteorology (Melbourne, Australia) for 163 weather stations in 
Australia from 2003 to 2017. The pairwise distances between herds were calculated from geographical 
coordinates and assigned to the nearest weather station. Hourly temperature-humidity indexes (THI) 
for each weather station were calculated as follows (Yousef 1985): ​​THI = ​T​ db​​ + ​(​​0.36 ​T​ dp​​​)​​ + 41.2​)​​​​, 
where ​​T​ db​​ ​= hourly dry bulb temperature (°C); Tdp is dew point temperature (°C) and ​​T​ dp​​​ = (237.3b)/
(1.0 − b), where b = [log (RH/100.0) + (17.27​​T​ db​​​)/(237.3 + ​​T​ db​​​)]/17.27, and RH = relative humidity. 
The THI values were then averaged for 24 hours to get the daily THI. The daily THI on the test day, 
1, 2, 3, and 4th day before test day were then averaged and assigned to the test-day records.

Milk yield traits in Australia have been reported to begin declining at THI > 60 (Hayes et al. 
2003; Nguyen et al. 2016). Therefore, the THI threshold was set at 60 in this study (i.e., if THI < 
60 then THI = 60). A small proportion (0.004%) of tests obtained at THI ≥ 75 were given a value of 
75. This was to avoid unexpected trajectories as possible artefacts, which are often related to fitting 
polynomials with few extreme data points.

Statistical analysis. A univariate random regression sire model was applied to the data as follows: ​​
y​ ijk​​ = μ + ​HTD​ i​​+ ​YS​ j​​+ ​∑ n=1​ 

3  ​ ​A​ n​​ ​X​ n​​​+ ​∑ n=1​ 
8  ​ ​D​ n​​ ​Z​ n​​​+ ​∑ n=1​ 

2  ​ ​P​ n​​ ​T​ n​​​+ ​∑ n=0​ 
1  ​ ​S​ kn​​ ​W​ n​​​+ ​e​ ijk​​​, where ​​y​ ijk​​​ is yield of milk in 

litres, fat or protein in kg from the ith herd test day, jth year season of calving, and daughter of the 
kth sire; μ is the intercept; HTDi is the effect of the ith herd test day; YSj is the effect of the jth year 
season of calving; Xn, Zn, and Pn are the nth-order Legendre polynomials corresponding to age on 
day of test, DIM at test, and THI, respectively; An, Dn and Tn are the fixed regression coefficient of 
traits on age at test, DIM at test, and THI, respectively; Skn is a random regression coefficient on THI 
for the kth sire; Wn is either the intercept (n = 0) or slope solution (n = 1) for heat load index (THI) 
for cows and sires; and eijk is the vector of residual effects. The following (co)variance structure was 

assumed: ​Var ​(S)​ = ​[​​s​ 0​​​ ​s​ 1​​
​]​  =  ​[​​A ​σ​​ 2​​ ​s​ 0​​

​​
​ 

 ​Aσ​ ​s​ 0​​​s​ 1​​
​​
​ A ​σ​ ​s​ 0​​​s​ 1​​

​​​  A ​​σ​​ 2​​ ​s​ 1​​
​​ ​]​​, where A is the relationship matrix for sires constructed 

from pedigree data; ​​s​ 0​​,​ ​​s​ 1​​​ are the intercept and slope for sires; ​​​σ​​ 2​​ ​s​ 0​​
​​, ​σ​ ​s​ 0​​​s​ 1​​

​​, ​​σ​​ 2​​ ​s​ 1​​
​​​ are (co)variance for sire 

effects of THI. Heterogeneous error variance was modelled for 10 DIM intervals over a lactation 
(DIM = 5–30, 31–60, 61–90, 91–120, 121–150, 151–180, 181–210, 211–240, 241–270, and 271–300) 
as follows: ​Var ​(e)​  =  R = diag​{I ​​σ​​ 2​​ ​e​ 1​​

​​, ​​Iσ​​ 2​​ ​e​ 2​​
​​… ​​Iσ​​ 2​​ ​e​ 10​​

​​}​, ​where ​​​σ​​ 2​​ ​e​ 1​​
​​​, ​​​σ​​ 2​​ ​e​ 2​​

​​…​ ​​​σ​​ 2​​ ​e​ 10​​
​​​ represents error variances 

and I is the identity matrix. (Co)variance components were estimated using ASREML version 4.2 
(Gilmour et al. 2015).

Calculation of genetic parameters. Additive genetic variances for sires were extracted from the 
diagonal elements of the covariance Ĝ matrix calculated as Ĝ = 4* ​ΦVar​(Ŝ)​Φ′​, where ​Φ​ is the matrix 
of Legendre polynomial functions for THI; ​Ŝ​ is the sire (co)variance matrix. The genetic correlations 
were obtained from transforming the covariance Ĝ matrix to a correlation matrix. The heritability 

as a function of THI was calculated as ​​​h​​ 2​​ i​​  =  ​ 4 * ​​​ ̂  σ ​​​ 2​​ s ​(​​i​)​​​​ _ ​​​ ̂  σ ​​​ 2​​ s​(​​i​)​​​​+ ​​​ ̂  σ ​​​ 2​​ e​​ ​​, where ​​​​ ̂  σ ​​​ 2​​ s ​(​​i​)​​​​​ is sire variance at i THI and ​​​​ ̂  σ ​​​ 2​​ e​​​ is 
the average residual variance over the lactation. The estimated breeding value (EBV) for the sire i 
along the THI trajectory was calculated as ​​EBV​ i​​ = ​ø​ j​​ * ​​ ̂  a ​′​ i​​​, where ​​​ ̂  a ​′​ i​​​ is the vector of estimated random 
regression coefficients for the slope and intercept for sire i; ​​ø​ j​​​ is the vector of Legendre polynomials 
evaluated at THI j. To examine the changes in performance along the THI trajectory, we estimated 
EBVs for sires with more than 1000 daughters with yield records.
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RESULTS AND DISCUSSION
Table 1 shows genetic variances and heritability estimates at the 5th, 50th and 95th percentiles of 

THI. The genetic variance and heritability estimates decrease with increasing THI values. The heri-
tability was greater for milk yield at the 5th and 95th percentiles (0.27 and 0.21) compared to protein 
yield (0.21 and 0.14) and fat yield (0.19 and 0.14). 

Table 1. Additive genetic variances and heritabilities for milk, fat and protein yields at the 5th, 
50th and 95th percentiles of the temperature-humidity index (THI)

Additive genetic variance Heritability
5th 50th 95th 5th 50th 95th

Milk (kg) 4.55 3.86 3.54 0.27 0.23 0.21
Fat (kg) 0.005 0.004 0.003 0.19 0.17 0.14
Protein (kg) 0.004 0.003 0.002 0.21 0.17 0.14

At the extremes of the trajectory of THI (i.e., THI 60 vs 75), the genetic correlations were 0.87, 
0.84, 0.86 for milk, protein and fat, respectively (Figure 1). In the previous study, Hayes et al. (2003) 
reported smaller G × E estimates for milk (0.94), protein (0.92) and fat (0.90). Greater G × E in our 
study is likely in part due to increased sensitivity to heat stress in study population following continued 
selection for production traits over the years or a slight difference between the analyses; Hayes et al. 
(2003) included a random regression coefficient on THI for cows in their models.

Figure 1. Additive genetic correlations for milk (□), protein (▲) and fat (●) yields at tempera-
ture-humidity index (THI) = 60 and those at THI up to 75

Reranking exists among sires, as seen from the differences in the reaction norms of EBVs for fat 
yield (Figure 2). Two groups of sires were identified based their EBVs at thermoneutral (THI = 60) 
and heat stress (THI = 75) conditions. The first group (shown in gray) are sires with above-average 
EBVs at THI = 60 and smaller EBVs at THI = 75 (i.e., environmentally sensitive sires). Daughters of 
these sires will likely produce less under heat stress conditions and therefore can be used in regions 
with the consistently low heat load. A more controlled environment, such as the provision of shade 
and diets designed to reduce core body temperature will be necessary if their daughters are to perform 
optimally under high heat load conditions. 

The second group (Figure 2; shown in black) are sires with above-average and stable EBVs (i.e., 
resilient or robust sires); their performances are comparatively consistent and are well suited for 
variable environments. If the objective is to breed for robustness or resilience, then these sires are 
ideal candidates for selection. Australian dairying is predominantly pasture-based characterised by 
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an array of factors including weather conditions which vary considerably between years as well as 
seasonal variability in feed quantity and quality feeds. Under these conditions and considering current 
trends towards extensive exchange of sires between regions or export of sires to other countries, it 
would be more beneficial to select for robust sires. 

This study only considered first lactation data. Greater reranking is expected with later lactations 
due to relatively higher sensitivity to heat stress associated with greater milk yield in multiparous 
cows (Carabaño et al. 2017). This will be investigated in further studies.

Figure 2. Estimated breeding values (reaction norms) along the THI for a sample of 10 sires with 
over 1000 daughters with fat yield records; the gray lines (▲) represent sires with above-average 
EBV at the thermoneutral conditions (THI = 60) and smaller EBV at heat stress conditions (THI 
= 75) whereas the black lines (●) are sires with above-average and stable EBVs

CONCLUSION
The results from this study indicate G × E due to heat stress exists at extreme THI for all the milk 

traits studied. The differences observed in the reaction norms (i.e., EBVs along the trajectory of THI) 
among the sires suggest that genetic variation in sire sensitivity to heat stress exist, which can be used 
to select animals that perform optimally in different environments.
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NOVEL SELECTION CRITERIA WILL BE REQUIRED FOR REDUCTION OF 
NEW ZEALAND’S NATIONAL GREENHOUSE GAS EMISSIONS INVENTORY 

THROUGH DAIRY GENETICS

X. Zhang, G.M. Jenkins, J.A. Sise, B. Santos, C.D. Quinton and P.R. Amer

AbacusBio Limited, PO Box 5585, Dunedin 9058, New Zealand

SUMMARY
The objective of this study was to estimate the reductions in national methane emissions from the 

New Zealand dairy industry arising though current genetic trends. Based on recent genetic trends, 
the emissions intensity per milk protein equivalents was calculated to be reducing by 0.43% per year 
reflecting production efficiency gains. In contrast, emissions per hectare was calculated to be reducing 
by only 0.03% per year, and this reduction is critically dependent on the assumption that genetic gain 
in milk yield potential is not exacerbating intensification of dairy farming systems. Novel selection 
criteria will be required to achieve national reductions in methane emissions from the New Zealand 
dairy industry.

INTRODUCTION
The Productivity Commission of New Zealand estimated in 2018 that the methane emissions from 

livestock need to be reduced by 10-22% of the amount in 2016, i.e. 2.8-6.1 million tonnes by 2050. 
Along with efforts from other sectors, New Zealand would therefore contribute a fair share towards 
maintaining the current global warming levels. Genetic improvement is one possible tool that could 
assist the New Zealand dairy industry to achieve this goal while still maintaining the critical role of 
the industry in export revenue and rural livelihoods.

Previous studies have concluded that methane emissions in dairy cattle were strongly correlated 
with dry matter intake (DMI) (Pickering et al. 2015). Therefore, we applied in this study a meth-
odology which quantifies methane emissions from changes in DMI due to unit genetic changes. 
This method was applied to traits in the national breeding goal for the New Zealand dairy industry, 
Breeding Worth (BW). 

The objective of this study was to compare how current genetic trends in key dairy production traits 
are impacting on a range of emission metrics so as to evaluate whether the current breeding strategy 
would need to be modified in order to help meet the national methane emissions reduction policy.

MATERIALS AND METHODS
The methane emissions were estimated as their carbon dioxide equivalents (CO2-eq) as a direct 

conversion from feed intake energy, i.e. kg DMI × 0.583 kg CO2-eq/kg DM (Fennessy et al. 2015). 
Feed energy consumed by a breeding cow, and her replacement both on and off the milking platform 
were estimated. We proposed 3 measurement definitions to describe the impact of genetic trait changes 
on methane emissions as follows:

Gross methane emissions. The gross methane emissions as CO2-eq emitted by a breeding cow 
in a year prior to genetic change (E) was estimated as a product of number of animals, feed intake, 
and the conversion coefficient described above.

Methane per hectare (ha). The gross CO2-eq emissions per ha of grazing land (EH) was expressed 
as a ratio of E and the total number of ha for grazing land required per cow per annum (H). 

Methane intensity on an animal product basis. The emission intensity (EI) was calculated as a 
ratio of the E and total number of product outputs per cow. Here all types of animal product outputs 
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were converted to milk protein equivalents (milk protein-eq) using a revenue ratio.
The changes of E, EH and EI due to genetic improvement were denoted as gross value (GV), 

emission value on a ha basis (EVh) and emission value on an animal product basis (EVm) and were 
calculated by obtaining the first derivative of each of the 3 equations with respect to an unit change 
in one genetic trait (g) at a time following Amer et al. (2017).

Response to index selection. Genetic trends averaged over the past 5 years were accessed from 
New Zealand Animal Evaluation Ltd (NZAEL). Trait-wise annual responses in E, EH and EI from 
index selection were calculated as a product of GV, EVh or EVm and genetic trend and aggregated 
over all breeding objective traits.

RESULTS AND DISCUSSION
The emission values for each of the traits within the breeding objective are listed in Table 1. By 

achieving a 1-unit increase in trait genetic merit, the associated annual gross emissions per breeding 
cow were estimated to increase for all traits except Residual Survival and Fertility. Similar patterns 
were observed for emission per ha. In contrast, emission intensity values per unit of milk protein-eq 
were estimated to decrease for Milk Fat, Milk Protein, Residual Survival, Fertility and Body Condition 
Score (BCS) as genetic merit improves. Liveweight and Milk Volume emission intensity values were 
estimated to be positive but on a much smaller scale compared to other traits. A negative emission 
intensity value for any trait indicates that the increase in gross emissions associated with that trait is 
proportionally smaller than the increase in either ha or animal product output.

The Productivity Commission (2018) suggested a 10-22% target reduction of gross methane 
emissions by 2050 of that in 2016, equals to 2.8-6.1 million tonnes (Ministry for the Environment 
2018). However, direct selection for reductions in gross emissions per animal would result in direct 
selection against efficiency improving traits (i.e. against Milk Fat and Milk Protein yield). A better 
overall outcome than direct selection for inefficiency would be to continue selecting for animal effi-
ciency, but then use other policy mechanisms to reduce the total number of animals or hectare areas 
farmed (Quinton et al. 2017). 

Table 1. Estimated effects of a 1-unit trait change in gross methane emissions (kg CO2-eq emis-
sion/breeding cow/year, GV), emissions per hectare (kg CO2-eq emission/ha, EVh) and emission 
intensity (kg CO2-eq emission/kg milk protein-eq, EVm)

Trait Unit GV EVh EVm

Milk Fat kg 3.57 0.04 -0.02
Milk Protein kg 2.19 0.02 -0.02
Milk Volume L 0.07 0.001 0.00004
Liveweight kg 2.40 0.12 0.005
Residual Survival day -0.24 -0.32 -0.0007
Somatic Cell Score score 0 0 0.04
Fertility % -6.28 -8.80 -0.04
Body Condition Score score 22 26 -0.29

Table 2 shows the current (2019) values for gross emissions, emission per ha and emission intensity 
for all traits within the current breeding objective. The annual and 20-year change estimates for the 
aggregated genetic trend are also listed. On average, one breeding cow in New Zealand was estimated 
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to emit 3.087 tonnes of CO2-eq in year 2019. Over the years, the gross emissions are estimated to 
increase but emission per ha and emission intensity would reduce, and EI was estimated to reduce 
proportionally faster than the changes of E and EH.

Given there are 4.8 M dairy cattle in total across New Zealand (DairyNZ 2017), the country-wise 
gross CO2-eq by 2050 would increase by 4.8 M animals × 9.95 kg/year/animal × (2050 - 2019) = 
1.5 M tonnes, if there was no reduction in the number of dairy cattle. If the land area remained the 
same from 2017 with 2.4 M ha in dairy sector (Beef + Lamb NZ Economic Service statistics 2017), 
the country-wise gross CO2-eq by 2050 would change by 2.4 M ha × (-2.31 kg/ha) × (2050 - 2019) 
= -171-k tonnes. This is less than 6% of the Productivity Commission 2050 target of 2.8 M tonnes.

Table 2. Aggregated genetic trend predictions for gross CO2-eq emission (kg CO2-eq/cow/
year, E), emission per hectare (kg CO2-eq/ha, EH) and emission intensity (kg CO2-eq/kg milk 
protein-eq, EI)

Total value 
at 2019 (kg)

Annual 
change (kg)

Annual change 
percentage (%)1

20-year 
change (kg)

20-year change 
percentage (%)1

E 3,087 9.95 0.32 199 6.45
EH 6,915 -2.31 -0.03 -46 -0.67
EI 9.27 -0.04 -0.43 -0.80 -8.63

1percentage compared to 2019.
 

In emissions per ha measurements, we have assumed that stocking rate gets adjusted as feed 
requirements per cow increases hence these measurements could adapt to intensive farming system. 
In another scenario, often dairy farmers in New Zealand increase supplements, e.g. concentrates, for 
higher genetic merit cows to milk more. This part could be assessed by sensitivity tests.

CONCLUSIONS
This study shows that under the current breeding objective, each New Zealand dairy cow was 

estimated to produce more gross methane emissions, but also to become more production efficient. 
Gains in emissions per ha are at best very modest and critically dependent on the assumption that future 
genetic gain in milk production potential will not encourage further trends towards intensification of 
New Zealand’s dairy production systems. To reach the 2050 methane reduction goal, new selection 
criteria and a changed emphasis of selection beyond the current tightly defined goal of increasing 
farm profitability will be required. 
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EXPERIENCES WITH NON-LINEAR ECONOMIC VALUES IN SELECTION 
INDEX DESIGN
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SUMMARY
In breeding objectives, linear economic values (LEV) are typically applied because they are effec-

tive and easy to implement. However, LEVs can be over-simplifications for some traits in diverse 
populations that span a wide range of economic and biological conditions. We have been helping an 
increasing number of breeding programs by applying non-linear economic value functions (NLEV). 
Although NLEV are more complex to implement in breeding objectives, they can provide more spe-
cific and robust trait and therefore overall index valuation. We describe experiences applying NLEV 
for prolificacy, wool quality, dystocia, and maternal ability in sheep and cattle breeding objectives.

INTRODUCTION
Most animal breeding objectives and selection indexes are built as linear functions. For exam-

ple, a linear selection index that estimates individuals’ total merit in units of currency is defined as  
​I  =  Σ​(​b​ i​​ × ​ ̂  ​g​ i​​​)​​, where, for each trait i, the individual’s trait value in units of currency is the trait weight-
ing common to all individuals (bi, index weight) multiplied by the individual’s estimated genetic 
value for that trait (​​ ̂  ​g​ i​​​​, e.g. EBV). The individual’s index value I is then the sum of all trait values.

However, many traits have non-linear relationships between genetic values and trait values caused 
by complex market signals or biological limits. A classic example is where carcass sale price ($/kg) has 
an intermediate optimum relationship with fat cover: below- and above-optimum levels earn reduced 
prices. Non-linear economic value functions (NLEV) and selection indexes have been discussed in 
scientific literature (see Martin-Collado et al. 2016), but rarely implemented in practice. Commonly, 
breeding objectives apply a linear economic value (LEV) and index weighting that reflects the pop-
ulation mean genotype; i.e. bi = partial derivative of a non-linear function at the population mean. 
When the breeding objective is periodically reviewed, the LEV is updated in accordance with the 
population mean. This approach is effective for selection and genetic change on a large population 
scale (e.g., Goddard 1983) and furthermore is simple to configure in genetic evaluation systems, and 
straightforward to report to users. 

A crucial limitation to LEVs as approximations of non-linear value functions is that for diverse 
populations that span a wide range of economic or biological conditions, LEVs can result in genotypes 
at the extremes of the distributions being severely over- or under-valued for that trait. This has further 
implications for multi-trait breeding objectives if it causes individuals to rank highly only because of 
that trait while being merely average for others. For these reasons, an increasing number of genetic 
evaluation systems are applying NLEVs in breeding objectives and selection indexes.  

NON-LINEAR ECONOMIC VALUE FUNCTIONS
For NLEV, a full function is defined that describes the relationship between individuals’ genotype 

and profitability. The function form may be a simple quadratic or exponential, or more complex com-
bined function. The full range of available genotypes need to be considered to ensure that the function 
properly values extreme genotypes. Ideally, the function should represent industry conditions, yet be 
robust and easy to code into genetic evaluation systems. 
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A primary outcome of implementing NLEV in a selection index is that relative trait weightings 
within the index depend on the individual’s genotype and its location on the function. This is described 
further in examples below.

Figure 1. Illustrations of economic value functions. (a) Sheep reproduction value linear (×) 
and non-linear () functions. (b) Wool adult ewe fibre diameter non-linear relationship with 
relative price

Sheep prolificacy. In 2017, the New Zealand national sheep evaluation system implemented a 
NLEV for number of lambs born per litter (NLB) in the NZMW maternal index (https://www.sil.
co.nz/files/151191893412.pdf) which includes reproduction, growth, survival, and wool sub-indexes. 
Previously, the index applied a LEV for NLB which was based on the national population mean. 
Although the population mean is below optimum, there is a wide diversity of prolificacy genotypes 
in the evaluation so that many individuals have substantially above-optimum genotypes. These 
individuals were over-valued for reproduction under the linear system, with the outcome that many 
high-prolificacy rams would achieve top index ranking due to their NLB EBV while having only 
average EBVs for other index traits such as growth. 

A NLEV was developed to better value high prolificacy genetics (preliminary function described 
by Quinton et al. 2017). The function (Figure 1a) is composed of 3 parts: at low prolificacy individ-
uals’ value (cents) increases linearly up to the population mean NLB EBV; from mean to optimum 
NLB, value increases in quadratic fashion with diminishing gains; then above the optimum, a flat 
“capped” value is imposed so all genotypes receive the same value. Therefore, average rams’ repro-
duction values remained similar, but very high prolificacy rams’ values were capped and therefore 
full NZMW index ranking differences amongst these became due to their genotypes for other traits. 
Thus, NLB has less influence on the full index value at high prolificacy levels.

This non-linear then flat function has been demonstrated to be the most efficient approach to value 
an intermediate optimum trait in a multi-trait selection index, when the population mean is below 
and close to optimum (Martin-Collado et al. 2016). From a full index perspective, this approach is 
predicted to mitigate the risk of highly prolific genetics badly overshooting optimum NLB, while 
improving selection response in other traits.

Wool fibre diameter. The NZMW index also includes a wool sub-index, which currently values 
fleece weights, but a recent industry survey revealed substantial interest in valuing crossbred wool 
quality traits including fibre diameter. A NZ wool sale price analysis (unpublished) quantified the well-
known non-linear relationship of fibre diameter with price (c/kg). At stronger micron range (35μm+), 
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micron has little effect on price. However, at finer microns (33-35μm), some price premiums are 
awarded. The premiums become greater as fleeces move to the mid-micron and finer ranges. Because 
of these differing relationships, a single LEV for fibre diameter is not suited for the diversity of wool 
in NZ. The conventional approach of calculating separate LEVs and therefore separate breeding 
objectives for categories of sheep based on typical fibre diameter ranges has drawbacks: multiple 
ranking systems are confusing to users who will be considering ram purchases across a wide fibre 
diameter range; and also incorrectly values individuals that are at the borders of these categories.  

A NLEV for fibre diameter (Figure 1b) has been proposed featuring high values for finer micron, 
with a quadratic curve of decreasing values over medium and stronger microns (<38μm). The lowest 
(base) wool price occurs. At ≥38μm, all are assigned the base price. This approach is suited to the 
greater price premiums (c/kg fleece) awarded to mid-micron and finer wool types, compared to cross-
bred and strong wool types. Therefore, the same function can be used to value fibre diameter in all 
NZ crossbred and mid-micron breeds and separate breeding objectives are not required for each type. 

Dystocia. Dystocia is typically a categorically observed phenotype with an underlying normal 
distribution of birthing ease genotypes that results in proportions of a population falling into observed 
categories. With an economic value defined as the change in profit per unit change in population 
EBV, then a non-linear relationship between profit (costs) and genotype emerges as the population 
mean shifts. Distinct category costs (e.g. labour, veterinary, and potential replacement costs) may 
also contribute to non-linearity. 

A survey of Irish beef and dairy farmers (Martin-Collado et al. 2017) and a recent American 
Angus industry survey (unpublished) showed that farmers are prepared to tolerate a small amount of 
dystocia, but as herd dystocia levels rise this trait is considered to be increasingly problematic. The 
American Angus trait preference survey also revealed that farmers’ opinions of the relative importance 
of calving ease within the full breeding objective depends on their herd’s current levels.  

We have helped develop NLEV for dystocia in breeding objectives for American Angus and for 
an Irish index aimed at selecting beef bulls to mate to dairy cows. In both cases, the NLEV imple-
ments a high cost of differentiation at high levels of dystocia, with diminishing marginal benefits as 
genetic values for dystocia improve. Therefore, bulls with poor dystocia have a larger penalty applied, 
meaning that fewer of these will appear on leading index lists; conversely, bulls with exceptionally 
low dystocia (i.e. less than required by most producers) are unlikely to appear on leading lists based 
on this trait alone.

Maternal ability. In the American Angus beef industry survey mentioned above, respondents 
judged that the trait weaning weight maternal (WWM, aka maternal ability or “milk”) was over-val-
ued at the higher range. Similar to NLB, farmers opinion was that increased WWM is desirable up 
to a point, but then in environments where feed has high availability to cows or supplements can be 
provided increased WWM has no further value. In harder environments with low feed availability, 
over-optimum WWM is considered a liability as high milk cows lose condition and subsequent 
fertility. For this trait, an intermediate optimum NLEV was built that incorporated survey results of 
farmers reported lower and upper thresholds of accepted WWM breeding values.

PRACTICAL CONSIDERATIONS FOR IMPLEMENTION
NLEV are more complex than linear EV and therefore do present some challenges for implemen-

tation in large-scale breeding objectives.
First, the genetic evaluation program software needs to be adapted to incorporate the NLEV and 

calculate individual trait values. Most evaluation software code is designed to apply a single linear 
index weighting coefficient per trait; therefore, experts are required to program NLEV and test index 
value calculations. 
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Genetic evaluation systems also must recognize that individual trait values calculated with NLEV 
are more sensitive to changes in the genetic base definition. A change in the EBV will change any 
individual’s location on the NLEV which may also cause re-ranking.  

We have found NLEV most practical if incorporated into modular breeding objective where 
each trait economic value fully and independently quantifies revenues and costs associated with the 
trait. E.g. a three-trait index containing a non-linear trait weighting may be described as follows:  
​I  =  ​(​b​ 1​​ × ​ ̂  ​g​ 1​​​)​ + ​(​b​ 2​​ × ​ ̂  ​g​ 2​​​)​ + f​(​ ̂  ​g​ 3​​​)​​, where the individual’s trait values for traits 1 and 2 are calculated 
in the usual linear approach, but where the trait 3 value is calculated according to NLEV. With this 
modular perspective, NLEV can be substituted for LEV or added on to conventional linear breeding 
objectives. This modular approach is increasingly useful as breeding programs add new traits (e.g., 
health and welfare, environmental, novel genomics).

Predicting selection response with NLEV requires different approaches than conventional linear 
indexes. Most breeding methodologies and software are built around linear breeding objectives and 
prediction methods use linear regressions, assuming normal distributions. However, NLEVs can skew 
distributions, especially if values are capped as in the sheep prolificacy function. In these cases, it is 
preferable to evaluate potential selection intensity and response by analysing real genetic evaluation 
data sets and calculating trait mean EBVs of selected individuals. For longer-term predictions, sto-
chastic simulations could be employed.

 Our experiences with NLEV are that users (breeders, farmers using GE to select animals) are 
generally very receptive to the concept because the resultant individual animal trait values and rank-
ings tend to better reflect industry realities and their preferences for selection candidates. However, 
additional education is required for extension services and users who are familiar with reports for-
matted for simple linear index coefficients. Similarly, for users who are used to pie or bar charts to 
illustrate relative trait emphases within an index, education is needed to understand how NLEV can 
shift relative importance of traits. 

CONCLUSIONS
Non-linear economic value functions and selection indexes have been well discussed in breeding 

objective theory, but until recently rarely implemented genetic evaluation systems. Although NLEVs 
are more complex to apply, these functions are flexible solutions for valuing genetics in diverse 
populations and our experience is that they are typically very well received by industry stakeholders. 
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SUMMARY
Previously meat goat breeders in Australia have used the Carcase Plus (CPLUS) index to make 

genetic selections. CPLUS is an index focused on lean meat production which used sheep parameter 
estimates and economic values. It was recommended that a new dual purpose index be developed for 
increased weaning rate and meat production of goats. The new index “Kid Plus” (K+) uses parameter 
estimates and economic values calculated for goats and places an economic value on reproductive 
traits, including kid survival. The dollar value response for each doe joined was higher for K+ ($16.56) 
compared to CPLUS ($9.53).

INTRODUCTION
Australian goat breeders using the national performance recording scheme (KIDPLAN) use the 

Carcase Plus selection index which was designed for Australian terminal sire sheep (Sheep Genetics 
2016). The CPLUS index puts a large emphasis on increasing growth and eye muscle depth while 
maintaining leanness. There are several issues with this index when applied to KIDPLAN. Currently 
there are insufficient breeders consistently recording and submitting data for eye muscle depth or fat 
depth to justify the emphasis placed on these traits. The CPLUS index places a negative economic 
value on fat depth, but goats are already very lean and have a small amount of variation in fat depth. 
Another issue is the economic values used in CPLUS are based on lamb and not representative of the 
Australian meat goat market. Lastly, the genetic and phenotypic covariance matrices rely on values 
estimated from Terminal sheep breeds, which have been somewhat modified to suit the KIDPLAN 
dataset. Australian goat producers have a growing demand for an index built specifically for Australian 
meat goats (BCS Agribusiness 2012). The aim of this project was to develop the first Australian meat 
goat specific index. 

MATERIALS AND METHODS
There were nine traits of interest used in the analysis; birth weight (BWT), weaning weight (WWT), 

post-weaning weight (PWT), maternal weaning weight (MWWT), number of kids born (NKB), 
number of kids weaned (NKW), kid survival (KSV), eye muscle depth (EMD), fat depth (FAT), and 
worm egg count (WEC). Parameter estimates were made with bivariate animal models in ASReml 
(Gilmour et al. 2009) using KIDPLAN data (Table 1). Body weight was defined as 50% emphasis 
of WWT and PWT. Kid survival was defined as a trait of the kid, between birth and weaning, it was 
corrected for birth weight and number of kids born. For EMD and FAT parameter estimates were 
combined post-weaning and yearling traits, due to limited records, and the low phenotypic variation of 
fat traits. There was insufficient data in KIDPLAN or published literature for genetic and phenotypic 
correlations of maternal weaning weight or worm egg count, any analysis that included these traits 
used the previous covariance estimates from CPLUS (these traits are only included in CPLUS to 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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monitor trait changes and are not included in selection).

Table 1. Summary of parameter estimates. Genetic variance ( ), residual variance ( ) and 
maternal permanent environmental variance (MPE). The heritabilities are on the diagonal, 
genetic correlations are below the diagonal, and the phenotypic correlations above

BWT WWT PWT MWWT EMD FAT WEC NKB NKW KSV
0.21 1.17 2.45 1.00 0.25 0.014 1.40 0.012 0.013 0.013

0.12 8.28 15.56 9.20 2.01 0.206 5.39 0.300 0.307 0.133
MPE 0.07 1.56 2.42 1.00 0.09 0.005 7.00 0.030 *0.321 0.007

BWT 0.53 0.35 0.32 0.20 0.01 -0.02 -0.03 0.00 0.00 0.01
WWT 0.53 0.11 0.81 0.11 0.03 -0.06 0.00 0.00 0.00 0.00
PWT 0.50 0.88 0.12 0.08 0.06 -0.04 0.03 0.08 0.06 0.00
MWWT 0.48 0.50 0.50 0.09 0.00 0.00 0.00 0.00 0.00 0.00
EMD -0.22 -0.21 -0.26 -0.38 0.11 0.27 -0.06 -0.07 0.01 0.00
FAT -0.27 -0.24 -0.19 -0.27 0.26 0.06 -0.11 -0.29 0.01 0.00
WEC 0.11 -0.03 -0.24 -0.12 <0.01 <0.01 0.10 -0.02 0.04 0.00
NKB 0.10 0.08 0.12 0.15 <0.01 <0.01 <0.01 0.04 0.41 0.00
NKW 0.01 0.18 0.29 0.33 <0.01 <0.01 <0.01 0.90 0.04 0.00
KSV 0.19 0.05 0.03 -0.06 0.05 0.05 <0.01 0.57 0.63 0.08

*Animal permanent environmental variance

Table 2. Summary of economic values used for each index based on survey results and Sheep-
Object2 (values in $AUD per trait unit)

Trait Units CPLUS LP2020 SRC LMG MMG K+
BWT kg 0.00 -0.21 -0.21 0.00 0.00 0.00
WWT kg 2.33 0.32 0.40 2.53 2.53 2.53
PWT kg 3.50 0.47 1.48 2.53 2.53 2.53
MWWT kg 0.00 0.00 1.88 0.00 0.00 0.00
EMD mm 11.40 1.54 2.40 11.40 11.40 11.40
FAT mm -4.07 -0.55 0.00 -4.07 -4.07 -4.07
WEC % 0.00 -1.71 -1.71 -1.71 -1.71 -1.71
NKB Number 0.00 0.00 0.00 0.00 11.00 11.00
NKW Number 0.00 0.00 75.00 0.00 30.00 30.00
KSV Number 0.00 0.00 0.00 0.00 0.00 87.00

Surveys from key industry stakeholders were used to determine breeding objectives, herd structures 
and economic values were calculated with SheepObject2, a breeding objective software program 
developed by Andrew Swan (AGBU). There were six indexes of interest; including the CPLUS 
index. The Lamb 2020 (LP2020) index, designed to increase worm resistance as producers identified 
internal parasites as an industry issue. The maternal sheep index, Self-replacing Carcase (SRC). The 
first new KIDPLAN index is a Lean Meat Goat index (LMG) that included economic weights for 
the body weights and carcase traits. The second KIDPLAN index was a Maternal Meat Goat index 
(MMG), which added values for NKB and NKW. The final KIDPLAN index Kid Plus (K+), was a 
dual purpose index for lean meat production and reproduction which included a weight for KSV. The 
economic values are summarised in Table 2.
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A herd of 280 does was used to model the indexes as per the calculations for the average herd 
size of commercial and seedstock producers. The proportion of males selected was 5%, and 50% for 
females. Generation intervals of 3 and 4 years were used for males and females respectively. The 
selection emphasis for EBVs was 65%. To address the Bulmer effect (Bulmer 1971) for a reduction 
in genetic variance caused by genetic selection, an adjustment for males and females was calculated 
using Normal distribution theory. 

The index calculations were done using R (R Core Team 2016). The index selection theory of 
Hazel (1943) was used with the variances and covariances in Table 1. The economic values of Table 2 
were used for an economic weights vector (a). The index weights ( ) were then calculated. 
The genetic gain ( ) and the total economic gain ( ) of the 
index response for one standard deviation of selection was calculated for each of the indexes under 
different recording scenarios. The recording scenarios were for growth (only BWT, WWT, and YWT 
recorded), carcass (adds EMD and FAT records), reproduction (no carcass traits but NLB, NLW, and 
KSV added), standard practice (includes growth traits and reproductive traits but limited carcass 
traits recorded), best practice (standard practice with full carcass trait records), and gold standard 
(best practice with WEC recorded).

RESULTS AND DISCUSSION
The index dollar value is the $AUD of additional income per doe joined, per generation, with 5% 

of males selected and 50% of females, and using the index for the Australian market (Figure 1). The 
CPLUS index had an index dollar value of between $6.86 and $9.53 across recording scenarios, and 
was similar to the LMG, which was between $5.67 and $8.84. Both indexes had an increasing value 
under the following recording scenarios; Growth, Reproduction, Standard practice, Carcase, Best 
practice, and Gold standard. The maternal index SRC had index dollar values of between $5.99 and 
$8.33. In comparison, MMG had a value of between $6.64 and $9.86 and K+ had the highest values 
of between $9.39 and $16.27. Indexes SRC, MMG and K+ increased for the recording scenarios from 
Growth, Carcase, Standard practice, Reproduction, Best practice to Gold standard. LP2020 had the 
lowest index dollar values of $2.34 for the recording scenario Gold standard and between $1.25 and 
$1.35 for the remaining recording scenarios.

Figure 1. Summary of index response values ($ / doe joined / generation) for each index type 
and under Growth (white), Carcase (grey), Reproduction (black), Standard practice (green), 
Best practice (blue) and Gold standard (red) recording scenarios
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There are a number of reasons why the index K+ should replace the current CPLUS for KIDPLAN 
users. Most importantly, it better described profit for the breeding objective of Australian meat 
goat producers. This was illustrated by the higher index dollar value responses for all recording 
scenarios. This was primarily due to the inclusion of KSV and the high economic value calculated with 
SheepObject2. Even under the Growth and Carcase recording scenarios, K+ was similar to CPLUS 
due to the high economic value placed on body weight and the positive genetic correlations those 
traits have between each other and KSV. The higher heritability and variation of survival compared 
to sheep was another reason why KSV is a suitable trait to be included in a KIDPLAN index. The 
fact that producers must submit the required birth type and rearing types for the KSV calculation 
improves the accuracy of estimates. Both NKB and NKW are traits of the doe, including both in the 
index could encourage breeders to better record birth and rearing type which has historically been 
an issue with the CPLUS index. The high genetic correlation between NKB and NKW could make 
reducing the index to NKW beneficial as it is easier to record. However, it is also important to monitor 
the direction of changes for both traits as larger litters resulting from increasing NKB, could result in 
higher rates of dystocia. Most importantly producers need to have further education on the importance 
of accurate pedigree and birth type recording.

CONCLUSIONS
Goats differ to sheep in higher heritabilities for kid survival, even with similar trait definitions. 

These differences include a higher genetic correlated between kid survival and birth weight, greater 
variation in number of kids born and weaned, less variation for eye muscle and fat depth, and genetic 
correlations between production traits were significantly different from sheep. The differences in 
genetic and phenotypic parameters, recording practices, economic values, and breeding objectives of 
goat breeders led to the creation of new Australian meat goat indexes for KIDPLAN users. The K+ 
index is based on the best defined breeding objective. This places selection pressure on growth and 
reproductive traits, especially kid survival calculated from existing birth and rearing type data. Before 
the K+ index is adopted by KIDPLAN users, further investigation is needed, including; predicted 
trait changes, differences in economic selection emphasis, selection differential of sires selected 
between different indexes, and a sensitivity analysis of the economic values used. Future testing of 
the indexes is recommended to compare the theoretical response to the real world and to demonstrate 
to producers that a index designed for meat goats is better than the current CPLUS index. Producers 
are also strongly recommended to record key traits for WEC and carcase traits.
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SUMMARY	
An industry consultation which included an on-line survey distributed to breeders, commercial 

cattle producers and finishers was carried out as part of a larger revision of the American Angus 
Association’s $Value indexes. A total of 3,174 responses were received. Survey outcomes were used 
to cluster respondents according to their farming systems and demographic profiles, understand their 
preferences for traits and to gain insight on whether there are different trait priorities within and 
between respondents. The survey provided a mandate from industry to review and propose changes 
to current $Value indexes. It also provided insight to modify bio-economic models that calculate trait 
economic values to accommodate non-economic factors that systematically influence preferences. 
The trait preference survey revealed that cow survival, docility, foot score, heifer pregnancy and 
weaning weight ranked higher on average than what we would have expected based on provisional 
bioeconomic model calculations. There are differences in trait preferences caused by intrinsic views 
and beliefs between groups of respondents across and within business activities. These differences 
reach beyond typical characteristics that can be readily described, such as production system or 
location. The survey has provided important information for development of indexes which are well 
aligned with requirements of stakeholders in Angus beef production. 

INTRODUCTION
Selection indexes are often developed by bio-economic modelling of production systems. These 

models do not fully account for the large heterogeneity of trait preferences that is usually found within 
livestock industries (Paakala et al. 2018), for instance when beef cattle farmers choose bulls or select 
replacements for their herds. Experience has shown that indexes have greater uptake when they are 
aligned with farmer views and preferences. Industry consultation through survey methods provide a 
significant and valuable resource to analyse views of farmer trait preferences.

The American Angus Association (AAA) has recently reviewed its current multi-trait economic 
selection indexes, also known as Angus $Value Indexes. The aim was to update breeding objectives 
and economic selection indexes based on sound scientific methods, and in line with the preferences 
of American Angus breeders, cow-calf and feedlot producers and other industry stakeholders. 

An on-line survey was designed to describe farming systems and demographic profiles. This stage 
is hereafter referred to as industry consultation and it aimed to understand drivers of selection decisions 
when breeders and ranchers choose bulls and replacement candidates. The industry consultation also 
sought to facilitate understanding of stakeholders’ perceptions of the impact that breeding decisions 
have on their businesses, with a goal of understanding the factors that drive industry engagement.

The objective of this paper is to provide an overview of the industry consultation survey and its 
key findings. We also provide some perspective on how results of the survey were used to inform 
subsequent bioeconomic model calculations. 
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MATERIALS AND METHODS
The survey was conducted from July to early October 2018 and was distributed to all AAA 

members and made available widely to commercial cattle producers, retained owners and finishers.
The on-line survey was hosted at the American Angus Association; a link directed respondents 

to the demographics survey which then conducted respondents to the trait preference survey through 
a seamless process. Respondents had to complete the survey once it was initiated, with no option to 
pause and return later. The expected time to complete the survey was around 20 to 30 minutes per 
respondent with a target of 500 to 600 responses. Respondents had the option to either complete the 
process under total anonymity, or to provide their AAA membership number.

Demographics survey. This survey consisted of 53 questions on farmer and farm systems’ to 
provide details of the farm operation, such as farm and herd size, location, feeding system, etc. Fur-
ther questions were presented to farmers to determine their views on $Value index and EPDs, and to 
understand the importance placed on a range of selection criteria when buying or selecting bulls and 
heifers. The demographic survey asked 53 questions.

Demographic data were used to form a priori groups or, where appropriate, to define farmer 
typologies which are points of commonality and/or heterogeneity in trait preferences among respon-
dents. Typologies might be associated with respondents’ farming system, location, age or any other 
demographic factor.

Trait preference survey. We used the PAPRIKA pairwise comparison methodology which 
successively presented two options at a time for respondents to choose between. This approach is 
practical and requires less intellectual effort from participants when compared to other methods, such 
as choice experiments. The pairwise comparison makes choice decisions simpler and therefore may 
be nearer to “true” preferences of respondents. We used the on-line tool 1000Minds® (Hansen and 
Ombler, 2009) to prioritize choice alternatives. Fourteen traits of interest for farmers were included in 
the preference survey, and the list of traits and extent of trade-offs between them is presented in Table 
1. Trait trade-offs were quantified based on industry data and market prices such that each trade-off 
produces a similar economic impact, assuming they make sense from a respondent point of view.

Table 1. Trait preference survey questions for the $Value indexes review

Trait Name Unit of trade-off, comparison and clear trade-off
Weaning Weight 15 lbs more weaning weight because of growth potential
Milk 15 lbs more weaning weight because of cow milking ability 
Heifer pregnancy 4 more heifers calve per 100 mated per year
Calving ease 3 less assisted calvings per 100 heifers
Cow survival 6 more cows per 100 live past 5 calvings
Cow mature weight 60 lbs less cow mature weight
Cow frame score 1 less unit (2 inches) of frame score
Body condition score 1 more unit of cow condition score under nutritional stress
Foot score 8 more heifers per 100 suitable as replacements because of good feet
Docility 8 more heifers per 100 suitable as replacements because of good temperament
Feedlot gain 14 less days to commercial endpoint due to feedlot growth performance
Feedlot efficiency 0.5 lb less feed per lb of live weight gain
Yield grade 5 less carcasses per 100 grading Yield Grade 4+
Marbling grade 30 more carcasses per 100 exceeding Mid-Choice grade or better for marbling



57

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:55-58

Farmers’ preferences for traits are known to be heterogeneous, and accounting for this heterogeneity 
is an attempt to reflect the preferences of a large proportion of farmers. The objective of incorporat-
ing farmer’s trait preferences is to account for intangible non-economic factors when formulating 
economic selection indexes.

Survey result analysis. The demographic and trait preference surveys were analysed both sep-
arately and jointly to allow a better understanding of the heterogeneity of responses. Three analyses 
were undertaken; an a priori analysis based on demographic information; a principle component 
analysis (PCA) to reduce the dimensionality of the data; and a cluster analysis (CA) of the resultant 
principle components.  

The PCA procedure explores the correlation and the variation in trait preferences from which 
the principal components of the preferences are calculated. For CA, the K-means clustering method 
was used to measure the distance between preference means for each variable (i.e. trait preference). 
K-means clustering aims to group n observations into k clusters in such a way that each observation 
belongs to the cluster with the nearest mean.

The combination of these analyses enables application of typologies, or drivers of preferences, 
into clustered groups of factors with statistically different patterns of trait preferences. These patterns 
can assist in designing selection indexes and tailoring extension efforts.

RESULTS AND DISCUSSION
A total of 3,174 responses were received, including 1,709 full completions of both demographic 

and trait preference survey sections. Results indicated a general positive perception about AAA’s 
EPDs and $Value indexes. Over 70% of respondents use $Value indexes; there was 50-75% total 
agreement regarding the importance and usefulness of the $Value indexes; and over 80% of Breeders 
offer $Value figures to their clients. Of commercial cow-calf producers who responded to the survey, 
68% ask for $Values when purchasing bulls.

Table 2. Mean preference ranks (lower ranks mean higher preference) for traits across business 
activities

Trait Name
Commercial 

cow-calf Retained owner Seedstock 
breeder

K.W.
P value

Mean Sd Mean Sd Mean Sd
Cow survival 3.9 2.9 5.3 3.5 4.6 3.1 0.642
Docility 5.4 3.3 5.4 3.0 5.1 3.1 0.176
Foot score 6.2 3.4 6.1 3.5 5.0 3.2 <0.001
Heifer pregnancy 5.8 3.1 6.5 3.4 5.4 3.1 0.046
Weaning weight 6.3 3.3 7.7 3.3 6.7 3.3 0.597
Calving ease 6.3 3.7 7.2 3.9 6.7 3.4 0.084
Body condition score 7.4 3.7 8.1 3.7 7.5 3.5 0.433
Marbling grade 8.1 4.0 5.4 3.5 7.7 3.9 0.308
Feedlot efficiency 8.0 3.4 6.8 3.4 7.8 3.3 0.877
Milk 7.6 4.0 9.5 3.9 7.9 3.8 0.531
Feedlot gain 9.4 3.4 7.9 3.6 9.1 3.3 0.049
Cow mature weight 9.1 3.5 9.7 3.6 10.1 3.4 <0.001
Cow frame score 10.2 3.3 10.6 3.4 10.8 3.2 0.203
Yield grade 11.1 2.8 8.8 3.6 10.7 3.0 0.396

There was also support to review and refine $Values, with 75% of respondents at least somewhat 
agreeing that there would be value in revised indexes that weight traits differently. Also, about 70% 
of respondents agreed there was need for a specific maternal index, which includes fertility and 
functional traits such as foot score and docility.
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The trait preference survey revealed that the specified changes (Table 1) in cow survival, docility, 
foot score, heifer pregnancy and weaning weight ranked the highest on average (Table 2). There were 
differences in trait preferences between groups of respondents across and within business activities. 
These differences are caused by intrinsic views and beliefs and reach beyond typical characteristics 
that can be readily described, such as production system or location.

The PCA and CA analyses resulted in three distinct groups (or clusters) of respondents, named 
Maternal, Production and Cow Hard Environment, according to their pattern of trait preferences 
across regional or climatic attributes, and in all production or feeding systems (Table 3). These groups 
were distributed among cow-calf producers, seedstock breeders and retained owners. No difference 
was found between pattern of preference and business activity.   The largest variation in preferences 
among respondents were on milk, MW, BCS, feedlot gain and marbling.

Table 3. Definition of preferences clusters with average trait rankings across clusters1

The survey has provided important information for development of indexes which are well aligned 
with requirements of stakeholders in Angus beef production. Differing trait priorities related to cow 
feed requirements (e.g. mature weight, milk, condition score) were identified, but ultimately were 
not deemed enough to justify presentation of multiple indexes. Consequently, the current maternal 
sub-index was updated targeting the most common feeding systems, with downward pressure on cow 
maintenance requirements based on the cost of providing additional feed, and a non-linear emphasis 
on maternal weaning weight. The non-linear milk function (Quinton et al. 2019) was constructed to 
reward bulls with milk EPDs in the range desired by most breeders, while ensuring that bulls with 
very high milk do not rise to the top of the index without being exceptional for other traits. Modi-
fications were also made to existing terminal sub-indexes (focused on growth, yield and marbling 
traits), and a new overall index combining maternal and terminal traits will be implemented based 
on the industry consultation survey results.

CONCLUSIONS
An on-line industry consultation survey was used to inform economic modelling, and selection 

index theory principles to propose revised options for $Value indexes. Different groups of farmers 
were identified according to their pattern of trait preferences. The resulting indexes and sub-indexes 
are therefore more closely aligned to the requirements of stakeholders in Angus beef production than 
those being replaced.
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SUMMARY
Breeding polled (hornless) cattle is a long-term solution to the costly and increasingly unaccept-

able cattle management practice of dehorning. This study simulated introgression of the POLLED 
allele into a tropically adapted Australian beef cattle population via conventional breeding or gene 
editing for multiple polled mating schemes and compared results to baseline selection on genetic 
merit using the Japan Ox Economic Index ($JapOx) alone, over the course of 20 years. Overall, our 
simulations show that given the limited number of polled Brahman sires, conventional breeding to 
increase the POLLED allele frequency will have to occur gradually to prevent major impacts on the 
rate of genetic gain. Furthermore, this study demonstrates how gene editing could help to ameliorate 
these impacts if a rapid decrease in HORNED allele frequency is required due to public pressure or 
legislation requiring the immediate cessation of dehorning practices.

INTRODUCTION
Dehorning is a standard cattle management practice to protect animals and humans from injury. 

It is an unpleasant, costly process subject to public scrutiny. Horns are inherited as an autosomal 
recessive trait (Long and Gregory 1978). However, the Brahman breed, which is most commonly 
used in extensive grazing systems in Northern Australia (Bunter et al. 2013), is predominantly horned. 
Therefore, decreasing HORNED allele frequency through conventional breeding strategies has been 
challenging (Prayaga 2007). Alternatively, the use of gene editing to produce high-genetic-merit 
polled sires has been proposed (Carlson et al. 2016). Although other genetic factors (i.e., scur and 
African horn) have been associated with the presence/absence of horns, these factors are believed to 
segregate independently so this study only modeled HORNED and POLLED alleles. The objective 
of this study was to simulate introgression of POLLED into a tropically adapted Australian beef 
cattle population via conventional breeding or gene editing for multiple polled mating schemes and 
compare to baseline selection on genetic merit, using the Japan Ox Economic Index ($JapOx) alone, 
over the course of 20 years (yr).

MATERIALS AND METHODS
Simulation. Geneedit.py (Cole and Mueller 2019) was used to simulate introgression of POLLED 

into the Australian Brahman population via conventional breeding or gene editing. Ten nucleus (seed-
stock) herds supplied bulls to 200 multiplier (commercial) herds. The seedstock base population was 
15,000 cows and 40 bulls. The commercial base population was 35,000 cows and 800 bulls. True 
breeding values for $JapOx were determined by randomly sampling from a normal distribution, with 
a standard deviation (SD) of $34 for both the seedstock and commercial populations, and a mean of 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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$34 for seedstock cows and $0 for commercial cows (Johnston and Graser, 2009). Base population 
bulls averaged 1 genetic SD higher than cows. The proportion of polled bulls was set to 30% het-
erozygous (Pp) and 2.6% homozygous (PP). PP bulls averaged 0.16 SD lower $JapOx than horned 
bulls, and the HORNED frequency for both base populations was set to 80% (Connors et al. 2018). 
Pre-weaning calf loss was set to 8% (seedstock) and 13% (commercial), and the dehorning mortality 
for both populations was 2% (Bunter et al. 2013). 

To maintain a maximum population size of 3,000 (~1,800 breeding age) seedstock and 100,000 
(~61,000 breeding age) commercial cows, cows were culled first by age (> 10 yr) and then at ran-
dom. Both seedstock and commercial females had their first calf at age 3 and seedstock bulls were 
eligible for breeding at age 2. The seedstock population kept the top 5% of $JapOx 2-yr-old bulls 
for breeding to seedstock cows and the remainder were mated to commercial cows. To maintain a 
population size of 60 seedstock and 1,800 commercial bulls, bulls were culled first by age (> 5 yr) and 
then by $JapOx ranking. Ten replicates of each scenario were simulated for 20 yr, with overlapping 
generations as described previously (Cole 2015; Mueller et al. 2019).

Mating schemes. Each herd used a unique portfolio of sires and the maximum sire portfolio sizes 
were 6 and 10 bulls for seedstock and commercial herds, respectively. To model mating via natural 
service, each bull was limited to 35 matings per year and bulls within a sire portfolio were mated 
randomly to cows in all scenarios. Three mating schemes, 1 baseline (A) and 2 polled (B, C) were 
modeled. To establish a baseline and model current practice, scheme A used $JapOx as the sole sire 
selection criterion. In scheme B, PP bulls were preferentially selected for sire portfolios, and then 
both Pp and horned sires were used for the remaining sire portfolios. In contrast, in scheme C only 
PP bulls could be included in the sire portfolios and if the mating limit was reached then cows were 
left open. Scheme C models a potential situation if producers are prohibited from using sires that 
result in horned offspring. 

Gene editing. Polled mating scheme C described above was also simulated with the addition of 
gene editing for polled. In these scenarios, gene editing was modeled as an added step to the elite 
sire production system proposed by Kasinathan et al. (2015), which combines the use of advanced 
reproductive technologies and somatic cell nuclear transfer cloning with embryo transfer. In the C-1% 
and C-10% scenarios, seedstock bull calves were sorted yearly on $JapOx and the top 1% or 10%, 
respectively, of Pp and horned bulls were cloned and then gene edited to be PP. 

RESULTS AND DISCUSSION
HORNED frequency. The baseline scenario A did not result in a significant decrease of HORNED 

frequency in the Australian Brahman population after 20 yr (Figure 1), which is consistent with US dairy 
simulation results (Cole 2015; Mueller et al. 2019). The preferential selection of PP sires in scheme B, 
resulted in a significant decrease (P ≤ 0.05) in HORNED frequency after 20 yr compared to baseline 

scheme A. However, after only 5 yr scheme C resulted in a 
significantly lower (P ≤ 0.05) HORNED frequency (66%), than 
scheme B (74%). Both scenario C and C-1%, which included 
gene editing only the top 1% of seedstock bull calves per year, 
resulted in a similar (P = 0.81) rapid decrease in HORNED 
frequency to 10.2% after 20 yr. Additionally, scenario C-10% 
resulted in a slightly lower HORNED frequency (9.8%; P ≤ 
0.05) after 20 years than either scenario C or C-1%. 

Figure 1. Average effect of each mating scenario on 
HORNED frequency. Error bars (black bars) represent 
SEM
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Inbreeding. In all scenarios inbreeding increased less than 1% per generation. This level of 
inbreeding has been found to have relatively minor effects on traits of economic or biological signif-
icance in tropical beef cattle (Burrow, 1998). A limitation of the simulation is the assumption that all 
base population animals were initially unrelated, which is unlikely to be valid in a commercial setting. 

Genetic gain. The greatest genetic gain ($JapOx) after 20 yr was achieved in baseline scheme 
A ($160). Selection of polled sires resulted in significantly slower (P ≤ 0.05) rates of genetic gain 
($JapOx) compared to baseline scheme A (Figure 2), which is consistent with previous findings in 
dairy (Spurlock et al., 2014; Mueller et al., 2019). However, the addition of gene editing to scheme 
C, scenarios C-1% and C-10% both resulted in significantly greater (P ≤ 0.05) genetic gain than 
the polled conventional breeding scenarios B and C. Of the polled scenarios, C-10% resulted in the 
greatest genetic gain after 20 yr ($154), which was significantly higher (P ≤ 0.05) than C-1% ($144). 
A limitation of the simulation is the assumption that true breeding values for $JapOx are known (i.e., 
breeding value accuracy = 1). Accuracies for cattle in commercial populations with little performance 
or pedigree information are likely considerably lower, decreasing the rate of gain.

Figure 2. Average effect of each mating scenario on the number of animals sold per year by 
category on the primary y-axis and the average $JapOx per scenario on the secondary y-axis

Number of cows bred and animals sold for beef. After 10 yr of both scheme A (baseline) and 
B (preferential PP), the maximum multiplier cow population size was reached. Due to the delayed 
mating age (3 yr) there were ~61,000 cows bred in yr 10 and thereafter, and there were no cows left 
open in these mating schemes. Therefore, at maximum population size, scheme A and B resulted in 
~26,000 steers sold for beef per year (Figure 2). In contrast, due to the limited number of PP sires 
available a significantly greater (P ≤ 0.05) number of cows were left open yr 1 to 7 in scheme C, 
which resulted in a significantly smaller (P ≤ 0.05) cow population size until yr 18. Consequently, 
scheme C resulted in significantly less (P ≤ 0.05) total animals sold per year until yr 18 (Figure 2). 
The addition of gene editing only the top 1% of seedstock bull calves per year to this mating scheme 
(C-1%) resulted in similar numbers of total animals sold for beef per year. However, scenario C-10% 
resulted in significantly more (P ≤ 0.05) total animals sold per year from yr 3-18 than either scenario 
C or C-1%. All 4 polled mating scenarios (B, C, C-1% and C-10%) resulted in significantly more (P 
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≤ 0.05) total animals sold for beef in year 20 than baseline scheme A, as a result of decreased calf 
loss due to less calves needing to be dehorned. 

Scenarios. Preferential selection of PP sires (B) decreased HORNED frequency to 29% after 
20 yr, whereas the obligatory use of only PP sires (C) decreased the frequency to 10% after 20 yr. 
The C-1% scenario, which added gene editing only the top 1% of seedstock bull calves per year to 
mating scheme C, resulted in similar HORNED frequency, genetic gain and number of total animals 
sold for beef per year to scenario C. However, gene editing the top 10% of seedstock bull calves per 
year (C-10%) resulted in significantly higher POLLED frequency, genetic gain and number of total 
animals sold for beef per year to scenario C. 

Scheme C models a situation that could arise if producers are prohibited from using genetics that 
result in horned offspring. In this simulation cows were left open if no suitable PP sire was available. 
A more realistic alternative would be to use PP bulls from other less tropically adapted breeds, which 
could result in higher levels of mortality due to ill-adapted sires and progeny. 

Regulatory considerations. Given recent developments outlined by the Australian Office of 
the Gene Technology Regulator (OGTR) it appears that animals modified using template-guided 
techniques, like the POLLED allele, will be regulated as genetically modified organisms (GMO) in 
Australia (Mallapaty, 2019). This is not the case in other countries (e.g., Brazil) and may effectively 
preclude the use of gene editing to introduce the POLLED into Australian cattle breeding programs.

CONCLUSIONS
Overall, our simulations show that given the limited number of polled Brahman sires, conventional 

breeding to increase POLLED frequency will have to occur gradually to prevent a major impact on 
the rate of genetic gain ($JapOx). Furthermore, this study demonstrates how gene editing could help 
reduce this loss if a rapid decrease in HORNED frequency is necessary due to public pressure or 
legislation ceasing dehorning practices immediately.
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SUMMARY
Brahman cattle, a Bos indicus breed, are well adapted to the harsh environment of northern Aus-

tralia but reach puberty at an older age compared to Bos taurus breeds. Samples from hypothalamus 
(HYP), pituitary gland (PIT), both ovaries (OVA), liver (LIV), adipose tissue (AT), uterus (UTE) 
and longissimus dorsi muscle (MUS) from pre- and post-pubertal heifers were harvested for RNA 
sequencing (RNA-Seq). Four gene categories, including differentially expressed (DE) genes, tissue 
specific (TS) genes, key transcription factors (TF) and genes harbouring SNP associated with heifer 
fertility, were utilized as nodes of the gene co-expression networks. Significant network connections 
were identified using an algorithm that exploits the dual concepts of partial correlation and information 
theory (PCIT). Significance analysis (P < 0.01) of RNA-Seq data revealed 2,116 DE genes, 624 TS 
genes, 186 TF and 179 genes having SNP associated with heifer fertility within the 14,437 expressed 
genes (genes with reads per kilobase of exon per million mapped reads (RPKM) > 0.2). PCIT analysis 
pinpoints ZEB1, TEF and NFATC2 as the best trio of TF in terms of their ability to span the majority 
of the topology of the pre- and post-puberty networks. A new role for SEMA7A in bovine pubertal 
development is also postulated. Taken together, our multi-tissue omics analysis revealed candidate 
genes that could lead to improved understanding of the mechanisms that guide pubertal development.

INTRODUCTION
Fertility traits are economically important for beef cattle operations. Improvements in reproductive 

efficiency can increase profitability and reproduction rate of beef cattle. Although events involved 
in the puberty process are similar in Bos indicus and Bos taurus cattle, they are initiated earlier in 
Bos taurus (Johnston et al., 2009). Selection programs for early pubertal cattle based on phenotype 
require additional expenditure and labour. As the precise mechanisms inhibiting or stimulating bovine 
puberty are not entirely clear, identification of molecular regulatory networks modulating puberty 
in Bos indicus cattle is required to better manage heifer development, support development of new 
biotechnologies, and perhaps develop genetic selection tools of early pubertal cattle.

Our study aimed to identify DE genes, TF, metabolic pathways and networks involved in Brahman 
cattle puberty. Key tissues for puberty (HYP, PIT, OVA and UTE) and for growth and metabolism 
(LIV, MUS and AT) were collected from six pre- and six post-pubertal Brahman heifers for RNA-
Seq analyses. Gene expression values were obtained and used to construct pre- and post-puberty 
co-expression gene networks using an algorithm based on PCIT. The predicted co-expression net-
works were linked by DE genes, TS genes, known TF and genes harbouring SNP associated with 
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heifer fertility traits. These analyses provide new insights into candidate regulatory genes and gene 
expression pathways involved in bovine puberty.

MATERIALS AND METHODS
Twelve heifers of similar age were managed, handled and euthanized under protocols approved 

by the Animal Ethics Committee of the University of Queensland (UQ), Production and Companion 
Animal group (certificate number QAAFI/279/12). Heifers were examined every two weeks for 
observation of the pubertal development. Post-puberty heifers were in the luteal phase of their second 
cycle. There was no statistical difference in either BW (338 ± 54 and 363 ± 39 kg, P = 0.38) or CS 
(3.5 ± 0.4 and 3.8 ± 0.4, P = 0.18) between pre- and post-pubertal heifers.

Tissue samples (HYP, PIT, OVA, UTE, LIV, MUS and AT) were harvested as fast as possible after 
slaughter to preserve quality of RNA. In total, 96 tissue samples were available for RNA extraction 
(12 per tissue, except for OVA which had 24 samples available corresponding to the left and right 
ovaries). Total RNA was purified using a combination of RNeasy (QIAGEN, Australia) and TRIzol 
methods as previously described (Fortes et al. 2016; Nguyen et al. 2017a; Nguyen et al. 2018). All 
samples were passed quality control with RNA integrity numbers higher than 6.9.

The Illumina TruSeq sample preparation kit (Illumina, San Diego, CA) was utilized to construct 
cDNA libraries for each sample. Standard HiSeq 2000 sequencer analyser (Illumina, San Diego, 
CA) protocols were used to conduct RNA sequencing. Sequence reads were assembled and mapped 
to the annotated bovine genome (UMD3.1). Quality control and RNA-Seq expression analyses 
were performed using CLC Bio Genomic workbench software (CLC Bio, Aarhus, Denmark), with 
procedures described previously (Nguyen et al. 2017a; Nguyen et al. 2018). A threshold of the gene 
expression value (RPKM) ≥ 0.2 was utilized to annotated expressed genes (Mortazavi et al. 2008).

We applied “omics” pipeline developed by Nguyen et al. (2017b) to identify DE genes, TS genes, 
genes harbouring SNP associated with female fertility (heifer pregnancy, first service conception and 
age at first corpus luteum). From the predicted pre-pubertal and post-pubertal networks using PCIT 
which comprised DE, TS, TF and genes harbouring associated SNP (Reverter and Chan 2008), we 
applied an information lossless approach (Reverter and Fortes 2013) to explore the connectivity degree 
of all TF in the network. This approach allowed identification of the best trio of TF that, through their 
first neighbours, span most of the network topology. Finally, the list of DE genes (n = 2,116) was 
used as target list for functional enrichment analysis using Database for Annotation, Visualization, 
and Integrated Discovery (DAVID, Dennis 2013).

RESULTS AND DISCUSSION
An average of 60 million sequence reads were obtained for each individual sample. Previous 

studies demonstrated that approximately 30 million reads are sufficient to detect more than 90% of 
annotated genes in mammalian genomes (Lee et al. 2013; Wang et al. 2011). Despite the absence 
of a Bos indicus reference genome, our transcriptome data provided 60 to 70 % mapped reads. The 
relatively high number of sequence reads and mapped reads indicates that our data are adequate for 
differential expression studies.  

A total of 2,116 DE genes, 624 TS genes, 186 TF and 179 genes harbouring SNP associated with 
heifer fertility traits were identified by comparing the pubertal status. Compared to a study by Cánovas 
et al. (2014) which used similar methods to identify genes in pre- and post-pubertal Brangus heifers, 
we found a higher number of DE genes, but lower numbers of TS genes, TF and genes harbouring 
associated SNP. The genetic makeup of Brangus heifers is 3/8 Brahman and 5/8 Angus. Differences 
in the breed type, the experimental design and sample size need to be considered when comparing 
the results of these two studies. Despite these discrepancies, comparing data from these two studies 



65

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:63-66

could be useful to elucidate genes relevant for pubertal development in cattle, regardless of breed. 
Alternatively, specific genes delaying the pubertal process in Brahman heifers may be identified. 

Based on gene ontology (GO) analysis of the 2,116 DE genes, we found enriched GO terms 
“G-protein coupled receptor protein signalling pathway”, “regulation of hormone levels” and “steroid 
metabolic process”. Metabolites and hormones are integrating peripheral signals for reproduction. 
Moreover, we also identified the most enriched biological process GO term: “immune response” 
(adjusted P = 8.3 x 10-13). Reproduction is intimately connected to the immune function in women 
(Abrams and Miller 2011). The enrichment we found in cattle for the DE genes supports the idea of a 
relationship between reproduction and the immune system in cattle. The KEGG pathway neuroactive 
ligand–receptor interaction (adjusted P = 2.5 x 10-06) has well known roles in puberty. This pathway 
comprises ligands and receptors noted to be involved in pubertal signalling such as glycoprotein hor-
mones, alpha polypeptide, GABA receptor, OB-R, prolactin, prolactin receptor and growth hormone 
receptor (Ainu Husna et al. 2012). 

The hub nodes of pre- and post-pubertal Brahman heifers sub-networks were ZEB1, TEF and 
NFATC2 (Figure 1). Of note, ZEB1 may control GnRH expression directly as well as indirectly 
(Messina et al. 2016), and was suggested as a candidate gene in a quantitative trait locus (QTL) study 
with pleiotropic effects on fatness, stature and reproduction in beef cattle (Bolormaa et al. 2014). 
Both our present study and the Brangus study (Cánovas et al. 2014) identified ZEB1 as a key regula-
tory factor for bovine puberty. The gene TEF was reported as a transcription factor expressed in the 
pituitary gland during embryogenesis (Droplet et al. 1991). The initiation of TEF gene expression 
coincides with that of thyroid stimulating hormone beta (TSHβ). Droplet et al. (1991) reported that 
TEF can bind to and lead to effective transactivation of the TSHβ promoter. Thyroid hormones have 
a role in normal growth and reproductive function (Weber et al. 2013). The third TF of the best trio, 
NFATC2, belongs to the nuclear factor of activated T cells family that has been suggested to mediate 
GnRH action (Armstrong et al. 2009). These nuclear factors often generate signals in coordination 
with MAPKs (Macian 2005), which also play a role in GnRH regulation (Armstrong et al. 2009). In 
summary, our results amount to a growing body of evidence that supports these TF as important in 
the complex modulation of GnRH signaling and pubertal development. 

Figure 1. Sub-networks created with the best trio of transcription factors that span most of 
the network topology. A: pre-puberty network, B: post-puberty network. Genes are coloured 
according to their categories as follows: red = DE genes; pink = TF; blue = TS; dark brown = 
genes pertaining to two categories; and yellow = genes pertaining to three categories

Furthermore, examining the interaction between the best TF trio and other nodes in our sub-net-
works, we found that SEMA7A only interacted with the three TF in the pre-puberty network. In mice, 
during early development, loss of SEMA7A signaling can alter GnRH neuron migration and therefore 
lead to abnormal gonadal development and altered fertility (Messina et al. 2011). Protein and mRNA 

A B
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expression of SEMA7A were observed in multiple neuronal systems (Pasterkamp et al. 2007). A study 
of the adult female rat brain suggested that SEMA7A was required for the neuroendocrine control of 
ovarian cycle (Parkash et al. 2015). Our result revealed only a slight and insignificant increase in the 
expression level of SEMA7A after puberty in HYP (FC = 0.2). However, significant DE SEMA7A (P 
< 0.01) was observed in the UTE (FC = -1.3) and PIT (FC = -0.9), representing a decrease in expres-
sion when progesterone signaling was present. We hypothesize that SEMA7A is regulated by the best 
trio of TF and could contribute to events leading to GnRH release in pre-pubertal Brahman heifers. 

CONCLUSIONS
Our results provided potential candidate genes, pathways and networks related to pubertal devel-

opment. Gene ontology terms and pathways identified from our target gene list might be informative 
to explain the molecular mechanisms involving in the onset of puberty in Brahman heifers. However, 
our current work was relying only on gene expression data and bioinformatics tools. Therefore, 
extensive functional experimental validation for these candidate genes is warranted.
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SUMMARY
The neuronal ceroid lipofuscinoses (NCL) are a group of fatal neurodegenerative inherited diseases. 

Ovine models have been instrumental to advance the understanding of the genetics and the underlying 
disease mechanism, but most importantly are crucial for the development of therapeutic interventions. 
We have commenced to use CRISPR/Cas9 technology to generate an ovine model for the so-called 
Turkish variant of late-infantile neuronal ceroid lipofuscinosis (CLN7), a relatively common disease 
variant in humans for which currently no ovine model exists. Other groups have created genome 
edited and genetically engineered models for CLN1 and CLN3 variants, respectively. We summarise 
information about naturally occurring variants of NCL in animals and review the limited information 
about genome edited and genetically engineered non-laboratory animal models for NCL. 

INTRODUCTION
Neuronal ceroid lipofuscinoses (NCLs/Batten disease) are a group of lysosomal storage disorders 

affecting humans and animals. Common characteristics of these diseases include distinctive auto-
fluorescent storage bodies in neurons and many other cells and progressive brain and retinal atrophy 
leading to loss of vision, mental and motor deterioration, epileptic seizures and premature death. In 
humans, NCL variants have been categorized based on the disease causing genes, i.e. CLN1/PPT1, 
CLN2/TPP1, CLN3/CLN3, CLN4/DNAJC5, CLN5/CLN5, CLN6/CLN6, CLN7/MFSD8, CLN8/
CLN8, CLN10/CTSD, CLN11/GRN, CLN12/ATP13A2, CLN13/CTSF, CLN14/KCTD7 (Warrier et 
al. 2013). Despite the identification of the disease-causing genes, the links between protein defects, 
lysosomal storage and pathogenesis are not well understood (Cooper et al. 2015). There is no cure, 
but enzyme replacement therapy (ERT) has shown to attenuate the progression of the CLN2 variant 
of disease; and research in animal models and human clinical trials suggest that promising results can 
be achieved with both ERT and gene therapy for variants that are caused by mutations in genes coding 
for the soluble proteins PPT1, TPP1, CLN5, CTSD, GRN, CTSF (Kohlschütter et al. 2019; Mole et 
al. 2019). However, effective therapeutic interventions for variants that are caused by mutations in 
genes coding for the membrane proteins CLN3, DNAJC5, CLN6, MFSD8, CLN8, ATP13A2 and 
KCTD7 are lacking.

NON-LABORATORY ANIMAL MODELS FOR NCL
Naturally occurring NCL diseases have been described in many animal species (Table 1) and both 

naturally occurring, and genetically engineered animal models have been crucial in research efforts to 
improve our understanding of the genetics and the underlying disease mechanism. Such animal models 
of NCL disease are required for safety and proof of concept studies for therapeutic interventions (Bond 
et al. 2013). Non-laboratory animal models, such as dogs and sheep, are of specific interests due to 
their comparatively large and complex brains, long lifespan and the spectrum of clinical signs with 
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which they present. Considerable progress has come from studying sheep with naturally occurring 
CLN5 and CLN6 forms of disease by the Batten Animal Research Network (BARN) (Palmer et al. 
2015; Mitchell et al. 2018). However, naturally occurring models are not available for all variants of 
NCL disease (Table 1) and very few non-laboratory animal models have been maintained as research 
populations. Recently ovine and porcine models for the NCL variants CLN1 and CLN3 have been 
developed using homologous recombination followed by somatic cell nuclear transfer as well as 
CRISPR/Cas9 genome editing methods (Table 2; Beraldi et al. 2016; Eaton et al. 2019). 

Table 1. Natural occurring NCLs in animals. NCL variants, genes, species, OMIA/MGI ID, and 
breed are shown (OMIA: https://omia.org/home/; MGI: http://www.informatics.jax.org)

NCL variant/gene Species (OMIA or MGI ID: breed) 
CLN1/PPT1 •	 Canis lupus familiaris (001504-9615: Miniature Dachshund; Italian Cane Corso)
CLN2/TPP1 •	 Canis lupus familiaris (001472-9615: Longhaired Dachshund)

CLN5/CLN5

•	 Bos taurus (001482-9913: Devon)
•	 Canis lupus familiaris (001482-9615: Border Collie, Australian Cattle Dog; Golden 

Retriever) 
•	 Ovis aries (001482-9940: Borderdale)

CLN6/CLN6
•	 Canis lupus familiaris (001443-9615: Australian Shepherd)
•	 Mus musculus (MGI:2159328)
•	 Ovis aries (001443-9940: Merino)

CLN7/MFSD8 •	 Canis lupus familiaris (001962-9615: Chinese Crested Dog, Chihuahua)
•	 Macaca fuscata (001962-9542: Japanese macaque)

CLN8/CLN8
•	 Canis lupus familiaris (001506-9615: English Setter, Australian Shepherd, 

Alpenlaendische Dachsbracke, Saluki)
•	 Mus musculus (MGI:1856959)

CLN10/CTSD •	 Canis lupus familiaris (001505-9615: American Bulldog)
•	 Ovis aries (001505-9940: Swedish Landrace)

CLN12/ATP13A2 •	 Canis lupus familiaris (001552-9615: Tibetan Terrier)
n.d./ARSG •	 Canis lupus familiaris (001503-9615: American Staffordshire Terrier)

n.d./n.d.

•	 Agapornis roseicollis (000181-60468)
•	 Anas platyrhynchos (000181-8839)
•	 Bos taurus (000181-9913: Holstein, Beefmaster)
•	 Canis lupus familiaris (000181-9615: American Pit Bull Terrier, Cocker Spaniel, 

Dalmatian, Japanese Retriever,  Labrador Retriever, Minature Schnauzer, Polish 
Owczarek Nizinny, Saluki, Welsh Corgi)

•	 Capra hircus (000181-9925: Nubian)
•	 Equus caballus (000181-9796: Aegidienberger)
•	 Felis catus (000181-9685: domestic short-haired, Siamese)
•	 Macaca fascicularis (000181-9541)
•	 Mustela putorius furo (000181-9669)
•	 Ovis aries (000181-9940: Rambouillet)
•	 Sus scrofa (000181-9823:Vietnamese pot-bellied)

Due to the large amount of research conducted on naturally occurring ovine CLN5 and CLN6 
variants, creation of additional ovine models of NCL disease is of particular interest. Direct comparison 
of natural disease history across these different ovine models would be possible. Standardised 
assessments of the disease progression as well as gene therapy methods that have been developed 
for the ovine CLN5 and CLN6 research flocks in Australia and New Zealand (Palmer et al. 2015; 
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Mitchell et al. 2018) could be directly transferred to newly developed ovine models for NCL variants 
for which there is currently no non-laboratory research population.

OVINE CRISPR/CAS9 CLN7 MODEL
Until recently there were no non-laboratory animals diagnosed with CLN7 disease (MIM # 610951), 

which is the 5th most common variant of NCL disease in humans (NCL-Resource https://www.ucl.
ac.uk/ncl-disease/mutation-and-patient-database). It is unclear if CLN7 research populations can be 
established from the recently reported Chihuahua (Ashwini et al. 2016) and macaque (McBride et al. 
2018) cases. We have therefore commenced to develop a CRISPR/Cas9 genome edited CLN7 sheep 
model (Table 2; Tammen et al. 2019) that mimics one of the 39 known human MFSD8 mutations 
and will allow direct comparison to the existing natural occurring ovine variants of NCL disease. 
We have confirmed that our chosen electroporation approach modified from Kaneko et al. (2013) is 
an efficient way to deliver CRISPR/Cas9 components to in vitro produced embryos. We identified 
sgRNAs and donor template that create the desired genome edit. However, regulatory uncertainties 
have delayed this work as the current requirement to maintain CRISPR/Cas9 genome edited sheep 
as genetically modified organisms (GMO) substantially increases the costs for the planned research. 
However, amended regulations, which consider animals that are created using CRISP/Cas9 and 
Cas9-induced non-homologous end joining (NHEJ) as non-GMO, will take effect in October 2019 
in Australia and will allow us to proceed with this research.

Table 2. Genetically engineered and genome edited non-laboratory animal models for CLN3, 
CLN1 and CLN7 variants of NCL disease

NCL variant CLN3/CLN3 CLN1/PPT1 CLN7/MFSD8
Number of human 
patients / families 
with disease variant*

432 / 401 230 / 177 104 / 88

Protein location**
late endosomal/ 

lysosomal membrane, 
presynaptic vesicles 

lysosomal matrix lysosomal membrane 

Protein function** unknown palmitoylthioesterase predicted transporter
GE model species Sus scrofa Ovis aries Ovis aries
Targeted gene / 
mutation

CLN3 ∆ex7-8/∆ex7-8
PPT1 p.Arg151Ter MFSD8 c.103C>T

Methodology

homologous 
recombination in fetal 
fibroblasts & somatic 
cell nuclear transfer

CRISPR/Cas9 HDR 
via microinjection of in 
vitro derived embryos

CRISPR/Cas9 HDR & 
NHEJ via electroporation 
of in vitro derived embryo

Animals with  
targeted mutation yes

yes (3 Indel, 6 
heterozygous HDR and 3 

homozygous HDR )
embryos only

Clinical signs/  
histopathology char-
acteristic of NCL 
disease

yes yes unknown

Reference Beraldi et al. 2016; 
Johnson et al. 2019 Eaton et al. 2019 Tammen et al. 2019

* NCL-Resource: https://www.ucl.ac.uk/ncl-disease/mutation-and-patient-database
** Kollman et al. (2013)
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CONCLUSIONS
Variants of NCL have been described in many animal species and the identification of disease-

causing mutations and development of DNA diagnostics allows for effective management of these 
diseases in companion animals and livestock. Non-laboratory animal models for NCL have been 
instrumental in increasing our understanding of this devastating group of diseases in humans and 
are of particular importance for safety and proof of concept studies for therapeutic interventions. 
CRISPR/Cas9 technology is an efficient method to develop new animal models for human disease 
and can be used to validate the effect of predicted disease-causing mutations in animals. Changes to 
the regulation relating to the use of CRISPR/Cas9 technology will make it easier to create animal 
models for human disease.
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SUMMARY
The accuracy of genomic prediction for a numerically small sheep breed was investigated based 

on a large multi-breed admixed reference set using moderate or high density SNP genotypes, imputed 
whole genome sequence genotypes or selected sequence variants based on a genome wide association 
study (GWAS). Reference set with weight and eating quality phenotypes was divided into a GWAS 
sub set (n=4,000), a training set (n=13,466 to 38,098) and a validation set with data of 143 to 169 
purebred Dorper sheep. Genomic BLUP was used to estimate genomic breeding values and prediction 
accuracy was evaluated in the validation set based on the correlation between GBV and corrected 
phenotypes. Results showed a prediction accuracy between 20% and 30% based on 50k genotypes 
across different trait, which increased on average by 2.5% to 7.0% by using HD genotypes or selected 
sequence variants derived from an independent GWAS.

INTRODUCTION
Genomic prediction has been successfully implemented in breeding programs of the main livestock 

species. In numerically small breeds, it is difficult to establish a reasonably large reference population 
and prediction based on other main breeds was shown to be of limited value, (Kachman et al. 2013; 
Moghaddar et al. 2014). Low GBV predictability from other breeds would be partly because of low 
linkage disequilibrium (LD) across breeds between genetic markers and the causative mutation, 
a different distribution of QTL effect and QTL frequency between breeds, or due to genotype by 
background genotypes interaction. The problem of low LD maybe overcome when using denser 
marker sets or whole genome sequence (WGS) variants in genomic prediction. This study evaluated 
the accuracy of genomic prediction for growth and eating quality traits in purebred Dorper sheep 
based on a large multi-breed admixed sheep reference population, and to compare predictions based 
on common 50k or HD SNP genotypes, imputed WGS genotypes or using selected sequence variants 
based on an association study.

MATERIALS AND METHODS
Phenotypes and Animals. Data on post weaning weight (PWT), carcass scanned fat (CCFAT)and 

eye muscle depth (CEMD), intramuscular fat (IMF) and shear force at 5 days aging (SF5) recorded 
in research and industry flocks between 1999 and 2017 were used in this study. Figure 1 shows the 
genetic diversity of the sheep breeds used in this study as a plot of the first versus the second principal 
component derived from a genomic relationship matrix (GRM). Phenotypes were corrected for fixed 
environmental effects separately for research and industry animals. The fixed effects of the model 
were flock, year, sex, management groups, birth and rearing type, age of dam, age at and weight 
at measurement (for scanned traits). Random maternal effects were fitted for post weaning weight. 
Corrected phenotypes from research and industry data were combined and then corrected for source 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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of data (research/industry) and random effect of breed proportion derived from a multi generation 
pedigree using ASReml 3.0 (Gilmour et al. 2009). Between 143 and 169 purebred Dorper sheep with 
phenotypes and genotypes were used as validation set to represent a numerically small breed. Two 
data subsets were formed for a genome wide association study (GWAS); n=4000, either randomly 
assigned or selected based on possible higher relationship to the validation set. The rest of population 
(between 17,466 and 42,098 across different traits) was used as genomic prediction training set. 

Genotypes. Animals were genotyped with the Illumina 50k-ovine (~70%) or 12k-ovine SNP 
panel (~30%), which yielded a final 44,101 and 11,377 SNP per animal respectively. Genotypes were 
imputed to HD genotypes based on 2,266 animals as reference set and then to WGS based on 726 
animals as reference set. The final set was comprised of 31,154,249 SNP and InDels. Selection of 
sequence variants was based on significant SNP (–Log Pvalue ≥ 3.5) in GWAS performed on sequence 
data and then pruned locally for high LD (≥0.95). Association analysis was based on regression of 
corrected phenotypes on single sequence variant in linear mixed model (LMM) using Gemma V0.96 
(Zhou and Stephens 2012). 

Genomic prediction. GBV were calculated based on GBLUP with MTG2 2.02 (Lee et al. 2016) 
using the following SNP arrays: 1) 50k (44,101) genotypes, 2) HD (452,998) genotypes, 3) WGS 
(30,724,780) and 4) 50k and selected sequence variants (2,583-2,865). The following model was 
used to estimate variance components and genomic breeding values in scenarios 1, 2 and 3: y=Xb 
+ Za + e, where y is a vector of corrected phenotypes, b is a vector of fixed effect (only mean), a 
is a vector of random additive genetic effects and e is a vector of random residual effects. X and Z 
are incidence matrices that relate fixed and additive genetic effects to phenotypes respectively. The 
additive genetic effects were assumed to be normally distributed with a covariance structure based on 
the GRM derived from the respective SNP panels. The genomic prediction model in scenario 4 was 
based on fitting two genetic component simultaneously, with covariance structure based on a GRM 
from 50k genotypes and selected variants, respectively. Accuracy of genomic prediction in purebred 
Dorper sheep was evaluated based on Pearson correlation coefficient between GBV and corrected 
phenotypes in the validation set divided by the square root of the trait’s heritability.

RESULTS AND DISCUSSION
Slightly higher heritability, but consistent across different traits, was observed based on imputed 

HD genotypes and imputed sequence data compared to 50k genotypes (Table 1). Higher heritability is 
related to stronger LD between markers and QTLs and better estimation of realized genetic relationship. 

The sum of the heritability based on fitting two random components simultaneously was on average 
similar to heritability estimates based on 50k or HD genotypes. Figures 2 and 3 compare the accuracy 
of genomic prediction for Dorper sheep according to using 50k or imputed HD genotypes, imputed 
WGS variants and 50k SNPs plus selected imputed WGS variants, respectively. Results show a higher 
accuracy of genomic evaluation by including the effect of selected sequence variants in the prediction 
model as an additional random effect. The extra accuracy was on average 0.065 and 0.077 higher 
when fitting selected sequence variants from a random or selected GWAS population, respectively. 
SF5 and IMF showed the highest increase in prediction accuracy; 0.11 and 0.09 when using selected 
variants derived from random or selected GWAS populations, respectively. Accuracy of genomic 
evaluation from using all called sequence variants (~31x106 variants) was not consistently higher than 
50k genotypes. SF5 showed an increase of 0.05 and the prediction accuracy was equal or even lower 
than 50k genotypes. Prediction from imputed HD genotypes was more accurate (2.4%) compared 
to prediction using 50k genotypes in most cases except for PWT and IMF. Results show a base of 
between 20% and 32% genomic prediction accuracy on growth and eating quality traits using 50k 
genotype data for Dorper sheep based on the use of a large multi-breed reference population (13,466 
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to 38,098). This base prediction accuracy was expected and would be related to the use of the large 
multi-breed reference set which includes breeds that are genetically close to Dorper sheep (Figure.1). 

Table 1. Heritability (h2) estimates based on 50k, HD, WGS and 50k and Selected Sequence 
variants for different traits

Trait No of Records h2,50k h2,HD h2,WGS h2(50k,Sel_SNPs)
Post Weaning Weight (PWT) 38,098 0.182 0.182 0.184 0.174, 0.04
Carcass Scanned Fat (CCFAT) 14,369 0.185 0.214 0.229 0.163,0.06
Carcass Eye Muscle Depth (EMD) 14,507 0.148 0.151 0.149 0.135,0.02
Intra Muscular Fat (IMF) 13,466 0.404 0.434 0.455 0.412,0.03
Shear Force day5 Aging (SF5) 14,394 0.172 0.178 0.196 0.146,0.03

Figure 1. Genetic diversity of the sheep breeds as a plot of the first vs second principal components

Improvement in prediction accuracy by using selected sequence variants in the current study is 
in similar range to previous study in main sheep breeds (Moghaddar et al. 2018) and is in line with 
the results of studies on multi-breed dairy cattle. In dairy cattle, Van den Berg et al. (2016) showed 
on average up to 7% higher genomic prediction reliabilities (R2) across milk yield, protein and fat 
from a multi-breed reference population. Brøndum et al. (2015) reported up to 5% improvement in 
genomic prediction reliability on a range of production traits in multi-breed dairy cattle based on 
including selected sequence data from GWAS in GBLUP. Using a complete set of imputed WGS a 
marginal, zero or even some drop in GBV accuracy observed. This is because WGS provide a very 
large amount of genetic markers of which a small subset would be at or in high LD with causative 
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mutations. Majority of these imputed sequence variants would not be able to capture genetic variance 
and their contribution would be limited to capturing the family relationships between animals, which 
would be similar or slightly higher to the relationship captured by 50k genotypes. Similar results of 
no improvement in prediction accuracy from using all the sequence variants data have been reported 
in Holstein-Friesian dairy cattle (VanRaden et al. 2015). 

The extra prediction accuracy based on selected variants derived from a GWAS subset that used 
data from animals closely related to the target breed appears to be slightly higher (2% on average) 
than using a random GWAS subset. The differences may be not statistically significant and requires 
more verification in further studies, particularly based on larger GWAS populations. However, higher 
accuracy would be related to probably larger proportion of SNPs derived from a more related GWAS 
subset in association with gene that segregate in target breed. This indicates that while multi-breed 
GWAS population is more powerful to find larger numbers of causal genomic regions (Duijvesteijn et 
al. 2018; van der Berg et al. 2016), our study showed more genetically related GWAS population to 
target population is preferable to obtain more accurate genomic breeding values. The GWAS results, 
which showed there are some significant genomic regions limited to a random or a selected GWAS 
subsets, support these results.

CONCLUSIONS
Genomic prediction accuracy for a numerically small breed population increased by 2.5% and 

7% based on using imputed high-density marker genotypes and imputed sequence variants derived 
in an independent population respectively. Selection of sequence variants from a genetically more 
related population was in favour of higher genomic prediction accuracy in small breed populations. 
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SUMMARY
This study examined trends in the genetic diversity in the Australian Angus cattle population 

through the calculation of inbreeding, effective population size, effective number of ancestors and 
effective number of founders over time. The effective population size ranged from 68 to 122 depending 
on the assumed generation interval. For animals born in 2018, 10 key ancestors explained ~42% of 
the genetic diversity within the population. Knowledge of overall genetic diversity will help manage 
the population to maintain long-term rates of genetic gain. 

INTRODUCTION
The practice of selection in livestock breeding programs has been shown to lead to increases in 

inbreeding over time. This has become particularly evident in populations where there is widespread 
use of artificial breeding technologies (Bijma 2000). Inbreeding is essentially an increase in the 
number of homozygous individuals within a population. With this increase in homozygosity (or the 
subsequent reduction is heterozygosity) genetic variation is reduced, which can cause a depression 
in fitness (inbreeding depression) and a decrease in future selection response (Falconer and Mackay 
1996). Selection based on estimated breeding values (EBVs) that incorporate family information 
(genomic or pedigree based) can lead to increased rates of inbreeding due to the high correlation 
between EBVs within family, especially when animals are selected at a young age and EBVs are 
based on ancestral information.

A number of measures have been used to describe genetic diversity in a selected population, 
including the rate of inbreeding, the effective number of founder individuals, ancestral contributions 
and effective population size (Boichard et al. 1997). Such measures can give a useful insight into 
whether potential reductions in future response to selection may be expected. Knowledge about the 
ancestral make up of a population can also have important application in genomic selection where key 
ancestors are ideal candidates for genotyping at higher marker densities or whole genome sequencing.

The Australian Angus cattle population has achieved substantial genetic progress in the last several 
decades (Parnell 2015). This genetic progress may have impacted the amount of genetic diversity 
within the population. The aim of this study was to examine the past and current genetic diversity 
present in the Angus Australia population.

MATERIALS AND METHODS
This study used data provided by the Angus Society of Australia. The analysis focused on pedigree 

information on animals born between 1990 to 2018. In total, the pedigree data consisted of 1,551,078 
animals, including 42,476 unique sires and 447,000 unique dams.

Measures of diversity. Inbreeding.  Inbreeding was estimated using the algorithm suggested by 
Meuwissen and Luo (1992) for the entire pedigree. The rate of inbreeding per year was estimated as 
the regression of year on inbreeding. As stated in Falconer and Mackay (1997) the effective population 
size (Ne) is a function of the rate of inbreeding (∆F) observed per generation. Therefore, the rate of 
inbreeding per year was estimated for assumed generation intervals ranging from 5 years to 9 years. 
Effective population size can be described as:	
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Effective number of ancestors. The effective number of ancestors (fa) accounts for bottlenecks 
since the population formation, adjusting for losses of allelic diversity since the founder generation. 
It is estimated by:
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where pi is the marginal genetic contribution of ancestor i as defined by Boichard et al., (1997). 
The marginal contribution was generated for a given number of ancestors such that the upper and 
lower limits to the effective number of ancestors were zero (Nt=1000). 

Effective number of founders. The effective number of founders (fe) is an alternative measure to 
estimating the total number of ancestors in the population, accounting for the fact that some ancestors 
contributed more descendants than others. It is calculated as the number of equally contributing founders 
it would take to achieve a similar amount of genetic diversity observed in the current population, i.e.
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where q is the genetic contribution of founder i as defined by Lacey (1989)). 
As noted by Sorensen et al. (2005), the effective number of founders is a useful historical observation 

of changes in population structure. It can be used in conjunction with the effective number of ancestors 
such that if the ratio between the two measures is less than 1 then some bottlenecks have occurred 
since the foundation generation in the population.

RESULTS AND DISCUSSION
Inbreeding. The rate of inbreeding since 1990, shown in Figure 1, was estimated as 0.0082 per 

year. The total inbreeding level was on average of 0.03 in 2018. Inbreeding was steadily accumulating 
until 2011, after which it has remained steady or slightly reduced. The reduction in inbreeding is most 
likely a reaction from breeders to greater efforts to utilise “outcross” genetics, partially in response 
to avoidance of sires known to be carriers of recessive genetic disorders identified in the Angus 
population (Beever 2009). 

Figure 1. Average inbreeding since 1990 in the Angus Australia population
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Table 1 shows the rate of inbreeding per generation and the corresponding effective population size 
for different assumed generation intervals. The effective population size is higher than those estimated 
in dairy populations, were values of below 50 are regularly observed (Sorensen et al., 2005). It is 
often recommended in animal breeding that it is important to maintain an effective population size of 
at least 50 to 100 (Bijma 2000). Such values have been derived from theoretical expectations, where 
natural selection counteracts inbreeding depression. Although this is usually not the case in livestock 
breeding it gives a useful guide for the management of diversity. The maintenance of the current level 
of diversity will ensure that long-term response to selection can be maintained. 

It is likely that the estimates of Ne presented are an overestimate of true genetic diversity, given 
that the pedigree of the population is relative to a given base. Although, recent estimates of Ne from 
genomic data (Ne=93) (results not shown) agree with the current estimates from pedigree data.

Table 1: The rate of inbreeding and effective population for alternative generation intervals 

Assumed Generation Interval
5 6 7 8 9

∆F 0.0041 0.0049 0.0057 0.0067 0.0074
Ne 122 102 87 76 68

The effective number of founders (fe) and ancestors (fa) rapidly declined until 2008, where both 
measures plateau (Figure 2). In 2018, the ratio between fe and fa was 0.32 indicating that a genetic 
bottleneck has occurred since the founder generation as a result of selection applied in the population.

Individual marginal contributions of founders to the population were required for the estimation 
of the effective number of ancestors. This gave the opportunity to observe the importance of key 
ancestors to the population. Table 2 shows the top 10 ancestors based on their marginal contribution 
to the population. The top sire explained ~12% of the genetic contributions to the population. The top 
10 ancestors collectively accounted for 42% of the total genetic diversity, with the top 50 ancestors 
explaining 70% (results not shown).

Figure 2. Effective number of founders and ancestors since 1990
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Table 2. Summary of marginal contributions for the top 10 individuals
 

Sire Birth Year Total Marginal Cumulative Offspring

1 1990 0.117 0.117 0.117 7772
2 1995 0.0619 0.0619 0.1789 9862
3 1982 0.0609 0.0609 0.2398 2969
4 1978 0.0548 0.051 0.2908 1272
5 1986 0.0322 0.0322 0.323 1265
6 2006 0.0459 0.027 0.35 5356
7 1988 0.0803 0.0204 0.3704 3708
8 1980 0.0242 0.0196 0.39 117
9 1990 0.0169 0.0169 0.4069 3774
10 1992 0.0205 0.0153 0.4222 703

CONCLUSIONS
This study shows that while the diversity of the Angus cattle population in Australia reduced until 

2008, the amount of diversity has been maintained since this time. The Angus population has been 
founded by a relatively small number of ancestors, with the top 10 ancestors explaining 42% of the 
genetic diversity. Current levels of diversity need to be maintained to ensure losses in response due 
to inbreeding are not observed.
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SUMMARY
This study investigated the accuracy of predicting future phenotypes of young Angus and Hereford 

cattle using Single-step Genomic BLUP (SSGBLUP) compared to the traditional pedigree-based 
BLUP evaluation (NRMBLUP). Forward cross-validation, using two comparison methods, was 
used to quantify the predictability of the two evaluations. For each breed, two data sets named ‘full’ 
and ‘partial’ were generated. The ‘full’ data set included all relationships, all genotypes and phe-
notypes of animals born up to November 2018. For ‘partial’ data sets, phenotypes of animals born 
after December 2014 were removed and the data for animals removed after December 2014 were 
used as the ‘validation data set’. SSGBLUP and NRMBLUP analyses were performed separately 
for the full and partial data sets and EBVs were predicted for animals in the validation data set. In 
Method 1, R squared values (R2), regression coefficients (REG) and adjusted correlation (ACOR), 
between pre-corrected phenotypes and predicted EBVs were compared. In Method 2, correlation 
ratios between EBVs from full and partial evaluations were estimated to calculate the increase in 
predictability between the SSGBLUP and NRMBLUP. The estimated R2, REG and ACOR using 
SSGBLUP were higher than those from NRMBLUP. A similar pattern was observed for correlation 
ratios from Method 2. The increase in ability to predict future phenotypes using Method 1 ranged 
from 30 to 50% and 10 to 36% for genotyped and 2 to 4% and 1 to 2 % for non-genotyped Angus 
and Hereford cattle, respectively. Using Method 2, the ability to predict future phenotypes ranged 
from 22 to 40% and 6 to 28% for genotyped and 1 to 2% and 0.5 to 1 % for non-genotyped Angus 
and Hereford cattle in the validation set, respectively. This study showed that there was an increase 
in the accuracy to predict future performance from SSGBLUP compared to NRMBLUP in Angus 
and Hereford cattle. The increase in predictive ability varied according to the heritability of a trait, 
the number of phenotypes and genotypes included in the evaluation and whether the animals were 
genotyped or not in the evaluation.   

INTRODUCTION
BREEDPLAN analytical software developed by the Animal Genetics and Breeding Unit (AGBU) 

is used for genetic evaluation of beef cattle using best linear unbiased prediction (BLUP) (Graser et 
al. 2005). Prior to 2012, EBVs were predicted using pedigree based BLUP models (NRMBLUP). 
Since 2012, the BREEDPLAN software has been upgraded to include a range of DNA marker-
based predictions. With the development of 50K micro arrays in 2008, genome wide SNP based 
prediction called Molecular Breeding Values ‘MBVs’ were included using a post-BLUP blending 
method. This meant that genotype information did not influence EBVs of pedigree-only animals. 
Furthermore, blending of MBVs into existing EBVs is sensitive to various biases which can be 
complicated to eliminate. These biases are mostly overcome by implementing Single-step Genomic 
BLUP (SSGBLUP). In SSGBLUP, information from pedigree, phenotypes and genotypes are jointly 
used. SSGBLUP combines the genomic relationship matrix (G) for genotyped animals with the 
pedigree-based relationship (A) for non-genotyped animals (Christensen and Lund 2010). Therefore, 
SSGBLUP is expect to produce more accurate EBVs for animals with genotypes than NRMBLUP.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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Since 2017, SSGBLUP has been implemented for the genetic evaluation and use in Angus, Brahman, 
Hereford and Wagyu breeds in Australia (Johnston et al. 2018). An important implementation step is 
to quantify the extent of increase in predictability of SSGBLUP over NRMBLUP. A forward cross 
validation method proposed by Legarra and Reverter (2018) was used in this study to compare the 
predictability of SSGBLUP and NRMBLUP. Predictability is defined as how well the EBVs predict 
observed performance.

MATERIALS AND METHODS
Data used in this study were submitted by Angus and Hereford breeders and their breed societies 

for use in the November 2018 BREEDPLAN evaluation. Data included 600 day weight (FWT), scan 
eye muscle area in heifers (HEMA) and bulls (BEMA), and scrotal circumference (SC). Univariate 
analyses were performed for each trait using models described by Graser et al. (2005). Table 1 
summarises the number of animals with phenotypes and genotypes for each trait across the two breeds. 

Forward cross-validation described by Legarra and Reverter (2018) was used to compare the 
predictability of SSGBLUP and NRMBLUP. For each breed, two data sets named ‘full’ and ‘partial’ 
were generated. The Full data set included all relationships, genotypes and phenotypes of animals 
born up to November 2018. For the ‘partial’ data set, phenotypes of animals born after December 
2014 were removed and the data for animals removed were used as the ‘validation data set’. The 
SSGBLUP and NRMBLUP analysis were performed separately for the full and partial data sets 
and EBVs were predicted for animals in the validation data set. A strict criteria was implemented to 
ensure good convergence.

Two approaches were used to assess the ability to predict the future phenotypes in the validation data 
set using EBVs estimated from the partial data. In approach 1, adjusted phenotypes in the ‘validation 
set’ were regressed against the EBVs from partial analyses of SSGBLUP (SEBVp) and NRMBLUP 
(NEBVp) within their respective contemporary group. R-squared values (R2) and regression coeffi-
cients (REG) were estimated. Accuracy of prediction was calculated as a correlation between adjusted 
phenotypes and SEBVp or NEBVp and the correlations were adjusted for by dividing by the square 
root of the heritability (ACOR). The increase in ability to predict future genotypes (PRED1) of young 
Angus and Hereford cattle was assessed as a ratio between ACOR of SSGBLUP and NRMBLUP.

In approach 2, the Pearson correlations between EBVs using full (Ûf ) and partial (Ûp ) for animals 
in the validation data set were computed as per the formula given below from Legarra and Reverter 
(2018),

Where n is the number of animals in validation set, Ûf  are the full EBVs,  the mean of the 
full EBVs, Ûp  are the partial EBVs,  the mean of the partial EBVs. Legarra and Reverter (2018) 
showed that  was equal to the ratio of accuracy of partial (accp) and accuracy of full (accf) of 
SSGBLUP or NRMBLUP. This was modified to get the increase in predictive ability (PRED2) of 
SSGBLUP by calculating the ratio between accp of SSGBLUP and accp of NRMBLUP as per the 
equation given below,

PRED2 = ((corr (SEBVp, SEBVf) / corr (NEBVp, SEBVf)) – 1)*100
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RESULTS AND DISCUSSION
The data used in the methods is summarised in Table 1. In addition to the number of records given 

in Table 1, Angus and Hereford had 55999 and 10,971 genotyped animals, respectively, in the full 
and partial analyses. The number of animals with phenotypes and genotypes in the validation data for 
each trait ranged from 11,455 to 14,162 for Angus and 1,507 and 3,908 for Hereford. Heritabilities 
used in the prediction for FWT, HEMA, BEMA and SC for Angus were 0.38, 0.26, 0.24 and 0.39, 
respectively and for Hereford were 0.31, 0.24, 0.23 and 0.44, respectively.   

Table 1. Summary of data used in the prediction

Trait Angus Hereford
Number of records 1 Number in   

validation set
Number of records Number in 

validation setFull Partial Full Partial
Geno Non Geno Non

FWT 801,991 673,969 14,162 100,076 514,345 464,703 3,569 40,959
HEMA 368,832 289,344 11,455 68,033 128,810 104,557 1,507 22,746
BEMA 406,378 316,707 13,546 76,125 177,311 148,585 3,908 24,818
SC 335,437 256,152 12,404 66,881 133,276 108,026 3,432 21,818

1  ‘Geno’: genotyped animals; ‘Non’: non-genotyped animals.

Genotyped animals. For genotyped animals in the validation set, estimated R2, REG, ACOR and 
PRED1 from Method 1 and the PRED2 from Method 2 are given in Table 2. Using Method 1 for Angus, 
estimated R2 values ranged from 0.11 to 0.22 for SSGBLUP and from 0.06 to 0.12 for NRMBLUP. 
Estimated R2 values were higher for SSGBLUP than NRMBLUP for all traits. The estimated REG 
using SSGBLUP were also higher than those using NRMBLUP. However, the estimated REG was 
higher than 1 for SSGBLUP indicating that EBVs were under-predicted for SSGBLUP. The ACOR 
ranged from 0.67 to 0.79 for SSGBLUP and 0.48 to 0.59 using NRMBLUP. Adjusted correlations 
were higher for SSGBLUP than for NRMBLUP for all traits. The PRED1 ranged from 30 to 53%. 

For Hereford, estimated R2 values ranged from 0.08 to 0.17 for SSGBLUP and from 0.05 to 0.13 for 
NRMBLUP. As observed for Angus, estimated R2 values were higher for SSGBLUP than NRMBLUP 
for all traits. Estimated REG using SSGBLUP were also higher than those using NRMBLUP. The 
ACOR ranged from 0.56 to 0.62 for SSGBLUP and 0.41 to 0.54 using NRMBLUP. The ACOR were 
higher for SSGBLUP than for NRMBLUP for all traits. PRED1 ranged from 10 to 36%.

Using Method 2 for Angus, PRED2 ranged from 23 to 50%, respectively. For Hereford PRED2 
ranged from 6 and 28%, respectively. 

Non-genotyped animals. Using Method 1 for Angus, changes in the estimated R2, REG, ACOR 
and PRED1 between SSGBLUP and NRMBLUP were similar to those observed for genotyped 
animals. However, increases were lower than the values observed for genotyped animals, with results 
for PRED1 ranging from 3 to 6%. A similar pattern was observed for Hereford where PRED1 ranged 
from 1to 3%. 

Using Method 2 for Angus, similar to genotyped animals, the predictability of SSGBLUP was 
higher than for NRMBLUP for all traits. The PRED2 ranged from 2 to 5%. For Hereford, PRED2 
ranged from 1 to 2%.

Results for both procedures showed higher predictability for SSGBLUP as compared to NRMBLUP. 
However, estimated regression slopes greater than one indicate that cross-validation using Method 
1 may be biased due to errors in adjusting the fixed effects, selection and the heritability used in the 
evaluation (Legarra and Reverter 2018). As expected, the advantage in predictability of both procedures 
using SSGBLUP (compared to NRMBLUP) was higher for genotyped animals than non-genotyped 
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animals. Furthermore, Angus, with a higher number of phenotypes and genotypes animals gave higher 
PRED1 and PRED2 for all traits than in Hereford. When the genotyped and non-genotyped animals 
were combined, the increase in predictability estimated for SSGBLUP in this study was lower than 
the range (25 to 36%) published by Lourenco et al (2018) for Angus cattle in USA. Lourenco et al 
(2018) had more animals with records and genotypes than the numbers available in this study.

Table 2. Estimated R squared (R2), regression coefficient (REG) and adjusted correlations 
(ACOR) from Method 1and increase in predictability from Method 1 (PRED 1 %) and Method 
2 (PRED 2 %) for SSGBLUP over NRMBLUP for genotyped animals

Trait Method 1 Methods
SSGBLUP NRMBLUP      1     2

R2 REG ACOR R2 REG ACOR PRED1 PRED2
Angus

FWT 0.22 1.16±0.02 0.79 0.12 1.07±0.02 0.58 36 28
HEMA 0.15 1.07±0.02 0.77 0.09 1.08±0.03 0.59 30 23
BEMA 0.11 1.04±0.03 0.67 0.06 0.93±0.03 0.48 39 26
SC 0.22 1.22±0.02 0.75 0.09 1.09±0.03 0.49 53 50

Hereford
FWT 0.10 1.11±0.05 0.56 0.05 0.93±0.06 0.41 36 28
HEMA 0.08 0.99±0.09 0.56 0.06 0.92±0.09 0.51 10 6
BEMA 0.08 1.17±0.06 0.61 0.06 1.05±0.06 0.51 19 13
SC 0.17 1.07±0.04 0.62 0.13 0.99±0.04 0.54 15 12

CONCLUSIONS
Ability to predict the future phenotypes of both genotyped and non-genotyped animals was higher 

for SSGBLUP compared to NRMBLUP. Both methods of comparisons yielded very similar results. 
Furthermore, ability to predict the future phenotypes was influenced by the number of genotyped 
animals in the evaluation and the heritability of the trait used. Higher numbers of genotyped animals 
and higher heritability resulted in increased predictability for SSGBLUP.
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SUMMARY
This study estimated genetic parameters for AusMeat and camera image analysis carcass traits. 

Most carcass traits were moderately to highly heritable. The genetic correlation between AusMeat 
marble score and the image analysis marbling percentage traits was close to unity, as was the estimate 
between the two eye muscle area traits. Accuracies of genomic breeding values from single step 
genomic BLUP (ssGBLUP) were up to 4% higher than those from pedigree based BLUP (PBLUP) 
evaluations. The highest increase in EBV accuracies from ssGBLUP over those from PBLUP was for 
animals with a genotype but no phenotype. The use of image carcass traits for selection is feasible 
for genetic evaluation. 

INTRODUCTION
Wagyu is a collective term for Japanese beef cattle breeds (Japanese Black, Japanese Brown, 

Japanese Shorthorn and Japanese Polled). Australian Wagyu production started in the 1990s. Genetic 
analysis of Wagyu cattle has been reported in a number of studies, with most from Japan and the 
USA. As summarized by Oyama (2011), heritability estimates for carcass traits were moderate to 
high, for instance, 0.23 to 0.78 for carcass weight, 0.28 to 0.61 for rib eye area, 0.24 to 0.50 for fat-
ness and 0.16 to 0.74 for marble score. Recently applied imaging technology for assessing carcass 
characteristics has the potential to accurately and objectively capture carcass characteristics. Those 
carcass image analysis traits have been tested in Australian Wagyu cattle on a small scale (Maeda 
et al. 2014). Application of genomic selection in livestock could improve the accuracy of selection 
and enhance genetic gain. The aims of this study were 1) to estimate genetic parameters for carcass 
AUSMEAT and image analysis traits Australian Wagyu cattle, in AusMeat and image analysis traits, 
and 2) to test the accuracies of the Estimated Breeding Values (EBV).

MATERIALS AND METHODS
Phenotypes. Phenotypes were extracted from the Australia Wagyu Association BREEDPLAN 

database (Aug 2018). Animals used were progeny of 462 sires, with the number of progeny per sire 
ranging from 1 to 271. Amongst sires whose progeny had carcass records, 168 had only one progeny 
(3% of total carcass records), 207 sires had more than 5 progeny and 12 sires had more than 100 prog-
eny. The average number of progeny per sire was 12. After editing, 6068 carcass records were used 
in the analysis. Carcass traits were measured using the AusMeat grading system (AusMeat Limited 
2005), including hot carcass weight (CWT, kg), marble score (CMAU, on a scale of 0 to 12), P8 fat 
(CP8, mm) depth and carcass eye muscle area (CEMA, cm2). Image analysis traits were obtained in 
two steps, 1) colour images of carcass cross-sections between the 5th and 6th ribs were collected using 
the digital camera (HK-333, Hayasaka Rikoh, Sapporo Japan, as described by Kuchida et al. 2001); 2) 
images were analysed using the image analysis software, BeefAnalyserII (Hayasaka Rikoh, Sapporo 
Japan) to generate carcass traits. Details of the processes have been reported previously (Maeda et 
al. 2014). The traits generated by the image analysis software are marbling percentage (CCMP, %), 
eye muscle area (CCRA, cm2), fineness index or fine marbling particles per cm2 (CCFI, count/cm2), 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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percentages of coarse fat particles (all > 1 pixel, CCCI; the 5 largest, CCCJ; the 10 largest, CCCK, 
or the largest one, CCMX, %), number of fat particles (CCNM, count/cm2) and brightness of the eye 
muscle area (CCLL).

Genotype and genomic relationship matrix. Animals were genotyped for various sizes of 
Illumina Bovine chips (Illumina Inc., San Diego, CA, USA), ranging from 6K to 800K, with most 
genotyped with 50K or 150K panels. Genomic data were subjected to quality control (Connors et al. 
2017) and imputed to 150K using Fimpute 2.2 (Sargolzaei et al. 2014). SNP genotypes for 12956 
animals were used to calculate the genomic relationship matrix Gm (VanRaden 2008)967 bulls and 
50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding 
coefficients required accurate estimates of allele frequencies in the base population. Linear model 
predictions of breeding values were computed by 3 equivalent methods: 1. The numerical relationship 
matrix H, that combines the pedigree relationship matrix, A, and a modified genomic relationship 
matrix, G, was used in ssGBLUP analyses. G was manipulated as, ​G  =  λ ​G​ m​​ + ​(1 − λ )​ ​A​ 22​​​, where ​λ​ 
is the fraction of additive genetic variance explained by markers, ranging between 0 and 1.

Statistical Models. Data were analysed using an animal model fitted with fixed effects and covari-
ates to estimate breeding values, genetic variances and heritabilities. For CWT, the fixed effects were 
contemporary group (defined by herd, original owner, sex, management group and killing dates), 
and age (days) as linear and quadratic regressors. For other carcass traits linear and quadratic forms 
of carcass weight (kg) were fitted instead of age. The same model was implemented for each trait in 
PBLUP and ssGBLUP using Wombat (Meyer 2007). ssGBLUP analyses were performed with the 
H-1 matrix calculated for four levels of ​λ​: 0.25, 0.50, 0.75 and 0.95 to identify the optimal ​λ​. The 
prediction accuracies of EBVs were calculated as ​​Acc = ​√ 

_
 1 − ​(​​ ​  PEV _ ​(1 + f)​ ​σ​ a​ 2​​ ​​)​​ ​​, where PEV is the prediction 

error variance of the EBV, ​f​ ​ is the inbreeding coefficient and ​ σ​ a​ 
2​​ is the additive genetic variance. The 

average EBV accuracies were calculated for all animals or subsets of animals in each of PBLUP or 
ssGBLUP analyses. The EBV accuracies were compared amongst subsets of animals which were 
identified as animals that were phenotyped, genotyped or both. The comparisons were conducted by 
firstly, identifying the highest average EBV accuracy from the 4 ssGBLUP analyses for each trait. The 
difference between this accuracy and the PBLUP accuracy was obtained for this subset of animals.

Bivariate analyses were performed for pairs of marbling traits (CCMP, CCFI or CCCI vs CMAU) 
and eye muscle area traits (CCRA vs CEMA). 

RESULTS AND DISCUSSION
Trait summary. The average slaughter age was 1003 days and the average carcass weight was 419 

kg with an AusMeat marble score of 7.2 and an eye muscle area of 66 cm2 (Table 1). Image carcass 
traits showed the same eye muscle area with higher variation. An average of 27% of the eye muscle 
was intramuscular fat (CCMP), 7.3% was coarse fat flecks (CCCI) and 2.7 was fine fat particles per 
cm2 of rib eye area (CCFI). 

Variance and genetic parameters. Heritability estimates for most traits were moderate, with 
relatively low standard errors (Table 2). Heritability estimates for AusMeat traits ranged from 0.42 for 
CEMA to 0.60 for CWT. This is in line with estimates reported previously. For image analysis traits, 
CCMP, CCFI and CCRA were moderately heritable and those estimates tended to be significantly 
different from zero. The heritability estimates for coarseness (CCCI, CCCJ, CCCK) were moderate 
but with large standard errors. The brightness of eye muscle (CCLL) was also moderately heritable. 
The relative proportion of the largest marbling particle (CCMX) had low heritability which was not 
significantly different from zero. The current estimates were similar to those by Maeda et al. (2014), 
but with lower standard errors. Heritabilities from ssGBLUP (not shown) for different ​λ​ values varied. 
The estimates at a ​λ​ of 0.25 were the highest and were higher than those estimated from PBLUP.
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EBV Accuracies from different analyses. The EBV accuracies from PBLUP and ssGBLUP 
at 4 levels of λ: 0.25, 0.50, 0.75 and 0.95, are shown in Table 3. The highest EBV accuracies from 
ssGBLUP were higher than those from PBLUP. Accuracy increases ranged from 0.02 for CCMP to 
0.04 for CCMX. The maximum eye muscle area (CEMA or CCRA) EBV accuracies from ssGBLUP 
were the same or slightly lower than those from PBLUP. The highest ssGBLUP EBV accuracies were 
found at a λ of 0.95 and mostly for the fatness traits. The highest ssGBLUP EBV accuracy for CCLL 
was identified at a λ of 0.25, which was slightly lower than that from PBLUP (-0.02). 

The highest increase in EBV accuracies was 0.04 and found in the subset of genotyped animals, 
either with (0.03) or without (0.04) phenotypes. For non-genotyped animals, the maximum EBV accu-
racies from ssGBLUP were almost identical to those from PBLUP (with an average increase of 0.01). 

Table 1. Descriptive statistics for carcass traits of Australian Wagyu cattle

Trait Count Trait
Animal Sire Dam cg Genotype Mean Std Min Max

CWT 6068 462 4007 1543 1380 418.7 54.28 256 580
CMAU 5634 422 3744 1296 1368 7.23 1.77 2 12
CP8 3496 242 2169 851 1100 22.04 8.34 4 46
CEMA 3374 305 2374 993 1116 65.83 23.17 41 128
CCMP 2109 281 1867 587 727 27.02 7.31 9 49
CCRA 1849 250 1700 386 750 65.92 26.51 0 129
CCFI 1942 263 1743 515 692 2.70 0.60 0 4
CCCI 1838 247 1689 383 750 7.26 5.52 0 42
CCCJ 608 88 601 113 45 4.66 3.02 0 25
CCCK 608 88 601 113 45 5.68 3.42 0 26
CCLL 1113 156 1001 246 656 79.57 10.89 0 118
CCMX 1766 233 1633 371 728 2.47 2.19 0 24
CCNM 608 88 601 113 45 1099.10 688.95 49 4389

Table 2. Variance components and heritability for carcass traits of Australian Wagyu cattle

Trait σa
2 ±se σe

2 ±se h2±se
CWT 832.64±105.65 552.49±72.55 0.60±0.06
CMAU 1.01±0.15 1.38±0.11 0.42±0.05
CP8 17.95±3.09 17.6±2.11 0.51±0.07
CEMA 32.09±6.45 23.32±4.44 0.58±0.09
CCMP 11.97±3.66 20.98±2.94 0.36±0.10
CCRA 36.04±9.31 38.50±7.25 0.48±0.11
CCFI 0.10±0.03 0.16±0.02 0.39±0.11
CCCI 1.39±0.71 8.92±0.67 0.14±0.07
CCCJ 1.97±1.61 4.48±1.43 0.30±0.24
CCCK 2.57±1.95 5.27±1.73 0.33±0.24
CCLL 24.14±9.23 32.98±7.07 0.42±0.14
CCMX 0.11±0.16 3.65±0.20 0.03±0.04

Bivariate analyses. The genetic correlations between eye muscle area (CCRA vs CEMA) and 
marbling traits (CMAU vs CCMP) were close to unity (not shown). Genetic correlations among the 
three measures of fat particle coarseness (CCCI, CCCJ and CCCK) were high and positive, suggesting 
they were measurements of the same trait. The fat fineness index (CCFI) was negatively correlated 
with the coarseness measures CCCJ and CCCK, but not with CCCI. 
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Phenotypically, the two measurements of marbling were highly correlated, but were on different 
scales. An increase of one unit of AusMeat marble score (CMAU) is equivalent to a 3.5% increase 
in marbling percentage (CCMP). Two eye muscle area measures were almost identical (1.0 cm2 of 
CEAM is equivalent to 0.99 cm2 of CCRA). All coarseness indices represent essentially the same 
marbling trait, being similarly correlated to the marbling percentage (CCMP) trait. The regression of 
CCMP on CCFI showed that increasing fine fat particle per cm2 of eye-muscle area by 1.0 increases 
CCMP by 9.8%.

Table 3. Accuracies of EBVs from PBLUP (Ped) analyses and ssGBLUP analyses with 4 levels 
of λ, 0.25, 0.50, 0.75 and 0.95 (H25, H50, H75 and H95)

Trait Ped H25 H50 H75 H95 Increment
CWT 0.53 0.53 0.53 0.55 0.56 0.03
CMAU 0.50 0.50 0.50 0.51 0.52 0.03
CP8 0.48 0.48 0.48 0.49 0.51 0.03
CEMA 0.49 0.48 0.47 0.46 0.47 0.00
CCMP 0.44 0.44 0.43 0.44 0.45 0.02
CCRA 0.45 0.45 0.44 0.44 0.44 0.00
CCFI 0.42 0.41 0.40 0.41 0.42 0.00
CCCI 0.36 0.37 0.32 0.39 0.41 0.05
CCCJ 0.29 0.27 0.27 0.29 0.31 0.02
CCCK 0.30 0.28 0.27 0.29 0.31 0.02
CCLL 0.42 0.40 0.36 0.36 0.37 -0.02
CCMX 0.22 0.21 0.21 0.23 0.26 0.04

CONCLUSIONS
Most of the AusMeat and image analysis carcass traits were moderately to highly heritable with 

moderate standard errors. The genetic correlation between AusMeat marble score and the image 
analysis marbling percentage was close to unity. A similarly high genetic correlation was estimated 
between the eye muscle area traits. Image analysis of carcass characters is feasible for use during 
selection in Australian Wagyu cattle. Accuracies of genomic breeding values at optimal levels of λ 
could be increased by 4% across traits. For traits from reasonably sized datasets, an increase of 6% 
in EBV accuracies could be achievable. 
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SUMMARY
Bull fertility directly impacts the outcome of cow herds under a natural mating system. Blood 

concentration of the hormone inhibin (INH), measurements of the scrotal circumference (SC18 and 
SC24) and the percentage of normal sperm (PNS) in an ejaculate are heritable indicators of bull 
fertility. We analyzed bulls from the CRC for Beef Genetic Technologies consisting of three breed 
types (Brahman, Tropical Composite, and Crossbreds) to which those four fertility-related traits 
were observed. We used 9,012 SNP markers to generate a genomic relationship matrix and to run a 
GBLUP analysis. We adjusted the model for the population substructure using the first two principal 
components derived from all genotypes. The GBLUP analyses were run twice, one with the whole 
dataset and another setting the phenotypes of the Crossbred animals to missing. The accuracy and 
bias of genomic estimated breeding values (GEBV) was estimated using the Method LR. Heritability 
estimates ranged from 0.17 (PNS) to 0.43 (SC24), and GEBV accuracies from 0.54 (PNS) to 0.81 
(SC24). No bias was observed for any trait. Also, there is no evidence of over- or under-dispersion 
for INH. However, the GEBVs for PNS seems to be over-dispersed, and the ones of SCs (both SC18 
and SC24) seem to be under-dispersed. The use of large enough multi-breed reference populations 
can lead to accurate GEBV for bull fertility traits. 

INTRODUCTION
The vast majority of Australian beef cows are bull mated, especially in the north where artificial 

insemination is virtually inexistent. Therefore, the bull’s ability to reach puberty, produce good 
quality sperm and effectiveness in serving cows are of fundamental importance with a direct impact 
on herd productivity. There are several indicators of bull fertility that are polygenic and heritable 
traits (Corbet et al. 2013). Serum levels of Inhibin (INH) measured at approx. four months of age is 
an early indicator of puberty (Burns et al. 2013). Scrotal circumference (SC) is related to bull fertility 
and correlated to heifer puberty (Fortes et al. 2012, 2013). Percentage of normal sperm (PNS) is an 
indicator of calf-output (Holroyd et al. 2002).

The application of genomic selection approaches for fertility-related traits is of interest. However, 
the collection of fertility-related phenotypes is expensive and the number of available animals with 
phenotypes and genotypes of any particular breed is too small to generate accurate estimates of breeding 
value. Therefore, the use of a multi-breed reference population is a valid alternative approach. The 
use of multi-breed genomic selection is a current hot topic of research, with some promissing results 
in hard to measure traits, as female fertility (Hayes et al. 2019). 

Here we analyzed data on four traits related to bull fertility, and built a multi-breed reference 
population that included Brahman and Tropical Composite, to estimate GEBVs of crossbred animals. 
It should be noted that the resutls presented here are part of a work in progress towards a multi-breed 
evaluation, and are not final. 

MATERIALS AND METHODS
Animals and phenotypes. There were 2,979 bulls of three breed types: Brahman, Tropical 



88

﻿Beef 1

Composites and crossbreds. They were the progeny of cows from the Beef CRC Lifetime Performance 
Population previously described (Barwick et al. 2009; Johnston et al. 2009). The crossbred bulls were 
the product of Brahman crosses with Tropical Composites. Four indicators of bull fertility (INH, 
SC18, SC24 and PNS) were considered; Descriptive statistics in Table 1. 

SNP genotypes. Two SNP genotyping arrays were used, the BovineSNP50 (Illumina Inc., San 
Diego, CA) and the Indicus 74K array (Neogen). Initial quality control (QC) for genotypes were 
performed within breed and specifically to each SNP chip. After initial QC, SNP were remapped to 
the new bovine reference genome ARS-UCD1.2. Only SNP that were genotyped in both platforms and 
had a call rate greater than 95% were kept for analyses (n = 9,012 SNP). This SNP set was distributed 
across the genome, including the X chromosome.

Statistical Analyses. Principal components analysis on SNP genotypes was conducted using 
PLINK 1.09 (Chang et al, 2015; www.cog-genomics.org/plink/1.9/). Following recent approaches 
of multibreed datasets (Hayes et al. 2019), our GBLUP was performed using the software Golden 
Helix, fitting a mixed linear model with cohort (year and contemporary group) as fixed effect, and the 
covariates of age at measurement and PC1 and PC2 that accounts for the different breed composition. 
Two GBLUP runs were performed for each trait, one using the full dataset and a second setting the 
phenotypes of the Crossbred animals as missing. The accuracy, dispersion and bias were calculated 
using the Method LR (Legarra and Reverter 2018). In brief, bias was computed from the difference 
between the GEBV using the full data minus the GEBV setting the crossbred data as missing. Dispersion 
was computed from the slope of the regression of the GEBV using the full data on the GEBV with 
the crossbred data as missing. Finally, accuracy was computed from the covariance between the two 
GEBV divided by the genetic variance weighted by the average inbreeding coefficient and the average 
relationship between individuals.

Table 1. Descriptive statistics of samples* and phenotypes** used for analysis

PNS Inhibin SC18 SC24
Breed n Mean SD n Mean SD n Mean SD n Mean SD
BRM 1023 0.70 0.22 806 7.41 1.89 1098 26.70 2.71 1098 29.89 2.86
Cross 159 0.60 0.24 161 8.34 2.05 161 30.18 2.96 161 33.07 3.00
TCO 1648 0.72 0.19 1329 7.76 1.88 1719 29.82 2.82 1719 31.43 2.80

*BRM – Brahman, Cross – Crossbred, TCO – Tropical Composite.
** PNS – Percent of normal sperm at 24 month of age, Inhibin – Blood level of inhibin at around 4 months of 
age, SC18 and SC24 scrotal circumference at 18 and 24 months of age. In table, n is the number of animals, 
and SD is the standard deviation.

RESULTS AND DISCUSSION
Using the principal components analysis, we captured the expected sub-structure of our population. 

Three main clusters were observed corresponding to each of the breed types included in the study 
(Figure 1). Also as expected, the Tropical Composite designation showed the highest variation within 
each of the breed types. While PC1 captured the differences between the three main populations 
(Brahman, Tropical Composites and Crossbreeds), it is the combination of PC1 and PC2 that allows 
the separation of substructures within populations. This is particularly the case for the two sub-
populations within the crossbreds (Figure 1).

The estimates of heritability were similar to previously described for Brahman or Tropical Composite 
(Corbet et al. 2013), apart from INH that was lower in both cases (0.42, opposed to 0.72-0.74). SC 
have higher heritabilities in Brahman (~0.75) compared to Tropical Composite (~0.43), and in this 
study was 0.42. PNS on the other hand have higher estimates of heritability in Tropical Composite 
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(0.27) than Brahman (0.15), which was closer to the estimate of this study (0.18). Often it is observed 
variation in heritability estimates that can be mostly attributed to sample variation. As SC is easy to 
measure, relatively inexpensive and highly heritable, it is likely this will remain the reference trait 
for bull fertility. Considering the GEBV, there is no evidence of bias for any of the observed traits. 
Also, there is no evidence of over- or under-dispersion for INH (Table 2). However, the GEBV for 
PNS seems to be over-dispersed, and the ones for SC18 and SC24 seem to be under-dispersed. The 
population accuracies estimated using method LR are strong, especially for SC measurements. 

Figure 1. Principal component analysis on SNP genotypes for 2,979 bulls of three breed types: 
Brahman (blue), Crossbreds (orange) and Tropical Composites (grey)

The correlation between the GEBV estimated using all dataset, including the crossbred data, and 
those estimated setting the crossbred data to missing values varied between traits (Figure 2), from 
moderate (0.35) for PNS to high (0.77) for SC18. 

Table 2. Estimates of heritability, accuracy, bias and dispersion for GEBV of fertility-related 
traits in bulls

Trait Heritability GEBV accuracy Bias Slope
PNS 0.176 0.544 -4.36 x10-10 0.970
Inhibin 0.419 0.685 -3.50 x10-9 1.006
SC18 0.423 0.799 8.15 x10-9 1.033
SC24 0.428 0.811 1.01 x10-8 1.018

* PNS – Percent of normal sperm at 24 month of age, Inhibin – Blood level of inhibin at around 4 months of 
age, SC18 and SC24 – Scrotal circumference at 18 and 24 months of age.

CONCLUSIONS
There are still some improvements that could be done before implementation of multi-breed 

genomic selection for bull fertility-related traits e.g. better understanding how to model different 
populations in different environments, and consistency in trait measurement. The lack of bias and 
the high accuracy of the estimates are encouraging and warrant further research.
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Figure 2. GEBV of Crossbred using all data, including own record (x-axis) and without own 
records (y-axis)
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SUMMARY
Age at puberty has become a key trait in the genetic evaluation of female reproduction traits for 

tropically adapted beef breeds in northern Australia. This study aimed to characterise the trait in 
Australian Hereford seedstock heifers and to determine the degree to which it, and associated traits, 
were under genetic control. Hereford heifers (n = 922) from three seedstock herds were serially 
ultrasound scanned to detect their first corpus luteum (indicative of age at puberty) at 4 - 6 week 
intervals from 10.6 to 13.2 months of age, at which time heifers were synchronised for artificial 
insemination. Results showed that only 52% of heifers were pubertal at synchronisation, and for these 
heifers, age at puberty had a heritability of 0.26. When a penalised record (equal to the maximum 
age at puberty for their contemporary group plus 21 days) was included for heifers which were not 
pubertal into mating, heritability increased to 0.38. For sires with at least 10 progeny, EBVs for age 
at puberty ranged from -42 to 28 days. The ability of heifers to conceive early in their first mating 
season is linked to lifetime reproductive performance. These results suggest that the proportion which 
have reached sexual maturity as they enter their first mating is significantly less than 100% and that 
opportunities exist, if the trait were included in the genetic evaluation for the breed, to monitor and 
apply selection to improve age at puberty in Hereford heifers.

INTRODUCTION
Results from the Co-operative Research Centre for Beef Genetic Technologies’ Northern Breeding 

Project (Beef CRC) showed that age at puberty, identified by serial ultrasound scanning to determine 
date at first ovulation, was heritable in tropically adapted beef genotypes (Johnston et al. 2009). 
These results have been supported by subsequent research in the Repronomics™ project (Johnston 
et al. 2019) (h2 = 0.32 to 0.56). Associated research also demonstrated that lower age at puberty 
was favourably genetically correlated with lifetime reproductive outcomes (rg = -0.29 to -0.40), and 
that selection to improve (reduce) age at puberty would have favourable consequences for lifetime 
reproductive performance (Johnston et al. 2014). Morris et al. (2000) showed moderate heritability 
for age at puberty in Angus heifers when the trait was based on observed first oestrus (h2 = 0.31), 
and a high genetic correlation with first mating pregnancy rate (rg = -0.89). The current study aimed 
to exploit methods developed in the Beef CRC to characterise age at puberty in Hereford heifers, to 
determine the heritability of the trait and its potential to provide a means to improve and monitoring 
female reproduction in the genetic evaluation for the breed. 

MATERIALS AND METHODS
Animals and  management. Heifers used for this study were made available by three Hereford 

seedstock breeders, and represented the entire cohort of females weaned in 2017 and 2018 from each 
herd. Herds were selected for inclusion based on a history of high quality pedigree and performance 
recording, and a willingness to endure the significant imposition associated with serial ultrasound 
scanning required to identify first oestrous. Heifers were managed in accordance with standard practices 
for the three seedstock herds, one of which was located in the Southeast of New South Wales (n = 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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534) and the other two in the New England region (n = 149 and 239). 
Heifers were born over a 2-month spring calving period at the Southern New South Wales property 

and over three months for the New England herds. The animals evaluated for this study were the 
progeny of 99 sires, with 71% from sires with at least 10 progeny, and 20% of heifers from sires used 
in at least two herds. Heifers were weaned at an average of 5.4 months, with the two New England 
properties weaning at 6.6 months and the remaining herd weaning earlier (averaging 4.5 months old). 
Heifers weaned in 2018 were reared under significantly dryer conditions than those in 2017. This 
meant that more supplementary feeding was provided for heifers in 2018, but within herd and year, 
all animals received the same nutritional interventions. This was also the case for routine management 
practices (animals identification and branding, vaccination, parasite control treatments, etc.) as well as 
culling for conformation related traits between weaning and syncronisation for artificial insemination. 
All herds routinely submit data to BREEDPLAN for genetic evaluation. For the heifers involved in 
this study, this included pedigree information, date of birth and weaning weight, and these data were 
extracted from the Hereford Australia Ltd. database for these analyses.

Scanning for ovarian function. Ultrasound scanning to detect first oestrous followed the protocols 
described by Johnston et al. (2009) for tropical beef females in the Beef CRC. Within herd and year, 
scanning was performed by one of three technicians using a Mindray M7Vet real-time ultrasound 
unit equipped with a variable frequency 6LE5Vs intra-rectal transducer, set at 8MHz. The timing 
of first scans to detect the presence of a corpus luteum (CL), was undertaken when managers at 
each location observed the first signs of heat in the heifer cohorts examined for this study (post-
weaning). Subsequent scans were undertaken at 4 - 6 week intervals, until the first progesterone 
based synchronisation treatment occurred in each herd, prior to artificial insemination (into-mating). 
All heifers in the cohort were scanned at post-weaning and at mating synchronization, with interim 
scans performed on heifers which had not displayed a CL. This resulted in the majority of heifers 
scanned three times up to synchronisation, with average number of scans per animal, within herd 
and year, between 2.3 and 2.8. Based on ovarian scanning results, the following traits were defined:
•	 Age at puberty (AP) was a trait in females which displayed a CL prior to mating, calculated 

as the scanning date at which the first CL was detected minus date of birth.
•	 Penalised AP (APP) generated an age at puberty record for heifers which had failed to display 

a corpus luteum prior to mating. APP was calculated for these animals as the maximum AP for 
their contemporary group plus 21 days. For a small number of heifers which failed to display 
a CL prior to mating and were in small contemporary groups (for which the maximum AP 
was based on too few records (N ≤ 3) to be reliable) no APP was analysed (N = 15 heifers).

•	 Pubertal into mating (PUB) was a binary trait which identified heifers which had cycled at 
any time up to mating (1) or not (0).

•	 Antral follicle count (FC) was the total number of follicles greater than 2mm, visible by 
ultrasound examination of both ovaries at the first scan in heifers which did not have a CL.  

Growth and body composition traits. At each scan, records of liveweight weight (LWT), hip 
height (HH) and body condition score (BCS) were collected for each heifer following the protocols 
for growth and body composition traits described by Johnston et al. (2009). P8 fat depth (P8) was 
also measured at each scan using the scanner’s inbuilt callipers, with the exception of the first scan 
for heifers from one herd where the records could not be collected.

Modelling, variance component and EBV estimation. Descriptive statistics were generated 
using PROC MEANS in SAS. Contemporary group information was extracted from the Hereford 
Australia Ltd. database, and was built based on information supplied by participating breeders as 
described by Graser et al. (2005). 

The contemporary group for 200 day weight was used to analyse heifer growth, body composition 
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and the descriptors of ovarian function evaluated for this study. For growth and body composition 
traits, dam age and linear animal age were fitted as covariates. Consistent with the protocols established 
by Johnston et al. (2009) heifer age was modelled for ovarian scanned traits as month of birth nested 
within herd and year. Variance components for each trait were estimated in univariate analyses in 
ASReml (Gilmour et al. 2009), with EBVs for all animals in the three generation pedigree estimated 
as the solution for the random animals effect. For this study genetic parameters for the binary PUB 
trait were estimated on the observed scale.

RESULTS AND DISCUSSION
Growth and body composition traits. Summary statistics, additive variances and heritabilities 

for post-weaning growth and body composition traits are presented in Table 1. On average, heifers 
were 10.6 months of age at their post-weaning scan, with mean ages at first scan consistent across 
herds. Additive variances and heirtabilities for post-weaning LWT and HH were consistent with 
those reported by Donoghue et al. (2018) for Angus and Hereford females prior to their first calving 
(h2 = 0.45 to 0.57). The heritability for post-weaning P8 was lower than that for Hereford females 
prior to their first calving reported for that study (h2 = 0.64), but heritability for BCS was comparable 
(h2 = 0.29). The technicians employed to collect ultrasound data describing ovarian traits were not 
accredited BREEDPLAN carcass scanners, and this may explain the slightly lower than expected 
heiritability for the scanned fat depth trait. 

Table 1. Number of records analysed (N), mean and standard deviation (SD), with additive 
variance (σa

2) and heritability (h2) (and standard error (s.e.)) for post-weaning growth and body 
composition and ovarian scanned traits in Hereford heifers

Traits Units N Mean SD σa
2 h2 s.e.

Post-weaning growth and body composition
AGE Days 922 321.4 27.9 . . .
LWT kg 922 262.9 35.0 460.4 0.55 0.11
HH cm 921 116.7   4.6     6.8 0.49 0.11
P8 mm 837     3.6   1.8     0.6 0.29 0.10

BCS Score (1 – 5) 922     2.8   0.6       0.03 0.20 0.08
Ovarian scanned traits

AP Days 481 365.8 38.3 363.0 0.26 0.13
APP Days 902 396.2 44.3 588.7 0.38 0.10

PUBA 1/0 917      0.52     0.50       0.05 0.36 0.11
FC Count 729   23.3   7.1   21.1 0.42 0.13

A Variance components for PUB estimated on the observed scale.

Ovarian scanned traits. Summary statistics, additive variances and heritabilities for ovarian 
scanned traits are also presented in Table 1. A key result from this work was the proportion of heifers 
which were pubertal into mating (PUB = 0.52). This reinforces the need to investigate the genetics 
of puberty traits in temperate breeds and for subsequent analyses, which will examine relationships 
of the trait with first mating outcomes. The phenotypic and additive variance for APP  (1549.2 and 
588.7 days respectively) were substantially lower than those reported by Johnston et al. (2009) for 
troppically adapted heifers, which was consistent with the much shorter scanning period in temperate 
breeds where maiden matings occur approximately 12 months earlier. The moderate heritability 
estimated for APP (h2 = 0.38) suggested that opportunities exist to improve the trait by selction in 
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the Hereford breed. Both AP and APP were under significantly greater genetic control than days to 
calving (h2 ~ 0.05) which is currently the key descriptor of female reproductive performance in the 
BREEDPLAN genetic evaluation for the breed. 

For sires with 10 or more progeny, EBVs for APP ranged from -42 to 28 days. The heifers available 
for this study were a reasonably small sample of the breed, but these results suggest that sire selection 
could impact age at puberty in the resulting progeny by at least 35 days. With only 52% of females 
pubertal into their first mating, and mating periods as low as 2 months in commercial beef breeding 
herds in southern Australia, this could have implications for reproductive outcomes for naturally 
mated maiden heifers.  

Mean and standard deviation for post-weaning FC were consistent with those reported by Walsh 
et al. (2014) for dairy heifers in the US and Ireland, with heritabilities also comparable (h2 = 0.25 
and 0.31 respectively). FC was recorded in this project to investigate its genetic associations with 
economically important female reproduction traits and this will be the subject of future analyses.

CONCLUSIONS 
This study presents an initial investigation of the genetics of age at puberty and associated traits in 

Australian Hereford seedstock heifers. Results showed that there are opportunities to improve (reduce) 
age at puberty by selection in the breed and, by including the trait in the breed’s genetic evaluation, 
to monitor this aspect of female reproduction as selection is applied to improve other economically 
important traits. The proportion of heifers which were not pubertal as they entered their first mating 
was a key result of this study. The increasing prevalence of artificial insemination and the associated 
treatments to synchronise (and possibly induce) first oestrous, suggest that genetic and environmental 
factors which impact a heifer’s capacity to conceive early in their first mating season may warrant 
monitoring and inclusion in the genetic evaluation for temperate beef breeds. It is acknowledged 
that serial ultrasound scanning to detect first oestrous is an expensive and labour intensive operation, 
making it a candidate for evaluation in intensively recorded reference populations, and for further 
research to economise the recording regime.
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SUMMARY
This paper reports the heritability estimates for mature body composition traits in Australian Angus 

cattle and the interaction with the maternal component of weaning weight. These traits include mature 
body weight (MCW), mature cow fat score (MBC), mature cow height (MCH), weaning weight 
(WWT) and the maternal component of weaning weight (MILK) with industry data obtained from 
breeders registered with Angus Australia. Heritability for MCW, MBC, MCH, WWT and MILK was 
estimated to be 0.44, 0.49, 0.15 and 0.13, respectively. MCW had a moderate genetic correlation with 
MBC of 0.61 and 0.46 for MCH. MBC and MCH had a genetic correlation of -0.06 but had a large 
standard error due to low cross-over of cows with phenotypes for the two traits. MILK had a negative 
genetic correlation with MBC of -0.48 and small positive genetic correlations of 0.12 and 0.23 with 
MCW and MCH, respectively. These results indicate that selection for mature body composition traits 
is possible but care should be taken when considering interactions with the maternal trait MILK. 

INTRODUCTION
Mature body composition traits of mature beef cows have has not been as well measured in 

seedstock populations as compared to corresponding traits at younger ages (Donoghue et al. 2018). 
However, a high percentage of female cattle in a self-replacing herd will spend up to significantly 
more time as a mature animal compared to their first two years. Australian seedstock beef breeders 
have made significant gains in production traits where traits can be easily measured in large and 
complete cohorts in the first two years of age (Walmsley et al. 2018). Given the challenges of mea-
suring traits on mature cows, the estimation of breeding values in routine analysis for mature body 
composition traits has been challenging. Mature cow body composition traits are an important aspect 
for self-replacing herds to focus on in their breeding objective. Traits such as mature body condition 
score (MBC), mature weight (MCW), mature hip height (MCH) are associated with feed maintenance 
costs and reproduction rates (Walmsley et al., 2018). Previous studies in Angus research populations 
in Australia and United States of America have estimated heritability from MBCS, MCW and MCH to 
be 0.11-0.21, 0.40-0.71, and 0.62-0.83, respectively (Choy et al. 2002; Decker et al. 2012; Donoghue 
et al. 2018). Genetic correlations of mature body composition traits has not been well investigated in 
beef but dairy cattle analysis suggest a negative genetic correlation of 0.50 between milk yield and 
MBC (Berry et al. 2003).

The aim of this paper is to estimate genetic and residual variation and correlations of the three 
body composition traits above and the maternal component of weaning weight using industry data 
from the Angus Australia database.

METHODS
Animals. Industry data from animals in the Angus Australia database born in 2003 and after were 

included in the analysis. All males were excluded for MCW, MBC and MCH. For individuals to be 
included for these traits, there needed to be at least 10 females in a contemporary group. Records for 
WWT to be included were the corresponding progeny measured at the same point of MCW or MBC 
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measurement. Contemporary grouping for all traits were created based on Graser et al. (2005) where 
the concatenation of herd, day of measurement and breeder-defined management group was used. 
Females were excluded if the first measurement for any trait was older than 5 years of age. Table 1 
displays the number of records for traits and pairs of traits. The number of contemporary groups for 
each trait is found in Table 1.

Measurements. Weaning weight was measured between 60 and 300 days of age. Both MBC and 
MCW were measured within two weeks of weaning. The minimum age for MBC and MCW was 830 
days of age while MCH was 730 days of age. All traits were measured following Angus Australia 
measuring protocols.

Statistical analysis. Single measurements were used for all traits. Records more than 4 stan-
dard deviations from the database mean were identified as outliers and removed from the analysis. 
Contemporary group was fitted as described above and age at measurement was fitted for all traits. 
Age of calf was fitted for MCW and MBC, while age of dam was fitted for WWT. The maternal 
component for weaning weight was fitted to estimate the maternal affect (MILK). Genetic parameters 
and predicted means were estimated using an animal model in WOMBAT (Meyer 2007). Genetic 
covariance was not estimated between WWT direct and maternal component of WWT (MILK). A 
numerator relationship matrix based on a four generation pedigree was used. Genetic and phenotypic 
parameters were estimated from a multivariate analyses.

Table 1: Means, standard deviations, minimums, maximums and number of contemporary 
groups for each trait

Records Mean SD Min. Max. Cont. 
Groups

WWT 56409 237.5 52.0 56 445 2892
MCW 31455 538.2 86.8 316 966 1044
MBC 4915 3.1 0.75 1 6 188
MCH 2952 133.1 5.16 117 155 116

RESULTS AND DISCUSSION
Table 2 contains summary statistics for mature body composition traits. All traits were heritable 

with low standard errors which suggests that selection for genetic progress can be made. Heritabilities 
from the multivariate analysis matched univariate analysis with small and insignificant differences 
between standard errors.

Heritability for MCW was 0.43. This is similar to Johnston et al. (1996) and Choy et al. (2002) 
but lower than Decker et al. (2012) and Donoghue et al. (2018). Heritability for MCH was 0.44 
which was lower compared to most other Angus genetic parameter studies in Australia (Donoghue et 
al. 2018) and the USA (Choy et al. 2002; Decker et al. 2012) which estimated heritabilities ranging 
from (0.58-0.82). Heritability for MBC was 0.16 and was similar to other Angus genetic parameter 
studies (Choy et al. 2002; Donoghue et al. 2018). Results from this study are in agreement with past 
published studies that there is the potential to select for mature body composition traits. Weaning 
weight and its maternal component was 0.18 and 0.13, respectively. This is in agreement with Meyer’s 
(1992) study where covariance between direct and maternal effect is not estimated. 
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Table 2: Phenotypic variance and heritabilites (with standard errors) for multivariate analysis

σp h2

WWT 90.5 0.18 (0.01)
MILK 72.8 0.13 (0.01)
MCW 901 0.43 (0.02) 
MBC 0.043 0.16 (0.03)
MCH 6.15 0.44 (0.05)

Table 3: Genetic correlation above diagonal and phenotypic below diagonal from multivariate 
analysis with (standard errors)

WWT MILK MCW MBC MCH
WWT - - 0.49 (0.03) -0.09 (0.11) 0.46 (0.09)
MILK - - 0.12 (0.03) -0.48 (0.09) 0.23 (0.08)
MCW 0.44 (0.01) 0.41 (0.01) - 0.62 (0.07) 0.47 (0.08)
MBC 0.15 (0.02) 0.10 (0.02) 0.44 (0.01) - -0.01 (0.16)
MCH 0.31 (0.03) 0.31 (0.00) 0.45 (0.01) 0.07 (0.03) -

Phenotypic and genetic correlations and their associated standard errors between mature body 
composition traits and weaning weight are reported in Table 3. MCW was moderately genetically 
correlated with MBC (0.62), MCH (0.47) and WWT (0.49). These genetic correlations are lower when 
compared to previous literature. Lower heritabilities and genetic correlations in this study could be 
caused by using industry data where culling takes place. The other cause may be due to using single 
measurement only where permanent environment effect is not accounted for (Kaps et al. 1999). Fur-
thermore we did not fit sire-by-herd. Repeated measures to account for permanent environment effects 
as well as fitting sire-by-herd should give better genetic estimates. The genetic correlation between 
MBC and MCW was close to zero which corresponds to previous studies (Donoghue et al. 2018). 
Moving forward, Angus Australia members will need to make sure they are measuring both MBC 
and MCH on the same animals to provide more accurate genetic correlations between the two traits.

The genetic correlation between the maternal component of WWT (MILK) and MBC (which was 
measured at weaning) suggest that high milking cows will genetically lower body condition score 
animals with a genetic correlation of -0.48 (Table 3). However, this correlation could be broken with 
body condition score measured at weaning and selection for higher MILK and higher MBC possible. 
This genetic correlation is in agreement to Berry et al.’s (2003) study in milking cattle where they 
estimated a genetic correlation of -0.50 between milk yield and body condition score. The phenotypic 
correlation between these two traits is 0.10. This suggests Angus breeders are managing body condition 
score to make their performance recorded animals are in good body condition when raising a calf. 

We did not estimate genetic covariance of WWT and MILK because our model did not use repeated 
records and we could not fit permanent environment effects as well as sire-by-herd effects. Bijma 
(2006) and Meyer (1992) explain the difficulties of estimating covariance of direct and maternal 
components of traits and is the next step for research with this study. 

Mature body condition and MCW were measured at the weaning of their calves or within two 
weeks of weaning. The measuring of weight helps with the maternal 200 day weight EBVs of their 
calves. However, studies suggest that MBC are different traits at different stages of lactation. Dono-



98

﻿Beef 1

ghue et al. (2018) suggested that weaning MBC and pre-calving MBC in Australian Angus cattle 
while Wolcott et al. 2013 demonstrated that joining and weaning MBC were also two different traits 
in Bos Indicus cattle. 

Investigation of mature body composition traits at joining and the genetic relationships with 
maternal productivity traits such as MILK and fertility would be a logical next step.

CONCLUSION
Genetic variation in mature composition traits is present in the Angus Australia database, con-

firming there is potential to select for more efficient females in a self-replacing herd. More cows in 
the database need phenotypes for both body condition (fat) score and mature hip height to be able to 
calculate genetic correlations with confidence. Including some early in life measurements will give 
these mature body composition breeding values some context. 
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SUMMARY
Industry data for traits included in the new multi-trait genetic evaluation for reproductive traits 

provided by Sheep Genetics were used to investigate variation due to sub-populations (genetic groups) 
and due to outcross ewe genotypes in maternal sheep breeds. Substantial variation due to genetic 
groups (gg2: typically 11-30% of the phenotypic variance) for traits reflecting development (eg weight, 
condition score, muscle depth) were not accompanied by comparable variation for reproductive traits 
(gg2: 0-8%). Variation due to outcross ewe genotypes ranged from 0 to 8% across traits, being highest 
for adult ewe weight (8%) and yearling conception (6%) traits, which are expected to be affected by 
heterosis. Accommodating these sources of variation appropriately may be important for the genetic 
evaluation of data affected by admixture of populations.

INTRODUCTION
Two key issues for genetic evaluation of reproductive traits for maternal sheep breeds (referred 

to as the MATL evaluation) are the extent of variation between sub-populations described by genetic 
groups, as well as fair comparison of ‘homebred’ ewes with outcrossed contemporaries. The diversity 
of breeds and breed composition within the MATL evaluation is increasing. Breeds occur in sub-
populations (eg. Australia vs New Zealand) and have also contributed to outcrossing and composite 
populations, increasing diversity of breed composition and expression of heterosis. Further, outside 
introductions can be accompanied by absence of pedigree and therefore creation of additional genetic 
groups. Preliminary investigation of breed composition demonstrated considerable variability in the 
genetic architecture of individual flocks (eg. composite vs pure-breeding) and the breed choice of 
outcross or introduced sires. Therefore, a general strategy to accommodate variation in the effects 
of heterosis is required. In this paper, we provide estimates of genetic parameters for traits included 
in the new single-step, multi-breed analyses used to produce breeding values for ewe reproductive 
performance traits (Bunter et al. 2019), including variances for genetic group effects and flock-
outcross ewe genotypes.

MATERIALS AND METHODS
Data included in these analyses commenced in 2000, with pedigree and genetic groups extended 

back to 1998. Briefly, component traits were defined annually for conception of ewes joined (CON: 
0=failed to conceive, 1= conceived) along with litter size (LS: 1 to n lambs born) and ewe rearing 
ability (ERA: lambs surviving/lambs born) for pregnant ewes. Pregnancy scan data was a secondary 
data source to define CON or LS when lambs were not recorded individually. Additional traits included 
maternal behaviour score of the ewe (MBS: scored from 1: good to 5: poor) as well as pre-joining 
weight (WT) and condition score (CS) recorded within the 30 days prior to joining. Data describing 
development of the young ewes and/or their male relatives was obtained for the subset of flocks 
included in reproductive analyses and included scanned post-weaning carcase fat (PFAT) and eye 
muscle depth (PEMD), along with post-weaning (PSC) or yearling (YSC) scrotal circumferences.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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Based on previous analyses (Bunter and Brown 2013), yearling and adult performances of CON, 
LS and ERA were treated as separate traits. Models for reproductive traits accounted for the systematic 
effects of CG + age, where CG refers to joining (CON, LS) or lambing (ERA) contemporary groups 
(based on site-year-timegp-mgp details) and age refers to age at recording in years (adult ewes). Time 
group (timegp) was assigned based on lambing dates, to accommodate evidence of gaps between 
joining events, and management groups (mgp) were as specified by breeders. Contemporary groups 
for reproductive traits were further refined to include: 1) month of birth and dam age group (yearling, 
adult, unknown) in the CG for yearling traits, and 2) previous status of the ewe (no lamb, lambed 
and lost or weaned, or unknown) in the CG for 2-year-old traits, enabling flock specific differences 
with respect to these factors. Additional model terms included birth-rearing type group for yearling 
but not adult reproductive traits and litter size group (1, 2 and 3 or more) at birth for ERA, since 
litter size alters the rearing challenge for ewes (Bunter et al. 2018). For the remaining traits (PFAT, 
PEMD, PSC and YSC), contemporary groups were as previously defined for these traits (Brown et 
al. 2007), and additional model terms included regressions on age, but not weight, where P<0.05.

Specific model comparisons were made using univariate analyses. Trait dependent base models 
(model A) included animal genetic effects for all traits, permanent environmental effect of the dam 
(subset of traits), and permanent environmental effects to accommodate repeated records for adult 
ewes. Additional random effects subsequently added to base models included genetic groups (GG), 
defined as per Swan et al. (2016), and a flock×outcross term intended to represent a pure- or crossbred 
(PC) genotype for the individual ewe. Genetic groups were as assigned for the genetic evaluation of 
maternal breeds, which are currently kept constant across all relevant analyses and trait sets. Ewes 
were considered an outcross if their sire was identified by a different flock code; different types of 
outcrosses (ie sire breeds) were not distinguished. The full model (model GGPC) was only fitted for 
traits where each of these terms significantly (P<0.05) improved model fit.

RESULTS AND DISCUSSION
Estimates of heritabilities for early in life development traits (PFAT, PEMD, YWT, YCS) and 

scrotal measures (PSC, YSC) were generally consistent with expectation and are not discussed 
further. Model comparisons for pre-joining weight and condition score or maternal behaviour score 
are currently hindered by relatively low record numbers, but heritabilities were moderate.

Yearling vs adult expressions of reproductive traits. The order of magnitude for heritability 
estimates was YERA<YLS<YCON for yearling ewes (Table 1) and CON<ERA<LS for adult ewes 
(Table 2). Heritability for ERA was consistently lower than for litter size, reflecting an increase in 
environmental contributions to ERA. The relatively higher heritabilities for YCON vs CON and LS 
vs YLS support the strong influence of age at puberty, which is a moderately heritable trait, on YCON 
for yearling but not adult ewes, and an increased expression of genetic differences for litter size in 
adult compared to yearling ewes.

Genetic group effects. Pedigree is generally well known for current animals included in MATL 
analyses. Therefore, genetic groups predominantly represent within flock base populations and 
missing historical pedigree. Estimates of variances due to genetic group effects for early development 
traits ranged from negligible (PCF) to substantial (YWT) and the ratio of genetic group to additive 
(rgga) variance increased in magnitude from 0.20 (PCF)<YCS<PEMD< 3.96 (YWT). Considerable 
variance due to genetic groups was also evident for AWT and CS of adult ewes (Table 2), but rgga 
were lower (<1.5) than for corresponding yearling traits. With respect to reproductive traits, the range 
in rgga from GG models was much lower (0.06 to 1.83) across both yearling and adult ewes, and this 
ratio was largest when flock-outcross variances were present and not accounted for (Model GG vs 
GGPC). This result implies that the ratio of genetic group variance (gg2) is potentially inflated due 
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to the effects of multi-breed outcrossing. The ratio gg2 was substantial for YCON but not CON, but 
generally negligible for all other reproductive traits. The ratios of genetic group to additive variances 
were somewhat similar to those reported by Swan et al. (2016) within trait groups.

Table 1. Parameter estimates for post-weaning fat (PCF), muscle depth (PEMD), post-weaning 
(PSC) and yearling (YSC) scrotal circumference, yearling conception (YCON), litter size (YLS) 
and ewe rearing ability (YERA), along with pre-joining weight (PWT) and condition score 
(PCS). The number of records is presented in brackets

Variances Ratios
Trait Model σ2

a σ2
gg σ2

pc σ2
ped σ2

e σ2
p h2 gg2 pc2 ped2 rgga

PCF A 0.135 - - 0.020 0.460 0.614 0.22 - - 0.03 -
(302747) APC 0.135 - 0.005 0.020 0.466 0.625 0.22 - 0.01 0.03 -

GG 0.134 0.027 - 0.020 0.467 0.647 0.22 0.04 - - 0.20
PEMD A 1.41 - - 0.31 4.49 6.21 0.23 - - 0.05 -
(301908) APC 1.37 - 0.18 0.32 4.50 6.36 0.22 - 0.03 0.05 -

GG 1.31 2.66 - 0.32 4.54 8.84 0.21 0.30 - 0.05 2.03
GGPC 1.32 2.44 0.11 0.31 4.52 8.71 0.21 0.28 0.02 0.05 1.85

PSC A 1.60 - - 0.31 3.59 5.50 0.29 - - 0.06 -
(69400) APC 1.60 - 0.15 0.30 3.58 5.50 0.28 - 0.03 0.05 -

GG 1.59 0.001 - 0.31 3.59 5.49 0.29 0.00 - 0.06 0
YSC A 1.19 - - 0.14 2.45 3.79 0.31 - - 0.04 -
(42637) APC 1.16 - 0.07 0.15 2.46 3.85 0.30 - 0.02 0.04 -

GG 1.16 0.64 - 0.14 2.46 4.41 0.31 0.14 - 0.04 0.55
GGPC 1.15 0.49 0.05 0.15 2.47 4.30 0.30 0.11 0.01 0.04 0.42

YCON A 0.021 - - - 0.151 0.172 0.12 - - -
(24826) APC 0.021 - 0.010 - 0.151 0.181 0.12 0.05 - -

GG 0.018 0.033 - - 0.153 0.204 0.10 0.16 - - 1.83
GGPC 0.016 0.011 0.011 - 0.153 0.191 0.09 0.06 0.06 - 0.69

YLS A 0.016 - - 0.233 0.249 0.06 - - - -
(58068) APC 0.016 - 0.001 - 0.233 0.249 0.06 - 0.00 - -

GG 0.016 0.001 - 0.233 0.250 0.06 0.00 - 0.06
YERA A 0.005 - - 0.123 0.128 0.04 - -
(41955) APC 0.005 - 0.001 - 0.123 0.128 0.04 - 0.00 - -

GG 0.005 0.003 - 0.123 0.130 0.04 0.02 - 0.60
YWT A 10.4 - - 4.17 9.44 24.0 0.43 - - 0.17 -
(4515) APC FTC - - - - - - - - - -

GG 5.66 22.4 - 5.01 11.8 44.9 0.25 0.50 - 0.22 3.96
YCS A 0.028 - - 0.001 0.149 0.178 0.16 - - 0.01 -
(2803) APC 0.028 - 0.001 0.001 0.148 0.178 0.16 - 0.01 0.01 -

GG 0.022 0.034 - 0.001 0.151 0.207 0.11 0.16 - 0.00 1.70
Variances due to additive genetic (σ2

a), genetic group (σ2
gg), flock-outcross (σ2

pc), and maternal permanent 
environment (σ2

ped) effects, along with the residual (σ2
e) and phenotypic variances (σ2

p). Variance ratios are 
heritabilities (h2: σ2

a / σ
2

p), variance due to genetic groups (gg2: σ2
gg / σ

2
p), flock-outcross (pc2: σ2

pc / σ
2

p) or 
permanent environmental effects of the dam (ped2: σ2

ped / σ
2

p), excluding σ2
gg from σ2

p for ratios not involving 
σ2

gg in GG and GGPC models, and rgga= σ2
gg / σ

2
a; FTC: failed to converge.

Flock-outcross effects. There is likely little advantage for accuracy of selection in correcting for 
differences in retained heterosis within stabilised composites. However, fair comparison of outcross 
with homebred ewes is warranted. Ratios of variances due to flock-outcross terms (pc2) were largest 
for fertility (YCON: 6%, CON: 3%) and ewe weight traits (AWT: 8%). For comparison, heterosis 
for fertility (17-21%), lamb survival (2-8%) but not litter size, was previously observed in structured 
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data involving divergent maternal breeds by Fogarty et al. (1984). The absence of substantial ratios 
for pc2 for many traits implies that across the wide range of flocks and crosses, alternative ways to 
model heterosis may be required.

Table 2. Parameter estimates for adult conception (CON), litter size (LS) and ewe rearing ability 
(ERA), along with maternal behaviour score (MBS), pre-joining weight (WT) and condition 
score (CS). The number of records is presented in brackets

Variances Ratios
Trait Model σ2

a σ2
pe σ2

gg σ2
pc σ2

ped σ2
e σ2

p h2 gg2 pc2 rgga
CON A 0.002 0.004 - - - 0.073 0.079 0.03 - -
(144803) APC 0.002 0.004 - 0.002 - 0.073 0.081 0.03 - 0.03 -

GG 0.002 0.004 0.001 - - 0.073 0.080 0.03 0.01 - 0.50
GGPC 0.002 0.004 0.001 0.002 - 0.073 0.082 0.02 0.01 0.03 0.53

LS A 0.019 0.012 - - - 0.304 0.335 0.06 - -
(685962) APC 0.019 0.012 - 0.002 - 0.303 0.336 0.06 - 0.01 -

GG 0.018 0.013 0.015 - - 0.304 0.350 0.06 0.04 - 0.83
GGPC 0.018 0.013 0.018 0.002 - 0.304 0.354 0.05 0.05 0.01 1.00

ERA A 0.001 0.003 - - - 0.081 0.085 0.02 - - -
(536320) APC 0.001 0.003 - 0.001 - 0.081 0.086 0.01 - 0.01 -

GG 0.001 0.003 0.001 - - 0.081 0.086 0.01 0.01 - 1.00
MBS A 0.101 0.074 - - - 0.501 0.676 0.15 - - -
(10293) APC 0.101 0.074 - 0.001 - 0.501 0.677 0.15 - 0.00 -

GG 0.100 0.075 0.021 - - 0.501 0.696 0.15 0.03 - 0.21
AWT A 18.2 3.04 - - 2.53 25.7 49.5 0.37 - - -
(10709) APC 18.1 2.99 - 11.2 2.41 25.6 60.3 0.30 - 0.19 -

GG 16.7 3.72 21.0 - 2.57 25.6 69.6 0.34 0.30 - 1.25
GGPC 16.6 3.68 18.8 11.1 2.48 25.6 78.3 0.28 0.24 0.08 1.13

CS A 0.043 0.017 - - 0.002 0.177 0.239 0.18 - - -
(14959) APC 0.043 0.017 - 0.001 0.002 0.177 0.240 0.18 - 0.00 -

GG 0.041 0.018 0.028 - 0.002 0.177 0.266 0.17 0.11 - 0.68
Variance due to repeated records (σ2

pe); accompanying ratios ranged between 0.03 and 0.11. All other abbreviations 
as per Table 1. Range for ped2: 0.01 to 0.05.

CONCLUSIONS
Admixture of populations within data used by Sheep genetics for MATL breed analyses requires 

strategies to accommodate variance due to genetic groups and outcrossing within flocks. For reproductive 
traits without a long and effective selection history within flocks, variances due to genetic groups 
were generally lower than or similar to estimates of additive variances. Variation in performance due 
to outcrossing explained relatively little variation for all traits except AWT and YCON. Alternative 
ways to model heterosis may be required.
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SUMMARY
The underlying causal relationship between traits associated with energy reserves and yearling 

reproduction is often a cause of conjecture within the sheep industry in part due to anecdotal evidence 
often mistaking phenotypic associations with genetic. The use of graphical models to disentangle the 
underlying causal relationships between traits associated with energy reserves and yearling repro-
duction showed that selection for sires with high post-weaning fat and muscle will have little impact 
on the reproductive performance of the resulting progeny as yearling dams.

INTRODUCTION 
Body weight and traits associated with body composition and energy reserves (fat and muscle) are 

important components of breeding objectives in sheep. These traits influence the amount of saleable 
meat and therefore have a direct economic value to the production system. However, the economic 
value placed on fat to produce a leaner carcase is at odds with the desired direction of change in fat 
as an indirect selection criterion for other traits, primarily reproductive performance and maternal 
efficiency. Previous studies have illustrated that body weight and body composition traits are asso-
ciated with reproductive performance. The relationship between these traits and reproduction can be 
moderate at the phenotypic level but is often lower at the genetic level (Walkom et al. 2014; Walkom 
and Brown 2016).

Mixed effects models (often solved using REML) have been commonly used to estimate the asso-
ciations between the traits at both a phenotypic and genetic level. However, such estimates indicate 
a correlation between traits rather than discover or define underlying causality. An alternative way to 
model the association between multiple traits is using graphical models (Valente et al. 2011). Graphical 
models, such as structural equation models and Bayesian networks including Incremental Association 
Markov Blankets (IAMB) (Tsamardinos et al. 2003), attempt to model all possible pathways in which 
two traits are associated. Hence, they provide insight into possible causal relationships that may exist, 
rather than association indicated by correlation alone (Valente et al. 2011). In this study, we use a 
graphical model to explore the underlying causal relationship between traits associated with energy 
reserves and yearling reproduction at both the phenotypic and genetic levels.

MATERIALS AND METHODS
Data used for the study were provided by maternal sheep breeders to Sheep Genetics as part of the 

routine LAMBPLAN genetic evaluation (Brown et al. 2007). The analysis focussed on six core traits: 
post-weaning weight (PWT), post-weaning ultrasound fat (PCF*) and eye muscle depth (PEMD*), 
yearling conception (YCON), yearling number of lambs born (YNLB) and yearling number of lambs 
weaned (YNLW) (Table 1). 
Statistical Analysis. For each trait phenotypic, residual and genetic variances were estimated from 
univariate animal models. A series of bivariate analyses where then used to estimate correlations 
between traits. The initial genetic analyses were conducted using ASReml (Gilmour et al. 2009) 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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using a pedigree 22 generations deep and containing 674,028 animals. The model fitted to the 
post-weaning traits had fixed effects of contemporary group (as per Brown and Swan 2016), birth 
and rearing type group (SS, MS, MM), dam age (years), and linear and quadratic age terms. Unlike 
the model for standard Sheep Genetics traits, weight was not fitted as a covariate for the scan traits 
(represented by *). The permanent environment of the dam was also fitted as a random effect. Year-
ling reproduction traits were adjusted for a contemporary group, which was formed based on site, 
flock, year grouping and developmental factors as discussed by Bunter et al. (these proceedings).

 
Table 1. Summary of records available and genetic parameters from a univariate animal model 
for maternal sheep breeds. Phenotypic variance (σ2

p), direct additive variance (σ2
a), maternal 

permanent environment variance (σ2
c), residual variance (σ2

e) and heritability (h2)

Trait Records Mean SD σ2
p σ2

a σ2
c σ2

e h2

PWT 279,872 45.70 8.98 25.1 5.18 2.27 17.63 0.29 ± 0.01
PCF* 282,251 3.20 1.31 0.61 0.13 0.02 0.46 0.27 ± 0.01
PEMD* 263,555 26.70 4.14 6.20 1.42 0.32 4.45 0.32 ± 0.01
YCON 68,669 0.90 0.35 0.06 0.01 - 0.06 0.08 ± 0.01
YNLB 68,085 1.20 0.70 0.33 0.02 - 0.31 0.07 ± 0.01
YNLW 51,496 0.90 0.72 0.37 0.02 - 0.35 0.05 ± 0.01

Graphical Modelling. A subset of the data were used in the graphical model analyses, restricted 
to animals with a phenotype for all 6 traits (20,093 animals). For the ‘genetic’ graphical model sires 
with single trait breeding values, calculated from the univariate analysis, for all 6 traits were used 
(2,261 sires). The graphic models in Figures 1 and 2 provide a graphical representation of Bayesian 
networks at the phenotypic and genetic (sire) levels, respectively, and were developed using the bnlearn 
package implemented in R (Scutari 2010). The networks were estimated using a constraint-based 
structure learning algorithm based on the Markov blanket detection algorithm, which is based on a 
two-phase selection scheme (a forward selection followed by an attempt to remove false positives) 
(IAMB, Tsamardinos et al. 2003). The need for every animal to have an observation for all traits 
resulted in the use of YNLB and YNLW instead of the component traits as per Bunter et al. (these 
proceedings). The probability of the connections (strength & direction) between the trait nodes was 
estimated using bootstrap sampling with the IAMB learning algorithm (Friedman et al. 1999). 

RESULTS AND DISCUSSION
Phenotypic association. The phenotypic correlations from the bivariate analysis are shown in 

Table 2. Moderate to strong phenotypic correlations exist between the post weaning traits (PWT, PCF*, 
PEMD*) and between the reproduction traits (YCON, YNLB, YNLW). However, the correlations 
between the two trait groups were weak.

The graphical model based on the phenotypic associations, using raw phenotypes, an indication 
of the observed variation, is represented in Figure 1. PCF* has a causal effect on PWT. Thus, changes 
in PCF* will cause a change in the PWT, but changes in PWT can occur without a responding change 
in PCF*. The relationship for PCF* on PEMD* is also causative, with PCF* having both a direct and 
indirect association via PWT on PEMD*. The graphical model identifies no direct causative effect 
of PCF* or PEMD* on the yearling reproduction traits. The graphical model shows that once you 
condition on PWT (remove variation associated with PWT), changes in PCF* or PEMD* had no 
impact on yearling reproduction.
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Table 2. Estimates of phenotypic (above diagonal) and genetic correlations (below diagonal) 
between body composition and yearling reproduction traits

 
PWT PCF* PEMD* YCON YNLB YNLW

PWT 0.48 ± 0.01 0.63 ± 0.01 0.07 ± 0.01 0.11 ± 0.01 0.09 ± 0.01
PCF* 0.42 ± 0.01 0.49 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.04 ± 0.01
PEMD* 0.58 ± 0.01 0.51 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 0.07 ± 0.01
YCON 0.04 ± 0.04 0.09 ± 0.04 0.06 ± 0.04 0.60 ± 0.01 0.43 ± 0.01
YNLB 0.06 ± 0.04 0.07 ± 0.04 -0.03 ± 0.04 0.69 ± 0.03 0.64 ± 0.01
YNLW 0.17 ± 0.06 0.09 ± 0.06 0.08 ± 0.05 0.70 ± 0.05 0.78 ± 0.04

The ability to achieve conception (YCON) has a causal effect on values for NLB and NLW, as 
expected (Figure 1). The relationship from YCON and YNLW to PWT indicates that there is a phenotypic 
association between these traits. However, the direction of the relationship shows that the mechanisms 
behind increasing fertility and number of lambs weaned is associated with heavier PWT but increasing 
PWT will not necessarily cause a response in YCON or YNLW. The causative relationship of PWT on 
YNLB suggests increased weight, possibly as an indicator of maturity, is leading to increased litter sizes.

Figure 1. Graphical model of the phenotypic relationship between body composition and year-
ling reproduction. Size of the effect in bold with the probability of the relationship and then 
direction of causation using bootstrap techniques shown in parentheses

Genetic Association. The genetic correlations between the post weaning traits and the reproduction 
traits were weak in maternal breeds (Table 2), which relative to other breeds (eg. Merino) are heavier and 
fatter at young ages. This suggests that genetic selection for post-weaning body composition is likely to 
have a limited impact on yearling reproduction. The graphical model of the genetic association between 
the traits (Figure 2) is very different to Figure 1, indicating that the relationships are different at the 
genetic level. As observed in the phenotypic model (Figure 1) the association between the post-weaning 
traits remains strong but the causative direction between the traits could not be determined. A causative 
association between PWT and YNLW was detected and whilst the association was highly probable, the 
observed effect was very small, with a 1 kg increase in the sires’s PWT breeding value (EBV) associated 
with an increase of only 0.002 in the sire’s YNLW breeding value. An indirect association, via PWT, 
between PCF* and NLW would only see an extra 0.000128 lambs weaned per ewe joined for every 
extra (genetic) mm of PCF*. Variation in genetic merit for post-weaning traits is largely independent 
of genes which affect ovulation rate, litter size or lamb survival (Bunter et al., these proceedings). The 
causative nature of YNLB and YCON on YNLW also means that the association between post-weaning 
traits and YNLW is due to the litter survival component of YNLW and not the variation associated with 
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fertility or litter size. This may be related to known associations between lamb birth weight (which 
affects survival) and post-weaning development traits (Bunter et al., these proceedings).

Figure 2. Graphical model of the genetic (sire breeding values) relationship between body 
composition and yearling reproduction. Size of the effect in bold with the probability of the 
relationship and then direction of causation using bootstrap techniques shown in parentheses

CONCLUSIONS
This study shows that modelling the relationship between body composition and yearling reproduc-

tion can be complex and not simple to interpret and the association between traits, and the causative 
associations between the traits, are strongly associated with the ability to disentangle the environmental 
and genetic components. In both phenotypic and genetic graphical models the effect of PCF* and 
PEMD* appears to be moderated through PWT. As has been shown from the genetic correlations and 
the graphical modelling, selection for higher PCF* and PEMD* sires will have little direct genetic 
impact on the reproductive performance of the resulting progeny as yearling dams, although it may 
influence the ease with which target weights are met pre-joining.
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SUMMARY
Univariate and bivariate linear models via Restricted Maximum Likelihood (ASReml) were used 

to estimate heritability, phenotypic and genetic correlation for growth traits measured at birth (BW), 
weaning (WW) around 60 days, 90 days (W90), 120 days (W120) and 150 days (W150) in Hampshire 
sheep raised in Mexico. From 2005 to 2009 a total of 1,133 individual records of lambs born on 10 
farms from 612 ewes and 63 sires were analysed. Direct heritability estimates for BW, WW, W90, 
W120 and W150 were 0.38±0.11, 0.15±0.08, 0.17±0.09, 0.18±0.07 and 0.14±0.06, respectively. All 
direct and maternal permanent environmental effect correlations were positive for BM, WW, W90, 
W120 and W150. The phenotypic correlations between all traits were positive and ranged from 0.29 
to 0.96. The genetic correlations among growth traits were positive ranging from 0.35 to 0.94. The 
genetic parameter estimates presented here can be used to estimate breeding values to support genetic 
improvement programs for the Hampshire breed in Mexico.

INTRODUCTION
Sheep production in Mexico has increased over recent years, partly because of the demand created 

by a growing population with an increased desire for consumption of a traditional dish called Barbacoa. 
The Mexican sheep sector is mainly focused towards meat production (Partida et al. 2012) with growth 
in the use of specialized breeds such as the Hampshire (approximately 70% of commercial flocks 
in central Mexico) leading to recent increases in both productivity and profitability. The Mexican 
Hampshire breed has a database of 11,529 animal registrations (UNO 2016). However, knowledge 
of genetic parameters for key traits is very limited and thereby, limits the ability to implement any 
systematic breeding programs on farm to increase growth rates and meat production. The objective 
of this study was to estimate genetic parameters for growth traits at different ages, from birth until 
150 days for Mexican Hampshire sheep. 

MATERIALS AND METHODS
Weights records for 1,133 lambs were obtained from 10 Hampshire sheep breeding farms in the 

central part of Mexico (States of Hidalgo, Tlaxcala and Puebla), which participated in the regional 
reference sire program between 2005 and 2009 (UNO 2016). The 1,133 lambs were progeny of 63 
sires and 612 ewes with a pedigree of 1,711 over 3 generations available for the Mexican Hampshire 
sheep population. Traits considered in this study were birth weight (BW), weaning weight (WW) 
around 60 days, weight at 90 days (W90), weight at 120 days (W120) and weight at 150 days (W150). 
Data editing and descriptive statistics were performed in R (R Core Team 2018) prior to using an 
animal model evaluation in ASReml (Gilmour et al. 2009) in a series of uni-variate and bi-variate 
analyses between the weight traits. Significant fixed effects fitted in the model included gender (male 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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and female), birth type (simple, twins and triplets), age of the animal and contemporary group. 
Contemporary group was defined by flock, year and season of birth (early, normal and later) for all 
the weight traits. For the weight traits from weaning onwards, the season at weaning was included 
in the contemporary group definition. For BW, WW, W90, W120 and W150 a total of 52, 69, 64, 68 
and 66 contemporary groups were fitted, respectively. Variances and covariances were estimated to 
get the genetic parameters via Restricted Maximum Likelihood (ASReml) using uni-variate linear 
models with phenotypic and genetic correlations between traits estimated from a series of bivariate 
analysis. The general animal model fitted to the weight traits was:

Yijklmn=cgi + gj + btk + cl + am + pen + eijklmn

where: Yijklmn is the observation for the growth traits (BW, WW, W90, W120, W150) measured on 
animal m, cgi is the effect of the contemporary group i, gj is the effect of the gender j, btk is the effect 
of the birth type k, cl is the age of animal as a covariate (not fitted for BW), am is the random additive 
genetic effect of animal m, pen is the random permanent environmental effect of dam and eijklmn is the 
random error associated with each observation. Variance structures assumed for the random effects 
were: var(a) = Aσ2

a, var(m) = Aσ2
m, var(pe) = Iσ2

pe, and var(e) = Iσ2
e where A is the matrix of pedigree 

relationships, and I refers to identity matrixes of appropriate order. Log likelihood ratio tests were 
used to test the significance of maternal genetic and permanent environment effects on each trait in 
univariate models.  

RESULTS AND DISCUSSION
The mean weights at BW, WW, W90, W120 and W150 were 4.13, 24.0, 32.5, 41.4 and 50.1 kg, 

respectively (Table 1). Similar values to the means for BW, WW and W150 were reported in another 
study in Mexican Hampshire lambs (UNO 2016).

Table 1. Mean (kg), standard deviation, coefficient of variation (%), minimum, maximum weight 
and mean age (days) of growth traits in Mexican Hampshire sheep

Traits* No 
animals Mean SD CV 

(%) Minimum Maximum Age
(±SD)

BW 1133 4.1 1.1 27 1.0 8.0 -
WW 1133 24.0 5.5 23 11.0 43.0 63.7±5.5
W90 1133 32.5 7.0 22 14.0 55.0 91.1±6.5
W120 1133 41.4 8.8 21 19.0 73.0 122.1±5.7
W150 1133 50.1 10.4 21 21.0 84.0 154.4±10.1

* BW: Birth Weight; WW: Weaning Weight; W90: Weight at 90 days; W120: Weight at 120 days; W150: Weight 
at 150 days; CV: Coefficient of variation: SD: Standard deviation

Based on the log likelihood ratio test, maternal permanent environment effects were significant 
for BW, WW and W90. The shallow pedigree, low progeny per dam and a lack of weight records on 
the dams limited the ability to estimate a maternal genetic effect. Previous studies have shown that 
maternal genetic variation exists for weight traits (Brown and Swan 2016), reported low material 
heritabilities for growth traits (from 0.18±0.01 to 0.20±0.02).

Direct heritability estimates for BW, WW, W90, W120 and W150 were 0.38±0.11, 0.15±0.08, 
0.17±0.08, 0.18±0.07 and 0.14±0.06, respectively (Table 2). The estimate for BW is inconsistent 
with previous studies, where authors generally found lower heritability estimates ranging from 
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0.14±0.03 to 0.21±0.03 (Fogarty 1995; Safari et al. 2005; Manzanilla Pech et al. 2012). The slightly 
higher heritability is likely to be in part due to inability to disentangle maternal and additive genetic 
variation. Brown and Swan (2016) reported a similar heritability estimate of 0.18±0.01 for weight at 
120 days. However, for W150 estimated heritability was lower than the literature estimates ranging 
from 0.21±0.01 to 0.33±0.02 (Fogarty 1995; Safari et al. 2005). In general, the tendency for estimates 
of direct heritability to increase with age (Yazdi et al. 1997) was not observed in this study. The reason 
for this inconsistency may be due to the relatively shallow pedigree information (3 generations) and 
small size of the data set.

Table 2. Estimated additive variance (σ2
d), maternal permanent environmental variance (σ2

pe), 
phenotypic variance (σ2

p), estimated heritability (h2
d) for direct genetic effect and the variance 

ratio for permanent environment effects (c2) for growth traits in Hampshire breed in Mexico

Traits* σ2
d σ2

pe σ2
p h2

d c2 
BW 0.33±0.10 0.07±0.10 0.87±0.04 0.38±0.11 0.09±0.04
WW 2.67±1.52 1.43±0.80 17.91±0.83 0.15±0.08 0.08±0.05
W90 4.45±2.30 2.15±1.21 26.85±1.25 0.17±0.09 0.08±0.05
W120 6.81±2.81 - 37.41±1.72 0.18±0.07 -
W150 7.02±3.34 - 50.12±2.27 0.14±0.06 -

*For the trait abbreviation see Table 1.

Table 3. Direct genetic and permanent environmental of dam correlations (above diagonal) and 
phenotypic correlation (below diagonal) of growth traits in Hampshire sheep breed in Mexico

Trait*
Direct genetic and phenotypic Permanent environmental of dam 

BW WW W90 W120 W150 BW WW W90
BW 0.64±0.23 0.35±0.26 0.40±0.20 0.43±0.22 0.34±0.34 0.69±0.33
WW 0.38±0.03 0.85±0.10 0.83±0.08 0.79±0.11 - 0.99±0.05
W90 0.33±0.03 0.89±0.01 0.90±0.05 0.87±0.08 - -
W120 0.29±0.03 0.80±0.01 0.90±0.01 0.94±0.02 - - -
W150 0.29±0.03 0.75±0.01 0.85±0.01 0.96±0.00 - - -

*For the trait abbreviation see Table 1. 

The phenotypic correlation between the weight traits were positive and moderate to strong ranging 
from 0.29 to 0.96 (Table 3). The weakest correlations were observed between birth weight and the 
other weight traits ranging from 0.29 to 0.38. Similar values were estimated in previous studies 
ranging between 0.21 and 0.90 (El Fadili et al. 2000; Brown and Swan 2016). The genetic correlations 
between the weight traits ranged from 0.35 to 0.94±0.02. These results are similar to other previous 
finding in other breeds, which were in a wide range from 0.29 to 0.92 (Kariuki et al. 2010). Low to 
high genetic correlations were estimated between BW and the other weight traits (range 0.35 to 0.64). 
High genetic correlation between BW and WW (0.64) indicates that selection for WW will result 
in a significant correlated response in BW. This will allow Hampshire sheep breeders in Mexico to 
improve growth rates and weights in the lambs without increasing the rate of dystocia, a common 
issue due to broad shoulders (UNO 2016). High genetic correlations between the later weights at W90, 
W120 and W150 suggest that Mexican sheep breeders looking to breed for higher growth rates and 
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larger lambs can get away with a single later recording point to improve weights at all stages after 
birth. We recommend that this occur at W150 due to the proximity of the weight to the final sale age.

CONCLUSIONS
The heritabilities estimated in this study were reasonably consistent with estimates presented in 

a range of studies, albeit slightly lower. However, in order to develop genetic evaluation programs 
for Hampshire sheep, it is recommended that the Mexican sheep breeders continue to collect weight 
records on lambs across ages for future analyses. High correlations between the later weights at W90, 
W120 and W150 suggested that selection for W90 and W120 days will improve W150 days at sale age.
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THE INHERITANCE OF FLIGHT DISTANCE AS A MATERNAL BEHAVIOUR 
SCORE OF THE DAM AND ITS IMPACT ON LAMB SURVIVAL
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SUMMARY
This study was carried out to test two hypotheses: 1) whether flight distance of the dam (scored 

at tagging of her lamb within 24 hours of birth) is an indicator of her maternal behaviour and is a 
dam trait correlated with the survival rate of her lambs; and 2) whether the genetic and permanent 
maternal environmental effects of survival rate differ between single and multiple born lambs. The 
results showed that flight distance was genetically correlated only with survival rate at marking. 
The direct genetic effects for survival rate at birth, marking or weaning did not differ significantly 
between single- and multiple-born lambs, but the permanent maternal environmental effects were 
more important in multiple- than in single-born lambs. These observations support the notion that 
ewes that rear multiple-born lambs should be retained as replacement ewes in breeding programs.

INTRODUCTION
Lamb survival is key determinant of a profitable lamb production system, yet it is estimated 

that lamb losses in Australia amount to $540 million annually (Lane et al. 2015). Lamb survival 
is affected by a variety of genetic and environmental factors (Brien et al. 2014). Several lines of 
evidence demonstrate the importance of the genetics of maternal behaviour: 1) Ewe temperament is 
a heritable trait and survival rate is higher for lambs from calm ewes than for lambs from nervous 
ewes (Murphy 1999); 2) Maternal rearing ability to weaning is also heritable and can be improved by 
selection (Cloete et al. 2009); 3) Maternal behaviour score is heritable (Brown et al. 2016) suggesting 
that it could be improved by selection.

On the other hand, Bunter et al. (2018) reported that litter size at lambing influences genetic 
evaluation of maternal rearing ability and suggested that rearing ability traits should be defined sep-
arately by litter-size class to improve the accuracy of genetic evaluation for rearing ability. This paper 
therefore investigates the inheritance of flight distance as a maternal behaviour trait and survival rate 
of the lambs, both as traits of the dam, and this aims to elucidate the effect of litter size on the genetic 
parameters of lamb survival and flight distance.

MATERIALS AND METHODS
Resources. The data were collected on the Breech Strike Resource flocks of the Department of 

Primary Industries and Regional Development (previously the Department of Agriculture and Food) 
in Western Australia. This flock consisted of approximately 1,000 ewes that were annually mated to 
22 sires. The total dataset consisted of 16,788 repeated records that were collected over the lifetime 
of 4,767 dams that had been mated annually, from 2005 to 2018, to one of 243 sires.

Management and measurements. Ewes were mated in February/March and lambs were born 
in July/August. Body weights and body condition score (1 to 5) were recorded on all ewes pre- and 
post-mating. Two weeks prior to lambing, each sire’s lambing ewe group was drafted off, weighed, 
condition scored and placed on a lambing plot to obtain accurate pedigrees of the lambs at lambing. 
This resulted in lambing plot and sire of the lambs being confounded within year. However, link sires 
across years were rotated between mating groups to ensure that repeat mating groups don’t lamb in 
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the same paddock again. Between 4 and 18 linked sires were used between years. 
The lambs were tagged and weighed within 24 hours after birth. Date of birth, dam identification, 

gender of lamb, birth status (single, twin or triplet) and lambing difficulties were recorded at birth.  
During the process of tagging and recording birth information, flight distance, as an indicator of 
mothering ability, was scored from 1 (dam stays close to lamb) to 6 (>50 meters away from scorer) 
based on the average distance between the dam and the lamb. At marking, approximately 4 to 5 weeks 
after lambing, the lambs were tail docked, weighed and identification checked. They were weaned 
and weighed at an average age of 110 days. All deaths from birth to weaning were recorded.

Statistical analyses. Three survival rate categories were created as traits of the dam: survival 
at birth (within 24 hours after birth), survival from birth to marking, and survival from marking to 
weaning. The data were analysed with ASREML (Gilmour et al. 2015). A sire model for dam of the 
lamb, with repeat measurements of the dam (of the lamb) as an additional random factor, was fitted to 
estimate additive genetic variance and permanent maternal environmental effects for flight distance, 
survival at birth, survival from birth to marking, and survival from marking to weaning, as traits of 
the dam. The flight distance data were treated as normally distributed. By contrast, the survival data 
were binary (alive = 1; dead = 0) so were subjected to a binomial analysis with a logit link function. 
Year of birth, lamb gender, litter size, dam age, lambing paddock, and dam body weight and condi-
tion score (pre-mating, post-mating, pre-lambing) were fitted as covariates. All interactions between 
fixed effects were initially fitted.  Statistically non-significant (P < 0.05) factors were dropped from 
the model until the final model only contained statistically significant factors. 

The same analyses were carried out where the dataset was split into sets containing only single-
tons or only multiples. The phenotypic variance (Vp) was calculated as the sum of the sire variance, 
permanent maternal environmental variance and error variance. As this analysis was on a logistic 
scale, a variance of 3.289 was used for the error. The heritability of survival rate was calculated as 4 
times the sire variance as a proportion of the phenotypic variation. The importance of the permanent 
maternal environmental effect was calculated as the proportion of the permanent maternal environ-
mental variation relative to the phenotypic variation. A series of bivariate analyses were then carried 
out between the survival traits and flight distance, using the significant fixed factors from the uni-
variate analyses of the different traits in the model to estimate the genetic covariance between flight 
distance and survival traits. The genetic correlation (rg) was estimated as the covariance between 
flight distance and the survival traits divided by the square root of the product between the variance 
of flight distance and that of the survival traits.  

RESULTS AND DISCUSSION
Table 1 shows the number of records, means and variances for the three survival traits and genetic 

parameters for the combined dataset, separately for single- and multiple-born lambs. Survival rates 
were 0.95 at birth, 0.87 from birth to marking, and 0.98 from marking to weaning, resulting in 81 
lambs surviving per 100 lambs born. Year of birth affected all traits (P < 0.01). Larger litters had lower 
survival rates at birth, marking and weaning (P < 0.01). Survival rates at marking and at weaning 
were lower (P < 0.01) for older ewes. However, older ewes stayed closer to their lambs at tagging 
than younger ewes (P < 0.001). For flight distance, interactions (P < 0.001) were observed between 
year of birth and litter size, and between year of birth and age of dam. 

Heritability estimates (h2
D). Where the dataset was split into single- and multiple-born lambs 

(Table 1), multiple lambs had higher phenotypic variances at birth, marking and weaning. Heritability 
estimates of survival rate in the total dataset were moderate (0.24 ± 0.09) at birth, low (0.09 ± 0.04) 
at marking, and not significantly different from zero at weaning. The heritability estimates of survival 
rate of multiple-born lambs at birth, marking and weaning were higher than those of single-born lambs, 
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but all these estimates had large standard errors so were not significantly (2 x SE) different from zero. 
The heritability of flight distance was low (0.07 ± 0.02). However, for single- and multiple-born 

lambs, the heritability estimates were considerably higher than those of the combined dataset. The 
heritability of flight distance of multiple-born lambs was higher (P < 0.001) than that of single-born 
lambs (0.33 ± 0.06 vs 0.17 ± 0.04), suggesting that survival rate as a dam trait may not be genetically 
the same trait for single and multiple born lambs.

Permanent environmental effects (m2
pe). A moderate permanent maternal environmental effect 

of 0.25 (± 0.03) was found for survival rate at birth, which decreased to 0.10 (± 0.02) at marking. It 
had no effect on survival rate at weaning, showing the importance of maternal behaviour early in life.  
For flight distance a moderate permanent maternal environmental effect of 0.26 (± 0.01) was found 
in the combined dataset. The effect was more than five times that for multiple born lambs (0.47 ± 
0.02) compared to single born lambs (0.09 ± 0.02).  

Table 1. Number of records, means ± standard deviation (sd), variances and genetic parameters 
of survival rate as a trait of the dam at birth, marking and at weaning, for the combined dataset 
and for single- and multiple-born lambs

Parameter Survival rate Flight
Birth Marking Weaning distance

Total dataset
No. of records 15,224 14,445 12,819 14,682
Mean ± sd 0.95 ± 0.22 0.87 ± 0.33 0.98 ± 0.12 3.69 ± 1.50
Vp 4.74 3.76 3.56 0.82
h2

D  ± SE 0.24 ± 0.09 0.09 ± 0.04 0.19 ± 0.16 0.07 ± 0.02
m2

pe ± SE 0.25 ± 0.03 0.10 ± 0.02 0.03 ± 0.07 0.26 ± 0.01
Single births 
No. of records 6,763 6,503 5,918 6,555
Mean ± sd 0.96 ± 0.19 0.91 ± 0.29 0.99 ± 0.09 3.70 ± 1.40
Vp 3.54 3.61 3.74 0.80
h2

D  ± SE 0.02 ± 0.18 0.05 ± 0.08 0.33 ± 0.21 0.17 ± 0.04
m2

pe ± SE 0.07 ± 0.09 0.07 ± 0.04 0.04 ± 0.07 0.09 ± 0.02
Multiple births
No. of records 8,461 7,942 6,901 8,127
Mean ± sd 0.94 ± 0.24 0.84 ± 0.37 0.98 ± 0.15 3.69 ± 1.59
Vp 5.57 3.93 3.61 0.99
h2

D  ± SE 0.17 ± 0.12 0.09 ± 0.05 0.12 ± 0.19 0.33 ± 0.06

m2
pe  ± SE 0.37 ± 0.04 0.14 ± 0.02 0.06 ± 0.08 0.47 ± 0.02

Correlations. Table 2 shows the phenotypic, genetic and environmental correlations between 
flight distance and survival rate as a trait of the dam at birth, marking and at weaning. Correlations 
between flight distance and survival rate traits at birth and weaning were very low or not significantly 
different from zero, as were the genetic correlations at birth and weaning. The only significant genetic 
correlation was between flight distance and survival rate at marking (0.64 ± 0.20).
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Table 2. Phenotypic (rp), genetic (rg) and environmental (re) correlations and standard errors 
(SE) between flight distance at tagging and survival rate at birth, marking and weaning as 
traits of the dam

Trait Flight distance
rp ± SE rg ± SE re ± SE

Survival rate at birth -0.03 ± 0.01 -0.12 ± 0.24 -0.03 ± 0.00
Survival rate at marking -0.01 ± 0.01 -0.64 ± 0.20 0.01 ± 0.00
Survival rate at weaning 0.05 ± 0.02 -0.30 ± 0.45 0.06 ± 0.01

CONCLUSIONS
Survival rate as a trait of the dam at birth, was a heritable trait. This study did not show major 

differences in direct heritability estimates for survival rate at birth, marking and weaning, in the sepa-
rate estimates for single- and multiple-born lambs. However, the permanent environmental effect was 
more important for survival rate in multiple-born than in single-born lambs at both birth and marking. 

The direct heritability estimate, and the permanent environmental effect of flight distance were also 
significantly greater in multiple-born than in single-born lambs, suggesting that maternal behaviour 
as scored by flight distance is an important factor in the survival of multiple-born lambs. These 
observations support the conclusion of Hatcher et al. (2014) that ewes that consistently rear twins 
should be retained rather than ewes that consistently rear a single lamb. We conclude that, in breed-
ing programs, permanent environmental effects should be accounted for more accurately to identify 
ewes that consistently rear multiple born lambs. More research on the inheritance and importance 
of permanent environmental factors is required on this issue as well as the underlying physiological 
causes of this phenomenon. 
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GENETIC EVALUATION AND RELATIONSHIP ACROSS AGES FOR DAG SCORE 
IN MATERNAL SHEEP
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SUMMARY
Daginess in sheep is an undesirable trait with both economic and welfare implications. While the 

trait has been investigated in Merino sheep, this is not the case for maternal sheep. With sufficient 
records now available from industry and research flocks via Sheep Genetics the genetic parameters 
for dag score can now be estimated. The heritability of dag score ranged from 0.13 (+0.01) to 0.38 
(+0.02) across age stages with the highest heritability occurring at the yearling stage. Given the 
heritability it should be possible for breeders to make genetic progress towards less daggy maternal 
sheep, which as an indirect selection tool will potentially assist to reduce labour costs, wool losses 
and flystrike incidence. Positive moderate genetic correlations between age classes (0.08 to 0.83) 
indicate that selection based on phenotypes recorded at any age will lead to reduced dag score across 
investigated stages. The results suggest that breeders should be focussed on recording dag score 
when the environmental conditions promote the greatest expression of genetic merit, than scoring 
at a specific age class. However, in maternal sheep the greatest phenotypic variation in dag score 
appears to occur in yearling sheep. 

INTRODUCTION
Dag (measured by dag score) is the accumulation of faecal matter in wool around the breech of 

the animal, which is associated with increased flystrike incidence within the Australian sheep pop-
ulation. Previous studies have indicated that flystrike is costing $280m dollars annually (Sacket et 
al. 2006) as a result of sheep losses, cost of treatment and loss of wool as well as carcase production 
and value. In response to public concern and desire for management practices such as mulesing to 
be phased out sheep breeders are utilising indicator traits like dag score to reduce flystrike incidence 
(Brown et al. 2010). Dag score (scouring) has been shown to be related to flystrike in previous studies 
(James 2008; Greeff and Karlsson 2009; Smith et al. 2009) there are also costs associated with loss 
of production as well as crutching costs (Sacket et al. 2006). 

The genetic evaluation of dag score has previously been reported in the Australian Merino popu-
lation (Brown et al. 2010), however, the growth of maternal cross merino ewe flocks and self-replac-
ing maternal flocks has influenced the interest within maternal stud breeders to utilise dag score in 
their breeding programs. The heritability of dag score has been shown to be moderate in Australian 
Merino sheep (0.20-0.26, Brown et al. 2010), (0.37-0.63, Greeff et al. 2013) and in another study 
where it ranged from 0.07 to 0.32 for animals recorded at 30 day intervals from weaning to hogget 
stage (Pollot et al. 2004).

The recent increase in dag score recording by maternal sheep breeders and records from the 
Information Nucleus and resource flocks (Fogarty et al. 2007) has led to an increase in dag score 
phenotype submission to Sheep Genetics, the paper investigates the genetic parameters for dag score 
within the maternal population and the relationship of dag score in the Weaning (Wdag), Post-weaning 
(Pdag), Yearling (Ydag) and Hogget (Hdag). The effect of modelling genetic groups and sire x flock 
effects were also explored.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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MATERIALS AND METHODS
Data. Pedigree and performance were extracted from the Sheep Genetics LAMBPLAN (Maternal) 

database (Brown et al. 2007). This database stores pedigree and performance records submitted by 
ram breeders that are used for LAMBPLAN (Maternal) national genetic evaluations.

A summary of records from the maternal database are presented in Table 1. Currently there are 
22 flocks who have submitted 39,035 dag phenotypes across the 4 age stages investigated. The most 
popular stage for dag score recording was at weaning with almost 18,519 records with yearling records 
and post weaning records combined made up the majority of the remaining records. Most flocks who 
recorded dag score had records from a number of stages across different years in this dataset. There 
were 6,301 animals which had records across multiple stages. 

The dag score phenotype are visually scored from 1-5 with a score 1 having no dags in the breach 
area up to a score of 5 which has an accumulation of dags in breech area and down the legs of the 
animal (AWI. 2013). With increasing age the dag score phenotypes showed both an increase in score 
but also an increase in the variation for score.  

Table 1. Summary of dag score phenotypes submitted to Sheep Genetics by maternal sheep 
breeders across age classes.ncg; number of contemporary groups, ngg; number of genetic groups

Trait Records Mean sd Pedigree Sires Dams Flocks Ncg ngg
Wdag 18519 1.40 0.67 39321 4696 19506 12 213 35
Pdag 7762 1.64 0.85 28283 4843 16765 10 70 38
Ydag 11784 1.83 0.93 36222 5445 20448 11 159 42
Hdag 970 1.98 0.87 11243 3300 7058 9 21 21

Statistical Analysis. Parameters were estimated in bivariate analyses for each trait combination, 
ASReml (Gilmour et al. 2015) was used fitting an animal model. The model included direct genetic, 
dam permanent environment effects. Fixed effects of age of animal and age of dam were fitted as 
covariates with both linear and quadratic effects for dam age. Birth and rearing effects were treated 
as non-interacting fixed effects ranging from 1-4. Flock, year of birth, sex, the date of measurement 
and breeder management group were used to define contemporary group. 

RESULTS AND DISCUSSION
Genetic parameter estimates and the genetic and phenotypic correlations across age classes are 

presented for the base model (Table 2) and the extended model which included genetic groups and 
the sire by flock interaction fitted as random (Table 3). These terms are used within Sheep Genetics 
Evaluations and improve the fit of models especially for analysing industry data structure and record-
ing are not always balanced (Brown et al. 2007). The results showed that the inclusion of genetic 
groups and the sire x flock term within the model had no significant impact on the additive genetic 
variance nor the heritability. 

The heritability of dag score at weaning, post-weaning, yearling and hogget stage was 0.13, 0.27, 
0.38, 0.20, respectively (Table 2). These pattern are similar to that estimated by (Pollot et al. 2004) in 
Merino sheep which had a low heritability at weaning (0.07) before peaking at a moderate heritability 
(0.32) at 270 days and then declining to lower estimates of 0.08, 0.13 and 0.16 for 300, 330 and 360 
days of age respectively. Although the heritability for these maternal animals may be higher due to 
industry recording likely only being undertaken when dag was more strongly expressed with the 
mean dag score ranging from 1.4 to 1.98 vs 0.36 to 1.50 (Pollot et al. 2004) although those merino 
animals were scored with a slightly different scoring method (Larsen et al. 1994).
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The highest heritability estimate, 0.38, was observed for Ydag this is almost double the estimate 
for late dag score (ldag) (0.20) in Merinos although it should be noted that ldag includes dag score 
from across yearling, hogget and adult stages (Brown et al. 2010). 

Phenotypic correlations were positive and range from low (0.19) to moderate (0.45) with stronger 
correlations for the later stages, environmental effects have a large impact for the trait to be expressed. 

Genetic correlations were generally high and positive although there were some deviations between 
the base model and the extended model. The extended model showed slightly higher correlations 
between traits although not all of these were significant. However genetic correlations with Hdag 
were compromised by the small number of records at this stage leading to high standard errors. Given 
these correlations recording and selection for dag score at any of the stages would result in a positive 
impact on the other stages.

Table 2. Phenotypic variance (​​​ ̂  σ​​ p​ 
2
​​) and direct heritability (​​h​​ 2​​) with phenotypic correlations above 

the diagonal and genetic correlations below the diagonal for base model

Trait ​​​ ̂  σ​​ p​ 
2
​​ ​​h​​ 2​​ Wdag Pdag Ydag Hdag

Wdag 0.35+0.00 0.13+0.01 0.19+0.01 0.17+0.02 0.08+0.03
Pdag 0.66+0.01 0.27+0.02 0.66+0.07 0.45+0.02 0.19+0.04
Ydag 0.83+0.01 0.38+0.02 0.54+0.07 0.83+0.04 0.66+0.26
Hdag 0.55+0.02 0.20+0.04 0.75+0.16 0.08+0.18 0.60+0.15

Table 3. Phenotypic variance (​​​ ̂  σ​​ p​ 
2
​​) and direct heritability (​​h​​ 2​​) with phenotypic correlations above 

the diagonal and genetic correlations below the diagonal for the model that included genetic 
groups and the sire by flock interaction

Trait ​​​ ̂  σ​​ p​ 
2
​​ ​​h​​ 2​​ Wdag Pdag Ydag Hdag

Wdag 0.35+0.00 0.13+0.01 0.19+0.01 0.18+0.02 0.08+0.03
Pdag 0.66+0.01 0.26+0.02 0.77+0.08 0.45+0.02 0.18+0.04
Ydag 0.84+0.01 0.38+0.02 0.62+0.07 0.87+0.05 0.81+0.16
Hdag 0.56+0.02 0.16+0.05 0.85+0.24 -0.12+0.23 0.63+0.21

Given the results it appears that the extended model is appropriate for analysis of the data although 
the effects estimated were small especially considering the stronger genetic groups effects previously 
seen in Merinos. Measurements made at the weaning stage had the lowest heritability estimate and 
also the smallest phenotypic variances however still had strong genetic associations with dag score 
measured at the other stages. To improve dag score, recording could be at any of the stages with a 
preference for later recording. However recording would be best when trait expression is maximised 
regardless of stage.

The LAMBPLAN (Maternal) genetic evaluation has been following the MERINOSELECT anal-
ysis approach. Analysing early (edag) and late (ldag) traits with edag including marking and weaning 
stage records and late dag including records from yearling, hogget and adult records. The estimated 
genetic correlations are moderate-high across stages with the exception of Pdag-Hdag which partic-
ularly suffers from high standard errors due to small number of records. Given these correlations the 
traits could be analysed either following the MERINOSELECT model with combined late and early 
trait groups or as individual stage based traits. 
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CONCLUSIONS
It should be possible to genetically improve dag scores in maternal sheep with appropriate selection 

and recording as moderate heritability estimates were observed across stages with moderate- high 
genetic correlations between age stages. Given this visual scoring for dag score should be performed 
when the trait is showing its greatest expression. 
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SUMMARY
This study compared animals from the Dormer and South African Mutton Merino (SAMM) breeds 

for birth weight, weaning weight, yearling weight, carcass and meat quality traits. Dormers were lighter 
at birth but heavier subsequently than their SAMM contemporaries. Dormer carcasses had greater 
fat depths than SAMM’s. SAMM meat was lighter with a slightly higher cooking loss than Dormers. 
The observed breed differences reflect the roles the breeds play in the South African sheep industry.

INTRODUCTION
In South Africa, the Dormer is the most prominent terminal sire breed, while the South African 

Mutton Merino (SAMM) is the dominant dual-purpose breed (Cloete et al. 2014). The Dormer was 
developed at the Elsenburg Agricultural College in the 1940s when Dorset Horn rams were crossed 
with German Merino ewes to establish the composite breed (Van Wyk et al. 2003). The Dormer plays 
an important role as a terminal sire breed for crossbreeding with wool breeds. The SAMM originated 
from the German Merino, which was imported to South Africa in 1932 (Cloete et al. 2004c). The 
foundation flock was kept at Elsenburg, from where it spread throughout South Africa and to other 
countries such as Australia (Brown and Asadi Fozi 2005). The traits recorded in both breeds in the 
National Small Stock Evaluation Scheme include birth weight, weaning weight, postweaning weight 
and reproduction (Schoeman et al. 2010). No emphasis is thus directed to wool traits in either breed. 
Both breeds have a high growth rate and grow out to a high mature weight compared to other South 
African ovine genetic resources (Van der Merwe et al. 2019). Previous studies comparing these 
breeds for meat traits were based on small sample sizes and animals slaughtered at an age of 18 to 
20 months (Cloete et al. 2004a; 2012). There is a need to update the earlier results on slaughter traits 
with information of animals slaughtered at a more reasonable age.

This study therefore aims to evaluate these breeds in terms of growth, as well as carcass and meat 
traits at an age aligned with industry practice. This aim excluded discussion of other fixed effects or 
genetic parameters.

MATERIALS AND METHODS
Data were collected from the Dormer and SAMM resource flocks at Elsenburg research farm, 

Western Cape, South Africa. The background of flocks was reported by respectively van Wyk et al. 
(2003) and Cloete et al. (2004c). Selection in both breeds was mostly based on early growth and 
conformation. Expressed relative to the overall means for weaning weight, mediocre annual genetic 
gains of 0.2% in Dormers (Van Wyk et al. 1993) and 0.1% in SAMM’s (Zemuy 2002) were realised. 
No direct selection pressure was applied to any meat trait. Both breeds remained in the same flock 
during the study, except when mated within breeds in single-sire groups to rams of the same breed. 
Both breeds utilised either dryland lucerne or oat fodder crop paddocks during winter and spring, 
and irrigated pastures that mainly consisted of kikuyu for the rest of the year. Data collection for the 
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weight traits took place from 2007 to 2018. The breed, sex, birth type, age of dam and year of birth of 
the lambs were recorded. Lamb birth weights of 3,043 lambs were recorded within 24 hours of birth, 
at weaning (at 103 ± 14 days; n = 2,765) and again as yearlings (at 356 ± 0.44 days; n = 2,155). A 
total of 201 Dormers and SAMM yearlings, born in 2015 and 2016, were slaughtered at an average 
age of 392 ± 51 days to assess meat traits. Lambs were weighed 24 hours prior to slaughter (slaughter 
weight). The sheep were slaughtered at a commercial abattoir, using the techniques previously described 
by Cloete et al. (2004a). The ante mortem treatment was similar for all the sheep within year-sex 
contemporary groups and sheep were slaughtered at random after electrical stunning at 200 V for 
4 seconds. The sheep were exsanguinated, 0and carcasses allowed to bleed out before dressing. No 
electrical stimulation was applied. The dressed carcasses were hung in a chiller at 2⁰C for 48 hours 
(McGeehin et al. 2011). The carcass weight, temperature and pH were determined after 48 hours 
and the dressing percentage was calculated as carcass weight divided by slaughter weight. At this 
stage, fat depth 25mm off the midline at the 13th rib and at the rump between the 3rd and 4th lumbar 
vertebrae was measured as described by Cloete et al. (2004a). Loin samples of 8 cm were excised 
from the left side of the M. Longgissimus lumborum between the 13th rib and 3rd and 4th lumbar 
vertebrae. Two 1.5cm thick slices were cut from these steaks and used to measure cooking loss and 
shear force on one and meat colour and drip loss on the other (Honikel 1998). Individual 20 to 30g 
meat portions from the first slice were used to determine cooking loss. Samples were placed in thin-
walled plastics bags and put in a water-bath at 80⁰C for 1 hour. Cooked samples were removed from 
the water-bath, cooled in cold water, blotted dry and weighed again. Cooking loss was calculated 
as the difference in sample weight before and after cooking and expressed as a percentage of initial 
weight. Shear force was determined on these cooked samples using an Instron machine equipped 
with a Warner-Bratzler shear head (Honikel 1998). Three subsamples with a diameter of 1 cm were 
removed from the core of each cooled (4°C) sample. Maximum shear force values (N) were recorded 
for each sample and the mean was calculated. Shear force and tenderness is inversely correlated. 
The second slice was used to first measure colour by using a colour-guide 45⁰/0⁰ colorimeter (BYK-
Gardner, USA) to determine L* (lightness), a* (red-green range) and b* (blue-yellow range). Drip 
loss was then determined by attaching a 20 to 50g meat sample to a string and suspending it in an 
inflated plastic bag. These bags were left at 4⁰C for 24 hours and weighed again to derive drip loss 
as explained for cooking loss (Honikel 1998). 

Data were analysed using ASREML (Gilmour et al. 2015). Fixed effects included in the models 
for all traits were breed (SAMM or Dormer), year of birth (2007-2018 for body weights, 2015-2016 
for carcass and meat quality traits), age of dam (2-5 years), sex (male or female) and birth type (single 
or multiple), two-factor interactions between birth year and sex as well as between birth year and 
breed as well as age at measurement as linear covariates. The random effects of sire and dam were 
included throughout for the variation it controlled.

RESULTS AND DISCUSSION
SAMM lambs were 7.3% heavier at birth than Dormers (P < 0.05; Table 1). A previous study 

by Brand et al. (1985) also reported that Dormers were significantly smaller than SAMM lambs at 
birth. In contrast, Dormers were heavier than SAMM contemporaries at weaning (6.8%) and yearling 
(13.9%) ages (P<0.05). Slaughter weight of Dormers tended (P=0.054) to be heavier than those of 
SAMM contemporaries, bearing in mind that this was based on much fewer records compared to 
the other weight traits. Carcass weight was increased by 10.1% in Dormers compared to SAMM 
contemporaries. Dressing percentage did not differ between the breeds. Previous studies by Cloete 
et al. (2004a; 2012) on these breeds suggested no significant difference between the two breeds for 
slaughter weight. However, carcass weight and dressing percentage differed significantly in favour 
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of Dormers in the former study. The present results thus concur with those of Cloete et al. (2004a) 
for carcass weight.

Table 1. Predicted means (± SE) for the effect of breed (Dormer or SAMM) on growth and 
carcass traits

Trait Breed
Dormer SAMM Significance

Birth weight (kg) 4.59 ± 0.06 4.95 ± 0.07 **
Weaning weight (kg) 29.7 ± 0.4 27.8 ± 0.4 **
Yearling weight (kg) 52.5 ± 0.4 46.1 ± 0.5 **
Slaughter weight (kg) 49.3 ± 1.6 44.9 ± 2.4 0.054
Carcass weight (kg) 22.8 ± 0.8 20.7 ± 1.1 *
Dressing percentage (%) 45.8 ± 0.7 45.5 ± 1.1 0.443

* P < 0.05; ** P < 0.01; actual significance for P > 0.05	

The ultimate pH recorded 48 h post slaughter did not differ between the breeds (Table 2). An 
ultimate pH between 5.8-6.0 is considered as undesirable (Devine et al. 1993) and the ultimate 
pH of both breeds was below this range. The tenderness and texture deceases at an ultimate pH of 
5.8-6.0. An ultimate pH above 5.8 also influences the flavour, juiciness and aroma of the meat. The 
proportion of high pH carcasses amounted to 0.075 in Dormers and 0.101 in SAMM’s (Chi²=0.98; 
degrees of freedom=1; P=0.45). Undesirable high pH carcasses were thus quite infrequent in both 
breeds. Ultimate pH was heritable in South African sheep (Naudé et al. 2018), allowing opportunities 
for selective breeding. 

Table 2. Predicted means (± SE) for the effect of breed (Dormer or SAMM) on meat quality traits

Trait Breed
Significance

Dormer SAMM
pH48 hr 5.60 ± 0.01 5.58 ± 0.03 0.31
Fat 13th rib (mm) 2.04 ± 0.22 1.21 ± 0.34 *
Fat rump (mm) 5.31 ± 0.49 3.02 ± 0.66 **
Cooking loss (%) 29.1 ± 0.9 31.8 ± 1.4 *
Drip loss (%) 1.91 ± 0.21 1.82 ± 0.27 0.96
Colour L* 34.1 ± 0.5 35.8 ± 0.8 **
Colour a* 13.4 ± 0.3 13.9 ± 0.4 0.09
Colour b* 9.65 ± 0.21 9.87 ± 0.29 0.12
Shear force (N) 50.4 ± 3.2 56.2 ± 4.3 0.14

* P < 0.05; ** P < 0.01; actual significance for P > 0.05

Fat depth differed significantly between breeds at both sites, with Dormers being fatter than SAMM 
contemporaries. Fat depth at 20 months was independent of breed in a previous study on Dormer and 
SAMM sheep (Cloete et al. 2012). In contrast, Cloete et al. (2004a) also reported that Dormers were 
fatter (P<0.05) than SAMM contemporaries at 18 months. The present analyses use a substantially 
larger data set that any of the previous studies, while the animals were also slaughtered younger. 
Age and maturity type possibly combined to give the results that were obtained. Carcasses with 
subcutaneous fat depth of 1-4 mm fat measured 25mm from the midline at the 13th rib are considered 
as acceptable in South Africa (Government Gazette 14060 1992). The frequency of carcasses of each 
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breed conforming to this desired fat distribution did not differ (Dormer=0.644 vs. SAMM=0.522, 
Chi²=2.33; P=0.13). However, SAMM carcasses were more likely to be leaner (Dormer=0.197 vs. 
SAMM=0.478, Chi²=16.0; P<0.01) and Dormer carcasses fatter (Dormer=0.159 vs. SAMM=0.000, 
Chi²=10.6; P=0.01) than the desired range. The mean cooking loss of SAMM meat was higher than 
that of Dormer meat (P<0.05; Table 2). Drip loss was not affected by breed (P>0.05). Cloete et al. 
(2004a; 2012) found no differences for cooking loss between Dormers and SAMM’s (P>0.05). This 
study involved younger sheep and a larger sample size, both of which could be causative in the 
result obtained. Further research is therefore needed. Although Dormer meat may be slightly darker 
than that of SAMM, the values differ by such a small margin that a consumer might not be able to 
visually perceive the differences (Cloete et al. 2012). The a* and  L* values for Domers and SAMM 
are regarded as acceptable for the average consumer at respectively 9.5 and 34.0 or higher (Khliji 
et al. 2010). There was no significant difference between Dormer and SAMM for meat tenderness.

CONCLUSIONS
This study showed that, although SAMM lambs were heavier at birth, Dormers had higher 

subsequent weights. The observed breed differences reflect the different roles of the two breeds 
within the South African sheep industry. The thicker fat cover of Dormers compared to their SAMM 
contemporaries probably indicate that the focus of selection for growth in this breed was not for lean 
growth, as in many other sheep-producing countries. This result stems from the absence of meat 
quality as a selection trait in South Africa’s formal recording scheme (Schoeman et al. 2010). Clearly 
this state of affairs is undesirable and requires further effort to align sheep recording in South Africa 
with international benchmarks. 
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SUMMARY
The 1000-Bull-Genome (1KBull) project contains whole genome sequence data of thousands of 

cattle with different breeds from various countries. While most 1KBull cattle do not have phenotypic 
data, different breeds display distinct phenotype due to artificial and/or natural selections. For example, 
the milk production of Holstein cattle is expected to be higher than that of Angus cattle. Such expected 
phenotypic differences between breeds may be useful for validating the informativeness of a set of 
prioritised variants. Via meta-analysis of GWAS with 17.6 million imputed sequence variants with 
over 44,000 Australian dairy cattle, we prioritised a set of 92.5K pleiotropic variants associated with 
multiple traits including milk production, reproduction, management and linear assessment. With 
these pleiotropic variants, the genomic best linear unbiased prediction (gBLUP) was used to estimate 
dairy-trait breeding values (gEBV) for 2,334 1KBull cattle (Run 6). Based on principal components 
analysis, the dairy-trait gEBVs separated the dairy from beef breeds as well as the separation using 
whole genome sequence data. For individual trait gEBVs in the 1KBull cattle, while milk, protein 
and fat yield, somatic cell count, stature and angularity were significantly higher in dairy than in 
beef cattle, the milk protein and fat percentages, muzzle width and teat length were significant lower 
in the dairy than in the beef cattle. Compared to 1KBull Jersey cattle gEBVs, Holstein cattle had 
significantly higher milk, protein and fat yield and stature, but significantly lower fat and protein 
percentages and somatic cell count. Our study provides valuable insights into the genomic predic-
tion of breed differences using within-breed trained equations. Our work also provides alternative 
validation strategies for prioritised markers.

INTRODUCTION
The 1000-Bull-Genome (1KBull) project collects whole genome sequence data worldwide via 

donations from consortium members. Since 2012 (Daetwyler et al. 2014), the dataset has grown to 
over 2,000 cattle from more than 100 breeds of Bos taurus and Bos indicus. Up to 44 million sequence 
variants have been identified in the 1KBull cattle and these variants are used as the basis for sequence 
variant imputation in large cattle populations. Large cattle populations with sequence variants have 
facilitated genome-wide association studies (GWAS) (Bouwman et al. 2018) and genomic prediction 
(VanRaden et al. 2017) of complex traits. Here we examine a new use for the 1KBull database; the 
prediction of trait differences between breeds.

Genomic prediction is usually used to predict differences in breeding value within a breed and it is 
unknown if it would correctly predict differences between breeds. One of the aims of this paper is to 
test the ability of within breed genomic prediction to predict differences between breeds. We develop 
prediction equations within breeds of dairy cattle and combine them with the genotypes of bulls in 
the 100KBull database to predict the differences between breeds. These predicted breed differences 
are compared to expectations such as higher milk yield in dairy breeds than in beef breeds. 
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MATERIALS AND METHODS
The 1KBull data used in this study was part of the Run 6 (http://www.1000bullgenomes.com/). 

In total the whole genome sequence data of 2,334 Bos taurus cattle were used. Dairy and beef cattle 
breeds and their sample sizes were defined as in Table 1. The defined dairy and beef cattle breeds 
were used for gEBV comparisons described later on. 

Table 1. Sample size of defined dairy and beef cattle breeds

Dairy cattle Beef cattle
Holstein 567 Angus 266

Brown Swiss 148 Simmental 225
Jersey 66 Charolais 128

Montbeliarde 54 Limousin 82
Normandy 44 Hereford 75

Finnish Ayrshire 25 Guelph composite 30
Norwegian Red 24 Beef Booster 29

Guernsey 20 Blonde dAquitaine 26
Swedish Red 16 Belgian Blue 16

Angus Red 6
Maine Anjou 5

BraunviehBeef 4

A set of pleiotropic sequence variants (92.5K) associated with 34 dairy traits were identified 
using Australian dairy bull (N>11,000) and cow populations (N>33,000) and 17.7 million imputed 
sequence variants with accuracy R2 > 0.4. The detail of the data and the GWAS model used can be 
found in (Xiang et al. 2019). Briefly, the traits were decorrelated by Cholesky transformation (Xiang 
et al. 2017). GWAS fitting breed as the fixed effects were conducted for each one of the 34 traits 
separately in bulls and cows.  For the GWAS results of each trait from two sexes, a weighted t value 

was calculated to combine the variant effects with             (Xiang et al. 2018) where 
 
 
 ​​B​ bull​​​ and ​​se​ bull​​​ were the beta and standard error (se) of the bull GWAS and ​​B​ cow​​​ and ​​se​ cow​​​ were the 
beta and se of the cow GWAS. The weighted t value across traits and variants were analysed by the 
multi-trait meta-analysis method (Bolormaa et al. 2014). Variants with the meta-analysis P-value  
< 1e-6 and MAF > 0.001 were retained as significant pleiotropic variants. 

The genomic best linear unbiased prediction (gBLUP) implemented in MTG2 (Lee and Van 
der Werf 2016) was used to train prediction equations in the dairy dataset. A genomic relationship 
matrix (GRM) was calculated from the prioritized pleiotropic variants. Original traits (deregressed 
proofs) were used to perform gBLUP in Australian bulls and cows. The gBLUP model used was 
 ​y  =  mean + ​breed​ i​​ + a + error​, where y = vector of phenotypes for bulls or cows,  ​​breed​ i​​​ = three breeds 
for bulls, Holstein, Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian 
Red and MIX), a = polygenic random effects ~N(0, Gσg2) where G = GRM. This estimated the total 
genetic value of Australian bulls and cows and was followed by the back-solving for the variant solu-
tion in the Australian data. Then, the variant solutions were combined with the sequence genotypes 
to calculate dairy-trait gEBV of the 1KBull cattle. 
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RESULTS AND DISCUSSION
A principle component analysis (PCA) was carried out on the sequence genotypes of the 1KBull 

database and dairy-trait gEBVs (Figure 1). Overall, the first PC separated Holstein from other breeds 
and the 2nd PC separated Angus from other breeds. This may reflect that these two breeds were the 
most common in the database. The 1st PC of gEBVs (X-axis of the right panel of Figure 1) associ-
ated with milk production traits separated some dairy cattle breeds but did not separate beef cattle 
breeds. This also suggested that the 37 gEBV of dairy traits can be used to distinguish the phenotypic 
difference between dairy and beef cattle.

Figure 1. Principal components analysis results of the genomic relationship matrix and the 
dairy trait gEBVs of the 1000-bull-genome cattle

Individual dairy-trait gEBVs were compared between dairy and beef cattle breeds and were also 
compared between Holstein and Jersey breeds in the 1KBull individuals (Figure 1 and Table 2).

Table 2. gEBV difference. ns: not significant 

gEBVs Trait full name Dairy VS Beef Holstein VS Jersey
Prot Protein yield + +
Fat Fat yield + +

Milk Milk yield + +
FatP Fat percentage - -
ProtP Protein percentage - -
SCC Somatic cell count + -
Temp Temperament - -

MSpeed Milking speed + +
Stat Stature + +
Like Likeability - -(ns)

Angul Angularity + +
MuzW Muzzle width - +(ns)
TeatL Teat length - +(ns)
UdTex Udder texture + +
UdDep Udder depth + +(ns)
RumpL Rump length + +
OType Overall type + +
Mamm Mammary systems + +
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Most dairy trait gEBVs were higher in the 1KBull dairy cattle than those in the 1KBull beef cattle. 
Thus, the within breed genomic predictions do predict qualitative differences between breeds. This 
result also supports the informativeness of the retained pleiotropic variants. The lower fat (FatP) and 
protein percentages (ProtP) in the diary breeds than in the beef breeds was due to that their higher 
milk yield. The somatic cell count (SCC) score and milk speed (MSpeed) was higher in the dairy 
cattle than in the beef cattle. The dairy cattle are predicted to have better overall type (OType) and 
mammary system (Mamm), to be more Angular and have shorter teat length (TeatL). These differences 
appeared to be consistent with the common expectations.

In the gEBV comparisons between Holstein Jersey breeds, Holstein cattle had higher milk pro-
ductivities, but lower somatic cell count score, fat and protein percentages than Jersey cattle. Holstein 
cattle had better assessment of the overall type and the mammary system. No significant differences 
were found for likability, muzzle width (MuzW), teat length and udder depth (UdDep) between the 
two breeds. These observations appeared to be consistent with the common knowledge about Holstein 
and Jersey cattle. 

CONCLUSIONS
Overall, our results show that it is possible to predict qualitative differences between breeds using 

genomic prediction based on a set of sequence variants chosen because they are associated with dairy 
traits. This study also provides alternative insights into efficient use of available data to conduct 
validation analysis. Our analysis included ~900 beef cattle from the Run6 of the 1KBull project. It is 
recommended to extend such genomic prediction analysis in a large beef cattle population where the 
allele frequency of the prioritised dairy pleiotropic variants can be properly examined and accounted for.
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SUMMARY
The aim of this study was to estimate genetic parameters for test-day milk yield in different pro-

duction systems in Kenya. 10,923, 19,049 and 26,287 first lactation test-day records from multiple 
breeds under low, medium and high production systems, respectively, were analysed. On average 
cows under high production systems were younger and had a higher test-day milk yield than in low 
and medium production systems. A model fitting fourth order Legendre polynomials was found to 
be the most parsimonious and was therefore used to model the data. Additive genetic and permanent 
environmental variances were heterogeneous along different days in milk and between production 
systems. Heritability and repeatability were also different between days in milk and production sys-
tems. Heritability was on average 27%, 48% and 48% and repeatability 72%, 83% and 78% under 
low, medium and high production systems, respectively. Genetic correlations ranged from -32%, 34% 
and 45% to unity between daily milk yield in different days in milk under low, medium and high 
production systems, respectively. These parameters indicate that random regression using Legendre 
polynomial order four can be used to model test-day milk yield under the three production systems in 
Kenya. The observed heterogeneity of variance indicates that genetic parameters should be estimated 
within production systems for sustainable genetic improvement.

INTRODUCTION
Genetic evaluation using test-day milk yield allows better modelling of environmental factors 

affecting yield and variation in the lactation curve in addition to providing accurate genetic evalua-
tion (Ptak and Schaeffer 1993). Random regression models using orthogonal Legendre polynomials 
are commonly used to model the covariance structure between test-day records. The models should 
include the general shape of the lactation curve, variation in test-day yields, effects specific to cows 
on the same test-day, and production levels if known (Ptak and Schaeffer 1993). In Kenya dairy pro-
duction systems vary in terms of the level of inputs and outputs such that production systems can be 
classified into low, medium and high production systems (Wahinya et al. 2018). Genetic parameters 
of milk yield and persistency using test-day records under these production systems are not available. 
This paper, therefore, aims at estimating genetic parameters for milk yield using test-day Legendre 
polynomial random regression models.

MATERIALS AND METHODS
Data. 56,259 first lactation test-day records were received from the Livestock Recording Centre 

(LRC) in Kenya. The records were observed from 5,179 multi-breed cows in 142 herds from 1990 
to 2014. The cows were managed under different production systems and in different geographi-
cal regions of the country. Records that were retained for this analysis ranged from 5 to 365 days 
post-partum with twelve records on average per cow and a range of three to twenty two records per 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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cow. Test-day yields were cleaned for outliers using a threshold of four standard deviations from the 
mean within the production systems.

Classification of herds into production systems was done in a separate analysis using average pre-
dicted herd 305-day milk yield. To obtain the predicted herd milk yield productivity level, individual 
cows 305 days milk yield were estimated using a linear mixed model with calving year, parity and 
breed group as fixed effects and herd as a random effect. K-means cluster analyses in R software (R 
Core Team 2017) using the Hartigan and Wong (1979) algorithm was then used to group predicted 
herd means into three groups here described as low, medium and high production systems, as sum-
marised in Table 1.

Statistical analysis. Variance components were estimated using univariate animal test-day models 
using the ASReml software package (Gilmour et al. 2015). Contemporary group (CG) was defined 
based on herd-test month of milk sampling. Test-day milk yield was regressed on days in milk to 
account for the lactation curve. A random regression test-day model was fitted as: 

​​y​ ijkl​​  =  ​CG​ i​​ + Age + ​βt​ j​​ + ​g​ l​​ + ​α​ kn​​ ​φ​ n​​​(​t​ j​​)​ + ​p​ kn​​ ​φ​ n​​​(​t​ j​​)​ + ​e​ ijkl​​​
where ​​y​ ijk​​​ is the test-day milk yield sampled on animal k, on ​​t​ j​​​ days in milk within the ith CG, with 
age at calving ​​​(​​Age​)​​​​ and in genetic group ​​g​ l​​​; ​β, ​α​ kn​​ and ​p​ kn​​​ are regression coefficients for days in 
milk, additive and permanent environmental random effects of each cow k, respectively; ​​φ​ n​​​(​t​ j​​)​​ is the 
covariate of the regression function of nth Legendre polynomial order for the day in milk; and ​​e​ ijkl​​​ is 
the residual term. Seventy-four ​​g​ l​​​ were defined separately for sires and dams within six categories 
based on year of birth: before 1986, between 1986 to 1990, 1991 to 1995, 1996 to 2000, 2001 to 
2005 and after 2005, and Friesian, Ayrshire, Guernsey, Jersey, Sahiwal, Brown Swiss, and Unknown 
breeds using Westell-Quaas method (Westell et al. 1988). Residual variance was assumed to be 
heterogeneous considering 11 classes of 5 – 15, 16 – 30, 31 – 60, 61 – 90, 91 – 120, 121 – 150, 151 
– 180, 181 – 210, 211 – 240, 241 – 270, and 271 – 365 days in milk, however, genetic parameters 
were estimated up to 305 days in milk.

Based on log likelihood ratio test, AIC, BIC and variance estimates, a model fitting Legendre 
polynomial order 4 (LP4) was found to be the most parsimonious and therefore, was used to estimate 
genetic parameters. 

Table 1. Test-day data structure and average age (days) and test-day milk yield (kg) (standard 
deviation in brackets) under low, medium and high production systems

System Records Cows Herds Sire Dam CG Age Milk yield
Low 10,923 1,034 50 385 916 587 1,112(277) 7.9(3.6)
Medium 19,049 1,659 55 450 1,283 638 990(228) 12.3(4.8)
High 26,287 2,486 37 626 1,580 434 910(140) 16.5(5.8)

RESULTS AND DISCUSSION
Low, medium and high production systems had different phenotypic means and variances for 

test-day milk yield (Table 1). Table 2 illustrates variance components, heritabilities and repeatabilities 
from model LP4 for selected test-days under the low, medium and high production systems. Variance 
components were heterogenous between and within production systems. Additive genetic variances 
ranged from 1.3 to 6.7, 6.9 to 14.6 and 7.9 to 17.2 under low, medium and high production systems, 
respectively. Within low and medium production systems, additive genetic variance was highest at 
the beginning of the lactation period which is consistent with other reports  in the literature (Muasya 
et al. 2014). In the high production system additive variance increased from the beginning of lacta-
tion to a peak on day 100 then gradually decreased towards the end of the lactation. Andonov et al. 
(2013) reported higher additive variance in the mid-lactation while Berry et al. (2003) observed a 



129

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:127-130

similar trend to what was observed in this study. The trend for permanent environmental variance was 
different between production systems. In the low production system, it was highest around day 60 
then it decreased to the end of the lactation. A similar trend was observed by Andonov et al. (2013) 
although in their study they estimated peaks at the beginning and end of the lactation period. Perma-
nent environmental variance increased gradually from the beginning to the end of the lactation under 
the medium production system while under the high production system, it remained constant with 
peaks at the beginning and end of the lactation period as reported by Muasya et al. (2014). Residual 
variance was constant along the days in milk except for higher residual variances observed in the 
early stage of the lactation in high production systems.

Table 2. Additive, permanent environment (Pe) and residual variances, heritability (h2) and 
repeatability (r) for daily milk yield in selected days in milk (DIM) under low (L), medium (M) 
and high (H) production systems (variances are rounded to the nearest whole number)

DIM Additive Pe Residual h2 (%) r (%)
L M H L M H L M H L M H L M H

5 7 15 8 4 2 14 2 3 4 53 74 30 84 85 84
60 2 7 15 5 6 7 2 3 13 22 46 43 79 81 63
100 1 7 17 4 6 7 2 2 7 18 47 55 71 86 76
180 1 8 14 3 6 7 2 3 5 23 46 53 70 81 80
260 2 7 11 2 6 8 2 2 5 32 44 47 70 82 80
305 2 8 11 3 7 8 2 3 5 28 45 47 66 85 81

Heritability estimates in this study ranged from 18% to 53%, 44% to 74% and 30% to 55% 
under low, medium and high production systems respectively. Similar results have been reported in 
literature (Costa et al. 2005). Higher estimates, especially for the medium production system, were 
reported here than were reported for Holstein-Friesian cattle in Kenya (Muasya et al. 2014). This 
can be attributed to the multi-breed data used in this study which is expected to have a higher genetic 
variance than in a single breed population (Gebreyohannes et al. 2016). Heritability estimates were 
highest at the beginning of the lactation under low and medium production systems (Bignardi et al. 
2009). Under the high production systems heritability estimates were lowest at the beginning of the 
lactation, increased to a peak then gradually decreased to the end of the lactation period. Daily milk 
yield was highly repeatable (63% – 87%) and decreased from the start of the lactation to the end in 
low production systems but increased gradually from the beginning to the end of the lactation in the 
medium and high production systems.

Genetic correlations estimated using model LP4 for test-days up to 305 days are illustrated in 
Figure 1. The trend of correlation was different between production systems. In general, correlations 
were higher between adjacent days in milk but declined with increasing distance between days of 
lactation in all production systems. Most of the correlations were positive except for correlations 
between milk yield at the beginning and end of lactation in the low production system. Negative 
correlations have been reported in literature (Rekaya et al. 1999) indicating that improvement of 
yield at the beginning of the lactation would result in reduced yield at the end and therefore lower 
persistency. Positive correlations indicate that selection for high milk yield at the end of the lactation 
can be effective based on yield at the beginning of the lactation especially under medium and high 
production systems with moderate correlations up to 0.3 and 0.5 respectively.
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Figure 1. Genetic correlation (rg) between milk yields in different days in milk (DIM) under 
low, medium and high production systems

CONCLUSIONS
A fourth order random regression model was most appropriate for modelling milk yield test-day 

records in this study. Genetic and permanent environmental variances were heterogenous along the 
trajectory of days in milk. Genetic and permanent environmental variances, heritabilities and repeat-
abilities were different in low, medium and high production systems. Genetic correlations between milk 
yields in different days of a lactation indicate that selection for improved milk yield at the beginning 
of the lactation period in the medium and high production systems would result in improved yield at 
the end of the lactation and therefore improved persistency, whereas under low production systems 
negative correlations were estimated between early and late lactation. Further analysis of the test day 
records is recommended using alternative models such as cubic splines. This study showed that genetic 
parameters should be estimated within production systems for sustainable genetic improvement and 
selection for milk yield can be effective based on yield at the beginning of the lactation.
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SUMMARY
The concentration of urea in milk (MU) can be predicted from mid infrared spectra in routine 

herd testing of dairy cattle. A high positive phenotypic correlation between MU nitrogen and urinary 
nitrogen has been estimated in controlled indoor trials suggesting selection for low MU nitrogen 
might reduce urinary nitrogen excretion. Estimates of genetic correlations (rG) of MU and other 
traits are required to evaluate the effects of selection for low MU. The aim of the current study was 
to estimate rG between MU and efficiency of crude protein utilization (ECPU; ratio between crude 
protein yield in milk and crude protein intake) throughout the lactation using a random regression 
animal model (RRM). Results show that rG between MU and ECPU was positive in early and late 
lactation but was mostly negative from day 40 to 180 of the lactation (mean=-0.09). The rG of MU 
with crude protein (mean=-0.15) and fat (mean=-0.27) percentages were negative. Further research 
is required to confirm if MU can be used in selection to reduce urea nitrogen excretion and increase 
ECPU without reducing cow productivity and farm profitability.

INTRODUCTION
New Zealand cows graze almost exclusively on pasture all year round. Consequently, cows 

consume feed with more protein relative to energy than they require. The efficient conversion of feed 
protein to milk protein is sensitive to the ratio of protein to energy in the diet. Protein being eaten by 
the cows is degraded to amino acids and ammonia by rumen microbes. If the diet has an excess of 
protein and is deficient in energy, rumen microbes are less efficient in capturing available ammonia, 
therefore the surplus enters the bloodstream and is converted to urea in the liver. The majority of the 
urea produced in the liver is excreted as urine, however a proportion of urea is diffused to milk (milk 
urea, MU) through the bloodstream (Roseler et al. 1993). New Zealand cows fed at pasture produce 
greater levels of MU than levels produced by cows fed balanced mixed rations (Garcia-Muniz et al. 
2013). Urea enters the environment as urine breaks down to ammonia and nitrous oxide at the site of 
the urine patch making it a major source of air and water pollution in New Zealand. Averaged across 
the year, 20% of the nitrogen (N) load is leached through the soil (Selbie et al. 2015). 

Reducing N pollution is an urgent national need and one option may be genetic selection for 
less urea in urine (UU) thereby reducing the amount of urea reaching the environment. Measuring 
UU is not feasible in outdoor farming systems and even if practical it is very expensive to measure. 
However, MU could be useful as an indicator of UU if the strong positive correlation between MU 
nitrogen and UU nitrogen in controlled indoor experiments (Jonker et al. 1998) is confirmed in pastoral 
circumstances. Milk urea can be determined from mid infrared spectra generated from milk samples 
used for routine herd testing, but it is not reported to dairy farmers. 

Milk urea has also been proposed as an indicator of efficiency of crude protein utilization (ECPU) 
(Baker et al. 1995), which can be defined as the proportion of crude protein produced in milk in 
relation to the intake of crude protein. Cows with high ECPU likely divert more absorbed protein for 
milk production rather than excreting and therefore wasting it as urea in urine. 
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Some authors have reported negative rG between the concentration of MU and milk production 
traits (Miglior et al. 2007). However, few studies have reported estimates of rG between MU and 
protein utilization efficiency traits, other than the negative but non-significant correlations found by 
Vallimont et al. (2011) between MU nitrogen and three feed efficiency traits.

There is evidence to suggest that, the additive genetic variance of longitudinal traits can change 
over time. Therefore, it is sensible to expect variability in rG between traits over the different stages 
of lactation. Random regression models based on test-day records can capture variability in additive 
genetic and permanent environmental effects over stages of lactation. To our knowledge there is no 
literature on the variability of rG between MU and ECPU traits at different stages of the lactation 
profile. The objective of this study was to estimate rG between MU and each of ECPU, yields of milk 
(MY), fat (FY) and crude protein (CPY), percentages of fat (FP) and crude protein (CPP) for every 
day of lactation in grazing dairy cows in New Zealand using a test-day RRM.

MATERIALS AND METHODS
Data originated from 468 cows on two mixed-breed herds from Massey University in Palmerston 

North, New Zealand for the 2016 and 2017 production seasons were included in this study. Details 
of animal management and feeding can be found in Correa-Luna et al. (2018).

Daily MY, FY, CPY, FP and CPP were derived from monthly herd-test records. Three additional 
milk samples from each cow were collected in each production season representing early, mid and 
late lactation for determination of MU content. Daily ECPU was defined as the ratio of CPY to daily 
dietary intake of crude protein and expressed as a percentage. For both herds, daily live weight 
measurements were obtained from an automatic walk over scale in the exit race of the milking shed 
and body condition scores measurements on a 10-point scale were assigned in synchrony with each 
herd-test by a single research technician.

Apparent dry matter intake (kg DM consumed/cow/day) was obtained based on summing up the 
estimated metabolisable energy (ME) requirements for maintenance, pregnancy, production and daily 
weight variation and then dividing by ME content of the feed offered. Content of crude protein from 
feed quality analyses were used to calculate crude protein intake (CPI). Cows with a minimum of 3 
herd test records and lactation lengths of not less than 150 days and up to 240 days in milk (DIM) 
were included in the analysis. After editing the data 380 cows remained in the data set.

Co(variance) components corresponding to additive genetic effect for MU, ECPU, MY, FY, CPY, 
FP and CPP was estimated using bivariate random regression test-day animal models. The model 
included the fixed effects of herd-test-date and parity, and as covariates, deviation from median calving 
date, proportion of Holstein-Friesian breed and coefficient of heterosis of Holstein-Friesian and Jersey 
breeds, and days in milk modelled as second-order orthogonal polynomial. Random effects included 
in the model were the animal additive genetic, cow-lactation permanent environment, cow permanent 
environment and residual effects. Animal additive genetic effect was modelled using second-order 
orthogonal polynomials for all the traits except for MY where a third order polynomial was used. 
Constant cow permanent environment, cow-lactation permanent environment variances and residual 
variances were also fitted in the model. Variance and covariance components were estimated using 
the ASReml package (Gilmour et al. 2009). The matrix of additive genetic (co)variances (C) for each 
day of lactation was estimated using the following covariance function, C = Փ⊗G⊗Փ´ where G 
is the matrix of variances of the random regression coefficients for additive genetic effects between 
two traits and Փ is the matrix of orthogonal polynomial coefficients.
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RESULTS AND DISCUSSION
The rG between MU and ECPU, MY, FY, CPY, FP and CPP fluctuated over the lactation from 1 

to 240 DIM (Figure 1). The overall genetic correlation between MU and ECPU was negative (-0.09) 
but point estimates at specific stages of lactation fluctuated from -0.46 to 0.81 (Table 1). Although 
the rG was positive at the beginning, it turned moderately negative by mid-lactation (-0.46). The high 
positive correlation at the end of the lactation could be an artefact of the mathematical properties of 
polynomial random regression and reflect the lesser number of herd-test records towards the end of 
lactations.  However, the strong negative rG between MU and ECPU at the middle of the lactation 
when cows are producing more milk suggests that efficient cows convert more feed protein into milk 
protein and produce milk with low content of urea. These cows may divert absorbed proteins in a 
different manner compared to inefficient cows.

Table 1. Estimates of genetic correlation (rG) between milk urea (MU) and efficiency of crude 
protein utilization (ECPU), yield of milk (MY), fat (FY), crude protein (CPY), and percentage 
of fat (FP) and crude protein (CPP) at different days in milk (DIM) in grazing dairy cows in 
New Zealand

DIM rG(MU-ECPU) rG (MU-MY) rG (MU-FY) rG (MU-CPY) rG (MU-FP) rG (MU-CPP)

1 0.25 0.29 0.06 0.27 -0.36 -0.15
60 -0.23 0.16 -0.16 -0.04 -0.23 -0.13
120 -0.46 0.18 -0.14 0.02 -0.29 -0.17
180 -0.11 0.21 0.17 0.16 -0.27 -0.18
240 0.81 0.29 0.55 0.64 -0.28 -0.09

 Figure 1. Daily genetic correlations (rG) between milk urea (MU) and yield of milk (MY), fat 
(FY), crude protein (CPY), percentage of fat (FP), crude protein (CPP) and efficiency of crude 
protein and utilization (ECPU) at different days in milk in grazing dairy cows in New Zealand

The estimates of rG of MU and FP and CPP were negative with some small fluctuations throughout 
the lactation. The rG between MU and FP fluctuated from -0.23 to -0.36 and MU and CPP from -0.09 
to -0.18 (Table 1). These negative correlations indicate that cows produce milk with high CPP and 
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FP and low content of MU. Together with the rG between MU and ECPU these results suggest that 
cows that allocate more CP from the diet into milk protein divert less urea in milk. However, the 
rG between MY and MU was positive throughout the lactation (0.19) with small fluctuations (0.16 
to 0.29) (Table 1). A positive relationship between MU and MY has been previously reported by 
Godden et al. (2001) and this might be explained by the increased level of feeding that involuntarily 
increases the level of protein intake and this also increases the production of milk. Diets with a high 
CP:energy ratio reduce the efficiency of rumen microbes, with more ammonia converted into urea 
instead of proteins in milk (Baker et al. 1995). 

The estimates of rG of MU with FY and CPY ranged from -0.16 to 0.55 and -0.04 to 0.64 respectively 
(Table 1). Despite the small sample size used in this study, the average rG of MU with FY and CPY 
estimated in this study were within the range reported by Beatson et al. (2019) using a much larger 
data set comprising several mixed-breed dairy herds in New Zealand. Studies by Wood et al. (2003) 
reported rG of MU and FY and CPY not different from zero. 

CONCLUSIONS
The genetic correlation between MU and ECPU was positive in early and late lactation but was 

mostly negative from day 40 to 180 of the lactation indicating that inclusion of MU in a selection 
index can cause correlated responses in ECPU. Further research is required to estimate the genetic 
correlation between MU and urine urea to fully evaluate if MU can be used as a trait to reduce nitrogen 
excretion in grazing dairy cows.
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SUMMARY
Milk electrical conductivity is an indicator trait for mastitis, and for maintaining udder health, 

moderate milking speed is important. The heritabilities of sum of daily milk yields, mean milk 
electrical conductivity and mean milk flow rate for each 30-day period along the lactation trajectory 
in Jersey cows milking in their first lactation in Sri Lanka were estimated. The data included 248,854 
daily records and 362,754 morning and evening records from 991 cows that calved from 2015 to 
2018. Variance components and variance ratios were estimated from posterior means obtained from 
a Gibbs sampler. The heritability as estimated by univariate analyses for milk yield, milk electrical 
conductivity and milk flow rate ranged from 0.04 ± 0.01 to 0.13 ± 0.03, from 0.06 ± 0.02 to 0.09 ± 
0.02, and from 0.06 ± 0.02 to 0.18 ± 0.05, respectively. Additive genetic correlations between milk 
yield and milk electrical conductivity or milk flow rate along the lactation ranged from -0.31 ± 0.49 
to 0.77 ± 0.19 and from 0.46 ± 0.29 to 0.89 ± 0.12, respectively. Present heritability estimates were 
sufficiently high for milk electrical conductivity and flow rate to be used in a selection index. However, 
these estimates should be confirmed with more data. 

INTRODUCTION
Mastitis is an important disease among dairy cows in the tropics which causes substantial economic 

losses (Bangar et al. 2015). Selective breeding against mastitis susceptibility is important to increase 
mastitis resistance in dairy cows. Milk electrical conductivity has been used as an indirect trait to reflect 
mastitis incidence (Norberg 2005). Fast milking is associated with a wider teat canal, which could 
lead to the entry of pathogens, and increased somatic cell score (Carlström et al. 2016). Therefore, 
moderate milk flow rate is important for udder health. The increasing use of modern milking systems 
in developing countries provides an opportunity to use automatically recorded data such as daily milk 
yield and milk electrical conductivity in genetic evaluation (Samaraweera et al. 2018). In Sri Lanka, 
milking systems with automatic recording are becoming popular, alongside recent importation of 
dairy cows to large-scale farms. The aim of this study was to estimate genetic parameters for milk 
yield, milk electrical conductivity and milk flow rate in first-lactation Jersey cows in an intensive 
dairy farm in Sri Lanka.

MATERIALS AND METHODS
Data. Milk yield records were obtained from a dairy farm located 37 meters above sea level of 

Sri Lanka, using Jersey cows imported from Australia as pregnant heifers. Milk yield, milk electrical 
conductivity and milking duration were recorded automatically in a DeLaval™ milking parlour. Daily 
milk yield and milking duration data were available from 248,854 daily records and milk electrical 
conductivity was available from 362,754 morning and evening (session) records from days five to 305 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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in first lactation. Data were available for 991 Jersey cows that calved from July 2015 to January 2018. 
Data cleaning. Any negative milking durations for daily milk yields were removed and assumed 

to be an error in recording. Milking duration (measured in sec) was used to calculate milk flow rate 
(as kg/min). Any records with zero milk electrical conductivity were removed assuming a failure to 
record the milk electrical conductivity. Daily averages for the milk electrical conductivity (mS/cm) 
were calculated. The lactation length was divided into ten, 30-day periods starting from day five and 
going through to day 305. The total milk yield (MY), mean milk electrical conductivity (EC) and 
mean milk flow rate (FR) were calculated for each period. Outliers that differed by more than four 
standard deviations from the mean were excluded from the analyses. 

Genetic parameter estimation. For each 30-day period, MY, EC and FR were considered as 
separate traits. The univariate animal model fitted was , where  is the vector of 
observations,  is the vector of estimates for fixed effects of year-season of calving (YS, for all traits) 
and lactation length as a covariate (for milk yield),  is the vector of random animal additive genetic 
effects estimates,  and , the incidence matrices relating records to the fixed effects and random 
animal effects, and , the vector of random residual effects. The YS was used as the contemporary 
group and any contemporary groups with less than eight cows were discarded. There were two seasons 
as dry (from Dec to April next year) and wet (from May to Nov) and five YS combinations. The 
total number of animals in the pedigree was 1572 with information up to 3 generations. Cows with 
phenotypic records (991) descended from 39 sires and 521 cows out of total cows with phenotypes 
were related to one of 38 maternal grandsires. No maternal grandsires were used as sires. All sires 
for cows with data were known, but all dams were unknown. Therefore, maternal grandsires were 
fitted into the pedigree using dummy dams assuming a unique dam for each offspring. 

Variance components for the three traits were estimated via the univariate model described above, 
using a Bayesian approach implemented in the BESSiE software (Boerner and Tier 2016). A blocked 
Gibbs sampler was run for 50,000 cycles, with scaled inverted Wishart distributions assigned as prior 
processes to the residual and additive genetic co-variance matrices with parameter “ ” set to  “x” and 
“y”, respectively (see Sorensen and Gianola (2002, pp. 576-588) for further details). The additive 
genetic and residual variances were calculated as posterior means by averaging the sum of every 100th 
iteration omitting the first 1000 iterations as burn-in. The additive genetic correlations between MY 
and EC and MY and FR for each period were estimated with bivariate animal models. The additive 
genetic correlations between periods within the same traits were estimated with ten-trait animal model. 

RESULTS AND DISCUSSION
Milk yield (MY) was highest in the second and third 30-day periods, close to the peak milk 

production (around 60 days in milk) (Table 1). The coefficient of variation (CV) for MY was highest 
at the beginning (0.32) and at the end of lactation (0.35) whereas in the middle of the lactation the 
CV was around 0.22. 

Mean EC across the whole lactation was 6.2 mS/cm and EC was highest at the beginning of lactation 
(6.4 mS/cm) and slightly decreased towards the end of lactation (6.2 mS/cm) (Table 1), with little 
variation in EC over the lactation. Similar ECs were observed in the literature for mastitis-infected 
cows, e.g. Norberg et al. (2004) found healthy, sub-clinically infected and cows with clinical mastitis 
had ECs (mS/cm) of 5.30 ± 0.03, 5.75 ± 0.04 and 6.73 ± 0.06, respectively (P<0.001). Therefore, 
the relatively high EC values in this study suggests that some cows had mastitis. However, there are 
a number of other factors that affect the milk EC such as milk temperature, bacterial strain, milk fat 
content etc. (Nielen et al. 1992; Woolford et al. 1998; Mabrook and Petty 2003). Therefore, changes 
in milk EC need to be validated with mastitis incidences.
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Mean FR for 30-day milking periods throughout the lactation ranged from 1.08 to 1.41 kg/min 
(Table 1) and minimum and maximum values ranged from 0.40 to 2.30 kg/min, respectively. A study 
with higher mean MY (30 kg/d) than this study (14 kg/d) reported higher mean (2.2 ± 0.5 kg/min) 
and variation (from 0.3 to 8.2 kg/min) for FR (Firk et al. 2002).

Table 1. Descriptive statistics of milk yield (kg), milk electrical conductivity (mS/cm) & milk 
flow rate (kg/min) in each 30-day days in milk class

Days in 
milk 

Milk yield Milk electrical conductivity Milk flow rate
# cows Mean SD # cows Mean SD # cows Mean SD

5-34 967 408 131 961 6.40 0.36 966 1.26 0.23
35-64 944 469 113 944 6.31 0.34 831 1.17 0.27
65-94 929 459 96 931 6.26 0.35 728 1.08 0.27

95-124 919 431 89 923 6.23 0.35 945 1.41 0.25
125-154 914 409 85 917 6.21 0.33 932 1.40 0.25
155-184 914 388 87 912 6.18 0.33 924 1.36 0.25
185-214 896 370 86 901 6.18 0.35 918 1.35 0.24
215-244 891 344 88 889 6.16 0.36 917 1.35 0.24
245-274 880 315 88 877 6.20 0.37 898 1.30 0.25
275-305 831 285 100 819 6.19 0.37 891 1.25 0.25

The heritability estimates for MY and EC were low compared to literature (Table 2). For example, 
moderate and high heritability for EC (ranged from 0.15 to 0.39) has been reported in Norberg (2005). 
FR was moderately heritable (0.10) and our estimates were consistent with Zwald et al. (2005) 
(milking duration, 0.17 ± 0.03). The phenotypic variance for EC and FR (Table 1) was close to the 
observed variance (Table 2) indicating that the YS did not explain much of the variance of EC and 
FR. Heritability estimates were slightly higher for all traits in the bivariate and multivariate analyses 
but differences from those from the univariate analysis were small. 

Table 2. Heritability ± standard errors ( ) & phenotypic variance ( ) from 
univariate analyses for milk yield, milk electrical conductivity and milk flow rate in Jersey cows

Days in 
milk 

Milk yield Milk electrical conductivity Milk flow rate

5-34 0.08 ± 0.03 5099 0.09 ± 0.02 0.13 0.06 ± 0.02 0.05
35-64 0.13 ± 0.03 5675 0.06 ± 0.02 0.12 0.09 ± 0.03 0.07
65-94 0.08 ± 0.02 5196 0.08 ± 0.03 0.12 0.07 ± 0.02 0.07

95-124 0.12 ± 0.03 5385 0.09 ± 0.02 0.12 0.09 ± 0.03 0.06
125-154 0.11 ± 0.03 4809 0.06 ± 0.02 0.11 0.13 ± 0.04 0.06
155-184 0.10 ± 0.03 5067 0.08 ± 0.02 0.11 0.18 ± 0.05 0.06
185-214 0.08 ± 0.02 5564 0.08 ± 0.03 0.12 0.15 ± 0.04 0.05
215-244 0.04 ± 0.01 5593 0.08 ± 0.02 0.13 0.10 ± 0.03 0.06
245-274 0.04 ± 0.02 5138 0.06 ± 0.02 0.14 0.11 ± 0.03 0.07
275-305 0.06 ± 0.02 5443 0.06 ± 0.02 0.14 0.07 ± 0.02 0.06

The low additive genetic correlations (<0.30, results not shown) within the same trait across 
30-day periods of lactation show that they were independent traits. Additive genetic correlations 
between MY and EC ranged from -0.31 ± 0.49 to 0.77 ± 0.19 with high standard errors (Table 3). The 
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additive genetic correlation between MY and EC was higher and positive around peak milk production 
(from 65 to 94 days). Significant positive additive genetic correlations between MY and FR were 
also observed, and additive genetic correlations ranged from 0.46 ± 0.29 to 0.89 ± 0.12 (Table 3). 
Therefore, selecting cows solely for high milk yield would lead to a correlated response of increased 
FR and EC. Therefore, selection emphasis would need to balance the value of increasing milk yield 
with electrical conductivity and an intermediate optimum for milk flow rate. 

Table 3. Additive genetic ( ) and phenotypic ( ) correlations between milk yield (1), milk 
electrical conductivity (2) & milk flow rate (3) for each days in milk class in Jersey cows

Days in milk
5-34 35-64 65-94 95-124 125-154 155-184 185-214 215-244 245-274 275-305

-.11±.40 .25±.46 .77±.19 .44±.32 -.03±.49 .26±.49 .03±.45 .02±.60 -.31±.49 -.31±.48
-.04±.03 .08±.04 .12±0.03 .09±.03 .09±.03 .08±.03 -.01±.04 -.05±.04 -.09±.05 -.19±.04
.89±.12 .46±.29 .54±.35 .54±.33 .78±.22 .53±.36 .79±.20 .66±.33 .53±.39 .81±.19
.69±.02 .50±.03 .48±.03 .51±.03 .56±.02 .64±.02 .63±.02 .65±.02 .67±.02 .67±.02

CONCLUSIONS
A significant positive additive genetic correlation between MY and EC was found around peak 

milk production and the same between MY and FR was positive. The heritabilities for MY and EC 
from this data were lower than anticipated. However, present heritability estimates were adequate to 
use EC and FR in a selection index. The genetic parameters for MY, EC and FR should be confirmed 
with more data. 
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SUMMARY
A previous study investigated the impact of selection for fertility upon milk yield in the first 

lactation. The current study extends this analysis to include the yield and content of fat and protein. 
Daughter test-day records were used to estimate Wilmink curve parameters of each trait for 2,405 sires. 
The sires also had breeding values for the production traits and their fertility index. Correlations and 
linear regression between curve parameters and breeding values were carried out with and without 
correction for environmental effects. Selection for fertility was found to negatively affect milk, fat 
and protein yield. Improved fertility was found to result in an increased initial fat and protein content, 
but also increased the rate of decline during early lactation causing a reduced nadir. The persistency 
of protein content reduced with increased fertility; whilst, fat content rebounded to a greater extent in 
fertile cows than those with lower fertility. Fat-to-protein ratio reached its maximum about 5 weeks 
before peak milk production and was higher for less fertile cows, coinciding with time of strongest 
energy imbalance. Correction for environmental effects resulted in overall lower production curves 
for yield traits and fat content, but higher protein content. After correction, cows with higher fertility 
produced more milk compared to lower fertile cows purely on their genetic merit. Similar patterns 
were found for fat and protein yield. Fat-to-protein ratio was lower for higher fertile cows throughout 
the entire lactation.

INTRODUCTION
With the advent of modern cattle breeding in the mid to late 20th century, milk production has 

seen a dramatic increase (Brotherstone and Goddard 2005). With modern breeding, a whole array of 
factors such as nutrition, health and fertility came into focus, and it was observed that fertility declined 
with increasing milk production (De Kruif and Mijten 1992; Crowe et al. 2018). Consequently, such 
factors have been included in breeding schemes which have incorporated weighted indices with health 
and fertility traits (Osteras et al. 2007, Boichard and Brochard 2012).

Strucken et al. (2015) concluded that the observed impact of milk production on fertility had 
both a functional (to provide optimal birth spacing) and causal (energy deficit) explanation. Other 
studies have shown the impact of milk fat and protein on fertility traits, with the fat-to-protein ratio 
being an accepted measure for energy balance. The fat-to-protein ratio was shown to affect days-open 
(Buckley et al. 2003, Puangdee et al. 2017); higher fat and protein yields were genetically correlated 
with longer calving intervals (Albarran-Portillo and Pollott 2013), and lower protein content was 
associated with an increased risk of delayed ovulation (Opsomer et al. 2000).

This study follows on from Strucken et al. (2015) and investigates whether selection for fertility 
has resulted in observable effects on the lactation curves for milk, fat and protein yield, and fat and 
protein content; or whether the application of indices allowed breeders to break the genetic link 
between milk production and fertility.

MATERIALS AND METHODS
Data. Estimated breeding values (EBVs) and the fertility index (RZR) were available for 2,405 
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Holstein Friesian sires as provided by VIT, Verden (Germany). EBVs for five milk production traits 
represented actual deviations from the population mean at 305 days in milk (DIM). The RZR summa-
rizes pre-corrected breeding values for six fertility traits and is standardized to a mean of 100 with a 
standard deviation of 12. Additionally, test-day records of five milk production traits were available 
for 1,797,852 daughters (Table 1). Each sire had an average of 747 daughters (min=50, max=84.387), 
with a minimum of 386 and a maximum of 731,431 test-day records per sire.

Table 1. Test-day records of 1.8m cows in the first lactation for five milk production traits and 
the fertility index (RZR) for 2405 sires

Milk yield 
(kg)

Fat yield 
(kg)

Protein  
yield (kg)

Fat content 
(%)

Protein con-
tent (%) RZR

mean 25.57 1.04 0.87 4.14 3.42 101
min 2.00 0.04 0.05 1.60 2.00 62
max 98.80 5.48 3.84 10.50 7.97 136
SD 6.54 0.25 0.20 0.74 0.35 9.9

# test-days 14,862,232

Analyses. Test-day records for each trait were used to fit 38 lactation curve models with a mecha-
nistic or biological interpretation of curve parameters, and goodness of fit was assessed using 7 criteria. 
All selection criteria provided the same ranking of models except the Durbin-Watson coefficient. The 
Wilmink curve (Wilmink 1987) was among the top 10 models for all traits and was selected to allow 
for comparison of selection effects between traits.

The Wilmink curve was adjusted to allow for better interpretation of parameters, such that:

y = a + (b-a) * (1-exp-k*DIM) - c * DIM

where y is the test-day record of yield (kg); a is the y-intercept (kg), i.e. starting yield; b is the potential 
maximum daily yield (kg); c is the gradient of the linear decay in yield (kg d-1); k is the increase in 
yield prior to peak production; and DIM are the days in milk.

Pearson’s correlation coefficients between production EBVs and the RZR, and between the curve 
parameters and the EBVs and RZR were calculated. A linear regression of EBVs and RZR on the curve 
parameters was used to further assess the impact of selection on the shape of the curve. To separate 
environmental from genetic effects, we estimated curve parameters per sire within a linear mixed 
model which required the fixation of parameter k based on estimates retrieved from the non-linear 
curve previously used. Fixed effects included age at calving, year season, and milk recording system 
nested within farm. These calculations were carried out across the top and bottom 9% of sires (216 
sires) for the fertility index which showed significant differences based on an unpaired two-sided 
t-test assuming unequal variances.

RESULTS
The pseudo-genetic correlations between yield EBVs and RZR were significantly negative (milk 

yield = -0.282, fat yield = -0.231, protein yield = -0.305), whilst the content EBVs were significantly 
positively correlated with RZR (fat content = 0.077, protein content = 0.049), confirming previous 
reports (Oltenacu & Broom 2010).

Correlations between uncorrected curve parameters and RZR described a similar relationship as 
the linear regression of RZR on curve parameters (Table 2). Parameter a, determining the y-intercept, 
was not significantly affected by fertility for any of the analysed traits. Parameter b, describing the 
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potential maximum, was strongly influenced by the level of RZR showing that a better fertility resulted 
in lower production for the yield traits (except fat yield), and an increase for the content traits (Table 
2). Associations of fertility with parameters k, describing the production slope before the nadir, showed 
that better fertility resulted in a stronger increase and earlier peak for milk yield, and a lesser decrease 
in early lactation for fat and protein content. Parameter c, describing the slope after the nadir, showed 
that better fertility resulted in a stronger decrease in fat yield, stronger increase in fat content and a 
lesser increase in protein content (Table 2). Fat-to-protein ratio spiked at lactation day 12, after which 
it dropped and almost stabilized around lactation day 65. Cows with better fertility showed a lower 
fat-to-protein ratio at peak, and higher and slightly increasing ratio after lactation day 65 (Figure 1).

Table 2. Correlation/Regression coefficient for RZR on uncorrected lactation curve parameters 
in the first lactation

Milk yield Fat yield Protein yield Fat content Protein content

a -0.031/
-0.01

0.002/
0.017

0.017/
0.029

-0.017/
-0.023

-0.008/
-0.002

b -0.181***/
-0.04***

-0.048/
-0.0009

-0.052†/
-0.002*

0.077**/
0.002***

0.167***/
0.001***

c -0.11/
-0.000006

0.068†/
0.000002*

0.012/
0.0000006

-0.054*/
-0.000004**

0.12***/
0.000004***

k 0.064*/
0.00017**

0.032/
0.0008

-0.018/
-0.00006

0.036/
0.0001†

0.05†/
0.0003*

***P>0.0001, **P>0.001, *P>0.01, †P>0.05

Estimating curve parameters under the consideration of environmental effects showed that cows 
with a higher fertility also produced more milk (Figure 1), fat and protein yield, less fat content, and 
almost no difference for protein content. This being the inverse of the observed negative correlations 
between yield and fertility traits for uncorrected parameters. Correction for environmental effects 
showed that higher fertile cows have a strongly decreased peak and lower ratio throughout the entire 
lactation (Figure 1).

DISCUSSION
Reductions in fertility have been largely attributed to an increase in milk production and inade-

quate nutrition, which (especially at the beginning of the lactation) causes an energy deficit for the 
cow. This energy deficit forces the metabolism of the cow to shift energy partitioning in favour of 
milk production and results in the observed negative correlation with fertility traits. (Strucken et al. 
2015). As such, it may be expected that breeding for better fertility slows milk production in early 
and peak lactation, unless the genetic link between these traits has been broken. We found that better 
fertility decreased milk production (especially around its peak), as seen by the significant effects on 
parameter b (parameter a in Strucken et al. (2015)); and moreover, similar effects were observed 
for fat and protein yield. Fat and protein content increased in early lactation with a better fertility, 
however, fat-to-protein ratio was lower for more fertile cows, all confirming the hypothesis of an 
energy deficit causing the negative trait correlation.

Correction for environmental effects revealed that highly fertile cows produced more milk, fat, 
and protein yield than less fertile cows, however, both high and low fertility cows profited from the 
environment. After correction for environmental effects, cows with a low fertility had a higher fat 
content, whilst protein content remained nearly unchanged. The fat-to-protein ratio strongly increased 
in early lactation around the time when the energy deficit can be expected to be most developed 



142

﻿Dairy

(Negussie et al. 2013). After correction for environmental effects, cows with the highest fertility 
showed an overall decreased in fat-to-protein ratio, whilst the environment did not seem to affect 
cows with a poorer fertility (Figure 1).

Figure 1. Lactation curves for milk yield and fat-to-protein ratio predicted with corrected and 
uncorrected Wilmink curve parameters for bulls ranking at the top and bottom of fertility

CONCLUSIONS
Highly fertile cows seem to be capable of producing more milk compared to low fertile cows purely 

based on the genetic merit. This suggests that the negative genetic link between high milk production 
and low fertility can be broken. The environment, i.e. favourable management, is not as optimal for 
high fertile cows and a limiting factor that can be overcome with better management, but sufficient 
for less fertile cows. This is also reflected in the fat-to-protein ratio as a measure of energy balance, 
which shows that especially highly fertile cows experience a strong energy deficit in early lactation.
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SUMMARY
Culling reasons in Australian dairy cattle were examined using culling records from 1995 through 

2016. A total of 2,452,124 individual cow culling observations were obtained of which 2,140,337 
were Holstein and 311,787 were from Jersey cows. The most important culling reasons identified 
were infertility (17.2%), mastitis (13.3%), low production (9.7%), sold for dairy purpose (6.4%) 
and old age (6.5%) while 38.7% were “other reasons not reported”. The average age at culling was 
nearly the same for Holsteins (6.75 years) and Jerseys (6.73 years). The trend in age at culling over 
the last twenty years showed a slight increase for Holstein cows (by 0.01 years) and a decrease for 
Jersey cows (by 0.03 years). Over the last two decades, culling age has changed little in both breeds, 
whereas culling reasons have changed with low production becoming a less important reason for 
culling (decreasing by 29% and 37% in Holsteins and Jerseys, respectively) and infertility increasing 
in both breeds by 13% and 19% in Holsteins and Jerseys, respectively).

INTRODUCTION
A key objective of dairy farmers is to reduce replacement costs, by keeping productive and fertile 

cows in their herds. However, a number of reasons may trigger farmers to cull cows from their herd; 
such reasons for culling can be classified as voluntary, or involuntary culling (Weigel et al. 2003; 
Fetrow et al. 2006). Involuntary culling happens when the farmer is coerced to cull a productive, 
profitable cow due to illness, injury, infertility, or death. Voluntary culling, on the other hand, occurs 
when a farmer chooses to remove a cow due to poor milk production, old age and replacement. 
Longevity of a cow is also an important trait affecting dairy farm profitability. Increased longevity 
of dairy cattle helps dairy farmers to get more economic return and reduce replacement cost (Allaire 
and Gibson 1992; Pritchard et al. 2013). Protein yield and fertility are important traits in the breeding 
objective, in addition to being possible reasons for culling. A previous study (Haile-Mariam and Pryce 
2015) estimated genetic parameters for survival traits over time, however, information on reasons 
for culling and their trend over time is limited in the Australian dairy herd. The aim of this study was 
therefore to investigate the main causes of culling in Australian dairy herds and thereby to evaluate 
trends in age of culling and culling reasons.

MATERIAL AND METHODS
Data source. For this study, data on culling reasons were provided by DataGene (previously 

ADHIS). The data used for this study were extracted from milk recorded herds in Australia. The 
data were collected based on farmers’ recording about each culling reason. A total of 2,502,258 
records were received with each record including data on cow identification number, national herd 
identification number, breed, date of birth of a cow, disposal date of a cow and a code for individual 
culling reasons. Only a single reason of culling was recorded for each cow removed from the herd. 
Records of all culled cows were examined across year of culling. Analysis based on year of birth 
was not considered due to the effect of censored data in recent birth years and relatively older cows 
in the data for herds in those earlier birth years.

For an evaluation of trend in age at culling over time, we undertook an analysis based on ordering 
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cows by culling year and counting the total number of cows culled for all years from 1970 through to 
2016. However, for the years from 1970 to 1994, there were very few recorded reasons for culling. 
As a result, records that had a year of culling before 1995 were disregarded. In the final data set, a 
total of 2,452,124 records (2,140,337 Holstein and 311,787 Jersey cows) were retained from cows in 
11,145 herds culled between 1995 and 2016. Birth season of a cow was classified into two categories; 
season 1 contained the records of cows that were born from January to June while season 2 covered 
the period from July to December, as in (Visscher and Goddard 1995b). For evaluation of trend of 
culling reasons, data were also split into two year groups (1995-2005 and 2006-2015) based on the 
differences observed in proportion of culling reasons on these periods.

Statistical analysis. Descriptive statistics were carried out to identify and describe the main disposal 
reasons stated by farmers. Trends in age at culling were analysed based on year of culling to evaluate 
how herdlife has changed over time according to the animal’s culling year and how it differed between 
breeds. Age at culling was analysed using a univariate analysis with the following linear model, 

yijkm = µ + Bi +Yj + HSk + eijkm
where, yijkm= is an observed age (in years) on animal ijkm in breed i, year j and in herd-season k, 
µ = the overall mean, Bi = effect of breed, Yj = effect of culling year and  HSk = the fixed effect of 
herd-season, eijkm = error term.

RESULTS 
Reasons for culling. About 38.7% of the cows left the herd for ‘other reasons’ (Table 1). Aside 

from ‘other reasons’, the main reasons for culling across breeds were infertility, mastitis, low produc-
tion, sale for dairy purpose and old age. The proportion of cows culled due to infertility was slightly 
higher for Holstein than Jersey cows. The proportion of cows culled for infertility in both breeds 
increased in the culling year group (2006-2015) compared with the culling year group (1995-2005). 
Next to infertility, the second and third most common reasons of culling in Holstein cows were mas-
titis and low production. By contrast, the second and third causes for culling were reversed in Jersey 
cows. Culling due to low production decreased from 10.4 to 7.4% in Holstein and 18.2 to 11.4% in 
Jersey cows, between the decades 1995-2005 and 2006-2015. In contrast, the proportion of cows 
culled due to sale reasons increased from 1995-2005 to 2006-2015. Culling of cows for involuntary 
culling (IC) reasons included infertility, mastitis and accident, which together accounted for 33.0% 
of culling reasons for the 2 breeds. Voluntary culling (VC) accounted for 22.5% of reasons, with 
about 9.7%, 6.4% and 6.4% of cows removed because of low production, sale for dairy purpose and 
old age, respectively. 

Table 1. Proportion (%) of culling reason types by breed and year of culling

Culling reasons Year of culling
(1995-2005)

Year of culling
(2006-2015) Overall

Holstein Jersey Holstein Jersey
Other reasons 39.8 37.5 38.5 33.8 38.7
Infertility 16.4 14.5 18.5 17.3 17.3
Mastitis 14.0 11.9 12.8 13.6 13.3
Low production 10.4 18.2 7.4 11.4 9.7
Old age 7.0 7.4 5.7 6.4 6.6
Type defect 3.3 2.9 3.2 4.2 3.3
Sold for dairy purpose 3.3 3.5 9.7 9.6 6.4
Accident 2.7 1.6 1.8 1.4 2.2
Poor temperament 1.9 2.1 1.2 1.8 1.6
Calving difficulties 1.2 1.2 1.2 0.6 1.1
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 Trend in culling age. The least squares mean of age at culling across year of culling for Holstein and 
Jersey cow breeds is shown in Figure 1. The difference in estimated age at culling was small between 
breeds but significant (P<0.05). Holstein dairy cows had slightly higher estimated mean age at culling 
compared with their Jersey counterparts (6.75 years for Holstein and 6.73 years for Jersey cows). 
The minimum and maximum mean estimated ages at culling for Holstein cows were observed in the 
year 2003 (6.55 years) and in 1997 (7.0 years), whereas for Jersey cows the corresponding average 
values were 6.45 years in 2005 and 7.10 years in the year 1997, respectively. Holstein cows had a 
slightly increasing trend in age at culling (0.01 years) over the last 20 years whereas the estimated 
age at culling had declined little in the same period for Jersey cows. Overall, Holstein cows were 
culled at a slightly older age, especially in the last decade, and that the age of voluntary culling (VC) 
was overall slightly lower than involuntary culling (IC) with more difference for the Jersey cows. 
There was also an association between culling reasons, whereby younger cows were culled for low 
production and infertility, while older cows were culled for mastitis. 

Figure 1. Least squares means of age at culling in each year for Holstein and Jersey dairy cows 
by year of culling

DISCUSSION 
Descriptive statistics were used to calculate the proportion of culling reasons recorded for the 

two dairy breeds. Identifying reasons for culling cows could also be useful in determining the main 
problems in dairy herds and in identifying breeding objectives and evaluating results of selection. 
Excluding other reasons not reported, the most prevalent reason for culling dairy cows was infer-
tility followed by mastitis and low production. In agreement to the current study, previous research 
findings identified infertility as the main reason of culling dairy cows in Sweden (Ahlman et al. 
2011) and USA (Bascom and Young 1998; Smith et al. 2000). In this study, the phenotypic trend of 
culling cows due to infertility has increased for both dairy cow breeds from 1995-2005 to 2006-2015, 
whereas low production has shown a sharp decline. Culling due to low production could be part of 
the economic and management decisions to maintain a required number of dairy cows in a particular 
farm where good producing cows might have low chance to be culled (Roxström and Strandberg 
2002; Pinedo et al. 2014). The proportion of Jersey cows culled for mastitis increased over the year 
groups. Previous studies regarding the proportion of cows leaving for mastitis of 12.1% (Hadley et 
al. 2006) and 12.0% (Smith et al. 2000) in the US dairy cows are closer to the levels in this study. 
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In the current study, culling related to other reasons not reported had the highest proportion for both 
dairy breeds. In terms of making management decisions, this category yields no information. A more 
descriptive category needs to be developed that can account for the list of reasons that these cows 
were removed from the herd.

The pattern of age at culling over time for both dairy breeds was evaluated with the year of birth 
and year of culling. When age at culling was evaluated against year of birth, the estimated trend of 
age at culling sharply declined (results not presented) but this estimate was deemed to be biased 
because of censoring. A censored record can be seen as the minimum survival the cow reaches and this 
could be a problem in prediction of breeding values for survival because estimated breeding values 
are required for live animals.  By fitting year of culling in the model, all age groups of culled cows 
were included in the analysis. In the same way, the trend of estimated age at culling for the two dairy 
breeds for the last 20 years was less varied (Figure1). The overall estimated least squares mean for 
age at culling was about 6.65 years. By assuming the average  age of 2 years at first calving for most 
of the heifers, the productive life of cows in the present study estimated to be 4.6 lactations, which 
is comparable with earlier reports of average productive life of 4.6  and 4.3 lactations for Holstein 
and Jersey cows, respectively in Australian dairy cattle (Visscher and Goddard 1995a). The average 
herdlife observed in the current study is higher than the average herd life observed in Dutch dairy 
cattle (Van Pelt et al. 2015), which was found to be 3.2 lactations. 

CONCLUSION
Phenotypic analysis of culling data showed that the estimated average age at culling has changed 

little between 1995 and 2016. The proportion of major culling reasons such as infertility, low produc-
tion and mastitis in both dairy breeds have changed over the past two decades; which might indicate a 
change in survival traits over time and a likely change in correlation of survival with other objective 
traits such as yield and fertility. 
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SUMMARY
Gilts and sows from two nucleus farms (N=1103) were recorded after transfer to the farrowing shed 

for a range of health-related traits and subsequent lactation outcomes. Traits recorded pre-farrowing 
included fight lesions (FIGHT), caliper score (CAL), udder condition (MAST), haemoglobin level 
(HB), respiration rate (RESP), rectal temperature (RECT) and feed refusal before farrowing (FRBF). 
Lactation outcomes included the number of weaned piglets (NWEAN) and lactation failure (LFAIL). 
The highest heritabilities (h2) were estimated for CAL (0.34±0.08), FRBF (0.21±0.08) and RESP 
(0.20±0.09), while the remaining traits were lowly heritable. Antagonistic genetic (rg) and/or phenotypic 
(rp) correlations were estimated for NWEAN with FRBF (rg: -0.36±0.30; rp: -0.10±0.03) and for 
CAL with HB (rg: 0.33±0.41; rp: 0.15±0.03). The absence of pre-farrowing mastitis was associated 
with higher NWEAN both genetically (-0.74±0.30) and phenotypically (-0.05±0.03), indicating that 
selection for healthy udder led to increase in NWEAN. Sows with higher levels of HB and fewer feed 
refusals had increased NWEAN. Non-zero heritabilities demonstrate that health-related traits have 
a genetic component, but evaluation of their potential use as selection criteria to improve lactation 
outcomes for sows requires additional data to obtain more accurate estimates of genetic correlations.

INTRODUCTION
Lactation outcomes can be defined by the number of weaned piglets, lactation length or removal 

reasons related to poor mothering ability. Selection for litter size in pigs is aimed at increasing the 
number of weaned piglets, which can have detrimental effects for health of both sows and piglets and 
lead to a poor lactation outcome. Previous studies reported genetic associations between piglet survival 
and traits such as body condition, fight lesions, appetite or rectal temperatures of sows (Tabuaciri et 
al. 2010). In a phenotypic study, Anil et al. (2008) reported negative correlations between lactation 
outcomes and lactation feed intake, elevated rectal temperature or health issues. 

The objective of this study was to test whether health traits (haemoglobin, fight lesions, respiration 
rate, mastitis, rectal temperature, appetite or body condition) were heritable and accompanied by 
negative genetic correlations with lactation outcomes. The hypothesis was that those traits are heritable 
and can be considered for developing breeding goals that balance high production performance with 
improved health and welfare of sows and piglets.

MATERIALS AND METHODS
Data. The data used in this study were recorded at two nucleus farms operated by independent 

companies, collected during the period October-December 2017 (Farm A, N=558 sows) and March-
June 2018 (Farm B, N=545 sows). The sows recorded included both primi- and multi-parous sows 
and represented a total of 10 (maternal or terminal) lines across both farms. Farms differed generally 
in their production environment, management, housing, feeding regimes and health status, which are 
not described further here. Sows were transferred from gestation housing to the farrowing shed at an 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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average gestation length of 110 days and recorded for a range of health and welfare characteristics by 
a single operator. Subsequently, sows farrowed naturally and were managed according to each farm’s 
commercial protocols. The targeted lactation lengths were four (Farm A) and three weeks (Farm B).

Late gestation characteristics. The extent of fight lesions (FIGHT) was scored as 0: no lesions; 
1: 1-5 lesions; 2: 6-10 lesions; and 3: 10+ lesions (Bunter 2017). Body condition (CAL) was measured 
as caliper increments, using procedures described by Knauer et al. (2015), with increasing value 
corresponding to increasing body condition. Udder health was assessed by recording pre-farrowing 
mastitis (MAST, 0/1), considered to be present (score=1) for sows with a hard and swollen udder, 
irrespective of whether this was accompanied by an elevated rectal temperature. Resting respiration 
rate (RESP) was recorded as the number of expirations per 30 seconds, expressed per minute. Rectal 
temperatures (RECT) were obtained when sows were at rest ensuring the thermometer was in contact 
with the bowel wall. Haemoglobin (HB) level was measured using the Hemocue H201+ (HemoVue 
AB, Angeloholm, Sweden) using a single drop of blood obtained from a skin prick on the sow’s ear 
(Hermesch and Tickle 2012). Sows which farrowed prior to the measurement date or which appeared 
distressed at the time of procedure were not sampled for HB. Feed refusal before farrowing (FRBF) 
was recorded as the proportion of days observed where less than half the meal was eaten, assessed 
3-4 hours after the first feed delivery in the morning. Sows were observed for FRBF for 5.62±2.14 
days, on average.

Lactation outcomes. Lactation failure (LFAIL, 0/1) was defined to occur (score=1) for any 
combination of: weaned piglets <7; lactation length <15 days; or if removal reasons included poor 
mothering ability, bad udder or no milk. A trait frequently used to describe lactation performance 
is the number of weaned piglets (NWEAN). Sows which weaned no piglets (due to piglet deaths) 
or had all piglets removed prematurely were assigned NWEAN=0. For sows which were used to 
foster a second litter (N=4), NWEAN was based on the first litter only. If the sow did not lactate at 
all (culled or died), LFAIL and NWEAN were considered missing (N=3). Records clearly identified 
with recording errors were excluded from analyses (N=12).

Analyses. Data preparation and summary statistics were obtained using R (R Core Team 2018). 
Raw data were firstly examined for errors and outliers, which were excluded from analyses (HB: N=4) 
if trait values were more than four standard deviations from the mean, within farm. The combined 
farm dataset was then used for analyses. Estimates of variance components were obtained by fitting 
a linear mixed animal model using residual maximum likelihood procedures in ASReml (Gilmour 
et al. 2014). Systematic effects fitted for all traits included parity group (4 levels: parities 1, 2, 3-4 
and >4) and the interaction between breed and farm (10 levels). Estimates for heritabilities were 
obtained from univariate analyses. Correlations between traits were estimated using a series of 
bivariate analyses. Sows were progeny of 352 sires and 852 dams, and the pedigree was extended 
over 5 generations to contain 1261 sires and 3274 dams in total. There were 104 commercial sows 
without pedigree retained in the data.

RESULTS AND DISCUSSION
Characteristics of the data. The incidence of sows which experienced undesirable lactation 

outcomes (LFAIL) was <10% (Table 1), consistent with results from a different population (Bunter 
et al. 2018). Fight lesions were observed on a relatively high percentage of sows, demonstrating 
aggression exists amongst group-housed sows in late gestation. The average value for HB was 106 g/l, 
with 2.71% of sows considered borderline anaemic (< 80 g/l). The average values for HB align with 
previous study by Hermesch and Tickle (2012). The extent of feed refusal was variable (CV=141%), 
with an average of 20% of meals observed pre-farrowing with feed refused.
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Table 1. Raw data characteristics, distribution (%×100) of scores, estimates of heritability (h2) 
and phenotypic variance (σ2

p) from univariate model, with model R2

Trait N Mean (SD) CV% Distribution of scores h2 (SE) σ2p R2 (%)0 1 2 3
NWEAN 1088 9.38 (2.62) 28 na na na na 0.16 (0.08) 6.65 4.50
LFAIL 1100 na na 90.2 9.8 na na 0.09 (0.08) 0.09 2.51
CAL 1098 14.4 (2.66) 19 na na na na 0.34 (0.08) 5.90 16.5
FIGHT 1103 na na 26.5 36.3 26.2 11.0 0.14 (0.07) 0.65 29.3
MAST 1103 na na 93.7 6.3 na na 0.15 (0.08) 0.52 10.8
RESP 1067 25.4 (16.7) 68 na na na na 0.20 (0.09) 225 19.6
RECT 1067 37.8 (0.47) 1 na na na na 0.12 (0.08) 0.19 13.6
HB 960 106 (14.0) 13 na na na na 0.06 (0.07) 171 12.9
FRBF 1076 0.20 (0.28) 141 na na na na 0.21 (0.08) 0.80 0.56

Abbreviations: NWEAN: count of weaned piglets, LFAIL: lactation failure (0/1), CAL: caliper increments 
(count), FIGHT: fight lesion scores (0-3), MAST: pre-farrowing mastitis (0/1), RESP: count of expirations/
minute, RECT: rectal temperature (OC), HB: haemoglobin level (g/l), FRBF: proportion of days observed where 
less than half the meal was eaten, na: not applicable

Heritability estimates. Overall, results presented in Table 1 demonstrate genetic contributions 
to performance (LFAIL, NWEAN), as well as feeding or interactive behaviours (FRBF, FIGHT), 
health or condition (MAST, CAL), and physiological traits (RESP, RECT, HB) recorded prior to 
farrowing. LFAIL and NWEAN were two traits for assessing sow performance as nursing sow. 
Heritability estimate for LFAIL was 0.09±0.08, which was higher than previously reported (h2 = 0.00) 
for crossbred sows (Bunter et al. 2018). The heritability estimate for NWEAN was higher (0.16±0.08) 
than the average of 0.07 reported in the review of Rydhmer (2000), and is potentially influenced by the 
minimum cross-fostering, diversity of lines, combined with phenotypes which included zero values 
for sows which weaned no piglets. Moderate h2 (0.21±0.08) for FRBF suggests that when sows are 
observed pre-farrowing for feed refusals following fixed delivery, phenotypic differences between 
animals may be accurately observed, revealing differences in appetite before farrowing. Estimate of 
heritability for CAL was high (0.34±0.08), consistent with similar traits like sow weight or back fat 
(Tabuaciri et al. 2010). Heritability for FIGHT was moderate (0.14±0.07) and align with previously 
reported by Bunter (2017). 

Correlations. Large genetic (-0.97±0.18) and residual (-0.73±0.03) correlations between NWEAN 
and LFAIL are consistent with the use of NWEAN to define LFAIL phenotypes (Table 2). All other 
correlations were of lesser magnitude. Genetic correlations were only consistent in direction or 
magnitude with phenotypic correlations for some trait combinations, which probably reflects relatively 
small sample size. The genetic correlation between NWEAN and MAST was strong (-0.74±0.30), 
indicating selection for udder health could contribute to increased NWEAN. Genetic and phenotypic 
correlations were positive between CAL and HB, and between FRBF and RECT. Sows with lower 
FRBF (rg: -0.36±0.30; rp: -0.10±0.03) or higher HB (rp: 0.08±0.03) weaned more piglets. Iron 
status influences appetite and vitality of piglets at birth (cited in Hermesch and Tickle (2012)). 
Rectal temperature, RESP and FRBF were positively correlated phenotypically, consistent with the 
expectations that animals with elevated body temperature will breathe faster and reduce feed intake.

CONCLUSIONS
Traits related to health of sows (MAST, CAL, FRBF, RESP, RECT, HB) were heritable. Genetic 

correlations in this study were preliminary estimates, had high standard errors, and were frequently 
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inconsistent in magnitude or direction with phenotypic correlations. More data are required to obtain 
more accurate estimates of genetic correlations, particularly for trait combinations where phenotypic 
correlations between traits were substantial. However, negative genetic and phenotypic correlations 
between NWEAN and FRBF or NWEAN and MAST were implying that feed refusals and udder 
health have implications for current performance and for breeding programs. 

Table 2. Estimates of genetic (above diagonal), residual (1st row) and (2nd row) phenotypic 
(below diagonal) correlations (SE in subscript) between traits

NWEAN LFAIL CAL FIGHT MAST RESP RECT HB FRBF
NWEAN -0.97 (0.18) -0.56 (0.29) -0.03 (0.37) -0.74 (0.30) 0.89 (0.37) -0.16 (0.40) -0.69 (0.69) -0.36 (0.30)

LFAIL -0.73 (0.03) 0.65 (0.41) -0.04 (0.47) 0.53 (0.42) -0.48 (0.52) 0.20 (0.50) 0.62 (0.76) 0.47 (0.41)
-0.75 (0.01)

CAL 0.17 (0.08) -0.18 (0.07) -0.43 (0.26) 0.07 (0.46) -0.42 (0.26) -0.04 (0.29) 0.33 (0.41) -0.13 (0.23)
0.001 (0.03) -0.02 (0.03)

FIGHT 0.02 (0.07) -0.01 (0.06) -0.004 (0.07) -0.62 (0.34) -0.21 (0.33) -0.21 (0.41) -0.33 (0.54) -0.47 (0.34)
0.02 (0.03) -0.02 (0.03) -0.09 (0.03)

MAST 0.11 (0.07) -0.02 (0.07) 0.13 (0.06) 0.09 (0.07) -0.03 (0.35) 0.16 (0.43) -0.25 (0.58) 0.21 (0.32)
-0.05 (0.03) 0.06 (0.03) 0.12 (0.03) -0.03 (0.03)

RESP -0.16 (0.07) 0.05 (0.07) 0.20 (0.08) -0.07 (0.07) -0.07 (0.07) -0.12 (0.43) -0.69 (0.76) -0.49 (0.35)
0.02 (0.03) -0.01 (0.03) 0.04 (0.03) -0.09 (0.03) -0.06 (0.03)

RECT -0.01 (0.07) 0.02 (0.06) 0.14 (0.07) -0.02 (0.06) -0.05 (0.07) 0.30 (0.06) 0.98 (0.64) 0.20 (0.34)
-0.03 (0.03) 0.04 (0.03) 0.10 (0.03) -0.05 (0.03) -0.02 (0.03) 0.24 (0.03)

HB 0.16 (0.07) -0.13 (0.06) 0.13 (0.07) -0.06 (0.06) -0.02 (0.07) 0.19 (0.07) -0.05 (0.06) -0.08 (0.50)
0.08 (0.03) -0.06 (0.03) 0.15 (0.03) -0.08 (0.03) -0.04 (0.03) 0.01 (0.03) 0.04 (0.03)

FRBF -0.04 (0.07) 0.04 (0.07) 0.06 (0.08) 0.04 (0.07) -0.12 (0.07) 0.24 (0.07) 0.12 (0.07) 0.15 (0.06)
-0.10 (0.03) 0.10 (0.03) 0.01 (0.03) -0.04 (0.03) -0.06 (0.03) 0.10 (0.03) 0.13 (0.03) 0.12 (0.06)

For trait name abbreviations see Table 1.
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SUMMARY
The genetic (rg) and phenotypic (rp) correlations between piglet vitality at birth, traits measured 

on sows 2 and 5 days post-farrowing and lactation outcomes were estimated using the data from 2 
nucleus farms (N=1103). All observations were analysed as traits of the sow. The highest heritabilities 
(h2) were estimated for functional and un-suckled teats (0.36±0.09 and 0.24±0.09) and for the 
number of vital piglets (0.09±0.07). Detrimental piglet attributes were genetically and phenotypically 
associated with each other and with a lower number of weaned piglets. High respiration rate and 
rectal temperature were genetically (0.81±0.31 and 0.73±0.30), but not phenotypically, associated 
with the number of weaned piglets. Correlations between other traits were not significantly different 
from zero, or had high standard errors and therefore required more data for more accurate estimation 
of variance components. 

INTRODUCTION
Examination of sows and piglets shortly after farrowing can be used to identify risk-factors, which 

might have an impact on lactation outcomes (Madec et al. 1992). Lactation outcome can be defined by 
the number of weaned piglets, lactation length or removal reasons related to poor mothering ability. 
While numerous studies reported the association between birth weight and the number of weaned 
piglets, relatively fewer studies have considered the implications of other piglet vitality traits at birth 
and post-farrowing health indicators of sows for the lactation outcomes. The objective of this study 
was to estimate the genetic parameters for the health-related post-farrowing predictors and to obtain 
preliminary estimates of the genetic associations with lactation outcomes.

MATERIALS AND METHODS
The data used in this study were recorded at 2 nucleus farms operated by independent companies, 

collected between October-December 2017 for Farm A (N=558 sows) and March-June 2018 for Farm 
B (N=545 sows). Further details were provided in Vargovic et al. (2019). After farrowing, but before 
cross-fostering, sows and their piglets were recorded for a range of characteristics. All observations 
were treated as traits of the sow. Sows were progeny of 352 sires and 852 dams and the pedigree 
was extended over 5 generations containing 1,261 sires and 3,274 dams in total. There were 104 
commercial sows without pedigree retained in the data.

Characteristics of piglets. The vitality of piglets within the birth litter was assessed within 12 
hours of the completion of farrowing. Negative indicators for piglet vitality included the number of 
pale (NPALE) or thin (NTHIN) piglets, whereas the number of vital piglets (NVITAL) was recorded 
as the total number of piglets without any detrimental attributes.

Characteristics of sows. Sows were recorded for a range of attributes, on days 2 and 5 post-
farrowing. Resting respiration rates (RESP2, RESP5) were recorded as the number of expirations per 
30 seconds, expressed per minute. Rectal temperatures (RECT2, RECT5) were recorded ensuring 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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the thermometer was in contact with the bowel wall. Mastitis (MAST2, 0/1) was considered to be 
present (score=1) for sows with a hard and swollen udder. Indicators of suckling load included the 
count of un-suckled (TEATU2) and functional teats (TEATF2). Feed refusal after farrowing (FRAF) 
was recorded as the proportion of days observed where less than half the meal was eaten, assessed 3-4 
hours after the fixed feed delivery. Sows were observed for FRAF over 2.95±2.80 days on average. 
Lactation failure (LFAIL) and the number of weaned piglets (NWEAN) were defined as described 
by Vargovic et al. (2019).

Analyses. Data preparation and summary statistics were obtained using R (R Core Team 2018). 
Estimates of variance components were obtained by fitting a linear mixed animal model using residual 
maximum likelihood procedures in ASReml (Gilmour et al. 2014). Systematic effects fitted for sow 
traits included parity group (4 levels: parities 1, 2, 3-5 and >5) and the interaction between breed and 
farm (10 levels). For piglet vitality traits, models included total piglets born fitted as a linear covariate. 
Estimates for heritabilities were obtained from univariate analyses. Correlations were estimated using 
a series of bivariate analyses.

RESULTS AND DISCUSSION
Characteristics of the data. Traits that represent piglet vitality (NPALE, NTHIN) and the resulting 

un-suckled teats (TEATU2) were highly variable between litters (Table 1). However, no detrimental 
attributes were observed on 77.5% of born alive piglets. This study showed that un-suckled teats can be 
observed early post-farrowing, which could result in rapid regression (Kim et al. 2001). Mastitis was 
recorded in 15.5% of sows, and 5.49/15.5=35% of these sows also had elevated rectal temperatures. 
However, farrowing followed by physiological hyperthermia can cause misinterpretation as to whether 
mastitis is present or not (Friendship et al. 2015).

Table 1. Raw data characteristics, estimates of heritability (h2) with standard errors (SE) and 
phenotypic variance (σ2

p) from univariate model, with model R2

Trait N Model effects Mean (SD) CV% h2 
(SE)

σ2
p R2 (%)

NWEAN 1088 P, BF 9.38 (2.62) 28 0.16 (0.08) 6.65 4.50
LFAIL 1100 P, BF 0.098 (0.30) 303 0.09 (0.08) 0.09 2.31
NVITAL 1072 P, BF, TB 8.83 (2.82) 32 0.09 (0.07) 5.31 33.2
NPALE 1072 P, BF, TB 0.93 (1.59) 171 0.04 (0.06) 2.21 12.0
NTHIN 1072 P, BF, TB 2.70 (2.63) 97 0.08 (0.07) 4.96 28.6
RESP2 1025 P, BF 23.7 (12.3) 52 0.17 (0.09) 145 3.03
RESP5 973 P, BF 28.1 (15.4) 55 0.10 (0.08) 236 11.3
RECT2 1064 P, BF 38.9 (0.51) 1 0.21 (0.09) 0.23 0.62
RECT5 1060 P, BF 38.9 (0.57) 2 0.12 (0.08) 0.24 24.5
MAST2 1059 P, BF 0.155 (0.36) 234 0.05 (0.06) 0.13 3.41
TEATU2 1059 P, BF 1.26 (1.33) 105 0.24 (0.09) 1.73 1.39
TEATF2 1059 P, BF 13.8 (1.17) 9 0.36 (0.09) 1.26 8.18
FRAF 1065 P, BF 0.35 (0.39) 114 0.01 (0.07) 0.14 10.3

Abbreviations: NWEAN: count of weaned piglets; LFAIL: lactation failure (0/1); NVITAL, NPALE, NTHIN: 
count of vital, pale and thin piglets; RESP2 and RESP5: count of expirations/minute; RECT2 and RECT5: rectal 
temperature (oC); MAST2: mastitis (0/1); TEATU2 and TEATF2: count of un-suckled and functional teats; 
FRAF: feed refusal after farrowing; P: parity group; BF: breed:farm; TB: total born piglets

Heritability estimates. After accounting for systematic effects, heritability estimates (h2) were low 
(<0.07) for NPALE, MAST2 and FRAF (Table 1). The h2 for NPALE was similar to that reported by 
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Tabuaciri et al. (2011). The highest h2 was for TEATF2 (0.36±0.09), consistent with Lundeheim et al. 
(2013). With respect to sow attributes, RECT2 and RESP2 were moderately heritable (0.21±0.09 and 
0.17±0.09), and lower than reported by Gourdine et al. (2017), averaged across lactation (0.35±0.09 
and 0.39±0.13). The h2 for NWEAN was higher (0.16±0.08) than the mean (h2=0.07) previously 
reported by Rothschild et al. (1998).

Correlations for piglet attributes. NTHIN and NPALE were positively correlated with each other 
and negatively with NVITAL (Table 2). Both phenotypic (rp) and genetic (rg) correlations indicated 
that NVITAL was positively correlated with NWEAN and negatively correlated with LFAIL and 
TEATU2. Piglet vitality at birth is an important contributor to successful lactation outcomes assessed 
for sows. Lower rg and rp were estimated between piglet traits (NTHIN, NVITAL, NPALE) and sow 
health-related traits (RESP2, RESP5, MAST2), suggesting independence of these traits genetically.

Correlations for sow attributes. Rectal temperature and respiration rate were strongly correlated 
with each other (Table 2), and favourably associated with NWEAN, while attributes measured day 5 
were less informative, due to lower h2 and higher standard errors. Sows with high genetic potential for 
NWEAN had genetically higher RESP and RECT, suggesting better environmental management may 
be required for genetically superior sows. Moderate to high rg between MAST2 and NWEAN/LFAIL 
were favourable, indicating that visual observation of udder for mastitis (even without confirmation 
by taking rectal temperature) was correlated with the number of weaned piglets. Moderate rg between 
NWEAN and TEATF2 demonstrated that the number of functional teats post-farrowing was favourably 
associated with the number of weaned piglets. Large rg (-0.97±0.18) and re (-0.73±0.03) between 
NWEAN and LFAIL are consistent with the use of NWEAN to define LFAIL phenotypes.

CONCLUSIONS
Results presented in this study demonstrated that piglet vitality contributes to sow lactation 

performances. Sows which wean more piglets were genetically predisposed to higher rectal temperature 
and respiration rate. Visually assessed presence of mastitis was genetically associated with the lactation 
outcomes. Large standard errors in genetic parameters were observed, with further data required to 
reduce this error. 
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GENOTYPE BY TEMPERATURE GROUPING INTERACTION FOR FARROWING 
RATE AT FIRST INSEMINATION

A.M.G Bunz1,2, K.L. Bunter2, R. Morrison1, B.G. Luxford1 and S. Hermesch2

1Rivalea Australia (Pty Ltd), Corowa, NSW, 2646
2Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia

SUMMARY
This study examined the effect of temperature grouping (T-group) on genetic parameters for 

farrowing rate from first insemination (FR). Further, this study investigated if genotype by T-group 
interaction for FR exists. The lowest FR was observed in T-group 1 and 3, which were both characterised 
by high mean maximum temperature (>29⁰C) prior to mating. The heritability of FR across all T-groups 
differed only marginally from each other and were low (0.03, 0.00, 0.03, 0.02, and 0.03 for T-group 
1, 2, 3, 4 and 5, respectively). Genetic correlations between FR recorded in different T-groups were 
generally positive and high (>0.70), with the exception of the genetic correlation for FR between 
T-group 1 and 5 which was lowly negative and close to zero (-0.10±0.27). This is an indication that 
FR in T-group 1 and T-group 5 were two genetically different traits and should be treated as separate  
traits in pig breeding programs.

INTRODUCTION
Seasonal infertility in pigs has been described as a reduction in reproductive performance during 

late summer and early autumn (Love 1978). In domestic pigs, seasonal infertility seems to be mainly 
explained by changes in photoperiod, but can be elevated or alleviated by multiple factors, such as 
heat stress or management strategies (for example shed cooling systems) (Auvigne et al. 2010). The 
heat stress component of seasonal infertility is becoming more important in Australia, as severity 
and frequency of extreme heat events have increased across large parts of the country (Whetton et 
al. 2011). Since environmental modification and management seem unlikely to eliminate all heat 
stress effects or their consequences for seasonal infertility, selection for reduced seasonal infertility 
in pigs should be explored.

Seasons are classically defined by grouping calendar months according to specific climate 
characteristics. Most studies have used the classic definition of season to analyse seasonal differences 
in reproduction performance (Lewis and Bunter 2011). However, seasonal variation may not be well 
described by this classic definition of season and a more flexible approach is required. A methodology 
has been developed using cluster analysis to define temperature groupings (T-group) influencing 
farrowing rate (Bunz et al. 2019). These T-groups accounted for different maximum temperature 
histories that sows were exposed to around mating events. Farrowing rate is an indicator trait for 
seasonal infertility.

The objective of this study was to investigate the effect T-groups had on genetic parameters for 
farrowing rate (FR) at first insemination and if genotype by T-group interactions exist for FR.

MATERIALS AND METHODS
Mating data and outcomes from two maternal lines (Large White and Landrace origin) and one 

terminal line (Duroc origin) were collected from a single farm in southern New South Wales, Australia. 
The climate is characterised by very hot summers, cool winters and low humidity. The full pedigree 
information was used, extending over 18 generations. Data included 36,767 FR records of 17,090 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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sows (daughters of 977 sires) from the first insemination event within each mating cycle (FR: 0=fail, 
1=pregnant) collected from 2012 to 2017. The data set was limited to records from the first three parities 
of sows. All mating events were performed using artificial insemination, with each sow receiving 2 
inseminations of the same boar’s semen, supplied from a single boar stud. Boars were housed in sheds 
with an evaporative cooling system and their semen had to pass quality-control checks before use. 
Sows were housed in naturally ventilated sheds and had drip cooling provided during their lactation 
period when shed temperature exceeded 30°C. The following steps outlined further in Bunz et al. 
(2019) were applied for defining 5 T-groups  (n = 5): a) a generalized linear model with a logit link 
was used to identify the most informative days (p-value<0.05) for FR at first insemination regarding 
maximum ambient temperature (Tmax) in the time period 35 days prior to and 35 days post mating 
date; b) for every mating date the Tmax of significant days were extracted; and, c) a cluster approach 
based on partitioning around medoids (PAM; Kaufmann and Rousseeuw 1990) methods was applied 
to group temperature patterns for every mating date according to their similarity. Parameter estimates 
for each trait were obtained using an animal model applying ASREML (Gilmour et al. 2014). Using 
a general formulation, the model for FR at first insemination was:  

where yik ae observations for the ith animal inseminated by the kth service sire, X is an incidence 
matrix of factors (β). Z1 is the incidence matrices relating records to additive genetic and permanent 
environment effects and, Z3 is the incidence matrices relating records to service sire effect, and a, p 
and s are vectors of additive genetic, permanent environment and service sire effects, respectively. 
Significant systematic effects included first insemination year-quarter (24 levels, contemporary 
groups), breed (3 levels) and sow parity (3 levels). Effects were distributed as Var(a) = Aσa, where 
A is the numerator relationship matrix, Var(p) = Iσp, Var(s) = Iσservice sire and Var(e) = Iσe where I is 
an identity matrix.

To investigate the genotype by T-group interaction data on FR was subsequently split into five 
traits based on T-group at first insemination, as outlined by Bunz et al. (2019). Estimates of genetic 
correlations between FR in each T-group were then obtained from a series of bivariate analyses. For 
the bivariate analysis only one record per season per sow was kept avoiding multiple records per sow 
in one season, leading to 34,838 records. The permanent environment effect of the sow was therefore 
not fitted in bivariate analyses. 

RESULTS AND DISCUSSION
The lowest mean FR was observed in temperature group 1 and 3, which were both characterised 

by high maximum temperature prior to mating (Table 1). Observation in T-groups were independently 
distributed from season of the year (Table 2). This study found low heritabilities for FR (Table 3), 
similar to those reported by Sevillano et al. (2016). Farrowing rate was not heritable in T-group 2. 
However, heritability estimates for FR differed only marginally between T-groups. 

Further, the phenotypic variance and the ratio between service sire variance and phenotypic variance 
was larger in more stressful environments (T-groups 1 and 3) than in less stressful environments 
(T-groups 2,4,5), which is consistent with results from Sevillano et al. (2016). 

Estimates of genetic correlations between the same trait recorded in different T-groups are shown 
in Table 5. The standard errors for genetic correlations were high due to the low heritability in T-group 
and partially low representation of sows and sire of sows across T-groups (Table 4). Further, it was 
not possible to estimate genetic correlations between T-group 2 and other T-groups due to non-
existence of additive genetic variation in T-group 2. The genetic correlations between FR recorded 
in different T-groups were high with one exception; the genetic correlation between T-group 1 and 
5. This genetic correlation was negative and close to zero, suggesting the existence of a genotype 



157

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:155-158

by temperature grouping interaction. T-group 1 and T-group 5 were the opposite in the maximum 
temperature characteristics, which is a possible explanation for the low genetic correlation for farrowing 
rate at first insemination between these two T-groups. Sevillano et al. (2016) found a higher genetic 
correlation (0.76±0.19) of FR between opposite environments (stressful and non-stressful) using a 
bivariate model. 

Table 1. Data characteristics for farrowing rate according to temperature group (T-group)

T-group Temperature characteristics of T-group n records n sows Mean (sd) CV
1 high prior and post mating 8686 8080 0.77 (0.42) 54.6
2 low prior and medium post mating 6989 6648 0.85 (0.35) 41.5
3 high prior and medium post mating 5471 5399 0.75 (0.43) 57.5
4 medium prior and low post mating 5204 5093 0.84 (0.37) 44.2
5 low prior and post mating    10411 9618 0.86 (0.34) 40.0

Abbreviations:  Mean Maximum temperature characteristics: high >29⁰C; medium 21-29°C; low <21⁰C

Table 2. Distribution of records across T-groups and season

T-group n records Summer 
(Jan-Mar)

Autumn 
(April-Jun)

Winter 
(July-Sept)

Spring 
(Oct-Dec)

1 8686 4859     3827
2 6989 31 1377 5581
3 5471 4190 1152 129
4 5204 48 5081 39 36
5 10411   2766 7434 211

Table 3. Estimates of variances due to additive genetic (σ2
a) and service sire effects on farrowing 

rate, along with the residual (σ2
e) and phenotypic (σ2

p) variances and ratios of heritability (h2: 
se in brackets) or service sire effects by temperature grouping (T-group)

T-group σ2
a σ2

pe σ2
ss σ2

e σ2
p h2 pe2 ss2

1 0.0051 0.0101 0.0041 0.1550 0.1642 0.0311    
(0.012)

0.0615    
(0.053)

0.0252    
(0.006)

2 0.0000 0.0080 0.0026 0.1128 0.1154 0.000      
(0.000)

0.0693    
(0.069)

0.0223    
(0.006)

3 0.0050 0.0071 0.0037 0.1677 0.1763 0.0284      
(0.017)

0.0407      
(0.112)

0.0208 
(0.007)

4 0.0023 0.0000 0.0012 0.1321 0.1356 0.0172      
(0.017)

0.0000
(0.000)

0.0086 
(0.006)

5 0.0031 0.0000 0.0010 0.1139 0.1179 0.0261   
(0.099)

0.0000
(0.000)

0.0085 
(0.004)

Abbreviations: h2 = σ2
a/σ

2
p; pe2= σ2

pe/σ
2
p; ss2

 = σ2
ss/σ

2
p

The current study focused only on the temperature component of seasonal infertility. However, the 
methodology can be further developed accounting also for the photoperiod component. The presence 
of genotype by T-group interaction can be explore for other traits.
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Table 4. Number of sows by temperature grouping (T-group) on the diagonal; the number of 
sows in common between T-group above the diagonal, the number of sire of sows in common 
between T-group below the diagonal

T-group 1 2 3 4 5
1 8080 1827 1310 2153 5415
2 437 6648 2226 2669 2392
3 332 494 5399 695 3279
4 495 545 254 5093 1656
5 672 541 612 436 9618

Table 5. Genetic correlations (above diagonal), residual correlations (below diagonal 1st row) 
(SE) and phenotypic correlations (below diagonal 2nd row) and for farrowing rate at first 
insemination between temperature groupings (T-group)

T -group 1 3 4 5
1  0.82(0.23) 0.85(0.48) -0.10(0.27)
3 0.00(0.04) 

0.04(0.03) 0.98(0.55) 0.79(0.34)

4 0.09(0.03) 
0.11(0.03)

0.04(0.05) 
0.07(0.04) 0.89(0.39)

5 0.03(0.02) 
0.03(0.02)

-0.03(0.02) 
0.00(0.02) 

0.04(0.03) 
0.00(0.03)  

CONCLUSIONS
This study was able to show that genotype by T-group interactions exist for FR, which is a trait used 

to indicate seasonal infertility. Farrowing rates observed in T-group 1 and 5, which were characterised 
by opposite mean temperature patterns around mating events, were genetically two different traits. 
The results of this study show that using trait-specific T-groups can provide an opportunity to improve 
the heat stress component of seasonal infertility in pigs genetically. Additionally, this methodology 
can be extended to include photoperiod information and applied to other reproduction traits.
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SUMMARY
Alternative models for genetic evaluation of pre- and post-weaning mortality traits were investigated. 

For pre-weaning mortality, the best model accounted for direct piglet effects, common litter effects 
of both the nurse sow and biological dam, repeated records of the nurse sow and the maternal nurse 
sow genetic effects. For post-weaning mortality, the most parsimonious model included only direct 
piglet effects and the common litter effects of both the nurse sow and biological dam. After accounting 
for systematic effects, genes of the piglet contribute to both pre- and post-weaning mortality (direct 
h2 = 0.02 ± 0.002 for pre- and post- weaning), whereas the nurse maternal genes only contribute to 
pre-weaning (maternal m2 = 0.01 ± 0.002). While heritabilities were low, there is potential for genetic 
improvement of both pre- and post-weaning mortality traits.

INTRODUCTION
Selection for efficient, lean growth and increased litter size can increase piglet pre-weaning 

mortality (Bunter 2009), with recent pre-weaning mortality rates reported as high as 18% in Australian 
herds (Australian Pig Industry Benchmarking Report, 2018). Therefore, breeding values for survival 
have become an important component of breeding programs. It is possible to make improvements by 
genetically enhancing a piglet’s ability to survive (Mesa et al. 2006), while also improving litter size, 
although an antagonistic relationship occurs between the two traits (Bunter 2009). Piglet survival 
involves different phenotypes and genes, including that of the piglet’s biological dam, the sow nursing 
the piglet, and the genotype of the piglet itself (Knol et al. 2002). In addition, piglets born and/or 
nursed within a common litter have common environmental effects contributing to their mortality 
(Bunter 2009). In the review of Bunter (2009), heritability estimates were on average 0.05 at the 
piglet level, and 0.11 at the sow level, indicating that both direct and maternal components should 
be considered. The purpose of this study was to investigate alternative models for genetic evaluation 
of piglet pre- and post-weaning mortality, treated as a trait of the piglet.

MATERIALS AND METHODS
Data. Data on individual piglet mortality (alive = 0, dead = 1) before weaning or post-weaning 

and other related traits, were recorded at a commercial piggery located in southern New South Wales, 
Australia. Data included 466,012 individually identified pedigreed piglets born between 2009 and 2018, 
from two Maternal (Large White and Landrace) and one Terminal (Duroc) selection line. This data set 
represented progeny of 1,535 sires, 19,867 dams and 28,228 nurse sows, which were included in the 
pedigree, extending over 10 generations, born in 43,462 litters. Piglets were individually identified 
within 24 hours from birth, with individual birth weights and sex recorded. Cross fostering occurred 
after identification, and all movements and deaths of individual piglets were recorded, along with 
corresponding dates. A piglet was recorded as a pre-weaning death if it was born alive and died before 
weaning (average of 26 days). A post weaning death was recorded if the piglet had been weaned and 
was less than 70 days of age at death.  Piglets with a pre-weaning record equal to 1 do not have a 
post-weaning mortality record.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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Statistical Analysis. Preliminary analyses confirmed that the following fixed effects significantly 
(P<0.0001) contributed to mortality outcomes: piglet breed; gender (2 levels: male and female); 
piglet fostering status (un-fostered = 0, fostered by day 2 = 1, fostered after day 2 = 2), which was 
concatenated with sow (birth-nurse) parities and farrowing farm (totalling 48 levels); and birthweight 
class (6 levels: 0.60-1.21, 1.22-1.39, 1.40-1.54, 1.55-1.69, 1.70-1.90, 1.91-3.00 kilograms). Additionally, 
gestation length (6 levels: 105-114, 115, 116, 117, 118-125 days); total born group (5 levels: 1-5, 6-10, 
11-15, 16-20, 20-25) and birth year quarter (40 levels: accounting for the managerial and seasonal 
differences) were accounted for in models for analysis. Additional factors for post-weaning mortality 
included age group when individual piglets were weaned (5 levels: 0-14, 15-21, 22-28, 29-35 and 
36-60 days), and the farm that piglets were weaned into (7 levels).

To estimate genetic parameters for pre- and post-weaning mortality, an univariate analysis was 
performed using linear models in ASReml (Gilmour et al. 2015), where either nurse sow, biological 
dam models or elements of both were investigated. Random effects tested included terms for the 
animal (piglet), the common litter effect of either nurse litter, birth litter or a combination of both, 
the permanent environment of the nurse sow or the biological dam and the maternal genetic effect of 
either nurse sow or biological dam. The mixed model is represented by:

                  y= Xβ + Z1a + Z2c + Z3mpe +Z4m + e					    (1)
where y is the vector of the observations; X is the incidence matrix for the vector of fixed effects in β; 
Z are incidence matrices associated with vectors of random effects including additive genetic effect 
(piglet) in a, common nurse and/or biological litter effect in c, nurse sow or biological dam permanent 
environment effect in mpe, nurse sow or biological dam maternal genetic effect in m and e is a vector 
residuals. Effects were distributed as Var(a) = Aσa

2, where A is a matrix describing the relationships 
between animals, and the remaining effects: Var(c)=Iσc

2, Var(mpe)=Iσmpe
2 and Var(m)=Iσm

2, where 
I is an identity matrix. The Akaike Information Criteria (AIC test) was used to test if the inclusion 
of additional random effects was significant, with the preferred model having the lowest AIC value 
(Mendenhall et al. 1996).

RESULTS AND DISCUSSION
To avoid double counting, models for piglet mortality traits accounted for sow traits already used 

as selection criteria, such as birth weight and litter size, and also accounted for fostering status, which 
is typically ignored in other studies. Accounting for these systematic effects might have reduced 
estimates of heritabilities in this relative to other studies (Table 1).

Pre-weaning mortality. On average, 87.4% of piglets were nursed by their biological dam, based 
on fostering events in the first two days of birth, but 19.3% of litters contained piglets with different 
parentage. Based on the AIC values, the nurse sow model (N3b) fit the data significantly better than 
the corresponding biological sow model (D3). Model N3b included the common litter effects of both 
the nurse sow and the biological dam, accommodating the effects of both the gestation and lactation 
environment experienced by the piglets. The model was improved substantially by the addition of 
maternal effects (mpe or m), accommodating repeated records and maternal genetic effects of the nurse 
sow. Maternal genetic effects reflect heritable traits like uterine nutrient supply and capacity, milk 
quality and quantity and general maternal care (Kaufmann et al. 2000). Removal of the model terms 
related to gestation length, birth weight and litter size (model N3c), which are typically considered 
as sow traits, created an increase in the phenotypic variance for pre-weaning mortality along with 
increases in maternally mediated variance ratios (cnl2 and m2), demonstrating that these maternal 
factors influence pre-weaning mortality. Direct heritability of piglets was improved with a nurse sow 
model (N1 vs D1), as the survival of piglets from different litters were compared within common nurse 
litters. Direct (h2 = 0.002 ± 0.002) and maternal (m2 = 0.01 ± 0.002) heritabilities for piglet mortality 
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estimated from model N3b were low in comparison to average literature estimates (Bunter 2009). 
Knol et al. (2002) reported that direct heritabilities were 0.03 for dam lines and 0.22 for maternal 
heritabilities, where the genetic effects of the biological dam, maternal permanent environmental and 
common birth litter effects were accounted for. Roehe et al. (2010) reported a direct heritability of 
0.24 and maternal heritability 0.14 using a biological dam model, without accounting for nurse sow 
effects, making direct comparisons with the literature difficult.

Post-weaning mortality. The best model for post-weaning mortality was D6b based on AIC 
values, which was a biological sow model including common nurse litter effects. However, in contrast 
to pre-weaning mortality, variances for permanent environmental and maternal genetic effects were 
much lower and contributed no substantial improvement to the model fit (for example model N4b vs 
N6b; D4 vs D6a). Furthermore, the ratios for maternal permanent environment and direct maternal 
effects were very small, indicating sows only contribute to post-weaning outcomes through additive 
genetic effects, and any carry over from prior gestation and lactation periods was accounted for in 
the common litter effects. This was also inferred using model N4c, where removing gestation length, 
total born and piglet birth weight terms from the model resulted in no changes to variance estimates. 
Since sampling correlations between direct and biological dam effects are high (not shown) and 
taking these results into account, a more parsimonious model should be used, leading to model N4b 
being the best model for the data. This model is a nurse sow model accounting for common nurse 
and biological litter effects, which resulted in direct heritability estimates to be 0.02 ± 0.002, with no 
literature available for direct comparison of post-weaning mortality estimates in pigs. 

CONCLUSIONS
This large data set enabled separation of direct from maternal effects, along with common litter 

effects and permanent environmental effects of the sow and fostering status. Failing to separate all 
of these effects could lead to overestimates of direct or maternal heritability but is complicated due 
to high sampling correlations for mortality traits. Nevertheless, the genetic parameters presented in 
this study suggest that there is potential for genetic improvement of pre- and post-weaning mortality 
traits in commercial breeding programs, independent of other important traits such as birth weight, 
gestation length and litter size.
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GENETIC ASSOCIATIONS BETWEEN EARLY AND LATE GROWTH WITH SEX-
UAL MATURITY IN THAI NATIVE CHICKENS 

S. Tongsiri1,2, M.G. Jeyaruban1, J.H.J. van der Werf2, L. Li1, S. Hermesch1 and T. Chormai3 

1Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia
2School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351

3Department of Livestock Development, Thailand

SUMMARY
The associations between early and late growth rates with sexual maturity of Lueng Hang Kao 

Kabinburi (LHKK) native chicken in Thailand were explored. Five generations of data from 2003 
to 2007, involving 11,588 chickens, were collected at Kabinburi Livestock Research and Breeding 
Centre (KLRBC). Body weight measured from day-old (BW1D) to 24 weeks of age at 4 weekly 
intervals of 4 (BW4), 8 (BW8), 12 (BW12), 16 (BW16), 20 (BW20), 24 (BW24) weeks, and sexual 
maturity traits, age at first egg (AFE) and egg weight at first egg (EWFE), were recorded. The growth 
rates were grouped into 5 categories: BW1D to BW8 (Growth_1), BW4 to BW12 (Growth_2), BW8 
to BW16 (Growth_3), BW12 to BW20 (Growth_4), and BW16 to BW24 (Growth_5). Growth_1 to 
3 represented early growth and Growth_4 and 5 represented late growth. Genetic correlations were 
estimated between early and late growth rates against AFE and EWFE using Restricted Maximum 
Likelihood. Growth_1 had a favourable genetic correlation of -0.15 with AFE and a high positive 
(favourable) genetic correlation of 0.42 with EWFE. Growth rate between Growth_4 and Growth_5 
had unfavourable genetic correlations of 0.08 and 0.30, respectively, with AFE, and favourable genetic 
correlations of 0.28 and 0.31, respectively, with EWFE. This study indicated that selecting for higher 
growth rate between day-old to 8 weeks of age would also improve sexual maturity by reducing the 
AFE and increasing the EWFE of LHKK chicken in Thailand.

INTRODUCTION
The Thai native chicken, Lueng Hang Kao Kabinburi (LHKK), is a dual-purpose chicken breed 

used to produce meat and eggs. However, the growth and egg production rate of LHKK are low under 
the backyard production systems in Thailand. Therefore, there is a need to improve both growth and 
egg production to improve productivity and profitability of the LHKK chickens. Tongsiri et al. (2019) 
showed that body weights at various ages and sexual maturity traits are moderately heritable (0.10 
to 0.37) and, therefore, selecting for higher body weight and early sexual maturity are expected to 
improve both traits of LHKK chickens. A number of studies have examined the genetic association 
between growth and egg production of native chickens at various ages. Bahmanimehr (2012) and 
Niknafs et al. (2012) found positive genetic correlations between early growth and egg weight first 
egg (EWFE) by 0.30 to 0.51 in Iranian native chickens. However, Niknafs et al. (2012) found an 
unfavourable genetic relationship between age at first egg (AFE) and body weight in the early growth 
period (day-old). By contrast, Bahmanimehr (2012) and Niknafs et al. (2012) concluded that both body 
weight and egg production could be improved simultaneously by selecting based on body weights 
measured during the early growth period.

Selecting replacement chickens based on growth information at an early age would decrease the 
number of chickens required to be kept as replacement stock and, thereby, reduce management cost 
and increase the profitability of the LHKK nucleus flock. Thus, a better understanding of the genetic 
relationship between growth rates during various growth periods and their relationship with sexual 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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maturity will help to develop a suitable breeding program for the LHKK chickens. Therefore, the 
aim of this study is to identify an appropriate age range to select for higher growth and early sexual 
maturity to improve both growth and egg production in LHKK chicken.

MATERIALS AND METHODS
Animal and Data. Five generations of growth and egg production data from 2003 to 2007 on 

11,588 individual chickens were collected. The chickens were descendants of 486 cocks and 1,461 
hens. The pure-bred dual-purpose LHKK chickens were housed on a Thai government farm at the 
Kabinburi Livestock Research and Breeding Centre (KLRBC) in the Eastern region of Thailand. 
The chickens were subjected to the management and vaccination program (Marek’s disease, New 
Castle disease (ND), Infectious Bronchitis disease (IB) and Fowl Pox disease) recommended by the 
Department of Livestock Development, Thailand. All chicks were wing-banded on day-old and body 
weights were measured from day-old to 24 weeks of age at 4 weekly intervals (day-old (BW1D), 4 
(BW4), 8 (BW8), 12 (BW12), 16 (BW16), 20 (BW20) and 24 (BW24)). The sexual maturity was 
measured as AFE and EWFE. The number of chickens measured for body weight at different ages 
reduced gradually as age increased (Table 1). This is mainly due to selective culling of chickens 
based on phenotypic characteristics such as colour of face, eyes, beak, skin, shank, body plumage, 
neck, tail, saddle and type of comb.

Statistical analyses. Genetic parameters and variance components were estimated using a mixed 
linear model using Restricted Maximum Likelihood (REML) in the WOMBAT software (Meyer 
2007). For growth rate, model included year and hatch within year and sex as fixed effects, and 
direct additive genetic, maternal genetic, maternal permanent environmental and residual as random 
effects. For AFE and EWFE, sex, maternal genetic and maternal permanent environmental were not 
fitted (Tongsiri et al. 2019). A series of bivariate analyses between growth rate at different ages and 
AFE and EWFE were conducted using REML in WOMBAT. Five growth periods were identified: 
Growth_1 was between BW1D and BW8, Growth_2 was between BW4 and BW12, Growth_3 was 
between BW8 and BW16, Growth_4 was between BW12 and BW20, and Growth_5 was between 
BW16 and BW24. Growth_1, Growth_2 and Growth_3 were grouped as ‘Early growth’ and Growth_4 
and Growth_5 were grouped as ‘Late growth’. Body weight measured at various ages was used to 
calculate growth rates for early and late growth periods. Genetic correlations (rg) between early and 
late growth rates with AFE and EWFE were estimated.

RESULTS AND DISCUSSION
Estimated heritabilities for body weight were constant across the different ages, except for BW1D 

and BW4 (Table 1).
Early growth rate and AFE. Genetic correlations between early growth rates and AFE ranged 

from -0.15 to 0.07 (Table 2). Growth rates in Growth_1 and Growth_2 were negatively correlated 
with AFE, indicating that chickens with higher growth rates during these periods will grow faster and 
reached sexual maturity earlier than their contemporaries. The favourable associations of early growth 
rate in Growth_1 and Growth_2 with AFE agreed with the correlations reported by  El-Dlebshany 
(2008) for native chickens in Egypt.

Late growth rate and AFE. Estimated genetic correlations between late growth and AFE ranged 
from 0.08 to 0.30, indicating that chickens with higher growth rates after 16 weeks of age will have 
older age at sexual maturity. Sang et al. (2006) reported unfavourable correlations ranging from 
0.14 to 0.72 between late growth and AFE on native chickens in Korea. Kinney (1969) observed a 
favourable association of growth rate with AFE and the magnitude of the association reduced with 
increasing age. In contrast, Lwelamira et al. (2009) estimated genetic correlations between growth 
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and AFE on two native chicken breeds in Tanzania, and they reported the associations were more 
favourable with increasing age (-0.03 to -0.23). Overall, the magnitude of the genetic association of 
growth rate with AFE increased when growth reached its final stage.

The results of this study indicate that growth rate and AFE are genetically related. Therefore, 
selecting chickens with higher growth rates during the early growth periods (Growth_1 and Growth_2) 
will also reduce AFE.  Selecting for higher growth rates in the late growth periods will delay sexual 
maturity in LHKK chickens.

Table 1. Descriptive statistics with number of records, mean, standard deviation (SD), minimum 
(Min), maximum (Max), direct additive genetic variance (σ2) and heritability (h2) estimated for 
body weight and sexual maturity traits of LHKK chickens

Traits Number of records Mean SD Min Max σ2  h2 

BW1D (g) 11,588   30.93   3.38   22    40         1.20 0.10±0.02
BW4 (g) 11,201 218.9 56.7   46  379      232.7 0.20±0.03
BW8 (g) 10,807 642.1 139 260 1,034    2,646 0.34±0.03
BW12 (g)  9,777 1,098 210 520 1,673  10,503 0.37±0.03
BW16 (g)  8,948 1,486 306 586 2,376  12,076 0.30±0.03
BW20 (g)  7,643 1,809 406 640 3,000  18,814 0.30±0.03
BW24 (g)  6,157 2,123 470 893 3,520  28,242 0.30±0.04
AFE (day)  1,395 199.1  21.0 138  260       40.49 0.16±0.06
EWFE (g)  1,393  36.94   4.85   26    48         3.03 0.16±0.05

Early growth rate and EWFE. Estimated genetic correlations between early growth rate and 
EWFE ranged from 0.19 to 0.42 (Table 2). Moderate to high genetic correlations between early 
growth rate and EWFE indicated that chickens with higher growth rate at Growth_1 are expected 
to lay heavier eggs at the onset of lay. Positive genetic correlations between early growth rate and 
EWFE is in agreement with the values of 0.30 to 0.39 reported by Niknafs et al. (2012) for native 
chickens in Iran. The lowest correlation was observed between growth rate measured at Growth_3 
and EWFE indicating that selecting on growth rate between 8 to 16 weeks will have less favourable 
response on EWFE compared with selecting on Growth_1. This finding agrees with those published 
by Hosseini and Tahmoorespur (2013).

Late growth rate and EWFE. Positive genetic correlations were estimated between late growth 
rate and EWFE which ranged from 0.28 to 0.31 (Table 2). Kinney (1969) also reported moderate 
positive correlations (0.13 to 0.29) between late growth and EWFE. This finding indicates that the 
genetic correlation growth rate has with EWFE was moderate when chickens reached maturity. Thus, 
selecting heavy chickens in the late growth period, especially between 16 and 24 weeks of age, would 
lead to chickens laying heavier eggs at the onset of lay. Both early and late growth rates had positive 
genetic relationships with EWFE. However, selection based on Growth_1 to improve EWFE would 
be expected to reduce production costs associated with keeping extra-replacement chickens.

Growth rate and sexual maturity traits.  Selection for earlier AFE would be achieved more 
effectively by selecting chickens with higher growth rates at earlier ages (between day-old and 8 weeks). 
Growth rate in this early growth period is also favourably related to EWFE. Estimated heritabilities 
listed in Table 1 suggest that both body weight and sexual maturity are heritable. Therefore, both 
growth and sexual maturity traits could be improved by selection. Thus, selection based on early 
growth rate will increase AFE and EWFE simultaneously. Bahmanimehr (2012), El-Dlebshany (2008) 
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and Magothe et al. (2006) also suggested that selecting heavy weight juvenile chicks may help the 
breeder to increase the final weight and egg weight while the chickens reach early sexual maturity. 

Table 2. The genetic correlations between growth rates in the early and late growth periods 
and sexual maturity traits

Body weight 
Genetic correlations (rg)

AFE EWFE
Early growth period

BW1D to BW8 (Growth_1) -0.15±0.15 0.42±0.13
BW4 to BW12 (Growth_2) -0.12±0.15 0.27±0.14
BW8 to BW16 (Growth_3)  0.07±0.18 0.19±0.16

Late growth period
BW12 to BW20 (Growth_4)  0.08±0.19 0.28±0.17
BW16 to BW24 (Growth_5)  0.30±0.25 0.31±0.20

CONCLUSIONS
This study showed that growth rates in the early and late growth periods had different associations 

with sexual maturity of LHKK chickens. Selecting chickens for early growth is the most economically 
attractive option because the trait is favourably correlated with sexual maturity, which provides greater 
potential for improvement of meat and egg productivity compared to selecting for late growth (between 
16 and 24 weeks of chicken age). Late growth expressed an unfavourable relationship with AFE, as it 
delayed the onset of AFE but it increased EWFE. Moreover, selection in early growth between day-old 
and 8 weeks would reduce the number of chickens required as replacements, therefore, there would 
be less need to measure body weight in the later growth periods, which would reduce management 
cost in LHKK nucleus flock. 
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SUMMARY
Sow longevity is a vital trait in the pig production sector because of its economic and welfare 

importance. However, this trait is recorded late in a sow’s life and early selection criteria associated 
with sow longevity are beneficial for genetic improvement of sow longevity. The aim of this study was 
to estimate genetic parameters of sow longevity and other sow reproduction traits. Data included 14,284 
purebred sows recorded from 1996 to 2016 in 7 commercial herds across Australia. Traits describing 
sow longevity included the number of maximum parities reached, length of productive lifetime in 
days, total number of piglets born alive per sow over her lifetime, and stayability from parity 1 to 
parity 4. Further traits considered were number of piglets born alive (litter size) and average piglet 
birth weight (both recorded in the first litter), and age at first farrowing. Sow longevity traits were 
genetically the same traits and had low heritabilities (0.07 to 0.13). Genetic correlations were lowly 
negative between sow longevity and age at first farrowing (-0.13 to -0.22), and between sow longevity 
and average piglet birth weight (-0.19 to -0.26). First litter size had positive genetic correlations with 
sow longevity traits (0.49 to 0.65). This study showed favourable genetic correlations of the traits 
first litter size and age at first farrowing with sow longevity, suggesting that these two traits could be 
suitable genetic indicators for sow longevity.

INTRODUCTION
Improving sow longevity is important not only for welfare but also for economic reasons, as it will 

enhance the proportion of sows in higher production phases and reduce the number of replacement 
gilts (Hoge and Bates 2011). Sow longevity has been defined in different ways over time, but a broad 
definition is the ability of a sow to live a long and healthy life while producing good quality litters. 
Traits that define sow longevity include the length of productive lifetime, the maximum number 
of parities a sow reached, total number of piglets born alive per sow, and stayability up to parity 4. 
However, genetic improvement of these sow longevity traits is a slow process, since they can only 
be assessed when a sow has had the chance to reach a certain number of parities. To enable earlier 
genetic selection for sow longevity, there is a need to select other traits that are good indicators of sow 
longevity and that can be measured earlier in a sow’s life. Previous studies have shown significant 
effects of the age at first farrowing on sow longevity traits (Serenius et al. 2008; Engblom et al. 
2016), but genetic correlations were low and somewhat variable ranging from -0.21 to -0.03. First-
litter characteristics, including litter size and average piglet birth weight, could be indicators for sow 
longevity as well, but inconclusive results have been found so far (e.g. Tholen et al. 1996; Hoge and 
Bates 2011; Engblom et al. 2016). Therefore, genetic relationships between sow longevity and age at 
first farrowing and first-litter traits need further quantification. The aim of this study was to estimate 
genetic parameters of sow longevity, age at first farrowing, and first-litter characteristics.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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MATERIALS AND METHODS
Animals and data. Pedigree and phenotypic data were available from 7 commercial sow herds 

in Australia. Only sows that had at least 1 parity record were included in the dataset. Purebred sows 
born between 1996 and 2016 were included in the analysis, so all sows had the chance to reach at 
least parity 4. This resulted in 14,284 records of Large White sows.

Traits. Four traits were defined for sow longevity including: maximum number of parities, length 
of productive lifetime in days (calculated from first farrowing until last weaning), total number of 
piglets born alive per sow during her lifetime, and stayability from parity 1 to parity 4, as a binary 
trait. Data were not censored for the trait stayability 1-4 because only records of sows that had the 
opportunity to reach 4 parities were included. Three early reproduction traits were identified: age 
of the sow at first farrowing in days, the number of piglets born alive at first farrowing (first litter 
size), and average piglet birth weight at first farrowing in grams based on piglets born alive recorded 
within 24 hours after farrowing.

Statistical Analyses. For all traits, fixed effects were defined as the herd-year-season interaction, 
and the only random effect fitted was animal. There were no repeated records for traits, and year 
and season were based on the first farrowing of each sow. Parameter estimates were obtained using 
linear mixed models under an animal model with ASReml (Gilmour et al. 2014), for all traits except 
stayability 1-4. This trait was analysed as a binary trait using a generalized mixed linear animal model 
with the logistic link function. Further, stayability 1-4 was also analysed as a continuous trait on the 
linear scale. Genetic and phenotypic correlations between the traits were estimated with use of a 
series of bivariate animal models, using the same fixed effects as for the univariate models. Bivariate 
analyses involving the trait stayability 1-4 were carried out on the linear scale.

RESULTS AND DISCUSSION
Descriptive statistics for all traits are displayed in Table 1. Sows had 4.09 parities on average, 

corresponding with a productive lifetime of 480.5 days during which they farrowed 46.9 live piglets. 
The relatively large coefficients of variation (CV) found for the sow longevity traits can be explained 
by the fact that there were several extreme values in the data. Skewness of the data was reflected in 
the minimum and maximum values of the different traits which depended mainly on management 
decisions. High variation in sow longevity traits has been found in previous studies (e.g. Serenius et 
al. 2008; Hoge and Bates 2011). Nonetheless, the SD and CV for age at first farrowing were small, 
especially compared to the other traits. This probably reflects management decisions. Age at first 
farrowing is strictly managed by selecting gilts in a short age range at puberty or mating, which 
therefore decreases the variability of age at first farrowing in sows. 

Table 1. Descriptive statistics of the traits with the number of observations (N), the standard 
deviations (SD) of the means, coefficients of variation in % (CV), and the minimum and max-
imum values of each trait

 
Trait* N SD CV (%) Min Max
MNP 14284 2.47 60.29 1 13
LPL (days) 14284 363.65 75.69 2 1744
TNBA 14284 31.90 68.04 1 165
STAY14 13920 0.50 93.98 0 1
AFF (days) 14284 21.31 6.2 264 417
LS 14284 3.02 29.29 1 22
PBWT (g) 7782 242.30 18.68 600 3000

*MNP=Maximum number of parities; LPL=Length of productive lifetime; TNBA=Total number of piglets born 
alive per sow per lifetime; STAY14=Stayability 1-4; AFF=Age at first farrowing in days; LS=first litter size 
including only live-born piglets; PBWT=Average piglet birth weight in grams in the first litter.
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Heritability estimates for the sow longevity traits ranged from 0.07 to 0.13 (Table 2). Genetic 
gain in these traits is expected to be slow, not only due to low genetic variance but also due to late 
expression of the traits. These estimates for the sow longevity traits were in agreement with previous 
estimates presented in literature which ranged from 0.02 to 0.22 (Serenius et al. 2008; Engblom et 
al. 2016). Heritability for stayability 1-4 estimated on the logistic and the linear scale were 0.09 and 
0.07, respectively, which is in agreement with previous findings of Tholen et al. (1996) who found 
heritabilities of 0.08 and 0.09 for this stayability trait using a linear model. Estimates from both a 
logistic and linear scale are presented. The logistic scale takes the non-normal distribution of this 
binary trait into account. However, a linear model may be used in genetic evaluation systems.

Age at first farrowing had a heritability estimate of 0.10 ± 0.01, which was within the range of 
heritabilities (0.04 to 0.10) estimated in previous studies (e.g. Serenius et al. 2008; Engblom et al. 
2016). However, the result in this study may be partly affected by the low variation in age at first 
farrowing resulting from management strategies. Further, the heritabilities for first litter size of 0.07 
± 0.01 and for average piglet birth weight of 0.19 ± 0.02 corresponded with previous findings in 
literature as well (Tholen et al. 1996; Engblom et al. 2016). 

Table 2. Heritability estimates (h2) with standard errors (SE), phenotypic variance (Vp), additive 
genetic variance (Va) and residual variance components (Ve) per trait

Trait* h2 ± SE Vp Va Ve

MNP 0.10 ± 0.01 5.46 0.57 4.89
LPL (d) 0.10 ± 0.01 118830 12205.60 106627
TNBA 0.13 ± 0.01 937.85 124.00 813.85
STAY141 (logistic) 0.09 ±0.001 3.60 0.31 3.29
STAY14 (linear) 0.07 ± 0.01 0.23 0.016 0.22
AFF (d) 0.10 ± 0.01 293.88 29.50 264.38
LS 0.07 ± 0.01 8.74 0.57 8.17
PBWT (g) 0.19 ± 0.02 55500 10743 7782

*For abbreviations see Table 1; 1Genetic estimates for stayability 1-4 were derived on both a logistic and linear 
scale.

Sow longevity traits were genetically the same traits with high genetic correlations between 
them (range: 0.95 to 0.99). This is reflected in similar genetic and phenotypic correlations of the sow 
longevity traits with the other sow reproduction traits investigated (Table 3). For the first-litter traits, 
the correlations were all found to be positive between litter size and the sow longevity traits, with 
genetic correlations ranging from 0.49 to 0.65. For the trait average piglet birth weight, the genetic 
correlations with the sow longevity traits were all negative, ranging from -0.19 to -0.26. The genetic 
correlations between age at first farrowing and the sow longevity traits were negative as well, ranging 
from -0.13 to -0.22. 

The relatively high positive genetic correlations between the sow longevity traits and first litter 
size were not expected compared to previous studies (e.g. Tholen et al. 1996; Engblom et al. 2016), 
with non-significant or even negative associations between first litter size and sow longevity traits. 
The results from this study showed that the first litter size could be a good selection criterion for sow 
longevity. Moreover, litter size is an important economic trait in commercial pig production systems, 
and sows with low first litter sizes are unlikely to be kept in the herd for subsequent parities. Even 
though genetic correlations were only found to be low to moderate between age at first farrowing 
and the sow longevity traits, all correlations did show negative associations. This implies that sows 
that farrow their first litter early in life have increased longevity. These results suggest that the trait, 
age at first farrowing may be incorporated as an indicator for sow longevity as well. 
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The average piglet birth weight was negatively correlated with sow longevity, suggesting that 
high piglet birth weights in the first litter are undesirable concerning the longevity of the sows. These 
correlations between average piglet birth weight and the sow longevity traits were slightly stronger 
than previous results (-0.02 and -0.15) found by Tholen et al. (1996). Further, negative correlations, 
both genetic and phenotypic, were estimated between the average piglet birth weight and the first 
litter size of -0.36 ± 0.09 and -0.45 ± 0.01, respectively. This indicates that there is a trade-off 
between litter size and average piglet birth weight in parity 1. As expected, since the uterine capacity 
of sows is limited and selecting sows only on litter size may reduce the average piglet birth weight, 
found in previous studies (e.g. Tholen et al. 1996). Even so, the strong positive genetic correlations 
found in this study between first litter size and sow longevity suggest that these sows were primarily 
selected on the number of piglets born alive, since this is an important production trait. Furthermore, 
autocorrelation between first litter size and subsequent litter sizes is expected, which influences 
retention to the next parity.

Table 3. Genetic and phenotypic (1st and 2nd row for each trait) correlations between the repro-
duction and the sow longevity traits, along with their standard errors (±SE)

Trait* MNP LPL TNBA STAY141 AFF LS
AFF -0.16 ± 0.09 -0.14 ± 0.10 -0.13 ± 0.09 -0.22 ± 0.11

-0.07 ± 0.01 -0.07 ± 0.01 -0.06 ± 0.01 -0.06 ± 0.01
LS  0.51 ± 0.10  0.53 ± 0.10  0.65 ± 0.08  0.49 ± 0.12  0.21 ± 0.11

 0.16 ± 0.01  0.16 ± 0.01  0.27 ± 0.01  0.15 ± 0.01  0.05 ± 0.01
PBWT -0.20 ± 0.09 -0.19 ± 0.09 -0.26 ± 0.08 -0.26 ± 0.11 -0.15 ± 0.10 -0.36 ± 0.09

-0.08 ± 0.01 -0.08 ± 0.01 -0.14 ± 0.01 -0.07 ± 0.01  0.07 ± 0.01 -0.45 ± 0.01
*For abbreviations see Table 1; 1Correlations with stayability 1-4 were derived on the linear scale.

When including age at first farrowing and first-litter characteristics as selection criteria for sow 
longevity, it should be taken into account that age at first farrowing is a highly managed period in 
pig production systems, and genetic variation in this trait is low. On a phenotypic level, gilts that 
are mated too early, are more prone to anoestrus after the first litter (e.g. Hoge and Bates 2011). In 
addition, sows with high litter size or high litter birth weights in parity 1 are exposed to high stress 
levels during gestation, farrowing, and subsequent lactation, which may lead to prolonged weaning 
to conception intervals (Tholen et al. 1996). It is likely that there is an optimum not only for first 
mating and farrowing age but also for first litter size and average piglet birth weight, and this should 
be taken into consideration for future research.

CONCLUSIONS
This study showed that first-litter characteristics had significant genetic associations with sow 

longevity. Both age of the sow at first farrowing and litter size are important selection criteria for 
sow longevity because these two traits can be measured earlier.
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SUMMARY
Adoption of new or improved animal breeds by resource-poor farms is likely to increase when these 

breeds provide tangible benefits for the women and men involved in their production, consumption, 
and marketing. Yet, little consideration is often given by genetic programs to how gender dynamics 
and norms affect women’s and men’s preferences for species breeds, and traits, as well as women’s 
and men’s ability to participate in, and benefit from, livestock genetic improvement programs. Gender 
dynamics and norms refer to the ways in which women, men, boys and girls interact based on socio-
cultural perceptions of what is considered appropriate behaviour for each group (e.g. roles, jobs, 
control over resources, decision-making etc.). Here we begin to fill the gap on where and how gender 
matters in the implementation of livestock genetic improvement programs in low to middle income 
countries by providing a conceptual framework. This framework stresses that gender considerations 
are relevant at all stages of implementation of a genetic improvement strategy, from targeting to 
ensuring equitable benefits.

INTRODUCTION
Adoption of new or improved animal breeds by resource-poor farms is likely to increase when these 

breeds provide tangible benefits for the women and men involved in their production, consumption, 
and marketing. Understanding how new breeds can benefit both women and men all livestock keepers 
is therefore important for two mutually supporting goals: to increase adoption, and to ensure equitable 
benefits from this. Gender dynamics affect both. Gender dynamics are the ways in which boys, girls, 
women, and men relate and interact. Gender dynamics are informed by socio-cultural ideas about 
what it means to be a ‘man’ or a ‘woman’, a ‘boy’ or a ‘girl’; what are considered to be appropriate 
behaviours for each group; and the power relationships that define these groups. Gender dynamics 
affect all aspects of life, for example, who can own or claim property; who is considered to be in 
charge of providing for the family or child care; who is more likely to access opportunities for work 
or migration; and who is supposed to take decisions in a household. These gender dynamics also 
depend on other social factors such as ethnicity, wealth, marital status, or age. Such gender interactions, 
when persistent over time, become informal, unspoken and ‘normative’ rules of behaviour (or gender 
norms) that regulate what men and women, boys and girls can do at different stages of their life. 

Gender norms and dynamics matter in livestock research for development because they affect, 
for example, who is considered to be a livestock keeper by communities and development programs, 
and is therefore involved as a participant; the financial resources women and men may access and 
control when investing in livestock improvement or the information they may access; and who can sell 
livestock or livestock products and decide how to utilize the money earned. These gender dynamics 
have strong implications for development goals such as improved nutrition. Evidence shows, for 
example, that rural women tend to invest agricultural revenues on child nutrition more than men, yet 
men need to be involved in supporting nutrition goals, in their traditional roles of decision-makers 
and family providers, for women to be able to allocate agricultural revenues to household nutrition 
(Galiè et al. 2019). 

To-date there has been little attention to where and how gender matters in the implementation of 
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livestock genetic improvement programs in low to middle income countries (LMICs). Here we begin 
to address this by providing a conceptual framework to this end. The focus of the framework is on 
women and men livestock keepers, as key beneficiaries of improved livestock genetics. This conceptual 
framework is intended to be used by researchers and practitioners involved in the implementation of 
livestock genetic improvement strategies in LMICs, to ensure that gender considerations are appropriately 
considered and acted on for maximal and equitable benefit from the livestock genetic technologies.

THE CONCEPTUAL FRAMEWORK (see also Figure 1).
Targeting of genetic improvement strategies. Targeting of genetic improvement strategies is 

an important issue to consider in LMIC contexts due to the large number of livestock systems that 
would benefit from genetic improvement and the limited resources available to support them. Strategic 
choices need to be made on where, with and for whom, and the species and breed focus. Here it is 
important to consider that women and men livestock-keepers can differ in their reasons for keeping, 
preferences around, aspirations for, and benefits from, different livestock species, breeds, and traits. 
For example, a study on gendered preferences for chicken in Ethiopia shows that women valued traits 
such as behaviour and feathers and that their preferences for these traits affected whether a breed 
was adopted by a household or not (Ramasawmy et al. 2018). Traits valued by males focused on 
productivity, health, and marketing of chickens with a view to scaling up their poultry keeping to an 
intensive system of production for business. In contrast, women responders aspired to increase the 
scale of their poultry keeping within their household level only, and thus valued traits that allowed 
chickens to be kept in an extensive system while increasing productivity. Women were not interested 
in making poultry into a business because of: the related high labour requirements (mostly their 
responsibility); their lack of land to keep chickens intensively or assets to make financial investments 
needed for intensification; and their loss of control over the benefits provided by chickens when, 
with intensification, men took on the marketing of the birds. Another example is from a study in 
Somaliland on the livestock keeping objectives of male and female pastoralists for goat, sheep, 
cattle and camel (Marshall et al. 2014). This study showed that each of these species were kept for 
multiple (up to 14) and gender differentiated reasons. For example, the livestock keeping objectives 
of ‘savings and insurance’ and ‘sale of breeding animals’ were more important to female and male 
pastoralists, respectively. The same study also showed trait preferences to be gender differentiated, 
for example the camel trait of ‘good quality and tasty meat’ was more important to men, reflecting 
men being the main consumers of camel meat (Marshall et al. 2016). This makes it vital to include 
both women and men in determining the genetic improvement priorities, both in terms of the livestock 
system targeted as well as type of genetically improved animal produced (influenced by the choice 
of breeding objective). Livestock breeds that better respond to local and gendered needs are more 
likely to be adopted and contribute to gender-equitable livestock development. 

Choice of the type of genetic improvement strategy. The choice of genetic improvement strategy 
(whether breed substitution, within-breed improvement, cross-breeding etc.) to be implemented should 
be taken jointly by all stakeholders. Gender considerations here include who can participate in the 
genetic improvement program, the required investment level by household and individuals including 
on labour and financial resources, and the expected benefit. All of these are likely to be affected by 
gender dynamics and norms that influence intra-household sharing of resources, decision-making and 
opportunities. For example, the choice of focusing a breeding program on local versus exotic breeds 
may enhance the participation of women versus men, respectively, if women are the main controllers 
of local breeds and men the exotic (Njuki and Sanginga 2013). A study in Tanzania found that the 
introduction of new exotic breeds of goats shifted livestock labour from men to women because the 
goats were to be kept in the courtyard, a space assigned to women (Galiè and Kantor 2016). While 
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women enjoyed increased access to goat milk, the overall decision-making on the new breed stayed 
with the men. More productive breeds also often entail higher financial investments to procure livestock 
inputs, in comparison to local breeds. This may exclude poorer farmers, of which rural women are 
the majority, from participating. These gender considerations need to be included when selecting a 
genetic improvement strategy to help ensure its effectiveness, sustainability and equity.

Implementation of the genetic improvement strategy. During implementation of participatory 
breeding programs, data is captured from, and shared back with, farmers. Incentives for continued 
farmer participation in the program are key to sustainability, and these may differ depending on 
whether women, men or both are involved. For example, incentives around the provision of feedback 
information for improved farm management, via mobile devices, are currently being tested, and the 
more relevant information to women or men livestock keepers may depend on how they are involved 
in the household livestock enterprise in terms of decision making, provision of labour, payment of 
costs and control of benefits. As an example of this, for some households keeping dairy cattle in 
Senegal, men are the main decision makers and providers of labour for cattle husbandry aspects 
(feeding, watering etc.), as well as well as control the income from animal sale, whereas women are 
the main decision makers, labourers and income controllers for sale of milk (Marshall et al. 2017). 
Here information that helps improve animal husbandry practices is likely to be more appreciated by 
the men, whilst information on milk quality and milk sale price is likely to be more appreciated by 
the women. Another related concern is who within the household can access the mobile devices and 
information, as this will not necessarily be shared within a household (FAO 2018). A further example 
that may affect who meaningfully participates in a genetic improvement program is simple logistical 
choices around program meetings (such as location, timing, and group composition). This can be affected 
by, for example, the spaces women and men can frequent, their availability for a meeting vis-a-vis 
other commitments, and their ability to speak out in groups where social hierarchies often establish 
who this is acceptable for, etc.  Participation in meetings affects participation in decision-making.

Adoption and use of the improved genetics. In LMICs livestock keepers often cite the inability 
to access improved genetics (whether via artificial insemination, sire service, or live animal purchase), 
either because it is unavailable or unaffordable, as a key constraint to their livestock enterprise. In 
addition to being able to access the improved genetics, the livestock keepers also need to manage 
them appropriately (feeding, health care etc.) and market the animal or its products, to maximise 
benefit. To ensure that those who wish to adopt the improved livestock genetics can do so and enjoy 
benefits, access to the improved livestock genetics, as well as the resources need to maximize benefit, 
should be gender equitable. Here issues of gendered control over the household livestock enterprises 
may need to be addressed. These include on gendered constraints in decision-making over household 
investments and engagement with genetic technologies, access to information, access to credit, mobility, 
interaction with service providers, and market access for the products. Women’s reduced mobility 
as compared to men is well documented in the literature, and affects, for example, access to genetic 
material, animal services and markets (Galiè et al. 2017). Further, many studies have shown that 
women in LMICs commonly do not have the same access to technologies, information, and service 
providers, including on credit, as men (Fletschner and Mesbah 2011).

Ensuring equitable benefit from the improved genetics. Finally, it should be ensured that the 
intrahousehold benefits from use of the improved genetics are equitable. Here a key concern is the 
shift in benefits between intrahousehold members associated with adoption of the genetic technology. 
Many studies have shown that as household enterprises that benefit women become increasingly 
commercially oriented, there is a shift in the control of benefits from women to men (Galiè and de 
Haan 2019). This was demonstrated to be the case for smallhold dairy cattle enterprises in Senegal, 
where higher levels of market orientation were associated with the keeping of cross-breed indigenous 
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by exotic dairy cattle (as opposed to the traditional indigenous breeds) and a shift in the control of 
the income from milk sales from women to men (Marshall et al. 2017). 

Figure 1. Key stages for integration of gender considerations into livestock genetic improvement 
strategies

CONCLUDING COMMENTS
The framework presented serves to highlight key gender issues around livestock genetic 

improvement strategies that need to be acted upon to ensure maximal and equitable benefit from 
genetic technologies and therefore increased adoption. Approaches that can be applied include 
accommodative or transformative approaches. Accommodative approaches recognize and respond to 
the specific needs and realities of men and women, based on their existing roles and responsibilities 
shaped by existing social and economic structures. Accommodative approaches do not question the 
barriers put up by the context they live in (Cornwall & Edwards, 2010). Transformative approaches 
aim to deeper social change by addressing some of the norms that constrict a particular group (Galiè 
and Kantor, 2016).

Whilst the focus of our analysis is gender, we recognise that men and women are not homogenous 
groups and that other social markers (such as age, social status, ethnicity, caste etc.) intersect with 
gender and affect interaction with, and benefit from, livestock genetic technologies. Future versions 
of this framework will be extended to include consideration of these.
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SUMMARY
The objective of this study was to compare the perceptions on livestock keeping objectives, breed 

and trait preferences of smallholder women and men pig farmers in Uganda. To this end, the study 
interviewed adult males and females from 200 pig keeping households, within two study sites. The 
main pig keeping objectives of both women and men were savings and insurance, income from the 
sale of pigs for fattening or slaughter, or income from the sale of pigs for use as breeding animals. 
The most preferred breed-types for both women and men were the same with exotic breeds the most 
preferred, followed by the cross of the exotic and local breeds. Many key traits, such as those for 
reproduction, growth and disease resistance, were of similar importance to men and women. Overall, 
the results suggest that gender differentiated breeding objectives, and breed and trait focus, are not 
required as part of a pig breeding program in Uganda.

INTRODUCTION
Uganda, located in East Africa, is one of the world’s poorest countries. Within Uganda, pig 

farming is an important livelihood to about 1.1 million poor smallholder farmers. Uganda’s current 
pig population is about 3.2 million and rapidly increasing. Currently there are no structured pig 
breeding programs within Uganda, however efforts to establish one at a national level are underway. 
In low-and-middle income countries, there is strong recognition that the gender of stakeholders is 
important to consider in the design of rural development interventions. This ensures, for example, 
that both adoption and benefits are maximised and equitable. Gender has also been shown to matter 
in the design and implementation of livestock breeding programs in terms of ownership and control 
of animals (Marshall et al. 2019). 

As background information feeding into the design of such a program, this paper compares 
Ugandan women and men smallholder pig farmers, in terms of their reasons for keeping pigs, and 
preferences for breeds and traits. The implication of these results on design of the potential Ugandan 
pig breeding program is also discussed.

MATERIALS AND METHODS
Study site and pig breeds present. The project study sites were within Kamuli and Hoima 

districts of Uganda, selected due to having a relatively high number of pig keeping households. Two 
hundred pig-keeping households, with 100 households in each site, participated in the study. The 
main pig types kept comprise local, exotic, and crosses between the two. The local breed is a small 
black pig, well adapted to the local environmental conditions. The exotic breeds comprise of Large 
White, Landrace, and the Camborough line from PIC. The exotic breeds are recent introductions 
to increase productivity. Various crossbreed types exist because of the unstructured crossbreeding 
between the local and exotic breeds.

Baseline survey. A baseline survey was administered separately to the female and male adult 
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within each study household between April and May 2018. There were 200 female respondents (of 
which 19.5% were household heads and 80.5% were spouses) and 161 male respondents (all household 
heads). The survey comprised a questionnaire that collected data on household characteristics (such as 
structure, membership, education, livelihoods, asset base, food security etc.), as well as pig production 
practices.

Rating scales and statistical analysis. All ratings were based on Likert scales. For ratings of the 
importance of reasons for pig keeping and traits, the scale was 0 to 5, where 0 was no importance, 1 
was the lowest importance, and 5 was the highest importance. For breed preference, the scale was 1 
to 5, where 1 was strongly dislike and 5 was strongly like. To test differences between the average 
ratings by men and women, an independent t-test was applied under assumptions of normality and 
equal variances. The level of significance used was 0.05.

RESULTS AND DISCUSSION
Types of household pig enterprises, and their importance to livelihoods. Most households 

(92%) practiced a combination of farrow to wean and farrow to finish pig production systems. Most 
commonly, 1 to 3 sows were kept, with 2 to 16 piglets. Pig farming was the primary livelihood for 
32% of women and 15% of men and secondary for 45% of women and 63% of men.  

Reasons for keeping pigs. Women and men farmers rated reasons for keeping pigs, using a 
pre-defined list of reasons from literature (Ouma et al. 2015) with the option of including additional 
reasons (Table 1). The most important reasons for both genders were for savings and insurance 
purposes (keeping of pigs to sell in times of need) and income from sale of animals (both for fattening 
or slaughter, and as breeding animals). Women rated the keeping of pigs for savings and insurance 
purposes significantly more important than men, though the difference was small (Table 1). A similar 
result has been previously reported (Marshall et al. 2014). Both genders assigned lower importance 
to keeping pigs for income from boar sire service (likely because not all households keep boars) and 
manure for cropping. Keeping of pigs for home consumption of pig meat and income from manure 
sale was of almost no importance. This information was asked to help inform development of breeding 
objectives for the Ugandan pig breeding program. Results suggest that a common breeding objective, 
i.e. for both women and men, is appropriate. This objective would centre around ensuring pig keeping 
translates into household income from both planned and emergency pig sales. Further development 
of this objective will be performed in collaboration with stakeholders.

Table 1. Average ratings for reasons for keeping pigs, by women and men farmers. The P-value 
indicates the significance of the difference between women’s and men’s ratings

Reason for keeping pigs Women Men P-value
Savings / insurance (keeping of pigs to sell in times of need) 4.2 3.9 0.04
Income from the sale of pigs for fattening or slaughter 3.7 3.8 0.71
Income from the sale of pigs for use as breeding animals 3.7 3.8 0.40
Income from boar sire service 1.2 1.1 0.66
Manure for cropping 0.9 0.7 0.40
Home consumption of pig meat 0.3 0.3 0.65
Income from the sale of manure 0.1 0.1 0.09

Breed preferences. Women and men respondents were asked to rate their preferences for the 
breed-types they were familiar with. The proportion of women familiar with local, crossbred and 
exotic pigs were 69%, 41% and 12%, respectively, whilst for men it was similar at 70%, 41% and 17%, 
respectively. Results (Table 2) showed breed preferences not to be significantly different between the 
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genders, with the most preferred breed (for both sows and fattening pigs) to be the exotic, followed by 
the crossbreed. Combined results across both genders showed the average rating for the exotic breed 
was significantly (a difference of 0.5 and P=0.019) higher to that for the crossbreed. Also, the ratings 
for the local were significantly lower than for cross (-0.73, P<0.001) and exotic (-1.24, P<0.001).

The same respondents named the advantages and disadvantage of the different breeds. The main 
advantages of local pigs included being adapted to the local environmental conditions (disease 
resistance, general adaptation, eating local feedstuff) and not requiring special housing, whilst the 
main disadvantages included low performance (growth, weight, litter size) and low market prices. The 
main advantages for exotic breeds were high performance, high market price and demand, whilst the 
main disadvantages were poor adaptation to local environmental conditions, high feed intake, feed 
cost, and the requirement for housing. For the crossbreed, the named advantages and disadvantages 
were as for the exotic breed. Whilst both genders generally named similar breed advantages or 
disadvantages, the proportion of women versus men naming a particular advantage or disadvantage 
differed. Most notably more women than men named ‘high litter size’ and ‘high market price and 
demand’ as an advantage for the crossbred. On the other hand, more men than women named ‘faster 
growth’ and ‘high market demand’ as advantages for the exotic breed. 

In terms of breeding program design, the breed advantages and disadvantages gives some weight 
to focusing the program on exotic rather than cross-bred or local breeds. However, this result will 
later be combined with other results from the same study (such as the profit from keeping different 
breed-types) before a final decision on this choice is made. Continual feedback from the pig-keepers on 
preferred breed is also recommended, as breed preferences may change as people become increasingly 
familiar with the breed options.

Table 2. Average ratings for breed preference, by women and men farmers. The P-value indicates 
the significance of the difference between women’s and men’s ratings

Sows Fattening pigs
Breed Women Men p-value Women Men p-value
Local 3.6 3.6 0.68 3.6 3.5 0.50
Crossbred 4.4 4.3 0.42 4.3 4.3 0.65
Exotic 4.8 4.9 0.62 4.8 4.9 0.47

Trait importances. Women and men respondents rated the importance of traits of sows and fattening 
pigs, using a pre-set trait list based on Ouma et al. (2015), with the option of including additional 
traits. The traits comprised of reproduction, growth, size, adaptation, body features (which farmers 
use to help indicate the breed-type), and other. Trait ratings were not statistically different between the 
genders, with two exceptions (Table 3). Sow traits that were considered moderately or more important 
(average ratings of ≥ 3) by both genders were reproduction, and growth / size, as well as disease 
resistance, ear-shape and feed intake. Traits that were low to moderately important for both genders 
(average ratings of ≥1 and <3) were heat-resistance, other body feature traits, and temperament. Traits 
of importance for fattening pigs were similar to those for sows (barring the reproductive traits that 
are not relevant to fattening pigs).  It is of note that temperament was significantly more important to 
women than men for fattening pigs (and almost for sows), though the difference in ratings was small.  
This may stem from women being the main labour providers in cooling pigs, which is commonly done 
via dousing the pigs with water, with the water sometimes fetched from far away. Further, women 
rated feed intake significantly higher than men did. However, both genders desired the same direction 
of change in the trait (see Table 3). In considering breeding program design, these results indicate no 
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concerns in having a common trait focus for both women and men pig keepers.

Table 3. Average ratings for trait importance, by women and men farmers. The P-value indicates 
the significance of the difference between women’s and men’s ratings

Trait group Trait Direction1 Sows Fattening pigs
Women Men P-value Women Men P-value

Reproductive
Return to heat Faster 4.0 4.0 0.80
Litter size 12,10 4.7 4.5 0.20
Teat number 14,12 3.6 3.7 0.51

Growth, size
Growth rate Faster 4.4 4.3 0.51 4.6 4.6 0.90
Body length Longer 4.3 4.5 0.06 4.4 4.5 0.48
Wither height Taller 3.2 3.0 0.48 3.0 2.7 0.26

Adaptation Disease resistance Higher 4.2 4.0 0.15 4.2 4.0 0.26
Heat resistance Higher 2.3 2.2 0.89 2.2 2.2 0.71

Body 
features 

Ear-shape Floppy 3.5 3.3 0.35 3.0 2.8 0.34
Back-shape -2 2.5 2.5 0.61 2.4 2.2 0.27
Mouth-shape Short 3.1 2.8 0.12 2.8 2.6 0.43
Colour White 2.8 2.7 0.51 2.4 2.2 0.26

Other Temperament Docile 1.9 1.6 0.06 2.0 1.6 0.03
Feed intake High 3.8 3.5 0.02 4.0 3.9 0.17

1Direction of desired trait change or optimal value. The most common answer, giving singularly if the same for 
women and men, else for women and men, respectively. 
2Both a curved and straight back shape was almost equally cited by both women and men

CONCLUSION
This work adds to a small, but growing, body of work on whether / how gender matters in the 

implementation of livestock breeding programs within low-and-middle income countries. In this 
case gender differentiated breeding objectives, and breed and trait focus, do not appear necessary. 
However, other studies have found significant differences between women and men for livestock 
keeping objectives and trait preferences (Marshall et al. 2014; Ramasawmy et al. 2018), which could 
impact on breeding program design. Despite the similarities between women and men on the issues 
reported here, a gender-lens should still be applied when considering other aspects of the potential 
pig breeding program for Uganda (see Marshall et al., 2019 for more details).
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SUMMARY
African taurine cattle populations are widely distributed in humid and sub-humid zones of West 

and Central Africa. We assessed the genetic structure and differentiation within and across 8 Afri-
can Bos taurus populations: 4 N’Dama populations (N’Dama, N’Dama1, N’Dama2, N’Dama3), 
Lagunaire, Lagune, Somba, and Baoule. A total of 38k autosomal SNPs were used for principal 
component analyses (PCA), estimation of pairwise FST values and within population heterozygosity 
(FIS), and neighbour-joining (NJ) tree construction. The first PC clearly differentiated Lagune and 
Lagunaire from N’Dama; PC2 separated Lagunaire, Lagune and one N’Dama population from the 
rest of taurine breeds; and PC3 separated N’Dama3 from Somba and Baoule. Estimates of pairwise 
FST values among the majority of populations ranged from 0.03 to 0.149, indicating low to moderate 
genetic differentiations, while a high genetic divergence between N’Dama3 and Lagune (FST =0.178), 
and N’Dama3 and Lagunaire (FST =0.168) was observed. No genetic subdivision was found between 
N’Dama and N’Dama1, and Lagune and Lagunaire. A higher heterozygosity (FIS value from -0.011 to 
0.025) was found in N’Dama, N’Dama1, N’Dama2, Lagune, Lagunaire, and Baoule breeds. The NJ 
tree clearly separated Lagune and Lagunaire as well as Somba and Baoule with a 100% and around 
31% bootstrap value, respectively, from the other taurine populations. We highlighted that African 
taurine populations are diverse and genetic differences between sampling locations exists even within 
a breed. Therefore, choice of an African taurine breed to anchor African indigenous breeds should 
be carefully considered.

INTRODUCTION
Taurine cattle are known to have been first domesticated in the Near East and are believed to 

have been introduced to Africa through present day Egypt (Gifford-Gonzalez and Hanotte 2011). It is 
thought that the humpless taurine Hamitic Shorthorns and Longhorns arrived in sub-Saharan Africa 
around 4500 to 4000BP (Payne and Hodges 1995). Nowadays, African taurine cattle breeds have been 
categorized as: longhorn N’Dama of the far West forest savannah, and 14 humpless shorthorns such 
as Baoule, Somba and Lagune breeds which are widely distributed in the humid and sub-humid zones 
of West and Central Africa (Rege 1999). These zones are also known for their endemic trypanosomes, 
which may affect cattle distributions due to some breeds being tolerant of infection, whilst others are 
strongly affected by trypanosomes (Berthier et al. 2015). There is, however, no comprehensive study 
showing how genetically diverse African taurine breeds actually are. Up to now, only one African 
taurine breed, the longhorn N’Dama, has been largely studied and is often considered as a reference 
breed when other African indigenous breeds are analysed. The present study aimed at assessing genetic 
structure and differentiation within and among 8 African Bos taurus populations.

MATERIALS AND METHODS
SNP data for a total of 130 African Bos taurus individuals originating from different locations 
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of West Africa. These included N’Dama (separated into 4 populations: N’Dama (n=20), N’Dama1 
(n=14), N’Dama2 (n=14), and N’Dama3 (n=17), sampled in Guinea, Cote d’Ivoire, South-Eastern 
Burkina Faso and South-Western Burkina Faso, respectively), Lagune (n=20) from Benin, Baoule 
(n=20) from Burkina Faso, Somba (n=20) from Togo, and Lagunaire (n=5) from “West Africa”. 
Pooled Bos indicus (n=105) and European Bos taurus (n=100) were used as reference populations.

Animals and genotypes were sourced from the Bovine HapMap consortium (777k) and from 
Decker et al. (2014, 50k). After quality control, the genotypes of 777k SNPs and 50k SNPs datasets 
reduced to 735k SNPs and 45k SNPs, respectively, of which 38,556 SNPs were in common and used 
in this study.

Principal component analyses (PCA) were performed using a genomic relationship matrix (GRM) 
according to the first method of VanRaden (2008). The PCA were carried out with and without the 
reference breeds. To estimate population differentiation, pairwise FST was calculated according to Weir 
and Cockerham (1984). The degree of inbreeding was inferred from the FIS coefficient calculated 
according to Nei (1977). Allele frequencies in the African taurine populations were used to construct a 
neighbour-joining tree. Bootstrapping (1000 replicates) was carried out to assess the strength of support 
for the internal nodes. All data analyses were performed using the R software (R Core Team, 2018).

RESULTS AND DISCUSSION
The first two PCs obtained from the analysis of African taurine and the reference populations 

explained 79% and 16.7% of the total variation in the GRM, respectively, and differentiated the 
African taurine, Bos indicus, European taurine from each other (Figure 1a).  In comparison, the first 
5 PCs obtained from the analysis of African taurine cattle populations explained a total of 65.22% 
of the variation in the GRM (Figure 1b and 1c).

Figure 1. Plot PC1 vs PC2 for reference and African Bos taurus populations (a) Plot of PC1 vs 
PC2 (b) and PC1 vs PC3 (c) for only African Bos taurus populations
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The first PC accounted for 32.11% of the total genetic variation and clearly differentiated Lagune 
and Lagunaire from N’Dama; whereas PC2 explained 20.48% of the total variation and separated 
Lagunaire, Lagune and N’Dama from the rest of the African taurine populations (Figure 1b). The 
third PC contributed 6.97% of the total variation and separated N’Dama3 from Somba and Baoule 
(Figure 1c). The majority of Somba and Baoule animals grouped tightly together, however, one Somba 
outlier was detected (Figure 1b and 1c). The N’Dama3 clusterd in two separate groups (Figure 1b 
and 1c), which might indicate that they were sampled from two different villages or sub-locations. 
Both Figure 1b and 1c showed that N’Dama1 and N’Dama2 clustered near each other, with N’Dama1 
closer towards N’Dama.

Estimated FIS values showed less inbreeding than expected under Hardy-Weinberg equilibrium 
for N’Dama1, N’Dama2, N’Dama3, and Baoule (Table 1). N’Dama3 showed the highest FIS=-0.109 
which confirms the separation of this breed into two clusters in the PC plots. The relatively high amount 
of within breed genetic variation indicated by FIS values for all breed samples indicates a valuable 
reservoir of genetic diversity for future breeding endeavours and a viable target for conservation.

The pairwise FST estimates showed a high genetic divergence between N’Dama3 and Lagune (FST 
=0.178), and N’Dama3 and Lagunaire (FST =0.168), indicating a clear genetic difference among these 
breeds. Moderate pairwise FST values of 0.061 to 0.149 were observed between the majority of the 
African taurine populations (Table 1). The minimum possible genetic distance between populations 
is zero. Negative values of the estimate of genetic distance, FST, can arise by random sampling and 
can be interpreted as zero genetic distance between populations. Lagune and Lagunaire as well as 
N’Dama and N’Dama1 are inferred to have zero genetic distance.

Table 1 Estimated FIS values (diagonal) within and pairwise FST (off-diagonals) between the 
African taurine cattle populations

N’Dama N’Dama1 N’Dama2 N’Dama3 Lagune Lagunaire Baoule Somba

N’Dama 0.011 -0.017 0.030 0.099 0.145 0.133 0.085 0.067
N’Dama1 -0.005 0.030 0.100 0.149 0.135 0.086 0.067
N’Dama2 -0.011 0.083 0.127 0.109 0.061 0.044
N’Dama3 -0.109 0.178 0.168 0.112 0.095
Lagune 0.004 -0.006 0.123 0.100
Lagunaire 0.025 0.112 0.083
Baoule -0.021 0.039
Somba 0.049

The neighbor-joining tree is consistent with the PCA and FST results (Figure 2). The African taurine 
populations were separated into two clades: Lagune and Lagunaire, which FST indicated can be regarded 
as one population, separated from the other breeds. Within the second clade, N’Dama3 separated on 
100% of bootstraps from the other breeds, again confirming our previous findings. Somba and Baoule 
as well as the remaining N’Dama populations clustered together in 100% of bootstraps, with N’Dama 
and N’Dama1 clusters being consistent with the FST, which showed that they are effectively a single 
population. The fact that Somba and Baoule formed overlapping clusters in the PCA plots (Figure 1b 
and 1c) and had relatively low FST coupled with the geographical proximity of their sampling areas 
suggests that they might be considered sub-populations of the same breed.
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Figure 2. Phylogenetic tree constructed by the neighbour-joining method based on allele fre-
quencies among the African Bos taurus cattle populations

The PCA (Figure 1a) showed that N’Dama2 and N’Dama3 spread towards the pooled Bos indi-
cus reference breeds, showing that they are not pure African taurine breeds. In admixture analyses, 
results not shown here, where the African Bos taurus breeds were analysed along with many other 
African indigenous breeds, Bos indicus and European Bos taurus controls, N’Dama2 and particularly 
N’Dama3 appeared to have a small proportion of admixture with Bos indicus most likely coming from 
local zebu breeds (Gebrehiwot et al. in preparation). This likely explains N’Dama3 being clustered 
quite separately from other N’Dama samples.

CONCLUSIONS 
Our study provides an insight into the genetics of the African Bos taurus breeds. The current 

research indicates that Lagune and Lagunaire, as well as N’Dama and N’Dama1 can be considered 
as single populations, respectively. The results presented are important for the design of conservation, 
improvement and breed management strategies of West African Bos taurus breeds.
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SUMMARY
The camel is an important domestic animal for producing valuable food and is well adapted to 

extremely harsh environments. The camel is gaining importance as a source of meat in Pakistan. 
However, the information on camel is very limited. We obtained blood samples and growth records 
of 136 animals of native Pakistani camel breeds, viz. Marecha camels from Punjab and Lassi camels 
from Baluchistan. In this study, we will present results on weight traits and growth modelling for these 
animals. This is part of a larger study investigating genetic diversity and genome-wide associations 
in these two important breeds of camel in Pakistan. We discuss the potential of the camel as a meat 
producer in Pakistan.

INTRODUCTION
Traditionally, the livestock sector is an important component of social structure in rural areas of 

Pakistan, in addition to its role in farming and commercial operations. In Pakistan, agriculture is the 
biggest sector of the economy, and in particular, the livestock sector has a great impact in Pakistan 
because 35-40 million people in rural populations depend on livestock and obtain about 30-40% of 
their earnings from livestock (Government of Pakistan 2017).

The camel is an important species well adapted to hot and dry environments and contributes 
appreciably to the food security of the nomadic rural households in Pakistan. Due to its unique 
adaptability, this species is well suited for management in arid and semi-arid environment. The camel 
remained a neglected species among livestock for scientific research. One of the main reasons for its 
neglect is that the camel is mainly found in areas of poor nutrition and dry environments of Asia and 
Africa rather than developed countries with stronger agricultural research programs (Sohail 1983).

The camel is also known as the “ship of the desert” because of its adaptability and suitability to 
thrive in the hot, dry and semi-arid region of the world. This animal has a distinctive ability to change 
the scarce vegetation of the desert into milk, fibre and meat. The camel has limited competition with 
other animals for feed, eats relatively less comparative to it body size (Khan et al. 2003).

The camel offers an opportunity to address food insecurity in Pakistan and other arid and semi-
arid developing countries because of its biological and production characteristics. With climate 
change, this is becoming an imperative. To date, few systematic breed improvements have been made 
to breed superior camels for improved meat, milk, or other production characteristics. However, 
developments in genetic technologies in recent years have made it worthwhile to investigate the 
feasibility of applying these methods to breed camels for improved meat production, or improved 
milk production. Applications of these methods have been well developed in other livestock species 
to optimally select animals for breeding, using marker-assisted selection, and more recently with the 
availability of high-density genotyping arrays, using genomic selection. Much could be learnt from 
experiences in those other livestock sectors and applying them, to camel breeding.

This paper investigates the growth of the camel, Camelus dromedarius, as the first stage in providing 
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phenotypic information for a quantitative genetic analysis of growth. The output from the growth 
analysis will allow a genetic evaluation at various ages of the camel, towards a genetic improvement 
program of the camel in Pakistan. 

MATERIALS AND METHODS
Weight records at birth, weaning and monthly records for the most recent four years were obtained 

from farm records of Marecha camels (n = 83 female, n = 26 male) from the Camel Breeding and 
Research Station (CBRS) at Rakhmahni, Bhakkar Pakistan. Up to 48 monthly records were available. 
These were obtained using walk-over scales. Concurrently, blood samples were also collected from 
these animals for subsequent genomic analysis (not reported here). In addition, weight records and 
blood samples were obtained from Lassi camels (n = 27 females) on privately-owned farms in Lasbela, 
Baluchistan Pakistan.

Comparisons of birth weights and of weaning weights between the three groups of camels (Lassi 
females, Marecha females, and Marecha males) were made using linear models. For the growth 
records, linear mixed models were fitted to the data, with fixed effects for breed-sex group and age 
(as a covariate). To allow for the nonlinear growth curve, a spline function of age was included in 
the random effects model. Individual variability of growth curves was accommodated by inclusion 
of random intercepts, random slopes, as well as random splines for each camel. The analysis was 
conducted using the ASReml-R package (Butler et al. 2009) in R.

RESULTS AND DISCUSSION
Figure 1 shows the birth weights and weaning weights for female Lassi, female Marecha and 

male Marecha camels. There are significant differences in birth weight across the three groups (P < 
0.0001), with Marecha males being significantly heavier (45.42 ± 0.92 kg, mean ± SE) than females 
of either breed at birth (Lassi: 40.96 ± 0.91 kg; Marecha: 38.95 ± 0.52 kg). The difference in mean 
birth weights for females of the two breeds was marginally non-significant (P = 0.057). Similarly, for 
weaning weight, there were significant differences amongst the three groups of camels (P = 0.006), 
again with male Marecha camels (112.38 ± 3.01 kg) having significantly heavier weaning weights than 
females of either breed (Lassi: 99.70 ± 2.95 kg; Marecha: 102.66 ± 1.69 kg). There was no significant 
difference between the mean weaning weights of females of the two breeds (P = 0.39). However, 
caution need to be applied in making between-breed comparison of both birth weights and weaning 
weights, due to the different management and environment: the Marecha camels were managed in a 
research farm, while Lassi camels were managed by private farmers with close cultural ties to their 
animals. The relatively reduced significance of differences in mean weaning weights compared to 
between mean birth weights could be due to variation in ages of weaning of individual animals.

Figure 2 shows a sample of fitted growth curves for individual camels, representing each of the 
three groups. Table 1 shows selected model-based means weights at different ages, again for each 
of the three groups. What is immediately apparent is that many camels go through periods of losing 
weight. This is seen in the individual growth curves as well as the overall average of male Marecha 
camels. This decline may reflect decline in food availability, particularly over winter, but for Marecha 
males, another possibility of weight loss is when they are provided for breeder services. Also evident 
in Table 1 is the lack of substantial difference in mean growth profiles of the three groups of camels: 
divergence starts after two years, with male Marecha camels having a substantially higher growth rate 
than female Marecha camels. It is also seen that Lassi female had a higher growth rate than female 
Marecha camels. Again, the different management and environments of the two breeds need to be 
considered when interpreting between-breed differences.
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Figure 1. Distributiosn of birth weights (LHS) and weaning weights (RHS) for female Lassi, 
female Marecha and male Marecha camels

Figure 2. Fitted growth curves of a selection of female Lassi, female Marecha and male Mare-
cha camels

As the body weight data were not collected at consistent ages across all animals, it would be 
difficult to use these raw data as phenotypic input into a GWAS for example. However, using model-
based predictions for individual animals, it is possible to obtain values for all animals at specific ages. 
This allows an age specific GWAS to be conducted, and to track effects of genes over different times. 
These results will be reported in a subsequent study.

Table 1. Model-base mean body weight at selected ages of female Lassi, female Marecha and 
male Marecha camel

Mean body weight ± SE (kg)
Age (yr) Lassi Female Marecha Female Marecha Male

0 40.66 ± 26.10 49.00 ± 17.03 48.61 ± 29.89
2 233.78 ± 16.61 227.32 ± 7.88 236.85 ± 13.68
4 429.56 ± 33.54 346.93 ± 16.25 508.58 ± 32.21
6 643.49 ± 44.06 434.87 ± 19.64 669.61 ± 45.81
8 791.27 ± 60.60 536.20 ± 17.35 592.11 ± 56.38
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The camel in Pakistan represents an opportunity to ‘future proof’ the country against the risk 
of climate change and to add to increasing food security for the nation. The tools to develop a 
livestock industry have been well developed in other industries, particularly in developed counties. 
But with reductions in costs of genetic technologies and considering that not much in the way of 
breed improvement in the camel has been conducted, it would be expected a well-developed breeding 
program would have great financial and social benefits. It is also important to conserve the range 
of camel breeds that exist in Pakistan, as this genetic diversity represents another form of ‘future 
proofing’ production. This diversity should be considered in relation to the range of functions of the 
camel, i.e. meat, milk, skin, and even tourism. Genomic tools provide an efficient way to assess this 
genetic diversity and to plan how this can be managed in an optimal way.

CONCLUSIONS
This study provides information on growth traits in two major breeds of camel in Pakistan. A 

spline-based method is used to model growth and develop predictive models for individual animals 
and these predictions can be used as phenotypic input for a GWAS of camel growth. Little systematic 
breed improvement had been conducted on dromedary camels in Pakistan, but improvements in 
productivity have the potential to improve the economic situation for farmers in (semi-)arid regions 
but also to ‘future proof’ the nation in terms of its food security. 
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SUMMARY
Using the Illumina 770k bovine SNP assay, we genetically characterized 15 Indian indigenous 

cattle breeds and 1 non-descript indigenous population, which is the largest sample of Indian breeds 
yet studied. 15.6% of the animals were found to have more than 1% recent Bos taurus admixture and 
were removed or separately analysed. Inbreeding levels for the Indian indigenous breeds, based on 
FIS and diagonal elements of the GRM, were similar compared to European taurine breeds. We did 
not find evidence for historical admixture with Bos taurus during breed formation. Only 1.4% of the 
genetic variance in allele frequencies was between breeds, compared to about 42.4% for European 
taurine breeds. Consequently, Indian breeds can be treated as a single population for some purposes, 
such as SNP assay design.

INTRODUCTION
Present day India is accepted to be one of the centres of cattle domestication, in particular where 

Bos indicus cattle have developed from its supposed ancestor Bos primigenius nomadicus some 
100,000-850,000 years ago (e.g. MacHugh et al. 1997; Verkaar et al. 2004). Furthermore, archaeo-
logical evidence suggest that there might have been several centres of domestication within India, as 
phenotypic differences between cattle from the North and South were already described as early as 
the Neolithic time period (Naik 1978). Today, the National Bureau of Animal Genetic Resources in 
India (http://www.nbagr.res.in/nbagr.html) lists 43 registered Indian cattle breeds, however, the large 
majority of cattle used as milk, draught or dual purpose cattle are raised by smallholders and are of 
no descriptive breed (e.g. Sharma et al. (2015)).

Bos indicus cattle are well adapted to high temperatures and resistance to some prevailing par-
asites of tropical regions, and have therefore been exported, bred, and adapted in other parts of the 
world. Zebu cattle are believed to have entered Africa between 3,500 and 700 BCE through present 
day Egypt (Marshall 1989), and contributed to the formation of African indigenous Sanga and Zenga 
type breeds (Rege & Tawan 1999). Others, such as the Brazilian Nellore and Guzerat or Australian 
Brahman and Droughtmaster have been imported to these countries and crossed with other breeds 
during the last 200 years (Porter et al. 2016).

Despite the importance of indicine cattle breeds globally and their wide use especially for cross-
breeding with taurine breeds, knowledge of the genetic diversity of the pure Bos indicus breeds in 
India itself is scarce. Many studies focussed on limited numbers of microsatellite or single nucleotide 
markers, on breeds outside India, or limited sample sizes (e.g. Dash et al. 2018; Nayee et al. 2018). 
Here, we have assembled and analysed the largest dataset on Indian indigenous breeds for genetic 
diversity and relationship, and compared these breeds with taurine and other indicine reference breeds. 
Lastly, we draw conclusions with regards to the requirement of genomic tools designed specifically 
for indicine cattle populations.

MATERIALS AND METHODS
Data. A total of 702 Indian indigenous cattle from 15 registered breeds and one non-descript (ND) 
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population were sampled by the BAIF Development Research Foundation (Table 1). All animals were 
genotyped with the 777k-SNP BovineHD Beadchip (Illumina Inc., San Diego). Genotypes and animals 
were quality controlled (QC) based on a median GC score >0.6 and a call rate >0.9. Further, animals 
with more than 1% Bos taurus content (based on a preliminary Admixture analysis) were excluded, 
leaving 588 animals and 716,599 SNPs for subsequent analyses. Reference breeds included 6 Bos 
taurus breeds (each N=20), and 16 Bos indicus breeds (N=10 to 20), sourced from the bovine HapMap 
consortium, Canadian Dairy Network, SRUC, and Decker et al. (2014). Reference data were either 
previously quality controlled or subjected to the same QC criteria as the Indian indigenous breeds. 
The 770k Illumina assay has close to 300,000 SNPs that are at high minor allele frequency in Bos 
indicus breeds, so that it has much lower ascertainment bias than earlier versions of the 50k assay.

Analyses. Analyses included calculation of Pearson’s correlation coefficient between observed 
(Robs) and expected (Rexp) allele frequencies for each breed-pair. These calculations only included SNPs 
with frequencies 0.05<p<0.95 to reduce bias due to limited numbers of SNPs with small frequencies. 
Rexp was calculated as follows:

Rexp = Vp/[Vp+Ve1 +Ve2],
where Vp is the variance of p in the meta-population (i.e. all Indian indigenous animals or all Bos 
taurus animals), Ve1 and Ve2 are the error variances of the estimates of p in the two breeds. Ve1 and 
Ve2 were estimated as the average across all loci of p(1-p)/2n, where n is the number of animals in 
the given breed and p is the meta-population value of p for each SNP. Vp was not corrected for the 
sampling error of p, which in all cases was less than 1% of the estimate of Vp. The variance of true 
SNP allele frequencies in one breed that was explained by the true SNP allele frequencies in another 
breed was estimated as the ratio of Robs

2/Rexp
2.

Principal components were estimated using a GRM based on Van Raden (2008). Further analyses 
included supervised Admixture models including reference breeds as potential ancestors (Alexander 
et al. 2009). Genetic differentiation between and within breeds were estimated using FST (Weir & 
Cockerham 1984), and FIS (Nei 1972), respectively (Table 1).

Table 1. Data information on Indian indigenous breeds and inbreeding levels (FIS)

Breed N Sampling location # excluded / reason FIS

Dangi 68 Maharashtra 3 / taurine>0.01 -0.015 (±0.124)
Gaolao 20 Maharashtra 1 / taurine>0.01 0.022 (±0.226)
Gir 121 Gujarat 3 / taurine>0.01 0.012 (±0.101)
Hallikar 28 Karnataka 1 / taurine>0.01 0.002 (±0.179)
Hariana 17 Haryana 4 / taurine>0.01 0.0002 (±0.262)
Khillar 25 Maharashtra 1 / taurine>0.01 0.015 (±0.2)
Krishna Valley 22 Karnataka 5 / taurine>0.01 0.004 (±0.218)
Red Kandhari 35 Maharashtra 0.008 (±0.168)
Malnad Gidda 19 Karnataka 5 / taurine>0.01 0.001 (±0.274)
Ongole 50 Andhra Pradesh 4 / low call rates 0.028 (±0.153)
Rathi 1 Rajasthan NA
Red Sindhi 63 Odisha 1 / low call rates

20 / taurine>0.01
-0.034 (±0.154)

Sahiwal 140 Punjab 36 / taurine>0.01 0.015 (±0.108)
Tharparkar 48 Rajasthan 3 / taurine>0.01 -0.024 (±0.144)
Vechur 1 Kerala NA
Non-descript

43
Maharashtra, Odisha, Uttar 
Pradesh

27 / taurine>0.01 0.029 (±0.236)
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RESULTS AND DISCUSSION
Principal components analysis and Admixture showed a clear separation between Bos indicus 

and Bos taurus breeds. The majority of the 109 Indian indigenous animals with more than 1% Bos 
taurus content belonged to Sahiwal, Red Sindhi and ND. Nayee et al. (2018) also found some of 
their Red Sindhi sample to have some taurine admixture. The otherwise tight clustering of the Indian 
indigenous breeds indicates that the taurine admixture is recent and not, as some sources speculate, 
a result of crossing Bos indicus with Bos taurus animals during the early history of breed formation.

Observed allele frequency correlations between Indian indigenous breeds were on average 0.92 
(±0.02). In comparison, Robs between the exotic taurine breeds was 0.65 (±0.04). The estimated pro-
portion of variance of true allele frequency explained by the true frequency in another breed was on 
average 0.986 in the Indian indigenous breeds; i.e. most or all of the genetic variance at the SNP level 
is within breeds. The estimated proportion of variance that is within-breeds for the Bos taurus breeds 
was 0.576. These results suggest that, in contrast to Bos taurus breeds, Indian indigenous breeds can 
be treated as a single population for some purposes, such as SNP assay design.

Figure 1a) shows the estimated breed proportions of the Indian indigenous breeds based on the 
indicine reference breeds as a heatmap. Red Sindhi and Gir were both best represented by the Red 
Sindhi and Gir reference breeds. Hallikar and Khillar showed a strong Ongole signal, whilst Ongole 
were best represented by the Nelore reference, which confirms the connection that Brazilian Nelore 
were bred from imported Indian Ongole (Porter et al. 2016). Tharparkar were, however, not best 
represented by the Tharparkar reference but by Kankraj and Dhanni; and Sahiwal were represented 
as an admixture of Tharparkar, Sahiwal and Hissar, which stands in contrast to Nayee et al. (2018) 
and Gajjar et al. (2018) who reported their Sahiwal sample to have the least evidence for admixture. 
These and other analyses indicate that it is difficult to trace history and relationships among Indian 
indigenous breeds which is not unexpected given the low level of between-breed variation estimated 
for these populations.

Figure 1a) Heatmap of estimated breed proportions for 16 Indian indigenous populations (ver-
tical) from a supervised Admixture analyses with 16 indicine reference populations (horizontal); 
b) heatmap of pair-wise FST values between 14 Indian indigenous populations
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Figure 1b) shows pairwise FST values as a heat map with a phylogenetic tree based on hierarchical 
clustering, when only the Indian indigenous breeds were considered. This clearly shows Red Sindhi 
as an outgroup to the other indigenous breeds, whilst the ND followed by Krishna Valley are the least 
genetically distinct groups. The genetic distinction of Red Sindhi might reflect their sampling from a 
single central breeding farm. However, Nayee et al. (2018) also found Red Sindhi to be genetically 
different from other Indian indigenous breeds.

Levels of inbreeding as measured by FIS are similar (-0.034 to 0.029) compared to the taurine 
reference breeds (-0.026 to 0.023). Studies based on microsatellite data found increased FIS values 
(e.g. Sharma et al. 2015). Whilst exact FIS values cannot be directly compared between these studies, 
we can confirm that higher inbreeding levels were found for Gaolao and Ongole and comparatively 
lower values for Hariana (Table 1).

CONCLUSION
Indian indigenous breeds show remarkably little between-breed variation, and therefore can be 

treated as a single population when developing genomic tools such as SNP assays.
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SUMMARY
In Nigeria, population characteristics of selected indigenous cattle breeds have not been fully 

documented. Therefore, morphometric attributes of selected indigenous cattle breeds in Nigeria were 
assessed. Three hundred and one White Fulani (WF), 242 Red Bororo (RB), 247 Sokoto Gudali (SG), 
233 Bornu Kuri (BK) and 184 Muturu cattle in the age group of 3 to 31/2 years were purposively 
sampled. Eighteen morphometric parameters were measured using standard procedures. Data were 
analysed using descriptive statistics, ANOVA at α0.05, cluster analysis and Euclidean genetic 
distance. Differences existed in face length, rear leg length; wither height and rump height among 
the breeds.

INTRODUCTION
One of the ways of characterizing livestock breeds is to evaluate their morphostructural characteristics 

and determine genetic distance among contemporary populations (Metta et al. 2002). The initial step 
in characterization is identification of distinct populations using information on their geographic and 
ecological isolation, traditional nomenclature (traditionally, recognized populations), phenotypic 
distinctness and level of genetic differentiation among the population (Gizaw et al. 2011). Indigenous 
cattle breeds are important to preserve as they are well adapted to local climates, food supply and 
other local environmental factors, which often shows in their robustness and hardiness. Indigenous 
livestock resources are also strategic in the socio-economics of rural agricultural systems to ensure 
food security in developing countries. The selected cattle breeds are found throughout Nigeria but 
are most common in the northern part the country. 

The wither height and rump height among these breeds differentiated them. This study is designed 
to unveil the phenotypic and genetic diversity among selected Nigeria indigenous cattle breeds using 
primary data obtained from field morphological survey to assess diversity of the selected indigenous 
populations in order to update published variations as well as document genetic distances between 
the populations. 

MATERIALS AND METHODS 
Data Collection. Animals were sampled from four different isolated areas where they were 

abundant in Nigeria. Each location was divided into clusters of ten units for easy measurements 
and adult animals that were within the age bracket of 3 to 31/2 years were sampled. A total of 1,207 
indigenous cattle comprising 301 White Fulani 247 Sokoto Gudali, 242 Red Bororo, 233 Bornu Kuri 
and 184 Muturu were sampled.

Eighteen linear body measurements (cm) were taken on each sampled animal with the use of a 
measuring tape (Table 1). Quantitative variables measured in this study were adapted from the standard 
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cattle descriptor list (FAO 2002) and a final list of variables were developed and used. Documented 
morphological features described by (Hall 1991) were used as base line markers to ascribe sampled 
animals to a breed. Individuals that did not strictly conform to primary breed characters; visibly 
pregnant, sick and castrated animals were excluded.

Statistical Analysis. Data collected were subjected to Generalized Linear Model Analysis of 
Variance (ANOVA) procedure of the Statistical Analysis System (SAS 2002) and cluster analysis 
of Palenotological Statistics (PAST). East Square Means ( x) and Standard Error (SE) associated 
with each linear body measurements were estimated. Genetic distances among the five breeds based 
on their actual morphometric variables measured were calculated using Euclidean genetic distance 
measure. The statistical model used for analyzing quantitative phenotypic variations among the breed 
populations was as follows: 

Yi = µ + Bi + ei

where Yi are the observed body measurements; µ is the overall mean, Bi  is the fixed effect of breed  
(i = 1,2,..5) and ei is the standard error. 

RESULTS AND DISCUSSION
Mean values of morphological variables and their SE are depicted in Table 1 for aggregated gender. 

Pairwise mean comparison showed significant differences for most of the morphological variables 
among the breeds. Morphological variables such as wither height, rump height, body length, and 
tail length were significantly higher (P<0.05) for White Fulani and Sokoto Gudali as compared with 
any other breeds considered in this study. Muturu breeds were significantly (P<0.05) larger for face 
length and head width than other four breeds. 

The genetic distance among the cattle population ranged from 43.77 to 145.52 (Table 2). The 
longest genetic distance was observed between Bornu kuri and Muturu while the shortest distance 
was observed between Red Bororo and Bornu Kuri. The cluster analysis generated showed two main 
clusters having Muturu in a cluster and White Fulani, Sokoto Gudali, Bornu Kuri and Red Bororo 
in the other. 

The significantly higher values for most of the morphometric measurements of White Fulani, 
Sokoto Gudali, Red Bororo and Bornu Kuri that were predominantly in the northern part of the country 
than Muturu that is predominantly in southern part of the country seem to be an adaptation where 
tallness (wither height) and large body size (heart girth and body length) are suitable for trekking 
long distances to water and grazing points and this is in agreement with what Nwacharo (2006) and 
Hall (1991) reported. These observations could be as a result of genetic and species differences. 
The differences in body measurements of the five cattle breeds with respect to some morphological 
variables indicates that the five cattle breeds were sub-divided into distinct populations perhaps due to 
differences in availability of feed resources, breeding practices used and inherent genetic differences 
(Nwambene et al. 2012).
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Table 1. Means of body measurements (±SEM) amongst the five cattle breeds

WF±SEM SG±SEM RB±SEM BK±SEM MU±SEM
FL 
HW
HL
EL
NL 
NC
WH
FLL
HG
BL
RH
RL
RLL
TL
SC
HoL
RW
SW

49.37±0.44b

22.62±0.16c

45.16 ±0.84a

23.86±0.52a

54.56±0.58a

54.71±0.51c

130.39±0.21a

78.39±0.45b

83.20c   ±0.18c

116.45±0.11a

135.40 ±0.17a

30.56±1.19a

105.45±0.21a

96.10  ±0.49a

25.06 ±0.43a

50.90 ±1.11a

35.19 ±0.56a

68.02±0.52b

47.51±0.36c

22.57 ±0.15c

 4.56 ±0.44d

24.17 ±0.65a

51.34 ±0.41b

59.08 ±0.51b

129.21 ±0.23a

80.39  ±0.45b

95.92 ±0.28b

116.03 ±0.08a

134.22 ±0.21a

30.58 ±0.26a

105.41 ±1.01a

94.98 ±0.36a

24.75  ±0.39ab

50.05 ±0.71b

35.38 ±0.42a

69.59 ±0.34b

40.35±0.33c

21.21±0.14d

38.05 ±0.32b

24.07 ±0.52a

38.97±0.40c

76.85 ±0.32a

125.65 ±0.11b

85.96 ±0.41a

144.41 ±0.12a

111.17   ±0.06b

130.59  ±0.09b

31.03 ±0.75a

104.64  ±0.19a

91.89  ±0.17b

24.66  ±0.22ab

50.07  ±0.47b

34.45  ±0.41b

80.89  ±0.46a

45.44 ±0.57d

24.11 ±0.18b

38.39  ±0.57b

24.17 ±0.56a

38.79 ±0.51c

77.75  ±0.81a

125.18 ±0.15b

87.59 ±0.43a

144.40 ±1.12a

112.64 ±0.41b

131.53 ±0.50b

30.97 ±0.21a

105.06 ±1.17a

91.30 ±0.14b

24.40 ±0.08b

49.41 ±0.43b

35.18 ±0.20a

81.85 ±0.11a

54.03±0.39a

28.53 ±0.68a

8.30 ±0.35c

14.61 ±0.24b

25.40  ±1.09d

60.93 ±0.18b

82.41 ±0.07c

56.71 ±0.25c

57.03 ±0.43d

73.55 ±0.21c

88.46 ±0.54c

20.89 ±0.41b

73.93 ±0.63b

55.98 ±0.41c

21.86 ±0.14c

32.74 ±0.35c

28.32 ±0.24c

63.58 ±0.22c

Means with same superscript are not significantly different (P>0.05). SEM = Standard Error Mean
WF =White Fulani, SG = Sokoto Gudali, RB = Red Bororo, BK = Bornu Kuri, MU = Muturu
FL = Face Length, Head Width = HW, Horn Length = HL, Ear Length = ER, Neck Length =NL, Neck Circumference 
= NC, Wither Height = WH, Foreleg Length = FLL, Hearth Girth = HG, Body Length = BL, Rump Height = 
RH, Rump Length = RL, Rearleg Length = RLL, Tail Length =TL, Shin Circumference = SC, Hock Length = 
HoL, Rump Width = RW, Shoulder Width = SW

Table 2. Euclidean genetic distance estimate based on actual measured morphometric variables

               White  Fulani Sokoto     
Gudali 

Red  Bororo 
	

Bornu 
Kuri Muturu

Sokoto Gudali 54.36    -
Red Bororo 70.44 65.63    -
Bornu Kuri 54.54 54.54 43.77      -
Muturu 114.87 83.86 136 145.52     -

A shorter genetic distance obtained between White Fulani and Sokoto Gudali suggests a close 
genetic relationship between the breeds while the longer genetic distance was observed between 
White Fulani and Muturu is an indication that an appreciable heterosis especially with regard to most 
body measurements which are of economic importance can be obtained by crossing any of the two 
breeds. The phylogenetic tree separated the five cattle breeds into two main clusters. In addition, 
the close genetic relationship between the breeds may also be attributed to similarity in ecological 
zones and production systems as well as the incidents of cross border livestock rustling contributing 
to the migration and movement of livestock and subsequent interbreeding between such livestock, 
this in agreement with had been reported by (Nwacharo et al. 2006). There were clear disparities 
in the wither height and body length of the five breeds. White Fulani was found superior to any of 
the other four breeds studied. Genetic distance based on morphological indices among the breeds as 
revealed by the cluster analysis showed that the breeds were genetically distinct. 
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Figure 1. Dendogram showing genetic relationship among five indigenous cattle from Nigeria

CONCLUSIONS
Morphometric attributes are very good tools in differentiating cattle on the basis breeds. The closer 

genetic relationship among White Fulani, Sokoto Gudali, Red Bororo and Bornu Kuri five cattle 
breeds may be attributed to possible interbreeding among these populations that were predominantly 
abundant in the northern part of the country forming homogeneous population separated by no physical 
geographic boundaries.
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SUMMARY
Genomic selection (GS) using dense SNP panels was first implemented in 2009 for dairy cattle. 

Since then, GS has been extended to other livestock. However, different problems and challenges 
are always encountered during the implementation of GS in each population. In this paper, we show 
the issues in the implementation of GS and how they have been successfully solved in beef and dairy 
cattle, pigs, chicken, and fish. We also discuss changes in current methods and development of new 
algorithms to deal with large genomic data. Overall, complications for GS include, but are not lim-
ited to, selective genotyping, computing limitations, convergence problems especially for complex 
models, compatibility between pedigree and genomic information, among others.

BACKGROUND
Soller and Beckmann (1983) hypothesized, in the early 1980’s, that DNA markers could be useful 

in constructing more precise genetic relationships, detecting causative variants, and determining par-
entage. After the first draft of the human genomic project was published in 2001 (The International 
SNP Map Working Group 2001), single nucleotide polymorphism (SNP) became the most important 
source of genome sequence variation, and therefore, the most important DNA marker. Concurrently, 
Meuwissen et al. (2001) anticipated that genomic information could help animal breeders to gen-
erate more accurate breeding values if a dense SNP assay that covered the entire genome could be 
constructed. It took almost 8 years for the first dense SNP assay to become available, and this was 
for dairy cattle (Matukumalli et al. 2009).

In January of 2009, researchers from AGIL-USDA released the first official genomic evaluation for 
Holstein and Jersey in the USA. This implementation brought a lot of excitement, especially because 
the top bull in the evaluation had no daughters with milking records, meaning his genetic merit was 
computed based on pedigree and genomic information. The superiority of this very bull was later 
confirmed when his progeny records became available. This endorsed the hypothesis that Meuwissen 
et al. (2001) had tested based on simulated data: the genetic merit of young animals can be computed 
with high accuracy if they are genotyped and SNP effects are available from a reference population.

With the release of genomic predictions based on dense SNP assays for Holsteins in the USA, 
the race for the implementation of genomic selection (GS) in livestock became official. Essentially, 
two main methods for genomic evaluation were developed: multi-step and single-step. The multi-
step method was the first to be implemented (VanRaden 2008). The main advantage of the multi-step 
approach is that the traditional BLUP evaluation is kept unchanged and GS can be carried out by 
using additional analyses; however, only genotyped animals have genomic EBV (GEBV). As a result, 
several adjustments were proposed, especially in dairy cattle, to make EBV for non-genotyped ani-
mals comparable to GEBV under multi-step evaluations (Wiggans et al. 2011; Wiggans et al. 2012).

Intending to solve incompatibility problems and to reduce the burden in obtaining genomic pre-
dictions when only a fraction of animals is genotyped, Misztal et al. (2009) and Legarra et al. (2009) 
proposed a method that combines phenotypes, pedigree, and genotypes into a single evaluation. 
This method is called single-step genomic BLUP (ssGBLUP) and replaces the pedigree relationship 
matrix in the traditional BLUP by a realized relationship matrix (H), which combines pedigree and 
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genomic relationships. Another class of single-step was also proposed by Fernando et al. (2014), 
which is based on a marker effect model and is called single-step Bayesian regression (ssBR). Under 
the same assumptions (e.g., all SNP have non-zero effect and constant variance), ssGBLUP and ssBR 
are equivalent models (Gao et al. 2018).

Over the past 4 or 5 years, ssGBLUP has become the preferred method for genomic evaluation in 
several species, namely beef cattle (Lourenco et al. 2015a), dairy cattle (Vukasinovic et al. 2017), pigs 
(Forni et al. 2011; Lourenco et al. 2016), broilers (Chen et al. 2011; Lourenco et al. 2015b), layers 
(Yan et al. 2018), dairy sheep and goat (Rupp et al. 2016), Australian sheep (Brown et al. 2018), and 
fish (Garcia et al. 2018). Possibly, in the near future, the great majority of genomic evaluations will 
all be based on single-step methods.

Although the idea and theory behind ssGBLUP are easily understandable, and the method seems 
to be simple because it just requires the change in the relationship matrix, its implementation for 
official genomic evaluations is quite challenging and demands several data-dependent adjustments. 
It is worthwhile to remember that even a small change to the genetic evaluation system can create 
issues. For example, a simple change in variance components can cause convergence problems and 
changes in scaling. Usually, the issues and challenges encountered during the change from traditional 
or multi-step evaluations to single-step are not disclosed. However, showing issues and strategies to 
solve them can help troubleshooting future implementations. In this paper, we show the problems 
in the implementation of GS and how they have been successfully solved in beef and dairy cattle, 
pigs, chicken, and fish.

GENOMIC STRATEGIES 
Beef cattle. In 2009, Angus Genetics Inc. started to run multi-step genomic evaluations for 

American Angus Association (AAA) using a correlated approach described by Kachman (2008). In 
this approach, the trait phenotype and the direct genomic values (DGV) calculated based on SNP 
effects are used as phenotypic information in a 2-trait model, where heritability for DGV is assumed 
to be 0.99. Restricted maximum likelihood (REML) estimates are then obtained. Genetic correlations 
between each trait and DGV reflect accuracy of DGV, and solutions for the first trait are genom-
ic-enhanced EBV. The drawback of this method is that it doubles the number of traits in the model. 
Additionally, genetic correlations between each trait and DGV can be overestimated, indicating the 
genomic information is explaining more of the genetic variance than expected, which can inflate 
predictions. Figure 1 shows genetic trends for marbling using traditional BLUP and the multi-step 
correlated approach. Inflated genetic trends for multistep predictions, together with big fluctuations 
for predictions every time SNP effects were recalculated (i.e., during calibration) and re-ranking of 
high accuracy bulls in subsequent evaluations urged Angus Genetics Inc. to find another method for 
their genomic evaluation.

Figure 1. Genetic trends for marbling using traditional BLUP and the multi-step correlated 
approach in American Angus
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Scaling factors and inbreeding. In 2014, we started testing ssGBLUP for growth and calving 
ease (CE) models in the American Angus population. Several datasets were used, but the first one 
was for growth traits and calving ease and comprised 8 million animals in the pedigree, along with 
6 million birth (BW) and weaning weight (WW) records, 3.4 million records for post-weaning gain 
(PWG), 1.3M CE records, and genotypes for 52k animals. The first issue observed was the inflation 
of GEBV in a validation test. When adjusted phenotypes for animals considered young in 2013, but 
with phenotypes in 2014, were regressed on GEBV, regression coefficients were lower than 1. To 
solve this problem scaling parameters can be used in H-1 (Aguilar et al. 2010; Christensen and Lund 
2010; Tsuruta et al. 2011):

​​H​​ -1​ = ​A​​ -1​ +​[​0​ 
0
​ 0​  τ ​G​​ -1​ – ω ​A​ 22​ 

-1 ​​]​​
where ​​A​​ -1​​ is the inverse of the pedigree relationship matrix, ​​G​​ -1​​ is the inverse of the genomic rela-
tionship matrix, and ​​A​ 22​ 

-1 ​​ is the inverse of the pedigree relationship matrix among genotyped animals; 
τ and ω were used to rescale the amount of information in ​​G​​ -1​​ and ​​A​ 22​ 

-1 ​​, respectively. Primarily, ω 
controls inflation due to incompleteness of pedigree while τ controls additive genetic variance. Based 
on validation, we found the best combination of τ and ω for this data was 1.0 and 0.7. However, scaling 
parameters are completely ad-hoc and should be avoided generally. In the original implementation 
of ssGBLUP (Aguilar et al. 2010) inbreeding for ​​G​​ -1​​ and ​​A​ 22​ 

-1 ​​ was considered, but not for ​​A​​ -1​​. After 
inbreeding was included in the computation of ​​A​​ -1​​, ω lower than 1 was not needed anymore for this 
beef cattle data. Figure 2 shows coefficients for the regression of adjusted phenotypes on GEBV for 
BW, WW, PWG when inbreeding for ​​A​​ -1​​ is considered and ω is lower than 1. It is clear that GEBV 
are deflated if ω is lower than 1, proving that inbreeding in ​​A​​ -1​​ is enough to avoid inflation in this 
AAA dataset. Therefore, current official AAA evaluations use τ=ω=1.

Figure 2. Regression coefficients (b1) for birth weight (BW), weaning weight (WW) and post-wean-
ing gain (PWG) with varying ω

Selective genotyping. Regarding the advantages of using genomic information, the average gain 
in predictive ability for growth traits, when moving from traditional BLUP to ssGBLUP, was 24%. 
In contrast, the gain in prediction accuracy for CE was only 8%, going from 0.12 to 0.13. This small 
increase in predictive ability is possibly because animals with difficult calving are unlikely to be 
retained for breeding and therefore would not be genotyped on a regular basis. In fact, only 0.35% of 
the animals with difficult calving were genotyped. Therefore, selective genotyping can compromise 
the gains that can be obtained with genomics and can also introduce some pre-selection bias into 
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the evaluations. Similar problems occur for traits related to survival or other specific phenotypes 
(e.g., animals with undesirable phenotypes or dead). This means some traits might need a controlled 
reference set of animals, rather than relying on Industry genotyping strategies which are influenced 
by the perceived value of animals.

External information. For the growth model, another issue was related to the inclusion of external 
information in ssGBLUP. For traditional evaluations, the external EBV from Red Angus is used as 
prior information in the right hand side of the mixed model equations (MME), and the reliability is 
added to the pedigree relationships among external animals in the left hand side of the MME (Legarra 
et al. 2007). We changed the computing algorithm to support both genomic and external information, 
and the implementation of a genomic multi-breed model increased the computing time only by 2.5 
hours, compared to a genomic single-breed model.

Many more genotyped animals. On a weekly basis, more than 2k genotyped animals are added to 
the AAA database. From July of 2014 to March of 2019, the number of genotyped animals increased 
from 82k to 627k. The most computationally expensive operation in ssGBLUP is the inversion of G 
and A22. This operation has an approximately cubic cost with the number of genotyped animals. With 
efficient computing algorithms, matrix inversions are feasible for up to 150,000 genotyped animals.

To overcome the limitation set by the number of genotyped animals in ssGBLUP, Misztal et al. 
(2014) proposed the algorithm for proven and young (APY) animals to construct G-1 without having 
to explicitly invert G. The logic behind the construction of ​​G​ APY​ −1  ​​ is that the genotyped animals are 
split into core (c) and noncore (n), and breeding values for noncore animals (​​u​ n​​​) are functions of 
breeding values of core animals (​​u​ c​​​):

​​u​ n​​ = ​P​ nc​​ ​u​ c​​+ ​Ψ​ n​​ ​

where ​​P​ nc​​​ is a matrix that relates breeding values for noncore to core animals, and ​​Ψ​ n​​​ is a diagonal 
matrix with estimation errors. The ​​G​ APY​ −1  ​​ can be constructed as:

​​G​ APY​ −1  ​ =​[​​G​ cc​ 
-1 ​

​ 
0
​ 

0
​ 

0
​]​+​[​​-G​ cc​ 

-1 ​ ​G​ cn​​​ 
I
  ​]​ ​M​ nn​ 

-1 ​​[​​-G​ nc​​ ​G​ cc​ 
-1 ​​  I​]​​Ψ

with ​​m​ ​nn​ ii​​
​​  =  ​g​ ii​​ -  ​g​ ic​​ ​G​ cc​ 

-1 ​ ​g​ ci​​​. The APY algorithm creates a generalized sparse inverse of G at approx-
imately a linear cost in computing and storage. However, if ​​G​ APY​ −1  ​​ is efficiently computed but ​​A​ 22​ 

-1 ​​ is 
not, ssGBLUP still cannot be used for over 150,000 genotyped animals. To avoid explicit inversion 
of ​​A​ 22​​​, Masuda et al. (2017) proposed to compute an efficient inverse indirectly as a product of sparse 
matrices:

​​A​ 22​ 
−1​  =  ​A​​ 22​ − ​A​​ 21​ ​​(​A​​ 11​)​​​ −1​ ​A​​ 12​​

where ​​A​​ 11​​, ​​A​​ 21​​, and ​​A​​ 22​​ are portions of ​​A​​ -1​​for non-genotyped, between genotyped and non-genotyped, 
and for genotyped animals, respectively.

Without APY, ssGBLUP would not be feasible for the AAA evaluations. However, identifying core 
animals was not an easy task at the beginning of the implementation of ssGBLUP for AAA. Choosing 
core animals randomly or based on EBV accuracy resulted in correlations >0.99 between GEBV from 
regular and APY ssGBLUP, providing the core group had a minimum of 10k animals. Less optimal 
core definitions caused convergence issues. We ultimately chose to select core animals based on EBV 
accuracy for the official evaluations because those animals would have more progeny recorded. No 
differences were found in convergence and computing time for the growth model However, for the 
carcass model, which combines 9 different traits, some of them are sparsely recorded (e.g., fat and 
ribeye area), using a random core instead almost halved the number of rounds to convergence. Since 
2017, Angus Genetics Inc. has been using APY ssGBLUP for weekly evaluations of around 18 traits, 
using a single set of core animals assigned based on EBV accuracy.
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Computing SNP effects in ssGBLUP. Besides the official national Angus evaluation, genomic 
predictions or direct genomic values (DGV) based on SNP effects are provided for non-registered 
animals, usually females, for herd management. Although ssGBLUP provides GEBV as final output, 
estimates of SNP effects (a) can be obtained by back-solving GEBV (Wang et al. 2012):

​​ ̂  a​ = ​kZ′G​​ −1​​ ̂  u​​

where: k is the ratio of SNP to additive genetic variance, Z is a centred matrix of SNP effects, and u is 
a vector of GEBV. As the calculation of SNP effects is done by standalone software from the BLUPF90 
family (postGSf90), there is a need to save ​​G​ APY​ −1  ​​ to disk. However, even half stored requirements 
were large. To overcome this problem, we investigated the use of the subset of ​​G​ APY​ −1  ​​ only for core 
animals (​​G​ CC​ −1 ​​). Correlations between GEBV and DGV obtained with ​​G​ APY​ −1  ​ ​or ​​G​ CC​ −1 ​​ were greater than 
0.98 using the 2014 dataset. However, as the number of genotyped animals increased, we observed a 
decrease in correlation when ​​G​ CC​ −1 ​​ was used. Based on that, we changed the algorithm in postGSf90 to 
work with blocks of ​​G​ APY​ −1  ​​ instead of having to allocate the full matrix in memory. The new software 
requires less memory and is extremely fast.

Accuracy as a measure of GEBV risk. One of the benefits of using genomic information is to 
increase breeding value accuracy. Accuracies are calculated based on prediction error variance (PEV) 
and can be obtained from the inverse of the LHS of MME. If the number of animals in the pedigree is 
large, the inverse is not computationally feasible and an approximation has to be used. Approximating 
accuracy of GEBV requires the calculation of the combined contributions due to phenotypes, pedi-
gree, and genomic information. An algorithm to approximate genomic contributions was developed 
based on diagonals of G and the average traditional accuracy for genotyped animals. Compared to the 
approximation based on pedigree and phenotypes only, the increase in computing time was irrelevant. 
Another advantage of this algorithm is that the diagonal of G or GAPY can be easily saved and requires 
a small disk space. Correlations between accuracy from the new algorithm and true accuracy from 
PEV were higher than 0.85 for growth traits, using a sample dataset.

Dairy cattle. Single-step GBLUP is currently used by Zoetis for genomic evaluations of wellness 
traits in dairy cattle. Those traits have a binary response and each one is currently analysed separately 
using a univariate threshold model. Heritabilities are low, ranging from 0.06 to 0.08, and trait inci-
dences vary from 2% to 25% (Vukasinovic et al. 2017). As for beef cattle, changes had to be made to 
accommodate an increasing number of genotyped animals. Although all models were single-trait, the 
time to convergence with APY core animals selected based on their accuracy of EBVs, was between 24 
and 50 hours, which is un-acceptable. When the core animals were randomly selected, the computing 
time was between 4 and 10 hours. As was previously observed for carcase traits in beef cattle, the 
choice of core animals becomes an issue when few genotyped animals have phenotypes. Probably, ​​
G​ APY​ −1  ​​ with random core is better conditioned than with high EBV accuracy core.

Although official genomic evaluations in the US are still done with multi-step methods, several 
tests have been done by our group to investigate the feasibility of ssGBLUP for dairy cattle using 
data provided by the US Holstein Association and the Council on Dairy Cattle Breeding (CDCB). 
A common problem is the inflation of GEBV. Although using inbreeding for the calculation of A-1 
eliminated inflation in the beef cattle evaluation, the same was not true for dairy evaluations. This is 
because the missingness of pedigree is greater in dairy cattle data. In the initial tests before imple-
menting inbreeding, convergence could only be reached with ω<1.

In BLUP-based methods, missing parents can be modelled by unknown parent groups (UPG). 
Such groups are also known as phantom parents or genetic groups, and are used to represent the 
average level of breeding value in a group where parents were missing. In ssGBLUP, when UPG are 
applied only to A, convergence may fail or the convergence rate can be slow. Alternatively, UPG can 
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be assigned to both A and A22. For US Holstein with 18 type traits, using 10M animals in the pedigree 
and 570k genotyped, we observed that adding UPG for A22 helped to reduce inflation. However, the 
least GEBV inflation for young genotyped bulls was observed when inbreeding for UPG was also 
considered and the genetic variance was halved (Figure 3). The problem of reducing additive genetic 
variance is the shrinkage of GEBV for all animals, not only for young genotyped bulls. According 
to VanRaden et al. (2014), a reduction in genetic variance for yield traits reduced inflation caused by 
the inclusion of female genotypes.

Figure 3. Average regression coefficient (b1) and reliability (Rel) for 18 type traits in US Holsteins 
A22 inb = inbreeding in ​​A​ 22​ 

−1​​ + UPG; A A22 inb = inbreeding in A-1 and ​ ​A​ 22​ 
−1​​ + UPG; inb UPG = 

inbreeding for UPG; Inb UPG 50% = inb UPG with 50% reduction of additive genetic variance

The US dairy industry has collected almost 3M Holstein genotypes by April 2019 (https://queries.
uscdcb.com/Genotype/counts.html). Only 11% of those are for males and over 75% of the females will 
never have phenotypic records. Initial ssGBLUP tests using 2.3M genotyped animals, 13.5M animals 
in the pedigree, and 11M records on 18 type traits took 3 days to converge and required over 300 GB 
of memory. This was using APY with 15k randomly chosen core animals. Currently, the ssGBLUP 
software used to solve large systems of equations is undergoing changes for the implementation of 
a message-passing interface (MPI), which uses multi-processor architecture, allowing a higher level 
of parallelization. After these changes are completed, the convergence for the 18 type trait model is 
expected to be reached within 36 hours using about 30 GB of memory.

Pigs. The biggest challenge for genomic evaluations in pigs is to have accurate predictions for 
multi-breed or crossbred populations. In within breed ssGBLUP, G is constructed based on the average 
allele frequency. However, different breeds may have different allele frequencies, and construction 
of G must be modified. Using 2 breeds and their F1, we observed negative genomic relationships 
between breeds, which is an indicator of distinct allele frequencies. Breed-specific allele frequencies 
were subsequently used to centre and scale G in simulated and real pig datasets (Lourenco et al. 
2016). Although the average relationship between the 2 breeds was zero when using breed-specific 
allele frequencies, accuracy of GEBV was similar to the default scenario that used across-breed allele 
frequencies to construct G. If there is a dominant breed, meaning one breed has many more geno-
typed animals than the other, the largest breed will likely have more accurate predictions. To avoid 
this issue, G can be constructed assuming SNP are not shared among breeds, which would create a 
block-diagonal G; however, this is less straightforward when genotypes for crossbreds are included 
in the evaluation (Steyn et al. 2019).

When APY ssGBLUP is used in multi-breed or crossbred evaluations, the choice of core animals 
becomes even more complex. This is because the appropriate number of core animals depends on 
the theory of limited dimensionality of genomic information and chromosome segments, which 
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relies on effective population size. The suitable number of core animals in multi-breed populations 
can be accessed by the number of eigenvalues explaining 98% of the variance in G, considering all 
breeds together. If breeds are completely independent, the expectation for the number of eigenvalues 
across 2 breeds is the sum of eigenvalues within each breed (Figure 4). We observed that comparing 
the number of eigenvalues across and within breeds can indicate the ability to perform across-breed 
predictions because chromosome segments are shared (Pocrnic et al. 2019).

Figure 4. Number of eigenvalues explaining 98% of the variance of G across and within breeds 
(B1 and B2) and crossbred (F1)

Large pig breeding companies usually buy small farms/companies and combine the populations 
into a single evaluation. Assigning UPG for each population can help to account for the difference 
in base population. However, UPG are usually considered as fixed effects and a reasonable number 
of observations is needed for their accurate estimation. Datasets coming from small farms may have 
insufficient amount of information linked to UPG, leading to estimation errors and inflation of GEBV. 
In such a case, we observed that using random instead of fixed UPG solved estimation problems 
related to poor UPG connections (Pocrnic et al. 2018).

Poultry. Inflation of GEBV is not so evident in chicken datasets because old generations are 
removed and genotyped animals have complete pedigree. In fact, only 2 to 4 years of data are retained 
for genetic and genomic evaluation in chickens. However, in the first tests of ssGBLUP in chicken 
data (from Cobb-Vantress), back in 2013, we observed inflated genetic trends for GEBV compared 
to EBV, especially for young animals. The sources of this inflation were identified to result from 
the inclusion of unmapped SNP (i.e., mapped to chromosome 0) in the evaluation, the presence of 
imputation errors, and incorrectly labelled samples. If the imputation uses a family-based method but 
the pedigree has errors, the imputation can be compromised, resulting in low correlation between G 
and A22. This outcome illustrates more generally that quality control of SNP, samples, and genomic 
relationships is an important step before genomic evaluation, as small errors in the SNP data can be 
propagated, generating biased estimates. 

Another issue observed in chicken data was the lower predictive ability (i.e., correlation between 
adjusted phenotypes and EBV or GEBV) for females compared to males for a growth trait, even though 
females had almost twice the number of genotypes. For an efficiency trait with the same amount of 
information and similar heritability, predictive ability was comparable between males and females. 
Separate genetic trends for males and females showed stronger selection for females than males in 
the growth trait but a similar trend in the efficiency trait (Figure 5). This shows that predictive ability 
takes the selection intensity into account and different predictive ability is expected if males and 
females have distinct selection differentials.
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Figure 5. Accuracy and genetic trends for growth and efficiency in chickens

Fish. In fish production, several families may be raised in common ponds, making the identifi-
cation of individuals difficult. Even though low density microsatellite panels are used for parentage 
determination with relatively high accuracy (Waldbieser and Bosworth 2012), pedigree errors still 
exist. As fish families are large, a single mistake in parentage assignment can be multiplied to thou-
sands of individuals. In the implementation of genomic selection for catfish in the USA (ARS-USDA 
Warmwater Aquaculture Research Unit), we were able to identify mis-assigned parentage based on 
SNP markers. After pedigree corrections, heritability for carcass weight was adjusted from 0.27 to 
0.21. Correcting variance components avoided the overestimation of genetic gains.

Another issue present in fish populations is the choice of individuals to be genotyped, given that 
genotyping is still expensive and full or half-sib families are large. We decided to genotype 40 fish 
per family, in a total of 75 families. As carcass weight is one of the most important traits in fish, 
genotyped individuals were also slaughtered to evaluate whether half or full-sib phenotypes would be 
enough to produce a high predictive ability for selection candidates. Using own genomic information 
combined with phenotypes and genotypes on siblings provided a 22% increase in predictive ability 
for carcass weight, compared to traditional BLUP.

Assessing predictive ability for disease traits either in fish or other species is quite challenging 
because phenotypes have a binary nature and breeding values have a normal distribution. Therefore, 
correlations between adjusted phenotypes and GEBV are usually very small or negative. Addition-
ally, the regression coefficients are much lower than 1, which may not support the use of genomic 
selection. For binary and categorical traits, other validation methods may be more appropriate than 
predictive ability. For the initial tests on the feasibility of genomic selection for columnaris disease 
resistance in rainbow trout in the USA (ARS-USDA Cool and Cold Water Aquaculture), we adopted 
the LR validation (Legarra and Reverter 2018). This method is based on comparisons between 
complete and partial predictions. The relative increase in accuracy of GEBV compared to EBV was 
40%, which encouraged the adoption of genomic selection to predict disease resistance in rainbow 
trout (Silva et al. 2019).
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Common problems in large-scale genomic evaluations. Although different species usually 
require different strategies, common issues emerge when using large datasets. For ssGBLUP evalu-
ations using a large number of genotyped animals, APY is one of the options. Another option is the 
ssGTBLUP (Mantysaari et al. 2017) that uses Woodbury formulas and requires only the inverse of 
a matrix with the size of the number of SNPs. An equivalent model that can also be used for large 
data is ssBR or hybrid model (Fernando et al. 2014), where SNP effects are estimated regardless of 
the number of genotyped animals.

When APY is used, even though the correlation between GEBV from regular ssGBLUP and 
APY ssGBLUP is greater than 0.99 when the appropriate number of core animals is used, re-ranking 
is still observed when different core groups are used. We investigated in beef and dairy cattle, and 
pig datasets different definitions of core and random core groups to identify which animals have the 
biggest changes in GEBV and how those changes can be minimized. In all datasets, larger changes in 
GEBV by using different core groups were observed for animals with lower accuracy. The observed 
changes relative to standard deviations of GEBV were, on average, 5%, but ranged from 0 to 100%. 
Increasing the number of core animals beyond the optimal value helped to asymptotically reduce 
changes in GEBV. Although core-dependent changes in GEBV exist, they are small and can be 
reduced with larger core groups.

Accounting for selected sequence variants in GBLUP-based methods. As sequence data is slowly 
becoming available for livestock, there is a question whether GBLUP-based methods can account for 
selected sequence variants and what is the possible gain in accuracy. Although the default assumption 
of GBLUP methods is that all SNP explain the same proportion of variance, it is possible to weight 
SNP differently. Recently, we observed that the increase in accuracy by SNP weighting is smaller 
in large populations, compared to small populations. This is because large genotyped populations 
allow more accurate estimation of chromosome segment effects; therefore, there is no advantage in 
selecting SNP and tagging segments with larger value (Lourenco et al. 2017).

Using a US Holstein dataset, Fragomeni et al. (2019) tested the performance of GBLUP and 
ssGBLUP when using nearly 54,000 SNP and when adding 17,000 significant variants discovered 
from a GWAS using sequence data involving 33 traits (VanRaden et al. 2017). Although VanRaden et 
al. (2017) reported an increase in reliability of GEBV of 4.3 points for stature by using non-linearA 
weights (i.e., a fast version of BayesA) in a multistep scenario, no gain was observed by Fragomeni 
et al. (2019) using either quadratic or non-linearA weight in GBLUP with heterogeneous residual 
variance and ssGBLUP. This is possibly because the amount of data used in ssGBLUP overwhelms any 
a priori assumption made about SNP effects, making this method less sensitive to SNP weighting in 
the presence of large data. Another hypothesis to explain the steady reliability is that not all causative 
variants were present among the 17,000 significant SNP. In a simulation study done by Fragomeni et 
al. (2017), including all simulated causative variants with respective true weights among 60k SNP, 
increased accuracy of ssGBLUP GEBV from 0.49 to 0.94. Although causative variants can be included 
in ssGBLUP assuming different weights for SNP, maximizing the accuracy of GEBV would require 
the true identification of all causative variants and their substitution effect.

CONCLUSIONS
Although the implementation of genomic selection seems to be straightforward, given genotypes 

are added to phenotypes and pedigree that are already in the evaluation system, several issues and 
challenges were raised during the initial application of this methodology to breeding programs of 
several species. Fortunately, solutions to most of the problems have come in a fast pace, enabling 
the widespread use of this methodology. Overall, the sources of problems include missingness of 
pedigree, selective genotyping, increasing number of genotyped animals, incompatibility between 
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pedigree and genomic information, and difficulty in assessing predictive ability of genomic models 
for specific traits. It is expected that more issues will rise, and most of them may be related to the 
amount, type, and way the genomic data are being generated. 
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SUMMARY
For the design of breeding programs it is important to understand how trait measurement translates 

into selection accuracy. The introduction of genomic selection has created new challenges, in particular 
in relation to designing reference populations and valuing information sources for their contribution 
to genetic gain.  The accuracy of genomic prediction depends on trait heritability, the number of 
phenotypes used (on genotyped animals) and the ‘effective number of chromosome segments’ that 
need to be estimated. The latter parameter is challenging to estimate but can in principle be derived 
from the variation in relationships between the reference set and the target animal. This paper attempts 
to validate that theory based on real data, with the aim to develop further insight into the value of a 
certain reference set for the genomic prediction of a certain target animal.

INTRODUCTION
Genomic selection has become an integral part of breeding programs. The information about 

genetic merit obtained from genomically tested animals depends on the accuracy of the genomic test 
itself, and that from various other sources of information such as performance data on an animal itself 
and (or) its relatives. There is good selection index theory about the value of various information 
sources, and the accuracy of estimated merit we can expect if we combine them in a prediction 
framework such as Best Linear Unbiased Prediction (BLUP). However, we are still struggling to get 
a good handle on the information that we can expect from a genomic test. A better understanding of 
the components that drive the accuracy of a genomic test is important, not only for the breeder who 
needs to decide whether to invest in it, but also for those setting up reference populations to facilitate 
a higher accuracy of genomic testing. Investment in reference population occurs through individual 
breeders or breeder groups, breed societies, and funding bodies. It is important to be able to value 
the contributions of different information sources, the possible advantages of further increasing the 
size of the reference population and the usefulness of a certain reference set for animals with varying 
degrees of relationship to that reference.

The purpose of this paper is to review the theory that has been proposed to predict the accuracy 
of genomic prediction and to validate this theory with some examples involving real data. This might 
lead to a way forward on how to decide about the size and structure of reference populations and how 
to value them in prediction of genetic merit in the context of breeding programs. 

THEORY ON THE ACCURACY OF GENOMIC TESTING
The most frequently cited formula to predict the accuracy of genomic testing comes from Daetwyler 

et al. (2008), who proposed: 

𝑟𝑟𝑔𝑔�,𝑔𝑔 =  �
ℎ2

ℎ2 + 𝑀𝑀𝑒𝑒/𝑁𝑁
 

[1]
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where h2 is the trait heritability, N is the number of individuals with an observed phenotype as well 
as genotype, and Me is the ‘effective number of chromosome segments’. The formula is remarkably 
simple. It is based on the accuracy of estimating a random effect, which is N/(N+l), where l is the 
ratio of the residual variance (Ve) and the variance of the effect to be estimated. Under a polygenic 
model quantitative trait loci (QTL) are spread across the whole genome, each with a small effect. The 
variance of each independent chromosome segment is the VA/Me, where VA is the additive genetic 
variance. When estimating one segment at a time then Ve is approximately equal to the phenotypic 
variance and l @ Me/h

2, such that (1) is equivalent to N/(N+l). This will give a slight underestimation 
of accuracy if all segments are estimated jointly and Ve < Vp.

Further papers by Goddard (2009) and Goddard et al. (2011) have refined the theory, e.g. by 
accounting for lower density marker panels, where the LD between markers and QTL is insufficient 
such that the proportion of the genetic variance ‘captured by markers’ is b = M/(Me + M), where M 
is the number of genetic markers, and rĝ,g = √bh2/(h2+Me/N). Note that with very many markers b 
approaches 1. For a given Me and high values of b, there is limited dispute about predicting genomic 
accuracy. However, approximations for Me vary widely, and various formulae have been presented all 
leading to quite different results (Table 1). In fact, variation between predictions of genomic accuracy 
almost entirely depend on the approximation of Me.

Table 1. Predicted accuracy of genomic test (rĝ,g), assuming 2500 observations (N), heritability 
h2=0.30, Effective population size Ne = 250; average chromosome length L=1; number of chro-
mosomes k=30, and number of markers M=50,000

Reference and approximation for Me

Daetwyler et 
al. 2008 Goddard 2009 Goddard et al. 

2011
Meuwissen et 

al. 2013 Lee et al. 2017

Parameter1 2NeLk 2NeLk/ 
ln(4NeLk) 

2NeLk/ 
ln(NeL)

2NeLk/ 
ln(2Ne)

Eq(11)

Me 15000 1455 2717 2414 611
b= M/(Me + M) 1.00 0.97 0.95 0.95 0.99
l = Me/h

2 50000 4991 9548 8434 2060
√ (N/(N+l)) 0.22 0.58 0.46 0.48 0.74
rĝ,g 0.22 0.57 0.44 0.47 0.74

1 Me = Effective number of chromosome segments; b= Proportion of genetic variance captured by markers; 
l = variance ratio of residual and that of one chromosome segment; √ (N/(N+l)) is accuracy for b=1.

In the theory described so far the approximations of Me assume the reference as a homogenous 
population where all individuals are more or less equally related to each other. However, genomic 
predictions are more accurate if the genomic relationship between the target animal and the reference 
population is higher (Habier et al. 2007; Clark et al. 2012). Van der Werf et al. (2015) noted that most 
reference populations are heterogeneous in their relationship towards the target animals they predict, 
i.e. some individuals in the reference are much more related to the target individual than others. They 
demonstrated in a simple model how a small group of more related individuals can contribute more 
information than a very large group of distantly related individuals. Heterogeneity also exists if the 
reference population consists of different breeds or crossbreds. Wientjes et al. (2015) have proposed 
deterministic prediction methods to accommodate information from different populations, where they 
also account for genetic correlations between populations being less than one. 
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The variation in relatedness is often hard to predict in advance in real world examples, and a 
pragmatic approach can be taken by looking at the variation in realised genomic relationships between 
the members of the reference population and the target individual to be predicted (Goddard et al. 
2011). This ‘empirical’ Me value derived from variation in genomic relationships implies that the 
Me parameter is related to the data set used for genomic prediction rather than being a population 
parameter, e.g. related to a certain breed. Lee et al. (2017) showed via simulation of a full sib population 
structure that the variation in genomic relationship (var(gij)) gives a reliable estimate of Me as Me = 1/ 
var(gij). Using this Me value in the Daetwyler formula gave satisfactory approximations of accuracy. 
However, calculating Me from variation in relationships seemed to over predict the accuracy of a 
genomic test when simulating a typical nucleus breeding program with a nested full-sib/half sib design 
across multiple generations (Jack Dekkers, pers. comm). Van den Berg et al. (2019) also found over 
prediction when applying it to simulated and real data from mixed breeds of dairy cattle.

VALIDATING THEORY WITH EMPERICAL RESULTS
It is difficult to validate the genomic prediction theory in real data based on outcomes of industry 

genetic evaluations such as BREEDPLAN or LAMBPLAN because these are based on so-called 
single-step models where information via genomic relationships is combined with information through 
pedigree relationships. Moreover, these evaluations are based on multiple trait models where information 
from correlated traits is included in the estimated breeding value (EBV). To quantify the accuracy 
of the genomic test in a more designed way we compared the prediction of genomic breeding value 
accuracy for three different traits, with varying heritability, and using the same reference population 
and two different validation sets. We derived Me from the variance in relationships (Lee et al. 2017) 
of the off-diagonal block of the genomic relationship matrix, i.e. between animals in the reference and 
animals in the validation set, and derived the predicted accuracy using [1]. The reference population 
consists of 5000 animals from multiple breeds from the CRC information Nucleus and MLA reference 
flocks. The validation population refers to 300 purebred merinos and 300 crossbred Border Leicester 
x Merino crosses. Predicted accuracies were compared with empirical accuracies derived from the 
correlation between predicted genomic breeding values and adjusted phenotypes of animals in the 
validation set, divided by h. Results are shown in Table 2.

The results show an obvious overestimation of the accuracy when using the variation in relationships 
to estimate the Me value. A likely reason is that the reference population consists of multiple breeds, 
giving a much larger variation in relationship relative to using a purebred reference. Note that the 
accuracy is evaluated after correction for breed effects, i.e. it is a within breed accuracy. An accuracy 
‘across breeds’ is much larger as from genotype data `it is relatively easy to predict differences 
between breeds, or genetic groups within breeds. A next step is therefore to correct the G-matrix for 
effects of population structure by taking out a number of principal components, i.e. using G* = G- S 
EiEi’di, where di is an eigenvalue of G and Ei is the associated eigenvector. Further testing can also 
occur using purebred reference populations, although such populations can still have an underlying 
group structure that needs to be taken into account. Van den Berg et al. (2019) also concluded that 
the variance in genomic relationships overestimated the accuracy, when they compared reference 
populations with various numbers of individuals from different breeds. They proposed an alternative 
method that seemed to be useful to predict accuracy from reference populations from combining breeds. 
However, there is also a need to evaluate the value of adding within breed cohorts to the reference, 
where these cohorts may vary in their relationship to the animals that are targeted in prediction. 
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Table 2. Realized genomic prediction accuracy and theoretical accuracy predicted from variation 
in relationships and effective number of chromosomes (Me) for two validation sets and using a 
multi-breed reference population1

Test Set Var(gij) Me=1/Var(gij)
Predicted 
accuracy2

Realized 
accuracy3

BL x Merino 0.001989 502.7 0.86 0.21
Merino 0.001840 543.6 0.85 0.29

1  Using a multi-breed reference set of N = 5000 animals, trait is post weaning weight; h2 = 0.28
2  Accuracy predicted using the Daetwyler formula [1] and the estimated value for M¬e¬.
3  Realized accuracy is correlation between predicted genomic breeding value and observed phenotype (corrected 
for fixed effect), divided by the square root of heritability.

CONCLUSIONS
Further work is needed to validate the theory of deriving genomic prediction accuracy from the 

variation in genomic relationships, and to put a value on adding particular information sources to the 
reference population for genomic prediction. Although this approach requires a matrix with realised 
genomic relationships, it provides information about the contribution of various information sources, 
and this may be used to predict contributions of future cohorts. Moreover, this approach is flexible 
and can allow animals from multiple breeds or crossbreds.  
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SUMMARY
This simulation study shows a method which makes more efficient use of pedigree and genomic 

information to increase the chance to detect genetic disorders. We make use of Geneprob, a program 
which uses segregation analysis to calculate the genotype probabilities of pedigreed animals. The 
results show that our method, for a trait with a recessive inheritance pattern, is better in the detection 
of the region of the causative mutation compared to a method which used allele frequencies of cases 
and controls only. This method can be used across all pedigreed species.

INTRODUCTION
In recent years, the detecting of genetic disorders and lethal recessive conditions in livestock pop-

ulations through the use of genomic tools, has increased (f.e. VanRaden et al. 2011 and Derks et al. 
2017). The defects are mostly spread by intensive use of elite sires which are unknowingly carrier of 
an autosomal recessive defect. In most populations of cattle where artificial insemination has resulted 
in a very efficient distribution of the genetic material of superior sires, genetic disorders and lethal 
recessive conditions have been detected. The success of fine mapping an observed Mendelian genetic 
disorder requires another approach than that classically used to detect lethal recessive conditions.

A genetic disorder often gives the animal an abnormal phenotype and deprived performance. 
Accurate recoding of the phenotype by the farmer is essential and often targeted genotyping or 
sequencing of affected animals and related family members has resulted in successful fine mapping 
of genetic disorders (e.g. Daetwyler et al. 2014). In populations with less routinely genotyping and / 
or large populations which are extensively managed, success of detection has been compromised. For 
example, in sheep very few genetic disorders or lethal recessives based on genomic information have 
been identified. More efficient use of pedigree information and genomic information could increase 
the chance of detection of genetic disorders. 

In this study we show a simple but effective application with the use of Geneprob, a program 
which uses segregation analysis, to calculate the genotype probabilities of animals within the pedigree, 
to facilitate the detection of genetic disorders. All animals genotyped within the pedigree are for a 
GWAS where the phenotype is a linear score derived from genotype probabilities (viz. the probable 
number of alleles carried). A simulation is done using sheep data to illustrate the application, but the 
method can be used on any pedigreed population. 

MATERIALS AND METHODS
Genotypic data. Genotypes originated from various research flocks (Sheep Genomics, the CRC 

Information Nucleus Flock, and the MLA Resource Flocks) as well as from industry data collected 
by sheep breeders. For this study only genotypes of animals from the Merino breed were selected. 
In total 21,000 Merino sheep were genotyped and imputed up to sequence (Bolormaa et al. 2019). 
For the purpose of this study one chromosome was selected (OAR5) to demonstrate the detection of 
a recessive causative mutation. 
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Detection of the recessive causative mutation. A single simulation was run on sheep data to 
illustrate the concept. One SNP on OAR5 was selected to be the causative mutation for an unknown 
fictive genetic disorder. The minor allele frequency (MAF) of the SNP needed to be between 0.04 
and 0.05 to reflect a mutation that is present within a population at low frequency. The SNP was 
located between 20 and 30 Mb. The randomly selected SNP was Chr5:29170109. The highest linkage 
disequilibrium (LD) between the causative SNP and a SNP located at the 50K SNP array was 0.333 
and the SNP from the 50K SNP array was Chr5:29178193. For an unidentified recessive disease, the 
genotyping strategy will depend on the available budget and availability of identified cases, but in 
this study we assume that both cases and controls will be genotyped with the commercially available 
Illumina ovineSNP50 BeadChip. 

From the Merino dataset, 54 cases (homozygous for the recessive allele of SNP Chr5:29170109) 
were identified. From those 54 cases, we selected 20 cases for our study based on criteria: 1) sires 
(father of the cases) needed to have more than 1 offspring genotyped, 2) the dam needed to be known 
and, 3) no full sibs were selected. Besides the 20 cases we selected 10 offspring from sires of cases 
and 10 random controls which came from the same flock and year as the cases and weren’t sires or 
dams from cases. For this group of 40 sheep, the pedigree was pruned and phenotypes for the disease 
status was appointed to them. The phenotype code 0 was given to all controls and parents of cases 
(as they don’t have the recessive disease), and all cases were appointed phenotype code 1. In total 
31 animals had phenotype 0 and 20 had phenotype 1, all remaining animals from the pedigree got 
phenotype 8, which means they can be carrier but they are not homozygous for the recessive allele.

Method using genotype probabilities. For the scenarios of which we wanted to improve the power 
by using pedigree information and genotype data, we used the software program Geneprob (Kerr 
and Kinghorn 1996). It uses segregation analysis to calculate the genotype probabilities of animals 
within the pedigree. Every animal will get assigned a probability for each genotype class (aa, Aa or 
AA). Following convergence of Geneprob, the estimated genotype probabilities were expressed as 
the Most Probable Allele Count (MPAC) using the following equation:

0* ( ) 1* ( ) 1* ( ) 2* ( )MPAC p aa p Aa p aA p AA= + + + ,
where p(aa) is the genotype probability for the genotype class aa, p(Aa) is the genotype probability 
of the genotype class Aa, p(aA) is the genotype probability of the genotype class aA and p(AA) is 
the genotype probability of the genotype class AA. The value of MPAC lies between 0 and 2, similar 
to a SNP genotype. The MPAC was regressed on the SNP genotypes. Similar to a traditional GWAS, 
-log10(Pvalues) can be plotted to indicate a possible QTL region.

Scenarios. Four different scenarios compared in their success to detect the region of the causative 
recessive mutation. Additionally, 2 scenarios were evaluated to compare the results when very few 
cases were genotyped (N= 2). 

The first scenario reflects the traditional approach. In the field 20 cases and 20 controls have been 
collected and the difference in MAF between cases and controls is compared. Software program PLINK 
(Chang et al. 2015) was used with the Fisher’s exact test to generate p-values and -log10(Pvalues) are 
plotted to indicate a possible QTL region.

The second scenario uses the 40 animals with an appointed phenotype status, but pedigree infor-
mation is used to increase the power of the analysis. Software program Geneprob is used to calculate 
the MPAC and were regressed on the SNP genotypes to indicate a possible QTL region.

For the third scenario, no money was available to genotype cases, but phenotype status was avail-
able on the 43 animals from the pedigree as well as 20 controls which were routinely genotyped for 
the breeding program. Similar to scenario 2, Geneprob was used to calculate the MPAC and regressed 
on the SNP genotypes.

For the fourth scenario, the 20 cases, 20 controls and 43 animals from the pedigree were gen-
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otyped and similar to scenario 2, Geneprob was used to calculate the MPAC and regressed on the 
SNP genotypes.

Two scenarios were added where the traditional method (compare MAF between cases and 
controls) had 2 cases genotyped and 20 controls which was compared to the method where we used 
Geneprob to include all available data (2 cases, 20 controls and 43 animals from the pedigree were 
genotyped) and the MPAC was calculated and regressed on the SNP genotypes.

The 50K data of OAR5 was used for the animals in the different scenarios (1,900 SNPs).

RESULTS AND DISCUSSION
The SNP in highest LD with the causative mutation shows an incomplete inheritance pattern of the 

disease (Table 1). If selection was to exclude all animals with genotype 2 (homozygous for recessive 
allele), four animals would be excluded, while they don’t have the recessive disorder. 

Table 1. Count of animals per phenotype class and genotype class

Phenotype status Genotype SNP 50K
0 1 2

0 8 18 4
1 0 0 20
8 27 6 0

The results of the chromosome-wide association study for each of the four scenario’s is shown 
in Figure 1. The scenario which the largest -log10(Pvalue) was scenario 4 (-log10(Pvalue) =22.6), 
followed by scenario 2 (-log10(Pvalue)=8.9), then scenario 1 (-log10(Pvalue)=6.7), and scenario 3 
has the lowest-log10(Pvalue) with 5.5. In all scenario’s the SNP with the highest LD to the causative 
mutation was indicated. Although in scenario 3, another SNP along the chromosome showed a very 
similar -log10(Pvalue) and a misidentification of the region could easily have occurred.

Figure 1. Chromosome-wide association of OAR 5. A) Association analyses of 20 cases and 
controls using PLINK. B) Association analyses using Geneprob on all 20 cases and 20 controls. 
C) Association analyses using Geneprob on only the controls and genotyped animals from the 
pedigree. D). Association analyses using Geneprob on all cases, controls and genotyped animals 
from the pedigree



213

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:210-213

Also, the ‘value’ of only genotyping 2 cases has been investigated (Figure 2) and the method using 
genotype probabilities had increased power compared to the traditional method using Fischer’s exact 
test. The traditional method did not detect the region with the causative mutation (Figure 2A), while 
the method using Geneprob did detect the region with a clear signal (Figure 2B).

Figure 2. Chromosome-wide association of OAR 5. A) Association analyses of 2 cases and 20 
controls using PLINK. B) Association analyses using Geneprob on 2 cases, 20 controls and 
genotyped animals from the pedigree

For the scenarios tested, we have shown the added power to detect a recessive mutation through 
the use of a segregation analyses and use all available data (pedigree, genotype data and phenotypic 
information; scenario 4). The results are especially valuable to use for pedigreed species where 
genotyping is still costly and additional genotyping of affected animals is not covered by available 
budgets. This study is relatively small and further testing is needed to determine to which extend this 
method is more beneficial compared to more traditional methods.

CONCLUSIONS
To conclude, we have demonstrated in this small simulation study that segregation analysis of a 

trait with a recessive inheritance pattern can lead to considerably power in a GWAS and therefore is 
better in the detection of the region of the causative mutation compared to a method which used allele 
frequencies of cases and controls only. We advise at least some cases need to be genotyped to be able 
to accurately determine the region of the recessive genetic disorder. This method can be used across all 
pedigreed species and is especially valuable for species where genotyping is still relatively expensive.
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SUMMARY
Gastrointestinal parasites constitute a serious problem in many sheep production systems. Two 

studs, Anderson Rams in Australia and Talitas Rams in Uruguay, have been selecting for resistance 
for about two decades with considerable success. We used semen from Anderson Rams in Uruguay 
and compared their progeny with that of Talitas Rams. The genetic merit of Anderson Rams for worm 
egg count per gram of faeces is comparable to that of the best in Talitas Rams. The same may be said 
about production traits and visually appraised characters. In particular, fleece rot and wool quality 
were feared to be a problem among the progeny of Anderson rams, but contrary to expectation, their 
performance was very good and comparable to that of the best Talitas rams. Because Anderson Rams 
and Talitas Rams have worked independently, their progeny are unrelated, thus mutually providing an 
opportunity to increase the effective population size without compromising genetic merit in resistance 
to gastrointestinal parasites, in production traits, or in visually assessed characters. 

INTRODUCTION
Gastrointestinal parasites constitute a serious problem in many sheep production systems (some 

in Australia and most in Uruguay). Talitas Rams stud in Uruguay, has been successfully selecting for 
resistance to internal parasites for about two decades. Semen from Anderson Rams stud in Western 
Australia, which has been selecting in the same direction, has been imported to Uruguay and used 
in a number of flocks. Worm egg count per gram of faeces (WEC) is used as a selection criterion for 
resistance in sheep genetic evaluations. In the latest Uruguayan Genetic Evaluation (INIA and SUL 
2018) the top ram for WEC was from Talitas. Three Anderson Rams were among the 10% best for 
WEC, and one of them ranked third (together with a Talitas ram). It is a remarkable performance given 
that the three Anderson rams have no ancestors or other relatives, except for the progeny they have 
produced in Uruguay. Their breeding values may be negatively biased since the model fitted in the 
Uruguayan evaluation does not include genetic groups (Westell et al. 1988). Despite the demonstrated 
genetic merit for resistance to internal parasites of Anderson rams, some breeders have reservations. 
The Australian and Uruguayan environments are different, and they are wary about the performance 
regarding production traits and visually assessed characters. In this paper we report the progeny 
performance of three Anderson rams and nine Talitas rams for wool and body traits. 

MATERIALS AND METHODS
Sheep and the environment. Records were available from 326 progeny of 12 rams born in 

the Spring of 2017. All rams had at least 20 progeny, that were reared in two locations in northern 
Uruguay, a University Farm in Salto (Estación Experimental Facultad de Agronomía Salto), and at 
Talitas Rams stud in Artigas. Two rams had progeny at the University Farm, whereas eleven rams 
had progeny in Talitas. Anderson rams were coded A1 to A3 and had expected progeny devia-
tions (EPDs) for WEC ranging -0.44 to -0.31 in the Uruguayan genetic evaluation (scale -0.5 most 
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resistant, 0.5 most susceptible). Talitas rams were coded T1 to T9 and had WEC EPDs ranging  
-0.22 to -0.04. The national average is -0.13 and the best record is for a Talitas ram born in 2009 is 
-0.5. The ram coded as A1 (Table 4) had progeny in both locations (33 at the University Farm and 
34 at Talitas), thus providing a genetic link between both locations.

The University Farm and Talitas Ram stud are at a latitude of 31 degrees south. Average rainfall 
is 1320 mm. Mean maximum and minimum temperatures are 24 and 12 degrees C, respectively. 
During the wool growth period rainfall was greater than the average. The spring of 2017 was very 
rainy (500 mm), followed by a relatively dry summer (370 mm). Later, in May alone, rainfall was 
360 mm, accompanied by warm temperatures. Overall, wool growth took place in conditions that 
were conducive to wool discoloration and fleece rot.

Traits recorded. The objectively measured (yearling) traits recorded were: greasy fleece weight 
(GFW), yield (YLD), clean fleece weight (CFW), fibre diameter (FD) and post shearing live weight 
(LWT). Prior to shearing, the subjectively assessed traits were: overall visual appraisal (VISAP, 1= 
top, ..., 3=cull), face cover (FC, 1=open face, ..., 6=muffled face), pigmentation in non-wool areas 
(PGM, 1=free of pigmentation, ..., 5=highly pigmented), wool quality (WQUAL, 1=harsh poor 
quality, ..., 5= the best in terms of colour, handle and wool character), fleece rot (FR, 0=complete 
absence of fleece rot, ..., 5=high incidence of yellow or green bands). At the University Farm lambs 
were not shorn, visual appraisal was conducted in August 15, 2018, whereas shearing took place on 
September 10. At Talitas Ram stud lambs were shorn in December 2017, and visual appraisal and 
shearing took place in September and October 2018, respectively.

Data analyses. PROC MIXED in SAS (SAS Institute Inc., 2011) was used to fit a linear model 
to the data. Location, sire, sex, type of birth, age of dam, and management group within location 
were fitted as fixed effects, whereas date of birth was fitted as a linear covariate within location. This 
enabled the calculation of ‘adjusted means’ (least squares means) for sires, as is usually done in sire 
evaluation in Australia. We also analysed the visually appraised traits using PROC GLIMMIX in 
SAS, assuming a multinomial distribution. The results were almost identical to those obtained using 
PROC MIXED, except for small differences in a few and unimportant cases. Here we present the 
results obtained with PROC MIXED.

RESULTS AND DISCUSSION
Table 1 shows descriptive statistics for the traits studied. Fleece rot are not presented, only a very 

small proportion of animals were affected, and none with scores 3 to 5.

Table 1. Number of observations (N), mean (µ), minimum, maximum and standard deviation 
(σ) of GFW, YLD, CFW, FD, LWT, VISAP, FC, PGM), WQUAL, FR

Variable N µ Min Max σ
GFW (kg) 318 2.69 1.30 4.20 0.47
YLD (%) 326 74.78 59.80 86.70 5.20
CFW (kg) 318 2.01 1.05 3.21 0.34
FD (µm) 326 16.81 13.30 21.30 1.57
LWT (kg) 316 34.93 16.00 53.00 6.43
VISAP (1-3) 319 1.83 1 3 0.60
FC (1-6) 319 1.93 1 4 0.74
PGM (1-5) 319 2.27 1 5 0.82
WQUAL (1-5) 319 4.41 1 5 0.70
FR (0-5) 326 0.04 0 2 0.23
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Table 2 shows the analysis of variance for objectively measured traits. We mainly focus on the 
sire effect, which was statistically significant in all cases, except for YLD.

Table 2. Degrees of freedom (DF) and P values from the analysis of variance of GFW, YLD, 
CFW, FD and LWT

Effect DF GFW YLD CFW FD LWT
Location 1 0.8456 0.5076 0.6263 0.6951 0.1180
Sire 11 0.0002 0.1267 <.0001 0.0218 0.0206
Sex 1 <.0001 <.0001 <.0001 0.8223 <.0001
Birth type 2 <.0001 0.4725 <.0001 0.0296 0.0906
Age of dam 8 0.3734 0.6634 0.2365 0.8513 0.4220
Management group (location) 1 0.5458 0.8685 0.5936 0.0171 0.3513
Birth date (location) 2 0.0623 0.7214 0.1162 0.1164 0.0182

Table 3 shows the analysis of variance for subjectively assessed characteristics. The effect of sire 
was statistically significant for FC and PGM, whereas it bordered significance for WQUAL.

Table 3. Degrees of freedom (DF) and P values from the analysis of variance of VISAP, FC, 
PGM and WQUAL

Effect DF VISAP FC PGM WQUAL
Location 1 0.8130 0.9576 0.6464 0.0419
Sire 11 0.2393 0.0220 0.0012 0.0955
Sex 1 0.3685 0.3528 0.1557 0.5220
Birth type 2 0.0016 0.6771 0.9721 0.0132
Age of dam 8 0.0401 0.5613 0.2983 0.9723
Management group (location) 1 0.2174 0.9151 0.6396 0.5161
Birth date (location) 2 0.3091 0.7025 0.7724 0.1225

Table 4 shows the least squares means for sires. 

Table 4. Least squares means for GFW, YLD, CFW, FD, LWT, VISAP, FC, PGM and WQUAL. 
The three ‘best’ sires for each trait are indicated in bold type

Sire1 GFW YLD CFW FD LWT VISAP FC PGM WQUAL
A1 2.51 74.72 1.88 17.74  35.84 1.95 1.94 2.32 4.25 
A2 2.08  74.51 1.55 17.04  34.18 2.16 2.05 2.22 4.44 
A3 2.47 75.84 1.86 17.98  37.73 1.68 1.57 1.72 4.45 
T1 2.31 72.28 1.65 16.78  33.90 2.18 2.19 1.99 4.07 
T2 2.31 76.01 1.73 17.69  35.83 1.87 1.61 2.53 4.32 
T3 2.32 73.86 1.70 17.37  37.12 1.75 1.71 2.02 4.22 
T4 2.31 73.18 1.67 17.10  35.57 1.87 2.12 1.43 4.19 
T5 2.36 75.87 1.78 17.87  33.22 1.96 1.90 1.51 3.99 
T6 2.21 75.98 1.65 17.34  33.39 1.90 2.29 1.83 4.11 
T7 2.40 75.32 1.81 17.61  33.50 1.85 1.73 1.61 4.21 
T8 2.29 73.67 1.67 17.49  32.75 2.04 2.04 1.34 3.63 
T9 2.09 74.90 1.55 17.42 34.21 2.07 2.11 1.62 3.81 
SE 0.10-0.15 1.23-1.84 0.07-0.12 0.33-0.49 1.14-1.72 0.16-0.23 0.20-0.30 0.21-0.32 0.18-0.28

1- A: Anderson sires; T: Talitas sires; SE is the range in standard errors of least squares means

Talitas Rams is an Australian Merino stud of excellent reputation in Uruguay, selling 180 to 220 
rams per year to a well-established clientele. It has been using objective measurement for decades 
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and its sires always rank well in the Uruguayan genetic evaluation. It provides a valuable reference 
for the Anderson sires being introduced.

Anderson sires have expressed high genetic merit for resistance to internal parasites in the Uruguayan 
environment. The results presented in this paper should help allay concerns about the performance of 
their progeny with regards to production traits and visually assessed characters. Table 4 shows that 
for all traits considered, the progeny of Anderson rams compared well with that of Talitas. In the case 
of GFW and CFW, two of the heaviest cutting progeny were by Anderson rams. YLD was generally 
greater for the progeny of Talitas rams, but the difference was not large, and the lower yield could 
be advantageous if it conferred greater fibre protection. Fibre diameter among all progeny ranged 
between 17 and 18 microns. Progeny from one of the Anderson rams was the second finest, whereas 
for another one it was the strongest. However, all were within the range of the progeny of Talitas 
rams. Concerns about Anderson rams undoing the results of many years of selection for reduced fibre 
diameter seem unjustified. Anderson rams produced two of the heaviest progeny groups, one of them 
having the greatest LWT. Regarding VISAP, Anderson rams had the best scoring progeny, as well as 
one of the worst. However, the values were comparable to those of Talitas, and indicated that a high 
proportion of all progeny were deemed visually acceptable. FC scores of all progeny were low; the 
greatest value was 2.3, which still corresponds to an open face sheep. Pigmentation scores were low 
(greatest value 2.5 out of a maximum possible individual score of 5.0). Initial apprehension about 
the adequacy of fleeces bred in Western Australia for the Uruguayan environment is in principle 
justified. The environments notably differ in rainfall. We did not analyse the FR data because of its 
extremely low incidence. Coupled with the WQUAL results, this should put at rest fears about wool 
colour and quality generally. The two best scoring progeny groups were from Anderson rams. The 
results for FR and WQUAL suggest that in this regard, the Anderson rams performed as well as, if 
not better, than Talitas rams. 

CONCLUSIONS
Although the progeny number produced to date is limited, the results from the Uruguayan genetic 

evaluation suggest that the genetic merit for resistance to internal parasites expressed in Australia 
by Anderson rams, is also expressed in Uruguay. Furthermore, the genetic merit of Anderson Rams 
for WEC is comparable to that of the best in Talitas Rams. The number of studs that have selected 
for resistance to gastrointestinal parasites is limited, so both, Anderson Rams and Talitas Rams face 
the problem of few or no alternative sources of stock to ensure long term continuity to their breeding 
programs. Because Anderson Rams and Talitas Rams have worked independently, their animals are 
unrelated, thus mutually providing an opportunity to increase the effective population size without 
compromising genetic merit in resistance to gastrointestinal parasites, in production traits, or in visu-
ally assessed characters. In the immediate future, the flow of genes from Anderson Rams to Uruguay 
will most likely continue, whereas in the more distant future, we should not rule out the possibility 
of a flow in both directions.
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SUMMARY
Here we considered selection on a single trait only, assuming a selection differential of one genetic 

standard deviation, to determine which novel traits to include in a multi-trait selection index for feed 
efficiency in crossbred pigs. The mean feed conversion ratio (FCR) is 2.52 (kg/kg), and a decrease 
of 5.56%, was observed if selection was based on FCR itself. Selection on other traits also reduced 
FCR but with a lower response: average daily gain (-2.9%), dry matter digestibility (-1.2%), nitrogen 
excreted (-0.40%), daily feed intake (-0.37%), group daily feed intake (-0.35%), eating time per day 
(-0.04%), and growth rate with social effect (-0.01%). Selection for the welfare traits increased FCR: 
joint lesions (0.2%), and total lesion count (0.06%). Further analysis will include additional traits 
and use selection index theory with multi-trait selection to determine an optimal selection index for 
feed efficiency.

INTRODUCTION
Selection for feed efficiency is of high importance for livestock species as it has direct effects 

on economic factors, reduces water and land requirements, and decreases greenhouse gas footprints 
(Hayes et al. 2013). There is a desire within the pig industry to improve the rate of genetic gain for 
feed efficiency of crossbred commercial animals, which requires an optimised selection index (Feed-
a-Gene 2015). The main objective of this study was to identify indicator traits that make a promising 
contribution to such an index.

MATERIALS AND METHODS
Feed efficiency is defined as average daily gain (ADG) / daily feed intake (DFI). However, it is 

standard practice in pig breeding programs to select for a lower feed conversion ratio (FCR), where 
FCR = DFI / ADG. Because one is the reciprocal of the other, we assumed a genetic correlation of 
one between feed efficiency and FCR. Reported responses to selection are in terms of relative change 
to the across breed literature mean of 2.52 (kg/kg) (Mrode and Kennedy 1993; Cameron and Curran 
1994; Labroue et al. 1997; Hoque and Suzuki 2008; Bates and Maechler 2010; Do et al. 2013; 
Saintilan et al. 2013; Gilbert et al. 2017).

Based on discussions with industry stakeholders we compiled a list of key traits. Production traits 
currently used in crossbred breeding programs included: FCR, ADG, and DFI. As a preliminary analysis 
a small number of traits from the list were selected as a representative of broader trait categories. 
These novel traits included: digestibility of dry matter (DIG), time spent eating per day (BEH), group 
daily feed intake (GFI), average daily gain with a social effect (GADG) which was selected as an 
indirect genetic effect (IGE), and nitrogen excreted (BIO). Two traits were selected as indicators of 
animal welfare including: joint lesions (JOINT) and total skin lesion count (WELF), where the latter 
represents impaired welfare inflicted by pen mates.

We reviewed the literature for parameter estimates of the indicator traits. Preference was given 
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to estimates from sources that used crossbreds, had large numbers of progeny with phenotypic 
information and estimates with smaller standard errors. To determine which traits are likely to benefit 
the selection of improved feed efficiency, the correlated response to selection in FCR was evaluated 
for one indicator trait at a time.

For the analysis, genetic standard deviations and genetic correlations with FCR were required 
(Table 1). For most sources, the genetic variances or the heritability and the phenotypic variance 
were published, which were then converted to genetic standard deviations (σG = σP * h). There are no 
published estimates of genetic standard deviation for digestibility of dry matter, however, the authors 
of Ouweltjes et al. (2018) provided us with unpublished estimates of heritability which we used to 
estimate a genetic standard deviation.

Table 1. Genetic standard deviations (σG), genetic correlation with FCR, and summary of ref-
erences used in the analysis

Trait σG

Genetic 
correlation 
with FCR

σG references Genetic correlation references

FCR 0.14 1.00 (Do et al. 2013)

ADG 0.07 -0.44 (Do et al. 2013) (Saintilan et al. 2013)

DFI 0.63 0.36 (Do et al. 2013) (Saintilan et al. 2013)

DIG 0.41 -0.65 (Ouweltjes et al. 2018) From broilers (Mignon-Grasteau 
et al. 2004)

BEH 3.35 0.17 (Do et al. 2013) (Do et al. 2013)

GFI 0.17 0.12 (Canario et al. 2017; Sánchez et 
al. 2018) (Peeters et al. 2013)

GADG 27.94 0.10 (Bergsma et al. 2008; Canario 
et al., 2017) (Canario et al. 2017)

BIO 0.23 0.16 (Saintilan et al. 2013) (Saintilan et al. 2013)

JOINT 0.16 -0.09 (Luther et al. 2007) (Luther et al. 2007)

WELF 0.34 -0.08 (Turner et al. 2006) (Turner et al. 2006)

The response to selection for FCR was calculated as R=b´G/σI, where b is a vector of weights for 
each trait, G is a covariance matrix calculated as a function of the genetic correlations and genetic 
standard deviations, and σI is the standard deviation of the index. As we were only interested in the 
change of a single trait this could be reduced to σI,R/σI=rI,R*σR, where I is the indicator trait and R 
the response trait. The analysis was repeated for each of the traits, with the full weight placed on a 
single trait each time.

RESULTS AND DISCUSSION
The results showed that selecting for production traits had the largest impact on feed efficiency 

when included in a selection index (Table 2). Feed conversion ratio decreased (-5.6% relative to the 
literature mean), from 2.52 (kg/kg) to 2.38 (kg/kg), when 100% of selection was placed on FCR. 
Other traits reduced FCR in the following descending order: average daily gain (-2.9%), dry matter 
digestibility (-1.2%), nitrogen excreted (-0.4%), daily feed intake (-0.37%), group daily feed intake 
(-0.35%), eating time per day (-0.1%), and growth rate with social effect (-0.01%). Selection for joint 
lesions or total lesion count had the undesirable effect of increasing FCR (0.3% and 0.1%, response 
to FCR respectively).
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Table 2. Response in feed conversion ratio due to a change of one genetic standard deviation 
(σG) in the selected trait

Trait FCR (kg/kg) with one σG 
change in selected trait

Relative phenotypic 
change in FCR with one 

σG change in selected trait
Feed conversion ratio (FCR) 2.380 (Originally 2.520) -5.56%
Average daily gain (ADG) 2.447 -2.90%
Daily feed intake (DFI) 2.511 -0.37%
Dry matter digestibility (DIG) 2.490 -1.20%
Eating time per day (BEH) 2.519 -0.04%
Group daily feed intake (GFI) 2.511 -0.35%
Growth rate with social effect (GADG) 2.520 -0.01%
Nitrogen excreted (BIO) 2.510 -0.40%
Joint lesions (JOINT) 2.525 0.20%
Total lesion count (WELF) 2.522 0.06%

We were interested in the traits that have the largest reduction in FCR and would therefore 
significantly contribute to a selection index. It is not surprising that the largest improvement to 
FCR occurred with direct selection, or that selecting for the component traits (ADG and DFI) also 
resulted in a significant response in FCR. As selection for dry matter digestibility had a reasonable 
impact on the response to selection for FCR, other digestibility traits such as energy or organic matter 
digestibility should be investigated further. If faeces are collected to include digestibility, it would 
be beneficial to also include nitrogen excreted. Unfortunately, there was limited research available 
on blood biomarkers but these could be worth exploring if they have similar genetic correlations as 
faecal biomarkers. 

The traits that had limited impact on the response to selection of FCR, could still be beneficial. 
Selection for eating time per day had a limited impact on FCR, but feeding behaviour traits such as 
time per meal, and number of meals per day, have higher genetic correlations with FCR, have higher 
heritabilities, but have less accurate parameter estimates (Do et al. 2013). Group daily feed intake 
appears to be a good indicator of individual daily feed intake and had a similar benefit to the selection 
response of FCR. It is not logistically or economically possible to record DFI on crossbred pigs, but 
GFI would be much easier and cheaper to record, this would benefit a selection index for crossbred 
feed efficiency. Including an IGE with GADG appears to have limited benefit to selection for FCR but 
could be important for defining the ADG model used in animal evaluations. The low negative genetic 
correlation between the welfare traits is unfavourable. However, to address consumer concerns it is 
important they are added to future selection indexes to limit any negative trends.

For future analysis a genetic covariance matrix will be required, which is to be built with estimates 
available in the literature. Currently a data set is being analysed which will complete the missing 
variance components, genetic correlations between traits, and genetic correlations between purebred 
and crossbred pigs, which Wientjes and Calus (2017) showed to not be equal to one. When the 
parameter estimation is complete, an optimised multi-trait selection index for feed efficiency in 
crossbred pigs will be built, and will be based on selection index theory (Hazel 1943). This study 
used a limited number of traits, future work will include additional traits related to digestibility, i.e. 
eating behaviour, group records, welfare, biomarkers, perturbations (Putz et al. 2018), and microbiota 
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(Camarinha-Silva et al. 2017). Finally, the potential for selection based on variation, heritability, and 
ease of phenotyping will also be considered. 

CONCLUSIONS
The objective of this study was to determine which indicator traits are likely to have a significant 

contribution to an optimised selection index for feed efficiency in crossbred pigs. From these results 
production traits are the most promising, but novel traits such as digestibility, group records, and 
biomarkers could also increase the rate of genetic gain. Before such an index is built genetic correlations 
between novel traits and FCR need to be estimated.
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SUMMARY
We tested the premise that optimum-contribution selection with genomic relationships to control 

inbreeding (GOCS) realises more genetic gain (∆G) than optimum-contribution selection with pedi-
gree relationships (POCS) at the same rate of true inbreeding (∆F) when we relax inbreeding control 
in regions of the genome harbouring QTL. We used stochastic simulation to compare ∆G realised 
by GOCS with POCS at 0.01 ∆F when we relaxed inbreeding control around 18 major QTL. These 
QTL were unlinked and explained either 100 or 50% of the total additive-genetic variation (Va) for 
a trait under selection. We found that GOCS with relaxed inbreeding realised up to 4.7% more ∆G 
than POCS at 0.01 ∆F when the 18 major QTL explained 100% Va. When these QTL explained 50% 
Va, GOCS with relaxed inbreeding control realised up to 1.1% more ∆G. Even though GOCS with 
relaxed inbreeding control realised more ∆G than POCS, we were surprised that the amount of extra 
∆G was small, given that we simulated simple genetic models. This does not bode well for practical 
breeding schemes, where most traits under selection are controlled by many linked QTL and we 
don’t know where most of these QTL are located. So, GOCS with relaxed inbreeding control is a 
concept that realises more ∆G than POCS at the same ∆F, but we have more to learn before it becomes 
applicable to practical breeding schemes. For these schemes, POCS remains a worthy method of 
optimum-contribution selection.

INTRODUCTION
Pedigree relationships to control inbreeding in optimum-contribution selection (OCS) realise more 

genetic gain (∆G) than genomic relationships at the same rate of true inbreeding (∆F), where the true 
inbreeding coefficient of an individual is the observed proportion of loci in its genome with alleles 
that are identical-by-descent (IBD) (Henryon et al. 2019). Using pedigree relationships to control 
inbreeding in OCS – hereafter referred to as POCS – realises more ∆G because it manages expected 
genetic drift without restricting selection at QTL. By contrast, genomic relationships – referred to as 
GOCS – penalises changes in allele frequencies at marker loci generated by genetic drift and selection. 
Because these marker alleles are in linkage disequilibrium with QTL alleles, GOCS restricts changes 
in allele frequencies at QTL. This implies that if GOCS is to realise more ∆G than POCS, we should 
allow changes in allele frequencies at some markers by varying the level of inbreeding control across 
the genome while controlling ∆F at acceptable levels. This will involve relaxing inbreeding control in 
regions of the genome that harbour QTL – allowing selection to increase the frequencies of favourable 
alleles at QTL – while increasing inbreeding control to reduce genetic drift in other regions. This reason-
ing led us to believe that GOCS realises more ∆G than POCS at the same ∆F when we relax inbreeding 
control in regions of the genome harbouring QTL. We tested this premise by stochastic simulation.



223

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:222-225

MATERIALS AND METHODS
Procedure. We used stochastic simulation of animal-breeding schemes to compare ∆G realised 

by GOCS with POCS at ∆F = 0.01 (0.01 ∆F) when we relaxed inbreeding control around 18 major 
QTL. These QTL were unlinked and explained either 100 or 50% of the total additive-genetic vari-
ation (Va) for a single trait under selection. GOCS with relaxed inbreeding control was carried out 
by excluding markers located within 0, 1, 2, 5, 10, 20, 30, 40, and 50 cM of the 18 major QTL from 
genomic-relationship matrices used to control inbreeding (i.e., excluding markers in genome regions 
of 0, 2, 4, 10, 20, 40, 60, 80, and 100 cM centred around the 18 QTL). These GOCS are referred to as 
GOCS0, GOCS1 … GOCS50, where GOCS0 includes all markers and is the GOCS used in Henryon 
et al. (2019). ∆F was calculated as the increase in the observed proportion of IBD loci across the 
genome that were IBD. The trait under selection had a heritability of 0.2. Breeding values for the 
trait were predicted by GBLUP. Breeding schemes were run for 10 discrete generations (t = 1 … 10) 
and replicated 500 times. Each replicate was initiated by sampling a unique base population from a 
founder population. Selection candidates were genotyped and phenotyped before selection.

Breeding scheme. A total of 25 matings were allocated to 125 selection candidates by OCS in 
each generation. There was no upper limit for the number of matings that were allocated to each 
male; males were allocated 0, 1, 2 … or 25 matings. Twenty-five females were allocated a single 
mating. The 25 sire and dam matings were paired randomly. Each pair (dam) produced five offspring, 
resulting in 25 full-sib families and 125 offspring. Offspring were assigned as males or females with 
a probability of 0.5.

Genetic models. The founder population was established using a Fisher-Wright inheritance model 
to generate linkage disequilibrium between QTL and markers. The genome was 30 M and consisted 
of 18 pairs of autosomal chromosomes; each chromosome was 167 cM long. The 18 major QTL were 
located on separate chromosomes. Each of these QTL had a minor-allele frequency of 0.25 (approx.) 
and explained equal proportions of Va in the founder population. They each explained ​​ 1 _ 18​​Va when the 
18 major QTL explained 100% Va. When the major QTL explained 50% Va, each QTL explained ​​ 1 _ 36​​
Va; the remaining 50% Va was explained by an additional 7684 minor QTL that were randomly  
distributed across the genome. The genome also contained 54218 biallelic markers that were randomly 
distributed across the genome. These markers were distinct from QTL and used in GOCS and GBLUP. 
A total of 6012 IBD loci were placed evenly across the genome in base populations. Unique alleles 
at these loci were used to calculate ∆F.

Optimum-contribution selection. POCS was carried out by maximising ​​U​ t​​​(c)​  =  ​c ′​​ ̂  a​ − ω​c ′​Ac​, 
where c is a vector of genetic contributions to the next generation, â is a vector of GBLUP-EBV, ω is 
a penalty applied to the average-estimated relationship of the next generation, and A is a pedigree-re-
lationship matrix (after Henryon et al. 2019). The penalty, ω, was constant across generations. It 
was calibrated to realise 0.01 ∆F. GOCS was carried out by replacing A with a genomic-relationship 
matrix, G. G was constructed as described by VanRaden (2008) using marker-alleles frequencies in 
the base populations.

Data analyses. ∆G was calculated as the linear regression of Gt on t, where Gt is the average 
breeding value of animals born at times t = 4 … 10. ∆G realised by POCS and GOCS differed when 
the 18 major QTL explained 100 and 50% Va. We scaled ∆G by setting ∆G realised by POCS to 100 
in the two genetic models. ∆F was calculated as 1-exp(β), where β is the linear-regression coeffi-
cient of ln(1-Ft) on t, and Ft is the average coefficient of true inbreeding for animals born at times 
 t = 4 … 10 (after Sonesson et al. 2004). We also present IBD profiles for POCS, GOCS0, and GOCS10 
on chromosome 3 when the 18 major QTL explained 100% Va. IBD profiles are presented as the 
change in realised IBD from generations t = 4 to 10 at the 6012 IBD loci. Scaled ∆G and IBD profiles 
are presented as means of the 500 replicates.
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RESULTS AND DISCUSSION
Our findings supported our premise that GOCS realises more ∆G than POCS at the same ∆F when 

we relax inbreeding control in regions of the genome harbouring QTL. We found that GOCS5 … 
GOCS40 realised 2.7-4.7% more ∆G than POCS at 0.01 ∆F when 18 major QTL explained 100% Va 
(Figure 1). When these QTL explained 50% Va, GOCS10 and GOCS20 realised 0.3 and 1.1% more ∆G 
than POCS. Clearly, GOCS with relaxed inbreeding control – where we removed the penalty applied 
to changes in allele frequencies at markers located around major QTL – is a concept that worked. It 
worked for two reasons. First, selection increased the frequency of the favourable allele at each of 
the 18 major QTL with POCS and GOCS with relaxed inbreeding control, but GOCS with relaxed 
inbreeding control allowed selection to increase the frequencies of favourable alleles more than POCS. 
Second, GOCS with relaxed inbreeding control allowed selection to generate more IBD in genome 
regions around the major QTL than POCS. This was illustrated by our IBD profiles on chromosome 3 
when the 18 major QTL explained 100% Va (Figure 2). GOCS10 generated a higher IBD peak around 
the major QTL on chromosome 3 than POCS and GOCS0. At the same time, GOCS10 generated, on 
average, less IBD than POCS and GOCS0 in regions of the genome that lacked major QTL. It must 
have generated less IBD in these regions because the area under an IBD profile increases at the same 
rate at the same ∆F. These two reasons tell us that GOCS with relaxed inbreeding control allows 
more IBD in regions of the genome where we want to increase the frequency of favourable alleles at 
QTL, while controlling IBD and genetic drift in other regions. It is exactly how we want to control 
inbreeding in animal breeding when the aim is to maximise ∆G at acceptable ∆F. So, GOCS with 
relaxed inbreeding control realises more ∆G than POCS at the same ∆F because it allows inbreeding 
in regions of the genome that realise ∆G and controls it in other regions.

Figure 1. Rates of genetic gain realised by POCS and GOCS with relaxed inbreeding control 
at 0.01 rate of true inbreeding plotted against distance from 18 major QTL excluded from 
inbreeding control. The 18 QTL explained 100 and 50% of the additive-genetic variation (100% 
Va, 50% Va) for a single trait under selection. Rates of genetic gain were scaled by setting the 
rates of genetic gain realised by POCS with 100 and 50% Va to 100. The rates are means of 500 
simulation replicates. SD between the replicates ranged from 12.0-13.7
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Even though GOCS with relaxed inbreeding control realised more ∆G than POCS, we were 
surprised that the amount of extra ∆G was small when we simulated a simple genetic model where 
100% Va was explained by only 18 unlinked QTL with known genome locations. This extra ∆G all 
but disappeared when the 18 major QTL explained 50% Va. These findings are important because 
they imply that GOCS with relaxed inbreeding control only realises more ∆G than POCS at the same 
∆F when traits are controlled by few unlinked QTL and we know where these QTL are located on 
the genome. It does not bode well for practical breeding schemes, where most, if not all, traits under 
selection are controlled by many linked QTL – each with small effects – and we don’t know where 
most of these QTL are located. So, GOCS with relaxed inbreeding control is a concept that realises 
more ∆G than POCS, but we have more to learn before it becomes applicable to practical breeding 
schemes. For these schemes, POCS remains a worthy method of OCS.

Figure 2. Identity-by-descent profiles for POCS, GOCS0, and GOCS10 on chromosome 3 at 0.01 
rate of true inbreeding when 18 major QTL explained 100% of the additive-genetic variation 
for a single trait under selection. The profiles present the change in IBD realised at IBD loci 
located across the chromosome. The vertical line at 84.8 cM is the position of a single major 
QTL on chromosome 3; the shaded area represents the region of the genome that is within 10 
cM of the major QTL. The profiles are means of 500 simulation replicates
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SUMMARY
A method is presented for influencing mate selections according to phenotype. The example uses 

female body weight at or close to joining as an indicator of liability to dystocia in cattle. However, 
the method may also be applicable to sheep and other species. A common way to manage this issue 
is to allocate only good calving ease EBV bulls to heifers. However, the method presented here is 
more powerful, as it customises allocations according to the bodyweight of each female, with smaller 
heifers getting better calving ease bulls. In addition, the overall emphasis on calving ease can be 
controlled during a mate selection analysis, trading it off against all other issues.

INTRODUCTION
Breeders who want to manage calving ease in their herd (or flock) can choose bulls that have 

favourable EBVs for ‘calving ease direct’ (CED) – meaning that the genotype of the resulting calf 
is more favourable for calving ease at its own birth. A more refined solution is to use grouping to 
allocate only high CED bulls to heifers, as described in Figure 1. 

However, the approach presented in this paper is more powerful than simple grouping, as it cus-
tomises allocations according to the phenotype of each heifer for a liability indicator trait such as 
pre-joining bodyweight, with smaller heifers getting better CED bulls (Figure 1). In addition, when 
using a Mate Selection implementation (Kinghorn and Kinghorn 2019), the breeder can alter the 
overall emphasis on calving ease, trading it off against all other issues. This approach requires some 
upfront effort to define the parameters that reflect the breeder’s desires in relation to calving ease for 
heifers of different weights, but it does allow for a more strategic use of sires.

Figure 1. A contrast of simple grouping to allocate only high CED bulls to heifers (left pane), 
versus CEDcontrol which uses a sliding scale to prioritise the highest CED bulls to the females 
with the lowest body weight (right pane)
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METHOD
A column in the data file with a descriptive header, e.g. “CEDcontrol” (calving ease control), or 

“BWTcontrol” (birthweight control), depending on what EBVs are available for ease of calving, has 
values entered as follows:

For each female candidate:	 Enter her current phenotype for body weight (or some such 
criterion of liability to calving difficulty).

For each male candidate:	 Enter -1 times the smallest weight of female that this bull should 
be allowed to mate, given its EBV for Calving Ease Direct (or 
some such EBV), according to the breeder’s judgement.

With this setup, a mating between any bull and any cow gives a predicted progeny value for 
CEDcontrol that needs to be at least 0 to satisfy the breeder’s desires in relation to calving ease for 
that female (see Table 1).

Table 1. Example calculation for male entries under data column CEDcontrol. Values for Inter-
cept and Slope are calculated as shown below the table

Female body 
weight

Minimum Calving Ease 
Direct EBV chosen by 

breeder

Male entry for a bull of 
minimum EBV

(Intercept+Slope*EBV)

Predicted progeny value 
for CEDcontrol when using 

this bull

275Kg Heifer +10 -400 + 12.5x10 = -275 0

300Kg Heifer +8 -400 + 12.5x 8 = -300 0

400Kg Cow 0 (linear extrapolation) -400 + 12.5x 0 = -400 0

Slope = ​​300 − 275 _ 10 − 8  ​​ = 12.5  
Intercept = (2 x Threshold) -275 – (Slope x 10)  = 0 -275 -125 = -400
Intercept = (2 x Threshold) -300 – (Slope x   8)  = 0 -300 -100 = -400
… where Threshold = 0 in the example implementation (eg. last column, and in Figure 2).

The breeder only has to choose the four figures near the top left of Table 1: 275Kg, 300Kg, +10 
and +8 (yellow shading).  This represents the breeder’s attitude to bull requirements for calving ease 
EBVs depending on female body weight. The third row (400Kg Cow) is only included for illustra-
tion. Notice that the fourth column (values = 0) is the average of the first and third columns, just as 
progeny predictions are the average of dam and sire EBVs.

Accordingly, what we enter for each bull in column CEDcontrol is Intercept+Slope*CED where 
CED is the bull’s Calving Ease Direct EBV. Slope and Intercept are calculated from the four figures 
chosen by the breeder, plus the target Progeny value threshold (Thresh = 0 here, but a different value 
can be chosen for cosmetic reasons).

The four driving figures (275Kg, 300Kg, +10 and +8 here) should cover the bodyweight region 
where calving ease is an issue. If there is little benefit from using high calving ease bulls over heavy 
cows, this is not critical, as the breeder can use a trait management tool in a way that gives no reward 
for high calving ease in heavy cows, eg. by only avoiding matings below the 0 threshold.

Once the CEDcontrol column has been made, the mate selection analysis is run with a constraint 
on progeny CEDcontrol to be at least 0 for all matings, eg. using ‘Set minimum value at boundary’ 
(see Kinghorn and Kinghorn 2019), as in Figure 2.
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Figure 2. Setting CEDcontol boundary at zero to ensure that all matings conform to the breed-
er’s calving ease policy with respect to female body weights.  Left: Boundary not invoked (9 
matings do not conform). Right: Boundary invoked (all matings conform).  This is a small 
example with just 30 matings

RESULTS AND DISCUSSION
There are several main factors affecting calving difficulty including calf size, pelvic area of the 

cow, breed, parity of the calving, sex of the calf, gestation length, the season of the calving (Mekonnen 
and Moges 2016). Developing heifers on a low nutrient diet has clearly demonstrated an increase 
in dystocia. This is primarily due to poor skeletal growth and, therefore, smaller pelvic areas. While 
some studies have found that heifers of lighter weight have an increased risk of dystocia (Erb. et al. 
1985; Naazie et al. 1989), other research has demonstrated that after calf size, the most important 
phenotypic predictor of dystocia is pre-calving pelvic area (Johnson et al. 1988). Heifers with a pel-
vic area of less than 140 cm2 have increased incidence of dystocia compared to their above-average 
contemporaries. Larger heifers have larger pelvic areas, but they also have larger calves. Selecting 
large heifers for replacements may have little effect on dystocia unless pelvic areas are also known.

This paper has adopted female body weight as an indicator of liability to calving difficulties. Of 
course, the current method does not alleviate the situation by increasing the body weight of small 
heifers, but by aiming for them to have calves of smaller size, and/or whatever other attributes of 
calves lead to improved calving ease. This means that the observed impact of calf size on dystocia 
is also indicative of the value of the current method. It may be that some other trait or index of traits 
will be more diagnostic for the scenario in question than simple female body weight. The method 
proposed can use any such predictor.

High ewe liveweight and condition score during pregnancy may help indicate the risk of dystocia 
in sheep (Horton et al. 2017), such that the method proposed may be of some value in that species.

In a simple beef cattle example, a Trait Management tool (Kinghorn and Kinghorn 2019) was 
used to manage the progeny distribution of CEDcontrol, by setting a minimum boundary at 0 for 
predicted progeny merit, so that all matings satisfy the breeders desires (Figure 2).

The minimum boundary can be changed upwards from 0 to give even more overall emphasis on 
Calving Ease. This is a dynamic policy with smaller heifers always attracting more attention, whatever 
threshold is set. For example, to get 10 in the right-hand column of the top row of Table 1, still using 
the EBV = +10 bull, we would use a 295Kg heifer (as the average of 295 and -275 is 10). This means 
we would now afford a 295Kg heifer as much CED priority as we previously did for a 275Kg heifer. 
The breeder must then judge if the extra calving ease attained is worth the likely compromises seen 
in other issues, such as progeny merit for the selection index and inbreeding.
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It is possible to scale this approach differently, so that a +1 progeny CEDcontrol value represents 
an increase of +1 in EBV units, setting the bar higher by that amount of EBV. Alternatively, if there is 
good predicted relationship between EBV and % calving difficulties, a breeder could operate directly 
at the level of predicted % calving difficulties.
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SUMMARY
Combined analyses of wether trial data have provided commercial Merino producers with reliable 

estimates of differences among bloodlines, based on the performance of their client flocks. The 
evolution of wether comparisons as a vehicle to obtain information on bloodline differences is briefly 
described along with the substantial changes in the genetic evaluation environment since the inception 
of the combined analyses. A future combined analysis of wether and ewe productivity trait data with 
genomic flock profiling may well represent the next step in the evolution of wether trials in Australia.

INTRODUCTION
Merino wether trials started as small scale commercial producer production competitions in 

several locations from the late 1970s. Simultaneously, resource flocks (such as D flock, Mortimer 
and Atkins 1989) showed that large differences existed among Merino studs and bloodlines that ram 
buyers could access when purchasing flock rams. Although a single wether trial provided little or no 
information on bloodline performance an innovative across-trial analysis was devised that combined 
all available data to produce reliable estimates of differences among studs, based on the performance 
of their client flocks (Hygate and Atkins 1988). At that time, there was no comparative across-stud 
performance information available in the public domain.

This paper will review the use of combined analyses of wether trial data to provide commercial 
Merino producers with information on Merino bloodline differences and briefly describe the evolution 
of wether trials as a vehicle to obtain information on bloodline differences. Given the changes in the 
genetic evaluation environment since the inception of the combined analyses, a future role of the 
combined wether trial analyses will be proposed.

THE BEGINNINGS 
While resource flocks were demonstrating to commercial producers the large differences that existed 

between Merino bloodlines in wool production traits, wether trials became widespread and were used 
as a basis for regional breeding extension activities. In contrast to the resource flocks, wether trials 
had several practical advantages. Wether trials were located in a range of environments and were 
able to more cost-effectively collect wool production data on a wider range of bloodlines, albeit the 
bloodlines were represented by teams of wethers selected from commercial flocks. As importantly, 
the identity of the bloodline represented by each team was publicly reported, whereas non-disclosure 
agreements prevented this happening with the resource flocks. It became apparent that the data from 
wether trials could be useful in genetic evaluation of bloodline sources.

Following the pilot study of Hygate and Atkins (1988), the first attempt to comprehensively 
report on Merino bloodline performance was provided by Atkins et al. (1992). Their report used data 
from 48 wether trials, conducted in NSW between 1981 and 1991, and included robust estimates of 
performance in wool production and quality traits. Key features of the wether trials analysed were the 
wide distribution of trials across all regions of NSW, random sampling of teams of wethers and an 
average of at least 10 wethers per team. Regional variation in, and economic evaluations of bloodline 
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performance, as well as guidance on interpretation and application of the results, were provided. The 
limitations of this form of bloodline evaluation were noted: potential for inaccurate description of 
the ram source; occurrence of non-random selection of wethers; and the historic nature of the data.

INFORMATION DELIVERED
The first across-trial analysis published by Hygate and Atkins (1988) reported on records of greasy 

fleece weight, fibre diameter (FD) and yield, and the derived trait of clean fleece weight (CFW). This 
initial publication was a ‘proof of concept’ using data from 12 wether trials across NSW, flagging a 
range of opportunities which were to become part of the future analysis and reporting of wether trial 
comparisons – now known as Merino Bloodline Performance.

Table 1 summarises the number of wether trials, teams and bloodlines represented in the across-
trial analyses since 1992. Bodyweight and assessments of wool quality (inferred from wool type) were 
included in the analysis reported in 1992. Subsequently, stability traits (relative change with age in 
CFW and FD) were analysed and reported. The 2005 and later reports, plus supporting information, 
are accessible via the web (www.merinobloodlines.com.au).

Table 1. Summary of wether trials, bloodlines and teams represented in the Merino Bloodline 
Performance reports since inception

Year of 
published report

Number of 
wether trials 

contributing data

Bloodlines  

High and 
Medium 
Accuracy

Low 
Accuracy Total Number 

of teams

1992 48 53 80 133 988
1995 54 61 83 144 1,110
1996 76 73 113 186 1,417
1998 67 75 117 192 1,184
2000 68 65 131 196 1,365
2005 58 71 95 166 1,182
2007 63* 137 85 222 1,087
2010 57* 145 123 268 1,285
2014 23* 71 1 72 922
2016 26* 77 0 77 457
2018 25 73 0 73 482

* Data from both ewe productivity trials and wether trials contributing to these reports.

Initially, economic analyses were reported using gross margins with different price periods selected 
to reflect a range of market scenarios (low to high micron premium; current versus long term average 
prices). Gross margins were reported on a per head and per dry sheep equivalent (DSE) basis to allow 
for differences in size and hence stocking rate.  

Early attempts to model the whole farm economic impacts of differences between bloodlines 
were reported by Wilson et al. (1996). Their analysis, and that of Coelli et al. (2000), included the 
extrapolation from wether data to modelling of ewe enterprises. The 2010 analysis saw a change from 
gross margin to gross income, with gross income being calculated with a greater emphasis on income 
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from meat (ratio of fleeces to surplus sheep sales of 2.5 to 1, compared with earlier reports where the 
ratio was 4:1) (Martin et al. 2010). Grassgro™ (Moore et al.1997) has been used to model the financial 
performance of the bloodlines since 2014. Using base parameters for wether production systems 
at Bookham, Narrandera and Woolbrook (replaced by Armidale in 2018), the livestock production 
parameters were the outputs of the bloodline analysis. Three different price scenarios (median, 30th 
percentile and 70th percentile) can be simulated across the three environments.

Bloodline parameters and financial performance have also supported delivery of other activities such 
as the ‘Merino Breeding & Selection’ workshops (Hatcher and Bayley 1999), and the tool ‘Bloodline 
benchmark’ (Coelli et al. 1997). Other products that support the Merino Bloodline Performance 
analyses include the guidelines for the conduct of wether comparisons and on-farm genetic evaluations 
(Martin et al. 2005) and software (Sheep Wether Comparison – SWC) that supports collection and 
reporting of wether comparison results at individual sites, and facilitates provision of quality data to 
the across-trial analysis (Semple 2005).

CHANGES IN THE EXTERNAL ENVIRONMENT 
Since the first wether trials were published, there have been significant changes to the Australian 

Sheep industry. The collapse of the reserve price scheme and a significant increase in value of surplus 
sheep has seen breeding objectives for a significant proportion of the sheep industry change to a more 
dual purpose (meat and wool) focus. This has generated increased interest in traits such as growth, 
carcase and reproductive performance, leading to the breeding ewe flock evaluations mentioned 
earlier. Sheep Genetics now runs MerinoSelect, the national genetic evaluation service (Brown et al. 
2007) for Merino ram breeders, while a range of on-farm technologies have made the monitoring of 
animals and flock management easier.

The delivery network for wether trials has also changed significantly. The reduction in public 
sector extension by the state departments across the country has meant that the location and duration 
of wether trials is now largely in the hands of grower groups.

WHERE TO NEXT?
The need for wether trial information as the major source of across-flock differences in Merinos is 

less urgent today as more Merino studs participate in MerinoSelect. However, there are still many ram 
sources either not enrolled in MerinoSelect or that have inadequate or unreliable linkage with other 
flocks. A key question is “Do wether trials represent the only source of data in continuing to provide 
reliable and comparable bloodline differences for ram sources not available through MerinoSelect?”

Genomic flock profiles (Swan et al. 2018) are a relatively new source of data that provide information 
on the breeding value of flocks for various traits, including previously expensive or difficult to measure 
traits. Flock profiling combined with the range of phenotypes that can be recorded within wether 
trials, as well as the important forum for interactions between producers and service providers that 
wether trials promote, offer new opportunities for commercial evaluation of Merino bloodlines. For 
both adult CFW and FD there is good agreement between the genomic breeding values obtained 
from flock profiles of the single bloodline teams of the Peter Westblade Memorial Merino Challenge 
2016-2018 (S. Martin, C. Wilson and T. Granleese, unpublished data) and the bloodline deviation 
estimates from an analysis of the 4 challenges conducted between 2010 and 2018 (Figure 1).

An innovative combined analysis of information from wether trials, ewe productivity trials and 
flock profiles can provide valuable and accurate information on across-stud differences in addition 
to that which is available in MerinoSelect.
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Figure 1. Relationship between mean bloodline deviations and genomic flock profile of single 
bloodline teams of the Peter Westblade Memorial Merino Challenge 2016-2018
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SUMMARY
Genotype by environment interactions (GxE) for economically important traits in Australian 

maternal and terminal sheep were investigated by both sire by flock interactions and multi-trait methods 
for performance data observed in eight flocks (sites) across Australia. The traits included growth traits: 
birth weight (bwt), weaning weight (wwt), post-weaning weight (pwt); carcass composition traits: 
carcass eye muscle depth (cemd), carcass fat (ccfat), lean meat yield (lmy) and dressing percentage 
(dressperc), and meat quality traits: intra-muscular fat (imf) and shear force (sf5). Univariate analyses 
showed that variation between genetic groups was relatively large compared to direct genetic variance 
and that maternal effects were significant for growth traits. The estimates of heritability were low for 
growth traits (from 0.08 to 0.11), moderate for most carcass composition traits (except for lmy) and 
sf5 (from 0.24 to 0.26), and high for lmy (0.44) and imf (0.50). Significant sire by flock interactions 
were found for growth traits and sf5. The average genetic correlations over pairs of flocks for each 
trait were 0.35 (bwt), 0.44 (wwt), 0.43 (pwt), 0.78 (cemd), 0.70 (ccfat), 0.77 (dressperc), 0.83 (lmy), 
0.91 (imf) and 0.72 (sf5), respectively. Both the interaction term and multi-trait methods demonstrate 
that significant GxE existed for growth traits. The industry genetic evaluation should account for 
GxE for these traits.

INTRODUCTION
The Australian sheep industry has generated substantial gains through use of Australian Sheep 

Breeding Values and Indexes generated by Sheep Genetics (Swan, 2017). Where they are significant, 
genotype by environment interactions (GxE) result in changes in ranking across environments, with 
potential effects on selection response. Therefore, it is important to understand the magnitude of GxE 
for traits included in Australian sheep breeding programs. To date there have been no studies reporting 
GxE in meat quality and carcass traits in the terminal and maternal sheep breeds in Australia.

A well-structured distribution of genotypes across environments is crucial to detect GxE effects. 
The Sheep CRC Information Nucleus (INF, van der Werf et al. 2010) is an ideal resource to study 
GxE because a large number of sires were progeny tested at eight research flocks that represent the 
diversity of Australian sheep production environments. An extensive measurement program of meat 
quality traits was undertaken on individual animals at these eight flocks over a five-year period. In 
this study, these data were used to investigate the magnitude of GxE quantified by fitting a sire by 
flock interaction term and multi-trait methods for some economically important traits in terminal 
and maternal sheep breeds. 

MATERIALS AND METHODS
Animals and data. The Sheep CRC IN flocks represented three sire breed types, Merino, Maternal 

and Terminal in the initial experimental design at eight research flocks. In this study performance 
data from progeny of Maternal and Terminal sire breed types mated to Merino or Border Leicester 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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x Merino dams were combined to conduct genetic analyses. The research flocks included Armidale, 
NSW (IN01); Trangie, NSW (IN02); Cowra, NSW (IN03); Rutherglen, Vic. (IN04); Hamilton, Vic. 
(IN05); Struan, SA (IN06); Turretfield, SA (IN07); and Katanning, WA (IN08). The measurement 
program was run for five years with animals born between 2007 and 2011. Pedigree and performance 
data of nine traits were extracted from the IN database. The traits analysed included three growth traits: 
birthweight (bwt, kg), weaning weight (wwt, kg) and post-weaning weight (pwt, kg); four carcass 
composition traits: carcass eye muscle depth at C site (cemd, mm), carcass fat at C site (ccfat, mm), 
dressing percentage (dressperc, %) and lean meat yield (lmy, %); two meat quality traits: intramuscular 
fat (imf, %) and shear force at five days aging at 3–4 °C (sf5, Newtons). All carcass composition and 
meat quality traits were measured on meat samples post-slaughter. A summary of the numbers of 
records and sires represented at each flock for each trait is shown in Table 1. The growth traits had 
the most records, followed by carcass composition traits and meat quality traits. Correspondingly, the 
total number of sires used differed across traits, varying from 263 for imf to 510 for bwt. However, 
the average number of sires used across pairs of flocks was not substantially different across traits, 
ranging from 67 to 82.

Statistical analyses. Univariate analyses were used to estimate variance components and 
heritabilities for each trait. Fixed effects included contemporary group (cg), birth type, rearing type, 
age of measurement (in days) fitted as a covariate and dam age fitted as linear and quadratic covariates 
for all traits with the exception that rearing type and age of measurement were not fitted for bwt. 
Hot carcass weight was included as a linear covariate for meat quality and carcass composition traits 
except dressperc and lmy. Contemporary group definitions were based on management group, flock, 
year, sex, breed type and date of measurement, with numbers of cg ranging from 369 (wwt) to 994 
(sf5) across traits. Random effects included a genetic group effect (ranging from 124 to 159 genetic 
groups across traits, representing the original breeds and strains within breeds of the base animals), a 
direct genetic effect of animal, and sire x flock-year interaction (SF) for each trait. Random maternal 
effects (representing both maternal genetic and maternal permanent environmental effects) were 
fitted to growth traits only. 

The genetic correlations of animal genetic effects between flocks which modelled each trait in 
the different flocks as different traits were estimated by two alternative models. The first model used 
pairwise bivariate analyses, with 28 analyses of all combinations of the eight flocks. The second 
model was the factor analytic model in which all data was used simultaneously to estimate all genetic 
correlations in a single analysis with heterogeneous residual variance fitted at the flock level. Both 
bivariate and factor analytic models used the same fixed and random effects as those used in the 
univariate analyses for each trait, but excluding the random SF effect. The random sire × flock, rather 
than a direct genetic of animal effect, was modelled with a factor analytic covariance structure (FA) 
in the factor analytic model. All analyses were conducted using software ASReml (Gilmour et al. 
2009) with REML procedures. 

RESULTS AND DISCUSSION
The summary statistics, phenotypic variance and ratios of variances are shown in Table 1. Significant 

values for the ratio of genetic group variances to direct genetic variances were found for all growth traits, 
decreasing from 4.73 (bwt) to 2.32 (pwt), showing that genetic groups account for a large proportion 
of the genetic variation for growth traits. The estimates of heritability were low for growth traits (from 
0.08 for bwt to 0.11 for pwt), moderate for most carcass composition traits (except for lmy) and sf5 
(from 0.24 to 0.26), and high for lmy (0.44) and imf (0.50). The heritability estimates for growth traits 
were lower than the weighted means of 0.15 (bwt), 0.18 (wwt) and 0.21 (pwt) reviewed by Safari et 
al. (2005) for meat breeds. Brown et al. (2016) also reported slightly higher heritability estimates for 
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bwt (0.15) and pwt (0.15-0.16) for both maternal and terminal breeds, but with a similar estimate for 
wwt. This could be due to SF effects which were significant for these traits (variance ratio estimates 
ranging from 0.02 to 0.03) fitted in the models to account for the GxE across flocks. Negligible SF 
effects were observed for all carcass composition traits and imf. The heritability estimates for carcass 
composition traits were similar to those reported in the previous preliminary study by Mortimer et al. 
(2010) based on 2007-2008 INF data, except for the slightly higher estimate for lmy in this study (0.44 
vs 0.34). For meat quality traits, Mortimer et al. (2014) reported similar estimates of heritabilities for 
imf (0.48) and sf5 (0.27) from INF data, along with a similar magnitude estimate of the SF effect for 
sf5 (variance ratio of 0.03). Maternal permanent environment effects were significant for all growth 
traits and decreased as age increased, from 0.34 for bwt to 0.21 for pwt. This trend was consistent 
with previous findings (sum of maternal genetic and permanent environment effects) but with slightly 
lower estimates for growth traits by Brown et al. (2016).

Table 1. Number of records (N), total number of sires with progeny data (tot_sire) across all 
flocks, average number of sires with progeny data across pairs of flock combinations (ave_sire), 
number of genetic groups (N_gg), number of contemory groups (N_cg), mean trait value (mean), 
estimates of phenotypic variance (σ2

p), ratio of genetic group to additive genetic variance (b2), 
direct heritability (h2), sire by flock effect (s2), maternal environmental effect (c2) as a proportion 
of phenotypic variance, average genetic correlations of across pairs of flock combinations by 
factor analytic model (rg_fa) and by bivariate analyses (rg_bi) with standard errors in subscript 
for each trait

bwt wwt pwt cemd ccfat dressperc lmy imf sf5

Unit kg kg kg mm mm kg % % Newtons
N 16190 13144 12373 8996 8793 9483 7272 7016 7174

tot_sire 510 439 426 425 424 425 278 263 278
ave_sire 82 80 82 79 79 79 74 67 74

N_gg 159 159 139 137 138 138 124 125 125
N_cg 742 369 419 633 628 608 568 545 994
mean 4.9 29.4 32.9 31.3 4.6 46.1 58.1 4.2 26.9
s2

p 0.710.01 17.080.23 19.880.28 10.760.18 3.810.07 5.150.08 5.610.12 0.610.01 48.410.95

b2 4.731.85 3.961.65 2.321.03 0.150.11 0.200.12 0.060.07 0.490.20 0.150.10 0.120.09

h2 0.080.02 0.090.02 0.110.02 0.250.03 0.270.03 0.240.03 0.440.04 0.500.04 0.260.03

s2 0.030.01 0.020.01 0.030.01 0.010.01 0.010.01 0.010.01 0.010.01 0 0.030.01

c2 0.340.01 0.240.01 0.210.01 - - - - - -
rg_fa 0.350.26 0.440.34 0.430.26 0.780.18 0.700.14 0.770.20 0.830.14 0.910.10 0.720.18

rg_bi 0.410.45 0.410.59 0.410.46 0.820.39 0.610.34 0.750.34 0.770.26 0.820.25 0.740.35

The average genetic correlations over all pairs of flocks from both the factor analytic model (rg_fa) 
and a series of bivariate analyses (rg_bi) are shown in Table 1. Similar magnitudes of genetic correlations 
were found from both approaches for all traits. However, the standard errors of genetic correlations 
from the factor analytic model were much smaller (from 0.10 to 0.34) than those from the bivariate 
analyses (from 0.25 to 0.59) across all traits, demonstrating that the factor analytic model is a more 
reliable and parsimonious approach to analyse eight flocks data simultaneously in this study. The 
results from the factor analytic model indicated low to moderate genetic correlations (between 0.35 
and 0.44) for growth traits, and moderate to high genetic correlations (between 0.70 and 0.91) for both 
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carcass composition and meat quality traits. These results are consistent with the significant level for 
sire by flock interaction term in the univariate analyses for most of the traits except for sf5. Although a 
significant SF effect was detected for sf5, a much higher average genetic correlation across flocks was 
found for sf5 than for the growth traits. The distributions of genetic correlations between each flock 
and other flocks for each trait is shown in Figure 1. What can be clearly seen in this figure is that low 
genetic correlations were generally found for each flock with other flocks for growth traits; imf had 
consistently high genetic correlations for each flock with other flocks; and for the carcass composition 
traits and sf5, most of the flocks had high genetic correlations with other flocks, but there was at least 
one flock that had only moderate genetic correlations with other flocks (e.g. dressperc and lmy for one 
and sf5 for three flocks).

Figure 1. Genetic correlations of each flock with other flocks by using Factor analytic models

CONCLUSIONS
The results from both SF interaction and multi-trait models demonstrated that there were significant 

GxE for all growth traits (bwt, wwt and pwt) and negligible GxE were found in all flocks for imf and 
in most of the flocks for the carcass composition traits in maternal and terminal sheep. Our industry 
genetic evaluations should be able to account for these GxE effects by fitting a sire by environment 
interaction term in the models for these traits with significant GxE. 
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SUMMARY
The real map from genotype to phenotype is very complex indeed, and yet we use simple models 

to analyse it and simple models to simulate it.  This paper illustrates a method to simulate phenotypes 
as a function of genotypes that aims to better emulate the underlying complexity involved, with multi-
level epistatic interaction among all loci within large groups of loci. It is proposed that such simulated 
data will give a more realistic basis to test QTL detection, GWAS and genetic evaluation methods.

INTRODUCTION
We want to understand and exploit the relationship between genotype and phenotype. To do this 

we use simple models and methods that we hope will lead us to making good decisions. However, 
life is more complex than we can perceive, as it has not been designed, but has evolved in a random 
manner. How can we test the usefulness of these simple models? They might lead to what seems like 
good genetic progress, but do they miss something in the real complexity that alternative models and 
methods might capture for our benefit? In addition, our simple models often lead us to think that there 
are many hundreds of QTL affecting a trait, with relatively few QTL of large effect – could reality be 
that there are far fewer QTL that, because of their complex interactions, masquerade as many hundreds 
of QTL? If this were true and detectable, then we might take a different direction in QTL detection, 
GWAS analyses and genetic evaluations. Simulation can be used to test this. However, datasets that are 
simulated using the same or similar statistical models as will be used to analyse them are self-fulfilling 
and not appropriate. And of course, the real model is too complex for us to know and use. Instead we 
need a tractable approach that emulates the high complexity of true genotype-phenotype relationships, 
including the high-order epistatic interactions that are evident when gazing at a biochemical pathway chart.

The NK model (Kauffman and Levin 1987) is a theoretical fitness model that provides an objec-
tive function relating a sequence (genotype) to fitness score (phenotype). Each locus interacts with 
a given number of other loci that are either neighbours or randomly determined. Each locus is given 
an individual fitness score based on the loci with which it interacts. The individual loci fitness scores 
are summed to give a sequence’s total fitness. This model is useful in that an NK fitness landscape’s 
complexity can be tuned by altering the number of interactions at each locus. Cooper and Podlich 
added an extra layer of interaction to the standard NK model by introducing the concept of environ-
mental dependent gene expression to simulate gene-by-environment interactions (Cooper and Podlich 
2002). Although the 𝑁𝐾 model is useful, it has limitations in representing some biological systems. At 
higher interaction values that are biologically relevant the landscape descends into a chaotic surface 
on which additive adaptation is essentially not possible. 

To solve this problem, Kinghorn and Tanner proposed an approach where the effects of groups 
of interacting loci (“phenotypic contributors”) are added sequentially and in accordance with natural 
selection (Kinghorn and Tanner 2017), similarly to how gene networks probably evolved over time 
(Amoutzias et al. 2004). This approach is based on method for simulating the response surface of 
ligand/target molecule affinity as a function of DNA aptamer sequence (Kinghorn and Tanner 2017). 
We have used a similar approach to model SNP data from many genomes.
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MATERIALS AND METHODS
The Selective Phenome Growth Adapted NK Model (SPANK) method of Kinghorn and Tanner 

(2017) operates on single DNA sequences (DNA Aptamers, typically 30 to 100 bases long). Our 
method follows the SPANK method quite closely, presented here briefly, in our context:

N 	 is the number of QTL
PCi	 is the ith Phenotypic Contributor, this being a vector 

of indicator variables {0,1} that point to loci involved 
in generating value for that PC.  A key concept is 
that the genotypic merit for a haploid is the sum of 
many PCs – many components of genetic merit that 
contribute to expression of phenotype.

𝜑𝑖,s	 is the value of PCi for sequence or haplotype s.
nPC	 is the number of PCs.  This is unbounded.
K	 is the maximum number of loci that can be involved 

in determining a PC.  All levels from 1 to K can be 
involved, but only one level per PC.

ki	 This is the actual number of loci involved in deter-
mining PCi.

There are three main parts to the method:
1.	 Generating the Genotype/Phenotype map (Figures 1, 2).
2.	 Analysing the SPANK Genotype/Phenotype map and 

comparing it to a randomly generated interaction map. To analyse the fitness landscapes we 
find 100,000 local optima and calculate their Hamming distance from the highest scoring 
optimum (Figure 3). The parameters used to drive the method can be changed to arrive at 
what is judged to be an appropriate fitness landscape, as indicated by such analysis.

3.	 For an implementation phase, the adopted Genotype/Phenotype map is used to generate 
phenotypes for the genotypes that are simulated into a real or simulated population.

The method follows Figure 1. A single haploid sequence is generated. This is the current Lead 
Sequence, which will direct the genotype/phenotype map evolution. The phenotypic contributors 
that make up the genotype/phenotype map will be formed around this lead sequence such that the 
lead sequence will be an optimum. To add a new phenotype to the interaction map, ki is uniformly 
sampled from {1 to K}, and ki loci randomly sampled from {1 to N}. The Lead Sequence alleles at 
these loci are used to determine its 𝜑𝑖 value, which is taken from a matrix of previously randomly 
generated 𝜑𝑖 values. For the PCi to be accepted there must be an increase in the average merit across 
all prior PCs. The fitness score of the new phenotype (Σ(1-𝑖)) is then calculated and if it is greater than 
the fitness score of the old phenotype (Σ𝜑(1-(𝑖-1))) then the new PCi is accepted, else it is rejected. 
Finally, noting that the lead sequence does not necessarily have the best genotype for a newly added 
PC, it is adapted using allelic substitution until it is at a fitness peak before the cycle is repeated. This 
allelic substitution proceeds by selecting the fittest 1-step mutant neighbour in sequence space and 
continuing the allelic substitution until no fitter 1-step mutant neighbours can be found.

RESULTS
To make a small illustrative example, the SPANK method was invoked with N=20 loci, nPC=20 

phenotypic contributors, and K= a maximum of 10 loci interacting to generate a PC. The resultant 
epistatic map is shown in Figure 2A. For comparison, an epistatic map was generated with random 
interactions that were not selected using a classical NK model, with 6 interactions per phenotypic 
contributor. In Table 1, a selection of the 20 phenotypic contributors (1, 2, 3 and 20) from the epistatic 

Figure 1. The SPANK method



240

﻿Computational and Statistical 2

map (Figure 2) are shown. The interacting loci and their 𝜑 value for two test sequences are displayed. 
𝜑 values were previously generated constants that are functions of the alleles mapped by the PC. 
The 𝜑 values for each PC are averaged to give the haploid fitness for each of the two sequences.

Our aim is to develop fitness landscapes that are of high order complexity, yet are reasonably 
smooth and not chaotic, to the extent that a practitioner might expect in real populations. The measure 
of landscape smoothness we have chosen is the Hamming distance from the fittest optimum (Figure 
3). For each landscape, 100,000 sequences are chosen at random and from these sequences random 
mutational walks uphill are taken until a local optimum is reached for each starting sequence. The 
Hamming distance from each of these local optima to the fittest recorded optimum is calculated. 
It can be observed that for the SPANK generated fitness landscape (Figure 3A) there is a stronger 
relationship between fitness and distance from the fittest optimum. Additionally, the line of best fit 
shows that for the SPANK generated fitness landscape a greater number of random uphill walkers 
reach the fittest optimum, indicating a smoother landscape. For the random landscape (Figure 3B) 
there is a much weaker trend of having higher scoring optima closer to the fittest optimum. For the 
random landscape just 2709 random walkers reached the fittest optimum, whereas 16,328 random 
walkers reached the fittest optimum for the SPANK landscape.

Figure 2. Epistatic maps generated A) by SPANK 
and B) at random without optimisation. The ran-
dom map is a classical NK model with 6 interactions 
per phenotypic contributor. Each row is a pheno-
typic contributor and each column is a locus. Along 
each phenotypic contributor the interacting loci are 
denoted as dark shaded squares

DISCUSSION
As with the simple models we currently use to detect and exploit genotype-phenotype relationships, 

SPANK is not a model of the underlying biology. However, it does make a big step in the direction 
of emulating the biological complexity involved – permitting the involvement of multiple players 
(multiple loci and alleles) in each contribution of genotype to phenotype.

PC kPC TS Phenotypic contributors (PC) 
or Allele (TS)

𝜑 Table 1. Results from a small illus-
trative example. Using the Epistatic 
map in Figure 2, N is 20 loci and 
nPC is 20. For phenotypic contribu-
tors (PC), 1 denotes a locus involved 
in the PC, else 0.  For the two test 
sequences (TS) shown, 1 and 2 are 
the two alleles at each locus. 𝜑 is the 
value component for the TS under 
the prevailing PC, these being ran-
domly generated constants. 

1 6 01000101011000000001

1 11221212222122111221 f(122221) = 0.7843
2 21221121112211222212 f(111122) = 0.8342

2 9 10000011001011011010

1 11221212222122111221 f(112222112) = 0.9534
2 21221121112211222212 f(221211221) = 0.6934

20 10 10010110000111011100

1 11221212222122111221 f(1221122112) = 0.8133
2 21221121112211222212 f(2212211222) = 0.2643

Haploid Fitness 
(Average of  PC(1-20))

Notice that 
f(122221) = 
0.7843 appears 
twice, by chance

1 11221211222122111221 Fitness = 0.8830

2 21221121112211222212 Fitness = 0.7985
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The functions in the 𝜑 column of Table 1 that allocate value to genotypes are determined by allele 
pattern jointly across loci – for example f(122221) = 0.7843 appears twice in the table, for different 
sets of loci. This departs from what we might model biologically. An alternative would be to require 
specific genotypes over many fixed loci, but this would suffer from such complexes being rare to 
occur and rare to transmit. In conjunction with the selective adaptation steps described, the current 
approach leads to sensible patterns of fitness across genotypes (Figure 3), without eg “witch’s hat” 
peaks of extreme fitness (Kinghorn and Tanner 2017).

For implementation, attention has to be paid to diploidy and its effect on the expression of sin-
gle-locus dominance as well as epistasis. For the latter, it is possible to assume dominance of epistasis 
by stipulating that a PC function is expressed if each locus is represented by either one or two of the 
enabling alleles. In a similar manner we could assume recessive inheritance of epistasis, or a mixture.

In addition, single locus effects need to be addressed. The method proposed can handle that by 
allowing k=1, which is not represented in Table 1, or indeed by using a classic approach to gener-
ate these components. Sampling of k from a Poisson or adapted Gamma distribution might give a 
presumed sensible weighting to the different levels of epistatic interaction, including k=1 for PCs 
involving no interactions. Additive and dominance single-locus effects could be conventionally sim-
ulated separately for each locus, then, for an interaction set involving k loci, the overall effect taken 
as the average across the single locus effects multiplied by the 𝜑 function shown in Table 1. This 
would diversify the single-locus effects from the relatively narrow sampling the method provides, 
and increase diversity of effects for higher-order interacting groups of loci.

Figure 3. Hamming distance to fittest optimum. A) 
SPANK generated landscape B) Randomly generated 
landscape. The number of interacting loci for each land-
scape is matched. There is much superimposition of 
points, especially at the fittest optima (see text)

The SPANK model aims to mimic the complexity of genetic systems not from a top down approach, 
but from a bottom up approach that facilitates the emergence of complex interactions without devolv-
ing into chaos. Having a system that mimics gene interactions, in which the resultant interactions 
are explicitly recorded, we can evaluate the extent to which simple additive models exploit these 
interactions despite no specific fit to accommodate them. Many questions about the impacts of genetic 
interactions and our ability to detect and exploit them could be answered. Can a small number of com-
plex interacting QTL masquerade as a large number of QTL? What number and strength of minimally 
interacting QTL are required to deviate observed causality from major QTL? Where is that missing 
heritability? Future work might be directed towards answering these and other questions regarding 
genetic interactions. This paper has only outlined and illustrated an approach to simulating pheno-
types. If properly applied, the resulting genotype to phenotype map might approach the complexity 
of reality. This in turn could help provide insights to what we might be missing by using relatively 
simple models for QTL detection, GWAS and genetic evaluation.
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IMPACT OF AN APPROXIMATE INVERSE OF THE GENOMIC RELATIONSHIP 
MATRIX FOR SINGLE-STEP EVALUATION OF AUSTRALIAN MEAT SHEEP
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SUMMARY

*  A joint venture of NSW Department of Primary Industries and the University of New England

Common implementations of single-step genomic evaluation require the inverse of the genomic 
relationship matrix. Obtaining the inverse can become computationally prohibitive as its size increases. 
Stimulated by rapidly increasing numbers of genotyped animals, several procedures to approximate 
this inverse have been proposed. We examine the impact of two methods of approximation on 
predicted breeding values for a multi-breed population of Australian sheep. Results show that very 
high correlations with predictions using the full inverse can be achieved whilst reducing computational 
requirements. However, current levels of genotyping in our data were relatively low and results need 
to be validated as larger number of genotypes become available.

INTRODUCTION
The single-step procedure for joint genetic evaluation of genotyped and non-genotyped animals 

(ssGBLUP) has become routine in many livestock improvement schemes. In essence, it extends the 
classic breeding value model to include genomic information by replacing the pedigree based 
relationship matrix (A) with its counterpart (H) which combines both. Only H−1 is required in the 
mixed model equations (MME) to be solved. This can be formed directly, but does require the inverse 
of two matrices of size n2 × n2, with n2 the number of genotyped animals. The first is the inverse of 
the dense genomic relationship, G, which needs to be inverted explicitly. The second is the inverse of 
A22, the corresponding part of A, which can be obtained indirectly by exploiting partitioned matrix 
results (e.g. Strandén et al. 2017). Rapidly increasing numbers of genotyped animals have stimulated 
development of approximations for G−1. We examine the impact of two proposed schemes for a 
multi-breed set of sheep data, namely the ‘algorithm for proven and young’ (APY) sires (e.g. Misztal 
et al. 2014) and the use of the Woodbury matrix identity combined with a reduction in the number of 
principal components (PCs) considered, dubbed TBLUP (Mäntysaari et al. 2017).

MATERIAL AND METHODS
The APY inverse. Reorder and split G into a set of ‘core’ (or proven) animals and a set of 

‘non-core’ (or young) animals, denoted by subscripts ‘C’ and ‘N’, respectively. This gives

G−1 =


G−1

CC +G−1
CCGCNGNNGNCG−1

CC −G−1
CCGCNGNN

−GNNGNCG−1
CCGNC GNN

 for G =

GCC GCN

GNC GNN



with GNN =
(
GNN −GNCG−1

CCGCN

)−1
=G−1

NN.C , where GNN.C is the matrix of relationships amongst
non-core animals conditional on the core animals. For pedigree relationships, the diagonals of the 
corresponding function of A represent Mendelian sampling terms. Moreover, if non-core animals 
had no progeny, the matrix would be diagonal. Analogously, if non-core animals can be chosen so 
that GNN.C is close to diagonal, a suitable approximation of G−1 can be obtained by substituting 
DN = Diag{GNN.C } for it (Misztal et al. 2014). This gives an approximate inverse which is considerably 
sparser than G−1 and can reduce computational demands dramatically.

The TBLUP inverse. Consider G of form (λ/s)ZZ′ + B with Z the n2 × m matrix of m centered 
marker counts and s a scale factor. A common choice for B is (1 − λ)A22 + λαJ for λ < 1, α ≥ 0 a
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small constant and J a matrix with all elements equal to unity. The Woodbury identity gives

G−1 =B−1 − (λ/s)B−1Z
(
I+ (λ/s)Z′B−1Z

)−1
Z′B−1 =B−1 −T′T with T of size m× n2.

Similarly, B−1 = (1 − λ)−1[A−1
22 − ψA−1

22 JA−1
22
]

with ψ = λα/
(
1 − λ + λα1′A−1

22 1
)
. This can re-

duce computational requirements to obtain G−1 if m is substantially smaller than n2. Further, let
(λ/s)Z′B−1Z = VEV′, where E denotes the diagonal matrix of eigenvalues and V the correspond-
ing matrix of eigenvectors. An approximate inverse of G can then be obtained by considering
the r < m largest eigenvalues and corresponding eigenvectors only, i.e replacing T above with
Tr = (Er + Ir)−1/2V′rZ, of size r× n2 (Mäntysaari et al. 2017).

Data and model. Data consisted of 1,206,908 records for eye muscle depth, recorded for Aus-
tralian terminal sire sheep breeds between 1990 and 2018. These included Poll Dorset, Suffolk, White
Suffolk and Texel as the main breed groups and 18 other, less numerous breeds. Breed differences
were modeled by appropriately defined genetic group effects.

Data were pre-corrected for fixed effects of birth and rearing type, age, age of dam and body
weight. The model of analysis comprised additive genetic effects (random) for 1,698,838 animals
in the pedigree, 54,094 contemporary groups (fixed), 93 genetic groups (random) and 56,212 sire
× flock-year (random) effects. Genotype information, comprised of marker counts for m = 48,599
SNPs, was available for 23,040 animals.

Analyses. The ‘raw’ genomic relationship matrix, was built using Method 1 of Van Raden
(2008), GM = ZZ′/s, centering marker counts by observed gene frequencies. G was then formed
as the weighted average of GM and A22 aligning the matrices as described by Vitezica et al. (2011),
G = λ(GM +αJ)+ (1−λ)A22 for α = 0.02497, and arbitrarily chosen weighting factor of λ = 0.95.

Analyses considered APY core sizes from nC = 2.5K to 20K (with K denoting a factor of 1000).
Core animals were chosen either by picking genotyped animals at random (RND) or by selecting
those with the most progeny (PRG). TBLUP type approximations of G−1 utilised the leading PCs
explaining between 90% and 99% of total variation. Single-step BLUP analyses were carried for all
approximations of G−1 and contrasted to a ‘standard’ ssGBLUP analysis with the ‘full’ G−1 (FULL).
MME were solved iteratively using a preconditioned conjugate gradient (PCG) algorithm with simple,
diagonal preconditioner. All calculations were carried out usingWOMBAT (Meyer 2007).

Summary statistics calculated were correlations between predicted total breeding values (EBV),
i.e. the sum of the predicted additive genetic effects and the appropriate portions of the predicted
genetic group effects, from FULL and APY or TBLUP analyses. In addition, corresponding regression
coefficients and ranges of differences in EBVs were examined.

RESULTS
Correlations between and regressions of EBVs from FULL on APY analyses are summarised in

Table 1. As in various literature reports, there were only small differences between schemes to select
core animals. Core sizes about 15K were required to ensure correlations for non-core animals to be
close to 0.999. This is in line with results of Pocrnic et al. (2016a,b) who demonstrated for a number
of livestock species that core sizes of 15K or less sufficed to achieve peak predictive accuracies.
Based on simulations linking core and effective population size, the authors recommended a core
size equal to the number of eigenvalues (of G) explaining 98% of total variation. For GM and G
this was equal to 15,220 and 16,714, respectively. In comparison, for a multi-breed population of
New Zealand sheep, 18.8K eigenvalues were needed to capture 98% of the variation among 47K
genotypes (Nilforooshan and Lee 2019). Linear regressions of FULL on APY EBVs for core sizes of
10K or more were essentially unity (with corresponding intercepts close to zero) demonstrating that
approximation of G−1 at sufficient core size did not distort distributions of EBVs markedly.
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Table 1. Relationship between total predicted breeding values from single-step analyses using
the ‘full’ inverse of the genomic relationship matrix and its APY approximation

Typea Sel.b Correlation Regression coefficient

2.5c 5 10 15 2.5 5 10 15

NOG RND 0.9993 0.9997 0.9999 1.0000 1.0021 1.0013 1.0009 1.0000
PRG 0.9992 0.9997 0.9999 1.0000 0.9980 0.9999 1.0006 1.0002

NOC RND 0.9644 0.9831 0.9953 0.9986 0.9974 1.0038 1.0040 1.0007
PRG 0.9636 0.9833 0.9953 0.9988 0.9789 1.0063 1.0074 1.0048

COR RND 0.9941 0.9983 0.9996 0.9999 0.9849 0.9921 1.0006 1.0003
PRG 0.9991 0.9991 0.9997 0.9999 0.9854 0.9956 0.9985 1.0004

a NOG: non-genotyped, NOC: non-core and COR: core animals b Selection of core animals: RND random, PRG most
progeny c Number of core animals; in thousand

Table 2 shows the numbers of non-zero elements in H−1 for different APY approximation of G−1

and their effects on the number of iterates required to solve the MME. In comparison, corresponding
numbers for FULL, were 271 million elements and 611 iterates. Use of APY tended to increase the
number of iterates required somewhat, especially when selecting core animals with most progeny.
A similar increase over the standard ssGBLUP has been reported by others (Strandén et al. 2017;
Mäntysaari et al. 2017).

For n2 = 23,040 genotyped animals and m = 48,599 SNPs considered, there was no computa-
tional advantage for the Woodbury inverse of G. Moreover, the number of non-zero eigenvalues of
(λ/s)Z′B−1Z was limited to n2. As shown in Table 3, sufficient PCs – just over 15K – to explain
about 97% of total variation were required to yield correlations between TBLUP and FULL EBVs
for genotyped animals of 0.999. Corresponding regression coefficients (not shown) were again
close to unity. As for APY, there was a slight trend for the number of iterates to increase with less
approximation, i.e. more PCs considered.

DISCUSSION
Approximation of G−1 via APY is widely used and has made ssGBLUP for very large numbers

of genotypes feasible. For instance, Lourenco et al. (2018) described the APY implementation for
American Angus cattle with 450K genotyped animals, and Masuda et al. (2017) reported on dairy
analyses with 720K genotypes. There has been concern, though mainly anecdotal, that APY would
work less well for multi-breed populations or at least require larger core sizes than for single breeds.
A simulation study by Vandenplas et al. (2018) demonstrated good performance of APY for crossbred
data when the core, of size equal to the number of eigenvalues explaining 98 to 99% of variation in G,
included animals from all breed compositions. Dealing with a beef cattle population involving 41

Table 2. Number of non-zero elements in H−1 (half-stored) for different APY schemes and
number of iterates required to solve the corresponding mixed model equations

Select.a Number of non-zero elementsb Number of PCG iterates

2.5c 5 10 15 20 2.5 5 10 15 20

RND 164 189 228 255 269 644 629 639 641 632
PRG 154 181 228 261 270 627 650 713 779 745
a Selection of core animals: RND random, PRG most progeny b In millions c Number of core animals; in 1000
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Table 3. Correlations between total predicted breeding values from single-step analyses using
the ‘full’ inverse of the genomic relationship matrix and its TBLUP approximation

Proportion of variation explained

90% 95% 96% 97% 98% 99%

No. of eigenvalues 9,946 13,077 13,990 15,094 16,502 18,908
No. of PCG iterates 614 629 636 641 663 686
Non-genotyped animals 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
Genotyped animals 0.9950 0.9982 0.9987 0.9991 0.9995 0.9998

breeds, Mäntysaari et al. (2017) recommended TBLUP as a well defined and automatic approach to
approximate G−1 for any population structure. Our results suggest that approximation of G−1 using
either APY or TBLUP can result in predicted breeding values which are virtually identical to those
obtained inverting G directly, whilst offering the scope for reducing computational requirements.
Details will depend on the implementation of ssGBLUP and have not been considered in this study;
see Mäntysaari et al. (2017) for some discussion of respective strategies and timings. A suitable APY
core size or number of PCs to be used for TBLUP was identified to be about 15K. This fell well
within the range of corresponding values reported in the literature for single breed studies. However,
current levels of genotyping for our data were relatively modest and, moreover, the distribution of
genotypes over breeds was very uneven. It remains to be seen whether such levels of approximation
will be representative as the number of genotypes increases, especially for the minor breed groups.

CONCLUSIONS
Techniques available to approximate the inverse of the genomic relationship matrix in single

step genomic evaluation can yield predicted breeding values for multi-breed sheep that are highly
correlated with those obtained using a full inverse. Future work will need to re-evaluate suitable levels
of approximation as numbers and breed diversity of genotyped animals increase.
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SUMMARY
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Single step genomic evaluation fitting a ‘hybrid’ model which combines marker effects for 
individuals with genotypes with breeding values for non-genotyped animals can readily accommodate 
large numbers of genotyped animals. However, iterative solution of the pertaining mixed model 
equations via a preconditioned gradient scheme has been reported to be afflicted by much slower 
convergence rates than the standard breeding value model. ‘Deflation’ of the coefficient matrix has 
been proposed as a second preconditioning step and shown to dramatically reduce numbers of 
iterations and computing time required. We describe its application for a set of sheep data. Results 
indicate that assignment of marker effects to subdomains in moderately sized chunks together with a 
separate treatment of genetic group effects could reduce total computing times by about a third.

INTRODUCTION
The single-step procedure for joint genetic evaluation of genotyped and non-genotyped animals 

has become routine in many livestock improvement schemes. Many implementations rely on extending 
the classic breeding value model (BVM) by combining the pedigree-based relationship matrix with 
estimates of genomic relationships. An equivalent alternative is the so-called hybrid model (HM) 
which fits marker effects instead of breeding values for genotyped animals (Fernando et al. 2016). This 
does not require the inverse of the genomic relationship matrix and thus readily accommodates large 
numbers of genotyped animals. However, initial experience with a preconditioned conjugate gradient 
(PCG) algorithm to solve the pertaining mixed model equations (MME) has been that convergence 
rates tended to be slow and that many iterates could be required. Recently, Vandenplas et al. (2018) 
showed that a second level of preconditioning – through a ‘deflation’ of the coefficient matrix in 
the MME – could dramatically improve convergence rates and demonstrated its effectiveness for a 
large, multi-trait analysis of dairy field data. This paper examines the scope of the resulting, deflated 
preconditioned gradient (DPCG) solver for a practical sheep data set.

BACKGROUND
Let Cx = r represent the MME to be solved, with C (of size N × N) the coefficient matrix, x the 

vector of effects and r the vector of right hand sides. A widely used iterative method to solve for x is 
the conjugate gradient (CG) algorithm. Its convergence rate is heavily influenced by the condition 
number, of C, κ(C), i.e. the ratio of its largest to its smallest eigenvalue. Convergence rates can be 
improved if κ(C) can be reduced. An extensively used method to achieve this is to ‘pre-condition’ 
the MME, i.e. to solve M−1Cx = M−1r instead. Choice of the preconditioning matrix M usually 
represents a compromise between M being close to C (so that M−1C is close to an identity matrix) 
and requirements for storing or inverting M. Simple, effective choices are (block-) diagonal matrices 
where M contains the diagonals (or small diagonal blocks) of C.

Deflation has been advocated as a method to eliminate ‘unfavourable’ eigenvalues of a matrix by 
projection on a suitable subspace. Let P denote a matrix comprised of S linearly independent columns 
(of size N) which form a subspace of C so that CP = PT and T is a non-singular matrix of order S . 
For VP = I (where I is an identity matrix), Householder (1961) showed that the deflated matrix B = 
C − PTV has S zero eigenvalues and the remaining eigenvalues of B are those of C that are not
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eigenvalues of T. Hence, assuming C is non-singular, B has rank N − S . Similarly, the eigenvectors
of B are those of C that correspond to their common eigenvalues. In other words, “deflation of an
eigenspace cancels the eigenvalues without affecting the rest of the spectrum” (Frank and Vuik 2001).

Use of a deflation preconditioner for CG and PCG algorithms has been considered by various
authors in a range of fields (e.g Tang et al. 2009; Jönsthövel et al. 2012). Combining deflation with the
‘standard’ preconditioner yields the DPCG, a two-level preconditioning scheme particularly suited to
ill-conditioned systems of equations. It involves solving M−1PCx=M−1Pr with P= I−CS

(
S′CS

)−1S′
aimed at reducing κ(C) and S a matrix of size N × S which defines the deflation subspace (Frank
and Vuik 2001). This requires the choice of S. Loosely speaking, the closer the deflation vectors
(i.e. columns of S) approximate the ‘unfavourable’ eigenvectors of C the more effective deflation
is likely to be. However, as for M it involves trade-offs between improvements in convergence and
extra computational requirements. A simple strategy is to divide the space of C in correspondence to
non-overlapping subsets of equations, referred to as subdomains (Frank and Vuik 2001). Let the i−th
element of x belong to the j−th domain ( j = 1 to S ). This gives a matrix S with i j−th element equal
to unity while the remaining elements are equal to zero, i.e. each row of S has only one non-zero
element. At the extreme, fitting subdomains for individual, single effects is analogous to ‘absorbing’
the pertaining equations in the mixed model.

MATERIAL AND METHODS
Data consisted of 1,206,908 measurements for eye muscle depth recorded for Australian terminal

sire sheep breeds between 1990 and 2018. Data were pre-corrected for fixed effects other than
contemporary groups. There were 1,698,838 animals in the pedigree and genotype information,
comprised of marker counts for 48,599 SNPs, was available for 23,040 animals. Invoking the HM,
additive genetic effects were fitted for non-genotyped animals and marker effects modelled those of
genotyped individuals. For simplicity, additional polygenic effects were assumed to be absent. In
addition, the model included 54,094 contemporary groups (fixed), 93 genetic groups (random) and
56,212 sire × flock-year (random) effects.

MME were built and solved using either PCG or DPCG with independent subdomains as described
above, using a diagonal preconditioner, M =Diag{C}, throughout. Solutions were assumed to have
converged when α

√
(xk − xk−1)′(xk − xk−1)/xk

′xk < 10−7, with xk denoting the vector of solutions
from the k−th iterate and α the step size parameter in the (D)PCG algorithm. Analyses were carried
out considering all markers and reduced marker panels. To select the latter a simple GWAS was
performed fitting markers as fixed covariables, one at a time. Subsets, of size m, were then selected to
include those with p-values less than 0.5, 0.2, 0.1 and 0.05. Following Vandenplas et al. (2018), single

Table 1. Numbers of iterates required to solve the mixed model equations for different defla-
tion subdomain (‘chunk’) sizes and marker subsets

pa mb No. of iterates Correlationc

– 200d 100 50 20 10 5 NOGe GEN

– 48599 3961 2722 2222 1741 1188 859 612 – –
0.50 28875 3348 2525 2091 1682 1167 840 599 1.000 0.995
0.20 13318 2565 2118 1871 1559 1126 832 598 0.999 0.977
0.10 7858 2159 1833 1654 1416 1085 824 606 0.998 0.962
0.05 4680 1756 1560 1461 1293 1025 820 619 0.997 0.943
a Minimum p value for marker subset selection b Number of markers c Correlation of total breeding values from
analyses using all and a subset of markers d Number of markers per ‘chunk’ e NOG non-genotyped, GEN genotyped
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Figure 1. Numbers of iterates required for different deflation schemes and chunk sizes 

domains were allocated to fixed effects and to all random effects other than marker effects. Equations 
for marker effects were divided into subdomains by selecting subsequent chunks (of equations) of 
size 5, 10, 20, 50, I 00 or 200 10 investigate the effect of chunk size on efficacy of deflation. This is 
referred to as scheme A. Scheme B was similar, but fitted separate subdomains for genetic group 
effects, with chunk sizes of I or 93. Computations were carried out under Linux on a shared machine 
with 512GB of RAM and 28 Intel Xeon CPU ES-2697 cores, rated at 2.6Gh using up to 28 threads. 

RESULTS AND DISCUSSION 
Numbers of iterates required to solve the MME for deflation scheme A are summa1ised in Table I. 

For comparison, a corresponding analysis filling the BVM and standard PCG (not shown) converged 
in 691 iterates. As reponed by Vandenplas et al. (2018), deflation dramatically improved convergence, 
but small chunk sizes - and thus many subdomains - were required to achieve rates similar to those 
fitting the BYM. Reducing the number of markers decreased the number of iterates, especially for the 
larger chunk sizes (or no deflation), as well as reducing computations per iterate that were proponional 
to the number of markers. While correlations between predicted breeding values from analyses using 
the full and reduced marker sets for genotyped animals were less than 0.99 when markers with 
p-values less than 0.5 were eliminated, marker selection often affects the accuracy of evaluation
considerably less, i.e. there is likely more scope for marker reduction than these correlations suggest.
E.g., Saatchi and Garrick (2016) proposed a reduced panel for beef cattle comprising about 2,300
markers to capture most of the predictive performance of the full SOK panel.

Figure I illustrates the relationship between numbers of iterates required and deflation subdomains. 
Patterns for the other marker subsets were similar. Clearly, as emphasized by Frank and Vuik (2001), 
the efficacy of deflation increases with the number of subdomains employed. However, as S increases 
additional reductions in numbers of iterates achieved decrease. Our model of analysis fitted genetic 
groups as an additional random effect. This is known to affect convergence rates unfavourably -
investigations for the B YM found that it almost doubled the number of iterates needed (Meyer er al.
2015). Additional analyses (not shown) identified a similar pattern for our data for the HM with 
standard PCG. Hence, scheme B attempted to counteract the detrimental effects of fitting genetic 
groups by defining additional subdomains. As shown in Figure I this yielded further reductions in the 
number of iterates required, the more so the larger chunk size for dell at ion of equations for marker 
effect5. Even adding a single subdomain for all genetic groups (chunk size of 93) proved highly 
effective. Similarly, applying DPCG for the BYM, fitting a single subdomain for genetic groups (in 
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addiIion 10 1wo subdomains comprising all fixed and all 
01her random effec1s, respec1ively) reduced the number 
of iterates required from 691 to 536. 

While DPCG has the scope 10 dramatically improve '2 convergence rates and its implemen1a1ion is straightfor- :g, 
ward, deHation incurs additional compu1ational cost per ., 

.g iterate and for set-up steps which need to be balanced 
against reductions in numbers of iterates and additional 
memory requirements. Figure 2 shows total, elapsed 
computing times for different analyses. Matrices CS
and (S'csr I only need to be computed once but the 
computational burden increases with S and S2 , respec­
tively, and storage for large numbers may become pro­

0 

48599SNP> 

2500 5000 7500 

Number of subdomains 
10000 

hibitive. For our data, values of S greater than about Figure 2. Total computing timesa
2,000 (using all markers) tended to increase total com- a sec Figure I for legend
puling times, primarily due to these overheads. Overall, 
moderate deflation for markers, involving chunks of 20 to 100 SNPs, paired with assigning genetic 
groups to individual subdomains appeared to yield a rea5onable compromise between improvements 
in convergence behaviour and additional computaIions for deflation. Our implementation relied on 
in-core storage of CS and (S'csr' and the data part of C, but involved only limited optimisation 
of the computations associated with deflation. Values for 'iteration on data', out of core storage or 
improved parallel processing may differ; see Vandenpla5 et al. (2018) for some timings and discussion. 

As demonstrated for genetic groups, deflation assigning additional, separate subdomains to random 
effect5 other than markers was found to be advantageous. Further analyses (not shown) identified 
extra improvements in convergence rates when defining subdomains for groups of additive genetic 
effects for non-genotyped animals. Moreover, deflation also proved capable of improving convergence 
rates for the BVM. Fmther work will need to examine the efficacy of DPCG for multivariate analyses 
involving many traits and models fitting ma1ernal effec1s, and to improve its implementation. 

CONCLUSIONS 
Deflation of the coefficient matrix in 1he mixed model equation reduces its condition number 

and thus improves convergence rates of an iterative solution scheme employing a conjugate gradient 
algorithm. It appears to be a valuable addition to our toolkit for genomic evaluation. 
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GRADIENT ALGORITHMS FOR SOLVING MIXED MODEL EQUATIONS
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SUMMARY
Mixed model equations encountered in pedigree and genomic analyses are typically solved using 

an iterative preconditioned conjugate gradient algorithm. That algorithm requires a preconditioning 
matrix chosen to improve the condition number of the problem. Convergence is very fast when an 
appropriate preconditioning matrix is used, but some equations fail to converge unless an effective 
preconditioner can be found, and that is not always straightforward, especially in genomic analyses. 
Some preconditioning and absorption options are compared in the context of a national cattle eval-
uation for growth traits using a multi-trait single-step marker effects model. It is demonstrated that 
computing time is largely determined by the number of iterations required to obtain convergence, 
rather than the complexity of the equations or preconditioning. Further, a reliable convergence statistic 
for general applications remains problematic.

INTRODUCTION
Mixed linear models that include fixed effects other than the mean, and random effects other than 

the residuals, are fundamental to theoretical and applied aspects of animal breeding. Most genetic 
improvement programs rely on routine multiple-trait prediction that involves finding the solution to 
sets of simultaneous equations we refer to as the mixed model equations (e.g. Henderson, 1975) that 
are typically large, sparse, symmetric and positive semi definite. Early applications of national evalu-
ation programs explicitly formed every contribution to the left- and right-hand sides of the equations, 
frequently after absorbing fixed effects such as herd-year-season, and then solved the resultant sparse 
set of equations using Gauss-Seidel (GS) iteration (e.g. Van Vleck and Dwyer 1985). Later applications 
avoided the accumulation of every element of the left- and right-hand sides and instead used iteration 
on data (Schaeffer and Kennedy 1986) to recreate matrix and vector elements as required. Gauss-Se-
idel iteration was replaced by the sometimes problematic but typically much faster approach of pre-
conditioned conjugate gradient (PCG) (Berger et al. 1989; Stranden et al. 1999; Tsuruta et al. 2001).

A nice property of GS iteration is that every iteration results in a solution that when multiplied by 
the left-hand side coefficient matrix will more closely agree with the right hand side vector. However, 
GS can be slow to converge, and convergence tends to slow down with every subsequent iteration. In 
contrast, PCG tends to converge quite quickly, but in finite arithmetic the system is prone to rounding 
errors and to loss of conjugacy that can result in successive iterations being poorer fits than previous 
iterations. Performance is sensitive to the condition number of the equations, which can be dramatically 
influenced by the choice of preconditioner matrix. Calculating the perfect preconditioner matrix for 
a given problem is more effort than solving the equations. Finally, it is hard to know exactly when 
to stop iterating and accept the current iteration as a practical solution to the mixed model equations.

The adoption of single-step models for national evaluation that include both genotyped and 
non-genotyped animals in the same evaluation has created some additional challenges in obtaining 
PCG solutions. First, some submatrices of the mixed model equations are no longer sparse, and  
second, the equations are more likely to lose conjugacy than mixed model equations based on pedigree 
relationship matrices, at least when historically used diagonal or block preconditioners are applied. 
The objective of this study was to compare the performance of some alternate PCG implementations 
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in the context of a multiple-trait single-step national cattle evaluation.

MATERIALS AND METHODS
The American Hereford Association runs its genetic evaluation on a weekly basis that includes 

performance and genotypic data along with pedigree records comprising about 2.5 million US and 
Canadian Hereford cattle. The complete evaluation comprises nine multiple-trait single-step marker 
effects models (Fernando et al. 2016) to publish 16 different EPD (Golden et al. 2018). Mixed model 
equations are solved using PCG, then the PCG solutions are used to seed parallel Markov chain 
Monte Carlo analyses using single-site Gibbs sampling to estimate prediction error variances (PEV) 
to calculate reliabilities, and PEV for contrasts between groups of one or more animals (Garrick et 
al. 2018). This paper reports the PCG solving performance for the multiple trait growth model. The 
model equations for each correlated trait in that analysis are

​​y​ B​​  =  ​J​ B​​ ​j​ B​​ + ​X​ B​​ ​b​ B​​ + ​P​ B​​ ​p​ B​​ + ​Z​ B​​ ​a​ B​​ + ​M​ B​​ ​m​ B​​ + ​Z​ B​ n​ ​u​ B​ n​ + ​Z​ B​ g​ ​S​ B​​ ​α​ B​​ + ​e​ B​​​
​​y​ W​​  =  ​J​ W​​ ​j​ W​​ + ​X​ W​​ ​b​ W​​ + ​P​ W​​ ​p​ W​​ + ​Z​ W​​ ​a​ W​​ + ​M​ W​​ ​m​ W​​ + ​Z​ W​ n ​ ​u​ W​ n ​ + ​Z​ W​ g ​ ​S​ W​​ ​α​ W​​ + ​e​ W​​​

​​y​ G​​  =  ​J​ G​​ ​j​ G​​ + ​X​ G​​ ​b​ G​​ + ​Z​ G​​ ​a​ G​​ + ​Z​ G​ n ​ ​u​ G​ n ​ + ​Z​ G​ g ​ ​S​ G​​ ​α​ G​​ + ​e​ G​​​

where ​​y​ i​​​ is a vector of phenotypic observations on B=birth weight, W=weaning weight, or G=post 
weaning gain, ​​j​ i​​​ is a fixed covariate accounting for the difference in expected value between geno-
typed and non-genotyped founders for each trait, ​​b​ i​​​ are all the other fixed effects, ​​p​ i​​​ are the random 
permanent environmental effects of the dam for birth or weaning weight, ​​a​ i​​​ are the random additional 
polygenic effects of each trait, ​​m​ i​​​ are the random maternal genetic effects of birth or weaning weight, ​​
u​ i​ 

n​ ​are the direct breeding values for non-genotyped animals for each trait, ​​α​ i​​​ are the random marker 
or SNP effects for each trait, and ​​e​ i​​​ are the random residual effects for each trait. The ​​J​ i​​​ matrices 
are formed from a vector of 1’s corresponding to genotyped individuals and an imputed value for 
non-genotyped animals, ​​X​ i​​​, ​​P​ i​​​, ​​Z​ i​​​, ​​M​ i​​​, are incidence matrices for fixed effects, maternal permanent 
environmental effects, direct genetic effects, and direct maternal effects, respectively, ​​Z​ i​ 

n​​, and ​​Z​ i​ 
g​​ are 

direct effect incidence matrices for non-genotyped and genotyped individuals with phenotypes, and ​​
S​ i​​​ are marker matrices for centred SNP covariates for genotyped animals. The variance-covariance 
matrices and their inverses for this single-step marker effects model and its mixed model equations 
are in Fernando et al. (2016) and Garrick et al. (2018).

Two approaches to characterise convergence during PCG iteration are the two-norm of the pre-
conditioned residual divided by the number of effects (which we denote the iteration residual), and 
the two-norm of the raw residual, divided by the two-norm of the right-hand side, which we denote 
as cr (following Lidauer et al. 2015). That is, for solving equations denoted by coefficient matrix, 
solution and right-hand side as ​Cs  =  r​, based on the preconditioned equations ​​P​​ −1​ Cs  =  ​P​​ −1​ r​,  the 
vector of raw residuals at iteration k is ​​ε​​ k​  =  r − C ​​ ̂  s ​​​ k​​, which is used every round of iteration to compute 
the ​residual  =  ​ε​​ k​′​P​​ −1​ ​ε​​ k​ /​length(​​ε​​ k​​), and ​cr  =  ​√ 

_
 ​ε​​ k​′​ε​​ k​ / r′r ​​, for all effects, or separately for each effect in 

the mixed model equations (i.e., ​​j​ i​​​, ​​b​ i​​​, ​​p​ i​​​, ​​a​ i​​,​ ​​m​ i​​​, ​​u​ i​​​, and ​​α​ i​​​).
Two options were compared for the preconditioning matrix, the simplest representing the inverse 

of the diagonal elements of the mixed model equations (i.e. diagonal preconditioning), and the other 
replacing the preconditioner elements for the fixed effects by the actual inverse of the submatrix of 
the mixed model equations for fixed effects, namely ​​​(X′​R​​ −1​ X)​​​ −1​​, either separately for each trait, or 
with one block for all three traits.

Two options for forming the mixed model equations were compared, one which explicitly fitted all 
the effects other than the random residual effects shown in the model equation above, and a reduced 
order set of equations in which fixed effects, ​​b​ i​​​, for all three traits had been absorbed. The absorbed 
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equations can be represented by striking out the rows and columns of the mixed model equations 
corresponding to the fixed effects to be absorbed, then subtracting some terms from the coefficient 
matrix and right-hand side to eliminate the absorbed equations. For the simplest mixed model equations 
represented by the model equation ​y  =  Xb + Zu + e​ with ​var​(u)​  =  G​ and ​var​(e)​  =  R​, the complete 
mixed model equations would have order defined by the number of fixed effects plus the number of 
random effects and be given by

​​[​X′​R​​ −1​ X​  X′​R​​ −1​ Z​  Z′​R​​ −1​ X​  Z′​R​​ −1​ Z + ​G​​ −1​​]​​[​b​ u​]​  =  ​[​X′​R​​ −1​ y
​ Z′​R​​ −1​ y ​]​​, whereas the absorbed equations would have order defined 

by the number of random effects as in the equations
​​[Z′​R​​ −1​ Z + ​G​​ −1​ − Z′​R​​ −1​ X ​​(X′​R​​ −1​ X)​​​ −1​ X′​R​​ −1​ Z]​​[u]​  =  ​[Z′​R​​ −1​ y − Z′​R​​ −1​ X ​​(X′​R​​ −1​ X)​​​ −1​ X′​R​​ −1​ y]​​.

RESULTS AND DISCUSSION
The number of iterations and computing times per iteration for BOLT PCG software on a 256Gb 

RAM Ubuntu server using one 12 Gb Titan V graphics processing unit are shown in Table 1 for the 
complete and absorbed sets of mixed model equations for various stopping criteria. Correlations 
between solutions for each factor from different approaches all exceeded 0.99 if not 0.999.

Table 1. Numbers of PCG iterations to achieve alternative stopping criteria in the North Ameri-
can Hereford multiple-trait single-step growth analysis using block or diagonal preconditioning 
of full or absorbed equations

Mixed Model 
 Equations Preconditioner

Stopping Criteria Time
 per
 iter

Change in residual cr
1e-10 1e-11 1e-12 1e-13 1e-5

Complete1 Diagonal 1,768 1,826 4,373 5,435 2,617 0.17s
Complete2 Diagonal 1,575 3,227 4,627 6,182 2,624 0.15s
Complete2 Block 2,483 2,858 2,858 2,858 2,502 0.15s
Absorbed Diagonal 2,123 3,289 3,386 6,965 8,641 0.21s

1Separate submatrix blocks for J factor and X factor for each trait
2Single submatrix block for J factors for B,W,G and another for X factors for B,W,G

The total computing time for PCG solution of the multi-trait single-step marker effects model 
varied from 4 minutes to 24 minutes but was influenced to a much greater extent by the number of 
iterations (1,575 to 8,641) required for convergence than by the computing time per iteration (0.15 
to 0.21 s). The absorbed equations if formed explicitly are much less sparse than the complete set of 
mixed model equations, but the computing effort was little affected by the absorption of effects as 
the matrix multiplications were done in parts.  This is not surprising as easily shown by denoting the 

coefficient matrix for the full equations to solve as ​​[​​S​​ −1​​  T​ T′​  Q​]​​, where ​​S​​ −1​​ represents the fixed effects 

block diagonal partition to be absorbed, ​Q​ represents the block diagonal partition for all the other 
effects, and T represents the block off-diagonal partition between the effects being absorbed and the 
remaining effects, then the left-hand-side of the absorbed equations can be represented as ​​[Q − T′ST]​​
. Each iteration of PCG involves multiplying the coefficient matrix by a work vector, denoted w, as 
in ​​w ′​  =  ​[​​w​ b​​′​  ​w​ u​​​]​​, which for the complete equations requires computing ​​S​​ −1​ ​w​ b​​​, ​T ​w​ u​​​, ​​T′w​ b​​​, and ​​Qw​ u​​​
, whereas for the absorbed equations it would requires computing ​​Qw​ u​​​ and ​T′ST ​w​ u​​​. The latter term 
can be computed in parts as ​T′​(S​(T ​w​ u​​)​)​,​ first involving the matrix-vector product ​T ​w​ u​​​, then pre-mul-
tiplying this vector by ​S​ then pre-multiplying that product by ​T′​. The only difference in effort between 
applying the PCG algorithm to the full or the absorbed equations is the computation of the matrix 
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product involving ​​S​​ −1​​ rather than the matrix product involving ​S​. In many mixed model equations, 
the sparsity and complexity of ​​S​​ −1​​ is similar to that of ​S​, for example for ​​​(X′​R​​ −1​ X)​​​ −1​​ and ​X′​R​​ −1​ X​. 
Computation of the matrix-vector products in the full equations can be done in parallel, whereas the 
part equations requires the multiplications to be undertaken serially, involving the product of the first 
matrix-vector as the vector used in the second matrix-vector multiplication. 

Changes in the number of iterations required to meet a given stopping criterion occur due to 
rounding errors and loss of conjugacy even when there is no change to the elements of the mixed 
model equations, or to the method of preconditioning, as shown by comparing rows 1 and 2 of Table 
1 when the complete mixed model equations were partitioned into submatrices by factor and trait 
compared to when the factors for J were pooled across traits into one submatrix, and the factors for 
X were pooled across trait into another submatrix.

Using a block diagonal structure rather than a diagonal matrix for preconditioning fixed effects 
was initially slower but reached convergence much faster for higher convergence thresholds.

Changes in the number of iterations by absorbing the fixed effects did not have a consistent effect 
on the number of iterations. This is partly because the process of absorption reduces the two-norm in 
the denominator of the cr criterion, making the same tolerance (i.e. cr <1e-5) much more strict than 
in the complete mixed model equations.

Changes in the number of iterations by changing stopping criteria (from residual to cr) or the 
tolerance of the stopping criteria, resulted in reranking of the performance of the algorithms. The 
residual statistic is not a good stopping criterion because it tends to bounce around from iteration to 
iteration, but can occasionally achieve very small changes between iterations that result in apparent 
convergence that is not supported by the cr statistic. However, the cr statistic is sensitive to parame-
terisation of the mixed model equations, as shown by the effect of absorption, which also makes that 
criteria problematic for routine use.

CONCLUSIONS
The results demonstrate that uniformly appropriate convergence criteria for PCG systems are 

challenging to identify. Minor changes to the manner in which the mixed model equations are param-
eterised can have considerable influence on performance and run time, most notably by influencing 
the number of iterations required to achieve a given definition of convergence. Alternative blocking 
structures, preconditioning matrices, and parameterisation of models can notably influence results.
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ADJUSTING THE GENOMIC RELATIONSHIP MATRIX FOR BREED  
DIFFERENCES IN SINGLE STEP GENOMIC BLUP ANALYSES
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investigation, minimising the number of groups required while maintaining enough groups for predictive purposes. The addition of genotypes can aid in this process. 
CONCLUSIONS In this paper, we show that the method presented by Makgahlela et al. (2013) reduces the breed structure implicit in a GRM constructed from multiple breeds, resulting in a GRM that is numerically more similar to the NRM. This change results in genetic trends that align closer with those seen from pedigree-only models. The BGRM resulted in slightly higher average cross-validation accuracies with similar biases, and less biased than pedigree alone, compared to BLUPs performed using a GRM constructed from a single set of allele frequencies. 
Table 1. Table of fonvard cross-validation accuracies obtained from BLUP models using an 
NRM (r_NRM), a single-breed GRM (r_SGRM) and a multi-breed GR!\1 (r_BGRM) and the 
corresponding biases, b_NRM, b_SGRM and b_BGRM. 'n' indicates the number of animals 
in the validation set 

Trait n r NRM r SGRM r BGRM b NRM b SGRM b BGRM ycon 618 0.10 0.14 0.16 0.59 0.83 0.95 
con 885 0.11 0.12 0.18 0.53 0.62 0.87 yls 627 0.18 0.20 0.17 0.79 0 84 0.78 Is 1,801 0.14 0.14 0.16 0.69 0.74 0.79 yera 377 0.22 0.21 0.25 1.84 2.05 2.05 era 1,583 0.34 0.27 0.29 2.00 1.90 1.72 pemd 3,476 0.15 0.17 0.18 0.74 0.83 0.79 pcf 3,467 0.21 0.24 0.25 0.94 1.13 I.IOpwt 431 0.25 0.27 0.26 0.80 0.86 0.83 awt 943 0.32 0.34 0.35 0.71 0.81 0.77 cs 545 0.34 0.34 0.34 1.08 1.20 1.16 Abbreviations: 'ycon' and 'con': fertility of yearling and adult ewes, respectively, 'yls' and 'Is': little size of yearling and adult ewes, respectively, 'yera' and 'era': rearing ability of yearling and adult ewes, respectively, 'pwt' and 'awt': pre-joining weight of post-weaning and adult ewes, respectively, 'cs': pre-joining condition score of adult ewes. 
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GENETIC CONTROL OF FERTILITY TRAITS ACROSS SPECIES: VARIANCE IN 
TROPICAL BEEF HEIFERS’ AGE AT PUBERTY EXPLAINED BY GENES  

CONTROLING AGE AT MENARCHE IN WOMEN

R. Costilla, C. Warburton and B.J. Hayes

Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The 
University of Queensland, Brisbane, 4072 Australia

SUMMARY
Fertility traits are of paramount importance for humans and cattle. In cattle, they are one of the 

main profit drivers in the industry. Using data from genome-wide association studies (GWAS) from 
both species, we estimated the effect of genes associated with age at menarche in women (AaM) in 
the variance of age at puberty (AaP) in tropically adapted beef heifers. We found that variants within 
100kb of AaM bovine orthologous genes explained 11.2% of the additive genetic variance of heifers 
AaP in the biggest cohort analysed. This represented about twice the variance explained by random 
gene-sets of similar size and number of SNPs (P<0.2). Our work suggests some potential of cross-
species analyses to increase the cattle industry’s productivity.

INTRODUCTION
Thanks to the recent advances in biomedical technology, the genetic basis of fertility in humans 

is better known now than ever. For instance, the biggest GWAS for female fertility to date with 
~370,000 women, Day et al. (2017), reported hundreds of genomic loci associated with AaM in 
women, a female complex trait that is a milestone in pubertal development. An interesting question 
is, whether we can use the information coming out of the extremely powerful GWAS in humans to 
improve genomic predictions for related traits in cattle?

Given the evidence for genetic control of complex traits across mammalian species (Pryce et al. 
2011; Bouwman et al. 2018), we hypothesised that genetic factors contributing to variation between 
individuals for age at puberty/age at menarche will be shared across humans and cattle. In humans, the 
heritability of AaM was estimated to be 0.32 (0.03) (Day et al. 2017). In cattle, AaP has been shown 
to be moderately to highly heritable in tropically adapted breeds (Johnston et al. 2009; Corbet et al. 
2018) with heritabilities ranging from 0.22 (0.07) to 0.57 (0.12) for Santa Gertrudis and Brahman 
breeds respectively. Using bovine orthologous of genes associated with AaM, we estimated their 
contribution to the additive genetic variance of age at puberty (AaP) in heifers.

MATERIALS AND METHODS
Animals, genotypes and phenotypes. We used published data from several heifer populations: 

Beef Cooperative Research Centre for Beef Technology Brahman and Tropical Composite (CRC BB 
and CRC TC, respectively) and the Queensland Smart Futures population (Smart Futures). These 
herds contained heifers from several tropical beef breeds and were genotyped with the BovineSNP50 
(CRC BB and CRC TC) and Geneseek GGP-LD array (Smart Futures). The Smart Futures heifers 
consisted of animals from three breeds: Brahman (979), Santa Gertrudis (1813) and Droughtmaster 
(914). Complete details for these animals and genotypes have been published elsewhere (Johnston 
et al. 2009; Corbet et al. 2018). In total, we used 3695, 960 and 868 animals from the Smart Futures, 
CRC TC and CRC BB herds. Genotypes were imputed twice up to 728,785 SNPs using Fimpute 
(Sargolzaei et al. 2014) and then to whole genome sequence using Minimac3 (Das et al. 2016). The 
phenotypes were age in days at first corpus luteum (AGECL) and corpus luteum score (CLscore) 
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at ~600 days for the CRC and Smart Futures cohorts, respectively. The AGECL is a count variable 
and CLscore is an ordinal variable ranging from 0 “infantile tract” to 5 “pregnancy > 10 weeks”. 
These two heifers AaP phenotypes, CLscore and AGECL, exhibit a very high genetic correlation 
(-0.83(0.09), Engle et al. 2019). 

Bovine orthologous AaM genes. Using coding variation (nonsynonymous SNPs), associated 
expression in neural tissues (eQTL) and chromatin interaction data (Hi-C), Day et al. (2017) implicated 
233 protein-coding genes in the regulation of AaM in women. We mapped these genes to the UMD3.1 
bovine genome using Biomart Ensemb 94 and filtered them out by conservation status (orthology 
confidence=1 and gene identity > 60%), rendering a total of 205 highly conserved orthologous AaM 
genes in the bovine genome. Then, we located variants (SNPs and INDELs) in or around + 100kb 
using imputed sequence data from the CRC BB, CRC TC and SMF cohorts.

Figure 1. Gene size distribution (deciles) for bovine orthologous genes for age at menarche 
(AaM) in women

Statistical analysis. We estimated the variance of heifers’ AaP explained by orthologous AaM 
genes using a model with two genomic relationship matrices (GRMs) constructed from the imputed 
to sequence genotypes described before. The first GRM is constructed from variants in or within 
100kb of AaM genes and the second GRM from the remaining variants in the bovine genome. The 
model included additional continuous and categorical covariates as follows:

where y is a vector of phenotypes, μ the overall mean, 1n is a vector of 1s, age is a vector with the 
heifers’ age fitted as a continuous covariate, pc1 and pc2 the first and the second principal components 
(derived from the GRM), cgroup is a vector of contemporary groups that includes with herd, year, and 
season and is fitted as categorical covariate. g1 and g2 are vectors of random effects for the variants in 
or within 100kb of AaM genes and the remaining ones in the bovine genome with g1 ~ N(0, G1s

2
g1) 

and g2 ~ N(0, G2s
2

g2). e is a vector of random residuals distributed e ~ N(0, s2
e). G1 and G2 denote 

the corresponding GRM matrices constructed following the first method of VanRaden (2008) and 
s2

g1, s
2

g2, s
2
e the corresponding genetic and error variances. We fitted the model separately for each 

cohort using GCTA (Yang et al. 2011).
In order to provide an appropriate comparison for the AaM genes, we also estimated the variance 

explained by 100 random gene-sets of similar length and SNP number, e.g. we performed a stratified 
random sampling by quantiles of gene size and number of SNPs, and ran a randomized permutation 
test for the percentage of AaP variance explained by AaM genes.
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RESULTS AND DISCUSSION
Out of a total of 28.9 million imputed to sequence variants across all cohorts, there were 339,669 

variants within +/- 100kb from 205 bovine orthologous AaM genes. The number of variants varied 
slightly within individual cohorts. Note also that in terms of gene physical size, AaM genes are over-
represented in the lower deciles and thus tend to be smaller in size than the rest of protein-coding 
genes in the bovine genome (Figure 1).

Variants in AaM genes explained 2.5% phenotypic (11.2% genetic) variance of heifers AaP in the 
biggest cohort, Smart Futures (Table 1). This represented about twice the mean variance explained 
by variants in random gene-sets (1.2% phenotypic and 5.6% genetic) that had on average 379,325 
variants. This result however did not reach significance in the randomized permutation test (P<0.2) 
(Figure 2). With regard to the CRC cohorts, variants in AaM genes explained negligible percentages 
when compared with variants in random gene-sets.

Table 1. SNP based heritability (h2) partition for cohorts included in the meta-analysis

Cohort
Smart Futures CRC TC CRC BB

Component h2 se h2 se h2 se
AaM genes: V(G1)/Vp 0.025 0.019 0.005 0.059 0.015 0.058
Remaining: V(G2)/Vp 0.195 0.035 0.393 0.103 0.446 0.108
Overall: V(G1)+V(G2)/Vp 0.220 0.031 0.398 0.085 0.461 0.092
V(G1)/Vp for random gene-sets* 0.012 0.001 0.034 0.009 0.022 0.009

*Mean for 100 gene-sets (379,325 variants on average).

Figure 2. Randomised permutation test results for the Smart Futures cohort. Variance in heifers 
age at puberty (AaP) explained by age at menarche (AaM) genes (red line, 339,669 variants), 
and random gene-sets of similar size to AaM genes. Dotted lined displays the mean for 100 
random gene-sets (379,325 variants on average)
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Note that overall h2 estimates by cohort: 0.220(0.031), 0.398(0.085), and 0.461(0.092) for Smart 
Futures, CRC TC and CRC BB, respectively, are consistent with previous estimates from published 
studies (Johnston et al. 2009; Corbet et al. 2018). In terms of individual genes, there were four genes 
in the AaM set (ZNF654, LEPROT, CCDC40, CLUAP1) that reached significance (P<10-4) in the 
meta-analysis of AaP GWAS across the three cohorts. In humans, these genes are also associated with 
haemoglobin concentration (ZNF654), morbid obesity (LEPROT), blood protein levels (CCDC40), 
vital capacity and leukocyte count (CLUAP1) (Stelzer et al. 2016).

Taken together these results suggest that women’s AaM genes are also associated with a similar 
phenotype in a different species, in this case fertility phenotypes in tropically adapted beef heifers. 
Importantly, however, is the issue of power for this complex trait as a large number of animals was 
required to pick up this signal, e.g. association was only presented in the biggest cohort with 3695 
animals. An interesting extension would be to combined both CRC cohorts (Brahmans and composites) 
and performed the analyses presented here on this combined dataset.

CONCLUSIONS
Variants in AaM genes explained 2.5% phenotypic (11.2% genetic) variance of tropical beef heifers’ 

AaP in the biggest cohort analysed here. This is about twice the variance explained by similar random 
gene-sets, although this result is not statistically significant (P<0.2), and the variance explained in the 
other cohorts was not different from zero. Some genes affecting AaM were also significant for AaP 
in heifers (P<1 x 10-4). Our work highlights the potential of cross-species analyses to increase the 
industry’s productivity. Further research in terms of inclusion of variants in AaM genes in genomic 
prediction models is needed to achieve this potential.
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SUMMARY
Small holder dairy farmers in Kenya rear crossbred cattle to combine the environmental adaptation 

features of indigenous populations with the high milk yield potential of exotic dairy breeds. The 
identification of signatures of selection in Kenyan admixed cattle could lead to a better understanding 
of the genetic structure of adaptation and productivity in challenging environmental conditions. 
Here, we examined the genome of the admixed cattle populations of Kenya for candidate regions 
under adaptive selection. We employed a haplotype based method, integrated extended haplotype 
homozygosity score (iHS), and scanned the genome of 1,475 admixed cattle using 521,362 SNPs. 
The local ancestry of the admixed cattle were inferred and used to identify the admixed cattle with 
more than 3 generations of crossing. This improved the power in detection of signatures of selection 
and after removing recently admixed animals, we identified 16 candidate regions and 8 candidate 
genes across 7 autosomes. Investigation of the candidate genes showed that several are involved in 
feed efficiency and disease resistance pathways that are important for adaptation under small-holder 
production systems. If substantiated, this information could be integrated into breeding programs 
aiming to improve dairy cattle productivity and adaptation in East Africa.

INTRODUCTION
The crossbred dairy cattle in Kenya consist of an admixed population resulting from around 50 

years of crossing and inter-se matings of African indigenous cattle to several exotic dairy breeds, 
mainly from Friesian, Holstein, Ayrshire and related red dairy breeds, and Jersey. These animals are 
kept by smallholder dairy farmers, typically in herds of size 1 to 5 cows, and produce about 80% of 
the total milk in Kenya. The majority of Kenyan crossbred dairy cattle are bred via natural mating 
and only a small proportion of matings are made by AI to imported and locally bred purebred dairy 
bulls. Very few animals have pedigree records and there is no systematic genetic evaluation systems 
or breeding programs to support farmers. The identification of footprints of selection in admixed cattle 
through the use of molecular markers such as single nucleotide polymorphism (SNP) can lead to a 
better understanding of the genetic structure underlying adaptation and productivity in challenging 
environmental conditions. Genomic regions with selection advantage can be incorporated in breeding 
strategies to select animals that are well suited in such environments and production systems. In this 
study we scanned the genome of the Kenyan admixed cattle by applying an intra-population haplotype-
based method (iHS) for signatures of post-admixture selection. We aimed to detect genomic regions 
responsible for adaptation and productivity under the challenging environment of East Africa. The 
local ancestry of individual loci are inferred to find the crossover events across the admixed genome 
and to assign each crossbred animal to a generation of crossing since the ancestral crossing happened. 

MATERIALS AND METHODS
The genotypic data included 1,475 crossbred cattle sampled in Kenya between 2010 and 2014 

and genotyped for 777,962 SNP markers using Illumina BovineHD BeadChip (Illumina, San Diego, 
CA). Routine QC was applied to genotypes and this resulted to 521,362 SNPs on 1,475 crossbred 
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animals distributed over 29 autosomes based on the UMD3.1 bovine reference genome.
Local ancestry and crossing-overs in crossbred cattle. The local ancestry of the crossbred 

cattle was inferred at individual SNP level using samples from 3 groups of ancestral populations 
including Bos indicus (IND) African Bos taurus (AFT) and European Bos taurus (EUT) by LAMD-LD 
software (Baran et al. 2012). The local ancestry inferences were used to calculate the average number 
of crossover events across each crossbred genome by first counting the number of transitions from 
either IND or AFT ancestry to EUT ancestry and vice versa, and then standardizing it by chromosome 
length. A recombination rate of 1 cM = 1 Mb across the whole genome and 1 crossover per Morgan per 
generation after crossing was assumed to assign each crossbred animal to an approximate generation 
since the ancestral crossing (indigenous × taurine) happened. A minimum of 4 generations of crossing 
was used to remove the impact of recent admixture on selection of signature analysis. This was also 
to keep only animals for which selection has had enough time to leave its footprint on their genome.

Detection of footprints of selection. The integrated extended haplotype homozygosity score 
(iHS) was used as an intra-population measure of the extent of haplotype homozygosity in crossbreds 
(Voight et al. 2006). We used R software rehh package (Gautier et al. 2017) to calculate iHS and then 
we transformed these values into p-values according to Gautier and Naves (2011). The qvalue package 
in R software was then used to correct p-values for multiple testing by calculation of a false discovery 
rate and generating the corresponding q-values. A candidate region for selection was defined by first 
identifying SNPs with a q-value <0.1 and then searching within the 500 Kb interval downstream 
and upstream (1 Mb window) of the identified SNP for SNPs with a p-value <10-3. Genes with at 
least 1 SNP with a q-value <0.1 found within them were deemed as candidate genes under selection.

RESULTS AND DISCUSSION
The haplotypes from the 3 ancestral groups, IND, AFT and EUT, were used to infer the local 

ancestries of the admixed cattle at individual loci level. The majority of haplotypes in the admixed cattle 
were found to have originated from EUT ancestor (≈0.73) while IND and AFT ancestral populations 
contributed smaller proportions of admixed haplotypes (≈0.24 and ≈0.03, respectively). The local 
ancestry inferences were further used to calculate the genome-wide average number of crossover 
events on haplotypes carrying the lowest number of crossovers between the two haplotypes of each 
individual for each chromosome (Figure 1). For most of the admixed cattle, the number of recent 
crossovers per Morgan was found to be relatively small (<3). This suggested that the admixed cattle 
in East Africa are mainly recent crosses of indigenous cattle with exotic breeds. Only 55 animals had 
an average of more than 3 crossovers per Morgan, which is approximately equivalent to 4 or more 
generations of inter-se mating after the original cross to an exotic or indigenous ancestor (Figure 1).

Selection needs time to leave its footprints on the genome and if there is not enough time since the 
most recent admixture, the detection analysis is underpowered. Including recently admixed animals in 
the analysis adds noise to the detection of signatures of selection and potentially masks the footprints 
that would have otherwise been detected. We found evidence for this in our results (not shown). When 
we included all admixed cattle in calculation of iHS, no candidate region at a FDR threshold of 0.1 
was detected. However, removing crossbreds with a genomic average crossover frequency of less than 
3 per Morgan identified 16 candidate regions across 7 autosomes at the same FDR shown in Figure 2.

The details of the 16 identified candidate regions from the iHS analysis of the filtered admixed 
cattle are in Table 2. The size of these candidate regions ranged from only 112.25 Kb on chromosome 
12 up to 683 Kb on chromosome 7 and collectively encompassed 8 candidate genes. Chromosome 7 
had the highest number of candidate regions for selection among all chromosomes and it contained 
3 candidate genes. Chromosome 3 contained 2 candidate genes while chromosomes 6, 11 and 12 
each had one candidate gene. The ancestry of all candidate regions in chromosome 3 was dominated 
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by EUT while for chromosomes 6, 7 and 12 that had more than 1 candidate region, the dominant 
ancestry was either IND or EUT (Table 1).

Figure 1. Average number of crossover events per Morgan in all admixed cattle (left) and in 
those with more than 3 crossovers per Morgan (right and green)

The S100A10 gene is located on chromosome 3 and encodes a protein which regulates several 
cellular processes such as cell cycle progression and differentiation. It has been found as a candidate 
gene for residual feed intake in Angus cattle (Al-Husseini et al. 2013) through a single SNP genome-
wide association study. Given that feed efficiency is a very important factor in low input smallholder 
production systems, it could be justified why this gene has been the target of selection in the African 
environment. Furthermore, the candidate region harbouring S100A10 shows a dominant EUT ancestry 
in our study, suggesting possible EUT contribution to feed efficiency in the admixed cattle.

Figure 2. Manhattan plots of p-values for genome-wide iHS within the crossbred population. The 
red and blue horizontal lines correspond to false discovery rates at 5% and 10%, respectively

We identified NLRP3 gene in a candidate region on chromosome 7 with a dominant IND ancestry. 
This gene encodes a pyrin-like protein and it plays a role in the regulation of inflammation, the 
immune response, and apoptosis. NLRP3 has been found to be a candidate gene for Crohn’s disease 
(Villani et al. 2009) and Johne’s disease (Scanu et al. 2007; Mallikarjunappa et al. 2018) in human 
and livestock populations, respectively. The selection sweep harbouring this gene is of IND ancestry, 
suggesting that the IND ancestors may have contributed a version of NLRP3 conferring resistance to 
local disease or other environmental challenges. Another candidate region on chromosome 7 harbours 
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the gene LYPD8, which has been reported to be differentially expressed between cows with versus 
without subclinical mastitis (Song et al. 2016) and it provides defence against gram negative bacteria 
in the colon of non-ruminants. This region is of EUT origin, suggesting possible EUT contribution 
to disease resistance in the crossbred population.

Table 1. The details of the identified candidate regions from iHS analysis

Chromosome Region (Mb) Top SNP q-value Dominant ancestry Candidate genes

2 5.46 – 6.00 0.0378 IND ─
3 9.58 − 9.80 0.0995 EUT ─
3 17.18 − 17.70 0.0861 EUT ─
3 18.80 − 19.29 0.0578 EUT S100A10
3 22.07 − 22.71 0.0390 EUT ACP6
6 4.91 − 5.29 0.0578 IND ─
6 90.70 − 91.12 0.0861 EUT MTHFD2L
7 38.55 − 38.92 0.0861 IND ─
7 41.40 − 42.00 0.0390 IND BTNL9, NLRP3
7 43.84 − 44.16 0.0861 EUT LYPD8
7 46.56 − 46.99 0.0006 EUT ─
7 49.91 − 50.25 0.0390 IND ─
11 36.81 − 37.13 0.0578 IND ACYP2
12 28.64 − 29.05 0.0578 IND ─
12 76.82 − 76.93 0.0390 EUT CLDN10
16 4.52 − 4.89 0.0995 IND ─

CONCLUSIONS
This study provides evidence that the genome of the admixed cattle in Kenya may have been 

shaped by adaptive selection in response to the challenging environment in which they exist. If our 
findings can be substantiated, the information might be used in breeding programmes to enhance 
productivity and adaptation traits in smallholder dairy systems of Kenya.
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SUMMARY
Eating quality traits are important determinants of consumer satisfaction and are considered as 

traits of economic importance for genetic improvement in the Australian beef industry. In this study, 
the genotypic and phenotypic data of 3,454 Angus cattle were analysed to identify genomic regions 
that potentially influence carcase traits, especially those related to eating quality. A genome-wide 
association study revealed 3, 5, 1 and 13 significant SNPs associated with carcase weight (CWT), 
carcase eye muscle area (EMA), Meat Standards Australia Index (MSA_I) and ossification score 
(OSS) respectively. They were located across chromosomes 3, 7, 13 and 21 and accounted for 2%, 
4%, 6% and 12% of the total genetic variance for CWT, EMA, MSA_I and OSS, respectively. No 
significant SNPs were evident for MSA marble score (MSA_M). Results of this study may have 
potential practical application in the design of marker SNP chips and improving the accuracy of 
genomic prediction for carcase and eating quality traits in Angus beef cattle.

INTRODUCTION
Expectations of eating quality are a primary determinant of purchasing decisions made by con-

sumers of Australian beef products. Consequently, Meat and Livestock Australia (MLA) developed 
the Meat Standards Australia (MSA) grading system to provide consumers with a level of assurance 
as to the eating quality of beef products (Watson et al. 2008). The current MSA Index, denoted by a 
single number score, represents a standard national measure that allows beef carcases to be ranked 
according to predicted eating quality and potential merit (McGilchrist et al. 2019). The Index is a 
weighted average of the predicted eating quality of 39 carcase cuts based on parameters collected by 
accredited MSA graders and of relevance to consumer preferences for tenderness, juiciness, flavour 
and overall perceptions of meat products (McGilchrist et al. 2019). The moderate heritability reported 
for MSA Index in both Angus and Brahman breeds (Jeyaruban et al. 2017) demonstrates a level of 
genetic control, suggesting improvements in MSA Index may be possible via selective breeding. 

While most beef carcase and eating quality traits demonstrate a level of genetic control, less is 
known about the structure of these traits at the genomic level. Furthermore, phenotypic information 
on these traits requires slaughter at ages of maturity that allow market specifications to be met, which 
means that assessment of genetic merit for these traits is delayed. Genome-wide association study 
(GWAS) of these traits might therefore have practical application in the design of marker SNP chips 
as well as improving the accuracy of genomic prediction for these traits, especially of young candidate 
animals. Several such studies using SNP arrays have been reported for carcase traits in beef cattle 
breeds (Koohmaraie et al. 2006; Saatchi et al. 2014; Sudrajad et al. 2016).

The objectives of the present study were to investigate the presence of significant genomic regions 
in association with carcase and eating quality traits in Australian Angus beef cattle, and to quantify 
the amount of total genetic variation explained by such informative SNPs.
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MATERIALS AND METHODS
Phenotypic data used in this study were derived from the performance extracts for Angus Aus-

tralia as used in the March 2019 Angus BREEDPLAN analysis. Carcase trait records included: hot 
carcase weight (CWT), eye muscle area (EMA) and ossification score (OSS), the latter being an 
assessment of physiological maturity and indicative of eating quality (AUS-MEAT 2019). Eating 
quality traits were represented by two traits of relevance in the MSA grading system: MSA marble 
score (MSA_M) and MSA Index (MSA_I). Slaughter-based contemporary groups were constructed 
according to standard BREEDPLAN procedures (Graser et al. 2005) with criteria including herd, 
year, sex and prior performance contemporary group, plus slaughter group and slaughter date. Single 
animal groups were excluded.

Genomic data for animals with carcase and eating quality phenotypes was supplied by Angus 
Australia. The reference population for the genotype imputation consisted of 11,226 animals gen-
otyped with a number of 50k arrays (LDMAX_SNPMap, ZM2_SNPMap, GSTP_SNPMap, ZOE-
50K). Quality control (QC) was applied where only autosomal SNPs and the SNPs with a call rate 
higher than a 0.6 GeneCall score were kept. Further QC was undertaken using Plink v1.90b3.42 
(Chang et al. 2015), filtering out those SNPs with minor allele frequency (MAF) < 0.01, deviation 
from Hardy Weinberg equilibrium (P<10-6), and those SNPs with more than 5% missing genotypes. 
Only animals that had a valid genotype on more than 95% of SNPs were kept in the analysis. A final 
data set containing 37,974 SNPs for 3,454 animals was available for GWAS. Although the majority 
of these animals originated from the Angus Sire Benchmarking Program (Banks 2011), this was not 
an essential criterion per se for this study. Individuals required at least a CWT record and genotypes, 
within a contemporary group of at least two animals, for inclusion.

GWAS analysis of SNP effects and significance was conducted for each carcase and eating quality 
trait using the program GCTA (Yang et al. 2011) and the following linear regression model:

​y  =  Xb + Za + e​

where ​y​ is a vector of phenotypes,​ b​ is a vector of fixed effects including contemporary group, linear 
regression of age and SNP effect, ​a ​is a vector of random additive genetic effects and ​e​ is a vector 
of random residual effects. ​X​ and ​Z​ are incidence matrices relating fixed effects and additive genetic 
effects to phenotype, respectively. The additive genetic effects were assumed to be normally distributed 
as:​​ a ~ N​(​​0, G ​σ​ a​ 

2​​)​​​​, where ​G​ is a genomic relationship matrix based on the 50k SNP genotypes, and ​​σ​ a​ 
2​​  

is the additive genetic variance. Significant SNPs were identified using a Bonferroni correction with 
α=0.05 and –log10 (p)=5.88. Significant SNPs present in the same genomic regions were subjected 
to joint multivariate regression analysis using GCTA to identify the most informative SNPs for the 
particular trait.

The variances explained by all SNPs and the heritability were estimated using the restricted 
maximum likelihood analysis with GTCA including the genomic relationship matrix (GREML). 
Individual SNP variances were calculated as ​2pq ​∝​​ 2​​, where p and q are allele frequencies and α is 
SNP effect, once SNPs were confirmed as being in Hardy-Weinberg equilibrium.

RESULTS AND DISCUSSION
Table 1 provides descriptive statistics for the carcase and eating quality traits of the 3,454 animals 

included in the GWAS.
There were 12 significant SNPs on chromosome 13 associated with OSS after Bonferroni correction 

(Figure 1). Only one SNP remained significant after multivariate regression analysis, reflecting that all 
12 SNPs refer to the same QTL due to high LD between them. A second significant SNP for OSS was 
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evident on chromosome 21 (Table 2). Similar outcomes were evident in the GWAS results for EMA 
and CWT, with 5 and 3 significant SNPs on chromosome 7 respectively after Bonferroni correction, 
and reducing to one significant SNP for each trait after multivariate regression analysis (Table 2).

Table 1. Descriptive statistics for carcase and eating quality traits

Trait No of Animals Mean SD Minimum Maximum Heritability
Carcase traits
   CWT (kg) 3,454 420.24 75.45 167.60 571.50 0.49 ± 0.03
   EMA (cm2) 2,954 89.42 10.89 57.00 128.00 0.47 ± 0.03
   OSS (score) 2,704 150.97 17.54 100.00 280.00 0.29 ± 0.04
Eating quality traits
   MSA_M (score) 2,963 500.04 117.17 100.00 1030.00 0.40 ± 0.03
   MSA_I (score) 2,658 64.88 1.78 59.15 70.48 0.40 ± 0.04

Figure 1. Manhattan plot of -log10 (p) from the Angus cattle GWAS of OSS. The horizontal 
reference line indicates the genome-wise significance levels (– log10 (p))

In terms of the two eating quality traits, only one SNP remained significant for MSA_I and no 
significant SNPs remained for MSA_M after Bonferroni correction (Table 2). Manhattan plots for 
both eating quality traits did suggest that several regions across the genome may warrant further 
detailed investigation. 

Table 2. Significant SNPs and estimates of variance for the carcase and eating quality traits*

Trait Chr Mb P-values V(G) %V(snps)
CWT 7 93 1.64E-07 451.1 2
EMA 7 93 3.42E-11 31.10 4
OSS 13 41 4.47E-07 54.04 8

21 22 7.35E-07 53.21 4
MSA_M - - - 4058.00 -
MSA_I 3 13 1.06E-07 0.74 6

* Chr = Chromosome; Mb = Mega base pairs position; V(G) = total genetic variance =; V(snps) = percentage 
of total genetic variance explained by significant SNPs.

The variance components and heritability derived for each trait in the current study are similar to 
those reported by Jeyaruban et al. (2017). This is not surprising given the current data extract includes 
the subset used in the former study. Given the high proportion of base females represented as dams 
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in this data extract, differences in variance components may reflect differences in how relationships 
were modelled. The former study used pedigree information whereas the present study used realised 
relationships via the G matrix.

Sudrajad et al. (2016) identified six SNPs distributed across chromosome 4, 6, 27, 10, 9 and 20 
as having significant associations with carcase weight, eye muscle area, fat depth and marble score 
in a commercial population of Hanwoo cattle. In the present study of Australian Angus cattle, the 
significant SNPs identified for CWT, EMA and MSA_I after Bonferroni correction explained 2%, 4% 
and 6% of total genetic variance respectively (Table 2). The two significant SNPs identified for OSS 
(one on each of chromosomes 13 and 21) explained 12% of total genetic variance for the trait. This 
is a substantial proportion of the genetic variance, encompassing a relatively small number of SNPs. 

Chromosome 7 (93Mb position) has been reported previously in association with certain growth 
and carcase traits in beef cattle. Saatchi et al. (2014) reported an association with weight traits and eye 
muscle area in American Angus, as well as Hereford and a number of other breeds, while Koohmaraie 
et al. (2006) identified the calpastatin gene on chromosome 7 (98 Mb position) in association with 
meat tenderness. The significant SNPs on chromosome 13 associated with ossification in the present 
study may perhaps reflect a QTL related to physiological maturity and/or calcium metabolism, given 
that certain SNPs on chromosome 13 have shown significant associations with lean meat yield and 
milk yield traits in Holstein Friesian cattle (Doran et al. 2014).

CONCLUSIONS
In conclusion, this study identified significant SNPs in the bovine genome associated with eating 

quality traits for Angus cattle, supported by results from previous studies. Outcomes of the study 
suggest that significant markers might be added to SNP arrays used for developing Angus-specific 
SNP panels. Inclusion of these trait-specific markers in genetic evaluation models might also improve 
the accuracy of prediction of breeding values for such traits.
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SUMMARY
Emerging inherited diseases can cause numerous issues for producers, including productivity 

loss, profit loss and animal welfare problems. Current collaborative efforts between the University of 
Sydney and the Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries has 
resulted in the ongoing investigation of several inherited diseases using both SNP-based homozygosity 
mapping and whole genome sequencing approaches to identify positional candidate genes and likely 
causal variants. This paper serves as a brief update for eight of the investigated inherited diseases in 
cattle and sheep, with these studies aiming to identify positional candidate genes and causal variants 
to facilitate the improved management of at-risk populations for each inherited disease investigated.

INTRODUCTION
The advancement of livestock breeding has allowed for desirable traits and elite genetics to be 

disseminated throughout livestock populations within relatively short periods of time. Small effective 
population sizes and inbreeding poses a risk for the inheritance of deleterious alleles in homozygous 
form and can contribute to the increased observation of animals with recessive inherited diseases 
(Charlier et al. 2008; Groeneveld et al. 2010), especially when considering closed herds or flocks. 
The reporting of inherited diseases within Australian livestock is limited due to either misdiagnosis 
of a prospective inherited disease or concern for reputation damage and profit losses. Detailed 
clinical and phenotypic descriptions of suspected recessive inherited diseases is imperative to future 
molecular investigations. Without consistent reporting and detailed phenotype information, the 
molecular characterisation of emerging inherited diseases can be delayed due to resource loss or 
lack of key information such as pedigree data and clinical descriptions. This can therefore impact on 
the monitoring and management of the inherited disease in at-risk populations, especially if detailed 
pedigrees are unknown when genotyping tests become available (Man et al. 2007). 

Collaborative projects between researchers at the University of Sydney and the Elizabeth Macarthur 
Agricultural Institute, NSW Department of Primary Industries (EMAI) has enabled the investigation 
of several emerging recessive inherited diseases in livestock. With an increasing number of suspected 
inherited disease cases being investigated, the use of SNP-chip based homozygosity mapping and 
whole genome sequencing approaches is becoming routine in identifying positional candidate genes, 
causal variants and for facilitating the development of genotyping tests for inherited diseases with 
little pedigree information or phenotypic descriptions. This paper serves as an update for eight of 
the emerging inherited diseases with a suspected recessive mode of inheritance currently under 
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investigation by the University of Sydney and EMAI. These emerging inherited diseases include: 
cardiomyopathy and woolly haircoat syndrome (CWH) in Hereford cattle, congenital mandibular 
prognathia (CMP) in Droughtmaster cattle, Niemann-Pick type C disease (NPC) in Angus cattle, 
new variants of ichthyosis fetalis (IF) in Hereford and Shorthorn cattle, the previously reported 
brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS) in Merino sheep (Shariflou 
et al. 2013), cervicothoracic vertebral subluxation (CVS) in Merino sheep, ovine dermatosparaxis 
(OD) in Merino sheep, and pulmonary hypoplasia with anasarca (PHA) in Persian sheep. The aim 
for these studies was to identify positional candidate genes and likely causal variants to facilitate 
improved management of at-risk populations for each inherited disease investigated.

MATERIALS AND METHODS
Analysis of SNP genotype data  for carrier and affected animals (Table 1) using sliding windows 

of 25, 50 and 100 SNPs to identify runs of homozygosity (ROH) was previously conducted (Table 
1) for affected animals using the bovine UMD3.1 genome assembly and the ovine Oarv1.0 genome 
assembly (Woolley et al. 2017). ROH were analysed using PLINK (Purcell et al. 2007) and were 
considered to be regions of interest if these regions were shared by all of the affected animals only. 
These regions were scanned for positional candidate genes based on gene function and comparative 
genomics methods.

Table 1. Number of affected and carrier DNA samples submitted for SNP chip genotyping and 
regions of homozygosity, including species specific OMIA ID

Disease OMIA ID1 Breed Affected/
Carrier SNP chip

Cardiomyopathy and woolly haircoat 
syndrome 000161-9913 Poll Hereford 2/0 SNP802

Congenital mandibular prognathia - Droughtmaster 9/4 SNP802

Ichthyosis fetalis 000547-9913 Hereford 1/3 SNP802

Niemann-Pick disease - Angus/Angus X 2/2 SNP802

Cervicothoracic vertebral subluxation 000077-9940 Merino 14/2 SNP503

Pulmonary hypoplasia with anasarca 000493-9940 Persian 5/5 SNP503

1OMIA http://omia.angis.org.au, - indicates no species specific OMIA ID. 2SNP80 = GeneSeek® Genomic Profiler 
Bovine HD Chip 80K chip (Neogen, NE, USA). 3SNP50 = Illumina® OvineSNP50 Genotyping BeadChip (CA, 
USA).

Sanger sequencing for inherited diseases with identified positional candidate genes commenced but 
was cost and labour intensive. Whole genome sequencing (WGS) was conducted for affected animals 
for CMP, BCRHS, CVS and PHA (Woolley et al. 2017) with 150bp paired-end reads at an expected 
coverage of 20X or 30X (Table 2). Sequence reads were aligned with BWA-mem (Li 2013) to either 
the bosTau8 or oviAri3 reference genome assemblies and analysed for novel genetic variants using a 
modified GATK best practice pipeline (McKenna et al. 2010; DePristo et al. 2010). Large structural 
variant calling was completed using DELLY (version 0.7.6), LUMPY-sv (version 0.2.12) and LUMPY 
SVtyper (Rausch et al. 2012; Layer et al. 2014). WGS data generated at the University of Bern similarly 
applied standard bioinformatics pipelines using software and steps to process fastq files into bam and 
GVCF files in accordance to the latest 1000 Bulls processing guidelines (www.1000bullgenomes.com). 
For variant filtering, control genomes from other samples that were sequenced during this study were 
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used according to species and breed, and for the Shorthorn IF and OD samples, 341 control genomes 
of various cattle breeds and 16 control genomes of various sheep breeds were used to identify novel 
variants for affected animals only. Genetic variants were annotated using SnpEff for predicted effects 
and filtered using SnpSift (Cingolani et al. 2012). To predict the functional effects of candidate causal 
variants, both SnpEff and SIFT (Kumar et al. 2009; Cingolani et al. 2012) were used to assess whether 
candidate disease-causing variants were deleterious to protein function.

RESULTS AND DISCUSSION
As previously identified, homozygosity mapping was able to successfully reveal and/or exclude 

positional candidate genes for all of the inherited diseases investigated, with a likely causal variant 
in a positional candidate gene identified for NPC through Sanger sequencing of affected animals 
(Shariflou et al. 2013; Woolley et al. 2017). Affected samples for BCRHS, CMP, CWH, IF, CVS, OD 
and PHA were re-sequenced using WGS (Table 2) as either homozygosity mapping did not identify 
positional candidate genes of interest or Sanger sequencing of affected animals did not identify 
causal variants within candidate positional candidate genes. Preliminary quality control analysis of 
the WGS data was positive (Woolley et al. 2017), however WGS for CWH in Poll Hereford cattle 
and IF in Hereford cattle was unsuccessful due to inadequate DNA quality. Further investigation of 
other positional candidate genes and genomic regions of interest based on SNP genotyping data will 
be required for CWH and IF.

After application of filtering parameters on samples that were whole genome sequenced, numerous 
genetic variants that were homozygous for the alternate allele in the affected animal(s) only were 
identified either across the genome or within previously identified ROH (Table 2) (Woolley et al. 2017).

Table 2. Variants identified in affected animals for which each animal was homozygous alternate 
to the reference sequence

Disease Breed Affected/
Carrier

No. homozygous 
alternate 
variants

Likely causal 
variant identified

Brachygnathia, cardiomegaly and 
renal hypoplasia syndrome Merino 1 2151 Yes

Cervicothoracic vertebral subluxation Merino 2 Ongoing Ongoing
Ovine dermatosparaxis Merino 1 18642 Yes
Pulmonary hypoplasia with anasarca Persian 2/1 3331,3 Under validation
Congenital mandibular prognathia Droughtmaster 2 57804 Under validation
Ichthyosis fetalis Shorthorn 1 2982 Yes

1Filtered for low, moderate and high impact with known dbsnps included.2Private homozygous alternate and 
heterozygous protein-changing variants with a moderate or high predicted impact.3At least one animal was 
homozygous alternate.4Includes SNPs and small indels.

Further manual filtering based on the predicted variant impact on protein function revealed 
candidate causal variants for BCRHS, PHA, CMP and IF in Shorthorn cattle (Table 2). A candidate 
causal variant with possible heterogeneity was identified for OD in Merino sheep and requires greater 
sample numbers to facilitate further validation. Genotyping assays were developed for these five 
inherited diseases, with preliminary validation results showing variant segregation with disease in 
related herds or flocks. The development of these genotyping assays has allowed for producers to 
facilitate forward planning breeding management strategies.
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Despite small sample sizes, poor phenotypic descriptions and challenging sample types, candidate 
causal variants have been successfully identified through the combined use of genome wide SNP 
genotyping, homozygosity mapping and WGS. These approaches have successfully identified candidate 
genes and causal mutations in a range of recessive inherited diseases in cattle, including ichthyosis 
fetalis in Chianina cattle (Charlier et al. 2008). The reporting of the inherited diseases investigated 
in these studies has enabled for better screening and preliminary management and has showcased the 
ability to identify candidate causal variants using modern genomic technologies.

CONCLUSIONS
Despite the challenges surrounding insufficient sample numbers and poorly defined phenotypes, 

the results from these studies indicate that candidate causal variants can be identified by utilising 
targeted approaches. The identification of likely causal variants for BCRHS, OD with possible 
genetic heterogeneity, PHA, CMP, NPC and IF in Shorthorn cattle, has enabled for the development 
of genotyping assays that are able to successfully discriminate between homozygous wildtype, 
heterozygous and homozygous alternate genotypes. These assays are being used as a preliminary 
screen for related or founder herds or flocks and would prove to be a useful tool for screening wider 
populations to gain a more holistic understanding of population allele frequencies and future breed 
management strategies.
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SUMMARY
Indigenous chickens in Africa are found across heterogeneous landscapes, and heritable adap-

tive variations across environmental gradients suggest local adaptation. The direction of adaptive 
differentiation is still underestimated and may have negative impact on the conservation programs. 
This study examined 60K genotyping data from 311 village chickens from Zimbabwe, Malawi and 
South Africa, and conserved flocks (Venda, Naked Neck, Potchefstroom Koekoek, and Ovambo) to 
identify runs of homozygosity (ROH) and selection signatures using ROH islands and association 
of SNPs with bioclimatic and geographic variables. Overall, 5537 ROH were detected, with short 
segments more prevalent across all populations. Larger windows (>40 Mb) were found in the South 
Africa and Zimbabwe flocks only, suggesting less genetic diversity. Thirty-three ROH islands (50% 
of population) were only found in Naked Neck, Potchefstroom Koekoek and Venda and were located 
in 4352 genes. Two SNPs Gga_rs14045047 (chromosome 12) and Gga_rs13560712 (chromosome 
6) were associated with 7 variables and longitude, altitude, BIO8, BIO17 was common for both. 
This suggests their importance and complexity of genetic adaptation. This study identifies regions 
potentially under selection pressure of production system and environmental adaptation and provides 
baseline for identifying populations adapted to local environment.

INTRODUCTION
Indigenous chickens in Africa have an extended geographic distribution across agro-ecological 

zones and production systems, thriving in environments with limited resources due to their unique 
adaptive traits. After an initial description and characterisation of the extensively raised village chickens 
populations from Zimbabwe and Malawi (Muchadeyi et al. 2007) and South Africa (Mtileni et al. 
2011), A detailed population genetic studies using the Illumina 60K SNP BeadChip were completed 
(Khanyile et al. 2015a; 2015b). These studies observed genetic divergence with sufficiently strong 
geographic barrier of village genetic groups among African countries (Muchadeyi et al. 2007), 
differentiation of South African conservation populations to founder village populations due to 
reproductive isolation (Mtileni et al. 2011; Khanyile et al. 2015a; 2015b), regions with high linkage 
disequilibrium suggestive of selection of signatures (Khanyile et al. 2015a). Understanding the role 
of natural and artificial selection in the shaping diversity may provide new insights into the genetic 
mechanisms underlying their adaptation to their production environment. ROH have been used in 
livestock genomic studies, confirming the correlation between shared ROH and genomic regions 
putatively under selection (ROH island) (Mastrangelo et al. 2018). In addition, signatures of past 
climatic trends have played large roles in shaping genetic structure of livestock species. Therefore, 
the objectives of our study were to detect runs of homozygosity (ROH) and detect key bioclimatic 
and geographic factors that drive adaptive differentiation and assess their association with SNPs using 
landscape genomics approach.
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MATERIALS AND METHODS
Genomic data and quality control. Illumina chicken iSelect SNP60 Beadchip genotype data 

(SNP= 57636) of 311 chickens from different regions of Malawi, South Africa and Zimbabwe was 
used and has been previously described (Khanyile et al. (2015a; 2015b). Briefly, 135 village chickens 
were from three Zimbabwean agro-ecological zones (AEZ, AEZ1 = 92, AEZ3 = 34, and AEZ5 = 10) 
and 30 chickens were sampled from Malawi. South African village chickens (SAFIELD = 76) were 
ecotypes from Limpopo (n = 15), Eastern Cape (n = 26) and Northern Cape (n = 35) provinces. In 
addition, four conserved flocks (n = 70, Venda (VD = 20), Naked Neck (NN = 20), Potchefstroom 
Koekoek (PK = 20) and Ovambo (OV = 10) at the Agricultural Research Council Poultry Breeding 
Resource, Irene Pretoria, South Africa. Genotypes with a failed call rate of > 0.95, minor allele fre-
quency of > 0.05 and Hardy-Weinberg equilibrium > 1-5 were used in this study. Accordingly, 46160 
SNPs from 290 individuals were used for further analyses.

Runs of homozygosity (ROH) and ROH islands. Runs of homozygosity (ROH) was defined per 
animal as 1) 50 or more consecutive homozygous SNPs, 2) a minimum physical length of 1 Mb to 
exclude short ROH deriving from LD, 3) a density of 50 Kb/SNP and 4) maximum of 3 heterozygous 
calls within ROH using detectRuns (Biscari et al. 2018). ROH islands were defined by ROHs that 
occurred in 50% of the individuals.

Environmental contribution to genetic structure and selection. Bioclimatic variables over 
the 30-year period (1970 to 2000) were available from the WorldClim version 2 (Fick and Hijmas 
2017) using the GPS coordinates (latitude and longitude) at each district level for each individual. 
Districts level was used as individual farm data were not available for all countries. In Zimbabwe, 
Temperature (°C) and precipitation (mm) variables included annual mean temperature (BIO1), Mean 
Diurnal Range (BIO2), Isothermality (BIO3), Temperature Seasonality (BIO4), Maximum Temperature 
of Warmest Month (BIO5), Minimum Temperature of Coldest Month (BIO6), Temperature Annual 
Range (BIO7), Mean Temperature of Wettest Quarter (BIO8), Mean Temperature of Driest Quarter 
(BIO9), Mean Temperature of Warmest Quarter (BIO10), Mean Temperature of Coldest Quarter 
(BIO11), Annual Precipitation (BIO12), Precipitation of Wettest Month (BIO13), Precipitation of 
Driest Month (BIO14), Precipitation Seasonality (BIO15), Precipitation of Wettest Quarter (BIO16), 
Precipitation of Driest Quarter (BIO17), Precipitation of Warmest Quarter (BIO18), Precipitation of 
Coldest Quarter (BIO19).. To prevent overestimation on the contribution to the genetic structure, 
correlation analysis was performed on the bioclimatic (BIO1-BIO19), geographic (longitude, latitude 
and latitude) variables using ggcorr in GGally package (Schloerke et al. 2013). Redundancy analysis 
(RDA) detected the contribution of the variables on the spatial genetic structure, using vegan pack-
age (Oksanen et al. 2015). Association analysis using latent factor mixed model (lfmm) was then 
performed using the LEA package (Frichot et al. 2013). Parameters included 10,000 sweeps, 5,000 
burn-in sweeps, 10 repetitions and 6 latent factors (Khanyile et al. 2015). SNPs with a false discovery 
rate of P< 0.001 were considered as significantly associated.

RESULTS AND DISCUSSION
Runs of homozygosity (ROH) and ROH islands. A total of 5537 ROHs were detected across 

the 7 chicken populations. The frequency of ROHs and their length-distribution differed across 
populations (Table 1). In all populations, shorter segments of between 1 to 10Mb predominated the 
homozygosity present and accounted for approximately 82% of all ROH detected suggestive of more 
ancient relatedness, inbreeding and long-term selection within these populations. OV had the least 
number of ROH for all categories. Zimbabwe had the highest number of segments larger than 10Mb 
suggestive of the more likely that recent inbreeding occurred within a pedigree (Khanyile et al., 
2015b) which remains unaccounted for in village populations, due to lack or recording system. The 
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increase of homozygous regions in NN, PK, and VD could be a consequence of inbreeeding, bottle-
neck effect and the decline in effective population size because they have been a closed populations 
since 25 years ago (Mtileni et al. 2011). Across all populations, the mean ROH length was 2.34 Mb 
and the longest segment was 50.09Mb in length (1994 SNPs) which was found on chromosome 3 in 
Zimbabwe population. The number of ROH per chromosome decreased with chromosome length and 
was greater for chromosome 1 (796 ROH) and lower for micro-chromosomes including chromosome 
23 (23 ROH). High level of homozygosity in chromosome 1 was consistent with the presence of high 
number haploblocks (Khanyile et al. 2015b), which could be due to differences in recombination 
rates, genetic drift and selection across the different geographical distribution.

Table 1. Number of runs of homozygosity (nROH) and length (in Mb) categorised by ROH 
length class (ROH1− 5Mb, ROH5− 10Mb, ROH10− 20 Mb, ROH20–40 Mb, and ROH>40 Mb)

Class NN OV PK VD SAFIELD MALAWI ZIMBABWE
1-5Mb 765 178 750 767 649 309 1102
5-10Mb 125 10 77 142 104 38 230
10-20Mb 31 1 12 46 35 21 88
20-40Mb 4 0 2 7 5 6 31
>40Mb 0 0 0 0 1 0 1
Total 925 189 841 962 794 374 1452

Thirty-three ROH islands, which indicate regions of strong selection were evident across the genome 
of NN (n = 5), PK (n = 7) and VD (n = 21) only. ROH islands were not found on other populations 
observed to have highly admixed individuals (Khanyile et al. 2015a). The longest ROH island was 
observed in VD on chromosome 7 (46.65Mb), while the shortest one was observed on chromosome 
4 (1.73Mb). Within all of the ROH islands reported, we identified from 4352 genes (827 NN, 324 
PK, 3202 VD). Functions of the genes varied and included metabolic, cardiac muscle and vascular 
smooth muscle contraction and signaling pathways, 

Landscape genomics. Landscape genomics studies in indigenous livestock have gained momen-
tum in past years. Highly correlated (r> 0.90) bioclimatic and geographic variables and those that did 
not explain genomic variation using RDA were removed, whilst annual mean temperature (BIO1), 
mean diurnal range (BIO2), isothermality (BIO3), temperature seasonality (BIO4), temperature 
annual range (BIO7), mean temperature of wettest quarter (BIO8), mean temperature of driest quar-
ter (BIO9), mean temperature of warmest quarter (BIO10), precipitation of wettest month (BIO13), 
precipitation of driest quarter (BIO17), altitude, longitude, latitude were retained for LFMM analysis. 
RDA 1 and RDA 2 explained 3.82% and 1.23% of the variance, respectively. BIO3, BIO9, BIO1 
and altitude explained most of the genetic variation (P <0.001) and BIO8 explained the least. RDA 
showed evidence of population structuring, consistent of the population structure described in Kha-
nyile et al. (2015). Village populations clustered together despite the geographic distances between 
the countries potentially due to similar production environments. Reproductive isolation and sharing 
of production environment of the conservation flocks resulted in the populations clustering together 
despite different genetic backgrounds. Overall, a total of 3090 SNPs (6.69%) were associated with 
one or more variables, whilst 1888 SNPs were associated with a specific variable. BIO2 has been 
associated with thermoregulation and was the most significant variable in 283 SNPs suggestive of 
their role in adaptation to diurnal environmental conditions and BIO4 had the least (n= 184). SNP 
Gga_rs14045047 on chromosome 12 was associated with BIO1, BIO2, BIO8, BIO10, BIO17, alti-
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tude and longitude. Association of BIO3, BIO7, BIO8, BIO13, BIO17, altitude and longitude with 
Gga_rs13560712 on chromosome 6 indicates their complexity in shaping the genetic diversity. Five 
SNPs (Gga_rs13705188 on chromosome 5, Gga_rs14836389 on chromosome 1, Gga_rs14091452 on 
chromosome 15, Gga_rs15243798 on chromosome 27, Gga_rs14142376 on chromosome 2) were only 
associated with longitude and latitude suggestive of role in the local adaptation. Genes were related 
to pathogen and disease defence and adaptive phenotypic traits including weight and fast growth.

CONCLUSIONS
The existence of ROH and islands demonstrated the role of the production systems in increasing 

homozygosity in specific regions of the genome. In low input village production systems in the 
sampled regions, climate ranges from heat and drought, pose selection pressure. Although different 
regions were identified between the two analysis, gene functions overlapped showing the complexity 
of response to production and environmental pressure. 
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SUMMARY
In beef cattle, genomic selection has promising benefits for the improvement of carcass traits such 

as meat quality, because estimated breeding values can be obtained without sacrificing the selection 
candidates. The objective of this study was to assess genomic prediction accuracy for meat quality 
traits in Hanwoo beef cattle. Genomic and phenotypic data from 2,110 Hanwoo steers were used 
to predict genomic estimated breeding values for marbling score, meat texture and meat colour. The 
accuracy of the genomic breeding value was assessed by using cross-validation for two scenarios; 1) 
when the reference population of animals with phenotype and genotype included family members and 
2) when family members were excluded. The mean cross-validation accuracy of genomic predictions 
for marbling score were 0.32 and 0.46 for the distantly and closely related validations set, respectively. 
These accuracies were 0.28 and 0.39 for meat texture and 0.19 to 0.31 for meat colour. The results 
indicated that the accuracy of prediction was affected by the heritability of the trait and the degree of 
relationship between reference and test population. These results were based on a small sample size 
and should be validated with a larger data set.

INTRODUCTION
Genomic prediction uses DNA information to produce genomically enhanced estimation of breeding 

values (GBV) and it is increasingly applied in breeding programs for livestock species. The Genome-wide 
SNP based genomic prediction has the most benefit for traits that are difficult to measure, expensive to 
record or that are measured late in an animal’s life compared to pedigree-based estimates of breeding 
value (Meuwissen et al. 2001). Thus, genomic information can be applied to select young animals for meat 
quality traits without sacrificing the selection candidates, which is an important advantage of genomic 
selection in beef cattle. Prediction accuracy of GBV is an important parameter in designing breeding 
programs with genomic selection. The accuracy of genomic prediction mainly depends on the size and 
the diversity of the reference population, the heritability of the trait, the linkage disequilibrium (LD) 
between SNP and QTL, and the methods that will be used for prediction (Daetwyler et al. 2012). The 
accuracy also depends on the relationship between the reference population and the target animals to be 
predicted (Clark et al. 2012). The accuracy of GBVs should be validated before implementing a genomic 
selection-breeding program and the most common way to assess GBV accuracy is using cross-validation.

Several genomic prediction studies have been reported for meat quality and carcass traits on various 
beef cattle around the world (Chen et al. 2015; Magalhães et al. 2019). However, few have included 
indigenous Korean beef cattle (Hanwoo) and prediction accuracies may differ between breeds due to 
the effective population size (Ne) differences among breeds. As a result, there is no comprehensive 
study on assessment of genomic prediction accuracy for marbling score, meat texture and meat colour 
in Hanwoo cattle. Therefore, the objective of this study was to assess genomic prediction accuracy 
for meat quality traits in Hanwoo cattle.
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MATERIALS AND METHODS
Data structure and quality control. Phenotypic data from 2110 Hanwoo steers were used and all 

individuals were slaughtered at the same age (24 months). Details of feeding, management practices 
and traits measurements are reported elsewhere (Bhuiyan et al. 2018). Marbling score (MS) was 
assessed and scored (1 to 9 scale). Similarly, meat colour (MC) was assessed and graded from very 
light red (grade 3) to dark red (grade 7), and meat texture (MT) was evaluated on a scale from very 
fine (grade 1) to coarse (grade 3). All animals with phenotypic data were genotyped with the 50k SNP 
Chip (Illumina Bovine SNP50 BeadChip; Illumina, San Diego, CA). SNPs that had a minor allele 
frequency (MAF) less than 1% were removed as well as those with p-values for Hardy-Weinberg 
equilibrium (HWE) less than 0.1%. Finally, 40197 SNPs passed the quality control thresholds and 
were used for the analysis.

Statistical model and data analysis. Genomic best linear unbiased prediction (GBLUP) was used 
to predict the breeding value for each trait. The genomic relationship matrix (G) (Yang et al. 2010) 
was used in a univariate linear mixed model to estimate the GBV and heritability. The model was:  
y = 𝐗𝐛 + 𝐙𝐮 + 𝐞, with b being a fixed effect of kill group and u was a random additive genetic effect 
of the animal with var(u)=G. ASReml version 4.1(Gilmour et al. 2015) was used for the data analysis.

Cross-validation. Two 10-fold cross-validation (CV) scenarios were used. In the first scenario, 
2110 steers were divided into 10 folds using random sampling of individuals (RCV). Each of the 
folds (n=211, 10%) was used as validation whereas the other folds (n=1,899, 90%) were used as the 
reference population. In the RCV scenario, there was a relatively close relationship between validation 
and the reference population, because half-sibs of animals in the validation set could be present in the 
reference population. In the second CV scenario, the 2110 steers were divided into ten folds based 
on family-based sampling techniques (FCV). Steers in every ten subsets came from 25 sires and the 
number of steers in each validation data set was varied from 179 to 238. Thus, in the FCV scenario, 
the validation steers did not have any siblings in the corresponding reference population, indicating 
that there was a relatively distant relationship between validation and reference population. Finally, 
the accuracy of GBV was assessed using the Pearson product-moment correlation between GBV and 
corrected phenotypic value (𝑦𝑐) divided by the square root of heritability, where 𝑦𝑐 was the phenotypic 
value corrected for the kill batch effect. The bias in the variance of the estimated breeding values 
was measured through the regression coefficient (slope) of the corrected phenotypes on the estimated 

predicted breeding values. . 
Summary statistics for meat quality traits Mean, minimum (Min), maximum (Max), standard deviation 
(SD) and coefficient of variation (CV%) are shown in Table 1.

Table 1. Summary statistics for the three meat quality traits in the 2110 Hanwoo steers
Traits Sample size Min Mean SD Max CV%
Marbling score 2110 1 3.23 1.50 9 46.4
Meat texture 2110 1 1.65 0.50 3 30.3
Meat colour 2110 3 4.8 0.55 7 11.5

RESULTS AND DISCUSSION
Assessment of genomic prediction accuracy. The estimated heritabilities for MS, MT and MC 

are shown in Table 2, with traits with higher heritability having higher prediction accuracy (Figure 
1). In the RCV scenario, MS had the highest (0.46) prediction accuracy, with accuracies being 0.39 
for MT and 0.31 for MC. In the FCV scenario, the accuracy of genomic prediction for MC was lower 
(0.19) compared with 0.32 for MS and 0.28 for MT. As shown in Table 2, the RCV scenario was more 
accurate and less biased than the FCV scenario for all studied traits.
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Figure 1. Accuracies of genomic prediction for the three studied traits with random and  
family-based cross-validations

Table 2. Slope of genomic predictions and heritability for the studied traits

Traits MS MT MC
Slope RCV 0.92±0.11 0.90±0.07 0.77±0.16
Slope FCV 0.88±0.11 0.88±0.15 0.70±0.24
Heritability 0.46±0.05 0.30±0.05 0.15±0.04

In the current study, the empirical accuracy based on FCV were 14, 11 and 12% lower than those 
based on RCV for MS, MT and MC traits, respectively. A similar study in chicken for the traits 
associated with growth showed that FCV yielded lower genomic prediction accuracy than RCV (Liu et 
al. 2017). In our study, the accuracy of genomic prediction increased with increasing the relationship 
between validation and reference population. Similarly, (Clark et al. 2012) found that the prediction 
accuracy was improved as the degree of relationship between the validation and reference population 
increased. The way of a data splitting strategy for cross-validation affects prediction accuracy. For 
instance, the RCV does not consider the data structure such as age, family and relatedness, while 
FCV increases relationships within a group but decreases between groups. Thus, the genetic distance 
of the reference population from the group of selection candidates determines the accuracy of GBV.

Reports on the accuracy of genomic prediction for beef cattle are limited and are usually based 
on small data sets. A previous study in Hanwoo cattle showed that the genomic prediction accuracy 
for IMF varied from 0.37 to 0.45 based on different GRMs (Choi et al. 2017) using 778 genotyped 
Hanwoo steers. The study used 5- fold family-based cross-validation techniques and sampled 706 and 
72 steers into reference and validation data sets, respectively. The genomic prediction accuracies for 
meat quality traits have also been studied in other beef cattle breeds. Chen et al. (2015) reported an 
accuracy of 0.37 for genomic prediction of marbling score in Angus cattle using 543 genotyped steers. 
A recent study (Magalhães et al. 2019) reported a prediction accuracy of 0.40 for a trait associated 
with meat colour in Nellore cattle using 5000 genotyped animals. In that study, the animals were 
divided into two groups for reference and validation sets based on year of birth and animals born in 
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the last year were used as a validation population.
In general, it is difficult to compare the accuracies from different studies because of differences in 

trait heritabilities, training and validation set sizes, data splitting strategies to reference and validation, 
and statistical methods to estimate marker effects. Likewise (Luan et al. 2009; Daetwyler et al. 2012) 
established that the data splitting strategies to reference and validation affected prediction accuracy.

Furthermore, different breeds have different population structure and vary in diversity. In a 
less diverse population with small effective population size (Ne), animals share large chromosome 
segments, which lead to relatively high prediction accuracy. In the current study, moderate (0.31 to 
0.46) prediction accuracies were found in the RCV scenario for the studied meat quality traits. The 
small sample size could affect the prediction accuracy in our study. Therefore, the obtained prediction 
accuracy in the current study should be confirmed with a large sample size prior to starting the intended 
breeding program in Hanwoo cattle.

CONCLUSIONS
Genomic predictions for meat quality traits in beef cattle are potentially valuable because it can 

be applied early in life and do not require potential selection candidates to be sacrificed. Our study 
shows that marbling score and meat texture traits had higher genomic prediction accuracy, suggesting 
that selection for these traits may improve meat quality in Hanwoo cattle. The accuracy of genomic 
prediction was affected by the heritability of the studied traits and the method of sampling the training 
and validation sets, which affected the degree of relationship between validation and reference 
populations. Overall, the current estimated genomic prediction accuracy could be affected by the 
small sample size used in the study and should be confirmed with large sample sizes.
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SUMMARY
Cow fertility is a major driver of profitability in Northern beef herds. Cow fertility has been difficult 

to select for, and the availability of genomic estimated breeding values (GEBV) would enable more 
rapid gains to be made. Ideally GEBV would be from a multi-breed genomic evaluation, given the 
wide range of breeds, composites and crossbreds used in Northern Australia. With this ultimate goal 
in mind, 14,552 heifers in 54 herds across Northern Australia were genotyped and phenotyped for 
CLscore (presence or absence of a corpus luteum at approximately 600 days), a proxy trait for age at 
puberty, a trait in turn correlated with cow lifetime productivity. Genomic heritabilities estimated from 
the data set were 0.32, 0.42, 0.22 and 0.25 for weight, hip height, body condition score and CLscore 
respectively. The accuracy of GEBV in nine validation herds (where accuracy was the correlation of 
GEBV for CLscore and the actual CLscore for the heifers within a herd, representing a wide range 
of breed composition were 0.30, 0.50, 0.25 and 0.40 for weight, hip height, body condition score and 
CLscore respectively. For CLscore, this accuracy suggests gains for fertility could be made through 
selection on GEBV. The data set analysed here represents approximately half the data that will be 
collected in the Northern Genomics Project.

INTRODUCTION
Cow fertility is a key driver of productivity and profitability of beef production in northern Aus-

tralia (Taylor and Rudder 1986; Fordyce 2012; Johnstone et al. 2014). Genomic estimated breeding 
values (GEBV) for cow fertility would enable more rapid genetic gains for these traits. However, 
accurate genomic evaluations for low heritability traits such as fertility require large reference 
populations (e.g. Goddard and Hayes 2009), with thousands of cows measured for both the traits of 
interest and genotyped for genome wide markers. Assembling such large reference populations for 
each breed used in Northern Australia is likely to be challenging, as the cattle population consists 
of many breeds, crossbreds and composites. Cattle populations include high proportion Bos indicus 
breeds (e.g. Brahman), stabilised composites (e.g. Droughtmaster and Santa Gertrudis), adapted Bos 
taurus breeds, and many composites. An alternative to constructing reference populations within 
each breed is to use multi-breed genomic evaluations, where the reference set includes cows from 
across Northern Australia.

Here we test the accuracy of GEBV for fertility and other traits from using such a reference set, 
in this case consisting of 14,552 heifers (reference and validation) from 54 commercial properties 
across Northern Australia.

MATERIALS AND METHODS
Animals and Phenotypes. Fifty-four collaborator herds from across Northern Australia are 

participating in the Northern Genomics project. The data set includes crossbred and, in some cases, 
purebred Angus, Belmont Red, Brahman, Charolais, Droughtmaster, Shorthorn, Limousin, Santa 
Gertrudis, Boran and Wagyu heifers. The fertility trait measured on the heifers to date is cycling or 
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not cycling by approximately 600 days (CLscore) assessed by ovarian scanning, as described by 
(Corbet et al. 2018). To maximise genetic variation, the trait is actually measured when an estimated 
50% of heifers are pubertal, ie, at 1.0-2.5 years of age. As an alternative to CLscore, CLrate was also 
measured, where 1 = Acyclic, 2 = Dominant follicle 10mm or less, 3 = Dominant follicle greater 
than 10mm, 4 = Corpus luteum is present, and 5= Cow is pregnant (Burns et al. 2016). Weight, body 
condition score, hip height, fly lesions, and tick scores were also collected at the time of scanning.  
Tail hairs have currently been taken from all heifers for genotyping.

Genotypes. All heifers were genotyped with the 35K tropBeef SNP array by Neogen, Australasia. 
Genotypes were imputed up to 728,785 SNP (Bovine HD array) using the Fimpute software (Sargol-
zaei, et al. 2014), and a panel of 3,140 cattle of relevant breeds genotyped for the Bovine HD array.

Statistical Analysis. We first estimated breed proportions of each heifer for each of the 12 breeds 
known to be in the data set (using the 35K array data only). Previously, a separate large data set con-
sisting of only purebred cattle was used to estimate SNP effects for breed composition. A GBLUP 
model was fitted, where the phenotype was 1 if the animal was of that breed and 0 if not (Dodds et 
al. 2014). The effects of each SNP for the proportion of each breed was then derived by back-solving 
for the SNP effects (Yang et al. 2011), and the resulting prediction equations for each breed were 
used to estimate breed proportions in the heifers. Then the model fitted to the CLscore, CLrate, height 
and weight data was 

​y  =  μ + cohort + year + het + breedprop + animal​+error
where y is a vector of trait records (CLscore,CLrate,weight, hip height or body condition score, µ 
is the population mean, cohort is the property+yeardrop+paddock that the heifers were in prior to 
mustering for trait recording, year is the year of recording, het is the heterozygosity of each heifer as 
measured by the proportion of markers that were heterozygous (to capture heterosis effects), fitted as a 
liner effect breedprop is a series of 12 covariates (11 breeds and Bos indicus content), measuring the 
proportion of each breed in the heifers as described above, and animal is a vector of random effects 
~ N(0, G​​σ​ g​ 

2​​), with G the genomic relationship matrix among all heifers (Yang et al. 2011) and ​​σ​ g​ 
2​​ the 

genetic variance captured by the SNP markers, and error is a vector of random deviations  ~ N(0, I​​σ​ e​ 2​​).  
Variance components were estimated in GCTA (Yang et al. 2011), and the heritability of the traits 
(actually the proportion of phenotypic variance captured by the SNP) was estimated as h2=​​ ̂  ​σ​ g​ 

2​​​/(​​ ̂  ​σ​ g​ 
2​​​+​​ ̂  ​σ​ e​ 

2​​​).  
The accuracy of GEBV was evaluated by dropping out 9 herds at random (but these 9 herds had 

to have at least two-year cohorts in the data set). The breed composition within the 9 herds (2,205 
heifers) ranged from purebred Brahman to crossbreds of Bos taurus breeds.  There were 12,347 
heifers in the reference population. GEBV were predicted for the heifers in the 9 excluded herds, 
then the GEBV were correlated with the actual phenotypes (adjusted for fixed effects) of the heifers 
within each herd. This correlation was divided by the square root of the heritability of the trait to 
get the accuracy of genomic prediction. Accuracy was calculated either dropping out all of the data 
from the 9 herds, or just the last year drop. The latter approach was taken to assess the improvement 
in accuracy when a herd has some data in the reference set.

Ultimately for multi-breed evaluations, head to head comparisons of breeds in the same herd/
environment are necessary. We assessed how many head to head comparisons as ​​∑ i​ 

n​ ​X​ i​ ′​ ​X​ i​​​​ where for 
each of n cohorts in the data set, ​​X​ i​​​ is a matrix of breed proportions in cohort i, of dimensions number 
of heifers in the cohort x number of breeds (12).

RESULTS AND DISCUSSION
The heritability of the traits estimated from the genomic data was moderate (for CLscore, CLrate 

and body condition score), and higher for weight and hip height (Table 1).
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Table 1. Trait genomic heritabilities and standard errors

Trait Heritability Standard error
Weight 0.32 0.02

Hip height 0.43 0.02
Body condition score 0.22 0.02

CLscore 0.25 0.01
CLrate 0.22 0.01

Heritabilities were consistent with previous estimates for these traits in tropical beef cattle data 
sets derived from pedigree (eg Corbet et al. 2018). Accuracies of GEBV in the 9 validation herds 
were moderate (Figure 1). Accuracies of GEBV were higher when the validation herds had a cohort 
in the dataset.

Figure 1. Accuracy of GEBV in nine validation herds.  The data for these herds was either com-
pletely removed from the reference population (“herd not in reference”) or the last cohort of 
heifer data was removed from the reference and used as the validation set (“herd in reference)

The number of head to head comparisons possible from the data set, which enables estimates of 
breed effect, reasonable for Angus versus Brahman, Brahman versus Droughtmaster and Brahman 
versus Santa Getrudis, but was lower for other breed combinations, Table 2. This suggests the data 
set will contribute to multi-breed genomic evaluations for many, but not all breeds used in Northern 
Australia. 

CONCLUSIONS
The results of this preliminary study, both in terms of genomic heritabilities, and accuracy of GEBV 

are promising. Heritability’s of the traits measured on the 14,552 heifers phenotypes and genotyped 
to date are consistent with heritability previously reported for tropical beef cattle, based on pedigree 
and data. Accuracies of GEBV, including for the fertility traits CLscore and CLrate were moderate, 
but of sufficient magnitude to suggest genetic gains could be made by selecting for GEBV for these 
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traits. The utility of GEBV are enhanced by the fact that they work to some extent across breeds (the 
validation set included herds with Bos indicus, Bos indicus x Bos taurus and Bos taurus cattle) The 
heifer data here represents approximately half the data that will be collected in the Northern Genom-
ics Project (which aims to genotype and phenotype 30,000 heifers from the 54 collaborating herds). 
Additional traits will include heifer rebreed success and follow up pregnancy tests for a number of 
years. Given the results reported here, the complete data set should enable reasonably accurate GEBV 
for several fertility traits related to cow lifetime productivity, especially when this data is combined 
with other data sets, for example in BREEDPLAN.

Table 2. Number of head to head breed comparisons in the data set, where each cell represents 
the number of genomes for a breed being compared to the number of genomes of the other 
breed. Empty cells indicate no comparisons for that breed combination

Angus Belmont 
Red Brahman Charolais Drought-

master Hereford Limousin Santa 
Gertrudis Shorthorn Wagyu

Angus
Belmont Red 11
Brahman 315 37
Charolais 26 165
Droughtmaster 120 17 603 42
Hereford 52 94 16 59
Limousin 25 87 14 31 15
Santa Gertrudis 116 12 311 34 144 37 31
Shorthorn 36 79 12 58 16 12 45
Wagyu 12 40 27 19
Boran 51 13
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SUMMARY
Denser genotypes on individuals has the potential to enhance genetic gain through accuracy of 

genomic selection. However denser genotypes, such as whole genome sequencing, on large numbers 
of animals is costly. This can be overcome by selecting suitable reference candidates for denser 
genotyping to describe the population, allowing for accurate imputation of the unselected candidates 
(target population). Two methods to select reference candidates were compared: the MCA method 
which utilises a pedigree based relationship matrix, and the MCG method which utilises a genomic 
relationship matrix. In a Wagyu population, the MCG method gave slightly superior imputation 
accuracies in the target population across differing reference population sizes as well as explaining 
5% more of the genetic variance in the population when 100 candidates were selected. Similarity 
between chosen candidates was high between the two methods having selected 71 animals in common 
out of 100 with a high rank correlation of 0.82.

INTRODUCTION
Whole genome sequencing presents as an opportunity to capture more information about the 

genetic structure of a population which can be utilised in breeding program and mating decisions 
through genomic selection methodologies. However, it is costly with sequencing to 30x coverage 
costing approximately $1000 per sample. Through the use of imputation, high density genotyping 
does not need to be carried out population wide as “filling in the blanks” of sparsely genotyped 
individuals to higher densities can be completed using inferred haplotypes. One method of genomic 
selection is genomic best linear unbiased prediction (G-BLUP; Clark and van der Werf 2013) which 
utilises a relationship matrix calculated from a genotyped set of individuals. The resulting relationship 
matrix can be utilised to determine which individuals are the best candidates to describe variation 
in the population (i.e. form the reference population) and therefore suitable for genome sequencing 
to achieve high imputation accuracies. This is the aim of the commercial Wagyu breeding program 
behind this study and while other methods exist, e.g. Bickhart et al. (2015), the convenience of using 
a relationship matrix, having been already constructed for genomic evaluations, was appealing.

MATERIALS AND METHODS
Selection of candidates was carried out using two methods described by Yu et al. (2014). The first, 

denoted the MCA method, selects candidates for whole genome sequencing by minimising the genetic 
variation of the target population, relative to the selected pool, in order to improve their imputation 
accuracy. This method utilises Wrights numerator relationship matrix (A) such that;

A11
* = A11 – A12A22

-1A21
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where the 1 subscript denotes the set of target animals and 2 subscript denotes the set of animals 
selected to be sequenced. Diag(A11

*) are the residual variances that are expected to remain if sequence 
data were to be obtained from the selected individuals and used to predict/impute genotypes of the 
target set. Animals were selected using an iterative process. A was constructed using an Australian 
Full-Blood Wagyu pedigree comprised of 10,549 individuals with a depth of up to 9 generations from 
the current generation using the R package pedigreemm (Bates and Vazquez 2014).

The second method (MCG) is akin to MCA but utilises a genomic relationship matrix (G) in place 
of A. G was constructed as per VanRaden (2007) method 2, utilising genotype information on 5,334 
individuals genotyped with 30K GGP-LD (Neogen: GeneSeek Operations) or Bovine VersaSNP 50K 
(Weatherbys Scientific) chips. Animals genotyped on the Versa SNP were imputed to 30K from the 
approximate ~10K overlap between the chips, due to the significantly larger reference population 
available (4940 vs. 394), using Fimpute 2.2 (Sargolzaei et al. 2014). After imputation, SNPs were 
retained that had a minor allele frequency greater than or equal to 0.05 before building the GRM. 
All genotyped animals were present in the pedigree resulting in 5,334 animal overlap between the 
numerator (A) and genomic (G) relationship matrices.

Imputation accuracy, described here as the correlation between true and imputed genotypes (r), 
was calculated for the 4,940 individuals genotyped on the 30K chip by masking their true genotypes 
to a ~10K density. Seven rounds total of single replicate genotype imputation (Fimpute 2.2) was then 
carried out using 4 reference population sizes (100, 50, 25, 10) of animals selected for whole genome 
sequencing from the 2 methods (MCA or MCG respectively).

RESULTS AND DISCUSSION
The degree of similarity between the MCA and MCG methods was very high with MCA selecting 

71/100 individuals that were selected by MCG. Of the animals that were selected by both methods, 
they were ranked very similarly with a strong positive rank correlation of 0.82 (Figure 1). This is a 
stronger relationship than previously reported Yu et al. (2014), however with approximately half of 
the animals in the pedigree having been genotyped and the target population also being the potential 
selection pool it is less surprising the lists are similar. The MCG method did account for slightly more 
genetic variance reaching 35% when 100 animals were selected compared to 30% accounted for using 
the MCA method. The first 20 selected animals accounted for 19% and 21% of the genetic variance 
for the MCG and MCA method respectively with each additional animal there after contributing less 
information (Figure 2).

Figure 1. Correlation between ranks of candidates selected for whole genome sequencing using 
the MCA or MCG methods respectively
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Figure 2. Diagonal values of A* representing the percentage of genetic variance explained for 
each additional selected candidate for whole genome sequencing using the MCG method (top) 
or MCA method (bottom)

A common logic is to identify animals that have a higher number of descendants, i.e. are considered 
influential, to be selected for sequenicng. For 100 genotyped sires (with effective progeny numbers 
of 1 to 437, mean = 47, in this population) the amount of genetic variation accounted for was 30%, 
equivalent to the MCA method but lower than MCG method.

Imputation accuracy was calculated for both the MCG and MCA method. Larger reference 
populations gave the highest imputation accuracies which is to be expected. For animals selected 
using the MCG method, selecting 100 animals was fairly comparable to selecting 50 animals with a 
noticeable drop in the mean accuracy from ~0.96 to 0.94 and 0.83 when 25 and 10 animals are selected 
respectively (Table 1). For MCA, out of the 100 selected animals, only 75 were genotyped and so 
could be used to calculate imputation accuracy. For comparisons sake, only reference populations 
of 50, 25 and 10 were constructed. MCA selected animals who weren’t genotyped were generally 
lowly ranked, however a few non-genotyped candidates were present in the higher ranks. Therefore 
the MCA reference populations are not “perfectly” ranked as per the MCA method. Higher ranked 
animals that were not genotyped were replaced by the next available ranked animal until the desired 
number was sampled.  The mean accuracies for MCA at 50, 25 and 10 reference animals were 
comparable to MCG although MCG was slightly superior. Noticeably though MCA did have a much 
higher minimum accuracy of 0.67 compared to 0.55 for MCG which indicates a narrower spread of 
imputation accuracies giving more successful imputation overall (Table 1).
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Table 1. Imputation accuracy calculated for sparse 11K genotypes imputed to 30K using differing 
reference populations of different sizes selected from two methods

MCG MCA
Ref size 100 50 25 10 -* 50 25 10
Min 0.5495 0.5482 0.5474 0.5101 - 0.6724 0.5317 0.5139
Mean 0.9756 0.9659 0.9395 0.8331 - 0.9627 0.9271 0.834
Max 0.9996 0.9992 0.9968 0.9725 - 0.9995 0.9978 0.9863

* For MCA, out of the 100 selected animals, only 75 were genotyped and so could be used to calculate imputation 
accuracy. For comparisons sake, only reference populations of 50, 25 and 10 were constructed. For MCA the 
next available candidate was selected if no genotype was available and so reference populations do not display 
perfect ranking but can be used as an example.

Both the MCA and MCG method assumed that all potential selection candidates had DNA available 
for sequencing and in a commercial pedigree this is not always the case. This fact became partially evident 
in the imputation study where not all MCA selected candidates had genotypes to form the reference. 
This is an important consideration and both methods could be easily modified to account for this. Within 
an iteration, the animal that is selected is logically the one that reduces the residual genetic variance of 
the target population i.e. Diag(A11

*), the most. Multiplying each candidates impact on the residual by a 
simple vector of 0 (no DNA available) or 1 (DNA available) would ensure that only candidate animals 
with DNA are selected. This would also prevent bias when selecting sequence candidates to form the 
reference if you were just to remove animals with no DNA from the analysis all together.

CONCLUSIONS
For a full-blood Australian Wagyu herd their appeared to be little difference between the MCG and 

MCA methods for selection of candidates for whole genome sequencing. Both methods accounted 
for greater than 30% of the genetic of the target population when selecting 100 candidates and had 
comparable imputation accuracies up to 30K. Given the large volume of genotypes and deep, complete 
pedigree, either method would be suitable to select whole genome sequencing candidates to form 
the reference population for imputation. At the commercial level, the MCG method was selected to 
sample 73 candidates for sequencing due to the higher likely hood of selecting candidates with DNA 
sources (hair or semen) available in the first instance and the need to QC each individual hair sample 
in store prior to DNA extraction if semen was not available.

REFERENCES
Bates D. and Vazquez A. (2014). pedigreemm: Pedigree-based mixed-effects models. R package 

version 0.3-3.https://CRAN.Rproject.org/package=pedigreemm
Bickhart DM., Hutchison DJ., Null DJ., VanRaden PM. and Cole JB. (2015) J. Dairy Sci. 99:5526.
Clark S., van der Werf J. (2013) In: Genome-Wide Association Studies and Genomic Prediction. 

Methods in Molecular Biology (Methods and Protocols), pp. 321- 330, editor Gondro C., van der 
Werf J. and Hayes B. Humana Press, Totowa, NJ

Neogen: GeneSeek Operations. https://genomics.neogen.com/pdf/ag151_ggp_ts.pdf
Sargolzaei M., Chesnais J. and Schenkel F.  (2014) BMC Genomics 15:478 
VanRaden PM (2008) J. Dairy Sci. 91: 4414.
Weatherbys Scientific. 2017, https://weatherbysscientific.com/versasnp/
Yu X., Woollimas J. and Meuwissen T. (2014) Gen. Sel. Evol. 46: 46.



290

﻿Genomic Selection 1

THE ACCURACY OF GENOTYPE IMPUTATION IN SELECTED SOUTH AFRICAN 
SHEEP BREEDS FROM AUSTRALIAN REFERENCE PANELS

C.L. Nel1, K.P. Gore2, A.A. Swan2, S.W.P. Cloete1,3, J.H.J. van der Werf 4 and K. Dzama1

1Department of Animal Science, University of Stellenbosch, Stellenbosch, WC, 7602 South 
Africa

2Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia
3Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, 7607 South 

Africa
4School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351 

Australia

SUMMARY
The cost of genotyping is becoming increasingly affordable but remains an influential factor for 

determining the SNP-density at which genotyping can proceed. Compared to Australian breeding 
programs, the South African wool sheep industry represents parallel objectives within similar envi-
ronments but presently lacks the necessary infrastructure to exploit modern technologies such as 
genomic selection. The aim of the study was to determine the feasibility of across country imputation 
as an alternative to high density genotyping on a local basis. Following imputation from a 15k to 
50k density, mean accuracy levels of 0.87 and 0.85 were observed in the Merino and Dohne Merino 
breeds, while the highest levels of accuracy of 0.88 and 0.90 was observed in the Dorper and White 
Dorper breeds, respectively. The extent of genetic relationships was considered amongst the key 
factors that limit the ability to impute at an accuracy above 90%, but the observed results suggest 
that across country imputation could remain useful. Imputation from reference panels genotyped at 
densities higher than 50k and research into across country prediction is recommended.

INTRODUCTION
Genomic prediction and Genome Wide Association Studies (GWAS) depend on the size of the 

reference population as well as the density at which informative individuals were genotyped.  Even 
though medium and high density genotyping options are becoming more affordable, cost remains 
a restricting criterion for the choice of a genotyping platform. Economic restrictions are likely to 
be more severe within a developing infrastructure as is currently experienced in South Africa (Van 
Marle-Köster and Visser 2018). There could be potential to exploit similarities in South African and 
Australian ovine breeds and environments through the compilation of genotypic resources. Imputation 
of un-typed markers of animals genotyped at a lower density has proven a reliable and affordable 
alternative to widespread genotyping on high density platforms (Browning and Browning 2007; Berry 
and Kearney 2011; Hickey et al. 2011; Huang et al. 2012; Moghaddar et al. 2015). The objective of 
this study is thus to investigate the potential of across country imputation of South African datasets 
from Australian reference populations from low (15k) to medium (50k) densities.

MATERIALS AND METHODS
Data Structure and Distribution. The South African sample set was selected from multiple 

breeds within respective resource flocks (Schoeman et al. 2010) as well as a smaller proportion of 
animals originating from the industry sector. Genotyping of the South African (SA) sample set was 
performed with the OvineSNP50 (Illumina Inc., CA, USA) beadchip at GeneSeek Inc. (Lincoln, NE, 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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USA) and subjected to quality control measures (> 0.25 GenCall score, > 0.5 GenTrain score, > 0.01 
MAF, > 0.95 call rate, > 0.95 sample call rate). Following imputation of randomly missing SNPs, 986 
samples with 50095 SNPs remained available for further analysis. Animals were grouped by breed 
type, namely Merino (552), Dohne Merino (60), Dorper (59), South African Mutton Merino (57), 
Dormer (42), Meatmaster (39) and White Dorper (27) while the hardy native breeds Damara (30), 
Pedi (29) and Afrikaner-type (13) animals were grouped together as ‘Indigenous’ (72). The Australian 
reference set constituted a database of ~ 84 000 samples from multiple breeds that serve as respective 
reference populations in genomic prediction programs. The major proportions of the dataset were 
classified as Merino, maternal (Border Leicester and Coopworth) and terminal (Poll Dorset and White 
Suffolk) groups. The same OvineSNP50 genotyping platform was used in generating the Australian 
database and 48 599 SNPs were available for analysis following quality control.

Design. All 986 SA samples were subset to ~ 15k SNPs using Illumina map information to sim-
ulate a commercial 15k beadchip. Analysis proceeded by the subsequent imputation back up to the 
50k density using an Australian reference. The accuracy of imputation was evaluated by Pearson 
correlation coefficients between the imputed and observed SNP genotypes. To reduce computation 
time and increase accuracy (Moghaddar et al. 2015), the Australian reference set was screened by 
assigning an animal in the sample set with the top 50 highest values of animals in the reference set 
according to a genomic relationship matrix (GRM) that included all the animals in the study. Thus, 
animals from the reference set not meeting this criterion for any of the animals in the sample set 
were not used for imputation.

Software. Genotype imputation was performed using FIMPUTE (V2.2) (Sargolzaei et al. 2014). 
The program assumes a level of relatedness between all individuals and phases reference sets with 
overlapping sliding windows that is shrunk in proceeding increments with each chromosome sweep. 
The initial larger window sizes aim to capture the long-range haplotypes expected from highly 
related individuals, while the subsequent sweeps aim to capture relationships between more distant 
individuals. The inclusion of pedigree information is an optional addition to FIMPUTE, but it was 
not supplied in the current analysis. Summary statistics and visual analyses were performed in R (R 
Core Team 2016, Vienna, Austria).

RESULTS AND DISCUSSION
The accuracy of imputation varied considerably both between and within breeds. The accuracy of 

imputation for indigenous breed group was very low (mean = 0.68) and is not represented in subsequent 
figures and tables. A low accuracy is to be expected considering their heterogeneous nature and poor 
representation within the Australian reference set. Moreover, concerns have been raised surrounding 
an underrepresentation of indigenous breeds in the design of commercial bead chips (Sandenbergh 
et al. 2016). Table 1 shows the summary statistics for imputation accuracy (correlation coefficients) 
for the remaining breed groups.

The accuracy for Merino samples was moderate, as Pearson’s correlations ranged from 0.82 to 
0.90. This is considerably lower than correlation coefficients of 0.93 to 0.96 reported by Moghaddar 
et al. (2015) for 1,000 purebred Merinos imputed from smaller proportions of the same reference 
set. Hayes et al. (2012) reported considerably lower values of accuracy (71%) for imputing Merino 
samples from 5k to 50k densities, but with a reference set confined to ~ 5000 animals. Moderate 
accuracies were also observed for Dohne Merino and the South African Mutton Merino (SAMM) 
individuals, while the imputation accuracy for Dormers and Meatmasters were below 0.80.
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Table 1. Summary statistics for the imputation accuracy of all South African breed groups in 
the sample set

Merino Dohne 
Merino Dorper SAMM Dormer Meat 

-master
White 
Dorper

(n) 552 60 59 57 42 39 27
Min. 0.82 0.82 0.85 0.81 0.76 0.72 0.87
1st Quartile 0.86 0.85 0.87 0.83 0.78 0.74 0.89
Mean 0.87 0.85 0.88 0.85 0.79 0.75 0.90
3rd Quartile 0.87 0.86 0.89 0.86 0.79 0.76 0.91
Max. 0.90 0.88 0.90 0.87 0.81 0.78 0.92

The Dorper and White Dorper breeds achieved moderately high to high imputation accuracies. 
The Dorper originates from South Africa, and it is possible that the animals that represent them in 
the Australian database have not drifted extensively from the ancestral lines or share relatively recent 
parental links. Considering the size of the Australian reference set and the large proportion of Merinos 
included, it could be considered somewhat unexpected that none of the Merino test samples attained 
an imputation accuracy of above 0.90. However, the number of reference samples available as well 
as their relatedness to the sample population is considered essential factors in the accurate phasing 
of haplotypes for the imputation of un-typed markers.

Figure 1. Box plots for the imputation accuracies for all South African breeds in the sample set

Analyses that characterize haplotypes using population linkage disequilibrium (LD) based methods 
do not utilize a pedigree, but indirectly capture patterns associated with identity by descent (IBD), the 
accuracy of which is complemented by the indication that there is little benefit in including pedigree 
data if the reference set is large enough (Browning and Yu 2009; Larmer et al. 2014; Moghaddar et 
al. 2015).  Hayes et al. (2012) proposes that haplotypes are not necessarily shared across breeds and 
that 50k genotyping platforms do not capture LD to an adequate level for across breed application. 
With markedly less family linkage, the proportion of genomic regions possibly considered IBD 
should be markedly smaller when attempting across country imputation. Thus, a similar argument 
to that proposed by Hayes et al. (2012) could be extended to the current results, despite the current 
study being within breed analysis. It is possible the denser 500k platform could provide improved 
phasing of the reference set that is less dependent on long range haplotypes and more appropriate for 
capturing linkage disequilibrium observable over distant populations.



293

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:290-293

CONCLUSIONS
Genotype imputation of un-typed markers in a population depends on the representation of that 

population within a reference set. There is little benefit in the addition of genetically dissimilar ani-
mals. Across country imputation will likely be limited by a lack of direct genetic links, but moderately 
high levels of accuracy can still be achieved within breeds. Research into across country genomic 
prediction for shared breeds is recommended.

REFERENCES
Berry D.P. and Kearney J.F. (2011) Animal 5: 1162.
Browning S.R. and Browning B.L. (2007) Am. J. Hum. Genet. 81: 1084.
Browning B.L. and Yu Z. (2009) Am. J. Hum. Genet. 85:847.
Hayes B.J., Bowman P.J., Daetwyler H.D., Kijas J.W. and van der Werf J.H.J. (2012) Anim. Genet. 

43: 72.
Hickey J. M., Kinghorn B. P., Tier B., Wilson J. F., Dunstan N., and van der Werf J. H. J. (2011) 

Genet. Sel. Evol. 43: 1.
Huang Y., Hickey J.M., Cleveland M.A. and Maltecca C. (2012) Genet. Sel. Evol. 44: 1.
Larmer S.G., Sargolzaei M. and Schenkel F.S. (2014) J. Dairy Sci. 97: 3128.
Moghaddar N., Gore K.P., Daetwyler H.D., Hayes B.J. and van der Werf J. H. J. (2015) Genet. Sel. 

Evol. 47: 1.
Sandenbergh L., Cloete S., Roodt-Wilding R., Snyman M. A. and Bester-van der Merwe A. E. 

(2016) S. Afr. J. Anim. Sci. 46: 2011.
Sargolzaei M., Chesnais J.P. and Schenkel F.S. (2014) BMC Genomics 15: 478.
Schoeman S.J., Cloete S.W.P. and Olivier J.J. (2010) Livest. Sci. 130: 70.
Van Marle-Köster E. and Visser C. (2018) S. Afr. J. Anim. Sci. 48: 808.



294

﻿Genomic Selection 1

APPLICATION OF GENOMIC SELECTION TO VIETNAMESE HOUSEHOLD 
DAIRY HERDS

N.N. Bang1,2, B.J. Hayes1, I.A.S. Randhawa1, R.E. Lyons1, J.B. Gaughan1, N.V. Chanh3, N.X. 
Trach2, N.D. Khang3 and D.M. McNeill1

1The University of Queensland, Gatton QLD 4343 and St Lucia QLD, 4067 Australia
2Vietnam National University of Agriculture, Hanoi, 131000 Vietnam

3Nong Lam University, Ho Chi Minh, 700000 Vietnam

SUMMARY
Household dairy farms (HDFs) account for most of the demand for animal breeding support in 

Vietnam, as they comprise 97% of the national herd. However, most do not have individual cow 
pedigrees or production data. Consequently, neither pedigree-based nor genomic selection (GS) methods 
have been used in Vietnam. The aim of this project was to establish a milk production database and 
assess the accuracy of GS for production traits using only a single test-day measurement (average of 
pm + am milking). Phenotypic data included milk yield (MILK, kg/d), milk dry matter (DM%), fat 
(FAT%), and protein (PRO%) contents of 345 lactating cows from 4 dairy regions, with 8 HDFs per 
region. The cows were genotyped using the Bovine 50K chip. GBLUP was used to estimate genomic 
heritability (h2) and evaluate the accuracy of GS per trait. Moderate heritabilities and accuracies of 
GS were detected for FAT% (h2 = 0.45, accuracy = 0.28), PRO% (h2 = 0.21, accuracy = 0.23), and 
DM% (h2 = 0.18, accuracy = 0.48). However, the heritability for MILK was very low (0.01) and the 
standard errors for all heritabilities and GS accuracies were high. These data suggest the potential for 
a single test-day to assess Vietnamese dairy cows for milk solid content, but not milk yield, using GS.

INTRODUCTION
The dairy industry in Vietnam is characterized by approximately 500,000 household dairy farms 

(HDFs) (Nguyen et al. 2016). The HDFs account for 97% of the national dairy herd (Trach 2017), 
and supply >80% of fresh milk production (Vinamilk 2017). Genotypes commonly used are European 
breeds (predominantly Holstein Friesian but also Jersey) crossed with tropically adapted breeds 
(Red Sindhi and Sahiwal) and local breeds (Yellow and Lai Sind) (Hayley 2010; Lam et al. 2010). 
Improving the genetic potential of dairy cows for milk production in HDFs is necessary to improve 
the national supply of fresh milk. However, a national breeding program for household dairy herds 
is yet to be officially implemented, even for basic traits such as milk yield, fat, or protein. A lack of 
individual cow pedigree and phenotypic data is the main reason for this.

Genomic selection (Meuwissen et al. 2001) is a recently proven method which is now widely 
used globally in dairy cow selection. This could be a suitable tool for dairy selection in Vietnam as 
it enables the selection of animals based on genomic markers, most commonly single nucleotide 
polymorphisms, or SNPs, without the need for pedigrees. However, whilst genomic selection does 
not require a pedigree, it does require a large number of animals with phenotypic data to allow the 
development of accurate prediction equations. These data are not easily obtained in Vietnamese 
HDFs. Such data is expensive to collect in terms of money, time, and labour, as it requires manually 
separating, weighing, and sampling milk from each cow at each milking time. Consequently, we 
aimed to estimate the genomic heritability for key milk production traits and to assess the accuracy 
of genomic selection on these traits using only a single test-day measurement for each.
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MATERIALS AND METHODS
Phenotype data. From August to October 2017, data from 345 lactating cows located on 32 HDFs, 

8 from each of four main dairy regions in Vietnam were recorded: Lam Dong – a south high-altitude 
province; Ho Chi Minh – a south low-altitude city; Son La – a north high-altitude province, and Ha 
Nam – a north low-altitude province. Each farm was visited twice to correspond with a milking in an 
afternoon and following morning. At these visits, individual cow age, number of lactations and days 
in milk were obtained by asking the farmer and/or checking their record books where possible, and 
tail hair was sampled from each lactating cow. The mean ± SD obtained for age (years), number of 
lactations, and days in milk of these cows were 4.5 years ± 1.7, 2.3 lactations ± 1.4, and 191.4 days 
± 120, respectively. A single day milk yield (MILK, kg/d) for each cow was obtained by weighing 
and summing the afternoon and the following morning milk yields. Milk samples for each cow were 
also collected at each milking, analysed at the Food Chemistry Lab (Vietnam National University of 
Agriculture) and averaged for milk dry matter (DM%, which is the percentage of all milk constituents 
excluding water), milk fat (FAT%), and milk protein (PRO%) contents. These data were used to 
calculate the yield of milk dry matter (DM, kg/d), fat (FAT, kg/d), protein (PRO, kg/d), and energy-
corrected milk (ECM, kg/d) using the equation of Tyrrell and Reid (1965).

Genotype data. Hair samples were genotyped by Neogen Australasia, The University of Queensland, 
Gatton. DNA was extracted from the samples using Sbeadex Livestock Kits (LGC Limited, 2017), 
and then genotyped using the GGP Bovine 50K chip, which assays 48,268 SNPs (Neogen GeneSeek 
Operations, 2018).

Quality control. R Software (R Core Team, 2016) was used for all data processing. The quality 
control on the genotype data removed 3,313 SNPs, which were either mitochondrial SNPs or unmapped 
SNPs, 5478 SNPs with call rates lower than 95%, 1980 SNPs with minor allele frequency lower than 
95%, and 633 SNPs with a heterozygosity deviating ±3 SD from the SNPs’ heterozygosity mean. One 
sample with a call-rate less than 95% was removed, in addition to three cows with heterozygosity 
deviating ±3 SD from the samples’ heterozygosity mean, 14 cows from fours farms with less than five 
lactating cows. Three cows had missing phenotypic data. The final data set for analysis comprised 
323 cows from 28 farms, genotyped for 36864 SNPs.

Genomic heritability and genomic breeding values. Univariate animal linear mixed models with 
common environmental effects (Mrode and Thompson 2013) were fitted using the GBLUP method in 
the R “Sommer package” and (Covarrubias-Pazaran 2019). The matrix notation describing the model 
was: y = Xb + Za + Wc + e, where: y was the vector of the traits observed, b was the vector of fixed 
effects (age, lactations, days in milk, days in milk squared), a was the vector of random additive 
genetic animal effects [a ~ N(0, Aσ2

a)], wherein A was the genomic relationship matrix derived from 
the SNPs, c was the vector of the random environmental farm effect (28 farms) [c ~ N(0, Iσ2

c)], e was 
the vector of residual random effects [e ~ N(0, Iσ2

e)], and X, Z, and W were the incidence matrices 
of the fixed effects, random additive genetic effects, and random environmental effects, respectively. 
Animal, random environmental and residual effects were assumed to be independently distributed. 
Heritability (h2) was estimated as the ratio of the additive genetic variance to total phenotypic variance 
[h2 = σ2

a / (σ
2

a + σ2
e)] (Falconer and Mackay 1996).

Accuracy of genomic selection. Due to the relatively small data-set, a 10-fold cross-validation 
approach was applied (Kang et al. 2017). Briefly, the entire data set, of 323 samples, were randomly 
partitioned into 10 subsets of equal size. Nine were used as a training set to determine genomic estimated 
breeding values (GEBV) for the retained validation set (10%). This process was repeated 10 times so 
that each subset was used only once as the validation set. The accuracy of genomic selection for each 
trait was determined by: Accuracy = r(𝐺𝐸𝐵𝑉, 𝑦)/h, where r was the correlation between GEBV and the 
original phenotype (y) of each validation set and h was the square root of genomic heritability of the trait.
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RESULTS AND DISCUSSION
MILK of the average household dairy cow in Vietnam was 17.87 kg/d (Table 1), which was much 

higher than other published survey estimates in Vietnam (14.0 – 16.0 kg/d) (Lam et al. 2010; Vu et 
al. 2016) but much lower than surveys in other developed countries such as Australia (22.9 kg/d) 
(DataGene 2017) or Asian countries such as Korea (27.8 kg/d) (Cho et al. 2013).

Table 1. Descriptive statistics for milk production traits in Vietnamese dairy cows

Trait n Mean SD Median Minimum Maximum IQR
MILK (kg/d) 321 17.87 6.28 17.8 5.3 36.65 8.75
DM% 323 12.22 1.22 12.1 9.46 16.36 1.63
FAT% 323 3.65 0.78 3.55 1.98 5.97 0.92
PRO% 323 3.30 0.48 3.25 2.29 5.64 0.61
ECM (kg/d) 321 16.75 5.23 16.44 5.31 33.23 7.43
DM (kg/d) 321 2.14 0.67 2.11 0.75 4.26 0.88
FAT (kg/d) 321 0.63 0.20 0.61 0.14 1.31 0.28
PRO (kg/d) 321 0.58 0.19 0.56 0.19 1.20 0.27

n: number of observations; SD: standard deviation; IQR: interquartile range; MILK: milk yield; DM: milk dry 
matter; FAT: milk fat; PRO: milk protein; ECM: energy corrected milk.

Genomic heritability estimates (Table 2) for DM%, FAT%, PRO%, DM, FAT, and PRO in our 
study ranged from 0.12 (PRO) to 0.45 (FAT%), which were moderate and similar to other comparable 
studies that used a far greater number of cows (Kim et al. 2009; Toghiani 2012; Cho et al. 2013). 
These studies presented heritability for FAT% ranging from 0.15 to 0.36, PRO% from 0.07 to 0.50, 
FAT from 0.28 to 0.52, and PRO from 0.26 to 0.34.  However, in the current study it should also 
be realised that the standard errors for these milk solid traits, except FAT%, were high. These high 
standard errors of the heritabilities could be because the single test-day measurements in our study 
were derived from the cows at wide ranges of lactations and days in milk, whereas the heritabilities 
for milk productions traits change widely throughout a lactation (Kim et al. 2009). 

The heritability for MILK in our study was also lower than expected (0.01) and with a high standard 
error (13 times the mean) when compared with other studies (0.15 to 0.46, Kim et al. 2009). The low 
heritability for MILK is likely due to high environmental and residual variances or measurement 
errors and so indicates a larger sample size would be required for a more acceptable estimate for that 
trait. Similarly, the low heritability for MILK was also the reason for the low heritability for ECM 
(0.08), as these was calculated from MILK.

The accuracies of GEBV from GBLUP for DM%, FAT%, and PRO% were moderate (0.23 to 0.48) 
and significantly different from zero, as the mean of accuracies for these traits were at least almost 
twice their standard errors. However, the accuracy for MILK in our study was inflated by its very low 
heritability (0.01) to become an unrealistically high number (>1). The accuracies of GS for other traits 
were unstable with moderate means (0.11 to 0.34), but with very high standard error (0.7 to 2 times 
the mean). To avoid inflated accuracy resulting from close family relationships between training and 
test animals, partitioning animal into training and validation sets should be based on family so that 
the highly related animals were in the same validation set (Pszczola et al. 2012). However, due to the 
lack of pedigree data, cows in our study were just randomly partitioned into training and validation 
sets and this could be a bias source in our GS accuracies.
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Table 2. Estimates of additive genetic variance (σ2
a), random environmental variance (σ2

c), resid-
ual variance (σ2

e), heritability (h2), correlation between GEBV and phenotype, and accuracy of 
genomic selection of milk production traits using univariate models

Trait σ2
a σ2

c σ2
e h2 ± SE Correlation ± SE Accuracy ± SE

MILK (kg/d) 0.16 9.84 18.35 0.01 ± 0.13 0.15 ± 0.08 1.60 ± 0.82
DM% 0.17 0.27 0.75 0.18 ± 0.14 0.21 ± 0.06 0.48 ± 0.14
FAT% 0.21 0.04 0.25 0.45 ± 0.15 0.19 ± 0.05 0.28 ± 0.07
PRO% 0.03 0.02 0.12 0.21 ± 0.14 0.11 ± 0.05 0.23 ± 0.12
ECM (kg/d) 1.09 7.51 12.78 0.08 ± 0.14 0.06 ± 0.11 0.21 ± 0.41
DM (kg/d) 0.04 0.11 0.21 0.15 ± 0.14 0.13 ± 0.09 0.34 ± 0.24
FAT (kg/d) 0.005 0.009 0.019 0.19 ± 0.15 0.05 ± 0.08 0.11 ± 0.18
PRO (kg/d) 0.002 0.012 0.016 0.12 ± 0.14 0.08 ± 0.08 0.24 ± 0.25

Abbreviations of traits as in Table 1; SE: standard error

CONCLUSIONS
This study suggests that genomic selection using the GGP Bovine 50K chip and a single test day 

measurement could potentially be applied in Vietnam to the milk solid traits DM%, FAT%, and CP%, 
but not to milk yield traits. However, a larger sample size is recommended to confirm these findings. 
The very low estimation of the heritability of MILK could give misleading results when the accuracy 
of genomic selection is assessed.
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GENOMIC TOOLS FOR USE IN THE NEW ZEALAND DEER INDUSTRY

K.G. Dodds, S-A.N. Newman, S.M. Clarke, R. Brauning, A.S. Hess, T.P. Bilton, J.F. Ward, 
A.J. Chappell, J.C. McEwan, T.C. Van Stijn, M. Bates and S.J. Rowe

AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand

SUMMARY
The New Zealand deer industry has recently adopted genotyping-by-sequencing (GBS) as a tool for 

parentage analysis. For cost reasons, sequencing is performed on many individuals at once with low 
sequencing read depth supporting the genotypes. It is important to account for the partial information 
provided by these low depth reads and to account for the high genetic diversity between breeds present 
in the population in any analysis. The genomic information provided by the more than 70,000 markers 
scored can also be used for additional purposes such as inbreeding and relatedness estimation, plus 
gender and breed prediction. The data provides a platform for genome wide association studies and 
genomic selection, which are being developed for this industry. These results provide evidence that 
GBS is a useful technique for genomic studies.

INTRODUCTION
The New Zealand (NZ) deer industry has been using DNA-marker testing since the early 1990s. 

This has been primarily for parentage assignment, as deer behaviour prevents manual recording of 
pedigree at birth. DNA markers have also been used to provide information about breed. The primary 
breeds are wapiti or elk (Cervus canadensis) and red deer (Cervus elaphus), which are regarded as 
distinct species, but there is also interest in estimating the components of differing European origin 
(Eastern or Western) in red deer. Initially a small panel of isozymes was used for breed discrimination. 
This was subsequently replaced by a microsatellite panel. Since 2017 genotyping-by-sequencing 
(GBS) has been used as the marker system. We show how recently developed methods for low-depth 
GBS data are being used in the New Zealand deer industry for parentage, breed prediction and gender 
assignment and consider how this GBS resource can be used for gene discovery and genomic selection.

MATERIALS AND METHODS
Animals. The Invermay, AgResearch deer herd is used to illustrate the use of genomics in the NZ 

deer industry. The 2018 cohort consisted of 554 genotyped calves, 621 potential dams and 46 potential 
sires. Industry-wide data used here refers to deer genotyped by GenomNZ (https://www.agresearch.
co.nz/genomnz) using GBS, first used for the 2016 calf-drop and their parents. This industry GBS 
dataset currently contains ~80,000 animals.

GBS genotypes. The animals were genotyped by GBS using the methods described by Dodds et 
al. (2015). The resulting sequence reads from a set of animals likely to represent much of the genetic 
variation were adapter-trimmed and then UNEAK (Lu et al., 2013) was used to detect variants (without 
the use of a reference genome). These variants were placed into a catalog which was used to report 
counts of reference and alternate alleles for each variant and sample (including any subsequently 
sequenced samples) using TagDigger (Clark and Sacks 2016). Each new set of GBS count data is 
compared against any previous results for the same sample, by comparing the relatedness, estimated 
taking into account the read depths (Dodds et al. 2015), between a pair of results for the same sample 
with the mean self-relatedness of those samples. Differences greater than 0.4 are reported for checking. 
Accepted results are then appended to the file of previous results. There is a corresponding comparison 
made during downstream analysis for any pairs of samples that have come from the same animal.
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Population structure and breed prediction. The genetic structure of the population was por-
trayed as the principal components of the genomic relationship matrix (GRM), which in turn was 
calculated using the method of Dodds et al. (2015) which is based on VanRaden’s (2008) first method, 
but accounts for the read depth in a genotype call. The GRM was calculated for a random sample of 
approximately 5000 deer from NZ commercial samples supplemented with NZ and overseas sam-
ples of reputedly pure ‘breed’ (wapiti/elk, English red and Eastern European red, denoted ‘Wapiti’, 
‘English’ and “Eastern’, respectively) standards. Breed prediction was undertaken by regressing the 
observed proportions of A alleles at each SNP for an animal on each breed’s allele frequency (Kuehn 
et al. 2011). The breed allele frequencies were calculated from the breed standards.

Gender prediction. Gender is predicted using the method of Bilton et al. (2019) using the pro-
portion of Y chromosome SNPs with reads and the heterozygosity of X chromosome SNPs. There 
were 15 SNPs located on the Y chromosome and 1006 SNPs located on the non-pseudoautosomal 
region of the X which passed the criteria given in Bilton et al. (2019).

Parentage analysis. Parentage assignment is based on the methods of Dodds et al. (2019) with the 
highest related potential sire and dam were assigned provided they achieved the chosen thresholds. 
The thresholds used for assigning parentage were 0.3 for estimated relatedness (from the GRM), 0.015 
for parent-offspring excess (raw minus expected, where expected rate is calculated for the given read 
depths and offspring genotype) mismatch rate (EMM) and 0.03 for trio EMM.

RESULTS AND DISCUSSION
The GBS process resulted in a catalog of calls for 74,798 SNPs. After filtering SNPs for a Har-

dy-Weinberg disequilibrium coefficient (proportion of animals observed as homozygous for the A allele 
minus the squared A allele frequency; calculated using the Industry dataset) greater than -0.05 and a 
minor allele frequency (calculated for Invermay dataset) greater than 0.01, there were 66,824 SNPs 
remaining. These SNPs had a 76.9% call rate and mean read depth of 3.37 in the Invermay dataset.

Population structure and breed prediction. The first two principal components of an analysis of 
6269 deer (109 breed standards, 1,211 Invermay herd deer, 4949 randomly chosen) is shown in Figure 
1. The first component explains 80% of the variance and reflects the large genetic difference between 
wapiti and red deer which are at opposite ends of this axis. The second component explains 14% of 
the variance, and English and Eastern deer occur at the opposite ends of this axis. The Invermay deer 
mainly occur in a continuum between these two red deer types, with a few plotting part-way towards 
the Wapiti group, suggesting some wapiti ancestry in those animals.

The Invermay animals were predicted to be an average of 58% Eastern, 39% English and 3% 
Wapiti. The range in predicted breed percentages in the progeny were 4-91% Eastern, 7-96% English 
and 0-19% Wapiti. An estimated breed proportion could be used for a national across-breed genetic 
evaluation, but proportions estimated by different methods (marker systems and pedigree) need to 
be consistent.

Gender prediction. The results of the gender prediction for the Invermay herd are shown in 
Figure 2. The mean read depth of the sex chromosome SNPs in this herd was 2.97. The parents 
matched their recorded gender (apart from one uncertain), as expected. For the calves, three that were 
recorded as male were predicted as female, while one recorded as female was predicted as male. One 
of these recorded males was subsequently corrected to female, but the other inconsistencies could 
not be checked (sold or died). The gender test can be made at the same time as a parentage analysis 
and provides a check for assigned gender which can be difficult to assign in the field with 100% 
accuracy in young calves.

Parentage analysis.  Both parents were assigned for 535 calves, 17 calves were assigned to a 
dam only, one was assigned a sire only and one was not assigned either parent (excluded based on 
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the trio EMM which was 0.05). A seemingly low threshold (0.3) was used for assigning parentage 
to accommodate variations in breed structure and the fact that the GRM used allele frequencies esti-
mated from the same dataset which can depress relatedness estimates (Yang et al. 2010). Only four 
of the final sire or dam assignments were with estimated relatedness below 0.4. One assignment had 
relatedness to both parents less than 0.4 and in this case the sire was predominantly (81%) Eastern 
while the dam was predominantly (82%) English.

A GRM of the dam only progeny, visualised using the heatmap function in R (Figure 3), suggested 
that two or perhaps three different sires were involved. Such information could help to find additional 
sires to include in the analysis.

Figure 1. Principal components plot of the 
Invermay herd, breed standards and a ran-
dom industry set of 5000 deer	

Figure 2. Gender plot with number of Y chro-
mosome SNPs with reads plotted against 
heterozygosity of X chromosome SNPs. The 
lower and upper shaded areas are predicted 
as females and males, respectively

A by-product of calculating a GRM is that estimates of inbreeding are available (self-relatedness 
minus 1). The distribution of these estimates is shown in Figure 4. As is the case of most genomic 
estimators of inbreeding, values outside of [0,1] are possible. The progeny with both parents assigned 
with relatedness less than 0.4 had estimated inbreeding of -0.3, reflecting the high genetic separation 
between its parents. Reporting inbreeding estimates to breeders will alert them to issues with their 
breeding programme if high estimates are present, however care is needed to help breeders understand 
these values compared to pedigree-based calculations which are always within [0,1].

Future directions. The use of GBS in the NZ deer industry has enhanced the information available 
to breeders compared with that from marker systems previously used. Parentage, breed and estimated 
inbreeding results are returned to the breeders, but there is no systematic way of returning genomic 
relationships to breeders or service providers to allow enhanced breeding plan designs (e.g. optimal 
contributions). Further opportunities are available, such as the use of this genomic information for 
genome-wide association studies and genomic selection. Some initial investigations have been made 
by Rowe et al. (2017), including the consideration of calculating appropriate GRMs with GBS data in 
a multi-breed context. These or other methods need to be tested for their feasibility in the full industry 
dataset, and the data from non-genotyped animals included in the analysis. As the deer industry is 
much smaller than the dairy, beef and dual-purpose sheep industries, it will need to learn from the 
use of genomic information in those industries to allow affordable implementation.
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Figure 3. Heatmap of the relatedness between 
calves with only a dam assigned. The red boxes 
group potential sire groups

Figure 4. Distribution of estimated inbreeding 
in the Invermay progeny
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SUMMARY
Identification of genomic regions associated with environmentally important traits, such as meth-

ane yield and residual feed intake, has the potential to improve genomic selection models for these 
traits, which are typically difficult and/or expensive to measure. Methane Yield, Residual Feed Intake 
and Liveweight phenotypes were available on 965 composite ewe lambs that had gone through an 
individual feed intake facility between 5 and 10 months of age. Our aim was to estimate heritabilities 
and identify genomic regions associated with these traits. Bayesian genomic models showed moderate 
heritability estimates between 0.38 and 0.44 for all traits. A genome wide association study failed 
to identify any large-effect QTL for any of the traits, consistent with these being highly polygenic 
traits. Future studies will explore the relationships between these environmentally important traits 
and other production traits and assess prediction accuracies.

INTRODUCTION
Animals that have a lower environmental footprint will be a vital part of future livestock pro-

duction. Methane Yield and Residual Feed Intake (RFI) are environmentally important traits that 
are typically difficult and expensive to measure on large numbers of animals, therefore identifying 
causative mutations or indicator traits may facilitate selection on these traits. Genomic selection is a 
promising approach (Rowe et al. 2014) and incorporation of QTL or their tagging SNPs into current 
selection models may further improve the potential of using genomics in these traits.

Dual-purpose composite ewe lambs (Dodds et al. 2014) were put through an individual feed 
intake facility between 5 and 10 months of age, and gas emissions, including methane, were measured 
using portable accumulation chambers (PAC). Bayesian Genome Wide Association Studies were run 
for RFI, Methane Yield (CH4Yield) and Liveweight at 8 months (Liveweight) to identify genomic 
regions that are associated with these environmentally important traits.

MATERIALS AND METHODS
This study utilises a series of feed intake trials at AgResearch’s Invermay campus (Elmes et al. 

2014; Johnson et al. 2016; Johnson et al. 2018). Five cohorts of approximately 200 lambs were put 
through an individual feed intake facility for ~42 consecutive days between 5 and 10 months of age, 
where they were fed a Lucerne pellet diet. Gas emissions, including methane, were measured twice 
for each individual using PAC, ~14 days apart, as described in Jonker et al. (2018). The 965 lambs 
in this study came from 102 sires (range = 1-27 offspring per sire, median = 8).

Traits. Methane Yields, expressed as methane volume divided by total gas volume, were averaged 
for each individual to get the phenotype of CH4Yield. RFI was calculated as described in Johnson et 
al. (2018), whereby energy intake was corrected for metabolic mid-weight, average daily gain, trial, 
cohort, and pen. Liveweight was recorded when the lamb was 8 months of age.

Genotypes. Animals were genotyped on a variety of sheep SNP chips, ranging in density from 
6,000 to over 500,000 markers. These SNPs were imputed to ~48,000 SNPs present on the 50,000 
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SNP panel using a reference population of 16,320 New Zealand sheep using FImpute (Sargolzaei 
et al. 2014).

Statistical Analyses. Univariate Bayesian selection models for CH4Yield, RFI, and Liveweight 
were run using GenSel v4.90 (Fernando and Garrick 2009) with a chain length of 51,000, including 
burn-in of 1,000. Model equations were:

y = µ + brr + aod + bdev + cg + SNPs
where y is the trait of interest: CH4Yield (n=959), RFI (n=962) or Liveweight (n=963); brr and aod 
are the fixed class effects for birth rear rank and age of dam, respectively; bdev is the fixed covariate 
for birth date deviation; cg is the contemporary group: flock*birthYear for CH4Yield and RFI, and 
flock.rbyrmx for Liveweight. Heritability estimates were obtained by fitting SNPs in a BayesC model 
assuming all SNPs were associated with the trait (π = 0). GWAS were performed by fitting SNPs in 
a BayesB model assuming ~5% of SNPs are associated with the trait (π = 0.95).

RESULTS AND DISCUSSION
Heritabilities. Moderate heritability estimates were obtained for all traits (Table 1). These esti-

mates are consistent with other estimates for these traits in the same population (Pickering et al. 2012; 
Pinares-Patiño et al. 2013; Johnson et al. 2018; Jonker et al. 2018). The heritability for methane yield 
is a little higher than has previously been published in an expanded New Zealand dataset (Jonker et 
al. 2018), however this could be due to averaging the two measurements for CH4Yield rather than 
fitting a repeatability model. The two measurements were averaged because GenSel cannot fit random 
effects apart from SNP effects (Fernando & Garrick 2009).

Table 1. Genetic and phenotypic variance and heritability estimates for Methane Yield, Residual 
Feed Intake and Liveweight in ewe lambs

Trait Genetic Variance Phenotypic Variance Heritability
Methane Yield 0.004 0.009 0.41
Residual Feed Intake 0.65 1.71 0.38
Liveweight (kg) 9.2 20.8 0.44

Genome wide association studies. All traits were found to be highly polygenic and the highest 
peak explained less than 0.6% of the total genetic variance (Figure 1). Within the 15 windows that 
explained the most variation in each trait, there was at least one window with a high posterior proba-
bility of inclusion in the model (>90%; larger points in Figure 1), suggesting that there may be causal 
mutations in these genomic regions that have a small impact on these phenotypes.

Selection for environmentally important traits. Although no large QTL were identified for 
CH4Yield or RFI, it is still possible to make genetic progress in these traits, due to their moderately 
high heritability estimates. 181 sheep were from the Methane Yield selection lines, which have been 
successfully bred for high and low Methane Yield using pedigree-based selection (Rowe et al. 2019). 
This flock is a valuable resource for uncovering relationships between Methane Yield and environ-
mentally and economically important traits. Incorporation of additional information into evaluations, 
such as rumen microbial community profiles; has the potential to further improve our ability to select 
elite animals for these traits (Kittelmann et al. 2014).
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CONCLUSIONS
This study confirms that both methane yield and residual feed intake are heritable but polygenic 

traits in New Zealand sheep; therefore, marker assisted selection for a limited number of markers is 
unlikely to be as successful as genomic selection for making genetic progress in these traits. Future 
studies will evaluate genetic and phenotypic relationships between these environmentally important 
traits and production traits, including carcass quality. Ongoing research is assessing prediction accu-
racy for these traits and evaluating the impact of including rumen microbial profiles.

Figure 1. Genome wide association study of Methane Yield (A), Residual Feed Intake (B) and 
Liveweight (C) in ewe lambs whereby the size of the point is relative to the proportion of iter-
ations in which the 1 Mb window explains some of the overall genetic variance
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SUMMARY
A flock of 200 breeding ewes (originally selected from extremes of 1,000 genetically diverse 

animals from national progeny test flocks) have been selected for divergent methane emissions over 
a ten-year period. Sheep were ranked for breeding using measures from respiration chambers. Over 
this period, a number of proxies have been investigated and effects of selection on methane emis-
sions, production traits, feed intake, carcass and milk quality have been evaluated. The lines differ 
on average by 10-12% for methane emissions. Low methane animals appear to be economically 
favourable, grow more wool, have smaller rumens, are leaner, have different microbiomes and differ 
in fatty acid profiles in muscle.

INTRODUCTION
New Zealand is heavily reliant on pastoral based agriculture. Grazing livestock, however, are 

responsible for 80% of methane emissions and around 1/3rd of the total NZ greenhouse gas emissions 
(Steinfeld 2006). Maternal sheep production is reliant on feeding and maintaining ~18.5 million 
breeding ewes through the winter months and successfully rearing at least one lamb. Sheep breeders 
can obtain breeding values for their stock (Newman 2009), expressed as $ gross profit per breeding 
ewe. The sustainability and therefore profitability of this system, however, is facing a new threat as 
awareness grows of the magnitude and impact of ruminant methane emissions on the environment. 
Strategies, such as carbon taxes on livestock production, have been put forward to protect the envi-
ronment and to maintain global food security. Independent breeding strategies exist for increased 
production and for reduced methane emissions but, to date there has been no data to show whether 
these breeding objectives might be synergistic, neutral or antagonistic. 

Ten years ago, a divergent flock of sheep was created to evaluate the effects of selection for methane 
on other breeding objectives. Here we describe the main results and describe the flock divergence for 
methane and other traits over the ten-year period.

MATERIALS AND METHODS
This report summarizes the creation of the methane yield selection lines and their subsequent devel-

opment. Sheep were selected from central progeny test flocks (Maclean et al. 2006). Initial extremes 
of methane yield were selected using born 2007, then 2009, 2010 and 2011 from 4 research progeny 
test flocks (A, B, C, D). One thousand ewes in total were screened with the top and bottom 100 ewe 
lambs retained based on methane yield.  Ram lambs were screened from 96 born 2009 animals from 
flock A. The lines were closed in 2012 and currently all sires used since 2012 were born in flock 
‘GHG’ (the methane yield selection lines). Methane measures were performed in respiration cham-
bers with 48-hour measures repeated after 10-14 days. These are described fully in Pinares-Patino et 
al. (2013). At least 96 male and female lambs were measured annually to select the next generation.
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RESULTS AND DISCUSSION
Figure 1 shows changes in breeding value for methane yield over time. The GHG selection lines 

have diverged every year and do not overlap. Table 1 shows that the average methane yield measured 
in multiple flocks is 16 g CH4 /kg dry matter intake (DMI). Currently the average of the GHG selection 
lines differ by approximately 12%.

Figure 1. Graph of estimated methane yield research BVs of foundation line ewes by flock  
(A, B, C, D) and birth year (circles) and GHG selection line progeny

Table 1 Genetic and fixed effect estimates from respiration chamber (RC) measurements in 
sheep <15 mo

Total direct maternal Repeatability (s.e.)
Trait Mean s.d. variance σp h2 (s.e.) h2 (s.e.) 2 Day 14 Day

BW, kg 45.9 8.00 23.09 4.80 0.35 
(0.05)

0.07 
(0.03)

0.89 
(0.004)

CH4, g/d 24 8.28 7.91 2.81 0.23
(0.04

0.05 
(0.02)

0.92 
(0.003)

0.65 
(0.01)

CO2, g/d 1066 99.5 8926.7 94.5 0.34 
(0.05)

0.03 
(0.02)

0.94 
(0.002)

0.76 
(0.01)

CH4+CO2, mol/d 25.64 3.7 5.47 2.34 0.33 
(0.05)

0.03 
(0.02)

0.94 
(0.002)

0.76 
(0.01)

CH4/(CH4+CO2) 0.059 0.006 0.00002 0.005 0.17 
(0.03)

0.03 
(0.02)

0.91 
(0.003)

0.43 
(0.02)

CH4 yield, g/kg 
DMI 16 1.42 1.92 1.39 0.13 

(0.02)
0.02 

(0.02)
0.85 

(0.005)
0.38 

(0.02)

DMI, kg 1.573 0.255 0.019 0.140 0.39 
(0.05)

0.05 
(0.03)

0.97 
(0.001)

0.83 
(0.01)

Table 2 gives trends for breeding values for standard production traits in the lines over time. 
Although genetic correlations between methane yield and maternal and production traits have been 
shown to be generally neutral (Rowe et al. 2019 in press), in general, predicted breeding values are 
favourable in the low methane selection line. The general production index in 2018 was $13.20 gross 
margin greater per ewe without including any financial value associated with reduced methane. These 
differences were driven by greater fleece weights, increased growth, lean yield and greater parasite 
resistance. Given the narrow genetic base and limited numbers in the population (each year 5 rams 
are used in each line of 100 ewes), founder effects cannot be disregarded. 
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Table 2. Mean breeding values by year for GHG flock low and high selection line progeny 
surviving to at least 4 months of age

Estimated 
Breeding Value 
$

2012 2014 2016 2018 2014 -18 2014 -18

high Low high low high low high low Δ (l-h) ~pval 
diff.

Weaning 
weight 1.56 2.21 1.80 2.76 1.84 2.46 2.17 2.72 0.53 0.008

Weaning 
weight 
maternal

0.96 1.11 0.78 1.54 0.65 1.62 0.58 1.71 0.91 0.000001

Liveweight 8 
months 3.16 3.95 3.44 4.67 3.72 4.70 4.48 5.31 0.60 0.10

Carcass weight 1.09 1.28 1.13 1.62 1.17 1.54 1.43 1.66 0.23 0.04
Adult ewe 
weight 2.61 1.65 3.34 1.72 3.72 0.90 3.85 1.76 -2.31 0.0001

Lamb fleece 
weight 0.054 0.057 0.028 0.066 0.036 0.077 0.028 0.082 0.05 0.00002

Fleece weight 
12 months 0.36 0.40 0.20 0.47 0.25 0.53 0.20 0.56 0.30 0.00001

Ewe fleece 
weight 0.30 0.34 0.17 0.41 0.21 0.45 0.16 0.49 0.27 0.000004

Survival 0.023 0.020 0.021 0.030 0.019 0.034 0.019 0.039 0.01 0.003
Survival 
maternal 0.005 -0.005 -0.001 0.000 -0.008 -0.003 0.003 -0.004 -0.002 0.31

Number lambs 
born 0.20 0.17 0.20 0.17 0.22 0.23 0.22 0.20 -0.040 0.06

Adult faecal 
egg count % -14 -28 -8 -36 -15 -32 -9 -32 -25 0.00003

Summer Faecal 
egg count % 5 -3 9 -8 4 -1 7 2 -12 0.001

Autumn Faecal  
egg count % 5 -8 7 -17 0 -11 6 -11 -20 0.00001

Shoulder lean 
yield -0.01 0.12 0.02 0.16 0.01 0.18 0.04 0.19 0.14 0.00001

Hindquarter 
lean yield -0.04 0.14 0.01 0.18 0.03 0.22 0.05 0.24 0.17 0.00007

Lean leg yield -0.03 0.05 0.00 0.05 0.01 0.07 0.02 0.08 0.05 0.0005
Fat yield 0.17 -0.19 0.06 -0.16 0.05 -0.16 0.05 -0.18 -0.22 0.000001
Lamb dag 
score -0.01 0.14 -0.02 -0.08 -0.09 0.16 -0.14 0.11 0.17 0.02

Adult dag score -0.04 0.19 -0.19 0.03 -0.27 0.24 -0.23 0.25 0.41 0.0003
*Dual purpose 
Index 1413 1960 1239 2615 1221 2804 1491 2811 1239 0.0001
**Methane 
Yield research 
BV

0.38 -0.45 0.63 -0.78 0.64 -0.75 0.92 -1.09 -1.71 0.000001

*Dual purpose index is a weighted combination of al traits except methane, **Research methane BV selecting 
for low methane yield (g CH4/kg DMI).
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Further investigations into physiological differences between the lines, however, have shown 
that animals with lowered methane emissions have fundamental physiological differences from 
their high emitting counterparts. These include 20% smaller rumens (Goopy et al. 2013, Bain et 
al. 2014), different microbial fermentation profiles (Kittelmann et al., 2014) and a higher ratio of 
propionate to butyrate supplied to the animal as an energy source (Jonker et al. 2017, Pinares-Patino 
et al. 2011). There is also preliminary evidence that these changes are also associated with a leaner 
animal (Elmes et al. 2014). Furthermore, preliminary analyses on fatty acid profiles in meat suggest 
differences in intra-muscular fat, feed intake, feeding behaviour and feed efficiency (T. Johnson, 
personal communication).

CONCLUSIONS
Methane yield has been shown to be heritable and therefore under host control. Breeding for 

lowered methane emissions has been successfully shown to be a permanent and cumulative strategy 
for the mitigation of methane in sheep. This strategy, however, has resulted in physiological changes 
affecting the rumen, feeding behaviour, outputs from the rumen and resulting body composition. These 
changes appear to be economically favourable, however given the limited size of the flock involved 
these results require validation on a much larger scale.  Including methane as part of the national 
breeding objectives would enable the selection of animals that are low emitters whilst efficient for 
production. This indicates that breeding is a credible strategy for the mitigation of greenhouse gases 
from livestock. This is particularly pertinent when considering the targets set by the Paris agreement, 
one of the first of which, is to reduce global greenhouse gases by 30% by 2030.
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SUMMARY
Marbling refers to the small flecks of fat deposits between muscle fibres and is used as a subjec-

tive measure of intramuscular fat (IMF) – a key determinant of eating quality in red meat. In lamb, 
there is limited literature describing visual scoring guides and the trait correlations with other carcase 
traits. The objectives of this study were to establish a visual scoring system for marbling in lamb, 
estimate genetic parameters for the trait and estimate relationships with other eating quality and 
carcase traits. A 5-point visual marble score guide was constructed, which was highly correlated to 
the corresponding IMF of each sample (r = 0.99). To estimate genetic parameters, 1,120 loin sam-
ples were scored for visual marbling, with an average score of 3.01 (± 0.68, SD). On a phenotypic 
level, a 1 unit score increase was associated with a significant increase in IMF by 0.83 ± 0.04% (p < 
2e-16). The heritability estimate for visual marble score was 0.28 ± 0.09, and there was a high genetic 
correlation between visual marble score and IMF (rg = 0.93 ± 0.08). While more data are required 
for better genetic parameter estimates, these results indicate that visual marble score is an accurate 
phenotypic and genetic predictor of IMF in lamb. Therefore, there is potential for the use of visual 
marble scoring in lamb for the genetic improvement of eating quality in the interim period before a 
more rapid and accurate technology is commercially available to measure IMF.

INTRODUCTION
Marbling refers to the small flecks of fat deposits between muscle fibres. Visual marbling is used 

in the beef industry as a subjective measure of intramuscular fat (IMF), and is commonly accepted as 
a key determinant of eating quality in red meat. Measures of IMF obtained using chemical analysis 
of loin samples (using soxhlet extraction or near-infra red) are currently used as a selection criteria 
in Sheep Genetics eating quality indexes. However, this is a time-consuming and costly process.

In beef, marbling is visually scored during chiller assessment on the cut surface made between the 
12th and 13th ribs. Burrow et al. (2001) summarised within-breed heritability estimates for a visual 
marbling scoring system in beef cattle, which ranged from 0.26 to 0.93. In addition to this, Reverter 
et al. (2003) report a close to unity genetic correlation between IMF and visual marble score in beef. 
However, no such studies exist for lamb as a cut surface is not available to grade lamb carcasses during 
processing, and lamb is historically not known to express the variation in visual marbling as seen in 
beef. Therefore, no such marble score system currently exists for lamb meat during carcase grading.

There is limited literature available on visual marble scoring in lamb. The trait, scored from 1 to 5, 
has reported heritability estimates ranging from 0.31 to 0.40 (Johnson et al. 2015a, 2015b; Brito et al. 
2017). However, details of the visual marble scoring system used and its correlations with IMF were 
not provided in those studies. Therefore, the objectives of this study are to establish a visual scoring 
system for marbling in lamb, estimate genetic parameters for the trait and estimate relationships with 
other eating quality and carcase traits.

*  A joint venture of NSW Department of Primary Industries and the University of New England
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MATERIALS AND METHODS
Data. This study examined carcase data from 836 lambs slaughtered from the 2017-drop MLA 

Resource Flock (RF) and 284 lambs from 4 different commercial ram breeding flocks. Table 1 outlines 
the carcase measures collected, which included hot carcase weight (HCWT), carcase eye muscle depth 
(CEMD), fat measured hot at the Girth Rib (GR) site (110 mm from the midline between the 12th & 
13th rib; GR) and fat measured cold at the C-site (45mm from the midline between the 12th & 13th 
rib; Csite). Traits that reflected eating quality analysed in this study were IMF and shear force aged 
at five days (SF5). All these traits were measured in accordance to the Information Nucleus Flock 
(INF) operations manual (Sheep CRC 2009).

Table 1. Summary of carcase traits measured on lambs from a commercial ram breeder and 
the 2017-drop MLA Resource Flock (n = 1,120)

	

Trait Abbreviation Mean Standard 
deviation Range Coefficient  

of Variation

Hot carcase weight HCWT 24.8 3.3 13.6 - 38.6 0.13
Eye muscle depth CEMD 33.4 4.7 20 - 49 0.14
GR fat GR 16.7 4.5 4 - 30 0.27
C-site fat CSite 4.6 2.3 1 - 17 0.50
Intramuscular fat IMF 4.8 1.1 2.6 - 9.8 0.22
Shear force at day 5 SF5 35.1 9.7 16.4 - 80.9 0.28

Visual Marble Score Guide. A loin sample for each lamb was butterflied and prepared as per 
protocol for assessment of retail colour. A visual marbling 5-point scale guide was constructed with-
out knowledge of the IMF content. The aim was to produce a scale, where a score of 1 corresponded 
to no marbling and 5 corresponded to high marbling. Bloomed loin samples were scored for visual 
marbling by an experienced assessor.

Analysis. The phenotypic association between visual marble score and chemical IMF was firstly 
assessed by including visual marble score as a linear covariate in a linear regression model for IMF. 
Model selection was conducted using stepwise linear regression. 

Genetic parameters for all carcase traits were then estimated with REML in ASReml (Gilmour et 
al. 2009) using a series of bivariate analyses. Fixed effects included birth type, rearing type, and the 
covariates of age at measure, age of dam (linear and quadratic) and HCWT. Random effects included 
additive genetic effect, breed-based genetic group (35 groups) and contemporary group. Contemporary 
group was defined as a combination of breed, flock, management group, sex, date of measurement 
and kill group. Genetic correlations between traits were estimated using a series of bivariate analyses.

RESULTS AND DISCUSSION
Visual marble score guide. Figure 1a is the 5-point scale visual marble score guide that was 

constructed. The 5 samples used for the visual marble score guide were highly correlated with their 
corresponding chemical IMF (r = 0.99) (Figure 1b). Using a simple linear regression model, a one 
unit increase in the visual marble score guide corresponded to a predicted increase in IMF by 0.94 ± 
0.07% (p = 0.001, R2 = 0.98, RMSE = 0.23). This indicates that the samples used for the subjective 
score guide accurately reflected the objective measure of IMF.

a)  
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                 a)

                  b)

Figure 1. a) The 5-point scale visual marble score guide for lamb and b) the relationship 
between samples used and chemical intramuscular fat (IMF) percentage

The average visual marble score was 3.01, with a minimum of 1 and maximum of 5, and a stan-
dard deviation of 0.68. A 1 unit increase in marble score was predicted to correspond to a significant 
increase in IMF by 0.83 ± 0.04% (p < 2e-16). The removal of visual marble score decreased the 
variability explained in the model, from 42% to 18%, and an increase in RMSE from 0.81 to 0.96. 
Therefore, visual marble score is a significant phenotypic predictor of IMF.

Genetic analysis. The heritability estimate of visual marble score was 0.28 ± 0.09 (​​​ ̂  σ ​​ a​ 
2​​ = 0.11 ± 

0.03, ​​​ ̂  σ ​​ p​ 
2​​ = 0.38 ± 0.02, ​​​ ̂  σ ​​ e​ 

2​​ = 0.28 ± 0.03). Taking into account standard errors, this aligns with estimates 
reported in lamb of 0.31 ± 0.03 by Brito et al. 2017, 0.32 ± 0.10 by Johnson et al. 2015b and 0.40 ± 
0.06 by Johnson et al. 2015a. Visual marble score was very highly genetically correlated with IMF 
(rg = 0.93 ± 0.08). Therefore, there is potential for genetic gains in visual marbling, and selection for 
increased marbling is predicted to also increase IMF. 

Genetic correlation estimates between visual marble score, IMF and other carcase traits are 
presented in Table 2. The genetic correlations for visual marble score and IMF were consistent in 
direction and magnitude for SF5, HCWT and GR. However, estimates did not overlap when taking 
into account standard errors for HCWT and CSite. More data are required to reduce standard errors 
and to obtain better genetic parameter estimates.

Table 2. Genetic correlation estimates (± SE) between intramuscular fat (IMF), visual marble 
score and other carcase traits*

SF5 HCWT CEMD GR CSite
IMF -0.45 ± 0.07 0.77 ± 0.03 -0.19 ± 0.08 0.28 ± 0.06 0.26 ± 0.06

Visual marble score -0.41 ± 0.22 0.96 ± 0.02 0.01 ± 0.24 0.31 ± 0.17 -0.15 ± 0.18
*SF5: shear force at day 5; HCWT: hot carcase weight; CEMD: eye muscle depth; GR: fat at girth rib; Csite: 
fat at C-site

Taking into account standard errors, genetic correlation estimates for IMF align with those pre-
viously reported for SF, CEMD, GR and Csite, but not for HCWT (Mortimer et al. 2014, 2018). 
Genetic correlation estimates for visual marble score reported by Brito et al. (2017) also align for 
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SF5, CEMD and GR, but not for HCWT. This may have due to the variation in HCWT, which was 
larger in this current study compared to the other studies.

Visual marble score is currently being used as a proxy for IMF in New Zealand sheep genetic eval-
uation (Johnson et al. 2018). However, while higher marbling in pasture-fed lambs was reported to be 
associated with higher IMF, marbling score did not affect eating quality in New Zealand lambs (Young 
et al. 2009), possibly due to a small range in IMF. To our knowledge, there is currently no literature 
available on investigations of selection for eating quality through marble score in Australian lambs.

CONCLUSIONS
While the subjective scoring of lamb loins may not be viable for grading of lamb carcases in a 

commercial environment, this study indicates that visual marble score is an accurate phenotypic and 
genetic predictor of IMF in lamb. Therefore, there is potential for the use of visual marble scoring 
in lamb for the genetic improvement of eating quality in the interim period before a more rapid and 
accurate technology is commercially available to measure IMF.
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SUMMARY
Intramuscular fat percentage (IMF) is a key determinant of eating quality in red meat. Measures 

of IMF from the short loin muscle (M. longissimus lumborum, LL) are currently used as selection 
criteria in Sheep Genetics eating quality indexes. To understand how routine selection on the short 
loin impacts IMF across the whole carcase, this pilot study examines IMF data collected from three 
additional muscles from the fore quarter (Muscularis supraspinatus, SS) and hind quarter (Musculus 
semimembranosus, SM; Muscularis semitendinosus, ST) of the carcase. The heritability of IMF was 
relatively high and consistent across the SS, LL and ST muscles, and lower in the SM. The genetic 
correlation estimate between IMF measured in the different muscles were all positive, ranging from 
0.49 ± 0.13 to 0.97 ± 0.10. Therefore, IMF measurements from the short loin, which is currently 
being used as selection criteria for eating quality, will be a useful indicator for IMF across muscles 
from other parts of the carcase. Further, the genetic selection to increase IMF in one muscle should 
result in an increase in IMF in the other muscles, although at differing rates.

INTRODUCTION
Intramuscular fat (IMF) is a key determinant of eating quality in red meat as it has been found 

to have a positive influence on flavour, juiciness and tenderness (Hopkins et al. 2006; Pannier et al. 
2014). Currently used as a selection criteria in Sheep Genetics eating quality indexes (Swan et al. 
2015), IMF is extracted from the short loin using near-infra red technology. Most research has focused 
around IMF measured in the loin muscle, with very little research on other muscles. 

Pre-adjusted IMF phenotypes measured on different muscles have been found to have moderately 
positive phenotypic correlations, ranging from 0.24 to 0.68 (Anderson et al. 2015). However, there are 
no reports on genetic relationship between IMF across different muscles. The objective of this pilot 
study was to estimate genetic correlations between IMF in different muscles from the fore-quarter, 
saddle (or loin) and hind-quarter sections of the lamb carcase. 

MATERIALS AND METHODS
Data. Data was collected on 400 lambs slaughtered from the 2011-drop of the Information Nucleus 

Flock from the Katanning site (Fogarty et al. 2007) and 1,111 lambs slaughtered from the 2017-drop 
from the MLA Resource Flock (900 from the Kirby site and 211 from the Katanning site). Lambs 
were slaughtered at an average age of 280 ± 44 (± SD) days and an average hot carcase weight of 
23.7 ± 3.3 kg. There were no common sires between the 2017 and 2011 drop lambs, with 64 sires 
in common across the two sites in the 2017 drop. In addition to the standard carcase traits measured 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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(including IMF measured on the loin), three additional muscles were measured for IMF. In total, there 
were four muscles that were measured for IMF from the fore, saddle and hind section of the carcass:

•	 Fore-quarter: Muscularis supraspinatus (SS) 
•	 Saddle: M. longissimus lumborum (LL)
•	 Hind-quarter: Musculus semimembranosus (SM) and Muscularis semitendinosus (ST).

All carcase traits, including IMF, were measured according to the Information Nucleus Flock oper-
ations manual (Sheep CRC 2009). The collection of IMF from additional muscles was as described 
in Anderson et al. 2015. Due to carcass imperfections and muscle trimming, IMF measures could not 
always be obtained for all muscles and or carcasses. Table 1 provides a summary of the number of 
samples, means and standard deviation for each muscle within each flock. Across the four muscles, 
IMF ranged from 2.16% to 11.79%, with an average of 4.71%. 

Table 1. Summary of intramuscular fat (%) records available in muscles* from the fore-quar-
ter, saddle and hind-quarter, sampled from lambs slaughtered from the Katanning 2011-drop, 
Katanning 2017-drop and the Kirby 2017-drop (n  = 1,383)

Fore-quarter Saddle (loin) Hind-quarter
Site Drop SS LL SM ST

Katanning 2011
Count 337 344 341 338
Mean (SD) 5.04 (1.10) 4.36 (0.84) 3.69 (0.78) 4.87 (1.18)

Katanning 2017
Count 134 199 194 199
Mean (SD) 6.29 (1.40) 5.00 (0.98) 4.07 (1.07) 5.63 (1.20)

Kirby 2017
Count 187 837 761 830
Mean (SD) 5.44 (0.86) 4.95 (1.10) 3.92 (0.58) 5.25 (1.07)

Overall Count 658 1380 1296 1367
Mean (SD) 5.40 (1.21) 4.56 (1.05) 3.89 (0.74) 5.20 (1.14)

*SS: Muscularis supraspinatus; LL: M. longissimus lumborum; SM: Musculus semimembranosus; ST: Muscu-
laris semitendinosus

Analysis. The IMF traits were analysed using a multivariate sire model in ASReml (Gilmour 
et al. 2009). An animal model was explored but due to the small number of records, a sire model 
was preferred. Fixed effects included birth type, rearing type, age, age of dam, age of dam squared, 
sire breed, dam breed and hot carcase weight. Contemporary group was defined by breed, flock, 
management group, sex, date of measurement and kill group. Maternal effects and genetic groups 
were not tested as there was insufficient data. Therefore, the genetic components estimated from this 
genetically diverse resource population are expected to be larger than estimates reported in literature 
(Walkom and Brown 2016). This was further exacerbated by the subsampling of the Australian sheep 
population in this study.

RESULTS AND DISCUSSION
The variance component and heritability for the IMF traits are presented in Table 2. These herita-

bilities are higher than presented in literature due to the inability to completely take into account breed 
and maternal effects in this subset of a genetically diverse reference population (Walkom and Brown 
2016). Nevertheless, the heritability estimate for IMF measured in the LL (0.60 ± 0.10) reflects the 
estimate of 0.48 ± 0.05 reported by Mortimer et al. (2014), which included genetic groups in their 
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analysis of LL samples from the same sheep resource population. The genetic and phenotypic variation 
was lowest in the SM muscle. Meanwhile, the SS and ST muscles exhibited the greatest genetic and 
phenotypic variation, which exhibited more than double the variation observed in the SM muscle.

Table 2. Genetic parameter estimates ± SE for intramuscular fat traits measured in four muscles* 

from the fore-quarter, saddle and hind-quarter (n  = 1,383)

Fore-quarter Saddle Hind-quarter
Genetic parameter estimate SS LL SM ST
Phenotypic variance 1.00 ± 0.07 0.85 ± 0.04 0.43 ± 0.02 1.10 ± 0.05
Residual variance 0.76 ± 0.05 0.73 ± 0.03 0.41 ± 0.02 0.89 ± 0.04
Sire variance 0.24 ± 0.06 0.13± 0.03 0.03 ± 0.01 0.18 ± 0.03
Heritability 0.96 ± 0.19 0.60 ± 0.10 0.25 ± 0.08 0.68 ± 0.11

*SS: Muscularis supraspinatus; LL: M. longissimus lumborum; SM: Musculus semimembranosus; ST: Muscu-
laris semitendinosus

The phenotypic correlations between IMF traits from the multivariable analysis were all positive 
(Table 3). The genetic correlations were also positive and stronger, ranging from 0.49 ± 0.13 to 0.97 
± 0.10. Therefore, IMF measurements from the LL muscle (short loin) will be a useful indicator for 
IMF across muscles from other parts of the carcase. Further, the genetic selection to increase IMF 
in one muscle should result in an increase in IMF in the other muscles, although at differing rates. 

Table 3. Genetic correlations (below diagonal) and phenotypic correlations (above diagonal) 
for IMF measured in four muscles* from the fore-quarter, saddle and hind-quarter (n  = 1,383)

Fore-quarter Saddle Hind-quarter
SS LL SM ST

SS 0.30 ± 0.03 0.30 ± 0.03 0.37 ± 0.04
LL 0.68 ± 0.11 0.44 ± 0.02 0.53 ± 0.02
SM 0.76 ± 0.17 0.97 ± 0.10 0.34 ± 0.03
ST 0.49 ± 0.13 0.70 ± 0.08 0.71 ± 0.13

*SS: Muscularis supraspinatus; LL: M. longissimus lumborum; SM: Musculus semimembranosus; ST: Muscu-
laris semitendinosus

Although more data will improve the accuracy of these estimates by reducing standard errors, 
this pilot study demonstrates that there are no detrimental consequences on the eating quality of the 
entire carcase when selecting on only measurements taken from the loin. These results also suggest 
that IMF should be recorded in the SS muscle, as this was the muscle that exhibits the most genetic 
variability. However, the muscle from which IMF samples are taken routinely should also consider 
the ease of sampling and the financial value of muscle. 

Variation in the functional requirements of muscles leads to differences in muscle fibre type, the 
proportion of oxidative fibres and in turn the levels of triglycerides and IMF in the muscle (Hoc-
quette et al. 2010). Muscles associated with posture tend to have more oxidative fibers and higher 
IMF (Picard et al. 2002; Anderson et al. 2015), which is reflected in the lower mean and heritability 
observed for the SM.
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CONCLUSIONS
Intramuscular fat percentage (IMF) is a key determinant of eating quality in red meat. The analysis 

of IMF measures from four different muscles from 1,383 lambs suggests that the heritability of IMF 
was relatively high and consistent across the SS, LL and ST muscles, and lower in the SM. There 
were moderate to high genetic correlations between IMF across the four muscles. Therefore, IMF 
measurements from the short loin (LL), which is currently being used as selection criteria for eating 
quality, will be a useful indicator for IMF across muscles from other parts of the carcase.
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GENETIC PARAMETERS FOR PRIMAL CUT WEIGHTS IN PIGS

N. R. Sarker, B.J. Walmsley and S. Hermesch

Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia

SUMMARY
A study was conducted to estimate genetic parameters for phenotypes describing primal cuts 

recorded on 2,077 pigs with pedigrees comprising 5,011 animals over three generations. The four 
main primal cuts considered were: shoulder, leg, loin and belly. These were analysed as primal 
weights, or as a percentage of cold carcase weight. Heritabilities ranged from 0.10 (± 0.04) to 0.24 
(± 0.06) for primal cut weights and from 0.12 (± 0.05) to 0.24 (± 0.06) for primal cut percentages. 
The loin primal was the least heritable. The genetic correlations between primal weights and primal 
percentages for the same primals ranged from 0.97 to 1.00. The genetic correlations among primal 
cut weights ranged from -0.45 to 0.07 which were similar to those found among the primal cut 
percentages (-0.63 to 0.06). The genetic correlations between the shoulder and leg primal with the 
belly primal were negative. The strongest negative genetic correlation was found between the leg and 
belly primals (-0.45 for weight trait and -0.63 for percentage trait). The leg weight was genetically 
uncorrelated with loin weight, suggesting that selection for high leg weights would not result in 
high loin weights. The phenotypic correlation between loin and belly was negative but the genetic 
correlation was not significant. Genetic correlations between the loin and other primal cut weights 
were weaker in comparison to the genetic correlations between the belly and other primal cuts. The 
genetic correlations amongst primal cut weight traits were similar to those found among the primal 
cut percentages. Incorporating these genetic parameters into a pig breeding program could help to 
increase the total economic return from pig carcases but would need to be done in association with 
other traits that impact pig production.

INTRODUCTION
Pork producers and retailers could make better marketing decisions if quantitative information on 

primal cut yield per carcase were available. A primal cut is a piece of meat initially separated from 
the carcase of an animal during butchering. Until now, the weight of each primal cut has not been 
considered in the price Australian farmers receive for pigs. Producers or wholesalers are currently 
paid on the basis of hot standard carcase weight (HSCW) and back fat. Total carcase weight and 
leanness do not provide complete information about carcase market value. The economic return per 
carcase could be determined by the market value of each of its primal cuts and in turn increase returns 
to farmers (Hermesch 2008). The Australian pig industry lacks classification systems to measure 
variation in primal cut weights in commercial abattoirs that is required to quantify the economic 
benefits of higher saleable meat yield for a given carcase weight. Therefore, determining the weight 
of primal cuts is an important area of interest worth exploring (Lisiak et al. 2015). This study aimed 
to estimate the genetic parameters of primal cut weights and primal cut percentages in pigs and to 
determine the relationships between these traits.

MATERIALS AND METHODS
Animals. Data on primal cut traits were combined with pedigree and performance records from 

2,077 pig carcases recorded in 2012. The pedigree was extended back three generations for parameter 
estimation which comprised 5,011 animals including 523 sires and 2411 dams. The subset of pigs 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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with primal cut records was represented by 98 sires and 1135 dams. Pigs were recorded on one farm 
and represented three different breeds. There were 25 contemporary groups defined by the week of 
slaughter, which were fully nested within five different grow-out facilities.

Traits. The four main primal cuts weighed (kg), and expressed also as percentages (relative to 
cold carcase weight, %) were shoulder (S_WT and S_P), leg (L_WT and L_P), loin (LN_WT and 
LN_P) and belly (B_WT and B_P). All primal cut weights were recorded on one side of the carcase 
only. Each primal cut weight was multiplied by two to express them on a per carcase basis. 

Statistical analysis. Descriptive statistics for carcase measurement and Pearson correlations were 
calculated using the statistical package SAS. The (SAS) procedure GLM was used to test for the 
significance of fixed effects for each trait. All genetic parameter estimates were obtained under an 
animal model using ASReml (Gilmour et al. 2015). Two mixed linear animal models were used: for 
primal cut weight: Yijkmn = µ + bi + cj + cwk + anm + pen + e ijkmn   and for primal cut percentage: Yijmn = 
µ + bi + cj + anm + pen + e ijmn   where, Y = observation for of a trait, µ= overall mean, bi = fixed effect 
of the ith breed, cj = fixed effect of the jth contemporary group, cwk = linear covariate (cold carcase 
weight), anm = random effect of the mth animal, pen = common litter effect of nth litter and e ijkmn = error. 
The common litter effect was only retained in the models for the loin and belly primals, because it 
was not significant for the shoulder and leg primals. 

RESULT AND DISCUSSION
Descriptive statistics. Animals were on average slaughtered at 168 days of age with an average 

hot carcass weight of 79.0 kg. Considerable variation was observed in all four primal cuts (Table 1). 
The coefficients of variation (CV) were higher for the loin (18%) and belly (17%) cuts which may 
be due inconsistencies during the butchering process.

Table 1. Descriptive statistics for the weights and percentages of four primal cuts

Trait N Mean SD CV Min Max
Shoulder weight (kg) S_WT 2064 22.7 2.56 11.3 12.0 32.2
Leg weight (kg) L_WT 2068 23.2 2.40 10.3 14.6 31.5
Loin weight (kg) LN_WT 2073 12.9 2.30 17.8 6.8 30.0
Belly weight (kg) B_WT 2038 10.2 1.75 17.1 5.2 16.2
Shoulder percentage (%) S_P 2061 32.8 1.71 5.2 21.9 41.8
Leg percentage (%) L_P 2065 33.6 1.53 4.6 22.1 41.6
Loin percentage (%) LN_P 2070 18.7 2.45 13.2 9.4 35.7
Belly percentage (%) B_P 2035 14.7 1.67 11.3 8.7 22.6

N: number of pigs, SD: standard deviation, CV: coefficient of variation, Min and Max: minimum and maximum

Model fit. The total variation accounted for by the GLM model (R2; Table 2) was high for all 
primal cut weights due to the adjustment for cold carcase weight. The R2 values were 0.86 and 0.87 
for S_WT and L_WT and slightly lower at 0.62 and 0.77 for LN_WT and B_WT, respectively. As 
expected, when compared with the R2 values for the primal weights those for the primal percentages 
were lower without carcass weight adjustment (0.10 to 0.28) and when adjusted for cold carcase 
weight (0.32 to 0.48) because part of the variance in primal cut percentages is masked by the variance 
in cold carcase weight which is part of the percentage trait. 
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Heritabilities. The heritabilities for primal cuts were low to moderate, ranging from 0.10 to 0.24 
for cut weights and 0.12 to 0.24 for percentages with or without adjustment for cold carcase weight 
(Table 2). The loin and belly primal traits were less heritable than the other primals. Adjusting primal 
cut percentage traits for cold carcase weight did not affect heritability estimates significantly and the 
phenotypic variances were only slightly reduced. The reduction in additive genetic variation resulting 
from this adjustment supports the simpler model for primal cut percentages. Higher heritabilities 
for primal cut weight traits compared to the current study have been observed previously (Newcom 
et al. 2002; Van Wijk et al. 2005). However, primal cuts definition differed between studies and it 
is difficult to directly compare heritability estimates. Nonetheless, Newcom et al. (2002) estimated 
heritabilities of 0.60, 0.61, 0.24 and 0.23 for ham, loin, belly and shoulder weights of Yorkshire and 
Duroc breeds, whereas Van Wijk et al. (2005) reported heritabilities of 0.40 and 0.29 for leg and loin 
weights. Mérour et al. (2009) reported higher heritabilities for loin and leg (0.43 and 0.46) than belly 
and shoulder (0.35 and 0.23).

Table 2. Estimates of heritability (h2) and common litter effect (c2) with standard errors (se) 
along with variance components for primal cut traitsa

Traitsa R2 h2 c2 σpe
2 σa

2 σp
2

S_WT 0.86 0.24 (0.06) - - 0.44 1.82
L_WT 0.87 0.23 (0.06) - - 0.35 1.53
LN_WT 0.62 0.10 (0.04) 0.09 (0.03) 0.28 0.30 3.07
B_WT 0.77 0.09 (0.04) 0.16 (0.04) 0.18 0.10 1.16
S_P 0.12 0.24 (0.06) - 0.64 2.67
S_P (adjusted for CW) 0.34 0.23 (0.06) - 0.60 2.60
L_P 0.10 0.23 (0.06) - 0.49 2.16
L_P (adjusted for CW) 0.32 0.24 (0.05) - 0.48 2.01
LN_P 0.15 0.12 (0.05) 0.07 (0.03) 0.38 0.61 5.23
LN_P (adjusted for CW) 0.36 0.12 (0.05) 0.07 (0.03) 0.36 0.62 5.19
B_P 0.28 0.16 (0.06) 0.15 (0.04) 0.31 0.32 2.05
B_P (adjusted for CW) 0.48 0.14 (0.05) 0.13 (0.04) 0.25 0.27 1.91

a For trait abbreviations see Table 1; CW: cold carcase weight; R2: coefficient of determination; σpe
2: variance 

due to common litter effect; σa
2: additive genetic variance and σp

2: phenotypic variance

Correlations. The genetic correlations between primal weights and primal percentages for the 
same primal ranged from 0.97 to 1.00 (Table 3). These very high correlations indicate that the weight 
and percentage traits for the same primal are essentially the same trait. The genetic correlations among 
primal cut weights ranged from -0.45 to 0.07 which were similar to those found among the primal 
cut percentages (-0.63 to 0.06). The genetic correlations the shoulder and leg primals have with the 
belly primal were negative. The strongest negative genetic correlation was found between the leg and 
belly primals (-0.45 for weight trait and -0.63 for percentage trait), suggesting that selection for longer 
pigs would be associated with lower leg weights. The leg weight was genetically uncorrelated with 
loin weight, which means selection for high leg weights would not result in high loin weights. This 
result was also found by Mérour et al. (2009). In comparison, Van Wijk et al. (2005) reported positive 
genetic correlations (0.22 to 0.58) between leg and loin weights. The phenotypic correlation between 
loin and belly primals was negative but the genetic correlation was not significant. In comparison, 
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a number of studies (Newcom et al. 2002; Mérour et al. 2009) reported moderate to high negative 
genetic correlations (-0.54 to -0.57) between loin and belly primals. Genetic correlations between 
the loin and other primal cut weights were weaker in comparison to the genetic correlations the belly 
primal has with the other primal cuts. The genetic correlations amongst the primal cut weight traits 
were similar to those found among the primal cut percentage traits. 

Table 3: Estimates of phenotypic (above diagonal) and genetic correlations (below diagonal) 
with standard error (se) among primal cut weight and percentage traits

Traits S_WT L_WT LN_WT B_WT S_P L_P LN_P B_P
S_WT 38(2) 8(2) 21(2) 90(0) 4(3) -18(3) -9(3)
L_WT 22(17) 16(2) 18(2) 5(3) 88(1) -5(3) -16(3)
LN_WT 1(27) -4(28) -14(3) -14(2) -3(2) 99(0) -47(2)
B_WT -10(29) -45(31) 7(34) -7(2) -14(2) -54(2) 99(0)
S_P 97(2) -8(19) 5(25) -11(27) 7(2) -16(2) -11(2)
L-P -18(18) 97(2) -7(26) -54(23) -19(18) -5(2) -20(2)
LN_P -17(24) -21(25) 100(0) -4(34) -3(24) -10(25) -42(2)
B_P -27(22) -63(19) -0(31) 100(0) -33(20) -63(18) 6(29)

All correlations and se were multiplied by 100

CONCLUSION
Overall, these results suggest that the size of the most valuable primals (loin and belly) could be 

improved through breeding, which may also reduce the size of the least valuable primals (shoulder 
and leg). This could in-turn increase the total economic value of pig carcases. The primal weight traits 
were genetically highly correlated with the percentage traits, so the primal cut weight and percentage 
traits are basically same trait. The actual primal weight is needed to calculate primal percentages so 
breeders need only use primal weights adjusted for cold carcass weight. In breeding programs, these 
primal traits need to be used with respect to other production and welfare traits in order to change 
overall profit per carcase without causing detrimental changes in the pig.
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SUMMARY
BREEDPLAN reports estimated breeding values (EBVs) for many traits, but with the exception 

of carcass weight and rib fat, there are no EBVs specifically for the inputs into the Meat Standards 
Australia (MSA) Index that producers can use to make genetic progress in eating quality. Further 
it is not known how selection using BREEDPLAN EBVs influences the MSA Index and if these 
relationships are the same for different market endpoints. The motivation behind this study was to 
examine the extent to which MSA Index of commercial animals is related to EBVs of sires.

INTRODUCTION
With the development of Meat Standards Australia (MSA, Polkinghorne et al. 2008) and MSA Index, 

the interest by the industry to improve eating quality through genetic selection has been heightened. 
In investigating genetics underlying eating quality and carcass traits, Reverter et al. (2003), noted 
that it was important to determine whether there were significant genotype by environment (GxE) 
interactions for finishing systems (pasture- vs. feedlot-finished). Reverter et al. (2003) and Johnston et 
al. (2003) reported on genetic parameters for temperate cattle breeds for feedlot- vs. pasture-finished 
for a range of growth, body composition, carcass and meat quality traits. They reported generally 
increasing additive genetic variance with increasing carcass weight end points but minimal GxE and 
subsequent re-ranking of sires. In a study of 1.7M carcass records from 37,637 lots (slaughter groups) 
from the MSA database for cattle from nine processing plants in southern Australia from 2010-2013 
Hebart et al. (2016) investigated the relationship between carcass end point defined either by weight 
or marbling and phenotypic variance. Hebart et al. (2016) found that increased lot mean carcass 
weight was associated with increasing phenotypic variance in carcass weight. Furthermore, higher 
lot mean MSA Marbling and carcass weight was associated with increased phenotypic variance in 
MSA Marbling. How eating quality traits respond to selection is a function of the selection intensity, 
heritability and the phenotypic variance of the traits. Currently producers can select for increased 
intramuscular fat (IMF) using BREEDPLAN estimated breeding values (EBVs) to improve marbling 
and in turn increase MSA Index. Differences in the phenotypic variance have the potential to change the 
magnitude of the regression coefficient for MSA Marbling on BREEDPLAN IMF EBV and, therefore, 
of the relationship between IMF EBV and MSA Index. The regression coefficient is calculated as:

which is a function of the genetic correlation (rG) between the traits (could be same trait at different 
endpoints), the heritability (h2) of the trait, variation in the carcass trait (σP) and the variation in 
EBV (σEBV). Since the genetic correlation between traits, the heritability and the variation in EBV 
are likely to remain constant any scale effect observed in the variation of carcass traits is likely to 
have the greatest effect on the regression coefficient estimate. The motivation behind this study is to 
examine the extent to which MSA Index is related to estimated breeding values (EBVs) of sires for 
different market end points.
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MATERIALS AND METHODS
Data from 12 industry or research data sets totalling 6,997 animals from four breeds (Angus, 

Charolais, Hereford and Limousin) and 433 sires have been included for analysis. The datasets are 
Maternal Productivity (MP – Vasse) (Pitchford et al. 2017), 4 x Regional Combinations (RC – NSW, 
RC – SA, RC – WA, RC – Vic.) animals (McKiernan et al. 2005), Rockdale (Herd et al. 2017) and 
Trangie (Arthur et al. 2005). In addition, three Beef Information Nucleus datasets (BIN, Angus BIN, 
Charolais BIN, and Hereford BIN) and data from two Team Te Mania herds (Central West NSW with 
calves born in early spring, and western Victorian autumn calving) were included. The datasets contain 
a range of growth paths (slow vs. fast), finishing regimes (Short feedlot <200 days, Long feedlot 
>200 days and Pasture) and carcass end point (200-500kg carcass weight) included in the analysis.

The carcass traits measured included hot standard carcass weight (HSCW, kg), rib fat (Rib, mm), 
intramuscular fat (IMF %, measured in the laboratory), MSA marbling (Marb), and MSA Index. 
Carcass traits (IMF, MSA marbling, MSA Index, Rib, and HSCW) were regressed on BREEDPLAN 
sire EBVs (IMF EBV, Rib EBV, 600 day weight EBV) after taking into account contemporary groups 
(a concatenation of dataset, management group and kill date), appropriate genetic “line” effects (high 
IMF, high yield, high RFI etc.) and management (Pasture, Short-fed, Long-fed) for each dataset. Sire 
BREEDPLAN EBVs were standardised by subtracting the mean sire EBV of a breed and dataset group 
within each breed within each dataset to allow for between breed comparisons and to account for 
EBVs being estimated at different times for each dataset. A general linear model was fitted in ASReml 
(Gilmour et al. 2009) which included dataset contemporary groups as fixed effects, standardised sire 
EBVs and interactions between finishing system, breed, dataset and the standardised sire EBVs to 
determine if there was a significant difference in the magnitude and or direction of the relationships 
between carcass traits and sire EBVs.

Sire variance components were estimated in ASReml (Gilmour et al. 2009) for each of the 12 
datasets to determine whether the genetic variance in MSA index and its input traits changes with 
carcass weight. The same fixed effects as used for the regression analysis (excluding the sire EBVs 
and interactions) were fitted. Sire was included as a random effect in the benchmark model. Additional 
random effects were tested as interactions with sire: finish by sire, breed by sire and dataset by sire 
were included in separate models with separate sire variance components for finish regime, breed and 
dataset estimated. The log likelihood ratio test statistic was calculated to determine if the additional 
random terms significantly improved the model.

RESULTS AND DISCUSSION
The regressions for all carcass traits regressed on their associated EBV were significant. There was 

a significant interaction demonstrating a different regression coefficient between the finish systems 
for all regressions. In all cases the regression coefficients were greater for the Long-fed cattle than the 
short and pasture which tended to be similar to each other. For Rib Fat on sire Rib EBV and IMF% 
regressed on sire IMF EBV the Long-finished coefficients were significantly greater than the Short 
and Pasture finished regression coefficients (Table 1). This difference was the greatest when IMF% 
was regressed on IMF EBV where there was a 6.5-fold difference between the Pasture and Long 
feeding regimes. Moreover, the effect of selecting for improved IMF EBV was almost 5 fold greater 
in long grain finished cattle than short for MSA marbling (Table 1). For every 1 % increase in sire 
IMF EBV the increase in MSA marbling was 36.7 MSA marbling scores in Long-fed cattle relative 
to 7.6 in Short-fed cattle. MSA index was most closely related to the IMF EBV with an increase in 
IMF EBV being associated with a significant increase in MSA Index with the Long finish almost 3 
times greater than Pasture finished (Table 2). A 1 % increase in sire IMF EBV was worth 0.28 MSA 
Index points under a Long feedlot finishing regime relative to a 0.10 unit increase under Pasture 
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(Table 2). Similar results were observed for sire Rib and carcass weight EBVs where Long finished 
regression coefficients were significantly higher than pasture finished. There were no significant 
(P<0.05) differences between the breeds in their relationship between MSA Index and sire EBVs.

Including sire by finishing system and estimating separate sire variance components for each 
finishing system (i.e. placing a G structure on the data) resulted in a significant improvement to the 
model for all traits based on the likelihood ratio test statistic. For almost all traits the sire variance 
under a Long-fed finishing regime was significantly greater than both Short and Pasture (Table 3). 
The exception was MSA Index where the sire variance of the Short-fed cattle was higher than both 
Long and Pasture fed cattle. For HSCW, Rib Fat, and MSA marbling, the sire variance for Long-fed 
animals was between 4 and 6-fold higher than pasture finished cattle. The difference for IMF was 
even larger however there were fewer animals with IMF measured. The sire variances were larger 
than those estimated by Reverter et al. (2003) for temperate beef breeds.

Table 1. Finishing system regression coefficients for carcass traits on BREEDPLAN sire EBVs 
(± standard errors)

Finish HSCW on 
CWT EBV

Rib Fat on Rib 
EBV

IMF% on IMF 
EBV

MSA Marbling on 
IMF EBV

Long 0.72a ± 0.03 0.75a ± 0.04 1.08a ± 0.04 36.7a ± 1.9
Short 0.55b ± 0.06 0.21b ± 0.08 0.17b ± 0.13 7.6b ± 2.4
Pasture 0.48b ± 0.06 0.31b ± 0.09 0.15b  ± 0.13 8.9b ± 2.8
P-Value 0.009 <0.001 <0.001 <0.001

Different superscripts indicate significantly different regression coefficients between finishing systems.

Table 2. Finishing system regression coefficients for MSA Index on BREEDPLAN sire EBVs 
(± standard errors)

Finish 600D Wt EBV CWT EBV Rib EBV IMF EBV
Long 0.012 ± 0.003 0.014 ± 0.002 0.003 ± 0.020 0.34 ± 0.03
Short 0.009 ± 0.003 0.010 ± 0.004 -0.085 ± 0.033 0.29 ± 0.06
Pasture 0.005 ± 0.003 0.002 ± 0.004 -0.023 ± 0.036 0.12 ± 0.07
P-Value 0.308 0.035 0.046 0.020

Table 3. Sire variances for each finishing system (± standard errors)

HSCW Rib Fat IMF Marbling Index
Long 159 ± 27 3.03 ±0.56 1.63 ± 0.27 1619 ± 286 0.34 ± 0.07
Short 82 ± 21 2.05 ± 0.42 0.22 ± 0.07 588 ± 112 0.63 ± 0.11
Pasture 39 ± 12 0.49 ± 0.19 0.04 ± 0.03 352 ± 107 0.07 ± 0.04

It was hypothesised that despite genetic correlations for marbling between various end points and 
finishing regimes being close to 1 the regression may change substantially depending on market end 
point. For example, where there is low variance, the regression coefficient of MSA marbling on IMF 
EBV is expected to be lower, in contrast where there is higher variance the regression coefficient 
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is expected to be higher. There appears to be systematic differences (increases) in variance of traits 
of interest such as MSA Marbling and IMF for heavier carcass weights (associated with Long fed 
feedlot) or faster growth paths. This highlights the importance of considering target market end point 
weight when reporting estimating breeding values.

CONCLUSIONS
This work has quantified relationships between carcass traits and sire BREEDPLAN EBVs with 

the regressions for all carcass traits regressed on their associated EBV being significant. Importantly, 
there was a significant interaction demonstrating a different regression coefficient between the finishing 
systems for regressions with greater regression coefficients observed for the Long-fed cattle than 
the Short and Pasture which tended to be similar to each other. At a commercial level, this will have 
major effects on the increase in MSA Index expected through genetic improvement for traits linked 
with eating quality depending on market end point.
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SUMMARY
Congenital entropion, a condition in which one or more eyelids are inverted, resulting in contact 

between the eyelashes and the cornea, was recorded in three South Island progeny test flocks between 
2000 and 2018. A total of 42,535 lambs were scored for entropion (as 0, 1 or 2, where the score reflected 
the number of eyes affected) within 24 hours of birth. The overall incidence rate for entropion was 
6.5%. The incidence of entropion varied between flock (P < 0.0001) and year (P < 0.0001), ranging 
from 1% to 15%. The heritability of entropion was estimated to be 0.18 (± 0.01), indicating that the 
incidence of entropion within flocks can be reduced through selective breeding.

INTRODUCTION
Entropion is a condition in which one or more eyelids are inverted, resulting in contact between 

the eyelashes or external hair and the cornea, which can lead to blindness. Many mammalian species 
are affected by congenital entropion, including humans (Vallabhanath and Carter 2000), domestic 
animals (Priester 1972; Glaze 2005) and livestock (Warwick and Berry 1962; Allbaugh and Davidson 
2009; Donnelly et al. 2014; Mészáros et al. 2015).

In sheep, the incidence of congenital entropion is variable. Reported frequencies of entropion 
range from 1% to 11% (Warwick and Berry 1962; Green et al. 1995; Claine et al. 2013; Greber et al. 
2013). Congenital entropion is usually present at birth or occurs soon afterward and can be detected by 
either examination of the eye, or observation of excessive ocular discharge, conjunctivitis or keratitis 
(Boileau and Gilmour 2012). Treatment is relatively straightforward, however if left untreated, the 
contact between the eyelashes and the cornea can lead to blindness (Moore and Whitley 1984).

There is evidence of both between-breed and within-breed variation in the occurrence of entropion 
in sheep. In intensively reared lambs in south west England, Charollais and Texel sired lambs had an 
increased risk of entropion compared to Suffolk sired lambs (Green et al. 1995). In a separate study 
in France, Ile de France and crossbred lambs were significantly more affected by entropion than 
purebred Texel lambs (Claine et al. 2013). Heritability estimates for entropion range between 0.08 
and 0.21 in purebred (Columbia, Polypay, Rambouillet, Suffolk, and Targhee) and crossbred sheep 
in the U.S. (Sakul and Kellom 1997), however, the incidence and heritability of entropion in New 
Zealand lambs has not been reported.

MATERIALS AND METHODS
Animals and data. Animals were managed in accordance with the provisions of the New Zealand 

Animal Welfare Act 1999, and the New Zealand Codes of Welfare developed under sections 68–79 
of the Act.

Congenital entropion was recorded on all lambs born in three genetically linked progeny test 
flocks, run at the Woodlands Research Station in Southland (flocks A and C), and Invermay Research 
Farm in Otago (flock B). Recording began in 2000 in flock A, 2002 in flock C, and 2011 in flock 
B, and continued until 2017 (flocks A and C) or 2018 (flock B). Dams were composites of the main 
dual-purpose sheep breeds used in New Zealand, including Romney, Coopworth and Perendale, and 
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sires were from a mixture of dual-purpose and terminal breeds. 
A total of 42,535 lambs from 574 sires were scored for the presence or absence of entropion 

(EYE) within 24 hours of birth. EYE was initially scored on a 0-5 scale for each animal, depending 
on the number of in-turned eyelids and the presence or absence of infection, but this was reduced to 
a 0/1/2 score in 2014, where the score reflected the number of eyes affected. Subsequently, all scores 
were converted to a 0/1/2 scale.

Statistical Analysis. All pedigree and phenotypic records were obtained from Sheep Improvement 
Limited (SIL), the New Zealand sheep genetic evaluation database. Contemporary group (CG) was 
defined as flock, birth year, sex and weaning mob, and records were removed if the contemporary 
group contained less than five observations or had a mean incidence of entropion of zero. The resulting 
dataset consisted of 37,208 animals (Table 1). 

Heritability of EYE was examined firstly using the reported values transformed using the formula 
EYEt = EYE/√[EYEm*(2-EYEm)], where m is the mean incidence rate within the CG where phenotypic 
score is being adjusted, and secondly reporting it as a binary (presence/absence) trait. Fixed effects were 
determined using the GLM procedure in SAS (SAS Institute Inc., Cary NC, USA). The final model 
included fixed effects of contemporary group, birthday deviation from the mean of the contemporary 
group (BDEV), birth-rearing rank (BRR) and age of dam (AOD). Heritability estimates were obtained 
by running a univariate analysis using ASReml (Gilmour et al. 2015).

RESULTS AND DISCUSSION
Of the 37,208 animals with records remaining after data cleaning, 2,409 lambs had congenital 

entropion, giving an overall incidence rate over 19 years of 6.5%. The incidence of entropion varied 
between flock (P < 0.0001) and year (P < 0.0001), ranging from 0.01 to 0.13 (Table 1). 

Heritability estimates (± standard error) for entropion adjusted for incidence rate per contemporary 
group (EYEt) and reported as a binary trait (EYEb) were 0.18 (± 0.01) and 0.19 (± 0.01), respectively. 
This is in line with a previous study that examined the heritability of entropion in purebred and 
crossbred U.S. sheep, which gave an overall estimate of 0.15 (ranging from 0.08-0.21). While entropion 
has not been reported to impact upon lamb growth (Claine et al. 2013), reduction in flock incidence 
will alleviate welfare concerns. This can therefore be achieved through scoring of lambs at birth for 
congenital entropion, and the use of the scores in selective breeding programs.
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Table 1. Incidence of congenital entropion (% = incidence) between 2000 and 2018 in lambs 
at birth in three pedigree-recorded flocks. EYE score reflects the number of eyes affected (0 = 
unaffected; 1= one eye affected; 2 = both eyes affected)

EYE Flock A EYE Flock B EYE Flock C
Year 0 1 2 % 0 1 2 % 0 1 2 %
2000  1,393  58  43 7%
2001  1,105  53  45 8%
2002  1,039  44  25 6%  615  10  18 4%
2003  1,010  67  78 13%  679  61  55 15%
2004  1,024  48  35 7%  589  7  15 4%
2005  1,145  66  44 9%  937  9  13 2%
2006  1,089  63  44 9%  761  31  32 8%
2007  1,162  71  43 9%  1,013  47  14 6%
2008  1,150  56  35 7%  479  11  8 4%
2009  1,116  89  59 12%  1,070  33  36 6%
2010  973  30  42 7%  930  18  23 4%
2011  1,157  72  39 9%  1,178  33  26 5% 43 3 3 12%
2012  1,214  21  47 5%  997  21  10 3% 110 0 2 2%
2013  1,092  26  30 5%  866  35  20 6% 272 15 10 8%
2014  1,499  45  20 4%  1,022  50  26 7% 314 2 4 2%
2015  653  9  10 3%  930  34  17 5% 70 0 2 3%
2016  183  1  1 1%  1,241  16  11 2% 110 3 1 4%
2017  821  15  12 3%  1,005  52  34 8% 70 0 1 1%
2018  673  34  17 7%
Overall  18,825  834  652 7%  14,985  502  375 6%  989  23  23 4%

This study provides the first estimate of the heritability of congenital entropion in dual-purpose 
New Zealand lambs. 
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SUMMARY
The poll microsatellite test has been available to Australia’s beef industry for approximately 7 

years and in that time, the bias in polled phenotyped animals submitted for testing from industry has 
influenced the accuracy of polled probability assignment to observed haplotypes. This article describes 
examples of observed mis-assigned haplotypes and their respective phenotypic observations, and the 
steps taken to correct the poll probabilities and resulting genotype estimations.

INTRODUCTION
The costs associated with carcase defects are largely attributed to damage from horned animals 

(Prayaga 2007). While dehorning is common practice to address these issues, questions remain 
regarding the animal’s welfare, and breeding naturally polled animals provides a long term solution. 
The microsatellite DNA marker test for polledness was developed by the Beef Cooperative Research 
Centre and CSIRO (Henshall et al. 2011), and has been available to Australia’s beef industry for 
approximately 7 years. In that time, samples submitted from industry have been biased towards 
polled submissions, due to a logical disinterest in testing horned animals. Prior to this study, the vast 
majority of phenotypes submitted to the test were unknown (>60%), over a quarter polled (27%) 
and the least horned (5%) and scurred (5%) (Connors et al. 2018). Given the number of potential 
haplotypes possible, there is no realistic option of a large enough reference population. As such 
the test uses all available industry data to estimate genotypes and an appropriate representation of 
different phenotypes should be present in the data so that microsatellite haplotypes can be assigned 
the appropriate poll probability based on the observed phenotypes. The bias in polled phenotypes 
has influenced the accuracy of the genotype estimations, such that haplotypes which should be 
assigned as horned, have been mis-assigned as polled due to only polled phenotypes being observed 
with this haplotype. Recently additional horned phenotypes were sourced for inclusion into the test 
to correct this sampling bias and to demonstrate the effect that these additional phenotypes have on 
haplotype poll probability assignment. This paper describes a number of haplotypes with mis-assigned 
poll probabilities, the resulting genotype estimations, and the effect of including additional horned 
phenotypes on the haplotypes’ assignments. 

MATERIALS AND METHODS
The microsatellite test estimates an animal’s genotype as homozygous polled (PP), heterozygous 

polled (PH), or homozygous horned (HH), and detailed methodology has been discussed previously 
(Piper et al. 2014; Connors and Tier 2016; Connors et al. 2016). Briefly, samples submitted for testing 
are accompanied with a phenotype (i.e. horned, polled, scurred, or unknown).  The test uses ten 
microsatellite markers to form haplotype pairs for each sample, where each haplotype is labelled with 
a unique number. Haplotypes are assigned as either horned or polled, providing each haplotype with 
a polled probability based on the following criteria: (i) observed in polled animals with homozygous 
haplotypes; (ii) observed within progeny-tested animals (i.e. phenotyped progeny); (iii) observed in 
horned animals; (iv) observed in polled or scurred animals, where the other haplotype is horned. If the 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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haplotypes are not observed in any of these situations, then they cannot be assigned as horned or polled. 
Samples from 278 animals from four different breeds (Angus, Santa Gertrudis, Brahman, and 

Droughtmaster) were phenotyped at dehorning (with photographic records) and microsatellite genotyped. 
Angus samples were sourced from breeder/s, and all others originated from the Repronomics™ project 
(Johnston et al. 2017). Genotypes were compared with the phenotypes and agreement or mismatch 
was quantified. Where a mismatch between the genotype and phenotype occurred, the haplotypes 
were investigated for potential bias in phenotype observations.

RESULTS AND DISCUSSION
Of the 278 samples sent for genotyping, 45 samples had incomplete microsatellite results (less than 

10 markers). Microsatellite genotypes were obtained from 231 animals, consisting of 5 scurred, 14 
polled, and 212 horned animals. Genotype estimations from the poll test had complete concordance 
with 221 phenotypes, such that: 

•	 5 samples with ≥90% PP microsatellite call matching polled phenotype; 
•	 6 samples with ≥90% PH microsatellite call matching polled and scurred phenotypes;
•	 177 samples with ≥90% HH microsatellite call matching horned phenotype;
•	 33 samples with 70-90% HH microsatellite call matching horned phenotype;

Six samples had a mismatch with the phenotype result (shaded orange in Table 1), and another 
four had low probability genotype estimations (i.e. <70%) due to haplotype uncertainty (shaded blue 
in Table 1). Haplotypes with poll probability of 0.01 are high likelihood of being horned, and are 
associated with high number of horned phenotypes. Those with a poll probability of 0.99 are high 
likelihood of being polled, and are associated with high number of polled phenotypes. Deviation from 
either end towards the centre (i.e. 0.5) represents a level of uncertainty in the assignment of polled 
or horned, and is most often due to variation in phenotype observations. Haplotypes suspected of 
mis-assignment/low certainty are shaded grey in Table 1. Phenotypes associated with these haplotypes 
are counted, shown in Table 2. 

Table 1. Microsatellite poll results from mis-assigned/uncertain haplotypes. Orange shading 
indicates mismatching genotypes and probability (e.g. 96% PH); blue shading indicates low 
probability genotypes; grey shading indicates mis-assigned/uncertain haplotype

Breed Phenotype Haplotype 
1

Haplotype 
2

Haplotype  
1 poll 

probability

Haplotype 
2 poll 

probability

PP PH HH

Santa Gertrudis horned 19 660 0.01 0.97 0.01 0.96 0.03
Santa Gertrudis horned 22 660 0.01 0.97 0.01 0.96 0.03
Droughtmaster horned 87 1655 0.01 0.85 0.01 0.84 0.15
Santa Gertrudis horned 3 463 0.01 0.69 0.01 0.68 0.31
Angus scurred 8 166 0.99 0.99 0.98 0.02 0
Angus scurred 6 999 0.99 0.92 0.91 0.09 0
Droughtmaster horned 254 383 0.2 0.38 0.07 0.43 0.5
Brahman horned 135 771 0.01 0.38 0 0.39 0.61
Santa Gertrudis horned 3 745 0.01 0.3 0 0.31 0.69
Droughtmaster horned 254 1587 0.2 0.15 0.03 0.29 0.69
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The phenotype counts for haplotypes driving mismatched genotypes (orange in Table 2) 
overwhelmingly show a bias towards polled phenotypes along with a significant number of unknown 
phenotypes which are uninformative. These phenotype counts explain the haplotype’s high poll 
probability assignment of each mismatching genotype highlighted orange in Table 1. 

The phenotype counts of less certain haplotypes are shown in blue in Table 2. Each such haplotype 
has a mix of contradicting phenotypes. The inclusion of varied and contradicting phenotypes leads 
to probability uncertainty and thus, low probability genotype estimations. 

Table 2. Phenotype counts for haplotypes with mis-assigned poll probabilities (before additional 
samples submission). Orange shading indicates mis-assigned haplotypes; blue shading indicates 
uncertain probability haplotypes

Haplotype Unknown Scurred Horned Polled Total
660 24 1 0 9 36
1655 1 1 1 3 8
463 4 2 0 1 8
166 8 0 2 7 17
999 2 0 0 5 7
254 17 5 1 5 28
771 3 2 3 0 8
383 40 1 9 17 68
745 10 1 3 8 22

Inclusion of more consistent phenotype observations will improve the certainty of the haplotype 
probabilities. An example of this is shown in Figure 1. Haplotype 383 had a poll probability of 0.38 
due to contradicting horned and polled phenotypes (Table 2). Incremental inclusion of over 20 horned 
phenotypes saw the poll probability drop to approximately 0.01. 

Figure. 1. Effect of phenotype submission over time on poll probability of haplotype 383

Table 3. Poll probability changes for less certain haplotypes (after additional horned submissions)

Haplotype Poll probability 
before

Poll probability  
after

Poll probability 
change

No. horned 
additions

383 0.38 0.01 -0.37 22
771 0.38 0.31 -0.07 1
745 0.3 0.03 -0.27 5
254 0.2 0.1 -0.1 5
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As a result of inclusion of more than 212 horned phenotypes, the less certain haplotypes from 
Table 2 have shifted poll probabilities significantly, shown in Table 3. These shifts towards zero poll 
probability are a direct result of the inclusion of horned phenotypes associated with these haplotypes. 
Unfortunately, further horned samples possessing haplotypes causing the mismatches in Table 1 could 
not be sourced; inclusion of further samples would be needed to adequately shift the poll probabilities 
of these haplotypes.

A shift in poll probability of some haplotypes may have happened historically at any point, and is a 
direct reflection of the reference data of the test. Reliable horned phenotypes are the most informative 
data as they exclude the possibility of being genetically polled. Submission of horned phenotypes 
is challenged in two major aspects. Firstly, it is difficult to ensure animals’ phenotypes are accurate 
when (i) horns may be labelled as scurs and vice versa; (ii) horns may develop after the phenotyping 
time; and (iii) animals may be dehorned and mis-phenotyped polled. Secondly, data submission 
under commercial conditions makes submission of horned animals extremely unlikely; the cost of 
receiving a horned genotype result, when the horned phenotype is already known is unnecessary. 
Each of these aspects have likely impacted the observed sampling bias of the poll microsatellite test. 
As a result, some historical genotype predictions may be incorrect. This will likely become apparent 
using newly available technology, such as the commercial poll SNP test, which is now offered to the 
beef industry, where the microsatellite test will run in parallel. It is possible that the SNP test will 
provide a SNP result contradicting the microsatellite result, where the microsatellite haplotypes have 
been mis-assigned due to phenotype observations. It is impossible to know how many haplotypes 
have been affected, though reassuringly in this dataset, the microsatellite test had approximately 96% 
accuracy in relation to known phenotypes recorded.

CONCLUSIONS
This paper describes the effect of phenotyping bias on haplotype poll probabilities and resulting 

genotype estimations for the poll microsatellite test. This dataset had 96% genotype to phenotype 
concordance. The remaining four percent was demonstrated to be a result of haplotype mis-assignment 
due to associated phenotype observations, which can be corrected with additional horned phenotype 
submissions.
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SUMMARY
Tail biting is a welfare concern in pigs for both victims of tail biting and tail biters. This study aimed 

to estimate genetic parameters for tail-biting victims using medication records routinely collected on 
farm. Medication records for 771 pigs were available from 2011 until 2017 and most pigs (n = 459) 
needed medication due to tail-biting injury. There were 10,335 pigs with growth and backfat records 
that had not been medicated during this time period. Three different health traits were analysed as 
binary traits, defined as medication due to tail-biting injury, overall medication and medication for 
any health issue other than tail biting. Linear and logistic sire models were used to estimate genetic 
parameters. Heritability estimates for tail-biting victims were 0.09 (± 0.02) and 0.25 (± 0.09) based 
on a linear and logistic sire model, respectively. Medication due to other sicknesses was not heritable 
indicating that heritabilities for overall medication reflected additive genetic effects for tail-biting 
victims. There were no genetic associations between being tail bitten and growth rate or backfat 
indicating that current selection emphasis for these performance traits does not affect tail-biting 
victims. These first genetic parameter estimates of being a tail-biting victim indicates opportunities 
to select pigs less prone to becoming a victim of tail biting.

INTRODUCTION
Tail biting is a behaviour in pigs that causes pain, injury and in severe cases mortality in victims 

of tail biting. Further, biters start tail biting because their own welfare is compromised. The causes 
of tail biting are multi-factorial and the prevalence of tail biting may depend on interactions between 
some factors of the environment and the animal (Sonoda et al. 2013). This makes it difficult to find 
solutions to reduce the incidence of tail biting. So far, information about genetic factors affecting tail 
biting is limited. Previous research has focussed on tail biters (Breuer et al. 2005). Only recently has 
the first information about genetic variation for the incidence of victims of tail biting been reported 
(Canario and Flatres-Grall 2018), where tail-biting injury was recorded as a binary trait observed when 
pigs were approximately 100 kg. Alternatively, medication records available on farms for veterinary 
purposes may be used to identify victims of tail biting.

This study aimed to estimate heritability for tail-biting victims in pigs using medication records 
and to estimate their genetic correlations with growth rate and backfat.

MATERIALS AND METHODS
Medication records were available from January 2011 until September 2017 for 771 Large White 

pigs. Most pigs required medication due to tail biting (n = 459 pigs). These medication data were 
combined with other performance data recorded on farm during the same time period. Three different 
health traits were defined according to the reason for medication: due to having a tail-bite injury, 
overall medication and due to sickness other than tail biting (Other sickness). For these health traits, 
any pigs that were medicated were defined as 1 (case) while non-treated pigs received a 0 (control) 
for these health traits. There were 10,335 pigs with performance data that had not been medicated. 
These non-medicated pigs were recorded for growth rate and backfat at an average age of 126 days 
and an average body weight of 85.7 kg. There were 326 medicated pigs and 179 tail-bite victims that 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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were also recorded for growth and backfat. The prevalence of tail-biting victims was estimated as the 
proportion of pigs recorded for growth and backfat which were also medicated for tail bite. Overall, 
pigs were the progeny of 180 sires and 1,082 dams.

The three health traits were analysed as binomial variables using generalized linear mixed models 
which were fitted on a sire level with a logistic link. Therefore, a logistic distribution was assumed 
for the underlying liability scale. In addition, variance components were estimated for health traits 
applying a linear sire model which was also used to estimate genetic correlations between health 
traits and growth or backfat. Genetic models for health traits as well as average daily gain and 
backfat included month of birth as contemporary group and sex of the animal fitted as fixed effects. 
The weight of the animal at recording was fitted as a linear covariate for backfat. Random common 
litter effect was fitted as an additional random effect for all traits. For sire models, additive genetic 
variance was calculated as four times the estimated sire variance. Further, the residual variance was 
specified as π2/3 ≈ 3.29 for logistic sire models. Genetic parameters were estimated using ASReml 
(Gilmour et al. 2009). 

RESULTS AND DISCUSSION
Prevalence of tail biting. The prevalence of tail-biting victims based on medication records was 

4.2% in this study. However, the prevalence observed in this study should only be regarded as an 
indication of the true prevalence of tail biting because both the number of tail-biting victims needing 
medication and the number of pigs not being a victim of tail biting were estimated from incomplete 
data. The prevalence of tail-biting victims was 6.6% and 10.8% in two different herds based on a binary 
trait to identify pigs with tail damage (Canario and Flatres-Grall 2018). These two prevalence scores 
are not directly comparable because only a proportion of pigs with tail damage require medication 
and a higher prevalence of tail damage score is expected. 

Heritability estimates. Tail biting had a heritability of 0.09 (± 0.02) based on a linear sire model 
(Table 1). In comparison, the heritability estimate of tail-biting victims was higher (0.25 ± 0.09) based 
on a logistic sire model (Table 2). A higher heritability based on a logistic sire model in comparison to 
a linear sire model has been observed in other studies (Baeza-Rodriguez et al. 2017). In comparison, 
Canario and Flatres-Grall (2018) found a heritability of 0.06 (± 0.01) based on an animal model that 
also included social genetic effects. Jointly, these results indicate that the incidence of tail-biting 
victims has a genetic component that can be used for selective breeding.

Table 1. Phenotypic (Vp) variances, heritability (h2) and common litter effect (c2) estimates 
(standard errors, se) for tail biting, health and performance traits fitting linear models

Trait Vp h2 se c2 se
Tail biting1 0.0377 0.09 0.02 0.11 0.01
Overall medication1 0.0602 0.07 0.02 0.08 0.01
Other sickness1 0.0276 0.00 0.01 0.04 0.01
Growth rate2 2668 0.22 0.03 0.12 0.01
Backfat2 1.74 0.23 0.02 0.07 0.01

1 a linear sire model was fitted; 2 a linear animal model was fitted

No genetic variation was evident in the health traits defined by sickness other than tail biting 
indicating that heritability found for overall medication was predominantly due to tail biting incidence. 
Medication records were explored in detail by Guy et al. (2019) who used a subset of the data presented 
in this study. Alternative approaches to derive pseudo identifications for pigs without performance 
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records from weaning records were explored. Information about litters weaned each week was used 
to derive pseudo pedigree for pigs that were expected to be weaned from each litter each week. 
Heritabilities for medication incidence from a logistic sire model were similar for both approaches 
which defined controls based on performance-tested pigs (reduced-control: 0.06 ± 0.04) or based on 
pigs weaned per litter (full-control: 0.04 ± 0.03).

Estimates of common litter effects were 0.11 (± 0.01) and 0.14 (± 0.03) for tail-biting victims 
based on the linear and logistic sire model, respectively. Litter mates are likely to be housed in the 
same pen post weaning which may have contributed to these significant common litter effects for 
tail-biting victims. 

Table 2. Phenotypic (Vp) variances, heritability (h2) and common litter effect (c2) estimates 
(standard errors, se) for tail biting and health traits fitting logistic sire models

Trait Vp h2 se c2 se
Tail biting 4.14 0.25 0.09 0.14 0.03
Medication 3.84 0.13 0.06 0.11 0.03
Other sickness 3.61 0.02 0.06 0.08 0.05

Genetic correlations. Estimates of genetic correlations between tail biting and growth rate or 
backfat were not significantly different from zero (Table 3). Other correlations between tail biting and 
growth rate were lowly negative demonstrating that higher prevalence of tail biting was associated 
with lower growth rate at the residual, common litter and phenotypic level. These negative non-genetic 
associations between tail biting and growth rate were not found for backfat. Further, estimates of 
genetic and non-genetic associations between overall medication and growth rate or backfat were 
like associations between tail biting and growth rate or backfat. Genetic correlations were also not 
significantly different from zero indicating that selection for higher growth rate and lower backfat 
will not adversely affect tail-biting victims or overall medication. 

Table 3. Genetic (rg), common litter (rc), residual (rr) and phenotypic (rp) correlations (with 
standard errors) between tail biting or overall medication and growth rate or backfat fitting 
linear sire models

Trait rg (se) rc (se) rr (se) rp (se)
Tail biting

Growth rate  0.03 (0.18) -0.14 (0.06) -0.06 (0.01) -0.07 (0.01)
Backfat -0.09 (0.19) -0.09 (0.07) -0.01 (0.01) -0.02 (0.01)

Overall medication
Growth rate  0.03 (0.19) -0.11 (0.07) -0.10 (0.01) -0.09 (0.01)
Backfat -0.01 (0.19) -0.09 (0.08) -0.01 (0.01) -0.02 (0.01)

Medication due to other sickness was not heritable and genetic correlations with other traits could 
therefore not be estimated. No information was found in the literature regarding genetic associations 
between being a victim of tail biting and growth rate or backfat. Estimates of genetic correlations 
between tail biters and growth or backfat presented by Breuer et al. (2005) are not comparable because 
the behaviour of tail biting is different to the behaviour of a tail-biting victim. 

Selection strategies. Medication records were used in this study to identify victims of tail biting 
in pigs. This measurement of tail-biting prevalence does not capture all victims of tail biting because 
only a proportion of tail-biting victims require medication. Therefore, a binary score identifying 
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tail damage as was used by Canario and Flatres-Grall (2018) may be a better measure of tail-biting 
victims because the prevalence of such a score is expected to be higher than the prevalence based on 
medication records. A higher prevalence of a score identifying tail-biting victims results in a higher 
variance for the binary trait. Overall, it is recommended that tail damage of pigs is recorded when 
pigs are performance tested for weight or fat depth in order to verify these initial heritability estimates 
available for tail-biting victims. 

Tail biting leads to economic losses because tail-bitten pigs are at higher risk of infections, carcase 
condemnation, reduced weight gain and increased medication and labour costs (review by Valros 
and Heinonen 2015). Often these cost components are difficult to quantify and information about 
medication records provides information about additional medication and labour costs. 

The prevalence of tail biting is high when an outbreak of tail biting occurs. Generally, tail biting 
is not observed continuously and the overall prevalence of tail-biting victims is low. This is desirable 
of course, however, a low prevalence implies that variance for tail-biting victims is low which in turn 
limits opportunities for genetic improvement. Therefore, selection criteria that can be recorded easily 
on all pigs to reduce biting behaviour and prevalence of tail biting are desirable. First indications that 
social genetic effects for growth are associated with multiple biting behaviours including tail biting 
were presented by Camerlink et al. (2015) and should be investigated further. Social genetic effects for 
prevalence of tail-biting victims were found by Canario and Flatres-Grall (2018). However, estimating 
these social genetic effects for tail-biting victims directly is difficult due to the low prevalence and 
binary nature of this trait. Therefore, investigating social genetic effects for growth as an indirect 
selection criterion for tail biting in pigs may be a more feasible alternative. This approach also requires 
information of tail-biting victims and recording a simple (binary) score to identify tail-biting victims 
should be priority.

CONCLUSIONS
Being a tail-biting victim, identified by medication records, was heritable. No genetic associations 

were found between tail-biting victims and growth rate or backfat. Simple (binary) scores to identify 
victims of tail biting based on medication records or observations of tail damage of pigs on farms 
should be considered as new welfare traits in pig breeding programs.
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SUMMARY
Improving animal health and resilience is an increasingly important breeding objective for all 

livestock industries. In this study we estimated genetic parameters of serum metabolic profiles in 
early lactation dairy cows. A single serum sample was taken from 1,393 cows, located on 14 farms 
in south eastern Australia, within 30 days after calving. Sera were analysed for biomarkers of energy 
balance (β hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA)), mineral status (Ca and 
Mg), protein nutrition (urea and albumin) and immune status (globulins and albumin to globulin 
ratio (A:G)). After editing, 47,162 single nucleotide polymorphism marker genotypes were used for 
estimating genomic heritabilities and breeding values (gEBV) for these traits in ASReml. Heritabilities 
were low for BHBA, NEFA, Ca, Mg and urea (0.09, 0.18, 0.07, 0.19 and 0.18, respectively), and 
moderate to high for albumin, globulins and A:G (0.27, 0.46 and 0.41, respectively). The accuracy of 
genomic predictions was assessed by (1) calculating empirical accuracy using 5-fold cross validation, 
and (2) calculating theoretical accuracy using the prediction error variance obtained from ASReml. 
Empirical accuracies ranged from 0.20 to 0.40, being higher for traits with higher heritabilities. 
Theoretical accuracies were higher than respective empirical accuracies (0.31 – 0.51), but the results 
of the 2 methods were in excellent agreement (R2 = 0.89). While increasing the size of the reference 
population should theoretically improve accuracies, our results suggest that genomic prediction may 
allow identification of healthier cows that are less susceptible to diseases in early lactation.

INTRODUCTION
Most disease events affecting dairy cows occur in the first 30 days after calving (LeBlanc et 

al. 2006) and many of these diseases are associated with metabolic disorders such as ketosis and 
hypocalcaemia (Ospina et al. 2010). While heritability estimates of metabolic disorders are generally 
low (Uribe et al. 1995), sufficient genetic variance exists to suggest that improvements in metabolic 
stability can be achieved through genetic selection.

One way of assessing the metabolic health of cattle is serum metabolic profiling, which employs 
well-established epidemiological associations between the concentrations of several metabolites in 
serum, and the presence of both subclinical and clinical metabolic disorders (Payne et al. 1970). These 
metabolites include those associated with energy balance (BHBA and NEFA), mineral status (Ca 
and Mg), protein nutrition (urea and albumin) and immune status (globulins and albumin to globulin 
ratio). While extremely valuable, these phenotypes are costly and invasive to collect, making them 
impractical for traditional large-scale genetic evaluations. Genomic selection offers exciting potential 
for achieving genetic improvement in such difficult to measure and lowly heritable traits, by using data 
obtained from relatively small genotyped reference populations with high quality phenotypic data.

The objectives of this study were to (1) estimate the genetic parameters of serum biomarkers of 
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health in early lactation dairy cows using data collected from a genotyped female reference population, 
and (2) estimate the accuracy of genomic predictions of serum biomarker concentrations. If sufficiently 
accurate, genomic selection for metabolic stability offers the potential to provide permanent and 
incremental improvements in dairy cow health and welfare, thereby increasing farm profitability 
and sustainability.

MATERIALS AND METHODS
Phenotypes. A single serum sample was taken from of 1,393 Holstein-Friesian cows from 14 

farms in south eastern Australia between August 2017 and October 2018, according to the protocol 
described in Luke et al. (2019). All animals had been calved 30 days or less at the time of sampling. 
Sera were analysed for biomarkers of energy balance (BHBA and NEFA), mineral status (Ca and 
Mg), protein nutrition (urea and albumin) and immune status (globulins) by Regional Laboratory 
Services (Benalla, Victoria, Australia). Descriptive statistics of phenotypes are shown in Table 1.

Genotypes. Genotypes for the 1,393 animals used in this study were provided by DataGene Ltd. 
(Victoria, Australia). After editing, 47,162 single nucleotide polymorphism (SNP) markers were 
available for genomic analyses. A genomic relationship matrix (GRM) was constructed according 
to Yang et al. (2010).

Genetic parameters. Variance components were estimated for each trait using univariate linear 
mixed animal models in ASReml (Gilmour et al. 2015). In matrix notation, the model used was y = 
Xb + Zu + e (Model 1), where y is a vector of metabolite concentrations (BHBA, NEFA, Ca, Mg, 
urea, albumin, globulins), b is a vector of fixed effects of DIM, herd, parity, age and sample collection 
date, u is a vector of random genetic effects, and e is a vector of the random residual effects; and 
X and Z are incidence matrices for b and u respectively. It is assumed that var(u) = GRM σu

2, and 
var(e) = Iσe

2. Estimated variance components were then used to calculate the genomic heritability 
of each biomarker.

Genomic predictions. Genomic estimated breeding values (GEBV) were predicted using genomic 
best linear unbiased prediction (gBLUP), using variance components estimated from the univariate 
model (Model 1). The accuracy of genomic predictions was assessed in 2 ways. Firstly, empirical 
accuracy was calculated using 5-fold cross validation. This involved randomly dividing the reference 
population into 5 equally sized groups or folds. Data from 1 fold (approximately 20% of the reference 
population) were set aside as a validation set, and data from the remaining 4 folds (approximately 
80% of the reference population) formed the training set for model development. The resulting model 
was then used to predict GEBVs for animals in the validation set. This was repeated 5 times so that 
all animals appeared in the testing set once. Empirical accuracy was then calculated as the Pearson’s 
correlation between the predicted GEBVs and actual phenotype values, corrected for the fixed effects 
described in Model 1. Predicted accuracies of the true breeding values were calculated by dividing the 
empirical accuracies by the square root of the heritability of the trait. Secondly, theoretical accuracy 
was calculated as

where is the standard error of GEBV of individual i, and   is the genetic variance 
of each trait estimated from Model 1, adjusted for inbreeding by multiplying by the corresponding 
diagonal elements in the GRM for each individual (GRMii).
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RESULTS AND DISCUSSION
Estimated heritabilities for all traits, obtained from Model 1, are shown in Table 1. Heritability 

estimates were low for serum BHBA, NEFA, Ca, Mg and urea at 0.09 0.18, 0.07 0.19 and 0.18, 
respectively. Heritabilities of albumin, globulins and A:G were higher at  0.27, 0.46 and 0.41, 
respectively. Standard errors for all heritabilities were low (0.04 - 0.06). 

Heritability estimates were consistent with the literature for NEFA (Oikonomou et al. 2008), Mg 
(Tsiamadis et al. 2016), albumin, globulins and A:G (Cecchinato et al. 2018). We could find no reports 
of the heritability of serum urea concentration in the literature, however our results are consistent 
with the reported heritability of milk urea nitrogen (Mitchell et al. 2005), the concentration of which 
is linearly correlated with serum urea. 

The heritability of serum BHBA in our dataset was 0.09 ± 0.04, which is in excellent agreement 
with the findings of Weigel et al. (2017) (0.093 ± 0.045), slightly lower than those of van der Drift et 
al. (2012) (0.17 ± 0.06), and considerably lower than those of Oikonomou et al. (2008) and Cecchinato 
et al. (2018) (0.40 ± 0.06 and 0.37 ± 0.14, respectively). Oikonomou et al. (2008) demonstrated that 
the heritability of BHBA concentration is highest in immediately post calving and decreases rapidly 
over the first 7 weeks of lactation. In our study only 209 cows were in the first week of lactation at the 
time of sampling, and we expect that adding more data from animals in this highest risk period could 
improve heritabilities. Similarly, the heritability of Ca in our dataset was 0.07 ± 0.04, significantly 
lower than reported by Tsiamadis et al. (2016) who found that the heritability of serum Ca at days 1, 
2, 4 and 8 post-partum ranged from 0.23 (± 0.02) to 0.32 (± 0.03). Serum Ca concentrations drop in 
the 12 to 24 hours immediately post-calving before rapidly returning to normal physiological levels 
once homeostatic mechanism are restored, and it is likely that our low heritability estimate is the 
result of having sampled only 14 cows in this period of highest phenotypic variability. These results 
demonstrate the importance of careful trait definition when investigating the genetic parameters of 
health traits in the transition period.

Table 1. Number of samples (n), phenotypic means (µ) and standard deviations (σ), estimated 
genomic heritabilities (± standard errors), empirical reliabilities, and theoretical reliabilities 
of serum metabolic profiles

Phenotype n µ σ h2 re rt

BHBA 1393 0.48 0.22 0.09 ± 0.04 0.29 0.34
NEFA 1393 0.55 0.33 0.18 ± 0.05 0.36 0.41
Ca 1327 2.31 0.18 0.07 ± 0.04 0.20 0.31
Mg 1294 0.98 0.14 0.19 ± 0.06 0.28 0.41
Urea 1393 5.24 0.17 0.18 ± 0.05 0.30 0.41
Albumin 1294 32.8 2.95 0.27 ± 0.06 0.38 0.44
Globulin 1294 38.4 6.04 0.46 ± 0.06 0.40 0.51
A:G 1294 0.88 0.17 0.41 ± 0.06 0.40 0.49

Accuracies of genomic predictions resulting from univariate models are shown in Table 1. Empirical 
accuracies of the true breeding values were low to moderate (0.20 and 0.40), with more heritable 
traits having higher prediction accuracies. Theoretical accuracies, calculated from the standard 
errors estimated from Model 1, were higher than respective empirical accuracies, but the results of 
the 2 methods were in excellent agreement (R2 = 0.89). Although low, our results are consistent with 
a small female reference population and low to moderate trait reliabilities (Gonzalez-Recio et al. 
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2014). We expect that increasing the size of the reference population and refining trait definitions to 
maximise heritabilities should improve genomic prediction accuracies. Given the cost and logistical 
challenges of blood sampling large numbers of cows, one method for dramatically increasing the 
number of phenotypes may be to use mid-infrared spectroscopy of milk to predict serum biomarker 
concentrations. Other high throughput metabolomic methods such as nuclear magnetic reasonance 
spectroscopy may also offer potential for the discovery of novel biomarkers of health in milk and 
serum, which could help to further improve the genomic prediction accuracies. 

CONCLUSIONS
Our results show that genetic variance exists in the concentration of biomarkers of energy balance, 

protein nutrition, micromineral status and immune status in early lactation dairy cows. Genomic 
prediction accuracies were low, and while increasing the size of the reference population should 
theoretically improve accuracies, our results suggest that genomic prediction may allow identification 
of healthier cows that are less susceptible to diseases in early lactation.
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SUMMARY
Poll testing is becoming common practice in Australia because it helps early prediction of 

head-phenotypes in calves to avoid dehorning and disbudding. It further improves cattle welfare 
by selecting breeding animals which are not carriers of horn alleles to avoid horned or scur calves, 
which may undergo physical dehorning. Current testing assays are limited to some breeds and often 
give inconclusive outputs as “Not Determined” or “No Results”, because of ascertainment bias and 
marker failures. This study presents comparison of previously used poll testing assays (microsatellite 
and SNP based) with an optimized poll test (OPT) and poll allele distribution in beef breeds harbouring 
the Celtic and Friesian mutations.

INTRODUCTION
Cattle (Bos taurus and Bos indicus) species naturally evolved as horned and grow horns of different 

shapes and sizes as a unique phenotypic diversity between the breeds (Ajmone-Marsan et al. 2010). 
Modern cattle have further evolved their head-status as, horn: permanent pointy appendages attached 
to the skull, scur: pseudo horns loosely attached to the head-skin, or poll: complete absence of horn 
and scur (Wiener et al. 2015). Current management of horns in cattle production systems poses 
both welfare and economic challenges. Presence of horns poses potential hazards for other animals 
(injuries, damaged hides and bruised carcass), buildings, equipment and transport, and farm workers. 
Growth of horns can be avoided by physically dehorning. However management practices to remove 
horns or stop their growth remain invasive and painful for the animals (Knierim et al. 2015). Surgical 
dehorning affects growth and increases risks of infection and subsequently causes production loss 
and mortality, while there are also risks to workers and increased labour costs (Bunter et al. 2013). 
Genetically, the presence of horn is a qualitative trait which has been mapped on chromosome 1 
(Mariasegaram et al. 2012). Although the genetic mechanisms underpinning horn, scur and poll 
status remain to be fully understood, inheritance of the conditions suggest that poll is the dominant 
gene, i.e., PP (polled) and pp (horned), and Pp animals generally present as poll or scurs (Capitan et 
al. 2011; Tetens et al. 2015).

Commercial DNA diagnostics for poll status are rapidly increasing and is routinely practiced 
by cattle farmers in Australia for informed and strategic breeding plans to reduce dehorning and 
disbudding. Microsatellite (MSAT) markers were used to establish the first-generation of poll testing 
assays (Mariasegaram et al. 2012). A total of 14 microsatellite markers have shown strong associations 
with polledness across different populations. In the poll-haplotype diagnostic test, 8 MSATs were 
initially used. However, the updated haplotype test contains 10 MSATs (Piper et al. 2014). MSAT 
single marker and haplotype assays were generally successful in Brahman and Bos taurus breeds 
respectively. The second generation of poll testing is single nucleotide polymorphism (SNP) based, 
and is rapidly replacing MSATs as SNP genotyping technologies become more accessible and cost 
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effective. SNP testing has only become available with sequencing of chromosome 1 which has 
identified genetic heterogeneity across breeds linking the polledness with 4 distinct insertion-deletions 
at the poll locus, called, Celtic (Pc), Friesian (Pf), Mongolian (Pm) and Guarani (Pg) (Medugorac 
et al. 2012; Rothammer et al. 2014; Wiedemar et al. 2014; Wiener et al. 2015; Utsunomiya et al. 
2019). Notably, Pc and Pf alleles are prevalent in most of the naturally polled cattle. Predictions in 
SNP-based diagnostic assays rely on genetic linkage between the contiguous markers in the poll 
locus harbouring Pc and Pf (Medugorac et al. 2012; Rothammer et al. 2014; Wiedemar et al. 2014). 
Up to 10 SNPs with strong LD with the known poll alleles (Pc and Pf) are available in various cattle 
breeds and the current poll testing (CPT) assays include 5-8 SNPs. 

Poll testing assays help horn management in cattle herds by early predictions of head-status. 
However, some breeds are disadvantaged because of ascertainment bias, marker types and other factors 
relating to these diagnostic tools (Connors et al. 2018). Here, we have investigated the efficiency 
and limitations of available assays which use MSATs or SNPs and propose an optimized poll testing 
(OPT) to efficiently diagnose the presence of Pc and Pf across 10 breeds of cattle.

MATERIALS AND METHODS
Animal ethics approval for tail-hair samples, head phenotypes, genotyping and sequencing were 

obtained (AEC # SVS/301/18). Genomic data of 37,694 animals across ten breeds (Table 1) was 
used to compare the available poll test results using MSATs (n=20,534) and SNPs (n=18,793) based 
assays, and with the proposed SNPs-based OPT (n=18,793). To assess the phenotypic concordance, 
information about their head-status (horn, scur, and poll) from 6,930 (out of 18,793) registered 
animals of 8 breeds in Australia (excluding Angus and Wagyu) were obtained from the BREEDPLAN 
database (http://breedplan.une.edu.au/index.php). Hair samples of Brahman (n=60 out of 2691) were 
used from available stocks for targeted DNA sequencing. In addition, collection of hair samples and 
assessing of head-status of Droughtmaster (n=84) cattle from UQ’s research herd were performed 
for phenotypic and genetic concordance for validation.

First, we compared the efficiency of available MSAT and CPT assay based predictions using 
available poll test results on different samples, because most animals were tested with either MSATs 
or SNPs based markers. Second, 10 SNPs in the poll region were investigated for genotyping failures, 
monomorphism and overall informativeness to develop the optimized poll testing (OPT). Third, OPT 
based predictions were evaluated for phenotypic concordance with BREEDPLAN data (available for 
6,930 registered animals only) and finally, validated by UQ-herd.  

Table 1. Breed samples tested with microsatellite (MSAT) and SNP-based assays

Breeds Samples MSAT tested SNP tested Tested by both
Angus 1630 28 1602 0
Brahman 7009 4532 2691 214
Brangus 754 745 37 28
Charolais 3148 2666 900 418
Droughtmaster 2611 2223 708 220
Hereford 6424 3485 3341 402
Limousin 2193 2124 207 138
Santa Gertrudis 4427 4306 136 15
Shorthorn 316 224 121 29
Wagyu 9182 201 9050 69
Total 37,694 20,534 18,793 1,533
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RESULTS AND DISCUSSIONS
We found that MSAT-based testing failed to predict genotypes (HH, PH or PP) for horn or poll 

conditions in 11.7% of tests performed across all breeds combined and these were reported as Not 
Determined (Figure 1). The CPT diagnostic test significantly reduced the frequency of “No Results” 
being reported, with the notable exception of Zebu (Bos indicus) and their cross-bred cattle which 
were still constrained by No Result issues (Figure 1). Out of 18,793 SNP-tested samples, 5.48% had 
failed to identify an unambiguous genotype with CPT and hence were predicted as No Result with 
the majority of these no results being Brahman (18.3%) and Brangus (22.2%). 

Figure 1. Comparison of poll testing by microsatellites (MSAT) and SNP-based current poll 
test (CPT) and optimized poll test (OPT) in 10 breeds of Australia

Utility of 10 SNPs was investigated for prediction of Pc and Pf allele prevalence in different 
breeds. Initially, a single SNP (rs800947704) was found to be failing in genotyping assays in 8 of 
the 10 breeds (n=662 out of 16,828), especially in Brahman which had a 14.4% failure rate. Targeted 
sequencing of a 1,098 bp (1,654,527-1,655,625) fragment surrounding rs800947704 in Brahman 
samples showed that the probe region (within 50bp of target SNP) was unstable causing genotyping 
failure. Hence the SNP was rejected as a useful marker. Further investigation found that 4 other SNPs 
were not reliable for accurate predictions, of which 2 SNPs (rs798116945 and rs800767839) were 
highly monomorphic and 2 SNPs (rs799187101 and rs799920960) were not in complete LD. The No 
Results predictions were caused by issues with 1 or more of these 5 SNPs, indicating that they were 
unsuitable for the poll testing assays in Zebu cattle. The other 5 SNPs passed the inclusion criteria for 
the OPT predictions and were evaluated using 18,589 samples of European, Zebu and their cross-bred 
populations. Previously successful predictions (n=18,019) were found to remain unchanged (100%) 
using OPT relative to the original prediction. Of the previously unsuccessful (No Results, n=570) 
samples, 569 (99.8%) were effectively classified into one of the head-status predictions. Overall allele 
frequencies were found as H = 0.57, Pc = 0.40 and Pf = 0.03 (Figure 2). Genotype distributions (HH 
= 40.4, HP = 32.3, PP = 27.3) were different than phenotypic rates (Horn = 42.7, Scur = 6.2, Poll = 
51.1), predominantly because many heterozygous animals (HP) are poll (Table 2). Numbers of OPT-
based genotypes (and associated phenotypes as a %) in the UQ herd were; HH =15 (horn 100%), HP 
= 45 (scur 51% and poll 49%) and PP = 24 (poll 100%).
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Figure 2. Frequency (%) of horn (H) and poll (Pc & Pf) alleles in 10 breeds (n=18,793)

Table 2. Concordance between OPT genotypes and BREEDPLAN phenotypes in 8 breeds

OPT genotypes Number tested Phenotypic concordance (%) with head-status
Horn Scur Poll

HH 2800 94.8 % 3.10 % 2.10 %
HPc 2121 13.5 % 15.7 % 70.8 %
HPf 120 2.50 % 5.80 % 91.7 %
PcPc 1595 0.75 % 0.25 % 99.0 %
PcPf 267 0.37 % 0.37 % 99.2 %
PfPf 27 - - 100 %

OPT-based genotypes have shown high concordance with known head-status, except for HPc and 
HPf that can result in scur phenotypes, with indications in literature pointing to the probability that 
sex (female) and sex hormones (steer) sway heterozygotes to be poll (Randhawa et al. 2019). It is 
very unlikely that HH animals can be either scur (3.1%) or poll (2.1%). However, inaccuracies with 
phenotypic recording are common (Connors et al. 2018). Overall, using the OPT can effectively resolve 
MSAT and CPT limitations to accurately predict true poll conditions (over 99%) in Bos taurus, Bos 
indicus and cross-bred beef cattle. We continue to investigate the genetics of the scur.
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SUMMARY
Beef production is under threat from tick infestation problems, which have so far not been 

successfully controlled because of shortcomings in chemical and vaccine usage. The variation in 
resistance to ticks among breeds provides an opportunity to determine the mechanisms that underlie 
resistance to ticks. Brahman, Nguni and Angus animals were used to study gene expression following 
artificial infestation with Rhipicephalus ticks. Skin biopsies were collected, and RNA extracted for 
gene expression analyses. Variation in gene expression was observed in genes involved in discouraging 
long-term supply of blood meal to the tick and those associated with immune responses.

INTRODUCTION
Cattle ticks pose the risk of inflicting deleterious effects on production traits by hindering the 

growth and weight gain, productivity, fertility, as well as the meat quality of cattle (Marufu et al. 
2011). The profitability of the beef cattle industry may be compromised as many beef enterprises 
maximise their profit margins by concentrating more on fertility and a high weaning weight off the 
veld (Mapholi 2014). Current tick control methods include grazing practices and use of acaricides and 
vaccines, which have however not been successful in completely eradicating ticks. The widespread 
use of acaricides to control tick burdens places strong evolutionary pressure towards the emergence 
of new chemical-resistant strains of ticks, faster than new chemicals can be produced (Gasbarre et 
al. 2009). Ticks also mutate the targeted epitopes into unfamiliar forms and nullify the effect of a 
particular vaccine. There is also increasing public concern about chemical residues in animal products 
and the environment (Mapholi et al. 2014). A relatively simple and cheap method of reducing the 
effects of parasite infestation would be use of genetically tick-resistant animals. Resistance to ticks 
among cattle breeds is variable (Muchenje et al. 2008) and this presents an opportunity to exploit 
the host’s resistance to ticks in developing more cost-effective and sustainable tick control programs. 
Tick bites trigger immune responses in the host animal’s body by releasing specific proteins that fight 
infection at the site, suggesting that response to tick infestation may be under genetic control (Marufu 
et al. 2014). Thus, a better insight into the mechanism of resistance to ticks may be achieved by 
identifying the genes expressed as a result of tick infestation. The objective of the study was therefore 
to evaluate the genetic expression differences in different cattle breeds in response to infestation by 
two different tick species.
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MATERIALS AND METHODS
Thirty-six cattle, comprising of 12 Nguni bulls, 12 Brahman bulls, six Angus heifers and six bulls 

aged between 12 and 15 months were artificially infested with unfed Rhipicephalus tick larvae. Half 
of the animals per breed were infested with R. microplus, while the other half were infested with R. 
decoloratus. The Angus groups were further divided in terms of sex, with three animals of each sex 
being infested with R. microplus and the remaining three being infested with R. decoloratus larvae. 
Skin biopsies were collected pre-infestation and the animals’ mid-back area was shaved and a calico 
bag was attached, after which the tick larvae were placed inside. Twelve hours post-infestation, the 
bags were opened and skin biopsy samples were collected from the tick bite sites. The biopsies were 
preserved in 5 ml RNAlater® RNA stabilization Reagent (Qiagen) and stored at -80oC. About 50-100 
mg of each biopsy sample was used for RNA extraction, which was conducted following the TRIzol® 
Reagent protocol. Samples showed separation of the 28S and 18S bands with partial smearing after 
running the 1% agarose gel. Purity test was done using the NanoDrop spectrophotometer to ensure 
that all samples had 260/280 values ≥ 1.70. Samples which were below this value were then repurified. 

cDNA was synthesised using equal amounts of total RNA and the RT2 First Strand Kit was used 
according to manufacturer’s protocol. To obtain optimal results, 400ng of total RNA per sample was 
used to obtain a total cDNA volume of 30µl. Then, genetic analysis was done, where threshold cycle 
(CT) values generated were used to calculate the expression levels of a panel of 17 candidate genes 
using the RT2 Profiler PCR Array Data Analysis Webportal (SABioscience - Qiagen). The panel of 
genes included cytokines (TLR5, TLR7, TLR 9, TRAF6, CD14), chemokines and their receptors (CCR1, 
CCL2, CCL5), toll-like receptors (IL-1β, CXCL8, IL-10, TNF) and other candidate genes (BDA20, 
OGN, TBP, LUM, B2M). The fold change value of each gene, normalised against the reference genes 
Ribosomal protein, large, P0 (RPLP0), 18S ribosomal RNA (RN18S1), Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) and Beta-actin-like (LOC616410). Fold change was calculated using the 
ΔΔCT method described by Livak and Schmittgen (2001). An analysis of variance for two-way 
factorial designs was used to test the interaction between the main effects, breed and tick species, 
for each of the genes. The primers for each of the genes of interest were custom designed by Qiagen 
using forward and reverse primer sequences associated with the GenBank and UniGene reference 
sequence numbers. 

Ninety-six-well RT2 Profiler PCR arrays were used for the real-time PCR analyses and facilitated 
high-throughput focused expression analysis on the genes of interest. Each plate enabled the analyses 
of four samples at a time to generate amplification data for 17 genes of interest and four reference 
genes per sample. The gene expression profiles of selected genes were examined using the ABI 7500 
real-time PCR thermocycler. A PCR components mix was prepared in a 5ml tube for each sample 
according to manufacturer’s protocol. The arrays were also fitted with primers designed to amplify 
three Qiagen recommended quality control parameters, namely Bovine Genomic DNA Control 
(BGDC), Reverse Transcription Control (RTC) and Positive PCR Control (PPC).

RESULTS AND DISCUSSION
Four reference genes, namely RPLP0, RN18S1, GAPDH and LOC616410 were chosen to normalise 

the data. The average CT values for the reference genes were 24.153, 15.717 and 25,399 for RPLP0, 
RN18S1 and GAPDH, respectively. There was no significant interaction between the main effects, 
breed and tick species, observed for any of the genes, which may suggest similar responses to both 
tick species’ infestations by these breeds. While the expression of most of the genes did not differ 
significantly according to breed, the expression profiles of genes TRAF6, TBP, LUM and B2M were 
significantly different among breeds. There were differences between the Nguni and Angus in the 
expression levels of TBP and TRAF6 (P <0.05), as well as between the Brahman and Angus in the 
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expression levels of LUM and B2M (P <0.01). Increases in the expression levels of six genes (CCL2, 
CCL26, CD14, OGN, LUM, and B2M) post-infestation for all breed × tick species treatment groups 
were observed. Five genes (CCR1, TLR5, TRAF6, TBP, BDA20) increased expression or remained 
approximately equal after infestation with ticks for all groups. Mixed results were obtained in the 
breed × tick species groups for expression levels for the genes IL1-β, TLR7 and TLR9, while the 
expression levels of three genes (CXCL8, IL10, TNF-α) decreased or remained the same after tick 
challenge in all breed × tick species groups. 

The results of this study were broadly consistent with previous work (Wang et al. 2007; Piper 
2010). The genes encoding the extracellular matrix constituents, most importantly, LUM and B2M, 
were upregulated at much higher levels in the high (Brahman) and intermediate (Nguni) resistance 
breeds than the genes involved in immune system regulation and inflammatory responses. This was 
in agreement with the observation by Piper et al. (2010), where there was upregulation of genes 
encoding constituents of the extracellular matrix in the tick-resistant Brahman in comparison to the 
susceptible Holstein-Friesian cattle. Kongsuwan et al. (2010) attributed resistance to ticks to the 
epidermal permeability barrier of the skin, which is associated with the heightened expression of 
these genes in the tick-resistant Brahman cattle. The genes, LUM, B2M and TBP induced resistance 
to ticks by promoting continued cellular regeneration, tissue repair and detoxification of the tick bite 
site, instead of initiating host immune responses. This activated the mechanism required to discourage 
long term supply of blood meal to the tick. These genes, except TBP, were upregulated in all treatment 
combination groups, excluding the Angus-R. microplus group. 

The highest upregulation values were detected for LUM in the Brahman treatment groups and 
Nguni-R. microplus. As a gene that encodes a member of the small leucine-rich proteoglycan (Weizmann 
Institute of Science 2016a), LUM serves in conjunction with OGN to induce immune responses. The 
gene OGN similarly presented higher upregulation values than the rest of the genes of interest. Both 
LUM and OGN are capable of regulating fibril organisation and circumferential growth as well as 
epithelial cell migration in the process of tissue repair at the tick bite site (Weizmann Institute of 
Science 2016a). The significantly high expression level of LUM in the Brahman more than the Angus 
suggested that the Brahman had a stronger capacity to prevent tick feeding through continuous tissue 
repair than the Angus. This was true for both tick species. The results suggest that LUM can be used 
as a biomarker for resistance to both R. microplus and R. decoloratus tick species. 

Unlike LUM, the significant differences in the expression levels of TBP and B2M in different 
treatment groups were unexpected. TBP is a component of the RNA polymerase III; hence it was 
expected to behave like a housekeeping gene exhibiting stable expression levels in all treatment 
combinations to facilitate continued cell growth. While TBP was upregulated in most treatment 
groups, the gene displayed a downregulated but stable expression level in Angus-R. microplus group. 
This may be attributed to the stressful conditions inflicted by the tick infestations, which might have 
resulted in the regulatory protein Maf1 repressing RNA polymerase III activity (Vannini et al. 2010). 
The B2M gene is a component of the MHC class I that is responsible for  presenting peptide antigens 
(including tick antigens) to the immune system, while simultaneously forming amyloid fibrils in 
pathological challenges (Weizmann Institute of Science 2016b). Therefore, the significantly low B2M 
expression levels produced by the Angus animals may imply that this breed’s nucleated cells had a 
poor capacity to detect the tick antigens to prompt host immune responses.

CONCLUSIONS
The differences in the expression profiles of different genes in breeds of different levels of resistance 

to ticks may provide an insight into the mechanism of resistance to ticks. Genes that show variation 
in responses to tick infestation among breeds are involved in discouraging long term supply of blood 
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meal to the tick, although there was some variation in the genes associated with immune responses. 
The gene LUM may be used as biomarker for resistance to ticks. Given that resistance to ticks is a 
polygenic trait, deep sequencing may reveal more genes associated with this trait. Further studies 
should be conducted to investigate the association between skin permeability, genes expressed and 
resistance to ticks.
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SUMMARY
Keeping horns or physically removing them pose economic and welfare risks, therefore, producing 

naturally hornless (polled) animals would make livestock production more humane and sustainable. 
The cattle industry is rapidly breeding polled cattle with the aid of advanced genomic technologies. 
However, some reluctance has been noticed due to perceived trade-offs associating polled animals 
with increased inbreeding and loss of production for various traits. Estimated breeding values (EBVs) 
of 243,330 animals, born in last 70 years, from three beef breeds (Brahman, Droughtmaster and 
Hereford) were obtained from BREEDPLAN. We have compared eight economically important traits 
for production (birth weight, mature cow weight carcase weight, retail beef yield, intramuscular fat and 
milk yield) and reproduction (scrotal size and days to calving). At various levels of EBVs accuracy 
(60%, 75%) a few significant differences of small effect sizes were found in no consistent direction 
of either horn or poll cohorts. Overall, we conclude that polledness had no detrimental effects on 
target traits of beef cattle.

INTRODUCTION
Many modern cattle are naturally horned, which pose risks to animals and workers, and management 

practices to remove horns are expensive, painful and unsafe (Bunter et al. 2013; Thompson et al. 
2017). Alternatively, with growing support of consumers, genetic polledness is being progressively 
adopted, as a welfare-oriented and an effective management approach, to breed hornless (polled) 
cattle. Poll cattle have a long-history being kept in colder regions for easy confinement of cattle, 
however, commercial adoption of genetically polled cattle can sometimes face resistance because of 
a few perceived trade-offs associating polledness with increased inbreeding and loss of production 
for various traits (Schafberg and Swalve 2015). In dairy cattle, the frequency of polled bulls is so 
low that including this trait as selection criteria generally results in higher inbreeding and thus slower 
genetic improvement (Gaspa et al. 2015; Windig et al. 2015; Scheper et al. 2016). However no 
significant differences were found between horn and poll cattle in dairy traits (Onaciu et al. 2012) 
at the population level. 

In beef cattle, the prevalence of natural mating and higher proportions of males in the herd suggest 
the need for better horn management by adapting to poll breeding. Randhawa et al. (2019a) noted 
that horn appearance and agonistic behaviour were generally male centric. Some beef cattle breeds 
have already achieved fixation of polledness, e.g., Angus, however, many beef breeds grow horns 
and entail impact assessment for poll breeding schemes. The impact of polledness on production and 
fertility traits of different breeds and cross-bred cattle have generally shown no significant difference 
for several beef traits, such as; live weight, growth rate, carcass weight and quality, dystocia, fertility 
and mortality rates (Frisch et al. 1980; Stookey and Goonewardene 1996; Kommisrud and Steine 
1997; Goonewardene et al. 1999). 
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For comparison of genetic merit between animals, evaluation of genetic effects of a trait is more 
practical by substituting estimated breeding value (EBV) for phenotypic values. EBV is a tool of 
genetic evaluation between animals for a particular trait by accounting for heritability and fixed 
effects. EBVs for a quantitative trait capture the aggregate additive genetic value by using phenotype 
of an animal together with phenotypes of its relatives (Henderson 1975). EBVs denote that how an 
animal’s genetics is different than the genetic base, for example breed averages. Accuracy of EBV 
predictions increases as more information become available for animal’s direct performance, pedigree 
and progeny. BREEDPLAN (http://breedplan.une.edu.au/index.php) is an advanced genetic evaluation 
system, implemented for national beef recording scheme in Australia to compute EBVs, which can 
be used to highlight the genetic differences in various beef traits between various head-status cohorts. 
The aim of this study is to compare the genetic merit of naturally horned and polled animals for eight 
economically important traits for three breeds of Australian beef cattle.

MATERIALS AND METHODS
There were 243,330 animals from the Brahman (BRH), Droughtmaster (DRM) and Hereford 

(HFD) breeds from the BREEDPLAN database included in this study (Table 1). Animals were born 
between 1950 and 2018 and were classified into head-status cohorts as; horn (101,287), scur (5,297) 
and poll (131,792). BREEDPLAN EBVs are classified for interpreting accuracy, such that less than 
50% = preliminary, 50-74% = medium, 75-90% = medium-high, and above 90% = high accuracy 
estimates of the animal’s true breeding value. EBV records were obtained for eight traits where the 
EBV accuracy ≥ 60%. The number of EBVs for each trait and cohort are given in Table 1. Total 
number of samples for each breed at various accuracy of EBVs thresholds (%) and birth years were;

EBV 60% and born 1950 - 2018 (BRH: 50,392, DRM: 4,545, and HFD: 188,393) EBV 75% and 
born 2000 - 2018 (BRH: 4,210, DRM: 365, and HFD: 14,788).

In addition, a subset of 5,586 animals (BRH: 2,476, DRM: 323, and HFD: 2,787) had genomic horn 
and poll predictions obtained from the recently developed optimised poll testing (OPT) (Randhawa 
et al. 2019b). Samples with phenotype-genotype discrepancy (n = 374) were excluded, which were 
previously deemed as phenotyping and data recording errors (Randhawa et al. 2019b).

Table 1. List of eight traits and number of breed-wise samples for head-status for EBVs (60% 
accuracy)

Traits Acronym 
(unit)

Brahman (N) Droughtmaster (N) Hereford (N)
Horn Scur Poll Horn Scur Poll Horn Scur Poll

Birth Weight BW (kg) 27664 872 2818 826 295 2902 58642 3723 124066
Mature Cow Weight MCW (kg) 41620 1054 4726 722 301 3248 28250 2021 47013
Carcase Weight CW (kg) 18228 572 1607 417 131 1546 15632 1108 24842
Retail Beef Yield RBY (%) 313 - 3 18 7 56 1340 164 3182
Intra Muscular Fat IMF (%) 271 35 40 3 2 35 2277 215 5593
Milk Yield MY (kg) 7667 127 652 760 186 2510 27965 1332 46819
Scrotal Size SS (cm) 13213 377 1400 1025 520 3000 17318 2289 30873
Days to Calving DTC (days) 3351 187 379 - - - 60 14 117

For each trait, four comparisons were made between the phenotype-based cohorts within breeds 
to screen the impacts of levels of medium (60%) and medium high (75%) EBV accuracy, birth 
years and poll test genotype-based composition of cohorts. Data analyses were conducted using the 
R program (R Core Team 2018). Because highest number of samples with EBVs at medium level 
accuracies represent extensively the available herds of beef cattle, therefore, summary statistics of 
Mean±SD were computed between the three cohorts (horned, scurred and polled) at 60% accuracy. 
The descriptive statistics including ANOVA, p-values by Tukey multiple comparisons of means (95% 



352

﻿Beef 2

family-wise confidence level) and pairwise comparisons using t-tests with pooled SD, and effect size 
(Cohen’s d) were computed and probed for the poll-vs-horn cohorts.

RESULTS AND DISCUSSION
Table 2 shows the distribution of EBVs of 8 traits between within-breed cohorts of horn-status 

and provides an overview of significance levels and effect sizes. Of the eight traits, desirability for 
breeding differ for higher (MCW, CW, RBY, MY, IMF, SS) and lower (DTC) EBV values. Note 
that because BW is the major genetic cause of calving difficulty, small or moderate BWs are more 
favourable. Our results were computed for poll-vs-horn comparisons for trait-wise EBVs at medium 
to medium-high accuracies, as the number of animals with high EBVs accuracies (≥ 90%) were too 
low, e.g., BRH: 44, DRM: 11 and HFD: 593. At medium accuracy of 60%, comparisons of mean 
EBVs of several traits between poll and horn were highly significant (p ≤.001), however, the effect 
size were small (d ~ 0.2). As we increased the accuracies to 75%, there were a very few significant 
differences (Table 2).

Table 2. Descriptive statistics, effect sizes and statistical significance (t-test) of eight traits in 
three breeds of Australian beef cattle

Breed Trait Avg.§ Mean ±SD within cohorts at 60%¶ d ^ and p° values between Poll-Horn
Horn Scur Poll 60%¶ 2K†,75% OPT‡

BRH BW 2.5 2.37±1.95 1.73±1.85 1.83±1.77 -0.29 *** -0.24 *  0.09
MCW 41 32.4±22.6 33.9±22.3 30.2±22.4 -0.10 *** -0.01  0.09
CW 22 17.0±9.82 16.6±9.10 15.8±9.34 -0.12 *** -0.41 -0.02
RBY 0.6 0.13±0.86 - -0.10±0.46 -0.33 -  0.22 **
IMF -0.1 -0.02±0.29 -0.13±0.27 -0.10±0.25 -0.29 * -1.15  0.07
MY -1.0 -0.72±2.83 -1.40±2.91 -0.65±2.85  0.02 * -0.19  0.27***
SS 0.7 0.71±1.28 1.23±1.42 0.95±1.17  0.20 ***  0.18 **  0.12***
DTC -0.9 -5.09±7.40 -5.28±6.72 -5.41±7.54 -0.04      0.45 * -0.01

DRM BW 0 -0.43±1.56 -0.22±1.34 -0.23±1.34  0.13 **  0.32 *  0.01
MCW 25 25.3±17.8 22.4±18.4 23.0±20.3 -0.12 *  0.05  0.24
CW 14 14.8±6.22 14.4±6.35 13.9±6.18 -0.16 * -0.21  0.01
RBY 0.6 0.76±1.09 0.69±0.63 0.68±0.70 -0.09 - -0.36
IMF 0.0 0.20±0.87 0.00±0.00 0.01±0.48 -0.26 -  0.04
MY 4.0 6.00±3.52 5.32±3.49 5.17±3.38 -0.24 *** -0.34  0.11
SS 1.3 1.15±1.03 1.36±1.12 1.36±1.04  0.20 ***  0.58  0.35 *

HFD BW 4.4 4.25±2.20 4.7±1.97 4.12±1.97 -0.07 *** -0.24 *** -0.20***
MCW 68 56.3±22.7 66.9±22.6 58.8±22.7  0.11 ***  0.08  0.14 *
CW 50 32.0±14.8 42.9±16.0 35.7±15.9  0.24 ***  0.06  0.54***
RBY 0.8 0.95±0.91 0.79±0.87 0.72±0.89 -0.25 *** -0.78 * -0.37***
IMF 0.4 0.15±0.61 0.43±0.67 0.23±0.68  0.13 ***  0.00  0.54***
MY 16 9.86±5.11 10.9±5.93 8.69±5.78 -0.21 *** -0.29 ***  0.09 *
SS 2.0 1.37±0.90 1.79±1.02 1.69±0.97  0.34 ***  0.27 ***  0.65***
DTC -2.7 -1.10±2.14 -2.07±3.13 -1.92±2.57 -0.34 -0.71 -0.62***

§ Avg. is breed averages of each trait EBVs for the 2017 born calves (Source: BREEDPLAN).
¶ EBVs were used at accuracies ≥ 60% and 75% thresholds.
† EBVs were used from animals born between 2000 and 2018.
‡ EBVs were used from animals which were also genotyped with OPT (optimized poll testing).
^ Cohen’s d represents effect size in pair-wise trait comparison (Sawilowsky 2009), and interpreted as; d 0.01: 
very small, d 0.20: small, d 0.50: medium, d 0.80: large, d 1.20: very large, d 2.0: huge.
° Significance differences between Poll and Horn cohorts were calculated by t-test and p-values results are 
denoted by p ≤ 0.001: ***, p ≤ 0.01: **, and p ≤ 0.05: *.
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Genetic merit for most traits in the 3 breeds experienced significant changes within the last two 
decades. Therefore, by using cohorts born since 2000 and EBVs’ accuracy ≥ 75% might have reliably 
found very few significant differences of small effects. For instance, the effect of head-status on 
BW (kg) was significant across 3 breeds, however small effect sizes suggesting that on average poll 
animals were -0.47kg (BRH), 0.45kg (DRM) and -0.48kg (HFD) different than horn animals at birth. 
Another significant difference was noted for SS (cm), higher SS is associated with increased semen 
production, and results showed that poll cohorts were better by 0.24cm (BRH), 0.68cm (DRM) and 
0.28cm (HFD). DTC (days) is another important trait, measured from female introduced to bull until 
subsequent calving and is mainly affected by the time taken to conceive. DRM are not recorded for 
DTC, while poll BRH and HFD showed 3.94 (p=0.05) and -1.92 DTC, respectively. Although, BRH 
showed significant difference for DTC, however, opposite trends in BRH and HFD suggested that 
the polledness may not be directly involved. Our results by using OPT genotypes to classify poll and 
horn cohorts were consistent, except for HFD which may have been affected by relative very small 
cohort-size of horned animals. Overall, our results coincide with previous findings (Frisch et al. 1980; 
Stookey and Goonewardene 1996; Kommisrud and Steine 1997; Goonewardene et al. 1999). A few 
significant differences of small effects were found in some beef traits for horned animals however 
the claims were not sustained with EBV estimates at high accuracies (≥ 75%). On the other hand, the 
polled animals were consistently significantly better for fertility traits (SS) than the horned animals 
in three breeds. This study concludes that poll and horn animals have equal genetic potential for 
production, carcass and fertility traits.
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GENETIC CORRELATIONS BETWEEN DAYS TO CALVING AND OTHER MALE 
AND FEMALE REPRODUCTION TRAITS IN BRAHMAN CATTLE

D.J. Johnston and K.L. Moore

Animal Genetics & Breeding Unit*, University of New England, Armidale, NSW, 2351 Australia

SUMMARY
Heritabilities and genetic correlations for male and female reproduction traits were estimated 

for Brahman cattle raised in northern Australia. The traits included the female reproduction traits of 
days to calving (DC), age at puberty (AP) and lactation anoestrous interval (LAI). Days to calving 
using repeat records (DCr) was further considered as separate DC traits for first (DC1) and second 
parity (DC2) records, as well as a simple binary trait for calving rate (CR). Male reproduction traits 
included scrotal circumference (SC) and percent normal sperm (PNS) measured in young bulls. The 
heritability estimates for DCr, CR, DC1, DC2, AP, LAI, SC and PNS, were 0.09, 0.10, 0.09, 0.15, 
0.47, 0.40, 0.44 and 0.15, respectively. Genetic correlations between DC1 and AP, LAI, SC and PNS 
were 0.62, 0.52, -0.32 and -0.66, respectively. For DC2, the genetic correlation with DC1, AP, LAI, 
SC and PNS were 0.46, 0.56, 1.0, -0.29 and -0.71, respectively. The study has shown that the various 
reproduction traits were heritable. The 0.46 genetic correlation between DC1 and DC2 suggests they 
should be considered as separate traits in genetic evaluation and this would allow fitting different 
genetic correlations with important component traits. Improvement of the genetic evaluation will 
increase accuracies of female reproduction EBVs and allow more genetic progress in tropical beef 
breeds in northern Australia.

INTRODUCTION
Reproduction is a key profit driver in many northern production systems. However little or no 

genetic progress has occurred in the tropical beef breeds due to low levels of recording and difficulty 
in recording the traits. Days to calving EBV has been used in BREEDPLAN since the 1990s and 
several breeds and individual breeders have shown significant improvements. Research by Beef CRC 
showed early-in-life female reproduction traits were moderately heritable (Johnston et al. 2009) 
and could be used in selection to improve lifetime reproductive performance. These new traits have 
recently been included in BREEDPLAN multiple-trait evaluations of northern breeds. The recently 
completed Repronomics project (Johnston et al. 2017) measured large numbers of Brahman females 
for these key traits and therefore the aim of this work is to re-estimate the genetic parameters from 
the additional records to inform the genetic evaluation systems and industry recording.

MATERIALS AND METHODS
Data used were from a February 2019 extract of Australia Brahman Breeders’ Association database 

and included a large amount of female reproduction data submitted from the Repronomics project. 
Traits used in the study included female reproduction traits: days to calving (DC), heifer age at puberty 
(AP) and 1st calf-cow lactation anoestrous interval (LAI), and male traits: scrotal circumference 
(SC) and percent normal sperm (PNS). For this study the days to calving (repeat records, DCr) were 
separated into traits for first (DC1) and second parity (DC2) records and were further simplified into 
a binary trait for calving rate (CR).

Adjusted phenotypes and contemporary groups (CG) were obtained from a full BREEDPLAN 
evaluation for each of the traits. Adjustment methods, DC and CG definitions were as defined by 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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Graser et al. (2005), and for PNS by Jeyaruban and Johnston (2017). AP and LAI were adjusted for 
significant experimental design effects. The CR phenotype for individuals was constructed from the 
DC records by assigning a value of 0 for those females that did not calve (i.e. received a penalty DC 
record) and 1 for those that calved (i.e. valid DC record). 

Statistical analyses. Univariate REML analyses were performed for each trait using linear animal 
model (ASReml, Gilmour et al. 2009) and included 3 generations of pedigree where available. The 
exception was CR, it was analysed using the logit model and EBVs predicted from the underlying scale 
(CRunder) were transformed to the observed calving percent scale (CPobs) using the following equation:

CPobs= (Φ(τ1+CRunder) - Φ(τ1))*100

where, Φ is the cumulative density function, τ1 is a threshold (-0.553). The CPobs EBV were regressed 
against DC EBV to obtain the linear relationship. 

A bivariate analysis was used to estimate the genetic correlation between DC1 and DC2. The 
resultant genetic correlation was significantly less than 1 (see Table 2), so DC was considered as the 
two separate traits for estimation of correlations with the other male and female reproduction traits. 
Estimates of genetic correlations for DC2 with other traits resulted in variances and heritabilities 
that were close to the univariate estimates of DC2 (not presented) and as such there was no need to 
include DC1 in the estimation of DC2 with other traits.

RESULTS AND DISCUSSION
Number of records and raw trait statistics are presented in Table 1. Days to calving from repeat 

records (DCr) totalled 29,269 records and for the two separate traits of DC1 (N=19,668) and DC2 
(9,601). 

Variance components and heritabilities from univariate analyses are presented in Table 1. 
Heritabilities for DC were low as expected, whereas the component traits were moderately heritable, 
and in agreement with previous estimates using sub-sets of these data (Johnston et al. 2009, 2014a, 
Corbet et al. 2013, Jeyaruban and Johnston 2017).

Table 1. Numbers of records, raw statistics for adjusted phenotypes, variance components 
(Va=additive genetic, Ve=residual, Vpe=permanent environment, Vp=phenotypic) and estimated 
heritability (h2) and standard error (in brackets) for days to calving (DCr, DC1, DC2), calving 
rate (CR), heifer age at puberty (AP), anoestrous interval in first-calf cows (LAI), scrotal cir-
cumference (SC) and percent normal sperm (PNS) in Brahman

Trait N Mean std Va Ve Vpe Vp h2

DCr (d) 29,269 368.1 58.2 222.5 1,216.2 1,120.8 2,562.2 0.09 (0.01)
CR 29,269 0.72 0.45 0.39# 3.29 0.08 3.76 0.10 (0.02)
DC1 (d) 19,668 366.4 63.1 231.2 2,403.0 - 2,634.2 0.09 (0.01)
DC2 (d) 9,601 371.5 48.2 268.2 1,472.8 - 1,741.0 0.15 (0.02)
AP (d) 2,021 632.0 112.4 5,462.0 6,120.5 - 11,582.0 0.47 (0.06)
LAI (d) 1,420 126.1 90.6 2,763.1 4,176.5 - 6,939.5 0.40 (0.07)
SC (cm) 33,983 26.9 4.2 2.90 3.68 - 6.59 0.44 (0.02)
PNS (%) 3,023 67.7 25.3 86.1 480.0 - 566.1 0.15 (0.05)

# on underlying scale and repeat records
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The relationship between the EBVs of DCr and CP on the observed scale for 672 sires with 10 
or more daughters are plotted in Figure 1. The linear relationship was significant (P<0.0001) with a 
regression coefficient of b = -1.098 %/d and an R2 = 0.73. This simple analysis and Figure 1 suggests 
these are highly correlated traits but not exactly the same trait. This is not surprising because the DC 
trait not only captures all of the CR trait but also includes differences in calving date. 

Figure 1. Calving percent EBV (observed scale) versus days to calving EBV for Brahman sires 
(N=672) with 10 or more daughters with records

Genetic correlations from bivariate analyses are presented in Table 2. The estimate of the genetic 
correlation between DC1 and DC2 was 0.46. This shows these are not the same trait and re-ranking 
of sires could occur for daughter’s reproduction performance at these two stages. This estimate is 
not surprising given the different physiological state of the females with regard to lactation status 
at the two measurement times, and it suggests a repeatability model is not the most suitable method 
for handling these records. 

Genetic correlations between DC1 and the other female traits were positive for AP and LAI, 
showing shorter DC1 was genetically related to younger AP and shorter LAI. Likewise, the negative 
correlations for the male traits indicate a shorter DC1 was associated with larger SC and higher PNS. 
These estimates reflect the -0.71 genetic correlation between AP and PNS. Correlations are similar 
to earlier estimates from Johnston et al. (2014b).

Table 2. Estimated genetic correlations (standard error) between DC1 and DC2 and other 
reproduction traits in Brahman 

Traits# DC2 AP LAI SC PNS
DC1 0.46 (0.10) 0.62 (0.14) 0.52 (0.19) -0.32 (0.07) -0.66 (0.22)
DC2  0.56 (0.14) 1.0*(0.06) -0.29 (0.07) -0.71 (0.22)
AP 0.29 (0.12) -0.48 (0.10) -0.71 (0.23)
LAI    -0.29 (0.11) -0.64 (0.23)

# see Table 1 for trait names *estimate at bounds

The same pattern of correlations existed between DC2 and the traits, however LAI was larger in 
magnitude with the correlation going to the bounds, showing this is essentially the same trait, but 
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more heritable. This is likely due to more precision of measurement of LAI compared to DC. PNS was 
also highly correlated with DC2 and is in agreement with estimates using subset of the data reported 
by Jeyaruban and Johnston (2017) and reflects the -0.64 between LAI and PNS.

DC1 was most associated with traits related to puberty (e.g. AP), whereas DC2, where the cows 
are lactating at mating, was very highly correlated with LAI. Male traits offer advantage to genetic 
evaluation of female reproduction traits, if they are genetically correlated, because they can be measured 
at a young age in bulls (i.e. before selection) and provide an early prediction of genetic differences 
in future daughters. Results show PNS was highly correlated with both DC1 and DC2. SC showed 
similar correlations but at much lower in magnitude but the trait was much more heritable than PNS.

CONCLUSIONS
Improving the genetic evaluation of reproduction traits, especially in northern Australia breeds 

will have large payoffs for commercial production. DC has been used as an easy to record trait in the 
genetic evaluation of several tropical beef breeds. However these results confirm that more heritable 
measures in both males and females can be used as correlated traits in the genetic evaluation of female 
reproduction. DC is strongly associated with CR and the regression coefficient of -1d DC EBV = 
+1% CP EBV provides easy to use benchmark.

Changes should be considered to the definition of traits used in BREEDPLAN. The current DC 
trait could be easily modified to separate it into two traits for DC1 and DC2, and this would provide 
the added benefit of being able to include the appropriate genetic correlations with correlated traits. 
However consideration is needed on how these changes would impact on traits in the breeding objective. 
Also the correlated traits are more costly to record and therefore should be the focus of recording in 
genomic reference populations to ensure the added value is fully captured. Additional records are 
required for AP, LAI, and PNS to further reduce the standard errors of these correlation estimates, 
and to allow the development of genetic evaluation of reproduction traits in other tropical breeds. 
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DAILY FEED INTAKE DURING THE FEEDLOT TEST PERIOD

J.A. Torres-Vázquez, J.H.J. van der Werf and S.A. Clark
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SUMMARY
Feed efficiency component traits such as body weight (BW) and daily feed intake are economically 

relevant traits in beef cattle breeding programs. The objectives of this work were to identify genomic 
regions associated with BW and average daily feed intake (ADFI) during the feedlot period, and to 
evaluate whether these genetic variants for each trait were consistent over the 70-day test period. Data 
on 2070 Angus steers were used to estimate (co)variance components using the genomic relationship 
matrix (gREML) fitted in ASReml. For the studied traits, a two-trait repeatability (TT-REPM) and a 
two-trait random regression (TT-RRM) models were performed. SNP-effects for the TT-REPM and 
TT-RRM were estimated using a post analysis back-solving approach using the genomic estimated 
breeding values from each model respectively. For each trait, results were validated with single-trait 
animal models (ST-ANIMs) at the beginning and at the end of the test period using single-SNP 
regression in the GCTA software. Results from the genome-wide association studies (GWAS) using 
TT-REPM and TT-RRM were similar to the conventional approach using the ST-ANIMs. For all 
models, the variants rs43350564 and rs109326204 presented the strongest association with BW and 
ADFI, respectively. The identified SNP effects remained constant throughout the feedlot test period 
and could be useful for understanding the biology of feed efficiency. Further studies with more data 
and possibly with longer feed lot test periods are needed to investigate the effect of genomic regions 
for feed efficiency traits over the feedlot trajectory.

INTRODUCTION
Feed efficiency, commonly referred to as the conversion of feed into useable animal products, and 

their component traits such as body weight (BW) and average daily feed intake (ADFI) are economically 
relevant traits in beef cattle breeding programs. Identifying single nucleotide polymorphisms (SNPs) 
as genetic markers linked to quantitative trait loci (QTL) associated with BW and ADFI may aid in 
unravelling the biology underlying feed efficiency. These genetic markers for QTL can be identified 
through genome-wide association studies (GWAS). In beef cattle, GWAS for BW and ADFI have 
been addressed using the average measurements during the feedlot test period (Bolormaa et al. 2011). 

For both traits, previous studies have documented that pedigree-based genetic parameters change 
during the trajectory of the feedlot period (Torres-Vázquez et al. 2018), and therefore it is expected 
that QTL-effects may also change over time. The objective of this study was to identify genomic 
regions associated with body weight and average daily feed intake during the feedlot period, and to 
evaluate whether these genetic variants for both traits were consistent over the 70-day test period.

MATERIALS AND METHODS
The phenotypic data included BW and feed intake measures from 2220 Angus steers collected 

from 2013 to 2017 at Tullimba Research Feedlot (30°20′S, 151°10′E, altitude 560 m), NSW, Australia. 
On entry to the feedlot, steers ranged from 500-600 days of age with an average weight of 578 kg. 
Initially steers were conditioned for 21 days and fed for an additional 70 days over which time all 
data was collected. Steers were weighed 6 times over the 70-day test period (fortnightly). Daily feed 
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intake measurements were averaged over 14-day periods to align them with the BW measurements 
to create average daily feed intake (ADFI). Duplicated and incomplete records were discarded (see 
Torres-Vázquez et al. 2018). The final data file consisted of 2,070 Angus steers. The pedigree file 
included an historical file with 14,662 animals with 1,454 sires and 7,835 dams; with 191 sires and 
1,782 dams having progeny with phenotypic records. Contemporary groups, as defined by BREED-
PLAN, included the concatenation of herd, year of birth, birth type (single or twin), breeder-defined 
management group, observation date and age (Graser et al. 2005). 

Animals with phenotypes were genotyped with a range of low-density marker chips. These 
genotypes were imputed to higher density based on a reference of 7626 animals genotyped using 
the Illumina Bovine 50K v2 (54609 SNP). Quality control of the SNP markers was performed to 
eliminate SNP with a call rate less than 90% and minor allele frequency less than 1%. The remaining 
39,136 SNPs passed the quality control measures and were acceptable for the analyses. Low density 
genotypes were then imputed to 39,136 SNP using FImpute (Sargolzaei et al. 2011). The genomic 
relationship matrix (GRM) was subsequently created using the GCTA software (Yang et al. 2011) 
from the imputed genotypes.

To analyze the genomic associations between traits a two-trait repeatability (TT-REPM) and a 
two-trait random regression (TT-RRM) model were undertaken. (Co)variance components for each 
analysis were estimated using ASReml incorporating the genomic relationship matrix (GRM (Gilmour 
et al. 2009). The most suitable fit of the models were assessed based on the log likelihood (LogL), 
Akaike’s information criterion (AIC), and the Bayesian information criterion (BIC). 

Several researchers have documented the equivalences between snpBLUP and gBLUP for genomic 
selection (Strandén and Garrick, 2009; Gondro, 2015). Therefore, SNP effects for the two-trait models 
were obtained following the methodology described in Gondro (2015), where:

​​​ ̂  u ​​ i​​ = ​(​ 1 _ d ​ W)​ ​GRM​​ −1​ ​GEBV​ i​​​

where ​​​ ̂  u ​​ i​​​ is a vector of the predicting SNP marker effects for the ith individual; d represent a scalar of 
the deviation effects calculated as ​2 * ∑ ​​(​​p * q​)​​​​; W represent the SNP marker matrix corrected for the 
allele frequency differences (M – 2 * (p – 0.5)). M is the matrix of marker genotypes coded as: 1 for 
the heterozygous genotype, 0 and 2 for the genotype which is homozygous for the first and second 
allele, respectively; GRM-1 represent the inverse of the GRM; and GEBVi is a vector of genomic 
estimated breeding values (GEBVs) obtained from the gREML model. For this approach, p-values of 
0.05 were estimated based on a t-distribution calculated as the probability value of the 95th percentile 
of the GEBV distribution. 

To validate the SNP-effects calculated for the TT-REPM and for the TT-RRM at days 5 and 70, 
GWAS were conducted with single-trait animal models (ST-ANIMs) based on data evaluated at the 
beginning and at the end of the test period (days 1 and 70, respectively) using single-SNP regression 
in GCTA (Yang et al. 2011).

RESULTS AND DISCUSSION
The TT-RRM had the highest LogL, and smallest value for AIC and BIC, showing the best fit for 

this model (Table 1). In general, high genomic heritability estimates were observed for BW compared 
to ADFI. The TT-RRM yielded the highest range for genomic heritability estimates with higher 
genomic heritability estimates for BW. As expected, repeatability estimates for both traits increased 
across the feed lot test period, and these estimates were higher for BW compared to ADFI, suggest-
ing that measurement errors are more relevant for the accuracy of ADFI. Our genomic heritability 
estimates for BW and ADFI followed the same pattern as the pedigree-based estimates reported by 
Torres-Vázquez et al. (2018). Using the TT-REPM, the genetic correlation was of 0.69 ± 0.05. How-
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ever, with the TT-RRM, this correlation increased from 0.63 at day 1 up to 0.75 at day 82. This was a 
slight reduction in the difference observed in the pedigree analysis (0.56 to 0.82) by Torres-Vázquez 
et al. (2018). Nevertheless, the increase in correlation potentially indicates that the genes that cause 
variation in the two traits are more similar over time.

Table 1. Measures of goodness of fit, genomic heritability (h2) and repeatability (rep) for the 
two-trait models

Model / Trait n Log L AIC BIC h2 rep
TT-REPM, BW  9      -26.5 100,071.0 100,143.5 0.46 ± 0.04 0.88 ± 0.01
TT-REPM, ADFI  9      -26.5 100,071.0 100,143.5 0.26 ± 0.03 0.59 ± 0.01
TT-RRM, BW 23  7,187.8    94,421.5   94,606.3 From 0.42 to 0.53 From 0.92 to 0.94
TT-RRM, ADFI 23  7,187.8    94,421.5   94,606.3 From 0.36 to 0.23 From 0.68 to 0.70

SNP-effects obtained by back-solving the TT-REPM and the TT-RRM at days 5 and 70 followed 
the same pattern as those yielded by the ST-ANIM using GCTA (Figure 1). For each trait, only one 
SNP exceeded the significance level.

Figure 1. Manhattan plot for the genomic associations of BW and ADFI at days 5 and 70, using 
the back-solving approach with the two-trait random regression model 

The most strongly associated marker (rs43350564) for BW was located on chromosome 20 
at the position 4,618,689. This SNP was located 269 bp downstream from ERGIC1 (endoplasmic 
reticulum-golgi intermediate compartment 1). This gene is potentially involved in increased pro-
tein turnover and has been previously associated with increases in multiple liveweight measures 
in American Simmental, Red Angus and Gelbvieh (Saatchi et al. 2014). The most significant SNP 
(rs109326204) associated with ADFI was located on chromosome 5 at the position 120,378,417. 
This SNP is located in the CELSR1 gene, which has been associated with decreases in body mass 
in mice (Zerbino et al. 2018).
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The methodology implemented in this work to obtain the SNP effects, is easy to apply without 
transforming phenotypes but it has some limitations. Given the increasing genetic correlation together 
with the low accuracies, the GEBVs obtained with the TT-RRM were highly correlated between days 
(>0.987). This yielded very similar SNP effects in each trait with low probabilities of identifying 
accurately other genetic markers along the test period. Besides, the implemented methodology was 
sensitive to several factors. For example, the number of animals with phenotypic data collected with 
the greatest precision, imputation quality, and the genomic accuracy of the trait. In addition, in the 
presence of small SNP effects for a trait, further samples may be necessary to detect them.

CONCLUSIONS
The TT-RRM showed that the genetic parameters tended to change over the feedlot test period. 

With this model, the genomic correlation estimates increased over the whole trajectory from 0.63 
to day 1 to 0.75 at the end of the period. In this work, SNP effects obtained by the TT-REPM and 
TT-RRM yielded similar results to conventional GWAS approaches. Two SNPs were identified by 
GWAS that may be useful for understanding the biology of feed efficiency in beef cattle. Further 
studies are necessary to investigate the change of genomic regions including more samples in longer 
feedlot test period for feed efficiency traits.
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SUMMARY
Resilience can be defined as the capacity of the animal to be minimally affected by disturbances or 

to rapidly return to the state pertained before exposure to a disturbance (Colditz and Hine 2016). As 
indicators for general resilience have not yet been defined, our aim is to investigate the potential of 
the coefficient of variation (CV) as a measure of general resilience for yearling weight (YW). Using 
138,590 Nellore cattle, sired by 560 Nellore bulls, we computed the CV based on within-sire progeny 
groups (PGs) that comprised of at least 10 progenies from the same sex, farm and year of birth. From 
this, we generated 5 datasets based on the size of the PG: maximum of 20, 30, 50, 100 and no limit. 
A two-trait single-step GBLUP model was adopted (mean YW and CV), considering the genotypes 
of the sires and the pedigree information relating to a given PG with its sire. Smaller groups resulted 
in higher estimates of heritability for both traits. Moreover, estimates of genetic correlations were 
positive yet of low magnitude, and closer to zero for PG with a maximum size of 20. We conclude 
that the use of the CV combined with the grouping, offers an opportunity to select animals that have 
high genomic estimated breeding values for YW with reduced CV.

INTRODUCTION
One of the current challenges of livestock production is to achieve successful intensification of 

production, without detrimental effects on animals, which requires healthy and easy-to-manage animals 
(Elgersma et al. 2017). Although highly important, few studies have investigated general resilience, 
a feature that can be defined as the capacity of the animal to be minimally affected by disturbances 
(Colditz and Hine 2016).

According to Berghof et al. (2019), indicators for general resilience to environmental disturbances 
have not yet been defined, and measuring this variable is difficult. Most studies regarding to resilience 
have been conducted at experimental level, which does not represent the reality of the production 
system. Also, most of these studies have focused on disease resilience and, although these studies can 
provide useful information in physiology, the results may not be representative of resilience under 
non-disease conditions.

Here, we propose to use coefficient of variation (CV) as an alternative to evaluate general resilience, 
based on within-family data across environments (sex-farm-year).

MATERIALS AND METHODS
Data for YW from 138,590 cattle, born between 1986 and 2016 and sired by 560 bulls, were 

extracted from the Alliance Nellore database. The number of progenies per sire averaged 247 and 
ranged from 10 to 12,612. Cattle were raised on pasture in herds from Brazil and Paraguay, and YW 
was measured at an average age of 533 days (ranging from 338 to 627 days). 
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The CV was considered as a measure of general resilience, which was computed based on within-
sire progeny groups (PGs). We took the assumption that a PG size of 10 would be sufficient to 
estimate the mean and the CV, then each individual PG was comprised of at least 10 progenies from 
the same sire, sex, farm and year of birth. From this, we generated 5 datasets based on the size of the 
PG, considering the growth rate (age and weight) during the regrouping process, making the groups 
more homogeneous: (i) TS_20: PGs with more than 20 observations were splitted into other groups, 
respecting a minimum of 10 and a maximum of 20; (ii) TS_30: PGs with more than 30 observations 
were divided into groups with maximum size of 30; (iii) TS_50: PGs with more than 50 records 
were  divided into groups with maximum of 50; (iv) TS_100: PGs with more than 100 were splitted 
respecting the maximum of 100; (v) No_TS: no limits were established, i.e. there was no regrouping.

Genotypic information from 560 sires genotyped with the Illumina® BovineHD chip was used. 
In the quality control of genotypes, non-autosomal SNPs, SNPs with minor allele frequency lower 
than 0.02, p-value for Hardy-Weinberg equilibrium test less than 10-5 and call-rate lower than 0.98 
were removed, so that 405,442 SNPs remained for the analyses. All genotyped bulls had a call rate 
higher than 0.90, passing the quality control.

A two-trait single-step GBLUP animal model was adopted for the average YW and CV within 
PGs as the phenotypes, considering the genotypes of the sires and the pedigree information relating 
a given PG with its sire. Sex and year were used to create contemporary groups (CGs), fitted as fixed 
effects. In addition, the size of the PG (linear), the average age of the PG (linear and quadratic) and 
the heterozygosity (HET) of the sires were also included in the model as covariates.

RESULTS AND DISCUSSION
A summary of the number of PGs generated, mean and standard deviations for each dataset used 

in the bivariate analyses is reported in Table 1. 

Table 1. Summary statistics of yearling weight (YW, kg) and coefficient of variation (CV, %) of 
progeny groups, and correlation estimates between sire’s heterozygosity (HET) with YW and 
CV, in Nellore cattle 

YW CV Pearson correlation with HET
Groups* N Mean SD Mean SD YW P-value CV P-value
TS_20 10,290 300 45.9 7.08 2.62 0.123 0.004 -0.079 0.060
TS_30 8,951 300 44.6 7.80 2.44 0.120 0.004 -0.100 0.020
TS_50 8,459 300 44.3 8.11 2.33 0.118 0.005 -0.111 0.008
TS_100 8,341 300 44.1 8.19 2.29 0.116 0.006 -0.135 0.001
No_TS 8,327 300 44.1 8.20 2.29 0.116 0.006 -0.135 0.001

*TS_20: target size 20; TS_30: target size 30; TS_50: target size 50; TS_100: target size 100; No_TS: with no 
regrouping.

Estimates of correlation between sire’s HET and the mean for YW, although low, were positive 
(Table 1). The opposite tendency was observed for the CV, being negative and more pronounced as 
the size of the PGs increased. Even though the estimates are discrete for both traits, the behavior of 
the estimates is desirable, i.e. the greater the heterozygosity the greater the YW and the lower the CV. 
Heterozygosity also has the potential to be used in mate selection in order to maximize heterozygosity 
in the offspring (de Cara et al. 2011). This could be achieved through the selection of parents that 
are opposite homozygotes for either as many loci as possible or for the relevant alleles for the trait 
of interest (Iversen et al. 2019).
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Table 2 shows parameter estimates from the bivariate analyses and the different datasets. Smaller 
groups yielded higher heritability estimates ​​for both traits. Moreover, although they are of low 
magnitude, estimates of genetic correlations were smaller for TS_20. Therefore, the creation of more 
groups by sire (within family) and consequently making the sizes of the groups more homogeneous, 
appears to be a sensible approach. In addition, despite being a non-favorable correlation, the use of 
the CV combined with the grouping, demonstrates that there is a chance of selecting animals that 
have high genomic estimated breeding values for YW and with reduced CV.

Table 2. Estimates of direct additive genetic variance ( , heritability ( ), and correlation 
(  for yearling weight (YW) and coefficient of variation (CV) of progeny at each dataset in 
Nellore cattle 

YW CV ryw,cvGroups*
TS_20 637.59 0.476 4.0201 0.556 0.0956
TS_30 509.39 0.411 2.5401 0.420 0.1339
TS_50 485.99 0.400 2.2209 0.399 0.1214
TS_100 476.98 0.396 2.0248 0.378 0.1497
No_TS 485.24 0.402 2.0006 0.376 0.1483

*TS_20: target size 20; TS_30: target size 30; TS_50: target size 50; TS_100: target size 100; No_TS: with 
no regrouping.

In Figure 1, animals that presented GEBVs above 1 standard deviation for YW and below 1 
standard deviation for CV (16 sires) for the TS_20 dataset, are highlighted in blue. Selecting these 
sires would assist making progress towards both traits simultaneously: high and consistent growth. 

Figure 1. Scatter plot between genomic estimated breeding values for yearling weight (GEBVYW) 
and for coefficient of variation (GEBVCV) for all 560 Nellore sires. The blue lozenges represent 
the animals with favourable GEBVs for both traits, and the red lozenges represent animals 
with unfavourable GEBVs for both traits
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The real-life nature of the data (within-family data) made this study particularly challenging, 
because bulls were used in different intensities through artificial insemination, presenting different 
sizes of progeny, and also some groups were in the same environment (sex-farm-year). While originally 
large in size, limiting the minimum size of the group (required to compute CV with some confidence) 
caused the exclusion of a lot of data, so further strategies are warranted. 

CONCLUSIONS
TS_20 presented the highest heritability for YW and CV, and the smallest correlation between 

them, showing that the use of CV combined to the grouping strategy is feasible for studies considering 
within-family data, making possible the selection for weight and uniformity simultaneously. These 
are preliminary results of an ongoing study indicating that the use of CV is one alternative to select 
animals for resilience. Further research is warranted to test new variables and new strategies to assess 
general resilience.
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SUMMARY
Female reproduction traits influence profitability of beef enterprises, but genetic improvement has 

been limited. This study assessed the impact of including phenotypic reference data and genotypes 
on the genetic evaluations for three northern Australian beef breeds with different recording and data 
structures. For young (2016/17) animals, accuracy for days to calving estimated breeding value (EBV) 
increased 14.7% for Brahman (BB: well-recorded and genotyped), 6.2% for Santa Gertrudis (SG: 
limited data and small number of strategic genotypes) and 6.0% for Droughtmaster (DM: limited data 
and not genotyped). With these accuracy increases there is potential to increase the rates of genetic 
gain for key female reproduction traits.

INTRODUCTION
Female reproduction is an important driver in the production and profitability of beef enterprises. 

Genetic progress for these traits is typically limited as reproduction traits are difficult to measure, 
measured late in life, are sex limited and often have low heritabilities (Cammack et al. 2009). These 
issues make reproduction ideal to benefit from genomic selection and single-step genomic selection is 
ideal as non-genotyped and genotyped animals can be analysed together. A key female reproduction trait 
is age at puberty (AP), which can be determined from the age at first corpus luteum (CL). Johnston et 
al. (2009) estimated AP to be highly heritable in both BB (h2=0.57) and Tropical Composite (h2=0.52) 
heifers. Not only do cows need to reach puberty quickly, but they also need to be able to return to 
cycling quickly after calving, to produce a calf in the annual management cycle. Using real-time 
ultrasound ovarian scans to detect the first CL in the mating period, Johnston et al. (2014) estimated 
lactation anoestrous interval (LAI) to be moderate to highly heritable for both BB (h2=0.51) and 
Tropical Composite (h2=0.26) cows. The aim of this paper was to assess the improvement of EBV 
accuracies for female reproduction traits (days to calving (DC), AP and LAI) when reference data and 
single-step genomic selection was included into BREEDPLAN genetic evaluations for three tropically 
adapted northern Australian beef breeds with different recording and data structures. 

MATERIALS AND METHODS
Three breeds (BB, SG and DM) were extensively recorded over five years as part of the 

RepronomicsTM project in northern Australia (Johnston et al. 2017). Using real-time ultrasound, 
regular ovarian scans were undertaken to accurately identify the age that heifers become pubertal 
(AP) and when lactating cows first cycled after their first calving (LAI). Repronomics herds were fully 
BREEDPLAN recorded with data submitted for BREEDPLAN genetic evaluations. The reference 
dataset for this study included records from the Repronomics herds as well as additional BB AP and 
LAI phenotypes collected as part of the Beef CRC (Johnston et al. 2009, 2014). 

The BB BREEDPLAN evaluation has recently implemented single-step genomic selection and 
this will soon be implemented for SG. There were 14,821 BB and 3,464 SG animals genotyped with 
approximately 40K SNPs available for single-step analysis, see Connors et al. (2017) for details of 

*  A joint venture of NSW Department of Primary Industries and the University of New England



367

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:366-369

the genomic pipeline. To evaluate the benefits of including the fertility reference data and single-
step genomic selection, BREEDPLAN data from February 2019 extracts for each breed was used in 
three separate genetic evaluations using the BREEDPLAN methodology (Johnston et al. 2018). All 
evaluations were multi-trait and provided EBVs and accuracies for all traits, with results for three female 
reproduction EBVs reported in this study; DC, AP and LAI. In all analyses the number of animals 
remained the same with only the level of recording and inclusion of genomic information changing 
across runs. Table 1 outlines the information available for the three genetic evaluations considered. 

 
Table 1. Number of days to calving (DC, days), age at puberty (AP, days) and lactation anoes-
trous interval (LAI, days) records available for genetic evaluations with different levels (GE1, 
GE2, GE3) of data included for Brahman, Santa Gertrudis and Droughtmaster

Breed Brahman Santa Gertrudis Droughtmaster
Trait DC AP LAI DC AP LAI DC AP LAI
GE1# 54,154 0 0 34,704 0 0 1,682 0 0

GE2/GE3 1,398 2,020 1,403 238 216 115 808 627 481
# GE1 = no phenotypic reference data or genomic selection included; GE2 = phenotypic reference data included 
but no genomics; GE3 = both the phenotypic reference data and single-step genomics included 

RESULTS AND DISCUSSION
The breeds considered represent three different recording and data structures. BB was the largest 

breed numerically with 449,620 animals included in genetic evaluations and had the highest level of 
recording and genotyping in the study. For all subsets of animals and traits, increasing the information 
in the genetic evaluation increased EBV accuracy. Table 2 records the average accuracy for reproduction 
traits for three data scenarios and three subsets of animals. Despite AP and LAI having substantially 
fewer records available, the average accuracy was not much lower than the DC accuracy and this 
was due to the higher heritabilities for AP and LAI.

Table 2. Average accuracy of days to calving (DC, days), age at puberty (AP, days) and lactation 
anoestrous interval (LAI, days) from genetic evaluations with different levels (GE1, GE2, GE3) 
of data included for Brahman

Animal subset Genotyped n=14,821 16/17 born n=24,555 Genotyped 16/17 born n=3,062
Dataset GE1# GE2 GE3 GE1 GE2 GE3 GE1 GE2 GE3

DC 35.4 41.2 49.7 25.7 28.4 33.3 30.1 35.1 44.8
AP 18.2 34.3 44.9 13.1 20.2 26.8 14.5 28.9 41.3
LAI 24.4 32.6 40.9 17.6 20.8 25.7 19.5 25.4 35.2

# See Table 1 for descriptions

Including phenotypic reference data and genomic selection (GE3, Table 2) significantly increased 
accuracy for AP and LAI. Despite only a small increase in the number of DC records, DC accuracy 
increased by 14.3% for genotyped animals. AP and LAI are both highly heritable and strongly 
correlated with DC (Johnston et al. 2019), and 41% of the increase in DC accuracy of genotyped 
animals was attributed to correlated responses with AP and LAI, and the remaining increase the 
result of genomic selection. Approximately 20% of the genotyped animals were also young animals 
born in 2016/2017. With smaller numbers and no phenotypes themselves at the time of analysis, the 
average accuracy for these animals were lower than other subsets. However, the increase in accuracy 
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observed after including the reference data and genomics was similar to that for all genotyped animals. 
Compared to all young animals, the genotyped young animals tended to have slightly higher accuracy 
in the base evaluation (likely due to selective genotyping) but they also had approximately twice the 
improvement in accuracy when phenotypic reference data and genotypes were added to the genetic 
evaluation; with EBV accuracy for genotyped young animals increased by 14.7% (GE3) compared 
to the base genetic evaluation (GE1).  

Both SG and DM had similar sized evaluations, with 280,596 and 232,551 animals, respectively. 
However, they have different levels of recording and genotyping for the female reproduction traits 
analysed for this study. SG have relatively few AP and LAI records available in the reference dataset 
but were well-recorded for DC. DC is currently a research EBV for DM and has smaller numbers of 
industry records available, with Repronomics DC records contributing significantly to the total number 
of DC records for the breed. For the SG breed, the genotyping strategy has focused on genotyping 
well-recorded and influential industry animals, particularly those with high DC EBV accuracy. This 
targeted genotyping strategy was evident with genotyped animals having higher EBV accuracies 
compared to BB in the base evaluation (Table 3). With the smaller genotyped reference population 
the impact of including reference phenotypic data and genomic selection was smaller for SG than 
BB, with a 2.7% increase in DC accuracy for genotyped animals. Similar trends were found for the 
accuracy of sires in the evaluation with DC accuracy increasing by 1.9% when reference data and 
genotypes were added. The greatest increases in accuracy for the breed were observed for the young 
2016/2017 animals; DC accuracy increased 6.2% when reference data and genotypes were included 
but only 9% of this was due to genomic selection. Despite having small numbers of records in the 
reference data, non-trivial increases were observed for these young animals as the reference animals 
were highly influential and well connected to the wider SG population. Across all subsets of SG animals 
the impact of including genomic selection was small. For genomic selection to have an impact on 
female reproduction traits more animals need to be genotyped that also have female reproduction traits 
recorded, as well as increasing the number of AP and LAI phenotypes in the reference population.  

Table 3: Average accuracy of days to calving (DC, days), age at puberty (AP, days) and lactation 
anoestrous interval (LAI, days) from genetic evaluations with different levels (GE1, GE2, GE3) 
of data included for Santa Gertrudis

Animal subset Genotyped n=3,464 Sires n=5,211 16/17 born n=12,282
Dataset GE1# GE2 GE3 GE1 GE2 GE3 GE1 GE2 GE3

DC 55.6 57.5 58.3 44.6 46.4 46.5 31.7 37.4 37.9
AP 28.6 33.6 35.0 16.7 19.6 19.8 13.1 21.9 22.7
LAI 32.7 35.4 36.5 19.2 21.2 21.4 15.1 20.4 21.0

# See Table 1 for descriptions

DC is currently a research trait for DM and there are fewer records. With no CRC data, all AP 
and LAI records came from the Repronomics project. There are insufficient genotypes to date to 
enable single-step to be implemented. Although, comparable in overall size to the SG breed, DM’s 
have limited phenotypic recording for female reproduction, and this was evident in the lower trait 
accuracies (Table 4) compared to other breeds. Including the reference phenotypic data resulted in 
large increases in accuracy for Repronomics animals where the data was collected, showing the power 
of recording to lift EBV accuracy for high heritability traits. The DC accuracy for sires increased by 
4% and 6% for young 2016/17 born animals when the reference data was added. Despite having lower 
starting accuracies in the base evaluation, the increase in accuracy as a result of including reference 
data was comparable to the other breeds.
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Table 4: Average accuracy of days to calving (DC, days), age at puberty (AP, days) and lactation 
anoestrous interval (LAI, days) from genetic evaluations with different levels (GE1, GE2, GE3) 
of data included for Droughtmaster

Animal subset ‘Repronomics’ n=2,846 Sires n=2,534 16/17 born n=11,347
Dataset GE1# GE2 GE1# GE2 GE1# GE2

DC 18.8 45.5 32.3 36.3 15.0 21.0
AP 3.0 46.4 4.2 15.6 1.4 15.5
LAI 3.0 37.3 4.2 12.1 1.4 10.6

# See Table 1 for descriptions

Including the reference phenotypic data and single-step increased the number of animals with 
accuracies ≥40%. For DC in the base evaluation, 13.8, 37.0 and 3.1% of animals had DC accuracy 
≥40% for BB, SG and DM, respectively. In the evaluations including all the available information 
this increased to 29.5, 47.0 and 12.9% of animals, respectively for BB, SG and DM. 

CONCLUSIONS
The inclusion of intensively recorded female reproduction reference phenotypic data and genotypes 

increased the accuracies for DC, AP and LAI. Only DC is reported to industry, but the new traits are 
highly heritable and correlated to DC and results showed they contributed significantly to the increase 
in DC EBV accuracy. The magnitude of accuracy increase depended on the volume of records and 
the data structure. Results for SG showed that where industry and reference data are closely related, 
the increase in EBV accuracy from a small reference data set can still be beneficial. The increase in 
accuracy for genotyped SG was smaller than that for genotyped BB animals. This was due to the 
smaller number of genotypes and small phenotypic reference dataset but also because the genotyped 
animals were from industry and had DC recorded, so they already had higher levels of accuracy. The 
increase in accuracy when selecting young bulls has the potential to significantly increase the rates 
of genetic improvement for female reproduction traits and thus improve the overall production and 
profitability of the beef industry.
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SUMMARY
Ways to improve accuracy of genomic prediction (GP) for Australian (AU) crossbred cows by 

using data of about 33,000 cows from New Zealand (NZ), where crossbreeds are the dominant breed 
group (BG), and AU data were assessed. Accuracy of GP for validation cows was tested using single 
trait and multi-trait models, with data from different BGs considered as correlated traits. When data 
of the different BGs were considered as separate traits, the genetic correlations for milk yield (MY) 
were higher compared to that for fat yield (FY). The lowest correlations for all traits were between 
pure Holstein (H) and Jersey (J) as expected, and among the milk yield traits the lowest correlations 
were for FY. The estimated heritability and genetic correlations using the high-density SNP chip were 
slightly higher than 50K chip. Accuracy of GP using the NZ reference set (RS) was not better than 
AU reference. For MY, the accuracy of GP for AU crossbreed cows was like that observed for pure 
breed H cows. However, for FY and protein yield (PY), the accuracy of GP was lower in HJ (F1) and 
HHJ (back cross to H) crosses. The joint NZ-AU RS resulted in 1 to 5% increase in accuracy for FY 
and PY of mainly crossbred cows.

INTRODUCTION
A joint project to improve accuracy of GP by sharing cow data in the pasture-based dairy systems of 

NZ and AU has been established by Agriculture Research Victoria and CRV (cattle breeding company 
in The Netherlands). A recent analysis showed that reliability (i.e. squared accuracy) of GP for milk 
traits for NZ validation bulls can be increased by 4 to 7% by including about 60,000 AU cows to a 
RS that included all NZ animals (Haile-Mariam et al. 2019). The benefit of adding NZ cows to AU 
RS is expected to be low for AU pure breed prediction because the number of genotyped NZ cows is 
relatively small. However, the number of crossbred cows from NZ is more than that from AU and this 
could be used to improve accuracy GP for AU crossbreed cows and possibly even for purebred Jersey 
for which the AU RS is small. Several studies have shown that the accuracy of GP from multibreed 
RS is not better than single-breed RS particularly when the breeds are distantly related (Calus et al. 
2018). The inclusion of crossbred animals in the RS could improve the accuracy GP for crossbreds 
which was reported to be lower than those observed for pure breeds (Khansefid et al. 2019) and for 
all animals by improving the links between the pure breeds. 

Data from several breeds for GP have been used in joint analyses in several ways including by 
considering the same trait recorded in different breeds as correlated traits in multi-trait (MT) model 
(Calus et al. 2018; Karoui et al. 2012) or by fitting breed as fixed effect in univariate model (Uni). In 
the MT model, the marker effects could be assumed to be different in different breed groups (BGs) 
where performance in J and H and their different crosses are treated as different but correlated traits. 
Using milk yield traits as response variable, the objectives of this study were: 1) to estimate genomic 
correlation (rg) between the same trait measured in different BGs; 2) to assess the accuracy of GP for 
AU crossbred and purebred validation cows using NZ and AU cows as RS. 
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MATERIALS AND METHODS
Performance data of about 33,000 NZ genotyped cows and their contemporaries were obtained 

from NZ and included in the May 2018 genetic evaluation of DataGene for AU dairy cattle. In 
addition to NZ cows, there were close to 60,000 AU cows in the dataset. All NZ cows and most AU 
cows were genotyped with low density SNP chips (~ 10K SNP). These genotypes were imputed first 
to Bovine 50K SNP chip and then to High Density (HD) 800K SNP panels. After edit, in total the 
HD genotype set included 633,374 SNP and the 50K chip included 40,850 SNPs. The HD and 50K 
genotypes were used to create genomic relationship matrices (GRMs). The GRM that included J, H 
and crossbreeds was calculated for NZ and AU reference and validation cows (Table 1) separately 
and jointly following Yang et al. (2010). The number of cows included in the RS (born before 2011) 
and cows used for validation (born after 2010) is shown in Table 1. The response variable which 
were DRP for milk yield traits were analysed using MTG2 (Lee and van der Werf 2016). When all 
data were considered as the same trait, BG was fitted as fixed effect and in the multi-trait model data 
of each BG was considered as separate trait. In addition to the 5-trait (BGs) in NZ and 4-trait model 
in AU, the data from each country were analysed assuming a 3-trait model by combining the back 
crosses (i.e. HHJ or JJH) into their respective pure BG.  

Adjusted accuracy was calculated as correlation between direct genomic breeding values (DGVs) 
and DRP, divided by the accuracy of the DRP of the validation cows. To ensure that the accuracies 
were less affected by high relationship among AU reference and validation cows, a cow was included 
in the validation set if its genomic relationship to the average of the top 10 cows in the RS (Clark et 
al. 2012) was below 0.25. As a result of this, no J cows were used for validation. 

Table 1. Number of NZ and AU cows in reference set by breed group (BG: Holstein [H], back 
cross to H [HHJ], F1 [HJ], back cross to J [JJH] and Jersey [J]) which their records were con-
sidered as different traits (5, 4 or 3 traits), and the number of AU validation cows

Breed group NZ reference set AU reference set AU validation setNumber 5-Trait 3-Trait Number 4-Trait 3-Trait
H 8624 Trait 1 Trait 1

Trait 1
21633 Trait 1 Trait 1

Trait 1
4944

HHJ 10125 Trait 2 1401 Trait 2 965
HJ 8675 Trait 3 Trait 2 1308

-
Trait 3

-
Trait 2 344

JJH 1481 Trait 4 Trait 3
Trait 3

-
Trait 3

-
J 3915 Trait 5 5905 Trait 4 -

RESULTS AND DISCUSSION
Tables 2 and 3 show the proportion of variance explained by the GRM (genomic h2) in NZ and 

AU cows for MY and FY when the HD SNP chip was used. The genomic h2 was the lowest for PY 
when using NZ data where they varied from 0.14 to 0.18 and 0.15 to 0.19 using the 50K and HD 
SNP chip, respectively. In the AU data, genomic h2 for PY were only slightly lower than or similar 
to that for FY. In all cases the HD SNP chip explained about 2 to 5% more variance than 50K SNP 
chip (results not shown). Genetic correlations (rg) among the BGs, when each BG was considered as 
traits, were lower for FY than for MY (Table 2 and 3). The pattern of rg for PY was more similar to 
MY than to FY in NZ data but similar to FY in AU data. Differences in rg between SNP chips were 
small, but in general the HD SNP chip showed higher correlations among the BGs than the 50K SNP 
chip (Table 2 and 3). As expected, rg had higher standard errors (up to 0.10) than genomic h2 (up to 
0.04). Although the genomic h2 were higher when AU cow data were used, the standard errors of 
the genomic h2 and the rg, particularly those involving crossbred BG, were higher in AU than NZ 
cows. Overall the use of 50K SNP chip “correctly” estimated the rg to be the lowest between J and 
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H, whereas the HD SNP chip estimated the lowest correlation to be between H and the HJJ (Table 
2), though the differences were not significant given the standard errors which were up to 0.15 in AU 
data. The observation that the HD SNP chip explained more variance than the 50K SNP chip agrees 
with van den Berg et al. (2016), where they found that adding selected sequence variants increased 
h2 compared to the 50K SNP chip. Lower rg between breeds when BGs are considered as traits for FY 
compared to MY in this study also agrees with other studies (Calus et al. 2018; van den Berg et al. 
2016). Overall that our rg estimates even between the two pure breeds (H and J) are higher than most 
literature estimates (van den Berg et al. 2016) may be due to some level of crossbreeding between 
J and H in NZ and AU (de Roos et al. 2008; Pryce et al. 2011) several generations back or due to 
similarity in production environment (i.e. pasture-based). The 3-trait model based on NZ and AU 
data sometimes showed the lowest rg to be between HJ and J rather than between J and H which was 
unexpected. This may be due the small sample size and possibly some errors in the BG classification.

Table 2. Genomic h2 in NZ reference cows of high-density SNP chip (HD) for milk and fat yield 
on the diagonal (in bold) and genetic correlations between breed groups for milk and fat yields 
using HD (above diagonal) and 50K SNP chip (below diagonal) in 5-trait model

Breed group
Milk Fat

H HHJ HJ JJH J H HHJ HJ HJJ J
H 0.30 0.97 0.85 0.73 0.77 0.26 0.97 0.76 0.42 0.49
HHJ 0.96 0.30 0.93 0.85 0.85 0.98 0.23 0.86 0.65 0.57
HJ 0.83 0.91 0.31 0.95 0.87 0.78 0.86 0.22 0.85 0.80
HJJ 0.77 0.84 0.92 0.36 0.86 0.41 0.63 0.84 0.24 0.90
J 0.72 0.82 0.86 0.89 0.4 0.47 0.55 0.78 0.88 0.27

Table 3. Genomic h2 in AU reference cows of high-density SNP chip (HD) for milk and fat yield 
on the diagonal (in bold) and genetic correlations between breed groups for milk and fat yields 
using HD (above diagonal) and 50K SNP chip (below diagonal) in 4-trait model

Breed group
Milk Fat

H HHJ HJ J H HHJ HJ J
H 0.34 0.96 0.81 0.88 0.23 0.96 0.66 0.57
HHJ 0.94 0.37 0.88 0.97 0.92 0.24 0.65 0.57
HJ 0.78 0.78 0.40 0.78 0.63 0.56 0.35 0.55
J 0.75 0.91 0.72 0.43 0.43 0.58 0.50 0.26

The accuracy of GP for HJ and HHJ was higher than H for MY when NZ cows were used as RS 
(Table 4) because the crossbred cows dominate the set (Table 1). When using AU RS only, accuracy 
of GP was lower for crosses compared to H for FY (Table 2 and 3) and PY (results not shown) where 
rg between the BGs were also lower. The use of NZ cows as a RS is expected to have less contribution 
for GP of PY because the rg between performance in NZ and AU is lower (0.60 in H and 0.70 in J, 
Haile-Mariam et al. 2019) compared to both MY and FY and this will likely reduce the benefit of 
adding NZ RS to improve GP. However, the use of AU+NZ RS increased adjusted accuracy by 1 to 
5% (Table 4). Table 4 also shows that considering performance of cows of different BGs in MT or 
Uni model has little benefit on the accuracy.
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Table 4. Adjusted accuracy as correlation between direct genomic breeding values (DGVs) 
and DRP, divided by the accuracy of the DRP for validation Australian (AU) cows using New 
Zealand or AU cows in the reference, assuming data of cows from different breed groups to be 
the same trait (Uni.) or different (multi-traits) models from HD GBLUP 

Trait Breed group New Zealand Australia AU+NZ 
Uni. 3-Trait 5-Trait Uni. 3-Trait 4-Trait Uni.

Milk HJ 0.46 0.45 0.46 0.61 0.61 0.60 0.61
HHJ 0.43 0.44 0.42 0.59 0.59 0.58 0.60
H 0.33 0.33 0.35 0.58 0.58 0.57 0.59

Fat HJ 0.26 0.24 0.22 0.43 0.42 0.42 0.47
HHJ 0.28 0.26 0.23 0.46 0.46 0.45 0.48
H 0.29 0.28 0.28 0.55 0.55 0.55 0.56

Protein HJ 0.36 0.36 0.34 0.40 0.42 0.40 0.44
HHJ 0.23 0.24 0.24 0.36 0.36 0.36 0.37
H 0.34 0.33 0.34 0.54 0.54 0.54 0.55

CONCLUSIONS
Although the NZ reference did not provide better GP accuracy for AU crossbreed cows than AU 

RS, the joint use of AU and NZ RS increased GP for FY in HJ and HHJ cows and for PY in HJ only. 
In the case of MY accuracy of GP in crosses and H was similar, so adding NZ cows was not beneficial. 
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SUMMARY
Age at puberty (AP) has been shown to be heritable in tropically adapted beef heifers, and is 

associated with lifetime productivity, but it is a difficult and expensive trait to measure. This study 
investigated whether whole genome sequence (WGS) genome wide association study (GWAS) 
results could be used to improve the accuracy of selection for AP by using various methods of SNP 
inclusion and different densities of SNP panels. These results suggest that the most benefit of WGS 
SNP inclusion would be made in lower density marker panels, with the 6K plus WGS analyses 
having prediction accuracies equivalent to the 50K base analysis. The ability to use a less expensive, 
lower density marker panel to make selection decisions will have a financial benefit to producers and 
warrants further investigation. Further research is required to determine the best technique to select 
WGS SNP and the most appropriate method to include these SNP into prediction models.

INTRODUCTION
Age at puberty (AP) has been shown to be moderately heritable in tropically adapted beef populations 

and is favourably correlated to female lifetime reproductive capacity (Johnston et al. 2009; Zhang 
et al. 2013; Johnston et al. 2014; Farah et al. 2016). AP has also been shown to be heritable using 
genomic information, however, the accuracy of selection using these methods has been low (Zhang 
et al. 2013; Engle et al. 2019; Hayes et al. 2019).

One possibility for improving accuracy of genomic predictions is to use (imputed) whole genome 
sequence (WGS). To date, the use of WGS data in genomic predictions within livestock species has 
shown modest improvements in selection accuracy (0%-5%), and there is much interest in developing 
novel techniques to best utilise this data (Raymond et al. 2018). The aim of this study was to investigate 
methods to incorporate WGS data into the genomic prediction for AP in a multi-breed population of 
tropically adapted beef heifers, to improve the accuracy of selection. 

MATERIALS AND METHODS
Animals and Phenotypes. Fertility records used in this study were obtained from two research 

herds, the Northern Breeding Project research herds from the Cooperative Research Centre for Beef 
Genetic Technologies (Beef CRC) and the Queensland Smart Futures (SMF) population. 

Briefly, 868 Brahman heifers and 960 Tropical Composite heifers with both a phenotype for AP 
and genotype data were obtained from the Beef CRC. In this study, AP was defined as age, in days, at 
first corpus luteum, obtained by ultrasound scanning heifers every 4 to 6 weeks (Johnston et al. 2009). 
Detailed herd structure, management and data recording have been outlined in Johnston et al. (2009).

A total of 3,695 reproductive maturity scores (a proxy trait for AP; measured at 600 days by 
ultrasound and is a 0 to 5 score) were obtained from the SMF database on heifers from 3 breeds, 
Brahman, Santa Gertrudis and Droughtmaster (Burns et al. 2016). Full information on herd structure, 
management and data recording can be found in Burns et al. (2016). 

The SMF results presented in this paper have been analysed across breeds to determine if multi-
breed genomic predictions could be viable for use in industry data. However, it must be noted that 
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the genomic estimated breeding values (GEBV’s) shown in these results are not true multi-breed 
GEBV’s as heifers of each breed were managed separately and there were no mixed breed cohorts 
analysed in this data.

Genotypes. Beef CRC heifers were genotyped with the BovineSNP50 BeadChip (Illumina, 
SanDiego, CA) and SMF heifers were genotyped with the 24,121 SNP from the Geneseek GGP-LD 
array. Full details on genotype quality control are described in Hayes et al. (2019). Genotypes were 
imputed up to 728,785 SNP (Bovine HD array) using the Fimpute software (Sargolzaei et al. 2014), 
and a panel of 1500 cattle of relevant breeds genotyped for the Bovine HD array. All genotypes were 
then imputed to 23 million whole genome sequence variant genotypes using the 1000 bull genomes 
Run6 data base (Hayes et al. 2019) using Eagle phasing and Minimac3 for imputation.

Statistical analysis. Three datasets, Brahman (Beef CRC), Tropical Composite (Beef CRC) 
and SMF (Brahman, Santa Gertrudis and Droughtmaster) were used in these analyses. The analysis 
proceeded in two steps: 1) Identify SNP associated with AP in the imputed sequence data by within 
breed GWAS analysis in the Beef CRC animals, then 2) Test the accuracy of genomic predictions 
when these SNPs are added to base SNP panels in the SMF data.

The final models for each analysis included contemporary group fitted as a covariate, which was 
defined as herd, year and season in the SMF dataset. In the SMF dataset age at AP measurement was 
also included as a covariate. In the Brahman analysis, age of dam was fitted as a covariate and in the 
Tropical Composite analyses zebu percentage was fitted as a continuous covariate. Animal was fitted 
as a random effect in all models. 

Two strategies were used to identify SNPs associated with AP in the GWAS:
•	 TOP GWAS (SNP significance threshold 5.0e-06) - all SNP from the WGS GWAS that 

met the significance threshold from either breed were included in each analysis.
•	 TOP META (SNP significance threshold 5.0e-07) - Meta-analyses were conducted on 

the output from the WGS GWAS of the combined Brahman and Tropical Composite 
populations using the program Metal (Willer et al. 2010) and the SNP that met the 
significance threshold were included in each analysis. 

The numbers of significant SNP from the WGS data for each analysis and each SNP selection 
strategy are shown in Table 1.

Genomic predictions in the SMF data were conducted using 3 different density of base SNP panels, 
6K (BovineLD array), 50K (BovineSNP50 BeadChip) and 800K (BovineHD array). A GBLUP 
approach was used. Genome-wide complex trait analysis (GCTA) was used to construct genomic 
relationship matrices (GRM) and perform genomic predictions for each of the datasets for each SNP 
density, see Yang et al. (2011) for more detail. 

Significant, unique (not already included in base marker panels) SNP from the sequence GWAS 
were incorporated into each analysis using one of two methods; first, by adding the significant WGS 
SNP into the GRM for each analysis (6K plus WGS SNP, 50K plus WGS SNP or 800K plus WGS 
SNP) or secondly, by using a multi GRM method where the base GRM remained the same but a 
second GRM, with only the WGS SNP, was added and analysed simultaneously. Any significant WGS 
SNP that were already included on marker panels were excluded from the WGS GRM but remained 
in the base GRM in the MGRM analyses. The GEBV from each GRM in the MGRM analyses were 
added together to calculate total GEBV which was used to calculate prediction accuracy (6K MGRM, 
50K MGRM or 800K MGRM).

Five way cross validation within the SMF data set was used to determine the accuracy of prediction 
of GEBV, where each dataset was randomly split five times and four fifths of the data (reference) was 
used to predict the GEBV of the last fifth (validation) and the validation animals were then used to 
calculate the correlation between their predicted GEBV and phenotype adjusted for the model fixed 
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effects. The prediction accuracy was the correlation of the GEBV and the phenotype divided by the 
square root of the heritability of AP in the SMF 800K analysis, h2=0.196.

RESULTS AND DISCUSSION
Results in Table 1 show that accuracy was improved more by using a higher density SNP panel 

than through the addition of WGS SNP in the TOP GWAS analyses. One reason for this may be 
due to the high level of SNP redundancy that may be occurring with this SNP selection strategy. Of 
the 165/172 SNP used from the WGS data in the TOP GWAS analysis, a large proportion of SNP 
occurred on just 3 chromosomes (results not shown), chromosome 1 n=44, chromosome 14 n=77 
and chromosome 21 n=18, total number of significant SNP on these 3 chromosomes is 139. There is 
a probability that a number of these SNP are in close proximity to a single SNP of large effect and, 
due to linkage disequilibrium, these SNP may appear significant in a GWAS due to this association. 
Therefore, the actual number of effective SNP that are being used for selection in the TOP GWAS 
analysis may be lower than the 165/172 shown, which may explain the limited improvement in 
accuracy seen in Table 1. 

Table 1. Prediction Accuracy for TOP GWAS and TOP META analyses in SMF data

TOP GWAS TOP META

Analysis Prediction  
accuracy (s.e)

No. sig. WGS 
SNP

Prediction  
accuracy (s.e)

No. sig. WGS 
SNP

6K 0.36 (0.04) 0.36 (0.04)
6K plus WGS SNP 0.37 (0.05) 172 0.40 (0.05) 1591

6K MGRM 0.37 (0.04) 172 0.40 (0.05) 1591
50K 0.41 (0.05) 0.41 (0.05)

50K plus WGS SNP 0.41 (0.05) 172 0.42 (0.05) 1587
50K MGRM 0.41 (0.05) 172 0.43 (0.06) 1587

800K 0.42 (0.05) 0.42 (0.05)
800K plus WGS SNP 0.42 (0.05) 165 0.42 (0.05) 1502

800K MGRM 0.42 (0.05) 165 0.44 (0.05) 1502

The prediction accuracy of GEBV for TOP META analyses were also improved through the use 
of higher density SNP panels. In contrast to the TOP GWAS results, the addition of the significant 
WGS TOP META SNP did result in small improvements in prediction accuracy within each of the 
analyses, although the improvement is not significant. The inclusion of WGS META SNP into the 
6K analysis improved the prediction accuracy of this analysis so that it became equivalent to the 50K 
analysis. The 6K marker panel is more cost effective for producers than the higher density panels, 
therefore, if equivalent prediction accuracies can be made from the 6K panel with the use of WGS 
SNP the financial benefit to producers would be significant. 

It is evident that there are many more significant WGS SNP being used in the TOP META analysis, 
in comparison to the TOP GWAS analysis, which may explain the small improvement in accuracy. 
Similar to the TOP GWAS results, a large proportion of SNP discovered in the TOP META analysis 
existed on a single chromosome, 14 (results not shown), n=~1,400 (depending upon the analysis). 
More research needs to be done to determine the most effective way to select WGS SNP and reduce 
this potential redundancy.

The MGRM analyses in the TOP META SNP selection strategy resulted in slight improvements in 
prediction accuracy (though not significant), in comparison to the single GRM analyses, in the 50K 
and 800K analyses. In the MGRM analysis the WGS SNP are being fitted in their own GRM and, as 
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a result, their effect is less regressed. As these SNP have been selected for having a significant effect 
upon the AP phenotype from a meta-analysis, it can be argued that fitting these SNP into a single, 
large GRM may regress their effect by too great an extent. More research is required.

CONCLUSIONS
While the results presented in this paper are not conclusive, there is an indication to suggest 

that improved methods of WGS SNP selection may be used to improve GEBV prediction accuracy 
particularly for the less dense marker panels. The inclusion of 1,591 WGS META SNP into the 6K 
analysis was able to improve the prediction accuracy for puberty to a similar level as the 50K base 
analysis, which would be a much more cost-effective genotyping solution for producers. 

Further research is warranted into appropriate methods to select WGS SNP that are able to 
explain variation in the AP trait in multi-breed tropically adapted beef populations and the best 
way to incorporate these SNP into future genomic analysis. More AP phenotypes will be required 
to improve the accurate detection of WGS SNP that can explain variation in AP across a number of 
tropically adapted breeds.

ACKNOWLEDGEMENTS
We gratefully acknowledge the Beef CRC and the scientists and technicians who pioneered the 

traits used in this paper, and the huge effort that went into designing and conducting those experiments. 
We also gratefully acknowledge the contribution of Dr Brian Burns, Nicholas Corbet, Jack Allen, 
Alan Laing and Geoffry Fordyce for the SMF data set used in this paper.

  
REFERENCES
Burns, B.M., Corbet N.J., Allen J.M., A. Laing and M. T. Sullivan (2016).Queensland Government 

Smart Futures Research Partnerships Program (2012-2015).
Engle, B. N., N. J. Corbet, Allen J.M., Laing A.R., Fordyce G, McGowan M.R., Burns B.M., 

Lyons R.E. and Hayes B.J. (2019) J. Anim. Sci. 97: 90.
Farah M. M., Swan A.A., Fortes M.R.S, Fonseca R., Moore S.S. and Kelly M.J. (2016) Anim. 

Genet. 47: 3.
Hayes B. J., Corbet N.J., Allen J.M., Laing A.R., Fordyce G., Lyons R., McGowan M.R. and 

Burns B.M. (2019) J. Anim. Sci. 97: 55.
Hayes B.J. and Daetwyler H.D. (2019) Annu. Rev. Anim. Biosci. 7: 89.
Johnston D., Barwick S.A., Corbet N., Fordyce G., Holroyd R.G., Williams P. and Burrow H. M. 

(2009) Anim. Prod. Sci. 49: 399.
Johnston D., Barwick S.A., Fordyce G., Holroyd R.G., Williams P., Corbet N. and Grant T. (2014). 

Anim. Prod. Sci. 54: 1.
Raymond B.,A. Bouwman C., Schrooten C., Houwing-Duistermaat J. and Veerkamp R. F. (2018) 

Genet. Sel. Evol. 50: 27.
Sargolzaei, M., Chesnais J. and Schenkel F. (2014) BMC Genomics 15: 478.
Willer C.J., Li Y. and Abecasis G. R. (2010) Bioinformatics 26: 2190.
Yang J., Lee S.H., Goddard M.E. and Visscher P.M. (2011) Am. J. Hum. Genet. 88: 76.
Zhang Y.D., Johnston D.J., Bolormaa S., Hawken R.J. and Tier B. (2013) Anim. Prod. Sci. 54: 16.



378

﻿Genomic Selection 2

INCREASING THE ACCURACY OF GENOMIC PREDICTION IN CROSSBRED 
DAIRY CATTLE

M. Khansefid1, M.E. Goddard1,2, M. Haile-Mariam1, C. Schrooten3, G. de Jong3, E.  
O’Connor4, J.E. Pryce1,5, H.D. Daetwyler1,5 and I.M. MacLeod1

1AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083 Australia
2Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010 

Australia
3CRV, 6800 AL Arnhem, the Netherlands

4CRV Ambreed, Hamilton, 3216 New Zealand
5School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083 Australia

SUMMARY
This study assessed the accuracy of genomic prediction for crossbred dairy cows (mixed crosses 

between Holstein and Jersey) when purebreds and crossbreds were combined in a single mixed-breed 
reference set. The reference population consisted of 36,695 bulls and cows. There were six validation 
breed groups including crossbred cows (from New Zealand and Australia) as well as purebred cows 
(Holstein or Jersey cows from New Zealand). The effect of using genotypes of different marker 
densities (50K or HD) and different analytical models (GBLUP or emBayesR) on the accuracy and 
bias of genomic predictions was studied. The results showed that on average for milk traits (milk, 
fat and protein yields), the accuracies increased using HD genotypes compared to 50K genotypes, 
regardless of the prediction model. However, emBayesR outperformed GBLUP in all validation 
populations with the highest increase observed for Australian crossbreds when HD genotypes were 
used. Additionally, the bias of genomic prediction was reduced when using HD compared to 50K 
genotypes in both GBLUP and emBayesR models.

INTRODUCTION
Genomic prediction (GP) within breeds is generally very accurate using the standard 50K SNP 

panel when the linkage disequilibrium (LD) between markers and the causal mutations is preserved 
over long distances (e.g. using 50K in a purebred Holstein reference to predict into young Holstein 
bulls). However, using a single breed reference population for GP in crossbreds generally has low 
reliability, similar to the low accuracy for across breed prediction (e.g. Kemper et al. 2015). This 
is likely due in part to the fact that LD decays faster in crossbreds compared to purebreds so that 
markers that accurately predict QTL effects in Holsteins may not always be in LD with the same 
causal mutation allele in the crossbred. This is particularly the case when crossbreeding occurs over 
several generations as is common in the New Zealand dairy industry (New Zealand Dairy Statistics, 
www.dairynz.co.nz/dairystatistics). 

The use of a mixed breed reference population to increase the reference population size, can 
potentially increase the accuracy of GP if the markers segregating across breeds have the same LD 
phase with the causal mutation alleles (Kemper et al. 2015). Moreover, inclusion of crossbreds in the 
reference population should also help to find the most predictive markers closest to causal mutations 
because LD would be preserved over shorter distances. This also helps to limit the number of multiple 
SNPs in high LD with QTLs. 

Therefore, the aim of this study was to increase the accuracy of GP in crossbred dairy cattle 
using a mixed breed and crossbred reference population, increasing the density of markers (HD 
versus 50K) and using models which tend to calculate individual SNP effects (Bayesian) rather 
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than haplotype effects (GBLUP). The dairy crossbreds were cows that had varying proportions of 
Holstein and Jersey (approximately 50%:50% cross = “HJ”, approximately 75% Holstein = “HHJ” 
and approximately 75% Jersey = “HJJ”). The accuracy of GP in the crossbreds was also compared 
with purebred Holstein “H” and Jersey “J”.

MATERIALS AND METHODS
Animals. The reference set consisted of 7,463 purebred bulls mainly from New Zealand and the 

Netherlands (953 Red H, 5,409 H and 1,101 J) as well as 29,232 purebred and crossbred cows from 
New Zealand (NZ) (7,623 H, 9,262 HHJ, 7,807 HJ, 1,157 HJJ and 3,383 J). There were five NZ 
cow validation populations: 1,002 H, 863 HHJ, 868 HJ, 324 HJJ and 532 J. An Australian (AU) cow 
validation set of 344 HJ was included to demonstrate GP in a less related group. 

Relatedness between validation and reference. The validation sets were selected to reduce high 
relationships with the reference: no sires or half-sib brothers of validation cows were included in the 
reference. It has been demonstrated that the strength of the top 10 genomic relationships between 
validation and reference animals (Rel.Top10) gives a good indicator of the relative accuracy of GP 
(Clark et al. 2012). Therefore, this is reported for each validation population.

Phenotypes. Milk, fat, and protein yields were analysed separately but the results are reported 
as the average across three traits. The phenotypes for CRV bulls were de-regressed proofs (DRP) 
on the Australian scale, derived from international MACE (2018) breeding values (Liu 2009). The 
NZ and AU cow phenotypes were also DRP which were processed together by DataGene (2018) 
using test day records and correcting for known fixed effects as for the official Australian dairy cattle 
evaluations (https://datagene.com.au/).

Genotypes. Two sets of imputed genotypes were used in GP: the standard Illumina 50K SNP 
panel (40,850 SNP) and Illumina HD 800k SNP panel (633,375 SNP), where the latter included an 
additional custom set of ~ 1200 variants. In the HD genotype set, one of each pair of SNP in LD r2 
> 0.95 was pruned out leaving 316,396 SNP. The majority of genotypes were first imputed from low 
density chips (~ 10k SNPs) up to 50K and then imputed from 50K to HD using FImpute (Sargolzaei 
et al. 2014). The SNPs with minor allele frequency (MAF) < 0.002 were removed.

Models. The GBLUP (Meuwissen et al. 2001) analysis used the following model (with MTG2 
software: Lee and Van der Werf 2016):

       y = Xb + Zu + e	 (1)
where, y is the vector of phenotypes (MY, PY or FY DRP) for the animals in the reference, X is a 
design matrix allocating phenotypes to fixed effects (sex and breed group), b is the vector of fixed 
effect solutions, Z is a design matrix allocating records to individual additive genetic values in u, u 
~ N(0, Gσ2

g) is a vector of genomic breeding values (GEBVs) in which σ2
g is the additive genetic 

variance and G is the GRM constructed from animal genotypes (50K or pruned HD), and e ~ (0, 
Eσ2

e) is a vector of random residual effects in which σ2
e is the error variance and E is a diagonal 

matrix constructed as diag(1/wi) where wi is the weighting coefficient for each animal. Weighting 
coefficients were calculated differently for cows and bulls following Equation 5 and 6 of Garrick et 
al. (2009), with heritability h2=0.33, repeatability t=0.56 and proportion of variance not explained 
by markers is c=0.2. 

We also analysed the data with “emBayesR” (Wang et al. 2016: in-house software): 
       y = Xb + Wv + e	 (2)

where, y, X, b and e are as for equation 1, v is the vector of SNP effects (50K or pruned HD), W is 
a design matrix of SNP marker genotypes (50K or pruned HD). In emBayesR model, the initial EM 
(Expectation-Maximisation) phase was set for a maximum of 1,500 iteration with the convergence 
parameter set as 1×10-7 and the BayesR phase was set to complete 5,000 iterations. For each trait, 
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the emBayesR model was run in 5 independent replicated analyses (MCMC chains) to check for 
convergence and the results were averaged across the 5 chains. The accuracy of GP for each validation 
breed group was defined as the Pearson’s correlation coefficient between GEBVs and DRPs (rGEBV,DRP). 
The bias of GP was assessed by calculating the regression coefficient of DRP on GEBVs (bDRP,GEBV) 
(no bias bDRP,GEBV = 1).

RESULTS AND DISCUSSION
The accuracy and bias of GEBVs in each of the six validation breed groups are shown in Figure 

1, where the values are averaged across MY, FY, and PY. 

Figure 1. The accuracy (A) and bias (B) of GP in validation breed groups using different marker 
density genotypes and analytical models

Crossbred vs. purebred. Regardless of SNP density and method used, the accuracy of GP in 
purebred H was highest followed by pure J cows. It is not surprising that H was the most accurate 
because the H breed dominated the reference population. Furthermore, the relationships between 
the different validation sets and the reference may also partly explain the results. The Rel.Top10 in 
purebred H and J cows was 0.250 and 0.345, respectively, but was generally lower in crossbred cows: 
HHJ=0.209, NZ-HJ=0.207, AU-HJ=0.195 and HJJ=0.282. Therefore, this may be partly contributing to 
the observed lower in accuracy of GP for: crossbreds compared to purebreds, as well as HJ compared 
to other crosses. The lower accuracy observed in crossbreds could also be partly due to the lower 
reliability of some crossbred phenotypes compared to purebreds and potentially, genotype imputation 
in crossbreds may be less accurate than for purebreds. Although pure J validation had the strongest 
relationships with the reference, the accuracy of GP in pure J was slightly lower than H. This may 
occur because the proportion of J in the reference is very low compared to H, therefore if some QTL 
segregate only in J they may not be accurately predicted. The GP in pure J and H was generally less 
biased than crossbreds. However, the bias across the different crossbred validations was almost the 
same. Although all validations showed some bias, bDRP,GEBV lower than 1 is a common observation in 
dairy cattle (Khansefid et al. 2014).
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50K vs. pruned HD genotypes. There was a consistent increase in accuracy when using pruned 
HD instead of 50K genotypes, regardless of validation breed group and prediction method (on average 
~ 2%; from 0.41 to 0.43). Additionally, the bias of GP was reduced when using denser genotypes 
(on average ~ 3%; from 0.73 to 0.76). This suggests that increasing the marker density enables more 
precise estimates of QTL effects because markers tend to be closer and in stronger LD with the causal 
variants. Moreover, in HD genotypes the markers tend to have the same LD phase with the causal 
mutation alleles across different breeds. Therefore, for the validation breed group AU-HJ, in which 
the cows were least related to the reference, the amount of gain from using denser markers was 
expected to be greatest. However, the amount of gain in AU-HJ accuracy compared to other validation 
sets was greater only when emBayesR was used in GP. This suggests that to obtain the most benefit 
from increased marker density, the Bayesian model works better than GBLUP because it provides a 
more precise estimate of QTL effects. In AU-HJ using HD genotypes instead of 50K genotypes, also 
reduced the bias of predictions more than other validation breed groups.

GBLUP vs. emBayesR. The accuracy of GP was increased using emBayesR instead of GBLUP 
in all validation breed groups regardless of marker density (on average ~ 2%; from 0.42 to 0.44). This 
is likely because the genetic architecture of the milk traits is better modelled by the Bayesian sparse 
mixture model compared to the quasi-infinitesimal GBLUP model (Goddard et al. 2016). In GBLUP 
the effect of causal QTLs tends to be spread across many markers that are in LD with the causal 
mutations and all effects come from the same normal distribution. However, in emBayesR the SNP 
effects are estimated more precisely because we allow a mixture distribution of SNP effects where 
some may be small medium or large, and a proportion of SNP may have no effect on the trait. This 
Bayesian model would therefore be expected to show the most benefit when the validation animals 
are less related to the reference group. Using emBayesR instead of GBLUP did not have a large effect 
on the bias of GP, except in AU-HJ where the bias of prediction reduced. 

CONCLUSIONS
The accuracy of GP in crossbreds was lower than purebreds. Using HD instead of 50K genotypes 

and emBayesR instead of GBLUP increased the accuracy and reduced the bias of genomic predictions. 
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SUMMARY
Increased demand for genomic data driven by the transition of BREEDPLAN to single-step 

genomic BLUP, has seen an increase in the numbers of genotyping providers and SNP panels. To 
assess the suitability of new panels, AGBU has developed a standardised procedure to ensure high 
quality genomic data for inclusion into BREEDPLAN.

INTRODUCTION
The transition of Australia’s national beef genetic evaluation, BREEDPLAN, to Single-Step 

Genomic Best Linear Unbiased Prediction (ssGBLUP) in 2017 (Johnston et al. 2018) has driven 
increased demand for genomic data. The resultant growth in genotyping has stimulated the rapid 
introduction of new commercial genotyping companies and new single nucleotide polymorphism 
(SNP) panels. Given that the end use for the majority of the beef industry’s genotyping is incorporation 
into BREEDPLAN, it is necessary to ensure that SNP panels offered to breeders/breed societies 
are compatible with the genomic pipeline quality control (QC) requirements (Connors et al. 2017) 
used for building the genomic relationship matrix for BREEDPLAN single-step evaluations. These 
QC checks can only be performed if the genotypes are compatible and as such, new genotypes and 
new panels require analysis prior to inclusion into the BREEDPLAN genomic pipeline. The Animal 
Genetics and Breeding Unit (AGBU) has developed a set of industry standards for genotype panels, 
along with a process of analysing new SNP panel products and validating their compatibility for the 
BREEDPLAN genomic pipeline. This paper describes the analyses and validation process for new 
SNP panels and their genotypes.

MATERIALS AND METHODS
The fundamental requirements for BREEDPLAN genomics compatibility are consistent format, 

SNP quality and informativity. These requirements ensure accuracy and consistency across all genomic 
records included in the national genomic evaluations. These standards are currently in consultation 
with Meat and Livestock Australia, industry partners and genotype providers. Firstly, genotypes are 
required to be sent in a particular format derived from Illumina Genotyping Exports with specifications 
designated by AGBU. This consistent format ensures all genotypes are processed in the correct order, 
enables automated analysis of the new SNP panels, and ensures genomic pipeline QC can be performed. 
Analyses of new SNP panels requires access to the panel map file, which provides SNP names, SNP 
location (chromosome and base pair position), and allele coding (e.g. manufacture strand/customer 
strand) in a particular genome assembly. The map file must also be in a particular consistent format 
as designated by AGBU. The map file provides an overview of the panel, including SNP density and 
chromosome coverage. 

Analysis of SNPs on new panels enables a comparison with existing panels, and more importantly, 
the consensus panels developed at AGBU (AGBU 6k, AGBU 150k) used for the BREEDPLAN 
genomic pipeline to combine SNP data from panels of varying densities. AGBU 6k consists of a set of 
approximately 6000 SNPs common across SNP panels and is available in the public domain (Boichard 

*  A joint venture of NSW Department of Primary Industries and the University of New England
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et al. 2012); AGBU 150k is a set of approximately 150,000 SNPs used to format all genotypes to a 
common consensus panel (Connors et al. 2017). Analysis of the new panel map file in relation to the 
consensus panels indicates its compatibility with the BREEDPLAN genomic pipeline. For example, 
genotypes from panels missing the common 6000 SNPs (AGBU 6k) cannot be compared with existing 
genotypes and will be incompatible with BREEDPLAN.

AGBU has developed automated reporting processes to analyse new SNP panels, providing a detailed 
breakdown including the number of SNPs (overall and per chromosome), minimum and maximum 
distance between SNPs, first and last position of SNPs, mean and standard deviation of positions per 
chromosome. A common SNPs analysis is performed by creating a SNP overlap matrix between the 
new panel and a subset of the most informative existing panels, including the AGBU consensus panels. 
These statistics are presented in an automated report in both tabular and graphical representations, 
enabling rapid identification of potential issues. Automated reports can be made available to relevant 
industry and commercial bodies considering the use of the analysed new SNP panel. 

RESULTS AND DISCUSSION
To date, AGBU has analysed more than 50 different SNP panels, enabling a detailed understanding 

of the requirements for BREEDPLAN compatibility. Based on this experience, AGBU has formulated 
a set of requirements for new panels to ensure compatibility for the genomic pipeline and inclusion 
into BREEDPLAN single-step evaluations, forming the basis of new panel assessment Levels 1-3. 

Currently Level 1 assessments are enforced for BREEDPLAN inclusion, such that genotypes 
from a new panel not meeting these requirements will be excluded from the evaluation until such 
time as the requirements are met. Levels 2 and 3 assessments, along with the formation of reference 
populations, are proposed for future implementation and are currently being negotiated with industry 
bodies to determine funding structures and accountability. 

Level 1 assessment – Panel format, quality and content. New panel inclusion requirements are 
as follows: 
•	Provide AGBU with the aim and/or target breed/s of a newly developed panel;
•	Genotypes and map files must be formatted as per specified guidelines (as supplied by AGBU);
•	The genome assembly used for the panel map file must be provided;
•	Panel must contain at least 90 percent of SNPs in the AGBU 6k consensus panel;
•	Panel must have at least 10000 SNPs in common with the autosomal region of the AGBU 150k 

consensus panel;
•	There must be at least 200 SNPs on the non-autosomal region of the X chromosome;
•	Confidential or patented SNPs and any restrictions regarding their use must be provided;
•	The raw genotypes are to be supplied in Illumina AB format (guidelines as supplied by AGBU) and 

must not be imputed or manipulated (e.g. removal of chromosome X, Y or mitochondrial SNPs);
•	Genotypes must possess GenCall (GC) scores. If GC scores are not provided, a statement of quality 

assurance is required. AGBU will not accept any responsibility of quality regarding issues related 
to SNPs without GC scores;

•	Companies which do not use GC as quality control (e.g. Affymetrix) must provide AGBU with the 
formula to convert their QC to GC. Additionally, they should provide a statement regarding the 
concordance of their panels with Illumina panels;

•	SNP names should not contain a prefix or suffix. If prefixes or suffixes are present, specific 
recommendations to AGBU must be included on the SNPs involved;

•	There must be no SNP duplication in the map file; i.e. SNPs with same position and chromosome but 
different name, or same SNP name and different positions. If important SNPs must be tested on the 
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panel more than once, they must have a suffix ‘dup’ and the reason for duplication must be provided.
In addition to meeting the above criteria for panel inclusion, AGBU also recommends the following:

•	 At least 20 individuals should be genotyped with both an existing panel of equal or higher density 
and the new panel, to check quality and concordance;

•	 Suggested inclusion of SNPs in mitochondrial regions on new panel;
•	 Suggested inclusion of SNPs on the non-autosomal region of Y chromosome on new panel.

These BREEDPLAN inclusion requirements and recommended features are communicated to 
genotyping companies in relation to the design of new panels, and/or in response to inclusion/exclusion 
of genotypes from new panels.

Level 2 assessment – Heterozygosity. The Level 2 heterozygosity assessment is proposed for 
implementation in future, dependent on ongoing negotiations with industry and commercial bodies. 
This assessment is not currently enforced for new panels to be included into BREEDPLAN. Genotypes 
for at least 200 individuals per breed are required. Individuals should be purebred according to 
software used for the BREEDPLAN genomic pipeline (Boerner 2017; Boerner and Wittenburg 
2018) and therefore representative of the breed population, forming a reference dataset for that breed. 
Individuals can be genotyped either with the new panel, or with a panel of high enough density (e.g. 
Illumina Bovine HD (777k)) such that there are two panels (one of which is the new panel) sharing 
at least 95 percent of SNPs in common for comparison. The heterozygosity and allele frequencies of 
the genotypes are assessed to check for the following requirements: 
•  The heterozygosity over all SNPs for the entire breed’s population must be greater than 30 percent;
•  The heterozygosity for pure breed animals must be less than 50 percent;
•  Major allele frequencies for each individual must not exceed 75 percent;
• The histogram for SNPs with minor allele frequency (MAF) above 0.05 should be reasonably 

distributed. 
Importantly, all SNPs included in BREEDPLAN single-step evaluations will require at least 1000 

genotypes with that SNP (i.e. 1000 individuals), to ensure high imputation accuracy. If less than 1000 
genotypes are available (e.g. because they’re included in a new SNP panel) these SNPs will not be 
used until they can be further validated. Thus the new panels require more stringent assessment of 
those SNPs in common with other panels.

Level 3 assessment – Imputation accuracy. The Level 3 imputation accuracy assessment is proposed 
for implementation in future, dependent on ongoing negotiations with industry and commercial bodies. 
This assessment is not currently enforced for new panels to be included into BREEDPLAN. The aim 
of this assessment is to investigate how well genotypes from existing panels can be imputed to the 
new panel, and vice versa. Genotypes of at least 2000 individuals with high density (e.g. 777k) per 
breed are required. Individuals should be suitably representative of the average breed population, such 
that they form a reference dataset for that breed. This assessment will be performed by extracting a 
subset of SNPs based on the new panel’s map file from 1000 individuals and imputing up to 777k, 
to other panels, and to SNPs used for building the GRM. The remaining 1000 individuals will be 
used as a reference set for imputation. Furthermore, if the new panel is of higher density (i.e. >50k), 
imputation accuracy of low density panels (i.e. <20K) will also be assessed.

Reference populations. Testing SNP panels for heterozygosity and imputation accuracy requires 
reference populations. The creation of reference populations is proposed for implementation in the 
near future to ensure ongoing robustness of genomics in BREEDPLAN. Genotypes for at least 200 
individuals per breed are required. Individuals should be purebred, according to BREEDPLAN 
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genomic pipeline requirements (Boerner 2017; Connors et al. 2017) and thus suitably representative 
of the breed’s population. Reference individuals can be used to test concordance between panels, and 
ongoing research needs for BREEDPLAN single-step evaluations. 

These reference populations should be dynamic, continually supplemented and updated yearly, 
to ensure genetic trends in the population are captured. The significant cost involved in establishing 
reference populations and maintaining them requires strategic negotiations with appropriate industry 
bodies and commercial parties to determine funding structures and accountability. These strategic 
discussions are currently underway and will determine the expected time for implementation of 
assessment Levels 2-3 and reference populations.

CONCLUSIONS
This paper describes industry standards developed by AGBU for the inclusion of genotypes from 

new SNP panels into the BREEDPLAN single step evaluations. These requirements ensure accuracy and 
consistency across genomic records from various different genotyping platforms. Increasing numbers 
of new SNP panels are being introduced, requiring SNP panel analyses to determine BREEDPLAN 
compatibility. AGBU has developed an automated analysis process, which provides reports on new 
SNP panels for interested commercial and industry partners. This assessment process benefits industry 
by ensuring animals are not genotyped with panels that are not compatible with BREEDPLAN, and 
ensures genotyping quality is maintained.
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SUMMARY
Genomic prediction for breeds with a small population size, such as the Australian Red, is 

challenging, because reliability depends on the size of the reference population and its relatedness 
to the animals evaluated. Our objective was to find the optimal reference population for Australian 
Red, comparing within breed and multi breed prediction for milk yield, fat yield, protein yield and 
somatic cell count.

Our results show that while multi breed prediction can result in higher accuracies than within breed 
prediction, adding fewer animals that are more closely related to the validation population can result 
in a higher reliability than adding a much larger number of individuals that are more distantly related.

INTRODUCTION
Genomic prediction for breeds with a relatively small population size, such as Australian Red 

cattle, is challenging, because the reliability of prediction is dependent on the size of the reference 
population (Goddard 2009). Sharing reference populations across breeds or countries may increase 
the size of the reference population, though this has only been advantageous for closely related breeds, 
such as the Nordic Red cattle breeds (Brøndum et al. 2011). Australian Red cattle are influenced by 
several Red dairy breeds, including Scandinavian Red cattle breeds, Ayrshire, Shorthorn, Illawarra 
and Red and White Holstein (http://www.aussiereds.com.au). 

Multi breed prediction often analyses the same trait in different breeds as a single trait with a breed 
effect to account for differences across breeds. Not all QTL impact the expression of quantitative 
traits in the same way across breeds (Raven et al. 2014) and there may be QTL by breed interactions 
resulting in different effects of QTL for different breeds. Therefore, it may be appropriate to fit the 
same trait in different breeds as multiple correlated traits (Olson et al. 2012). 

Because linkage disequilibrium is maintained over much shorter distances across breeds than 
within breed (de Roos et al. 2008), prediction reliability is expected to decrease faster across breeds 
than within a breed when the distance between causal mutations and prediction markers increases 
(van den Berg et al. 2016). Consequently, the standard 50K SNP chip may not be dense enough for 
accurate prediction from Holstein to Australian Red, and variants close to causal mutations could 
potentially result in a higher reliability. 

The objective of this study was to find the optimal reference population for Australian Red dairy 
cattle. Within and multi breed reference populations were compared, with multi breed populations 
containing either a low number of Holstein animals that are relatively closely related to Australian 
Red cattle based on a genomic relationship matrix between Holstein and Australian Red cattle, or 
larger numbers of more distant Holstein and Jersey individuals, used a single trait model or a multi 
trait model that fitted the same trait in different breeds as multiple correlated traits. 

MATERIALS AND METHODS
We calculated the reliability of genomic prediction in Australian Red bulls for different reference 

populations. The reference population contained up to 3,248 Holstein bulls, 48,386 Holstein cows, 
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807 Jersey bulls, 8,734 Jersey cows and 3,041 Australian Red cows. Genome-wide complex trait 
analysis (GCTA) (Yang et al. 2011) was used to first construct a genomic relationship matrix of the 
full reference population and perform a principal component analysis (PCA). In total, 10 reference 
populations were used. The largest reference population contained 3,041 Australian Red cows, 51,634 
Holstein and 9,541 Jersey individuals, and the smallest only the Australian Red cows. Additional 
reference populations contained the Australian Red cows and either all Holstein individuals or only 
Holsteins with a value for the first principal component (PC1) above a certain threshold. Figure 1 
shows the first two principal components of the PCA, and indicates the groups used to construct 
different reference populations. The number of individuals in each of these seven subsets is shown in 
Table 1. The validation population contained 280 Australian Red bulls. Deregressed proofs (DRP) for 
milk (MY), fat (FY) and protein yield (PY) and somatic cell count (SCC) were calculated following 
Garrick et al. (2009) and used as phenotypes. 

Figure 1. First two principal components (PC1 and PC2) of the genomic relationship matrix 
of the multibreed reference population containing Holstein and Australian Red individuals. 
Different colours show different subsets of animals that are used to construct different reference 
populations

Table 1. Number of Holstein and Australian Red (Red) individuals in different reference pop-
ulations based on the first principal component

Breed H1-7+R H2-7+R H3-7+R H4-7+R H5-7+R H6-7+R H7+R
Holstein 39,788 29,809 19,835 9,880 4,915 2,436 1,197
Red 3,041 3,041 3,041 3,041 3,041 3,041 3,041

Genotypes were available for the Illumina BovineSNP50 chip (50K, real or imputed). Because 
the LD between QTL and prediction markers on the 50K chip may not be conserved across breeds, 
we also analysed genotypes on a custom chip with 46,516 imputed sequence variants selected by 
Xiang et al. (2019) that are expected to be enriched for dairy trait QTL (XT).
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For each of the reference populations, we used the GBLUP model as implemented in MTG2 (Lee 
and van der Werf 2016) to predict GEBV of the validation population. The reliability of genomic 
prediction was calculated as the squared correlation between DRP and GEBV divided by the average 
reliability of individuals in the validation population. The model either considered the same trait in 
different breeds as a single trait, fitting a breed effect to correct for breed differences (ST-GBLUP), 
or fitted the same trait in different breeds as different, correlated traits, using a multi trait model 
(MT-GBLUP). 

Figure 2. Reliability of genomic prediction as a function of the number of Holstein and Jersey 
individuals in the reference population (nNotRed) for milk yield (MY), fat yield (FY), protein 
yield (PY) and somatic cell count (SCC), using variants on the 50K SNP chip (50K) or selected 
sequence variants (XT). For the multi breed reference populations, the same trait in different 
breeds was analysed using a single trait model fitting a breed effect (ST) or a multi trait model 
considering the trait as multiple correlated traits in different breeds (MT)
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RESULTS AND DISCUSSION
Figure 2 shows the reliability as a function of the composition of the reference population. The 

overall pattern was similar for all traits: the highest accuracies were obtained using a multi breed 
reference population with a limited number of Holstein individuals that are relatively closely related 
to the Australian Red. population. 

For all traits tested, the highest reliability was obtained with the MT model and a multi breed 
reference population. The XT variants only led to a small difference in reliability compared to the 50K 
variants. For MY, FY and PY, the reference population resulting in the highest reliability contained 
around 2,400 Holsteins (with reliabilities of 0.34, 0.56, 0.52 for MY, FY and PY, respectively), while 
for SCC, the highest reliability (0.50) was obtained with 13,822 Holsteins. Adding Jerseys to full 
reference population containing all Holstein individuals resulted in a similar reliability as obtained 
without the Jerseys.

Except for FY, the reliability obtained with the full multi breed reference population was lower 
than the reliability obtained with the within breed reference population. The decrease in reliability 
when adding larger numbers of Holstein individuals to the reference population was larger with the 
ST model than with the MT model.

The GBLUP prediction models assume all variants are equally important to predict the trait. Models 
that can allocate higher importance to variants linked to causal mutations, such as Bayesian variable 
selection models or a weighted GBLUP, may result in higher and be less prone to the decrease in 
reliability we observed when adding larger numbers of Holstein individuals to the reference populations. 

CONCLUSIONS
Our results show that while multi breed prediction can result in higher accuracies than within 

breed prediction, adding fewer animals that are more closely related to the validation population can 
result in a higher reliability than adding a much larger number of individuals that are more distantly 
related. To implement genomic prediction in Australian Red cattle, an international reference population 
containing other Red breeds is likely to lead to a higher reliability than a multi breed Australian 
reference population. 
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SUMMARY
Genomic selection is changing how we selectively breed animals and, more recently, for the 

traits we select. In addition to providing genomic breeding values for traits that were traditionally 
evaluated through progeny-testing of Australian dairy cattle, genomic breeding values have already 
been provided for two novel traits. Feed Saved, and Heat Tolerance, were released in 2015 and 2017, 
respectively. Our focus for dairy cattle breeding is now on traits associated with animal health, fertility 
and impacts on the environment. This is being achieved by directly selecting measurable phenotypic 
traits, or indirectly using tools such as mid-infrared spectral data and automated sensor devices to 
identify predictors of these traits. Greater collaboration between scientific disciplines and countries is 
likely to facilitate development of data-sets that will serve as better reference populations for genomic 
selection of new traits into the future.

INTRODUCTION
Genomic selection has transformed worldwide livestock and plant breeding. While genomic 

selection has changed how we select, it has not substantially changed the traits we select for. Having 
said this, there are recent examples of traits that are now being selected for that would not be possible 
without genomic selection. In this paper we describe two examples of how genomic selection has 
enabled the next generation of breeding values for dairy cattle. In addition, we will explore new 
opportunities that leverage off advances in phenotyping.

GENOMIC REFERENCE POPULATIONS
For most traits evaluated in dairy breeding, the genomic reference population is usually composed 

of bulls with large daughter groups. Often published breeding values include information from the 
animal’s pedigree, including progeny and ancestors, in addition to the genomic component. However, 
for expensive or difficult to measure traits, it is not cost effective to phenotype large daughter groups. 
Instead the reference population can be genotyped females that have the desired phenotype measured 
directly. The Australian Genomic Information Nucleus (Ginfo) started in 2013 with around 100 herds 
and 30,000 cows and has contributed to the increase of reliabilities of genomic ABVs and played a 
key role in development of genomic breeding values of novel traits.

TECHNOLOGICAL ADVANCES
The use of fully automated phenotyping in animal breeding is still in its infancy. Many precision 

farming technologies, such as pedometers, automatic temperature devices, automated oestrus detection, 
daily body condition scoring and bodyweight scales are becoming more common on modern dairy 
farms (Egger-Danner et al. 2014). To make substantial advances in low and moderately heritable 
traits, it is important to measure phenotypes on a large number (>10,000) of animals. Generating 



391

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:390-393

quality phenotypes from large amounts of data is a challenge that requires expertise in interpretation 
of data and how it can be used for selection. It is important to consider the effect of any new breeding 
objective on other traits in the breeding goal.

Sensors. The use of sensor technology alongside genomic selection could lead to a further 
improvement in the prediction of complex traits, such as fertility, as the data obtained is likely to be 
more objective than other sources and potentially provide new information. For example,  Talukder et 
al. (2015) compared gold standard progesterone-evaluated oestrus detection, infrared thermography, 
heat and rumination tags (e.g. Hi Tag, SCR Engineers, Israel) and visual assessment of mounting 
indicators. The mounting indicators had 100% positive predictive values, while prediction using 
thermography was poor. The sensor tags performed reasonably well with 70% positive predictive values. 

Mid-infrared spectroscopy (MIR). Mid-infrared spectroscopy involves passing a beam of light 
through a milk sample to provide data in the form of spectra (absorbance or reflectance at specific 
wavelengths). Farmers currently receive regular reports from their herd test centres with information 
on milk volume and fat and protein concentration generated from MIR. Analysis of milk MIR has 
been used to predict other milk characteristics such as milk fatty acids, milk protein composition, 
milk coagulation properties, milk acidity, mineral composition and ketone bodies with reasonable 
accuracy (De Marchi et al. 2014). 

Mid-infrared prediction equations are already showing promise to aid management decisions 
regarding complex traits. A good example is beta-hydroxy-butyrate (BHB) concentration, where 
most MIR prediction equations are calculated using the concentration of BHB in milk (Grelet et al. 
2016). The BHB concentration in milk can also be used to predict the BHB concentration in blood 
(Luke et al. 2019). This is important as sub-clinical ketosis in dairy cattle is often diagnosed using 
of the concentration of BHB in blood, hence using MIR in milk to predict metabolites measured in 
blood is likely to be a suitable practical approach to manage metabolic disease. The way in which 
MIR can be used for selection purposes may differ from management purposes i.e. it may not enhance 
genomic prediction. However, it has already been shown to be a powerful tool to identify genetic 
variants associated with milk composition (Benedet et al. 2019).

Multi-omics. There may also be opportunities to use information from multiple sources. Examples 
include direct measurements, the metagenome (e.g. rumen, reproductive etc), the proteome/metabolome 
(protein and metabolite structure and function) and functional genomic assays (e.g., methylation, 
transcriptomics etc.). When these techniques are used in conjunction with sequencing technologies, 
causal variants can be identified, which should lead to better responses to selection. Ultimately, multi-
omics approaches could enhance selection of existing and novel traits. 

FEED SAVED AND GREENHOUSE GAS EMISSIONS
The Feed Saved Australian Breeding Value (ABV) comprises the energy required for maintenance, 

through liveweight breeding values calculated from conformation scores (Haile-Mariam et al, 2014) 
and residual feed intake (RFI) as a genomic prediction evaluated in heifers and cows. The reference 
population for RFI comprises around 2000 Australian heifers and cows and European Holstein cows 
(Pryce et al. 2015). The current reliability of Feed Saved is 35-40%.

Maintenance of this breeding value requires additional data from cows that are contemporaries of 
the current national population. One way to increase the accuracy of genomic breeding values is to 
increase the size of the reference population through large international collaborations. An example 
of this is the global dry matter initiative (gDMI) where a reference population of around 10,000 cows 
(Berry et al. 2014). More recently, the Efficient Dairy Genome Project, which is a multi-national research 
initiative led by Canada and it currently (April 2019) has collated feed intake records from 4,779 
cows (T. Chud, personal communication). Each partner has free access to the database that includes 
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feed intake, production and liveweight phenotypes in addition to pedigree and genomic information.
Technological advances to measure feed intake in commercial cows are occurring rapidly. For 

example, in dairy cattle in confined systems, cameras are being used to estimate volume changes along 
a feed lane before and after feeding to estimate the change in volume of feed (Bloch et al. 2019). In 
grazing environments, bite meters can be used to measure feeding behaviour discriminating between 
time spent biting, chewing and ruminating. It is more challenging to measure the volume of each bite 
and the nutrient concentrations of the pasture eaten. If this can be overcome, then individual feed 
intake records might become more common, especially if the sensors have multiple functions, so that 
farmers are motivated to purchase them. 

In recent times, there has been a push to share phenotypes on individual cow methane emissions. 
Methane production is an expensive phenotype to measure and again, international cooperation is an 
attractive way to develop a dataset that is large enough for genomic prediction. There are many ways 
to measure methane emissions, some of which measure the total methane emitted by an individual 
cow in a day (Deighton et al. 2014). Others measure the methane emitted only at certain times or 
locations (Hegarty 2013). Therefore, there has been a requirement to develop statistical ways to 
combine heterogeneous data (Haas et al. 2018). In addition to multi-country reference populations, 
there may also be a benefit to bringing together data on different breeds, such as beef breeds.

HEAT TOLERANCE
Worldwide, heat stress is a concern for many livestock production systems as it affects animal 

welfare and reduces productivity. In December 2017 genomic estimated breeding values (GEBV) for 
heat tolerance in dairy cattle were released for the first time in Australia. The dataset was constructed 
by merging herd-test production records with weather station data. Heat tolerance phenotypes were 
defined as the rates of decline in milk, fat and protein yield after a heat stress event (i.e. temperature-
humidity index exceeds 60) and were estimated using a reaction norm model (Nguyen et al. 2016). The 
GEBV has been validated using divergent lines managed in controlled hot weather events (Garner et al. 
2016). Although the reliability of heat tolerance is moderate (on average around 38%), it is expected 
that this will improve as the size of reference populations are increased. The genetic trend for heat 
tolerance has worsened, the genetic correlation with the Australian national selection index (Balanced 
Performance Index; BPI) is -0.20. Including heat tolerance in the BPI could improve farm profitability.

There are other ways that heat impacts dairy cows. For example, Dahl et al. (2016) stated that heat 
stress reduces dry matter intake, which in turn reduces yield and compromises immune function and 
if heat events are experienced in late gestation calf survival and performance is affected. Therefore, 
there is a need for further research on the impacts of heat stress on other traits to develop a multi-
faceted heat tolerance breeding value.

HEALTH TRAITS
Most genomic breeding values associated with health of dairy cattle have either been developed 

using records of “clinical cases” collected from farms, or by using predictor traits. For example, 
Abdelsayed et al (2017) obtained clinical disease data from >150k cows in 90 Ginfo herds, concluding 
that many health traits have sufficient genetic variation for selection purposes. 

The problem with farmer recorded data is that it is often inconsistent, incomplete, or sparse and 
generally only works well when electronic record keeping is mandatory for other purposes. However, 
there are opportunities to improve the reliability of genomic breeding values through the use of 
predictor traits, such as conformation traits, e.g. udder conformation for mastitis resistance and feet 
and leg traits for lameness. Technological advances in phenotyping, described earlier, could offer 
potential solutions for genetic selection.
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FERTILITY
Currently, most fertility breeding values around the world consider calving, mating and pregnancy 

data usually recorded by farmers. More extensive use of mid-infrared (MIR) spectroscopy (generated 
through machines used in routine commercial herd-testing), advanced phenotyping (using sensor 
technology etc) and genes identified to explain some of the genetic variation in fertility are under 
study and to expected deliver more precise genomic breeding values of fertility by getting closer to 
the biology of this complex trait. 

CONCLUSIONS
New technologies will generate large amounts of data that can be used for selection purposes and 

it is expected these will improve the way we select for current and future breeding objectives. As the 
emphasis of genetic evaluations changes from increasing output to reducing production costs and 
environmental footprints and improving animal welfare, access to quality data will be a challenge. 
This can be met by collaboration including with international partners and with farmers and research 
working in other disciplines to ensure expensive data is used for many purposes.
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SUMMARY
Genetic analyses on economically important ostrich traits have currently only been done within trait 

complexes, such as breeding or slaughter traits. This study resolved the issue by investigating genetic 
correlations across the complexes of production traits in adult birds (i.e. egg and chick production 
as well as adult live weight) and slaughter traits in immature birds (slaughter weight, skin size, hair 
follicle score and nodule size score). All traits were heritable and variable indicating that responses 
to selection may be possible. Heritability estimates and genetic correlations within trait complexes 
were consistent with previously derived parameters. Two-trait analyses on single traits from each 
complex found generally negative genetic correlations of reproduction with slaughter weight and skin 
size, with the correlation between egg production and skin size being significant at -0.41. The genetic 
correlation between slaughter weight and adult weight was high and positive at 0.81, as expected 
when comparing the same trait measured at different life stages. Size dependent slaughter traits (skin 
size and nodule size) were also positively correlated to adult weight. These results are discussed in 
relation to ostrich production.

INTRODUCTION
Up to 70% of global commercial ostrich products originate from South Africa (Brand and Jordaan 

2011). It is therefore not surprising that the literature on scientific ostrich breeding is also heavily 
dependent on studies of South African genetic resources (see Cloete et al. 2008b for a review). So 
far, most analyses have been conducted within trait complexes, e.g. live weight up to slaughter age 
(Bunter and Cloete 2004; Engelbrecht 2013), adult weight and reproduction (Cloete et al. 2008a), 
feather traits (Brand and Cloete 2015), chick survival (Wang et al. 2011) as well as slaughter traits 
(Engelbrecht 2013). As a result, little is known about the genetic correlations among traits of these 
trait complexes. This study therefore investigates genetic parameters for traits in the adult animal trait 
complex (Cloete et al. 2008a) and the slaughter bird trait complex (Engelbrecht 2013) and estimates 
genetic correlations between them. 

MATERIALS AND METHODS
The study utilised data from the ostrich resource population maintained at the Oudtshoorn Research 

Farm of the Western Cape Department of Agriculture, which has been well-documented (Bunter and 
Cloete 2004; Cloete et al. 2008a; 2008b; Engelbrecht 2013). Only data of the South African Black 
strain on the farm were used. Data in the adult bird complex included repeated egg production, chick 
production (total egg and chick numbers over a breeding season) and adult live weight records, as 
described in detail by Cloete et al. (2008a). Data in the slaughter trait complex were slaughter weight 
and skin size, as well as the subjectively assessed traits of nodule size and hair follicle scores. All 
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these traits were reviewed by Engelbrecht et al. (2009) and subsequently assessed in a genetic analysis 
conducted by Engelbrecht (2013). The number of records used varied from 1079 for skin size to 6292 
for adult weight (Table 1). 

Genetic (co)variance components and ratios were derived from a three-trait repeatability model 
for adult birds and a four-trait animal model for slaughter traits in ASREML (Gilmour et al. 2016). 
For adult production traits, fixed effects included production year and animal age, sex for adult weight 
and the length of the breeding season in days as linear covariates for the reproduction traits. Year 
of hatch, sex and age at measurement were modelled for slaughter traits. Additive animal, animal 
permanent environment and service sire (for egg and chick production) were fitted as random for adult 
birds and additive animal for slaughter traits. Further analyses involved two-trait combinations of 
each slaughter trait with each adult bird trait, using parameters previously derived as priors. Animals 
with records were 1391 for adult weight, 678 females with reproduction records and 721 service sires 
mated to at least one female.

RESULTS AND DISCUSSION
The descriptive statistics reported in Table 1 were consistent with those of previous studies on 

adult birds (Cloete et al. 2008a) and slaughter birds (Engelbrecht 2013). Likewise, coefficients of 
variation were previously above 50% for reproduction traits, below 20% for live weight traits, below 
10% for skin size and between 20 and 50% for subjective skin quality traits.

Table 1. Descriptive statistics for traits in the adult animal and slaughter animal trait complexes 

Complex and trait Number of 
observations Mean SD CV Range

Adult traits at 5.4 (SD = 3.2) years:
Egg production (n) 3023 44.0 25.2 57.3 0 – 121
Chick production (n) 3023 21.0 17.5 83.3 0 – 90
Adult weight (kg) 6292 120.1 15.2 12.7 68 – 178
Slaughter traits at 364 (SD = 71) days:
Slaughter weight (kg) 4085 92.4 17.1 18.5 40 – 148
Skin size (dm2) 1079 140.8 9.3 6.6 104 – 170
Nodule size (n) 1749 4.49 1.22 27.2 1 – 9
Hair follicles (n) 1771 3.77 1.73 45.9 1 – 9

Heritability estimates from the three-trait model amounted to 0.16 for egg production, 0.11 for 
chick production and 0.37 for adult live weight (Table 2). Genetically, egg production and chick 
production were the same trait (rg = 0.99), while the genetic correlations of reproduction traits with 
adult live weight were below 0.10 and not significant (P > 0.05).  

Table 2. The observed phenotypic variance (σ2
p) and (co)variance ratios for the traits in the 

adult animal complex. Significant (P < 0.05) correlations are denoted by an asterisk

Components and traits
Trait

Egg production Chick production Adult weight
σ2

p 498.7 269.2 196.0
(Co)variance ratios: Heritability in bold on the diagonal, with genetic correlations below and phenotypic 
correlations above the diagonal (± standard error)
Egg production (n) 0.16 ± 0.04 0.74* ± 0.01 0.06 ± 0.03
Chick production (n) 0.99* ± 0.03 0.11 ± 0.04 0.04 ± 0.03
Adult weight (kg) -0.01 ± 0.15 0.06 ± 0.17 0.37 ± 0.04
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Animal permanent environmental effects ranged between 0.15 ± 0.04 for egg production and 0.30 
± 0.04 for adult weight (data not shown). Likewise, service sire effects amounted to 0.045 ± 0.011 for 
egg production and 0.046 ± 0.011 for chick production. These results were generally consistent with 
our previous study on the same resource population involving the same traits (Cloete et al. 2008a) 
as well as with results reviewed from the literature (Cloete et al. 2008b).

Heritability estimates from the four-trait model for slaughter traits were quite consistent in magnitude, 
ranging from 0.33 for skin size to 0.38 for slaughter weight (Table 3). Genetic correlations between 
slaughter weight, skin size and nodule size were positive, while those involving hair follicle score 
were variable in sign and not significant (P > 0.05). The heritability of slaughter weight compared 
well with those previously reported for live weight at an age close to the anticipated slaughter date 
(Bunter and Cloete 2004; Engelbrecht et al. 2009; 2011; 2013; Engelbrecht 2013). Genetic parameters 
involving skin size and subjectively assessed leather quality were also consistent with previous studies 
(Engelbrecht et al. 2009; Engelbrecht 2013).

Table 3. The observed phenotypic variance (σ2p) and (co)variance ratios for the traits in the 
slaughter animal complex. Significant (P < 0.05) correlations are denoted by an asterisk

Component and  
traits

Trait
Slaughter weight 

(kg)
Skin size 

(dm2)
Nodule size 

score (n)
Hair follicle 

score (n)
σ2

p  165.3 61.8 1.16 2.53
(Co)variance ratios: Heritability in bold on the diagonal, with genetic correlations below and 
phenotypic correlations above the diagonal
Slaughter weight (kg) 0.38 ± 0.04 0.69* ± 0.02 0.33* ± 0.02 0.04 ± 0.03
Skin size (dm2) 0.88* ± 0.05 0.33 ± 0.06 0.45* ± 0.03 0.03 ± 0.03
Nodule size score (n) 0.37* ± 0.10 0.55* ± 0.10 0.36 ± 0.06 0.14* ± 0.03
Hair follicle score (n) 0.06 ± 0.12 -0.17 ± 0.13 0.19 ± 0.13 0.37 ± 0.06

Genetic correlations of reproduction traits with slaughter weight and skin size were consistently 
negative in sign and mostly not significant (P > 0.05; Table 4). The exception was for the correlation 
of egg production with skin size which was more than double the corresponding standard error. If it 
is considered that growth is a key trait to ensure early slaughter and a reduced feed cost (Cloete et al. 
2008b), these correlations are potentially unfavourable. On the other hand, it could be argued that the 
unbridled improvement of size could result in an increased maintenance need, as well as heavy animals 
that are difficult to handle, thereby compromising animal welfare and human occupational health and 
safety. Further research into the management of breeding programs, in light of these relationships, 
is therefore needed. Reproduction traits were not genetically correlated to the subjectively assessed 
skin quality traits. Genetic correlations of adult live weight with slaughter weight and skin size were 
positive and high. Adult live weight was positively related to nodule size but was uncorrelated with 
hair follicle score. 

It was notable that some of the genetic and animal permanent environmental variation in the 
reproduction traits partitioned towards service sire. This was evident in analyses involving two-trait 
combinations of slaughter traits with adult reproduction traits, but most pronounced for analyses 
involving chick production. Heritability estimates and animal permanent environmental effects amounted 
to 0.09 to 0.18 respectively in these analyses, while service sires effects amounted to approximately 
0.11. These results support our previous contention that the joint analysis of egg and chick production 
has assisted with the partitioning of additive, animal permanent environmental and service sire variances 
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for these traits (Cloete et al. 2008a). Analysing slaughter weight with adult weight also resulted in a 
slight repartitioning of variances in the latter trait and resulted in a heritability of 0.41 and an animal 
permanent environmental variance ratio of 0.27. Except for estimates for service sire variances for 
chick production, it was impossible to demonstrate significance (P < 0.05) for these repartitioned 
variances. Further research on this phenomenon as more data accrue is therefore also required. 

Table 4. Genetic correlations of the traits in the slaughter animal complex with those in the 
adult animal complex. Significant (P < 0.05) correlations are denoted by an asterisk 

Adult animal 
traits

Slaughter traits
Slaughter 

weight (kg)
Skin size  

(dm2)
Nodule size 

score (n)
Hair follicle 

score (n)
Egg production (n) -0.15 ± 0.15 -0.41 ± 0.20* -0.10 ± 0.17 0.15 ± 0.17
Chick production (n) -0.21 ± 0.18 -0.43 ± 0.24 0.05 ± 0.20 0.28 ± 0.18
Adult weight (kg) 0.81 ± 0.05* 0.65 ± 0.12* 0.31 ± 0.11* 0.11 ± 0.11

CONCLUSIONS AND RECOMMENDATIONS
This study confirmed that all traits in the slaughter and adult animal complexes were variable 

and heritable, as was also reported in previous studies. Genetic correlations within trait complexes 
were also consistent with previous results. Genetic correlations across trait complexes suggested that 
correlations of reproduction traits with quantitative slaughter traits were possibly unfavourable, although 
only significant for the estimate involving egg production and skin size. Further research on these 
correlations is needed. Live weight expressed in adult animals was genetically highly correlated with 
slaughter weight, as could be expected for the same trait recorded at different life stages. In line with 
this, previously determined size-dependent slaughter traits, namely skin size and nodule size score, 
were also genetically related to adult size. Given the profound effect of animal size on maintenance 
requirements in other species, it is important to update these results as data accrue to optimise the 
economic efficiency of selection strategies in ostriches. More accurate genetic correlations between 
trait complexes are needed for the design of breeding programmes to ensure a balanced breeding 
strategy for ostriches.
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SUMMARY
Honeybee populations have been modified for centuries by selection and culling, but traditional 

selection criteria are no longer sufficient to address the needs of modern beekeeping and to counter 
threats such as spread of disease. While evaluating selected honeybee traits for their relevance and 
measurability in commercial beekeeping and their presumed heritability and their scale of variation, 
we encountered a dichotomy in the requirements of small-scale hobbyist beekeepers and large-scale 
commercial beekeeping operations. A number of traditional traits feasible for selection under commercial 
conditions could be identified, eight out of which can be considered high-priority traits in the design 
of an industry-wide honeybee breeding objective: honey production, gentleness, colony strength, 
brood viability, wintering ability and disease resistance. However, the costs of hive evaluations are 
often prohibitive to implementation of breeding and selection schemes in commercial operations. 
This can be overcome with the deployment of remote beehive monitoring equipment that provides 
continuous observations on colony status in conjunction with Machine Learning tools to evaluate 
change in trait expression in different environmental conditions. Simultaneously, image analysis and 
hive telemetry provide opportunities for the definition of novel traits such as nectar reactivity or the 
pattern of honey deposition. Using these recent technological advances, bee breeding can be made 
accessible to large-scale commercial beekeepers as well as dedicated small-scale queen breeders.

INTRODUCTION
Since domestication, century-long breeding programmes have made dramatic changes to most 

livestock species, creating fit-for-purpose breeds adapted to their respective management systems 
which perform well across a range of environments (van der Werf et al. 2009). The development of 
specialised breeds has resulted in high within-species genetic and phenotypic diversity, making it a 
natural practice for farmers to choose a breed that suits the particular production systems. 

These long-term developments are largely absent in beekeeping, the only exceptions being 
the establishment of the “Buckfast” bee, a hybrid of several honeybee sub-species (Brother Adam 
1987) and the accompanying breed regulations (Gemeinschaft der Europäischen Buckfastimker e.V. 
2016). Sustainable genetic improvement systems can only be established with strong support from 
commercial beekeepers, who tend to manage large parts of the national honeybee populations but 
are slow to adopt modern animal breeding methods. For the design of data-driven and economically 
focused genetic honeybee breeding schemes, traits need to be selected carefully to ensure that they are 
not only valuable parts of the breeding objective, but also feasible selection criteria in a commercial 
environment.

MATERIALS AND METHODS
A list of traditional honeybee traits was compiled and then grouped into areas that contribute 

to beekeeping profitability (see Table 1). While some of these traits had been advocated for up to a 
century (Armbruster 1919; Brother Adam 1987) and/or are currently being used by European breed 
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associations, they had not been evaluated for their suitability within modern commercial honeybee 
populations. 

Table 1. Traditional Honeybee traits with potential for incorporation into bee breeding schemes, 
with relevance and measurability

Area Trait Unit of measurement Relevance Measurability*
production Honey production kg / hive / season  

Wax production kg / hive / season  
workability Gentleness subjective score (1-5)  

Docility / Calmness subjective score (1-5)  
Swarming urge attempts / season  

strength Brood strength No of full frames of brood  
Colony strength No of full bee spaces  
Spring growth rate of growth in spring  

health Brood viability percentage  
Disease resistance variable

queen Q: laying pattern pass / fail  
health Q: laying capability laying rate in eggs / day  

Q: longevity weeks grafting to failure  
robustness Wintering index % of surviving bees  

*Grey tick marks indicate traits that can be measured in a queen breeding operation but cannot be readily 
measured in most commercial operations due to management strategies.

Traits were evaluated with regards to their relevance to commercial beekeeping and their practical 
measurability in the field, based on the published literature as well as discussions with commercial 
beekeepers. Trait heritabilities were compiled from the scientific literature.

RESULTS AND DISCUSSION
Only a small number of traits had been previously been investigated for their genetic parameters 

and were generally found to be of medium to high heritability (see Table 2), with the exception of 
swarming urge, which was found to have low heritability.

Table 2. Heritability estimates for selected honeybee traits. Estimates marked with ⁑ are for 
Africanised honeybees (hybrids between African and European subspecies of A. mellifera, 
common beekeeping in South America)

Area Trait Heritability (Standard Error)

production Honey production 0.27 (0.06) (Brascamp et al. 2016); 0.54 (0.18) (Bar-Cohen et al. 
1978)

workability Gentleness 0.37 (0.06) (Brascamp et al. 2016)
Docility / Calmness 0.38 (0.05) (Brascamp et al. 2016)
Swarming urge 0.06 (0.04) (Brascamp et al. 2016)

strength Brood strength 0.10 (0.10) (Bar-Cohen et al. 1978)
Colony strength 0.49 (0.44) (Koffler et al. 2017)

Most traits in Table 1 were found to be relevant to commercial beekeeping operations. However, 
evaluations under commercial conditions and with non-destructive methods were found to be too 
expensive to be feasible for honey production or pollination companies and require specialised queen 
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breeders to evaluate their stock (see grey ticks under “Measurability” in Table 1). While evaluation 
costs can be prohibitive for commercial operators, the same is not true for dedicated queen breeders, 
who can expect to recover the costs of queen evaluation and selection in returns from the sale of elite 
breeding stock. When establishing an industry-wide honeybee breeding programme, both of these 
levels need to be taken into account, since the success of elite queen breeders (or academically-driven 
breeding programmes established by universities) hinges on the continuous adoption of their improved 
stock by commercial operators (Ibrahim et al. 2007).

These findings suggest that while there are a number of feasible traits for the development of 
economically sustainable honeybee breeding schemes, there is a need in the beekeeping industry for the 
development and deployment of low-cost alternatives to the hands-on and visual inspection / evaluation 
of honeybee colonies. Machine vision tools can be used to rapidly evaluate brood-related traits such 
as worker brood viability and brood pattern / queen laying pattern. Novel phenotyping technologies 
exist (although the hardware is often still in development) and could facilitate the establishment of 
industry-wide genetic improvement schemes by bridging the gap between elite queen breeders and 
the commercial beekeeping operators that are essentially their clients.

Table 3. Honeybee traits for commercial honeybee breeding that could benefit from novel 
phenotyping strategies

Area Trait would benefit from novel phenotyping technology
production Pattern of honey deposition 
workability Swarming attempts 
strength Colony strength 
health Worker brood viability 

Wintering Index 
queen health Queen: laying pattern 
pollination ability Spring population growth 

Flight temperature 

There are a number of feasible honeybee characteristics that could form the basis of a bee breeding 
scheme for commercial beekeeping. However, some of the relevant traits are currently not feasible 
in commercial operations because the costs associated with recording are too high. 

Nevertheless, breeding of improved stock would be an efficient and permanent way to address the 
challenges that honeybee breeders and commercial beekeepers are facing today, and recent advances in 
science and technology allow for innovative solutions to be developed. Technology surrounding data 
collection and analysis both at the hive level and at honey extraction is leaping forward, with more 
and more automated systems breaking into the market (e.g. www.arnia.com, www.hivemind.co.nz). 
This creates an opportunity for the development of a cutting-edge honeybee genetic improvement 
programme in collaboration with commercial beekeepers. 

Honey yield and temperament are the traits currently most modified by queen breeders and are also 
the ones that should be treated as paramount in the definition of a New Zealand honeybee breeding 
objective. They are highly relevant to the beekeeper, relatively easy to record and have been shown 
to be heritable. A third highly relevant trait, winter survival, needs to be investigated further, as there 
are currently no estimates of genetic parameters for this trait available. However, since low winter 
survival presents a crucial issue to beekeepers worldwide, it should be included in breeding programs 
from the beginning. New Zealand beekeepers currently export upwards of 25,000 packages of live 
bees containing queens every year (New Zealand Ministry for Primary Industries 2018), mainly to 
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Canada, which continues to experience annual winter losses of ~30%. Doubts have been voiced on 
the suitability of New Zealand queen genetics for the harsher Canadian winters (Harpur et al. 2015) 
and although New Zealand is currently not experiencing high colony mortality over winter, inclusion 
of winter survival as a key trait would be a valuable step towards future-proofing the beekeeping 
industry and making New Zealand genetics desirable overseas.

Additional traits that should be prioritised are colony strength, brood viability and disease 
resistance. However, some of these high-priority traits can be expected to be costly to measure and 
novel phenotyping methodologies such as machine vision (image analysis supported by artificial 
intelligence) or remote hive monitoring / hive telemetry systems will need to be developed allow 
measurement to be practiced.

CONCLUSION
Novel automated phenotyping systems can support modern honeybee breeding programmes to 

support large-scale commercial beekeeping industries such as in New Zealand. These programmes 
can be expected to have a positive long-term impact on both domestic bee productivity and health 
as well as the survival and overall quality of bees exported to e.g. North America by being able to 
incorporate standardised data from all around the globe.
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SUMMARY
Traits that are being recorded in livestock improvement programs might not be suitable breed-

ing objective traits themselves, which is an important aspect for the consideration of novel traits in 
breeding programs. Here we demonstrate, using the example of immune competence in cattle, how 
multiple novel traits can be reduced to a single breeding objective trait. It was demonstrated that it 
is possible to achieve a high heritability for the novel single breeding objective trait and maximise 
the genetic correlation with one of the major production traits, here final weight. An approach as 
described here would maximise the genetic gain in the novel trait.

INTRODUCTION 
In order to respond to future livestock industry needs, novel traits are being developed to promote 

sustainable livestock production. One such desirable attribute of the animal is immune competence 
(IC) (Wilkie et al. 1999), which has demonstrated health benefits in dairy cattle (Thompson-Crispi 
et al. 2012; Aleri et al. 2019). A protocol for measuring IC has been developed in Australian Angus 
Cattle (Hine et al. 2019). Immune competence has two components: cell-mediated (Cell-IR) and 
antibody-mediated immune responses (Ab-IR). These represent two aspects of adaptive immune 
responses that help control infectious disease. However, in a breeding objective context, it would 
be easier to use immune competence, as a combination of Ab-IR and Cell-IR, as a single breeding 
objective trait. The aim of this study was to combine the two immune response traits into a single 
breeding objective trait, here IC, so that the heritability for IC is high and the correlation of IC with 
final weight (FW), one of the key profit drivers, is maximised to allow for the highest possible genetic 
gain in the novel trait through direct and correlated response.

MATERIALS AND METHODS
Data. A protocol has been developed to measure Cell-IR and Ab-IR in commercial beef herds 

(Hine et al. 2019). Immune response phenotypes were recorded on 1,149 Angus cattle from the 
Angus Sire Benchmarking Program. Animals originated from five different herds and were born 
across three years. Link sires were used to provide connections between herds and birth cohorts. 
Not all animals within a herd could be tested in one day, and up to 7 test cohorts exist within a herd. 
Immune response phenotypes were assessed during the yard weaning period. On the day of weaning 
(Day 0) cattle were vaccinated with a multi-valent clostridial vaccine containing tetanus toxoid anti-
gen (Zoetis, Australia). The ability to mount an Ab-IR was measured as production of tetanus toxoid 
specific IgG1 antibody in blood between day 8 and day 21 post-vaccination. The actual sampling day 
was dependent on the specific herd and their prior clostridial vaccination history. Vaccination history 
was identical for animals tested within herd and test cohort. The antibody concentration measured 
in blood represents a cumulative response to the vaccination given at day 0 and to any vaccinations 
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administered previously. An in-house indirect ELISA method was used to measure antibody levels 
(Aleri et al. 2015). The Ab-IR was recorded as optical density values (OD) and for analysis the OD 
values were square root transformed.

Cell-mediated immune response (Cell-IR) was assessed as delayed type hypersensitivity (DTH) 
by measuring changes in skin fold thickness in response to intradermal injection of the clostridial 
vaccine (Ultravac 7 in 1 clostridial and leptospira vaccine (Zoetis)) in the caudal fold of the tail. Testing 
day was consistent within herd and test cohort and was conducted around day 14 post vaccination 
aligning with blood collection for antibody testing. One side of the tail was injected with 100 µL of 
Ultravac 7 in 1 (test) and the other with 100 µL of saline (control). Skin thickness was measured in 
millimetres using callipers prior to injection (T0) and after 48 hours (T48). The magnitude of DTH 
responses was determined as the T48 test response in relation to the T48 control response (DTH 
T48 test/DTH T48 control). The DTH response at T0 (DTH T0 test/DTH T0 control) was fitted as 
a covariate in the linear model. The Cell-IR variable and covariate were log transformed prior to 
analysis to ensure normality. 

The two immune response traits, Cell-IR and Ab-IR, were both multiplied by 100 for analysis. 
Cattle were finished through a feedlot after backgrounding at pasture for approximately nine months 
and final weight, the weight when animals were sent to the feedlot at approximately 600 days (FW), 
was also used for analysis. Fixed effects included contemporary group (herd, birth year, test cohort) 
for all traits. For Cell-IR and Ab-IR, age at testing was fitted as a covariate. Age at the measurement 
of FW was fitted as covariate for FW. To prove the hypothesis, this study only animals with all data 
for phenotypes, fixed effects and covariates were included in the study, which resulted in a data set 
with 851 animals (all male) and 2,128 animals in the pedigree. 

Analysis. Variance components and heritabilities were estimated using VCE 6.0.2 (Kovac et al. 
2010) and genetic and phenotypic correlations were estimated for FW, Cell-IR and Ab-IR. Here we 
explored whether the two immune response traits could be combined into a single IC trait as the 
relevant single breeding objective trait in a breeding program. The hypothesis was that the two traits 
could be combined such that the heritability for IC is high and the correlation between IC with FW 
is most strongly negative. This is not a realistic example as we would not attempt to maximise an 
unfavourable correlation, but the data set offered the highest number of records for FW and a strong 
correlation with IC, which helps to prove the hypothesis. Immune competence was calculated using 
the following function: IC = α × Cell-IR + (1- α) × Ab-IR, with α = 0 to 1. For each α, ranging from 
0 to 1, a bivariate analysis was run for IC and FW. Breeding values (EBV) and heritabilities were 
estimated for IC along with genetic correlations between IC and FW. 

RESULTS AND DISCUSSION
The summary statistics for immune response and FW traits are shown in Table 1. The amount of 

phenotypic variation in the immune response traits was expected since they have not been traits of 
direct selection. However, at this point there are no results how that variation relates to variation in 
disease protection. The negative minimum of Cell-IR indicates that in some animals the skin thick-
ness after challenge reduced compared to Day 0 as is seen in other studies. Final weights ranged 
from 476kg to 880kg across contemporary groups/properties. Within properties there is much less 
variation, highlighting the need to fit contemporary group.
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Table 1. Descriptive statistics of cell-mediated and antibody-mediated immune response (Cell-IR 
and Ab-IR, multiplied by 100) and final weight (kg)

Minimum Maximum Mean + Standard deviation
Cell-IR* -2.30 56.08 24.22 + 9.01
Ab-IR* 14.90 143.26 78.36 + 25.08
FW 476.00 880.00 559.87 + 88.37

*Cell-IR was log transformed and Ab-IR square root transformed

Heritabilities for Cell-IR and Ab-IR were moderate (Table 2) and are in line with previous esti-
mates from all 1,149 animals (Hine et al. 2019). The genetic correlation between the immune response 
traits was moderately positive, which confirmed previous estimates from the full data set (Hine et 
al. 2019). Genetic correlations of Cell-IR and Ab-IR with FW are negative, possibly indicating that 
high immune response diverts energy resources from growth.

Table 2. Heritabilities (diagonal, bold) and genetic correlations (below diagonal)

Cell-IR Ab-IR FW
Cell-IR 0.33 + 0.11
Ab-IR 0.40 + 0.22 0.30 + 0.10
FW -0.27 + 0.21 -0.50 + 0.19 0.48 + 0.12

Table 3 outlines the results from the bivariate analyses of IC and FW, where IC is a function of 
the weighted component traits Cell-IR and Ab-IR. At α = 0.0 IC is the same as Ab-IR, at α = 1.0 IC 
is the same as Cell-IR. The heritability of IC is moderate and the genetic correlation with FW is most 
strongly negative at α = 0.3. Genetic gains for IC could be maximised through selection on IC and 
the highly correlated trait FW, however, because the correlation is negative, FW would be reduced. 
Alternatively, at α = 1.0, the negative correlation with FW would be minimised, but would result in 
IC being only a representation of Cell-IR.

Table 3. Heritability of immune competence (IC) and genetic correlation with final weight (FW) 
at different weightings (α) to combine cell-mediated and antibody-mediated immune response 
traits; standard errors (se) in brackets

α h2IC (se) rg (se)
0.0 0.299 (0.107) -0.500 (0.223)
0.1 0.306 (0.106) -0.503 (0.210)
0.2 0.315 (0.103) -0.505 (0.214)
0.3 0.325 (0.111) -0.506 (0.198)
0.4 0.338 (0.111) -0.505 (0.206)
0.5 0.354 (0.114) -0.500 (0.195)
0.6 0.371 (0.112) -0.488 (0.206)
0.7 0.384 (0.114) -0.465 (0.193)
0.8 0.384 (0.116) -0.425 (0.207)
0.9 0.362 (0.119) -0.362 (0.211)
1.0 0.322 (0.109) -0.274 (0.210)

Figure 1 shows, animals can be differentiated based on the EBV for IC. As can be expected at 
α=0.3, EBV for IC are a closer reflection of the EBV for Ab-IR than for Cell-IR. Ideally, animals 
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with high EBV for IC would reflect high EBV for both Ab-IR and Cell-IR, because both types of 
responses are required to effectively control environmental pathogens. In addition to the approach 
presented here, other ways to define IC as breeding objective trait to allow equal emphasis on both 
component traits of IC need to be explored. 

Results using the example of IC are instructive. The small amount of variation observed in rg for 
values of α between 0.1 and 0.6 suggest that for this trait there is considerable latitude to vary weighting 
on Ab-IR and Cell-IR with little variation in the penalty to FW. Ab-IR and Cell-IR also influence other 
drivers of profitability (Hine et al. 2016), highlighting the need for a more comprehensive method 
for incorporating Ab-IR and Cell-IR as the novel multi-component trait IC.

Figure 1. Estimated breeding values for Cell-IR, Ab-IR and IC at α=0.3, sorted from highest 
to lowest IC EBV 

CONCLUSION
Novel traits provide an opportunity to extend traditional livestock breeding objectives to ensure 

the industry’s future sustainability. Strategically defining the breeding objective trait can assist in 
incorporating novel trait in breeding programs.
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SUMMARY
Juvenile pearl oyster mortality syndrome (JPOMS) causes mass-mortality of young pearl oysters 

impacting the production and financial revenue of farms. The use of selective breeding to improve 
survival is an effective solution to reduce impact, especially in the case of a poorly understood disease 
such as JPOMS. Here, we investigate the potential of implementing a selective breeding program for 
increased survival to JPOMS in the silver lipped pearl oyster, Pinctada maxima. Simulation results 
show that significant increases in survival could be achieved if selective breeding was applied (8% 
increase in survival per generation). Attention should be paid to balance genetic gain (increase of 
survival) and diversity to limit inbreeding where individuals are selected on their family mean.

INTRODUCTION
The revenue from Australian pearl production has dramatically reduced from AU$ 144 million 

in 2010, to AU$ 70 million in 2017 (ABARES, 2018). Part of the decline can be explained by the 
recurrence of mass-mortality of juvenile stocks, which severely reduces the number of oysters that are 
cultured to pearl seeding sizes. Repeated observations of mass-mortality have been reported over the 
last decade, but the actual pathogenic agent/s causing this juvenile pearl oyster mortality syndrome 
(JPOMS) is yet to be identified. Due to the limited knowledge on the actual causative agent, no 
treatment exists to this day. While the in-depth knowledge of the disease is extremely important for 
the Australian pearl industry, the process of unravelling the causative agent of JPOMS is non-trivial 
and time consuming.

Selective breeding for disease resistance (or survival) is increasingly becoming a primary selection 
trait in aquaculture (Gjedrem 2012; Houston 2017) and offers a practical alternative when little infor-
mation about the causative agent of the disease is known. In the last few years, hatchery technology 
has been refined in pearl farms which permits broodstock selection and, to some degree, the control 
of family contribution to progeny cohorts. The advantage of the use of selective breeding to increase 
survival is that improvement can still be achieved even though understanding of the disease is limited. 

To explore the potential of selective breeding focused on JPOMS survival, we simulated a breed-
ing program under various parameters (family size, family number, selection methods) for 20 years. 
The mode of selection used for JPOMS survival is based on breeding value for survival per half-
sib family and can potentially lead to high level of inbreeding. This study focus on the impact of 
restriction of selected individuals per half-sib family on the genetic merit and inbreeding generated 
by such breeding program.
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MATERIALS AND METHODS
The simulated breeding program was run for 20 years which corresponded to 10 generations of the 

target species, the silver lip pearl oyster (Pinctada maxima) which becomes sexually mature around 
2 years of age. The base scenario uses 100 males mated to 200 females. All individuals in the base 
generation are unrelated. Each female produced 100 offspring (which corresponds to 100 offspring 
per full-sib family and 200 offspring per half-sib family). Survival is recorded as an average per 
family. Under the current farm setting, it is not possible to obtain survival data per individual. The 
oysters, at this stage, are usually attached in panel nets on long-lines suspended in the ocean for the 
grow-out period and it is difficult to keep track of individual performance throughout the entire grow 
out phase. However, average of survival per half-sib family, after genotyping individuals before and 
after a JPOMS event, can be determined. Half-sib families were ranked according to their family 
mean survival and a maximum of 10 males and 20 females per half-sib family were taken as selection 
candidates from the best families until a total of 250 males and 500 females were selected. Families 
had unequal sizes due to mass mortality, in particular at the beginning of the breeding program. The 
best ranking families were also the largest families. Therefore, the number of families represented 
among the selection candidates was variable and decreased as the breeding program continued and 
the mortality decreased. From these selection candidates, 100 males and 200 females were selected 
and mated, half-sib and full-sib mating were not allowed. 

Unfortunately, at this stage, actual estimates for heritability of PJOMS are currently in the process 
of being calculated and are not yet known. Heritability of survival is usually low and varies between 
0.06 and 0.16 in aquaculture (Gjedrem and Olesen, 2005) and a review of selective breeding for 
disease resistance in oyster by Degremont et al. (2014) shows that heritability is scarcely reported 
(expect for summer mortality in Pacific oysters), therefore, we chose a conservative heritability of 
0.1 at the start of the breeding program for the subsequent simulations. Breeding program simula-
tions were run to explore the impact of the number and size of families and the maximum number of 
males and females selected per family (see Table 1). For all scenarios, the disease killed 90% of the 
reared progeny in the first generation and then occurred every subsequent generation. All scenarios 
were replicated 100 times.

Selective breeding scenarios were assessed using the cumulative genetic gain of survival of 
PJOMS (designated as the proportion of survival), the accuracy of breeding values (calculated from 
survival family mean) and rate of inbreeding per generation. The genetic gain of generation t was 
the difference of the average survival family mean between generation t and generation t-1. The rate 
of inbreeding was calculated as follow:

​∆ F = ​ 
​F​ t​​− ​F​ t−1​​ _ 1− ​F​ t−1​​

 ​​

with Ft the average of inbreeding coefficient for a generation, t the current generation.

Table 1. Description of selection parameters used for the various simulated scenarios

Simulated 
scenario # families Half-sib  

families size
# sires / # dams selected 

/ family
1 50 200 10 /20
2 150 200 10 /20
3 100 100 10 /20
4 100 300 10 /20
5 100 200 5/10
6 100 200 No restriction
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RESULTS AND DISCUSSION
The cumulative genetic gain, accuray and rate of inbreeding in the base scenarios are shown 

in Figure 1 (black lines). After 10 generations of selection, survival had reached 75% and rate of 
inbreeding stayed under the acceptable limit of 1% per generation. This simulation showed that the 
South Sea pearl industry could benefit from implementing selective breeding for survival to JPOMS..

Figure 1. Proportion of survival (left), accuracy of breeding values (middle) and rate of increase 
of inbreeding (right) as a function of the number of sires and dams selected per families

There were no major differences in survival, accuracy of breeding program and rate of inbreeding 
when varying the number of families used or the family size. However, large impacts on genetic 
parameters were observed when varying the number of sires and dams selected per family (Figure 
1). We observed an increase in survival as well as an increase in rate of inbreeding associated with an 
increased number of males and females selected per family. Both scenarios that included a restricted 
number of males and females per family as selection candidates had an acceptable rate of inbreeding 
(rate of inbreeding increase < 1%). However, decreasing the number of males and females selected 
per family as selection candidates also reduced the genetic gain with regard to survival (60% survival 
with 5 males and 10 females selected per family compared to 75% survival with 10 males and 20 
females selected per family at generation 10). In the instance where there was no restriction on the 
maximum number of males and females selected per family (i.e. selecting whole families, red line in 
Figure 1), the survival rate reached 85% after 10 generations of selection, which is substantially higher 
than for the basic scenario (75%). However, this scenario also led to the highest rate of inbreeding 
(>4%), which will result in a higher number of matings between relatives at each generation and a 
likely increase in inbreeding depression in the long term. 

The number of males and females per family that were used as selection candidates played a 
key role in the success of the simulated breeding program for pearl oysters. At the beginning of the 
breeding program, when survival was at 10%, families had few offspring survive. Therefore, to reach 
the goal of 250 male and 500 female selection candidates, a large number of families was required 
(around 20% of families under the base scenario with 5 males and 10 females maximum selected 
per family). With a maximum of 10 males and 20 females used per family, the average proportion of 
family selected was 10% (scenario 5), while with no restriction on the number of males and females 
used per family, selection candidates were coming from only 3% of the families (scenario 6). In the 
latest scenario, selection candidates were generated from only 3 families and therefore the number of 
related of individuals was very high and increase of inbreeding was therefore inevitable. Additionally, 
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as selection on survival was performed, the proportion of survival increased and a larger number 
of offspring survived per family, which decreased the number of families selected per generation 
and increased the chances of mating among related individuals. This highlights the importance of 
balancing genetic gain and the maintenance of family-specific genetic diversity.

Survival to JPOMS under the base scenario would result in an increase of genetic gains of 7% per 
generation over 10 generations and by 6% at the first generation (from 10% at generation 1 to 16% 
at generation 2). These results are in line with those reviewed by Gjedrem (2012) for various species 
and diseases. Elston et al. (1987) reported a 73% survival increase between non-selected and selected 
individuals over a period of 4 to 10 generations of selection for resistance of Bonamia ostrea in Euro-
pean flat oyster (Ostrea edulis), similar to the 64% increase in our simulation, over 10 generations.  

The case of disease resistance to JOD in the eastern oyster Crassostrea virginica is of particular 
interest for this study as it demonstrated the benefit of selective breeding (increase of 85% survival 
in 2 generations) for a disease that primarily affects juveniles, like JPOMS, and that exhibits similar 
characteristics to it. Therefore, we can expect that the implementation selective breeding for survival 
to JPOMS will result in significant improvement of survival.

CONCLUSION
This study shows that implementing selective breeding for JPOMS in P. maxima could theoretically 

be very beneficial for the South Sea pearl industry and the predictions of genetic gain and rate of 
inbreeding for the basic scenario are in accordance to reported gains of selective breeding for disease 
resistance in other oyster species. However, attention should be paid to maintaining genetic diversity 
as well as improving survival, as the rate of genetic gain was also linked to higher inbreeding.

ACKNOWLEDGMENT
This research is founded by CRC-P58609 “Breeding for resilience of JPOMS” and in collaboration 

with Ellies Pearls, Clipper Pearls and Cygnet Bay Pearls.

REFERENCES
ABARES (2017) Australian Fisheries and Aquaculture Statistics 2017 report
Barber B., Davis C. and Crosb, M. (1998) J. Shellfish Res. 17: 1171.
Degremont L., Garcia C. and Standish, K. A. (2015) J. Invertebr. Pathol. 131: 226.
Gjedrem, T. and Olesen, I. (2005) Chapter 5. Basic statistical parameters in Selection and Breeding 

programs in Aquaculture, Berlin, Germany, Springer – p66-70.
Gjedrem T. (2015) J. Mar. Sci. Eng. 3: 146.
Houston R. (2017) R. Bras. Zootec. 46: 545.



410

﻿Plenary 3

SEQUENCING STRATEGY, IMPUTATION AND GENOMIC PREDICTION IN A 
LARGE PIG SEQUENCING STUDY

R. Ros-Freixedes1,2, A. Whalen1, A. Somavilla1, S. Gonen1, M. Battagin1, M. Johnsson1,3,  
G. Gorjanc1, C.Y. Chen4, W.O. Herring4, A.J. Mileham5 and J.M. Hickey1

1The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of  
Edinburgh, Easter Bush Campus, EH25 9RG Midlothian, Scotland, UK

2Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, Lleida, Spain.
3Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 

SE-750 07, Uppsala, Sweden
4Genus plc, 100 Bluegrass Commons Blvd., Suite 2200, Hendersonville, TN, 37075 USA 

5Genus plc, 1525 River Road, DeForest, WI, 53532 USA

SUMMARY
The use of whole-genome sequence data has great potential in livestock breeding programs but 

suitable sequencing strategies and imputation methods need to be developed to generate sequence 
information for a large number of individuals at an affordable cost. We describe the sequencing strat-
egy that we followed in a study that sequenced more than 7,848 pigs from nine commercial lines, 
mostly at low coverage. Results demonstrate that the coupling of appropriate sequencing strategies 
and imputation methods such as hybrid peeling is a viable strategy for producing whole-genome 
sequence data for large livestock pedigreed populations, but it remains to be determined whether 
these large datasets can provide an increased accuracy of genomic predictions.

INTRODUCTION
The use of whole-genome sequence data has great potential in livestock breeding programs. It 

may increase the power of discovery of causative variants (Pasanuic et al. 2012; Daetwyler et al. 
2014; Nicod et al. 2016) and may enable more accurate and persistent predictions of breeding val-
ues than marker arrays (Meuwissen and Goddard, 2010; Iheshiulor et al. 2016). To capture the full 
potential of sequence data in livestock, sequence and phenotype data are required on a large number 
of individuals, perhaps millions, to accurately estimate the effects of the large number of causative 
variants that underlie quantitative traits (Hickey et al, 2014).

Low-cost sequencing strategies combined with imputation can be utilised to generate the required 
amount of sequence information for a large number of individuals at an affordable cost (Brøndum 
et al. 2014; van Binsbergen et al. 2014; VanRaden et al. 2015; Pausch et al. 2017). Low-coverage 
sequencing (LCSeq) enables the sequencing of a larger number of animals, which provides four 
advantages: (1) higher variant discovery rates, particularly for low-frequency variants; (2) inclusion 
of rare haplotypes; (3) a more precise capture of the recombination events that have occurred in the 
population, which enables better definition of haplotypes and thus better imputation of these haplo-
types into the individuals that carry them; and (4) more sequenced animals that are related, which 
improves the imputation of the sequence data to the whole population.

We first describe the sequencing strategy that we followed in a study that sequenced more than 
7,848 pigs from nine commercial lines, mostly at low coverage (1x or 2x). Then, we demonstrate 
that the coupling of that sequencing strategies with the imputation method ‘hybrid peeling’ is a viable 
strategy for producing whole-genome sequence data for large livestock pedigreed populations. Finally, 
we test the benefit that these large datasets can provide an increased accuracy of genomic predictions.
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MATERIALS AND METHODS
Sequencing strategy. We performed whole-genome sequencing of 7,848 individuals from nine 

commercial pig breeding lines (Genus PIC, Hendersonville, TN) with a total coverage of approximately 
32,114x. Sequencing effort in each of the nine lines was proportional to population size. Approx-
imately 2% (1.7-2.5%) of the pigs in each line were sequenced. Most pigs were sequenced at low 
coverage, with target coverage of 1 or 2x, but a subset of pigs were sequenced at higher coverage of 
5x, 15x, or 30x. Thus, the average individual coverage was 4.1x, but the median coverage was 1.5x. 

We selected the individuals and the coverage at which they were sequenced using a three-step 
strategy: (1) we first selected sires and dams that contributed most genotyped progeny in the pedi-
gree (referred to as ‘top sires and dams’) to be respectively sequenced at 2x and 1x; (2) conditional 
on the first step, we used AlphaSeqOpt part 1 (Gonen et al. 2017) to identify the individuals whose 
haplotypes represented the greatest proportion of the population haplotypes (referred to as ‘focal 
individuals’) and to determine an optimal level of sequencing coverage between 0x and 30x for 
these individuals and their immediate ancestors (i.e., parents and grandparents) under a total cost 
constraint; and (3) conditional on the second step, we used the AlphaSeqOpt part 2 (Ros-Freixedes 
et al., 2017)  to identify individuals that carried haplotypes whose cumulative coverage was low (i.e., 
below 10x) and distributed 1x sequencing amongst those individuals so that the cumulative coverage 
on the haplotypes could be increased (i.e., at or above 10x). AlphaSeqOpt used haplotypes inferred 
from marker array genotypes (GGP-Porcine HD BeadChip; GeneSeek, Lincoln, NE), which were 
phased with AlphaPhase (Hickey et al. 2011) and imputed with AlphaImpute (Hickey et al., 2012). 
The sequencing resources were split so that approximately 30% of the sequencing resources were 
used for sequencing the top sires at 2x, 15% for the top dams at 1x, 25% for the focal individuals and 
their immediate ancestors at variable coverage, and the remaining 30% for individuals that carried 
under-sequenced haplotypes at 1x.

Variant discovery. The reads were preprocessed using Trimmomatic (Bolger et al. 2014) to cut 
adapter sequences from the reads. Then the reads were aligned to the Sscrofa11.1 reference genome 
using the BWA-MEM algorithm (Li & Durbin 2009). Duplicates were marked with Picard (http://
broadinstitute.github.io/picard). SNPs and short insertions and deletions (indels) were genotyped 
jointly for all samples using a pipeline based on the HaplotypeCaller tool from GATK 3.8 (DePristo 
et al. 2011). To avoid biases towards the reference allele introduced by GATK when applied on 
low-coverage sequence data we extracted the read counts supporting each allele directly from the 
aligned reads stored in the BAM files with a pile-up function using the pipeline described in (Ros-
Freixedes et al. 2018). A total of 60 million SNPs were discovered across the nine lines.

Imputation of whole-genome sequence data. Most individuals in every population were gen-
otyped using commercial marker arrays, with either 15,000 (LD) or 75,000 (HD) markers genome-
wide. Imputation to whole-genome sequence was performed in each population separately using 
hybrid peeling, as implemented in AlphaPeel (Whalen et al. 2018) with the default settings. This 
method involves two stages: (1) multi-locus iterative peeling to estimate the segregation (the prob-
ability that each pair of grandparental gametes was co-inherited at a given locus) at the positions 
genotyped with the marker arrays; and (2) a modified single-locus iterative peeling step to impute 
the genotypes at each variant position discovered from the sequence data. This two-stage method 
reduces the computational cost of the imputation by estimating segregation of the markers from the 
array only and then approximating the segregation estimates at any other loci based on the estimates 
of the markers from the array that flank them. The accuracy loss of this approximation is negligible 
due to the limited number of recombinations in each chromosome and the high probability that nearby 
markers are inherited together. Multi-locus iterative peeling was performed on all available marker 
array data to estimate the segregation probabilities for each individual. The individuals genotyped 



412

﻿Plenary 3

with LD marker arrays were not imputed to HD prior to this step. The segregation probabilities were 
used for segregation-aware single-locus iterative peeling for the remaining segregating variants. The 
total number of pigs with imputed data across the nine lines ascends to around 350,000.

To assess imputation accuracy, we used 284 individuals from four of the nine populations who were 
sequenced at high coverage (15x or 30x). Of these, 37 belonged to a 20,000-individual population, 65 
to a 35,000-individual population, 92 to a 70,000-individual population, and 90 to a 110,000-individual 
population. Many of these individuals sequenced at high coverage belonged to early generations of the 
pedigree of each population. Sequence data of the 284 individuals was completely masked, using a 
leave-one-out design. The imputed allele dosages were compared to those obtained with the complete 
data, considered as the ‘true’ values. For estimating the accuracies, we used 50,000 non-consecutive 
SNPs chosen randomly from chromosome 5.

Genomic prediction. Genomic prediction accuracy was tested in a single line with 30k pigs 
with imputed genotypes for 16 million of SNPs. Genomic predictions were performed using ridge 
regression as implemented in AlphaBayes software. The model was trained on 22,318 individuals and 
validated on 1,458 individuals. Genomic predictions were performed for nine synthetic traits with 
different heritability (0.1, 0.25, or 0.5) and with different number of QTN underlying their variation 
(100, 1,000, or 10,000 QTN), selected randomly from among all variants. The effect of the QTN was 
sampled from a normal distribution N(0,1). Genomic predictions were performed using four sets of 
markers: the 57k markers from the array (HD), 248k variants preselected from the sequence data 
based on LD pruning (WGS_LD), around 183k variants preselected from the sequence data based 
on results of single-marker regression with a set of 13k individuals independent from the training 
and testing sets (WGS_SMR), or 67k variants preselected from the sequence data by keeping only 
every 200th variant (WGS_200th). Accuracy of the gEBV was estimated as the correlation between 
the gEBV and the synthetic phenotypes in the validation set.

RESULTS AND DISCUSSION
Imputation accuracy. The imputation accuracy in the real data was high for most of the tested 

individuals. The imputation accuracy achieved for each of the 284 tested individuals is shown in 
Figure 1. The average individual-wise dosage correlation was 0.94 but there was substantial variation 
with an asymmetrical distribution (median: 0.97; min: 0.11; max: 1; interquartile range: 0.94-0.98). 
Some of the oldest individuals that belonged to the earliest generations of the pedigree (some of the 
106 individuals located in the first 20% of the pedigree) had lower imputation accuracy than individ-
uals in the remainder of pedigree, who had consistently high imputation accuracy. This pattern was 
observed for all four populations. The imputation accuracy of the individuals in later generations (the 
178 individuals after the first 20% of the pedigree) was higher, with an average dosage correlation of 
0.97 and with much lower variability (median: 0.98; min: 0.69; max: 1; interquartile range: 0.96-0.99).

The marker array density of the individuals was confounded with the number of ancestors that 
were genotyped with marker arrays. The non-genotyped individuals (n=19) and approximately half 
of the individuals genotyped at HD (n=87 out of 157) belonged to early generations of the pedigree, 
which reduced the chances that they had ancestors with data and penalized the imputation accuracy 
for these two groups of individuals. On the contrary, most individuals genotyped at LD belonged 
to later generations (n=91 out of 108), ensuring that their ancestors had enough data to enable high 
imputation accuracies for the LD individuals. The average dosage correlation for the non-genotyped 
individuals was 0.81, for the HD individuals was 0.94, and for the LD individuals was 0.96. The 
average dosage correlation for the HD individuals in the earliest generations was lower (0.91) than 
for the HD individuals in later generations (0.97). For individuals in the later generations there were 
no significant differences between marker array densities and the average dosage correlation of both 



413

Proc. Assoc. Advmt. Anim. Breed. Genet. 23:410-415

the HD and LD individuals was 0.97 and therefore no intermediate imputation steps were required 
for the LD individuals. There was no clear trend that population size affected imputation accuracy.

Figure 1. Imputation accuracy on relative position of the individual in the pedigree, marker 
array density, or population size

Genomic prediction. Sequence data can provide better prediction accuracy than marker arrays 
in some cases, but its advantage may depend on the genetic architecture of the trait. The genomic 
prediction accuracies for the nine synthetic traits are shown in Table 1. When a low number of QTN 
determine the phenotype, there may be sufficient statistical power to identify variants that underlie the 
genetic variation of the trait and prediction accuracy using those variants (WGS_SMR) is higher than 
with the markers from commercial marker arrays (HD). This is consistent with previous observations 
that adding one or a few markers with large effects as predictors can improve prediction accuracy of 
the marker arrays (Estany et al. 2017; Lopes et al. 2017; Nani et al. 2019; Al Kalaldeh et al. 2019). 
In such contexts, the information from markers with large effect could overcome the noise that arises 
from a higher number of markers with low effects. When the number of QTN is large, it became more 
difficult to identify these variants with single-marker regression and WGS_SMR performed worse 
than HD. In such cases, other sets of variants selected from the sequence data can be (marginally) 
more beneficial than the commercial marker arrays as they are not affected by ascertainment bias in 
the same way as commercial marker arrays.
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Table 1. Prediction accuracies for nine synthetic traits
 

QTN h2 HD WGS_LD WGS_SMR WGS_200th
100 0.1 0.370 0.367 0.389 0.368

0.25 0.416 0.395 0.422 0.418
0.5 0.625 0.615 0.626 0.626

1,000 0.1 0.373 0.345 0.356 0.370
0.25 0.396 0.393 0.402 0.404
0.5 0.620 0.594 0.597 0.620

10,000 0.1 0.430 0.411 0.395 0.430
0.25 0.437 0.430 0.398 0.444
0.5 0.657 0.644 0.617 0.658

In this test we did not observe an improvement in prediction accuracy using sequence data when 
the number of QTN was large, which is the case of many traits of economic interest in livestock. 
These results are partly due to the already high prediction accuracies obtained with the current 
implementation of genomic selection using commercial marker arrays. These results are in line with 
other studies that found no improvement or only small variations in genomic prediction when using 
sequence data, often by preselecting variants, compared to HD marker arrays (van Binsbergen et 
al. 2015; Calus et al. 2016; Veerkamp et al. 2016; van den Berg et al. 2017; VanRaden et al. 2017). 
However, these genomic prediction results are preliminary results for a single line. With a more 
complete set of sequenced individuals, it remains to be determined whether the results will improve 
due to: data from multiple breeds, enabling multi-breed training and a much larger training set; or 
genomic prediction methods that are more suited for exploiting sequence data at a large scale than 
ridge regression.

CONCLUSIONS
The coupling of an appropriate sequencing strategy and hybrid peeling is a powerful method for 

generating whole-genome sequence data in large pedigreed populations, as long as the individuals 
are connected to enough informative relatives with marker array or sequence data, and regardless of 
population size. It remains to be determined whether these large datasets can provide the leverage 
for increased accuracy of genomic predictions. 
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SUMMARY
Dairy cow temperament is a complex trait affecting both animal and human welfare. Using 

Bayesian methods, differential gene expression and sequence variant annotation, we increased the 
accuracy of genomic prediction for temperament compared to using only HD genotypes. Candidate 
genes for temperament overlapped with genes associated with human neuropsychiatric disorders. 
More generally, the results indicate that for complex traits, we could make further gains in the 
accuracy of genomic prediction from access to more specific knowledge of functional biology. This 
study demonstrates a practical approach to use imputed sequence genotypes and functional biology 
to improve the accuracy of genomic prediction.

INTRODUCTION
Since the time of cattle domestication some 10,000 years ago there has been continuous genetic 

selection for animals of docile temperament (excepting animals bred for combat). In dairy cattle, good 
temperament is critical for animal welfare as well as human safety because of the daily interaction 
between cattle and agricultural technicians carrying out tasks such as milking and semen collection. 
Dairy cattle temperament is a polygenic trait with low to moderate heritability (Visscher and Goddard 
1995). Given the intensive selection pressure for docility, we hypothesise that a significant proportion 
of the segregating variants that affect temperament will be relatively rare and recent. If this is the case, 
it is likely that for candidate gene discovery and genomic prediction there would be an advantage in 
using sequence variants rather than high density (HD) SNP chips. The reason for this is that SNP on 
commercial arrays are chosen to be common variants and are therefore not in strong LD with rare 
variants which are much more common in sequence data. 

This study had three aims: 1) to use sequence variants to improve the accuracy of genomic prediction 
for temperament, 2) to use differential gene expression and functional annotation as a biological prior 
to increase the accuracy of genomic prediction, 3) to discover candidate genes affecting dairy cattle 
temperament.

MATERIALS AND METHODS
Phenotypes & Genotypes. Australian dairy cow milking temperament is routinely scored by 

farmers on a scale of 1 to 5 (where 1 is good and 5 is bad) and phenotypes are processed by DataGene 
for use in national dairy cattle evaluation. For this study, DataGene provided temperament phenotypes 
pre-corrected for herd-year-season for Holstein (7,354), Jersey (3,224) and Australian Red (103) 
animals, including records on 7,343 cows, and 3,338 bulls with progeny test of ≥ 20 daughters. 
Phenotypes were expressed as trait deviations for cows and daughter trait deviations for bulls (mean=-
0.20, SD=0.61, min=-2.25, max=3.48) as used for the national dairy cattle evaluations. DataGene 
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also provided pedigree information. All animals had either real or imputed Illumina 800K BovineHD 
beadChip genotypes (HD). Subsequently, their genotypes were imputed to sequence variants in all 
gene coding regions (exons) as well as 5000 bp flanking all known genes. The combined HD and 
sequence data, “SEQ”, was then pruned for SNP pairs in perfect linkage disequilibrium (LD, r2 > 
0.99) and for variants with minor allele frequency (MAF) < 0.002 (details in MacLeod et al. 2016). 
After filtering, 994,019 variants remained and the animal genotypes were then centred and scaled to 
a unit variance. The Australian Reds (all bulls) were used only for validation of genomic predictions. 
The reference set included all Holstein and Jersey animals.

Statistical models. The data was analysed using the BayesR and BayesRC methods described by 
Erbe et al. (2012) and MacLeod et al. (2016) respectively. Briefly the model fitted was: 

Temperament = mean + breed-sex group + SNP effects + pedigree + error,
where pedigree was fitted to account for any polygenic genetic variance not explained by the combined 
SNP effects. To account for heterogeneous error variance associated with cow and bull phenotypes, 
the residuals were weighted following Garrick et al. (2009) and this was implemented in the Bayesian 
models as described in Kemper et al. (2015). Our Bayesian models fit SNP effects jointly as a mixture 
of four normal distributions with a mean of zero and variance: σ2

1=0σ2
g, σ

2
2=0.0001σ2

g, σ
2
3=0.001σ2

g 
and σ2

4=0.01σ2
g, where σ2

g is the additive genetic variance. All analyses were replicated with 5 
MCMC chains, each with 40,000 iterations (20,000 burn-in). The accuracy of genomic prediction was 
estimated as the correlation between the genomic predictions and phenotypes, and bias was assessed 
as the regression coefficient of phenotypes on predictions.

The BayesRC approach is very similar to BayesR but incorporates prior biological knowledge in 
the model. For example, if one or more groups of variants are thought to be more enriched for QTL 
or causal variants, these can be allocated to a separate variant category a priori. In BayesRC, each 
category is then independently modelled as a mixture of the four BayesR distributions described 
above, but each starting with equal priors. If a category of variants is found to be enriched for causal 
variants in the data, this can improve the fit of the model. 

Therefore, a priori we used independent differential gene expression data measured in 18 bovine 
tissues (Chamberlain et al. 2016), to identify 500 genes that were most highly differentially over-
expressed in each of: caudal brain tissue, cerebral brain tissue and adrenal tissue. There was a strong 
overlap between the top 500 over-expressed genes in each of these three tissues, resulting in a unique 
set of 1006 genes that we refer to collectively as the “DE” gene set. To further inform the selection 
of variants for potentially enriched categories, we annotated all non-synonymous coding variants 
(NSC) associated with the DE genes as well as variants < 50 Kb up- and down-stream of DE genes 
(REG). We tested four BayesRC models, the first being “DE7” with 7 variant categories (of which 
6 used functional annotation): 

1)	 NSC in DE genes overlapping in both caudal and cerebral tissue (N=1617)
2)	 NSC in DE genes in either caudal or cerebral tissue (N=1447)
3)	 NSC in the remaining DE genes in adrenal tissue (N=1430)
4)	 REG flanking DE genes overlapping in both caudal and cerebral tissue (N= 30549)
5)	 REG flanking DE genes in either caudal or cerebral tissue (N= 28893)
6)	 REG flanking the remaining DE genes in adrenal tissue (N= 22151)
7)	 All remaining variants (N= 907932)

“DE2” was the second BayesRC model, where variants in categories 1 to 6 above were combined 
into one category, and remaining variants to a second category. The third and fourth models, “Random7” 
and “Random2”, had variant categories that matched DE7 and DE2, except that the DE gene set was 
replaced with a random set of 1006 genes chosen from 24,580 known bovine genes. The BayesR 
model was run with SEQ or HD genotypes.
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RESULTS AND DISCUSSION
The estimated heritability of temperament in the BayesR SEQ model was 0.1 which, although 

low, indicates that there is still important genetic variation for this trait. Previously, Visscher and 
Goddard (1995) estimated the heritability of Australian dairy cattle temperament to be 0,2 using only 
bull progeny test data and a sire model. More recent literature, in Holsteins, report similar heritability 
estimates to ours for farmer scored temperament (e.g. Stephansen et al. 2018). The accuracy of 
genomic prediction in the Australian Red validation set improved when sequence variants and HD 
SNP were combined (SEQ) in the BayesR model compared to HD only (Table 1). This may be a 
result of the sequence variants being in stronger linkage disequilibrium (LD) with causal variants 
and/or causal variants being included. If it is due to stronger LD, this could reflect the possibility that 
variants affecting temperament are rare because there has been strong selection pressure for docile 
temperament in dairy cattle since domestication. Previous studies in cattle for other traits have also 
shown small improvements from using selected subsets of sequence data compared to 50K or HD SNP 
genotypes (eg. Brøndum et al. 2015; MacLeod et al. 2016). However, use of full genome sequence 
has not yet shown consistent improvement compared to SNP chip genotypes (eg. Calus et al. 2016; 
van den Berg et al. 2017). We had therefore pre-selected a subset of sequence variants from gene 
coding regions and regions adjacent to genes, hoping to capture important missense or regulatory 
mutations for candidate genes. 

In our study, the BayesRC DE7 and DE2 models showed a further small increase in the accuracy 
of prediction (Table 1). These two models used the same variants as BayesR SEQ, but used prior 
biology to identify categories of variants that were in or close to genes highly over-expressed in brain 
or adrenal tissue compared to 17 other tissues (DE genes). Additionally, the DE7 model incorporated 
a biological prior on variant annotation: non-synonymous coding variants and those that might be 
regulatory. In the BayesRC Random2 and Random7 models, we replaced the DE gene set with a 
random set of genes and used this as the prior to group variants into 2 or 7 categories. The accuracy 
of prediction in the Random2 and Random7 models was lower than the DE2 and DE7 models 
(Table 1). This lends support to our assumption that genes which are highly expressed in brain and/
or adrenal tissue are more enriched for variants controlling dairy cow temperament. However, the 
level of enrichment for the different variant categories was not very high compared to the random 
models, suggesting that more specific prior biology is required to better inform the BayesRC model. 
The accuracy for the Random7 model was slightly lower than the HD. Although this is likely not 
significant, it could reflect the inclusion of some poorly imputed sequence variants that add noise 
to the prediction. This could be further tested by constructing random models multiple times. The 
bias of the predictions suggests a tendency to under-predict genomic breeding value but it is similar 
across the models.

Our Bayesian methods have previously been demonstrated to be a useful approach for fine mapping 
genes and mutations that affect complex traits (eg. MacLeod et al. 2016). Following our previous 
study, we used the Bayesian “posterior probability of a variant having a non-zero effect” to detect 
QTL regions and identify candidate genes. In the BayesR SEQ model, if there is very strong LD 
across a QTL region, the model will have difficulty distinguishing which variant to prioritise, so the 
posterior probability will be relatively low and spread across all variants in strong LD. Therefore, to 
locate candidate gene regions, we summed the posterior probability in windows of 20 SNP, sliding 
10 SNP to the next window. We identified 11 known genes in or closest to the top 13 QTL regions 
genome-wide: NCOA7, GAD2, PDGFD, TMPRSS5, DRD2, IQSEC1, MAOB, PTPRF, SLC25A16, 
TMCO5A, SNRPB2. The first seven were highly differentially expressed in bovine brain and/or adrenal 
tissue (Chamberlain et al. 2016) in line with our assumption that the DE genes were more likely to be 
associated with cow temperament than other genes. Furthermore, 10 genes of these 11 overlap candidate 
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genes or gene families associated with a range of human neuropsychiatric or neurodevelopmental 
disorders including: schizophrenia, autism, intellectual disability, post-traumatic stress and anxiety 
(eg. http://atgu.mgh.harvard.edu/~spurcell/genebook/genebook.cgi?user=guest&cmd=overview).

Table 1. Accuracy and bias of genomic prediction in 103 Australian Red bulls using a range of 
BayesR and BayesRC analytical models

Model1 Accuracy Bias Increase in accuracy vs. HD
BayesR HD 0.236 1.4 -
BayesR SEQ 0.269 1.6 3.4%
BayesRC DE7 0.289 1.6 5.3%
BayesRC DE2 0.282 1.7 4.6%
BayesRC Random7 0.221 1.3 -1.4%
BayesRC Random2 0.254 1.5 1.8%

1 See Materials & Methods for acronyms 

CONCLUSIONS
This study demonstrates a practical approach to exploiting sequence data and functional biology 

to improve the accuracy of genomic prediction and for causal gene discovery. It is likely that more 
specific functional biology would be beneficial for this approach.
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SUMMARY
This study aimed to use co-expression networks to reach a better understanding of the genetic 

mechanisms underlying marbling development and assess the effect of different diets on the transcriptomic 
profile and the resulting phenotype. We evaluated development of marbling in Longissimus dorsi 
muscle extracted from 45 Hanwoo steers at 8, 12, 18, 24 and 30 months of age. The effect of two 
different feeding conditions (high/low feeding) were evaluated on the gene expression in the relation 
with the marbling score. In the four groups according to the marbling score (MS) and the feeding 
treatment: HighFeed_HighMS, HighFeed_LowMS, LowFeed_HighMS, and LowFeed_LowMS we 
found 818, 928, 899, and 946 co-expressed genes respectively. The activity of modules changed 
significantly with the age indicating different expression profiles for genes involved in muscle growth 
(PI3K-Akt signaling, Focal adhesion, ECM-receptor interaction), metabolic regulation (Biosynthesis 
of amino acids and Glutathione metabolism) and lipid deposition (Fatty acid metabolism, Regulation 
of lipolysis in adipocytes) through the animal development. The effect of the feeding condition in 
animals that developed low MS showed the activation of pathways related to stress and maintenance 
of cell homeostasis under nutritional limitations, while pathways involved in fat deposition and lipid 
mobilization where observed under high feeding.

INTRODUCTION
In beef cattle, the evaluation of intramuscular fat, measured as marbling score, is an important 

indicator of meat quality and achieving higher levels of this trait is an economical incentive for 
producers. Improving the knowledge of the genes and pathways involved in the development of 
economically important traits can potentially help to improve management strategies, genomic 
selection, or molecular tools to improve beef production. There have been some studies that attempted 
to describe the mRNA (Lim et al. 2015) and miRNA (Seong et al. 2016) abundances in muscle samples 
from high and low phenotypes. However, all these studies were performed using tissue from animals 
at age of slaughter, showing the final phenotype (high or low marbling). The use of gene expression 
(RNA-seq) could be applied in the identification of markers for the onset of marbling at younger 
ages. Since differences in marbling are subtle at early ages, the analysis of co-expressed genes with 
the identification of networks could be more informative to explain the development of marbling 
and find markers than the analysis of differentially expressed genes alone. Differential expression 
analysis relied on big changes in expression between conditions, while in the co-expression analysis 
it is possible to identify the genes with similar expression profile which are more likely to be involved 
in the same metabolic pathway, have related function, may have been co-regulated and identifying 
them can assist in the finding of hubs or molecular targets (Russo et al. 2018). 
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MATERIALS AND METHODS
RNA sequences were obtained from previous study (Lim et al. in print). Briefly, 45 Hanwoo 

steers were grown on high (23 steers) and low (22 steers) energy diets from eight months of age 
until slaughter at 30 months. Muscle samples were taken from Longissimus dorsi at 8, 12, 18, and 24 
by biopsy of the tissue, while muscle was sampled after slaughter at 30 months. The samples were 
sequenced in Illumina HiSeq200 to obtain paired-end reads of 100 bases pairs. Standard procedures 
were followed on the reads for quality control, cleaning, mapping and assembly (Lim et al. in print). 
Analysis was done for groups differentiated by diet (High vs Low Feed) and marble score at slaughter 
(High vs Low MS). The co-expression networks were performed separately for each sample group 
(HighFeed_HighMS, HighFeed_LowMS, LowFeed_HighMS and LowFeed_LowMS). For each 
group, we normalized the gene expression counts and filtered out the genes with low expression as 
well as the genes with low variance resulting in around 13,000 expressed genes. Pearson correlations 
were calculated on the logarithmic copies per million (lcpm) and the pairs of genes with a correlation 
≥ 0.8 were selected for subsequent analysis. Similarities between these gene expression was used to 
identify modules of genes with similar expression profile by a dynamic tree cut. The biological role 
of the selected genes in each module was found through an over representation analysis to identify the 
pathways involved (adjusted P-value <0.05). The activity of the genes in each module, its activation or 
repression according to the age, was evaluated with a gene set enrichment analysis (GSE) using the R 
Package CEMItool (Russo et al. 2018). This analysis ranked the genes according to the correlation of 
their expression with the phenotypic class (high or low marbling) and determined whether the genes 
of each module tend to be at the top or bottom of the ranked list. The normalized enrichment score 
(NES) will be higher as the gene in the module is found in the ranked list; alternatively, the score value 
is negative if the genes are not found in the list. The score value could be zero if the set of genes are 
randomly distributed in the list. Finally, network graphs were made from the co-expression information 
and combined with information of protein-protein interaction extracted from the STRING v11.0 
database to identify the hub genes (representing genes with interactions with multiple other genes). 

RESULTS AND DISCUSSION
We found a similar number of genes selected for each of the four groups after filtering out low 

expression and variance, and keeping the genes that are highly correlated (Table 1). In general, most 
of the genes belong to module one, and there were “not-correlated” genes (NC) in each group. To 
assess the activity of the genes in each module and across ages we performed a gene set enrichment 
analysis (GSEA) for each group. The GSEA results showed variation in the normalized enrichment 
score indicating that the activity of the genes changed according to the age of the animals (Figure 1) 
suggesting that their expression have an effect in the growth of muscle and marbling. Every group 
presented modules with high activity at 30 months of age indicating also association with the final 
marbling phenotype. Genes with potential role in marbling development because of their activity at 
30 months (red color) could be found in the modules M2, M3, and M5 for HighFeed_HighMS group; 
M3 in HighFeed_LowMS group; M1 and M3 in LowFeed_HighMS; while M2, M3, and M5 were 
identified in LowFeed_LowMS group.

Table 1. Number of genes and pathways represented for each sample group

Group Genes Pathways M1 M2 M3 M4 M5 M6 NC
HighFeed_HighMS 818 47 172 160 152 122 101 49 62
HighFeed_LowMS 928 62 595 131 63 62 38 0 39
LowFeed_HighMS 899 78 495 150 69 61 0 0 124
LowFeed_LowMS 946 55 395 245 167 55 43 0 41
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Figure 1. Gene set enrichment analysis showing the modules (M) and the normalized enrichment 
score (NES); NC= no correlated

We performed an over-representation analysis to determine which processes are mostly associated 
with de development of marbling in each group and we investigated if these pathways are affected 
by the feeding condition. To compare the pathways between groups, we selected 40 pathways with 
an important role in the muscle growth and the development of marbling (Figure 2).

We observed the presence of genes in multiple pathways showing that there is a cross-talk/interaction 
between them. Nine pathways reflected the conserved process involved in the morphology and growth 
of the skeletal muscle in all the groups: PI3K-Akt signaling, Focal adhesion, ECM-receptor interaction, 
Carbon metabolism, Biosynthesis of amino acids, Glutathione metabolism, Fatty acid metabolism, 
Regulation of lipolysis in adipocytes, and Pentose phosphate. Interestingly, there were also pathways 
represented exclusively in each group (except for HighFeed_LowMS). In the HighFeed_HighMS 
group the physiologic response under to the HighFeed diet activated important pathway involved in 
transport of glucose, body weight, fat deposition, and vasculature: Apelin signaling, Rap1 signaling, 
FoxO signaling, Relaxin signaling, and Insulin resistance. In skeletal muscle the entry of glucose is 
promoted by apelin which also affect the activity of FOXO1 gene (Hwangbo et al. 2017). The gene 
Rap1 have been reported in the control of body weight and metabolic regulation in mice (Yeung et 
al. 2013). The genes involved in pathways related to stress and low energy disposition (i.e. HIF-1 
signaling, Protein processing in endoplasmic reticulum, Alanine, aspartate and glutamate metabolism) 
were identified in steers that developed low MS under low feeding conditions. Special attention was 
focused on the LowFeed_HighMS group since these represent animals with a high marbling score 
even under under low feeding conditions. In this group, the pathways Starch and sucrose metabolism, 
Adipocytokine signaling, Pantothenate and CoA biosynthesis, and Oxidative phosphorylation seems to 
have an important role in the regulation energy metabolism and deposition of intramuscular fat. The 
hub gene ADIPOR2 seems to have an important function in the Adipocytokine signaling (Figure 2). 
ADIPOR2 is an adipocytokine which expression affects lipid accumulation, the activity of PPAR-α 
signaling pathway (Ouchi et al. 2012; Cao 2014). Also in this pathway, the gene PGC-1α is a key 
regulator of the conversion of muscle fiber types from glycolysis (uses glycolysis as energy source) 
into oxidised (use fatty acid oxidation to produce energy) muscle fibers (Gu et al. 2019). 
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Figure 2. Number of genes involved in the pathways identified in each studied group

CONCLUSIONS
The co-expression analysis was shown to be a useful approach for the identification of processes 

and genes related to marbling development, particularly with the identification of gene modules that 
are associated with early age onset of marbling. The genes FOXO1, ADIPOR2, PGC-1α are promising 
markers to select for animals for high marbling.
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