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PRESIDENT’S MESSAGE

I wish you a very warm welcome to AAABG’s Ruby Anniversary meeting, the 23rd conference in
Armidale, NSW. When the steering committee behind the AAABG held the very first conference in
Armidale in 1979, they might not have expected the organisation to still be going strong 40 years
later. Since then, 22 conferences have been held in all Australian states and both the North and South
Islands of New Zealand. While other organisations have sometimes struggled with memberships, all
AAABG conferences have attracted substantial numbers of contributors and delegates, with regular
participants from around the globe as well. This highlights how important it is to provide a great forum
for communication amongst scientists, educators, students and service providers, who traditionally
make up the bulk of attendees, ultimately to increase knowledge and foster ideas and collaboration.

This year, we also introduce an extended program which starts with a student workshop and ends with
a program which will contain some talks of interest to breeders. Allowing students to meet each other
before the conference, and obtain some wise words from educators and extension specialists, should
improve their conference experience and provide some valuable insight for their future progression.
Additionally, the attendance of breeders at AAABG has dropped off compared to early years. This is
in part due to the increasing complexity of livestock breeding, making many talks less accessible to
a general audience and leading to an increasing distance between many researchers and those who
benefit from their work. We hope to encourage more breeder participation this year and that there
will be plenty of mix and mingle during the last 1.5 days of the program.

This year also marks one of the most extensive droughts across large areas of Eastern Australia,
with rainfall in the 2019 year to date the lowest on record for the New England-Northern Tablelands
area. So, while we were hoping to dazzle you with some beautiful spring green at this conference,
the reality is that conditions may still be very poor by the time delegates arrive, and high level water
restrictions will be in place for Armidale. This is a timely reminder of the difficult conditions under
which our livestock breeders and producers function, and I take off my hat to their resilience under
these circumstances. In particular, I thank those breeders who are still able to welcome delegates to
their properties on tours, and trust that delegates recognise the courage this must take.

The scientific program again reports a wide variety of research. The implementation of genomic selec-
tion is not without its challenges, but is becoming a more mature part of modern breeding programs.
New technologies offer future opportunities, both in terms of novel phenotyping and techniques such
as gene editing. These developments are combined with talks which touch on aspects important to
effective implementation of breeding programs today in the livestock industries.

[ wish to thank the sponsors who have supported the conference, and the willingness of both our local
and overseas speakers to contribute to the conference program. I also thank staff at ASN (the event
organisers), the committee who have helped organise the Armidale meeting, and Kathy Dobos for
preparing this booklet. Thanks also go to reviewers of papers and the session chairs, as well as those
involved in organising tours and assisting with the student program.

I trust you have an enjoyable conference.

Kim Bunter
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AAABG was formerly known as the Australian Association for Animal Breeding and Genetics.
Following the 1995 OGM the name was changed when it became an organisation with a
joint Australian and New Zealand membership. T%e Association for the Advancement of Animal
Breeding and Genetics is incorporated in South Australia.

THE ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND
GENETICS INCORPORATED

OBJECTIVES

(i) to promote scientific research on the genetics of animals;

(i) to foster the application of genetics in animal production;

(iii) to promote communication among all those interested in the application of genetics to animal
production, particularly breeders and their organisations, consultants, extension workers, educators
and geneticists.

To meet these objectives, the Association will:
(1) hold regular conferences to provide a forum for:
(a) presentation of papers and in-depth discussions of general and industry-specific
topics concerning the application of genetics in commercial animal production;
(b) scientific discussions and presentation of papers on completed research and on
proposed research projects;
(i) publish the proceedings of each Regular Conference and circulate them to all financial members;
(iii) use any such other means as may from time to time be deemed appropriate.

MEMBERSHIP

Any person interested in the application of genetics to animal production may apply for
membership of the Association and, at the discretion of the Committee, be admitted to membership
as an Ordinary Member.

Any organisations interested in the application of genetics to animal production may apply for
membership and, at the discretion of the Committee, be admitted to membership as a Corporate
member. Each such Corporate Member shall have the privilege of being represented at any meeting
of the Association by one delegate appointed by the Corporate Member.

Benefits to Individual Members

*  While it is not possible to produce specific recommendations or “recipes” for breeding plans that
are applicable for all herd/flock sizes and management systems, principles for the development of
breeding plans can be specified. Discussion of these principles, consideration of particular case
studies, and demonstration of breeding programs that are in use will all be of benefit to breeders.

e Geneticists will benefit from the continuing contact with other research workers in refreshing
and updating their knowledge.

e The opportunity for contact and discussions between breeders and geneticists in individual
members’ programs, and for geneticists in allowing for detailed discussion and appreciation of
the practical management factors that often restrict application of optimum breeding programs.
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Benefits to Member Organisations

Many of the benefits to individual breeders will also apply to breeding organisations. In addition,
there are benefits to be gained through coordination and integration of their efforts. Recognition
of this should follow from understanding of common problems, and would lead to increased
effectiveness of action and initiatives.

Corporate members can use the Association as a forum to float ideas aimed at improving and/or
increasing service to their members.

General Benefits

Membership of the Association may be expected to provide a variety of benefits and, through
the members, indirect benefits to all the animal industries.

All members should benefit through increased recognition of problems, both at the level of
research and of application, and increased understanding of current approaches to their solution.
Well-documented communication of gains to be realised through effective breeding programs will
stimulate breeders and breeding organisations, allowing increased effectiveness of application
and, consequently, increased efficiency of operation.

Increased recognition of practical problems and specific areas of major concern to individual
industries should lead to increased relevance of applied research.

All breeders will benefit indirectly because of improved services offered by the organisations
which service them.

The existence of the Association will increase appreciably the amount and use of factual information
in public relations in the animal industries.

Association members will comprise a pool of expertise — at both the applied and research levels —
and, as such, individual members and the Association itself must have an impact on administrators
at all levels of the animal industries and on Government organisations, leading to wiser decisions
on all aspects of livestock improvement, and increased efficiency of animal production.

CONFERENCES

One of the main activities of the Association is the Conference. These Conferences will be

structured to provide a forum for discussion of research problems and for breeders to discuss their
problems with each other, with extension specialists and with geneticists.
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ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS
FELLOWS OF THE ASSOCIATION

“Persons who have rendered eminent service to animal breeding in Australia and/or New Zealand
or elsewhere in the world, may be elected to Fellowship of the Association...”

Elected February 1990
R.B.M. Dun

Elected September 1992
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Elected July 1995
C.H.S. Dolling
J.R. Hawker

J. Litchfield

Elected February 1997
J.S.F. Barker
R.E. Freer

Elected June 1999
J. Gough
J.W. James

Elected July 2001
J.N. Clarke

A.R. Gilmour
L.R. Piper

Elected September 2005
B.M. Bindon

M.E. Goddard

H.-U. Graser

F.W. Nicholas

Elected September 2007
K.D. Atkins
R.G. Banks
G.H. Davis

Elected September 2009
N. Fogarty

A. Fyfe

J. McEwan

R. Mortimer

R. Ponzoni

Elected September 2011
B.P. Kinghorn
A. McDonald

Elected October 2013
H. Burrow

P. Fennessy

G. Nicoll

P. Parnell

Elected October 2015
P. Arthur

D. Johnson

K. Meyer

B. Tier

R. Woolaston

Elected October 2019
S.A. Barwick

H.T. Blair

S.W.P. Cloete

L.W. Purvis

HONORARY MEMBERS OF THE ASSOCIATION
“Members who have rendered eminent service to the Association may be elected to Honorary
Membership...”

Elected September 2009
W.A. Pattie J. Walkley
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HELEN NEWTON TURNER MEDAL TRUST

The Helen Newton Turner Medal Trust was established in 1993 following an anonymous donation
to the Animal Genetics and Breeding Unit. The Helen Newton Turner Medal is awarded to provide
encouragement and inspiration to those engaged in animal genetics. The Medal is named after Dr Helen
Newton Turner whose career with CSIRO was dedicated to research into the genetic improvement of
sheep for wool production. The Medallist is chosen by Trustees from the ranks of those persons who
have made an outstanding contribution to genetic improvement of Australian livestock.

The Helen Newton Turner Medal was first awarded in 1994 to Associate Professor John James
and a list of all recipients to date is given below. The recipient of the Medal is invited to deliver an
Oration on a topical subject of their choice. The Oration of the 2015 Medal recipient, Dr. Arthur
Gilmour, is reproduced in these proceedings.

Trustees of the Helen Newton Turner Trust are:
e DrRichard Sheldrake AM (Chairman), representing NSW Department of Primary Industries
e Professor Brian Kinghorn, representing the University of New England
e Mr Scott Dolling, representing the Association for the Advancement of Animal Breeding
and Genetics
= Dr Roly Nieper, Representative of the National Farmers Federation
* Dr Robert Banks, Director, Animal Genetics and Breeding Unit

MEDALLISTS

1994 J.W. James 2001 G.A. Carnaby 2011 R. Banks
1995 L.R. Piper 2003 F.W. Nicholas 2013 M. Goddard
1997 J. Litchfield 2005 K. Hammond 2015 A. Gilmour
1998 J.S.F. Barker 2007 L. Corrigan 2017 A. Collins
1999 C.W. Sandilands 2009 R. Hawker 2019 K. Atkins

HELEN NEWTON TURNER AO




HELEN NEWTON TURNER MEDALIST ORATION 2017

Alf Collins

Alf Collins snr is one of the most innovative beef cattle breeders in the world. Building on the
foundations established by his father, he has applied enormous dedication, careful recording and
rigorous focus on breeding for profitability, to the continuous improvement of Brahman cattle.
Brahman cattle have to perform in very challenging environments, and breeding programs to deliver
genetic improvement in those environments are challenging too — reflecting large scale of operations
and variable climatic conditions.

Alf has met these challenges head on and collected performance records underpinning reliable EBVs,
and used the information backed by hard-nosed practical understanding of functionality and survival
ability, to generate very impressive genetic progress over several decades. Perhaps the most outstanding
aspect of that genetic progress is that it includes very substantial progress in female fertility — something
that has almost been treated as “too hard” by most breeders of tropically adapted cattle. CBV has
actively participated in industry R&D, including significant contributions to Beef CRC I, II and III.
The breeding program includes several fertility traits within overall selection for profit: recording
includes speed of re-breed, puberty threshold, calving interval, age at first calving, number of calves,
speed of growth, dry season gain, wet season acceleration, as well as good temperament, and fleshiness.
Alf Collins is a deep thinker about what cattle need to do in the tropical environment, and has never
been afraid to try novel approaches or include new traits if they will help breeding cattle better and
better suited to the environment and to improving profit:

“At CBV, from 1981 to the present day, our management has been relentless in the development and
multiplication of the traits that have greatest commercial significance. In total, this represents over
50 years of development, using steadily improving tools of analysis and selection.

We have absolutely no tolerance of cattle that do not earn every single year. We get our share of
non-performing stock and have management strategies to convert them to beef carcases immediately
when they fail.

The genetic trends reflect this strategy at CBV.

Reproduction and survival are paramount, coupled with gentle temperament, fleshy bodies and thrift
at grazing. CBV cattle are true examples of a highly adapted breed. This equates to a high speed
beef machine at minimal cost.

We have received very high levels of support from researchers, scientists, clients, family and friends.
Intellectual inputs have been considerable, along with personal effort. CBV has an ongoing involvement
in research and analysis every year.

Our matings commence in the dry season on October 1, to identify the most efficient adapted females,
by their ability to conceive whilst lactating in very dry grazing and to hold that pregnancy, calve
un-assisted, raise a sound calf and to rebreed within our low cost management. Our stocking rate
of kilograms per hectare per 100mm of rainfall is high but ecologically responsible.

Consequently earnings per hectare per financial year are optimised.”

Alf Collins continues to be an outstanding pioneer and innovator in real-world application of genetics
technology, and the demonstration that it is possible to breed genetically fertile, productive and
profitable tropically adapted cattle is an inspiration.
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INVESTMENTS IN BREEDING TECHNOLOGIES AND ORGANIZATION TO
MEET GLOBAL NEEDS

J.A.M. van Arendonk, M.C.A.M Bink, K. Peeters, B. Visser, N. Duijvesteijn and P. van As
Hendrix Genetics, PO Box 114, 5830 AC Boxmeer, The Netherlands

SUMMARY

Animal breeding has a vital role to play in solving the global food challenge. This paper will
concentrate on investments that are needed for animal breeding to meet the challenges of the future
and begins with describing the global challenge. There is not a single solution that will work in all
species in all regions, so solutions need to be tailored to the local conditions. There is a clear need for
both more sustainable production of animal proteins and a reduction of waste in the food chain. There
is regional diversity in emphasis on the different components of sustainability, but the general trend is
towards animal protein production with a lower ecological impact, with a minimum use of antibiotics
and with good animal welfare. This requires not only investments in genetic technologies like genomic
selection but also in methods for phenotyping individual animals under commercial conditions.

INTRODUCTION

Animal breeding is a powerful tool to improve many aspects of animal production. In this paper,
we describe the contributions of animal breeding to solving the global challenges when it comes to
feeding the growing world population sustainably.

Hendrix Genetics is a multi-species animal breeding company with breeding programs in turkeys,
layers, swine, salmon, trout, shrimp and coloured broilers. To be a competitive animal breeding company
in any species requires substantial investments in research and development. By working in multiple
species, these investments can be more cost effective as there are many similarities between species.
For example, the IT infrastructure for collecting and storing information on individual animals and
the methods for performing genomic evaluations are very similar for different species.

After a brief description of the global challenges and the expected changes in our value chains,
we will describe in more detail the role of animal breeding and how new technologies can help to
better meet the challenges.

GLOBAL CHALLENGE

We face major global challenges when it comes to feeding the growing world population sus-
tainably. Rabobank has predicted that the animal protein market will grow by 45% in the next two
decades and this global growth will be largely in Asia and to a lesser extent in Africa. We see more
and more developing countries reaching middle income status, the inflection point for protein con-
sumption, leading to an increased need for locally produced animal protein. The contribution of
species to animal protein production differs between regions. For example, currently close to 90%
of aquaculture production takes place in Asia, which is also the biggest growth market for layers
and swine. In contrast, North America remains a high value and volume market for poultry, pigs and
cattle, whereas aquaculture is expected to remain limited.

There is a clear need for more sustainable methods of producing all animal proteins. There is
regional diversity in emphasis of the different components of sustainability, but the general trend is
towards animal protein production with a lower ecological impact, with a minimum use of antibiotics
and with good animal welfare.

Atall levels in our value chains we see scale increasing. The number of people working in animal
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production is declining, the farms are getting bigger, and value chains are getting shorter and increas-
ingly coordinated. Innovative farming methods using robotics and data driven management support
will help not only to meet the labour challenge but also to improve sustainability.

Worldwide, the use of technology and software is rapidly increasing. Already thousands of com-
panies offer data-based services to support farm management, increasingly making use of sensors,
machine learning, and other decision-support tools. We also see increasing societal pressure in the
developed world regarding environmental impact, livestock treatment and biotechnology. Also, large
food companies and supermarket chains are forcing changes to production practices.

We anticipate the following changes in our value chains:

e Increased use of digital technology and software for managing farming operations, with
large companies fulfilling this demand

e Increased mechanisation and automation, driving standardization

e Stronger presence of alternative sources of protein, including insects

e More and more varied animal protein “brands” differentiated by farming system, animal
type, and product quality.

e More ready-to-eat providers, such as food delivery companies, and ready meals.

Animal protein production. There are many individuals on this planet who live relatively healthy
lives consuming little or no animal protein, and many would argue that the challenge of feeding the
human population could be met by reducing the amount of livestock products in our diet. However,
the demand for animal protein, especially in developing countries, is expected to grow as they
become more affluent. Part of the animals’ proteins are produced from feed, such as grain, that could
be directly consumed by humans, while another part is produced from feed resources that would not
feed humans directly, such as grass and by-products from the human food industry.

According to the FAO, an estimated one third of all food produced globally is either lost or
wasted. This represents a large inefficiency in the food system. Food loss refers to any food that is
lost in the supply chain between the producer and the market. Food waste, on the other hand, refers
to the discarding or alternative (non-food) use of food that is otherwise safe and nutritious for human
consumption. Meeting the food challenge is not only about more sustainable production but also
about reducing food loss and waste.

The challenge for livestock production is to meet the growing demand for animal protein while
at the same time reducing the environmental impact. This implies that livestock production needs to
improve the efficiency of production, robustness of animals and quality of animal products. Improve-
ment of efficiency of animal production needs to focus on improving lifetime productivity, which
can be achieved by improving not only individual productivity but also by reducing losses through
improved health and reproductive performance. Robustness of animals refers to the ability of animals
to handle variation in the environment, in particular feed quality and climate. The quality of animal
products refers not only to the food safety and taste but also to animal welfare.

THE ROLE OF ANIMAL BREEDING

Animal breeding has a vital role to play in solving the global food challenge. In the last 4 decades,
animal breeding has halved the amount of feed required to produce animal proteins in poultry and pigs.
Reducing the ecological food print is an important contribution to improved sustainability. Improving
sustainability also requires reducing the feed-food competition, reducing the use of antibiotics, and
improving animal well-being.

Breeding goal. The breeding goal summarizes the direction of change of a population. Over the
years, the breeding goal has changed in response to the changes in production circumstances and
the increased attention to sustainability. Commercial poultry and pig breeding goals have broadened
widely since the 1970s (Neeteson-van Nieuwenhoven et al. 2013). Over time, the relative focus on
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productivity has decreased and objectives such as efficiency, welfare, robustness and product quality
have increased. Production circumstances and consumer demands will continue to change and impact
the breeding goal not only in terms of the number of traits but also in terms of the relative emphasis.

Sustainability program: As a breeding company, we also keep many animals ourselves. That
is why our efforts to achieving sustainability are not only directed towards our breeding program
but also improving our own performance. For improving our own performance, we have established
in 2013 a sustainability program comprising of three building blocks: animals, people and planet.

e Animal welfare, biosecurity and genetic resources are the key priorities within the build-
ing block animals. Ensuring animals are treated with care and respect and are kept under
the highest standards of welfare is essential. We ensure that taking good care of animals
is embedded in our company culture. As global suppliers of breeding stock, we have a
responsibility for ensuring biosecurity and animal health. In addition, we also have an
obligation to protect our genetic resources.

e People make our business and deliver our products and service to our customers. We
started off with setting KPI’s for health and safety including illness percentage, accidents
and time lost time due to accidents. More recently, we have added employee engagement
and expertise.

e Minimizing the environmental impact of livestock through improving input efficiency
and helping to reduce the use of antibiotics are key parts of the building block planet. In
addition, the company is investing in minimizing its own ecological footprint to preserve
and improve the environment that its activities impact.

We have implemented a sustainability reporting cycle, which includes a regular program of data
collection, target setting and evaluation which is aimed at making improvements year after year. In
addition, we will publish a CSR report to increase the awareness on our activities both internally
and externally.

DISSEMINATION

Not only generation but also dissemination of genetic progress plays an important role in an animal
breeding organisation. In cattle, frozen semen is the most commonly used method of distributing
genetic progress. In poultry and swine, frozen semen is not an option. In swine fresh semen and live
animals are used for dissemination. In poultry hatching eggs and one-day old animals are used for
dissemination. The use of live animals rather than frozen semen comes with logistic and biosecurity
challenges.

In poultry and swine, a multi-tier crossbreeding system is used. In a typical laying-hen program,
pure-line birds are used to produce grandparents which are crossbred to produce the parent stock
males and parent stock females. The parent stock is used to produce the commercial birds as illustrated
in Figure 1. The genetic progress is generated in the pure lines under bio secure conditions. Subse-
quently this progress is disseminated from the pure line to the commercial offspring through several
multiplication steps. The system also allows capturing the benefits of crossbreeding. Furthermore, it
allows making the best combination of different pure lines to meet the needs of farmers operating in
different countries and markets. This system also offers the breeding organisation two options to react
to a change in product demand and to a change in production environment. First, there is the option
to change the combination of lines to produce the commercial product. Second, there is the option
to change the breeding goal in one or more pure lines. By changing the combination of lines, we can
react more rapidly to changes compared to changing the breeding goal of a line. We continuously
evaluate the expected developments to ensure that the product portfolio not only meets the current
needs but also the expected needs in the years to come.
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Figure 1. Schematic diagram of the poultry production pyramid in which genetics of 4 pure
lines (A, B, C and D) is used in a crossbreeding scheme to produce parent stock (PS) males (AB)
and females (CD) and commercial products (ABCD). The relative size (multiplication) of each
layer in the production pyramid is given for the female lineages (from pure line D hen through
grandparents and parents to commercial hens and eggs produced by these hens)

TECHNOLOGIES

Our future is tied directly to product superiority, which requires the implementation of state-of-
the-art breeding technology for all our products. This implies that we invest in tools for collection
of information on individual animals, in genomic selection to ensure that we make best use of the
collected information and breeding scheme design. Investments in technology should also provide
solutions for labour shortages on our breeding farms and on the farms of our customers.

We see many promising developments in the domains of phenotyping, digitalization, and genetics
technologies. We will continue to make targeted investments in the most promising technologies
starting from a business needs perspective. In the following sections, more background is given on
activities in the domain on phenotyping and gene editing.

Phenotyping. We invest in phenotyping methods not only to collect novel traits in the domain of
animal behaviour but also to measure performance of animals under commercial conditions. Remote
sensors such as cameras, microphones, thermometers and accelerometers offer the opportunity to
capture data from groups or individual animals. Data from remote monitoring sensors combined with
individual animal identification can provide information regarding pig welfare, health and productivity
(Benjamin and Yik 2019).

Livestock are nowadays more frequently kept in larger groups, resulting in an increase in social
interactions between individuals. Moreover, treatments to limit the consequences of adverse social
interactions, such as beak trimming in poultry and tail docking in pigs, will probably be banned in the
future (at least in EU countries), so that the negative effects of social interactions will likely increase
unless action is taken to avoid that. Actions are needed to prevent or diminish the negative effects of
social interactions. Bijma (2007) demonstrated that pecking in laying hens is a socially affected trait
which not only depends on the hen’s ability to avoid being pecked (direct genetic effect) but also on
the pecking behaviour of her group mates (indirect genetic effect). Using this knowledge, we have
demonstrated that we can select animals that are less likely to perform damaging behaviour. Selection
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can be further improved using sensor technologies that allow the identification of laying hens in large
groups that show less pecking behaviour (Ellen et al. 2019).

Traditionally, egg production on laying hens is measured in single bird or family group cages.
This housing system is needed to link the egg production to a single individual or parent. The housing
system, however, does not reflect the commercial conditions for laying hens which are increasingly
kept in cage-free conditions. The difference between selection and commercial environment might
lead to genotype by environment interaction which would make selection less effective. To overcome
this, we are investing in automatic nests for laying hens which allows the recording of individual
egg production of animals kept in a group. These automatic nests are not available on the market and
need to be developed internally.

Gene editing is a rapidly developing technology with many potential applications, including
in animal breeding. Hendrix Genetics is committed to responsible farm animal breeding. We strive
to meet growing global demands for food by supporting animal protein producers worldwide with
innovative and sustainable genetic solutions. New technologies like gene editing can be part of our
future solutions. Alongside delivering benefits to producers, our solutions must also meet the rigorous
needs of consumers and society.

While we rely on genomic selection in our breeding programs, Hendrix Genetics does not currently
use any form of gene modification. We, however, continue to closely monitor the rapid developments
in gene editing and invest in research in this new technology to evaluate its potential application. Gene
editing will help us to get a better understanding of genes and mutations in genes that contribute to
genetic variation in traits. That knowledge can be used to improve genomic selection schemes pro-
vided that the desired variants are present in the population. When the desired variant is not present,
genetic improvement via gene editing is an innovative solution.

Investment in research into gene editing does not imply that Hendrix Genetics will necessarily
use this technology in the future. Before using a new technology, we need to understand the full
impact of it on animals, animal products and humans. We must be convinced of the added value of
gene editing before entering any discussion on commercial application. Such discussion will not only
cover technical issues but more important ethical and regulatory issues. Now, Hendrix Genetics sees
several critical challenges ahead for gene editing that must be resolved before commercial application
can even be considered.

Even with satisfactory results from research, Hendrix Genetics would only ever consider gene
editing for applications when it clearly outperforms any alternatives. The most likely application of
gene editing appears to be to improve the health and welfare of farm animals (including fish). It is
very unlikely that we will use gene editing for realizing higher production efficiency directly. We are,
for example, involved in research on the opportunity to use gene editing to stop surgical castration
of male pigs.

POULTRY BREEDING FOR AFRICAN SMALLHOLDER FARMERS

There is a wide variation in climate, production circumstances and consumer preferences around
the world. This implies that when it comes to animal breeding, one size does not fit all. As an inter-
national breeding organisation, we need to have a product portfolio to meet that diversity. This can
be illustrated when looking at smallholder farmers in Africa. To also meet their needs, we not only
breed birds that are specialized in egg production but also dual-purpose birds, intended to produce
both eggs and meat.

Poultry constitutes an important economic activity for the rural poor in many African countries.
Several researchers have shown that the performance of smallholder poultry production can be greatly
improved by using improved genetics. The local indigenous breeds are inefficient and unproductive
compared to other alternative breed options, such as Sasso and Kuroiler. In many instances the small-
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holder farmers in rural areas do not have access to improved genetics and are forced to use birds that
have low levels of productivity and high mortality rates. The access to an improved low-input and
dual-purpose chicken to supplement the local indigenous breeds has the potential to transform the
rural poultry enterprise.

This situation can be changed as demonstrated by the African Poultry Multiplication Initiative
(APMI) led by the World Poultry Foundation (WPF), with investments in Uganda, Ethiopia, Tanzania,
and Nigeria as well as other poultry initiatives in Burkina Faso. The APMI model operates through
capable local private companies to establish a parent stock and hatchery operation for the supply of
improved genetics of low-input, dual purpose chicken breeds to farmers in their communities. These
initiatives are dependent on access to poultry parent stock for the improved breeds. We have partnered
with WPF to ensure reliable access to improved parent stock genetics. The supply of parent stock is
frequently disrupted by outbreaks of diseases such as avian influenza. An outbreak of avian influenza
in the source country leads to a ban on export of parent stock. A long-term sustainable solution to
mitigate this risk is duplication of the germplasm at multiple locations.

Although breeds such as Kuroiler and Sasso perform better than most local ecotypes, the pro-
ductivity and feed utilization efficiency of these breeds is far lower than current commercial breeds.
Results from ILRI’s African Chicken Genetic Gain project shows that there is a wide variability in
the performance of Kuroiler and Sasso in different agro ecologies. We have, therefore, implemented
a genetic improvement program to further improve the productivity, adaptability, and resilience of
the lines that are used to produce the dual-purpose breed. The genetic gain of the lines may be further
accelerated by the application of genomics selection. However, implementation of this technology
for the benefit of smallholder farmers in Africa has failed due a combination of two factors. First,
the lack of support for such genetic improvement schemes to develop proper infrastructure (such as
performance recording and genetic evaluation schemes). Second, the lack of a system to sustainably
multiply and distribute the improved genetic material to the smallholders. We aim to overcome these
factors due to our experience and knowledge and more importantly our access to a larger international
market. The ability to sell genetic material in multiple countries is crucial for offsetting the cost of
a breeding program to improve the dual-purpose chicken. With these improved breeds, smallholder
farmers in Africa are not only able to increase their income but also to contribute to feeding the
growing population with nutritious protein.

COLLABORATION

In order to find sustainable solutions for the global food challenge, we are continuously exploring
innovations in the domain of measuring health, welfare and productivity of animals. These innova-
tions need to be based not only on a solid understanding of the underlying biology but also on an
overall view on the issue at stake. Developing a solid understanding is an important but not the only
driver to be involved in research collaboration with knowledge institutes. Equally important drivers
for participation in a research project are creating awareness in the scientific community for the
issues involved in improving sustainability and training a new generation of researchers. Solving
sustainability issues often requires collaboration in multidisciplinary teams. Industry participation
in research projects is expected to speed-up innovations and contribute to training of new talents
that are focussed on generating solutions. Collaboration is therefore crucial for realizing sustainable
solutions for the global food challenge.
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SUMMARY

Variables for achieving targeted gene knock-ins using CRISPR/Cas9 mediated gene insertion
in bovine embryos following in-vitro maturation were tested to evaluate the rate of integration at a
target genomic location, and the level of mosaicism. Guide-RNAs (gRNA) were developed targeting
downstream of the Zinc Finger X-linked (ZFX) gene located on the bovine X-chromosome. One
gRNA (ZFXg3) was found to cut with high frequency in-vivo (82%). Donor vectors utilizing different
endogenous repair pathways: homologous recombination (HR) or homology-mediated end joining
(HMEJ), were then designed to insert the sex determining region on the Y-chromosome (SRY) gene
into the target cut-site of ZFXg3 to produce bulls that would sire all male offspring (XY males, and
X gy X males). CRISPR/Cas9 reagents were introduced into either MII oocytes, or six hours after
in-vitro insemination (hpi). The HMEJ donor vector (hmejSRYp) showed a significantly higher inser-
tion rate compared to the HR donor vector (hrSRYp) (32.5% vs. 0%; p < 0.0001). Additionally, of
those that were positive for the insert, 23.4% were non-mosaic hemizygous (males) or homozygous
(female) knock-ins There was no significant difference in the level of mosaicism when injecting hme-
JSRYp in mature oocytes as compared to six hours post in-vitro insemination (hpi), although to date
a limited number of blastocysts injected 6hpi have been analyzed. Finally, there was no significant
difference between the knock-in efficiency, or the level of mosaicism when comparing XX and XY
embryos (p > 0.05). Utilizing the HMEJ pathway in bovine embryos resulted in a significantly higher
rate of CRISPR-mediated gene knock-in as compared to HR, and approximately a quarter of these
X chromosome knock-ins were non-mosaic (hemizygous males or homozygous females) by PCR.

INTRODUCTION

Genome editing technologies have the potential to have a positive impact on livestock genetic
improvement (Van Eenennaam and Young 2019). However, for these tools to be implemented,
they must seamlessly integrate into existing breeding program designs to maintain or accelerate
the rate of genetic gain. Obtaining high rates of targeted gene knock-ins through homology-di-
rected repair (HDR) using site-directed nucleases in the presence of a repair template has proven
difficult in livestock embryos, often resulting in a low integration rate and/or mosaic individuals
(Georges et al. 2018). The primary method that has been trialed for HDR-mediated knock-ins in
bovine embryos is the homologous recombination (HR) pathway. However, the primary method
for double-strand break (DSB) repair in gametes and the early zygote is the end-joining pathway
(Rothkamm et al. 2003). The HDR pathway is primarily restricted to actively dividing cells (S/
G2-phase) and only becomes highly active towards the end of the first round of DNA replication
in the one-cell zygote (Hustedt and Durocher 2017). Consequently, gene knock-ins in livestock
in livestock have typically been achieved by HR in cell culture, followed by somatic cell nuclear
transfer (SCNT) cloning of the edited cell line. However, this method can be costly and inefficient
(Tan et al. 2016). We describe an approach to achieve improved rates of knock-ins in developing
bovine embryos using the alternative homology-mediated end joining (HMEJ) DSB repair path-
way, and a method to screen for non-mosaic founder individuals prior to embryo transfer, thereby
avoiding the need for SCNT to obtain knock-in founders, and allowing the opportunity to edit the
next generation of animals in a breeding program in a single step.
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MATERIALS AND METHODS

Four single-guide RNAs (sgRNAs) were designed for high specificity and limited off-target poten-
tial using the online tools sgRNA Scorer 2.0 (Chari et al. 2017) and Cas-OFFinder (Bae et al. 2014),
respectively. In-vitro fertilized bovine embryos were produced using methods previously described
(Bakhtari and Ross 2014). The sgRNAs (ZFXg1-4) Cas9 individually injected by laser-assisted cyto-
plasmic injection (Bogliotti et al. 2016) of a solution containing 67ng/uL of each sg-RNA alongside
167ng/pL of Cas9 protein (PNA Bio, Inc., Newbury Park, CA) as ribonucleoprotein complexes (RNP)
in three replicates of 30 embryos per guide. Embryos that reached blastocyst stage were collected,
lysed, and analyzed using PCR (Table 1), followed by Sanger sequencing.

Table 1. Sequence of primers used for PCR evaluation and confirmation of SRY knock-in and
sex, and guide-RNA sequences (*sequences developed by Gokulakrishnan ez al. 2012)

Name Sequence 5°- 3 T (°C)
PCR primers ZFXgF TCCAAGGAGCTATGTCACAGAA 60.8
ZFXgR CACTAGCTTTGGGCGATATGA 60.8
ecZFXknF CCGCTTCAAATCAGTTTAATCC 58.9
ecZFXknR CCCCACCAGGAAAGTACAAA 60.4
srnckF TGGTCCTCTGTTAATCAGTTCTTTC 61.3
srnckR GGAACTGCTTGGGTACCAAG 62.4
DDX3-1F* AGGAAGCCAGGAAAGTAA 553
DDX3-1R* CATCCACGTTCTAAGTCTC 58.0
Guide RNA ZFXgl ACAACCCAAAATGAAGGGGG -
ZFXg2 AATACAACCCAAAATGAAGG -
ZFXg3 CTCCCATGTCATAACTTCTG -
ZFXg4 GATATGAAATTACACTGGAC -

genomic sequence left homology arm | [EELECr Ll  right homology arm

hrSRYp left homology arm SRY right homology arm
hmejSRYp CRISPR target [PAMIT LT TR SRY (LT I CRISPR target [PAW
ecZFXknF ZFXgF srnckF
— p— J—
knock-in left homology arm SRY right homology arm
< s
srnckR ZFXgR ecZFXknR

Figure 1. Schematic representation of donor vectors used to test knock-in efficiency in in bovine
embryos

Donor vectors contained the 1.8kb Bos faurus SRY promoter and coding sequence (Accession:
U145569), 1kb homology arms flanking each side of the Cas9 cut site, with (hmejSRYp) or without
(hrSRYp) the CRISPR target site flanking each homology arm (Figure 1).

Oocytes were collected and in-vitro matured for 18 hours prior to injection or in-vitro fertilization
(Bakhtari and Ross 2014). CRISPR/Cas9 reagents for each donor were introduced by laser-assisted
cytoplasmic injection (Bogliotti et al. 2016) of a solution containing 67ng/uL of guide-RNA, 167ng/
pL of Cas9 protein (PNA Bio, Inc., Newbury Park, CA) and 133 ng/uL of circular plasmid after
stripping of cumulus cells from mature oocytes. Injected mature oocytes were in-vitro fertilized and
co-cultured with cumulus-oocyte complexes (COCs) for 16 hours. Un-injected in-vitro fertilized
embryos were stripped of cumulus cells six hours after fertilization and injected as described above.
Injected embryos were scored to developmental stage reached. Embryos that reached blastocyst stage
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were collected, lysed and underwent whole-genome amplification using the REPLIg Mini Kit (Qia-
gen, Valencia, CA), PCR and Sanger sequencing. Data were analyzed with GLM in R to test which
variables were statistically different. A y2 test was used to test whether total knock-in and mosaicism
rates differed between donor vector types.

RESULTS AND DISCUSSION

Four sgRNAs (ZFXg1-4) Cas9 ribonucleoprotein complexes (RNP) were individually injected into
90 embryos resulting in in-vivo mutation rates of 38%, 57%, 82% and 40%, respectively. Based on
these results, we selected sgRNA ZFX3 for the knock-in experiments. Treatment group did not affect
overall mutation rate (P > 0.05), however embryos injected with ZFX3 RNP and donor hmejSRYp
showed a significantly higher rate of total knock-ins (targeted SRY integration) compared to hrSRYp,
which showed zero knock-ins (Table 2; P-value < 0.01). When comparing the effect of sex of the
embryo, and the time of injection between MII injected oocytes and 6hpi, there was no significant
difference on the knock-in efficiency or the level of mosaicism (Table 2; P> 0.05). Because we were
targeting the X-chromosome, PCR-analysis of embryo biopsies limited our ability to differentiate
between heterozygous and mosaic female embryos.

Table 2. Mutation, knock-in, and mosaicism rate of blastocysts after cytoplasmic injection of
ZFX3 RNP hmejSRYp or hrSRYp at the MII oocyte, or Embryo (6 hpi) development stage

Knocked-in subset
Sex n Donor Time of %Mutation % Total %Hemi %Hetero
Injection Rate (n) Knock-In (n) Homo (n)  Mosaic (n)
78 . MII oocyte  83° (65) 40° (31) 19° (6) 817 (25)
Fomale 8 hmejSRYp g bvo 88° (7) 250 (2) 0 (0) 100° (2)
6 hrSRY; MII oocyte 834 (5) 0° (0) n/a n/a
6 P Embryo 67 (4) 0° (0) n/a n/a
97 . MII oocyte  70° (68) 29" (28) 29° (8) 71 (20)
Voo 14 hmejSRYp ¢ hrvo 86° (12) 210 (3) 330 (1) 67 (2)
10 heSRY; MII oocyte 702 (7) 0° (0) n/a n/a
8 P Embryo 75 (6) 0° (0) n/a n/a
175 . MII oocyte  76° (133) 34" (59) 24° (14) 76 (45)
Toul 2 hmejSRYP "k bvo 86+ (19) 234 (5) 200 (1) 80° (4)
16 hrSRYp MII oocyte 75 (12) 0° (0) n/a n/a
14 Embryo 712 (10) 0° (0) n/a n/a

Letters that differ in the same column are statistically different (P-value < 0.05)

This increased rate of knock-ins with donor hmejSRYp is likely the result of the DSB repair
pathway triggered by the different donor vectors. The hrSRYp donor vector required initiation of
the homologous recombination (HR) pathway for integration, which has been shown to have a
low activity in early embryos. In contrast, hmejSRYp utilizes the homology-mediated end-joining
(HMEJ) pathway (Yao et al. 2017). In mice zygotes, this pathway was found to have a significantly
higher efficiency of targeted knock-ins as compared to HR, which is consistent with the end-joining
pathway being the primary DSB repair mechanism in gametes and pre-S-phase zygotes (Rothkamm
et al. 2003). It should be noted that the MII injected oocytes were observed to have lower post-ferti-
lization development rates compared to zygotes injected after insemination (12.1% (n=1,584) versus
18.4% (n=163), respectively), perhaps due to increased rates of polyspermy in the stripped oocytes.
Targeting the HMEJ pathway in developing embryos, alongside a method to screen for non-mosaic
founder individuals prior to embryo transfer (Figure 2), has the potential to be an alternative to SCNT
cloning of genome-edited knock-in cells. The implementation of a gene editing approach such as this
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alongside genetic breeding programs could enable the introduction of useful genetic variants such
as polled (hornlessness), while maintaining the rate of genetic gain without increasing inbreeding
above acceptable levels (Mueller et al. 2019). Recent Australian regulation would categorize the use
of a donor template to guide the DSB repair to produce a cisgenic knock-in, as detailed in this paper,
as resulting in a genetically modified organism (GMO) which may limit the use of this approach in

animal breeding programs.
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Figure 2. Schematic representation of CRISPR-mediated development of SRY knock-in bovine
offspring by cytoplasmic injection (CPI)

Biopsies taken at day 7 and are analyzed via PCR to simultaneously detect sex, success of knock-in,
and mosaicism prior to embryo transfer (ET) to synchronized recipients. Upper bands using ZFXgF/R
PCR primers: wild type (WT) 520bp, knock-in 2349bp. Lower bands using DDX3-1F/R PCR primers:
female 208bp, male 189bp and 208bp. IVF: in-vitro fertilization, IVC: in-vitro culture, het: heterozy-
gous, hemi: hemizygous male, homo: homozygous knock-in female.

CONCLUSION

In-vitro production of bovine embryos combined with CPI of CRISPR Cas9 RNP in MII oocytes or
6 hpi bovine embryos, along with a donor vector designed to target the HMEJ repair pathway, yielded
a 32.5% knock-in rate of the 1.8 kb SRY target gene of which 23.4% were non-mosaic, hemizygous
(males) or homozygous (females), targeted X-chromosome knock-ins.
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SUMMARY

In the animal breeding there is debate on whether knowledge of functional genomics is useful for
genomic prediction. Black box approaches have worked well but technological change now allows
for the generation of functional genomic and phenomic information at high resolution. This will allow
us to come closer to actual functional variants, thereby increasing genomic prediction accuracy in
animals less related to the reference population, such as across breeds and across generations. Here we
demonstrate that even with current imperfect knowledge the use of functional information in genomic
prediction results in immediate benefits to prediction accuracy and industry breeding decisions.

INTRODUCTION

Currently implemented industry genomic evaluations usually use single nucleotide polymor-
phisms (SNP) that are neutral and of medium density (e.g. 50k SNP chips in sheep and cattle). The
evaluations rely on SNP being in linkage disequilibrium (LD) with causative mutations. This has been
effective and has resulted in good prediction accuracy when reference populations are of sufficient
size and when predictions are for animals that are relatively closely related to the reference. How-
ever, large LD blocks break down quite quickly across generations and LD is also only consistent
across breeds at short distances that are not captured by medium density genotyping platforms. This
reduces genomic prediction accuracy in these animal groups and imposes a shelf-life on reference
populations. A solution is to find SNP that are not neutral but that are more closely linked to, or, are
causative mutations. Purely statistical methods can do that with some success, but they are often
limited in their ability to fine map causal variants and are susceptible to biases because it is difficult
to keep association discovery and prediction reference populations independent. This is where addi-
tional independent functional information from other “omics” is helpful to prioritise SNP at finer
scale. The overall idea is to reduce the millions of sequence SNP in whole genome sequence data
to thousands, such that they can be routinely genotyped by industry and used in genetic evaluations
without great computational challenges.

A plethora of high-resolution “omics” data can now be collected in relatively large numbers of
animals providing newly defined intermediate phenotypes. Genome sequencing technologies have
enabled several approaches to investigate regions of the genome that are associated with phenotypes
as well as gene expression and regulation. Large global collaborative projects have created inven-
tories of sequence variants in cattle (1000 Bull Genomes Project) and sheep (SheepGenomesDB)
(Daetwyler et al. 2014; Daetwyler et al. 2017; Bouwman et al. 2018). The advantage of sequence
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data is that the vast majority of SNP and short insertions/deletions (Indels) will be contained in the
dataset, thereby enabling quicker discovery of causative mutations or variants that are very closely
linked to these mutations (Hayes and Daetwyler 2019). Next-generation genome sequencing also
underpins most assays that aim to interrogate gene expression and regulation, for example RNA and
chromatin immunoprecipitation (ChIP) sequencing. Regulators of gene expression have been found
to be important and enriched in regions that have been associated with phenotypes (Wang et al. 2018).
Regulatory regions can be identified with expression quantitative trait loci (eQTL) mapping, where
variants are associated with gene and exon expression as well as with splice variants (Chamberlain
et al. 2018; Xiang et al. 2018). Similarly, SNP in highly expressed genes in relevant tissues can be
identified and such information can be utilized directly in genomic prediction (MacLeod ef al. 2019).
Another functional assay that provides insight into regulatory regions is ChIP sequencing, which can
provide information on histones with specific modifications that indicate regions that are likely to be
enhancers, promotors or repressors of gene expression. Finally, molecular phenomics (e.g. metabolite
levels) can reveal the abundance of compounds in the pathway between gene expression signals and
phenotypes and can also be genetically mapped.

Our aim was to combine information from several omics-derived datasets to prioritize variants to
increase the accuracy of genomic prediction. We demonstrate the advantage of using this additional
information to raise the accuracy of genomic prediction with examples in sheep and dairy cattle.

MATERIALS AND METHODS

Sheep. 42 million sequence variants discovered by SheepGenomesDB Run2 (Daetwyler et al.
2017) were imputed into 46,000 sheep (Bolormaa et al. 2019). Only the 31 million sequence variants
with a Minimac R2 >0.4 were used for downstream analyses. RNA sequencing was carried out on 150
wethers for muscle and liver tissues (Bolormaa et al. 2015). All data was aligned with the program
STAR, counts were generated with the R package feature Counts, normalised for read depth. Expression
QTL (eQTL) mapping was performed with gene and exon counts, as well as with splice variants at
SNP 1 megabase (Mb) up and downstream of genes. A false discovery rate (FDR) threshold of 0.05
was used to determine significant SNP, which were then overlapped with significant QTL regions
from a genome-wide association study on meat and carcass traits (individual animal phenotypes)
also imposing a FDR of 0.05 (Bolormaa et a/. 2016) and pruned for LD > 0.9. The same multi-breed
reference population and traits as Khansefid et al (2018) were used to test two SNP sets: i) the 50k
Ovine SNP chip and ii) the 50k Ovine SNP chip with the 10,000 significant eQTL sequence SNP
added. Genomic prediction accuracy was validated in approximately 1000 Merino and 500 Border
Leicester/Merino cross sheep for 6 meat traits (individual animal phenotypes). Validation animals
were chosen to not have half-sibs in the training set to restrict relationships (Khansefid et al. 2018).

Dairy Cattle. 17 million sequence variants identified in the 1000 Bull Genomes Project Run6
were imputed into 44,260 animals (about 75% Holstein, 20% Jersey and 5% Australian Red breeds).
Sequence variants associated with gene expression (eQTLs) and concentration of milk metabolites
(mQTLs, phospholipids), and under histone modification marks (providing information on protein
— DNA interactions) were discovered from multi-omics data in several tissues of over 400 cattle.
Variants were also identified from 1000 Bull Genomes database (N=2,330) beef-dairy selection sig-
natures. These analyses defined 30 variant sets and for each set we estimated the genetic variance it
explained across 34 complex traits in 11,923 bulls and 32,347 cows. Only sets that explained more
variance than a random set were carried forward in the analysis leaving approximately one million
variants. We defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the
proportion of the variance explained by each variant (Xiang ef al. 2019). Further LD pruning and
variant classification reduced the set to 40,000 variants that were included on a new Illumina XT SNP
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chip design. Finally, we tested whether this new variant set increased genomic prediction accuracy
using Bayesian genomic prediction method BayesR across milk, fat and protein yield, somatic cell
count and fertility, when compared to the standard Illumina 50k SNP chip in an independent cow
dataset (N range 538 (Crossbreds) to 2740 (Holstein)). Similarly to sheep, validation animals were
not allowed to have sires or half-sibs in the training set.

RESULTS AND DISCUSSION

Sheep. One million eQTL were detected with significant overlap of eQTL between gene, exon
expression and splice variation. Overlapping the eQTL with significant GWAS peaks resulted in
10,000 selected SNP that were added to the 50k Ovine SNP chip for genomic prediction. The increase
in prediction accuracy from adding the 10,000 functional SNP was approximately 2 to 3% and var-
ied between traits (Figure 1). In most traits Bayesian methods attained higher prediction accuracy
than GBLUP as they are better at accommodating SNP with large effects (data not shown). Bias of
genomic breeding values (slope of phenotypes on genomic breeding values) was unaffected compared
to Ovine 50k results.
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Figure 1. Genomic prediction accuracy when comparing standard S0k Ovine and Bovine SNP
chips (50k) to SNP sets that include prioritised markers using functional information (S0kPLus)
in Merino and Border Leicester/ Merino cross sheep, as well as Holstein, Jersey, Aussie Red,
and Holstein/Jersey crossbred cattle

Dairy Cattle. In the variant prioritisation work, the per-variant trait variance explained was highly
consistent (> 0.98) between bulls and cows across traits. Based on the per-variant heritability, the
sets of mQTL, eQTL and variants associated with non-coding RNAs ranked the highest, followed
by more recent mutations, those under histone modification marks, and selection signatures. A XT
SNP chip with 40,000 variants from the prioritisation (as well as 8,000 markers overlapping with
the Low-Density Dairy SNP chip) is currently in use for genotyping these variants directly (to avoid
imputation errors). An early validation in cows not used in the prioritisation and using the imputed
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high-value variants has increased prediction accuracy on average by 2.5% across all pure breed
groups and traits (Figure 1). The increase in accuracy was more pronounced in crossbred, Jersey and
Australian Red cattle, which is encouraging for these smaller breed groups, but could also be partly
due to lower reference population sizes in those groups. Additional XT SNP chip results can be found
in van den Berg et al. (2019).

CONCLUSIONS

A strategy to prioritize variants from whole-genome sequence using functional genomic, annotation,
and phenomic information combined with target trait phenotypes has increased genomic prediction
accuracy in animals that are less related to the reference population in both sheep and dairy cattle.
This results in genomic breeding values that are more widely applicable across breeds (shown) and
more robust across generations (not shown). The prioritized SNP sets can be utilized by industry
immediately to increase prediction accuracy and genetic gain.
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MORE GENOTYPES THAN MARKERS: THE SS-T-BLUP MODEL IN ACTION.
AN APPLICATION STUDY IN MULTI-TRAIT AUSTRALIAN ANGUS BREEDPLAN
GENETIC EVALUATION

V. Boerner and D.J. Johnston
Animal Genetics & Breeding Unit", University of New England, Armidale, NSW, 2351 Australia

SUMMARY

Multi-trait single step genetic evaluation is increasingly facing the situation of having more in-
dividuals with genotypes than an individuals’ genotype has markers. This leads to an algebraically
impossible inversion of the genomic relationship matrix (G). Recent derivations in single step equa-
tions called SS-T-BLUP have provided an elegant way to circumvent the inversion of the G and
therefore accommodate the described situation. In this paper we examine the applicability of the SS-
T-BLUP model to the multi-trait Australian Angus BREEDPLAN genetic evaluation and compare
the results to applying two different ways of using G in a single step model. Results clearly show
that SS-T-BLUP outperforms other single step formulations and allows users to avoid approximating
the inverse of G.

INTRODUCTION

Within the last decade genotyping thousands of individuals with Single Nucleotide Polymor-
phism (SNP) chips at the commercial level has become common practice in many species of eco-
nomic relevance. However, due to cost effectiveness these individuals are being genotyped with
low to medium density SNP chips, with usually not more than 50,000 markers. To date, genetic
evalua-tion systems allow for SNP marker genotypes via the so-called Single Step model
(Christensen and Lund 2010). In this model most often markers are used to pre-calculate a
marker based relation-ship matrix which subsequently combined with the usual pedigree derived
relationship matrix to a so-called H matrix (SS-H-BLUP). This requires the inverse of G as well.
The described situation of having thousands of individuals genotyped at medium to low density has
led to the situation where G is algebraically no longer invertible due to rank deficiencies. A possible
solution is to abandon G and move to a model which incorporates the markers directly (SS-SNP-
BLUP). While SS-SNP-BLUP is generally equivalent to SS-H-BLUP many of its final
implementations suffer from convergence problems with regard to iterative solving or demanding
pre-conditioner computation. Recently an elegant intermediate model has been formulated which
may be seen as a mix of SS-H-BLUP and SS-SNP-BLUP called SS-T-BLUP (Mintysaari et al.
2017). SS-T-BLUP does not need G nor its inverse and fits the markers directly. As it fits G
implicitly, it is algebraically equivalent to SS-H-BLUP under certain assumptions. In addition, it
provides EBVs at the individual level which can be readily transformed into marker solutions. In
this paper we will examine the effect of SS-T-BLUP on the computational load to a Single Step
genetic evaluation of Australian Angus. We will compare the results relative to the ordinary SS-H-
BLUP approach.

METHODS
Model. The “H” matrix (Christensen and Lund 2010) required for SS-H-BLUP can be written

as
A1 —AiA2 A+ AiGAL | AiGy,

GyA; Gy (D

* A joint venture of NSW Department of Primary Industries and the University of New England
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where 1 is a vector indexing the subset of 7,, non-genotyped of individuals, 2 is a vector indexing
the subset of n, genotyped individuals, A is the pedigree-based relationship matrix, A; = Aj 2A; é,
and G,, is a genomic relationship matrix dimension n, X ng which is constructed from a centred
and scaled marker genotypes matrix M of dimension n, X n, and subsequently blended. Thus
G,, = YMM' + AC, where C is an arbitrary but symmetric matrix and y and A are arbitrary non-
zero weights. For the sake of simplicity we will set C =Ayp and 1 =y+A,y>0, A >0. H~!

be written as
Al"l ‘A1’2 0‘ 0
(Az,l | A22 )+ 0 G;l_Aié )

(Christensen and Lund 2010) or as H! (Strandén et al. 2017)

Al] ‘A12 ‘ 0
<M> | o [e — @2 —aia) ey | Q

where A™ is a respective block of the inverse of A. However, replacing G,, with yMM’' + AC in
equation 1 and inverting the resulting matrix yields matrix ¥~!

AT A2 0| 0 0] o A
+ N
A2 ‘AZ»Z 0 ‘ A-1(A22 — A2 (A1)~ 1420) 0 ‘ M*M* @

where M* = MT(K,)~!, MT = (A=1(A%2 — AZ1 (AL ~1AL2))M, (K,)~! is an upper triangular
matrix derived from K~! = (K,)"'(K,)"!, K = (y"'D~' + M'M") and D! is the inverse of D
which is an arbitrary but symmetric and positive definite matrix of dimension n,, X n,, (Méntysaari
etal. 2017). Further D may contaln marker specific weights, or allele frequencies if M is not scaled.
Given matrices H~!, H~! and W~ one can define three different BLUP models, SS-H-BLUP, SS-H-
BLUP and SS-T-BLUP, which differ solely in which formulation of the inverse of H is used (H ',
H~' or ¥~!). However, the different formulations will have consequences for solver preparatlon
and iteration time.

Data. The SS-H-BLUP, SS-H-BLUP and SS-T-BLUP models were applied to an Australian An-
gus data set currently used in commercial genetic evaluation. The data set comprised of 35 traits
with a total of 9,565,814 records across all traits, and 2,621,403 individuals in the pedigree which
allowed for multiple sire mating. The number of animals with genotypes was 58,705 comprising
of SNP marker genotypes of various densities and panel manufacturers imputed to a common set
of 56009 SNPs. To increase the computational load additional 91,295 genotypes (data set 150k)
and 341,295 genotypes (data set 400k) were artificially imputed in a combined regression-sampling
approach. The 400k data set was only used for SS-T-BLUP because the other models were compu-
tationally infeasible.

The multi-trait model included a single fixed factor per trait, 27 correlated genetic factors, 27
correlated genetic groups factors with 19 genetic groups each, 3 correlated maternal permanent
environmental factors and 22 correlated sire-by-herd factors. The total number of equations was
76,823,378. A and y were set 0.05 and 0.95, respectively.

Software. The system of equations was solved with AGBU’s current large scale linear mixed
model library solver which uses the preconditioned gradient algorithm (PCG) for iteratively solving
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linear mixed models and integrates Intel(R) MKL(R), version 2017 update 8. Convergence was
achieved when the L2 norm of PCG residuals scaled by the L2 norm of the mixed model equations’
right hand side was < 2.68¢™°. All computationally relevant integer and all real numbers were
represented in a 64 bit. Computations for the 150k data set were carried out on a computer with two
sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v3 with 2.60GHz, a total of 28 cores, and
528GB of random access memory (RAM). Computations for the 400k data set were carried out on
a computer with two sockets each carrying an Intel(R) Xeon(R) CPU E5-2697 v4 with 2.30GHz, a
total of 36 cores, and 256GB of RAM.

RESULTS

Table 1: Processing time in real time seconds (hours) for various steps when iteratively solving
a SS-T-BLUP, SS-H-BLUP and SS-H-BLUP model using an Australian Angus BREEDPLAN
dataset

task  SS-H-BLUPly,  SS-H-BLUP;5p  SS-T-BLUP;5p  SS-T-BLUPy,

G 1,756 1,756 - -
Ar» 250 250 i .
G 9,150 9,150 - -
A27271 3,500 - - -
M and K - - 3,422 4,210
KL - - 352 320
M* - - 629 1170
A diag? - 262 262 219
preparation 14,656 (4) 11,418 (3.2) 4,665 (1.3) 5.919(1.6)
iteration 7.5 11.2 8.6 12
Yiteration  19,123(5.3) 28,716(7.9) 22,134(6.1) 30,809 (8.5)
run time  33,779/(9.4) 40,134 (11.1) 26,799 (7.4) 36,728 (10.2)

1: 150,000 individuals with genotypes. 2: 400,000 individuals with genotypes. 3: sampling of diagonal elements of A, ;
using 10,000 samples.

Results for the different parts of the setup and solving steps are provided in Table 1. SS-H-
BLUP;s0, SS-H-BLUP, 50, SS-T-BLUP; 59 and SS-T-BLUP4 converged in equal number of rounds
which was ~2,560. The major differences between SS-H-BLUP; 5, SS-ﬁ-BLUP150 and SS-T-
BLUP;5 are the computation time for run preparation and the computation time per round of it-
eration. The preparation time for model specific parts for SS-T-BLUP; 59 was 1.3 hours, for SS-H-
BLUP;50 4 hours and for SS-ﬁ-BLUPBo 3.2 hours. Thus, compared to SS-T-BLUP, SS-H-BLUP
needed 3 times and SS-H-BLUP 2.5 times more real time for all necessary pre-calculations. In terms
of time per iteration SS-H-BLUP; 5 took 7.5 real time seconds for a single round of the precondi-
tioned gradient solver, followed by SS-T-BLUP; 5y with 8.5 real time seconds. With 11.2 seconds
per iteration SS-H-BLUP was slowest. Due to the huge time savings for run preparation and only
a slightly longer time while iterating SS-T-BLUP; 5 needed only 80 % of the total processing time
required by SS-H-BLUP; 5 and only 66 % of SS-H-BLUP; 5. The last column in Table 1 shows the
computing time for SS-T-BLUP4(y.
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DISCUSSION

SS-T-BLUP has been proposed as a single step model which can facilitate data sets where the
number of genotyped individuals exceeds the number of markers and the G matrix is algebraically
not invertible. These situations become more common in commercial plant and livestock species
where individuals are genotyped with low to medium density SNP chips (Méntysaari et al. 2017).
This is achieved by reformulating the “H” matrix representation such that neither the G or Az >
matrices nor their inverses need to be built or approximated. As shown by the results, SS-T-BLUP
clearly outperforms SS-H-BLUP in terms of total processing time which is mainly due to the huge
computational cost for setting up G, A, > and inverting both as the inversion cost grows cubicly with
ng, whereas at a constant n,, the cost for generating M grows less than linearly and the cost for
K grow (nm, X n,, +1)/2 x ng. In terms of seconds per iteration the main difference between SS-

T-BLUP, SS-H-BLUP and SS-H-BLUP is caused by the operations of ¥~!, H~! and H~! times a
vector y. This can be narrowed down further to a single matrix vector operation AH, . 21 y=(G,'—

A %)y in SS-H-BLUP, or one matrix vector operation AH, . 21y = G,'y and one solver operation

y = (A2? — A21(AVD)7IAL2)x in SS-H-BLUP, or two matrix vector operations M* M*y and one
solver operation y = (422 —A%1(AL1)~1412)x in SS-T-BLUP. In the example given here operations
AH;’ 'y and G,,'y required ~ 2.25¢10 floating point operations (FLOPs), whereas operation M M Ty

required ~ 1.5¢10 FLOPs. SS-T-BLUP and SS-H-BLUP have additional cost for solving y = (Az*2 —
A2=1(A171)‘1A1*2))£ which offsets the FLOP advantage of SS-T-BLUP and produce an additional
overhead for SS-H-BLUP. For SS-H-BLUP these disadvantages whilst iterating are not balanced
due to not inverting Aj >, because its inverse can be calculated much quicker than the inverse of
G, resulting in almost 20% more total processing time compared to SS-H-BLUP. For SS-T-BLUP
the combination of an advantage in terms of FLOPs, extra burden for solving and huge saving in
preparation time resulted in a 20% and 33% decrease in processing time compared to SS-H-BLUP
and SS-H-BLUP, respectively.

CONCLUSION

These results support the conclusion that SS-T-BLUP provides a feasible algorithm to calculate
exact solutions for estimated breeding values when the number of genotyped individuals exceeds the
number of markers. A limitation to the number of genotyped individuals is solely set by the avail-
able RAM. Therefore SS-T-BLUP allows solving Single Step equation systems iteratively without
generating G or A, > or their inverse matrices or any approximation of these matrices.
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SIMPLE EXAMPLE TO DEMONSTRATE THE EFFECT OF ALLELE
FREQUENCIES ON THE GENOMIC RELATIONSHIP MATRIX VALUES

M.H. Ferdosi, N.K. Connors, V. Boerner and D.J. Johnston

Animal Genetics & Breeding Unit", University of New England, Armidale, NSW, 2351 Australia

SUMMARY

Genomic evaluations using single-step genomic best linear unbiased prediction (ssGBLUP)
combine the genomic relationship matrix (GRM) and numerator relationship matrix (NRM) together,
to form the H matrix. The GRM values represent relationships between individuals and are dependent
on allele frequencies. In this study, a simple example is used to demonstrate how the change in allele
frequency can effect the values in the GRM, while also exploring the possible range of GRM values.

INTRODUCTION

In the pre-genomic era, pedigree was used to build the Numerator Relationship Matrix (NRM)
that shows the relationship among individuals. The NRM is double the coancestry and can only show
the relatedness between individuals, so the NRM values are always positive and range between 0 to 2.
The NRM is a key component in Mixed Model Equations (MME) to calculate variance components
and Estimated Breeding Values (EBVs). Genomics is used routinely in genetic evaluations nowadays,
such as Australia’s national beef recording and genetic evaluation system (BREEDPLAN), and with
decreasing prices of genotyping, large numbers of individuals are genotyped. VanRaden (2008)
showed that a Genomic Relationship Matrix (GRM) can replace the NRM in MME. The GRM is a
variance and covariance matrix that can not only show relatedness among individuals but can also
show the unrelatedness among individuals through negative values. The GRM values are dependent
on allele frequencies and coding (Strandén and Christensen 2011; Tier ef al. 2015). In the situation
that both genotype (GRM) and pedigree (NRM) are available as current and historical information,
a new method is required to make best use of both information sources appropriately. Single-Step
genomic best linear unbiased prediction (ssGBLUP) was suggested by (Aguilar e al. 2010) to address
this issue by building the new matrix H, combining both NRM and GRM information. Currently,
ssGBLUP used in BREEDPLAN uses realised population allele frequencies to build the GRM. In
this study, a simple example is used to demonstrate how the change in allele frequency can change
the GRM values, whilst also exploring the possible range of GRM values. A better understanding of
effects of allele frequency on GRM values will lead to a better understanding of the H matrix.

MATERIAL AND METHODS

Theory. This study considers a very simple situation where we have three animals, each with one
marker (alleles AA, AB and BB). Summarising the GRM value (r) for one locus and two individuals
using VanRaden first method (VanRaden 2008):

_(b—2p+1)(c—2p+1)_bc+b+c+1_b+c+2—2p )
2p(1-p) 2p(1-p) 1-p

where ‘b’ and ‘¢’ were genotypes (only one marker) for two individuals and ‘p’ was the allele
frequency. The ‘b’ and ‘c’ are coded -1, 0 and 1 for AA, AB and BB. The (2p — 1) that is subtracted
from ‘b’ and ‘¢’ is the mean genotype score. The 2p(1 — p) is a scaling factor in order to make the
GRM values comparable to NRM. For the case where ‘b’ and ‘¢’ are opposing homozygotes i.e. b =

* A joint venture of NSW Department of Primary Industries and the University of New England
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-1 and ¢ = 1 then ‘7’ is

—-1-1+1+1 —-1+1+2-2 2-2
- - P_g_2"P__5 )
2p(1-p) I-p l-p

For the case where ‘b’ and ‘c’ are both heterozygote i.e. b = 0 and ¢ = 0 then

o2y 1
2p(1-p) 1-p 2p(l-p)

Table 1 - (A) shows the formulas for all genotype pairs and Table 1 - (B) shows similar formulas prior
to dividing the GRM values by the scaling factor 2p(1 — p). The determinant for both matrices were
equal to 0, i.e. this matrix is singular and cannot be inverted as mentioned in Strandén and Christensen
(2011). Table 2 shows the formula for which allele frequency can be calculated if wanting to obtain a
specific relationship value. A relationship cannot be calculated for opposing homozygotes by using
Table 1 - (A) when scaling factor is used, and as such there is no formula for this combination in Table
2. However, without the scaling factor (Table 1 - (B)) or changing the scaling factor the relationship
can be calculated.

3

Table 1. Formula to calculate GRM value () for all possible genotype pairs - single marker only

Formula | (A) - with division by 2p(1 - p) (B) - without division by 2p(1 - p)

Allele | -1 0 ! 0 1
-1 12—_’; % =2 | 4p? 4p*-2p 4p* —4p
0 217(11—p) -2 72£H 4p*—4p+1or(1-2p)* 4p2—6p+2
: s 4p* —8p+4or (2-2p)?

p is the allele frequency

Table 2. Formula to calculate allele frequency (p) based on the specific relationship (r) in GRM - single
marker only

Allele | -1 0 1
-1 - r+l 9
r+2 e, ) r+2 1'

Vr242r+r+
0 2042) 2 2

1 2

r is the relationship

RESULTS AND DISCUSSION

The formulas shown in Table 1 - (A) were used to calculate the GRM values that would be
generated when p is 0.5 and 1. Table 3 - (A) shows the GRM values when p is 0.5, and Table 3 -
(B) shows the GRM values when p is 1. Since the 2p(1 — p) becomes 0 when the p value is 1, the
limit was used when p approaches 1 (or 0 - Table 3 - (B)). Table 2 can be useful for simulation
purposes. For example, Tables 4 (A) and (B) show the allele frequencies required to get a GRM values
for important relationships of 0.5 (expected value for parent and offspring relationships or full-sib
relationships) and 0.25 (expected value for half-sibs relationships) respectively. Figure 1 summarises
the results shown in Tables 3 and 4.
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Table 3. Table shows GRM values when p =0.5 (A) and when p approaches 1 (B) - by using the formula
in Table 1 - A

Formula | (A)-p=05and 2p(1 -p)=0.5 (B)-lim, 1+ and 2p(1 —p)=0

Allele | -1 0 1|-1 o0 1
-1 1/05 0 -1/05 | 0 -1 -2
0 0 0 00 )
1 1/0.5 =

Table 4. For different relationships (r) using formula in Table 2 the p would be

Formula | (A) - for 0.5 relationships (B) - for 0.25 relationships

Allele | -1 0 L -1 0 1
-1 1/5 3/5 -1 1/9 5/9 -
0 I TE 1/3,2/3 4/9
1 4/5 3/9

For Allele Coding -1,0, 1

10

—
——

I
!
I
I
I
1
I

GRM Values

—_— 11 = -10 1,1 00 = 0,1 = 1,1

0.0 0.2 0.4 D.S 0.8 1.0
Allele Frequency
Figure 1. Effect of different allele frequencies on the GRM values using three individuals and one locus.
The legend shows the genotypes pairs.

For a single marker only GRM, as discussed in this article, allele frequencies have significan
effects on the GRM values. As shown in Figure 1, the more extreme the allele frequency (i.e. (
or 1) the more extreme the GRM value. Table 3 - (B) shows that allele frequencies of 0 and 1 ca1
result in infinite GRM values, demonstrated also in Figure 1. The lower limit of GRM for opposing
homozygote is always -2, regardless of allele frequency. Figure 1 demonswates how rare alleles anc
extreme allele frequencies can cause very large numbers in the GRM. This is amplified here due tc
only using a single marker. It should be noted that in practice, usually using thousands of markers
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the effect of extreme allele frequencies will be minimized. This is dependent on SNP selection and
whether the population is multi-breed for example. This simple example shows the importance
of choosing the appropriate allele frequency (e.g. base population allele frequency — VanRaden
(2008)) in order to reflect the true relationship among individuals in a GRM. Removing SNPs with
very high or low allele frequencies or replacing their allele frequencies with pre-set allele
frequencies may lead to more compatible values in GRM (in comparison to NRM), with no or
negligible effect on estimated breeding values kings (Tier et al. 2015).

CONCLUSIONS
In this article a simplified version of the GRM was presented to demonstrate the effect of allele

frequency on GRM values. In addition, simple formula were presented to calculate GRM values based
on the specific allele frequency, or what allele frequency to use to obtain a specific GRM relationship
value. These formulas can further be used for simulation purposes and development of methods to
build the GRM efficiently.
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DEEP LEARNING FOR GENOTYPE QUALITY CONTROL
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SUMMARY

SNP genotype data are increasingly employed across a range of species for routine use in parent-
age verification and identification, and single-step evaluations. Robust and automated quality control
processes are a critical step in maximizing the value of genotype data in these, and other, applications.
Prediction of “genotype sex” is a common quality control metric but can be problematic for example
on mammalian chips that do not contain Y chromosome markers because methods based on hete-
rozygosity of X chromosome markers can incorrectly flag inbred females as male. A deep learning
model is trained to predict “genotype sex” and validated and tested using real-world data routinely
used in the American Hereford Association’s single-step evaluation.

INTRODUCTION

A major challenge that comes with the advent of low-cost SNP genotyping is curation and management
of the vast quantities of data that are produced. Take the case when the genotype sample for a particular
animal fails to verify against its genotyped parents in a SNP based parentage verification. If this was to
occur, an ideal system would automatically initiate a search against other relevant genotype samples to
try and find the true parent without any extra input from the user. If such functionality is not available,
or if such a search fails to find a match, then there is the question of a) is the true parent not genotyped,
or b) is one or more of the relevant genotypes involved in the parent verification a bad or mismatched
sample. In either case this typically requires the breed society and/or breeder to be contacted in order to
generate a list of potential parents or to query any potential issues with the sample. This can be compli-
cated by the use of non-standard or otherwise inconsistent animal, sample, and genotype identifiers. The
length of time for this process can be significantly shortened by gleaning various information from the
genotype sample(s) in question such as potential relatives or phenotypic characteristics. For example,
if a genotype is clearly from a female and the animal in question is definitively male (or animal is black
and horned and genotype indicates red and polled), it is reasonable to assume the sample in question is
incorrect and the animal should have a new sample taken for regenotyping.

Prediction of “genotype sex” is an important quality control metric for genotype samples and
is predicted from the sex chromosomes, i.e. in mammals the X and Y chromosomes for males and
two X chromosomes for females. Females inherit one X chromosome from their mother, and one X
chromosome from their father. With no inbreeding, the copy of each allele from each chromosome
will not always be the same and the resulting SNPs will exhibit heterozygosity. As males only have
one copy of the X and Y chromosomes, any alleles called from the unmatched parts of those chro-
mosomes should always be the same, resulting in homozygosity within that region.

Deep learning is a subset of machine learning algorithms that passes an input training dataset
through multiple layers of neurons in a neural network to successively transform and extract features
from the output of the previous layer (Deng and Yu 2014). Leveraging the unique computational
capabilities of Graphics Processing Units (GPUs) developed to render modern video games, deep
learning approaches have gained significant media attention recently due to associated large tech-
nological advances in applications such as self-driving cars, image recognition and classification,
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medical diagnostics, and many others.

Certain X chromosome SNPs, even those outside the pseudo autosomal region (PAR), can be
heterozygous in males if they are located in regions exhibiting copy number variation. Further, X
chromosome SNPs can be homozygous in females, especially inbred females who may have inherited
the same X chromosome from both her sire and dam, e.g. if her sire is also her maternal grandsire. Thus
in rules-based approaches selecting an appropriate subset of SNPs and male/female heterozygosity
cut-offs can greatly affect the subsequent genotype sex prediction and without Y chromosome SNPs
inbred females can be misclassified. On the other hand, given a suitable training dataset with realistic
data and known true sex of the associated samples, a deep learning model can in theory account for the
nuances and variation of specific SNPs in the given training dataset to generate accurate predictions.
This is possible using a table containing the relevant sex SNPs and utilizing approaches for deep
learning on tabular data via the fast.ai toolbox (Rachel Thomas 2018). The objective of this study
was to determine if a deep learning approach can accurately predict the genotype sex of an animal
and to assess the value of such a tool as a routine automated quality control step within a genomic
database information system.

MATERIALS AND METHODS

The genotype data employed for the study consisted of a subset of those SNP genotypes from
67,304 animals used in a recent single-step evaluation from the full American Hereford Association
genomic database of >110,000 genotyped animals. The samples originate from several platforms,
genotyping laboratories, and chips across a number of years but consist predominantly of GeneSeek
50K and 30K genotypes. Of these, a subset of 15,619 “pedigree verified true”” male and female gen-
otypes was determined by taking samples from only those animals who were recorded in the current
pedigree as a sire or dam and who subsequently passed SNP-based pedigree verification with at
least 1 genotyped offspring. For pedigree verification, no samples used in this study had less than
5,000 called SNPs in common. Pedigree verified animals recorded as a sire in the pedigree were then
considered a “true” male while those recorded as a dam were considered a “true” female totalling
5,058 and 10,561 for males and females respectively. As the American Hereford Association has
utilized the international ICAR ID format for many years, the pedigree recorded sex for each animal
is recorded as the 7" character of the ID, e.g., HERUSAMO000000000001 is recorded as a male and
HERUSAF000000000002 is recorded as a female. Comparing a predicted genotype sex to its pedigree
recorded sex is straightforward as a result.

Three approaches for computing “genotype sex” were examined. The first consists of a simple
rule-based non PAR (nPAR) X-chromosome heterozygosity check using all available called nPAR X
SNPs from a list of 3,035 SNPs which exist across a variety of genotyping chips and platforms. No
sample used in this study had less than 700 called nPAR X SNPs. Samples with <5% heterozygosity
amongst their called nPAR X SNPs were classified as males while samples with >5% were classified
as females. The second approach tested is the rule-based protocol developed by ICBF and is as follows
using only a specific small subset of 280 nPAR X chromosome SNPs as described by McClure et al.
2018: 1) Determine heterozygosity rate (#AB/ (#AA+#AB+#BB)) for nPAR SNP; 2) If <5% het rate
=male; 3) If >15% female; 4) If between 5 and 15%= ambiguous sex. Additionally, ICBF employs
a subset of 7Y chromosome SNPs: 1) Count nPAR chrY genotypes; 2) If 0—1 genotypes = female;
3) If 6-7 =male; 4) If 2-5 = ambiguous sex. Between the X and Y chromosome predictions any
non-conflicting unambiguous sex is reported, otherwise an ambiguous or conflicting sex is reported.
The Y sex prediction is dependent on samples having been genotyped on a chip where Y SNPs are
available and several thousand samples used in this study did not have Y SNPs available. Instead of
excluding those samples a two-step ICBF (X+Y) sex prediction was utilised instead of the fully joint
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ICBF(X+Y) sex prediction described above and by McClure et al. 2018, such that Y chromosome
predictions were used only if the X chromosome predictions were ambiguous.

Finally, a deep neural network (DNN) genotype sex predictor was built utilizing the fast.ai deep
learning tabular toolbox (Howard & others 2018) in conjunction with a dataset consisting of just
the 280 ICBF X chromosome sex SNPs. Some 2,500 male and 5,000 female genotypes chosen at
random from the “pedigree verified true” samples were used as the training data for the DNN while
the remaining of the 15,619 samples were used as the validation data. The only dependent variable
is the sex prediction while each called SNP was treated as an input categorical variable with values
-1, 0, 1, or 5 (no call). Prediction accuracy was used as the training metric and neural networks with
various numbers of hidden layers and neurons per layer were tested for training over 25 epochs which
took ~5-6 minutes each. The sex prediction is output as a probability of being male and a probability
of being female. Sex predictions with > 80% probability were taken as the predicted sex with the
remaining assumed to be ambiguous.

RESULTS AND DISCUSSION

Table 1 summarises the number of predicted male, female, and ambiguous sex animals from each
approach. An ambiguous male or female means the sex prediction was ambiguous and the pedigree
recorded sex was male or female respectively. A conflicting male or female refers to the pedigree
recorded sex being male or female respectively and the genotype sex predicted as female or male,
respectively. The DNN results were reported from a network with 600 hidden layers and 300 neurons
per layer which was found to have the most accurate results of those tested. However, other network
sizes with neurons on the order of the number of SNPs (280) achieved very similar results. Perhaps
unsurprisingly, the DNN achieves the highest accuracy on this “pedigree verified true” dataset as it
is the same dataset that was used for training and validation of the neural network.

Table 2 summarises the differences between the sex predictions from each approach compared
to the pedigree recorded sex of each animal in the larger genotype database not including samples
otherwise used in the training and validation set for the DNN consisting of 67,304-15,619=51,685
samples. In both the “training” and “test” datasets, use of the ICBF Y chromosome data to augment
otherwise ambiguous predictions using only the ICBF X chromosome results does appear to improve
prediction accuracy. The nPAR X approach with the hard cut-off between male and female means
no “ambiguous” sex samples are flagged, however, the overall percentage of animals matching
their pedigree recorded sex is roughly the same as the ICBF approach. The DNN achieves a similar
percentage of predictions matching the pedigree recorded sex in the test dataset as the rules-based
approaches while using only the 280 ICBF X SNPs and after training with a dataset of only 2,500
male and 5,000 female genotypes randomly selected from the 15,619 “true” sexed samples. The
remainder of the 15,619 samples were used for cross-validation during training.

Table 1. Results summary against the “pedigree verified true” sex of 15,619 individuals used
for training and validation of the DNN

nPAR (X)  ICBF(X) ICBF(X+Y) DNN(X)

% Correctly Predicted 99.76 99.23 99.86 99.88
Total Predicted Female 10,525 10,444 10,542 10,549
Total Predicted Male 5,094 5,074 5,076 5,065
Ambiguous Female N/A 97 0 5
Ambiguous Male N/A 4 1 0
Conflicting Female 37 20 20 10
Conflicting Male 1 0 1 3
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Table 2. Genotype sex prediction results summary against the pedigree recorded sex of the
animals in the 51,685 samples test dataset, which does not include any animals used in the
training and validation set

nPAR (X)  ICBF(X) ICBF(X+Y) DNN(X)

% Matching pedigree 99.79 99.40 99.82 99.70

Ambiguous Female N/A 197 2 10

Ambiguous Male N/A 37 14 46

Conflicting Female 57 53 53 61

Conflicting Male 51 23 25 82
CONCLUSIONS

This study shows deep learning approaches have potential as an accurate genotype sex prediction
tool in routine and automated genotype sample quality control processes. The accuracy of a deep
learning tool trained on a random subset of “pedigree verified true” gendered samples is found to
be comparable to that of existing rules-based approaches. A purely X chromosome heterozygosity
rules-based approach can benefit from using Y chromosome data to improve otherwise ambiguous
predictions.

The benefits of a deep learning tool are that it can be integrated and automated with an existing
suite of quality control protocols. In a production system the tool could be routinely tuned and further
trained against new and verified data as it arrives. This in theory should allow it to better account for
the nuances in the specific datasets of interest.

There are a significant number of avenues for further investigation with regards to the deep
learning approach. These include greater exploration of the effect of the deep learning parameters on
prediction results, e.g. number of hidden layers and neurons per layer, as well as the size of the dataset
used for training and validation both in terms of the SNPs included and the particular individuals that
comprise the training and validation sets. Other avenues include incorporation of other data features
into the deep learning model such as genotyping platform or chip, Y chromosome SNPs, recorded
breed, sample call rate or individual SNP GC scores, inbreeding coefficients, and/or other pedigree
information. If genotype data on individuals exhibiting sex chromosome defects or being intersex are
available, these could also be incorporated. Extension of the model to additional prediction outputs
(e.g. breed) would also be valuable.

Some drawbacks of the deep learning approach are that it does require a suitable training dataset,
finding the optimal DNN architecture (e.g. number of layers and neurons per layer) and training
parameters is unclear, it requires GPU-based hardware and expertise to run. Finally, even though the
deep learning model returns the probability a given sample is male or female unlike the rules-based
approaches, the abstract nature of the deep learning model can create extra challenges in communi-
cating prediction results back to breeders or other stakeholders.
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‘METAFOUNDERS’ TO MODEL BASE POPULATIONS IN GENOMIC
EVALUATION FOR MULTI-BREED SHEEP DATA
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SUMMARY

Models for genetic evaluation of animals from different base populations need to account for
systematic differences not explained by genetic relationships considered. These include differences
between breeds, animals with unknown parentage born in different time periods or, for single-step
evaluation, founders for animals with or without genotype information. A standard method to achieve
this, is to define appropriate genetic groups and fit these as additional effects in the model of analysis.
Recently, so-called meta-founders have been proposed as an alternative which accounts for ancestral
inbreeding and relationships, estimated from genomic information. We examine estimates of ancestral
relationships and their impact on predicted breeding values for a practical data set from a multi-breed
sheep population. While estimates were afflicted by insufficient genomic information for some groups,
results correctly identified some known breed or strain differences and patterns of introgression.
Correlations between predicted breeding values from respective analyses fitting genetic groups and
meta-founders were high, suggesting that there is scope for meta-founders to replace genetic groups.
However, fitting meta-founders reduced variances of predicted breeding values. Further investigations
when more genotype information becomes available are warranted.

INTRODUCTION

The single-step procedure for joint genetic evaluation of genotyped and non-genotyped animals
using both pedigree and genomic information has become routine for many livestock improvement
schemes. Commonly, this is implemented as the so-called ssGBLUP which replaces the classic, pedi-
eree based relationship matrix, A, with its counterpart, H, which combines the genomic relationship
matrix, G, with A. An inherent problem with this approach is that A and G imply conceptually
different base population: For A, parents of animals at the time when pedigree recording began are
considered to be the unrelated, non-inbred founders. In contrast, genomic relationships reference an
ancestral base population in the distant past. Several methods have been described to align the two
matrices; see Meyer et al. (2018) for a recent review. Some proposals involve scaling G to ‘match” A
while others suggest to modify A to account for ancestral inbreeding (Christensen 2012). Specifically,
the latter can be achieved by replacing unknown parents in the pedigree with ‘meta-founders’ (MF),
allowing for ancestral inbreeding and relationships between them, estimated from genomic informa-
tion (Legarra et al. 2015; Garcia-Baccino et al. 2017). MF are conceptually similar to the “phantom’
parents (Westell et al. 1988) used routinely to account for unknown parent groups. Thus, in addition
to aligning G and A, they may provide an alternative to modeling genetic groups. Moreover, MF are
treated as correlated and may model genetic relationships between different base populations more
appropriately. This paper examines estimates of ancestral relationships and their effects on estimates
of breeding values for a practical data set recorded for Australian sheep.

MATERIAL AND METHODS

Data consisted of 1,206,908 records for eye muscle depth, recorded for Australian terminal
sire sheep breeds between 1990 and 2018. These included 5 main breeds, namely Poll Dorset,
Suffolk, White Suffolk, Merino and Texel, and 17 minor breeds with breed differences modeled by
appropriately defined genetic group effects. After eliminating individuals not connected to the data or

* A joint venture of NSW Department of Primary Industries and the University of New England
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genotyped animals, there were 1,698,838 animals in the pedigree. Genotype information, consisting
of marker counts for 48,599 SNPs, was available for 23,040 animals, of which 18,396 had phenotypes.
Data were pre-corrected for fixed effects of birth and rearing type, age, dam age and body weight.

Routine analyses currently classify animals of unknown parentage into 93 genetic groups (GG),
based on flock and year of birth. These animals were assigned MF ‘parents’ based on GG memberships.
A total of 10.6% of animals had both parents unknown and 7.8% had no sire identified. All animals
with both parents unknown belonged to a single GG thus had the same MF as ‘sire” and ‘dam’.

Estimates of the matrix of ancestral relationships, I', were obtained from marker information using
a pseudo-EM algorithm (Garcia-Baccino er al. 2017; Legarra and Astruc 2018). For two of the GG,
no genotypes were available. For these, diagonal elements of T" were set to the minimum value found
for the other groups. Similarly, off-diagonal elements were replaced by values reflecting the minimum
correlation encountered. In addition, the resulting estimate of I' was regularised by shrinking its
eigenvalues towards their mean, so that the smallest value exceeded 0.01. The inverse numerator
relationship matrix including MF, A~', and the corresponding submatrix of A for genotyped animals,
A’,. were obtained as outlined by Legarra er al. (2015).

A ‘raw’ genomic relationship matrix, Gy, was build from marker counts using method 1 of
Van Raden (2008). This was transformed into G = A(Gy + aJ) + (1 — )A»> with A =0.95 and A, the
submatrix of A for genotyped animals. To build the ‘standard’ H™' (no MF) markers were centered
using observed frequencies and @ = 0.025 was estimated following Vitezica et al. (2011). To build
H " (including MF), markers were centered assuming allele frequencies of 0.5 and & =0, and A~
and Ay, were replaced by A" and AL, respectively. In addition, H" was scaled (see Legarra et al.
2015) so that the same variance components were appropriate for analyses with and without MF.

The model for ssGBLUP analyses fitted animals’ additive genetic effects, 54,094 contemporary
groups (fixed) and 56,212 sire x flock-year (random) effects throughout. A standard analysis (no MF)
fitted 93 GG as additional random effects. For analyses with MF, H™" was replaced with H™" either
including or excluding GG. Mixed model equations were solved iteratively using a preconditioned
conjugate gradient algorithm with diagonal preconditioner. All calculations were performed using
WOMBAT (Meyer 2007).

RESULTS AND DISCUSSION
Means and ranges for estimates of ancestral inbreeding or ‘self-relationships’, i.e. the diagonal
elements of T, and correlations between MF (derived from I') are summarised in Table 1. Mean across
breed group correlations ranged from 0.48 (Suffolk x Texel) to 0.71 (Poll Dorset x White Suffolk),
with the range of individual values similar to that within the minor breeds and Merinos (0.14 to 0.95).
Some correlations close to unity suggest
scope for merging selected GG. Overall, Table 1. Estimates of self-relationships and ances-
however, estimates fluctuated considerably tral correlations between meta-founders
and no consistent breed group differences or
time trends were evident. To some extent, n® Self-relationship  Correlation
this can be attributed to definitions of GG, i range X range
e.g. multiple groups for the same breeds
in different flocks and overlapping years of
birth. In contrast, Legarra and Astruc (2018)
found increasing inbreeding and covariances
between MF with time for a breed of French

P. Dorset 15 0.68 0.57-0.89 0.83 0.53-0.98
Suffolk 14 0.88 0.57-1.07 0.61 0.37-0.87
W.Suffolk 14 0.62 0.50-0.81 0.75 0.58-0.98

Merino 23 0.66 0.48-1.00 0.67 0.14-0.95
dairy sheep. Accurate estimation of T' re- Texel 10080 0.59-0.96 062 0.40-0.96

RPN .. . . Other 17 0.70 0.45-0.99 0.51 0.14-0.95
quires sufficient genomic information for all
MEF. Hence, in part at least, this variability *No. of MFs per breed group " Mean
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1.00 may be attributed to a rather uneven distribu-
tion of genotypes over GG and MF. Genotyped
animals mostly contributed to numerous GG.

0.75 Sums of relative contributions (0 to 1; summed
over genotyped animals) were less than 5 for
23 GG and exceeded 500 for 7 GG.

050 Nevertheless, estimates of ancestral relation-
ships correctly identified some known strain dif-
ferences or patterns of introgression. Figure 1

°%5 shows the diagonal block of T' for Merino GG.
Groups 72-81 originate from a resource flock
(e.g. Taylor and Atkins 1997), with 72-77, 78—

IRRRRORRREISRIBREBIS58S 79 and 80-81 representing medium, strong and
Group-last year of birth fine wool selection lines, respectively, while

Figure 1. Heatmap plot of diagonal block of I' 82 is another strong wool flock. The pattern

for Merino groups of covariances between these GG reflects the

divergence between strains. Similarly, high an-
cestral correlations between breed groups shown in Figure 2 highlight the role of Poll Dorset sheep in
the formation of the White Suffolk breed.

Statistics comparing predicted breeding values (EBV) from analyses fitting GG or MF are sum-
marised in Table 2 for different categories of animals. Overall, correlations were high suggesting that
there is scope for MF to replace explicit GG in the model of analysis. Variances of EBV fitting MF
only were considerably lower than those obtained fitting GG as an additional random effect. This
implies somewhat stronger shrinkage of predictions when fitting MF, inspite of assuming the same
variances for GG and animals’ additive genetic effects, or, on average, higher error variances for
MF than GG effects. The correlation between predicted GG and MF was 0.87. Negative intercepts
highlight the change in alignment of conceptual base populations due to MF. As to be expected,
fitting both MF and GG tended to increase these variances but had little effect on correlations. It also
increased some of the regressions coeflicients for EBV fitting MF on EBYV fitting GG, presumably by
accounting for group differences which were not quite modeled adequately, possibly due to lack of
genomic information and thus less reliable estimates of ancestral relationships.

For routine implementation of ssGBLUP, convergence behaviour of iterative schemes to solve
the mixed model equations is important. Fitting GG is known to increase the number of iterates
required considerably. Replacing GG by MF did not prove advantageous in this respect: For our
analysis fitting MF increased the number of iterates substantially, from 619 (GG) to 1,014 (MF). This

Group

orset Texel

White Suffolk

Poll D Suffolk
[ ] Jisafpis)

Breed group
Figure 2. Heatmap plot of estimates of ancestral correlations for White Suffolk groups
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Table 2. Summary statistics for predicted breeding values from different analyses

Gen* Ph." MF¢ N¢ Fit MF only Fit MF and GG
Ve rf be ah \Y r b a

No No 0 204,688 0.724 0991 0.887 -0317 0.897 0.993 0940 -0.229

No Yes 0 1,159,639 0.816 099 0912 -0.337 0.850 0.997 0919 -0.220

No No 1 103,126 0.517 0978 0.836 -0.292 0930 0976 0941 -0.227

No Yes 1 28,873 0.554 0.992 0.824 -0.294 0.740 0992 0853 -0.174

No No 2 179,472 0421 0976 0.840 -0.291 0.940 0980 0951 -0.218
0

Yes No 4,562 0916 0989 0.937 -0.423 1.009 0.994 0999 -0.459
Yes  Yes 0 18,341 0900 0.995 0.937 -0.398 0989 0.996 0.990 -0.436
Yes No 1 82 0815 0981 0.898 -0.945 0.768 0.973 0.853 -0.570
Yes  Yes 1 55 0.838 0970 0.884 -0.737 0.837 0.972 0.889 -0.582
* Genotype b Phenotype ¢ Number of MF parents d Number of animals ~ © Variance of predicted breeding values as
proportion of variance fitting GG only " Correlation with breeding values fitting GG only & Regression on breeding

values fitting GG only " Intercept

can be attributed to allowing for correlations between groups when fitting MFE. In particular, some
correlation estimates were close to unity (see Table 1). Hence, convergence is likely to be improved if
groups can be redefined so as to avoid small eigenvalues in I'. Furthermore, additional analyses using
a ‘deflated’” preconditioner (see Meyer and Swan 2019) reduced iterates needed when fitting MF to
594, suggesting that there is scope to compensate for any increases in numbers of iterates required
due to fitting MF rather than GG.

CONCLUSIONS

Meta-founders have been proposed to align base populations for pedigree based and genomic
relationship matrices in SSGBLUP and as an alternative to modeling breeds or genetic groups. Results
demonstrate that estimating ancestral relationships and fitting MF is feasible for practical data with
many genetic groups. However, optimal performance requires careful definition of groups and
sufficient genomic data for all groups to ensure reliable estimates of ancestral relationships.
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SUMMARY

Random Forest (RF) is one of the most popular machine learning methods for large genomics
data analysis. It produces the variable important measures (VIMs) for individual features, which can
be positive, zero or negative, indicating a positive or negative contribution of the feature. It is easy to
interpret single nucleotide polymorphisms (SNPs) with positive or zero VIM values when applying
RF for genomic prediction. However, little is known about the interpretation of SNPs with negative
VIM values. Most importantly, what impact of these SNPs have on the genomic prediction accuracy
of breeding values? In this study, using genotype information from 651,253 SNPs for 2,109 Brahman
cattle with yearling weight phenotype, we applied the RF to identify 8,195 SNPs with negative VIM
values and investigated their impact on genomic prediction. Specifically, we addressed the questions:
1) How did these SNPs differ from the top SNPs chosen from the RF with positive VIM values or the
SNPs randomly selected but evenly spaced along a genome? 2) Did these SNPs have any biological
relevance? Our results show that 1) including the SNPs with negative VIM values in the genomic
prediction would result in the increase in error variance and decrease in the accuracy of genomic
prediction; 2) these SNPs had no biological functions.

INTRODUCTION

Random Forest (RF, Breiman 2001) is one of the most commonly used machine learning methods
for large genomics data analysis (Chen and Ishwaran 2012). One of its analysis output parameters is
the variable importance measure (VIM). When applied to a continuous phenotype, RF generates the
VIM - %IncMSE (percentage increase in Mean Squared Error). It measures an individual feature’s
contribution to the prediction accuracy of decision trees, via the change of MSE when the data for
a feature (here a SNP) is permuted while all others are kept constant, with valid VIM values being
positive, zero or negative. The larger the value (i.e., more positive), the more important the feature is.
When applying this method to a high-density SNP panel for genomic prediction of a quantitative trait
with a moderate heritability, the questions are: 1) how do SNPs with negative VIM values behave?
2) Do they have any biological relevance? In this study, we investigated the impact of SNPS with
negative VIM values on the accuracy of genomic prediction and their possible molecular functions.

MATERIALS AND METHODS

Data. A Brahman cattle dataset, consisting of 2,109 genotyped animals with 651,253 SNPs per
animal from the CRC for Beef Genetic Technologies (Porto-Neto et al. 2014), was used for this study.
The animals were measured for yearling weight (YWT), which ranged from 115 to 353 kg with an
average of 227.7 kg (£34.32kg). Since RF does not fit fixed effects into the process, prior to the RF
analysis, the phenotypic values were adjusted for the fixed effects. These include contemporary group
(combination of sex, year and location and 41 levels) and age (302-416 days). The residuals from the
linear model of analysis of variance were then combined with the SNP information for the RF analysis.
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Identification of SNPs with negative VIM values (SNPnegvim) using RF. The detailed RF method
can be found in Li ef al. (2018). The algorithm incorporates both training and validation procedures
in its process to build decision trees to examine individual SNP contributions to prediction accuracy.
We carried out an initial hyper-parameter fine-tuning for tree size (NTree) from 10,000, 12,000, ...
20,000 using all SNPs, while the Mtry value was set as two times of the squared root of total number
of SNPs. A CSIRO high performance cluster computer with the R program (version 3.4.0) and the
library randomForest was used for the analyses.

Genomic prediction accuracy with and without SNPnegvim. A five-fold cross-validation scheme
was applied to the RF and genomic prediction. The population was partitioned into 5 subsets and each
time 4 subsets was used for training and the remaining subset was used for validating. In addition to
the genomic prediction accuracy comparison between all SNPs with and without SNPnegvim, we also
examined the results from the subsets of the top 1,000, 5,000, 10,000 and 50,000 SNPs with positive
VIM values from the RF, and those of the same size but evenly spaced SNPs along the genome (denoted
“Even”). A GBLUP model (VanRaden 2008) was used to estimate variance components and genomic
breeding values (gEBVs), where the fixed effects in the model included the contemporary group and
age. The accuracy of genomic prediction was calculated as the correlation between gEBVs and the
adjusted phenotypic values, and then divided by the square root of heritability. The final estimates of
genetic parameters were the average values from five validation analyses. The program AIREMLF90
(Misztal ef al. 2002) was used in the GBLUP analyses.

Gene Ontology (GO) Enrichment Analysis. A locus-based gene ontology enrichment analysis
using GREAT v3.00 (McLean et al. 2010) was undertaken. SNPs (£10 bp) were translated to human
coordinates (GRC37/hg19) using UCSC'’s liftOver tool (minMatch=0.1) (Hinrichs et al. 2006). A
binomial and a hypergeometric test were used to assess the enrichment of molecular function terms
and biological process terms.

Functional Enrichment Analysis. Cattle functional annotation was derived from i) histone
chromatin marks in liver H3K27ac, and H3K4me3 (Villar et al. 2015); ii) ATAC-seq information
from CD4+ and CD8+ from the Fr-AgENCODE (Foissac et al. 2018); iii) experimental in-house
ATAC-seq in liver and muscle tissues; and iv) derived from current UMD3.1 annotation. To assess the
significance of overlap between SNP datasets and functional genomic features we performed a Fisher’s
exact test with false discovery rate correction using the R package LOLA (Sheffield and Bock 2016).

RESULTS AND DISCUSSION

Characteristics of the SNPs with negative %IncMSE values. The distribution of average VIM
(%IncMSE) values (from 5-fold training datasets) for ranked SNPs (from the most important to the
least important) is shown in Figure 1. Surprisingly, of the 651,253 SNPs, 180,056 (27.7%) were found
to have a negative average VIM value. However, when investigated further, we found that only 8,195
of these SNPs had the negative VIM values in all 5-fold datasets, and the remaining 171,861 SNPs
varied between the datasets used. This clearly indicates that extreme caution needs to be taken when
using the average of the VIM values from a cross-validation scheme as the criteria to identify the
SNPs with negative VIM values. An extra step is required to validate the SNPs, because the SNPs
with negative VIM values in one population could have positive VIM values in another population.

For these 8,195 SNPnegvim, the average MAF was 0.21 (with the range 0.01-0.50). We also checked
the allele substitution effects from the previous GWAS study on this population (Porto-Neto ef al. 2014)
and found that these SNPs distributed along the whole genome, whereby 4,143 had positive effects
and the remaining 4,052 had negative effects. However, the genotypes of these SNP were in fact

negvim

imputed from an initial low-density panel of cattle 60k. These may reflect the quality of imputation.
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Figure 1. Distribution of average variable importance measures of ranked SNPs

Table 1. Average estimates of variance components and genomic prediction accuracy for dif-
ferent subsets of SNPs

Marker Additive Model
h’ c’ c’ fFACC

RF1,000 0.26+0.03 171.6£25.0 658.8+26.1 0.47
RF5,000 0.39+0.04 254.9+£32.7 658.2+26.3 0.53
RF10,000 0.42+0.04 278.5+£35.2 659.1+£26.4 0.55
RF50,000 0.45+0.04 299.0+38.7 669.2+26.7 0.58
Evenl,000 0.18+0.03 124.1£22.2 682.8+25.2 0.28
Even5,000 0.30+0.04 218.9+32.2 680.0+26.0 0.47
Even10,000 0.36+0.04 245.44+35.2 681.3+26.3 0.47
Even50,000 0.40+0.04 275.9+38.7 681.4+26.3 0.48
643,058 0.41+0.05 281.4+39.4 679.5+26.7 0.59
All SNPs (651,253) 0.41+0.05 281.0+39.6 679.6+26.7 0.55

§ All SNPs without 8,195 VIM negative SNPs;  Accuracy of genomic prediction

Genomic prediction accuracy with and without the negative VIM SNPs. Table 1 presents
the estimates of variance components and the genomic prediction accuracies from using different
sources of SNPs. In comparison to the accuracy results from using the whole panel (All SNPs, last
row in Table 1, ACC = 0.55), the top SNPs from the RF (i.e. RF5,000 and RF10,000) showed very
similar or higher (RF50,000) genomic prediction accuracy values. They significantly outperformed
the same-size SNPs randomly selected but evenly distributed along the genome (Even-). Interestingly,
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after removing 8,195 SNPnegvim, the genomic prediction with the remaining 643,058 SNPs (Table 1)
resulted in an improved accuracy value (0.59) compared to the whole panel (0.55). This value was
similar to that of using RF50,000. In addition, we discovered that all the evenly distributed SNP
datasets contained about 20% SNPnegvim. These results suggest that including SNPnegvim in the whole
panel would have caused the reduction in accuracy estimates.

Gene Enrichment Analysis. When comparing the biological functions of the genes near 8,195
SNP with those of RF5,000 or Even5,000, there was no significant enrichment found for 8,195

negvim

SNPnegvim’ nor for Even5,000. However, for RF5,000, were enriched for “RNA polymerase II core
promoter sequence-specific DNA binding”, consisting of several transcription factors such as EGRF1,
GATA3, GATAG6, NFIL3, PAX6, PAXS8 or SOX11. The latter, renowned for its role in embryonic
development and determination of cell fate (Jiang ef al. 2013). Finally, at the functional level, RF

5,000 showed significant enrichment for experimental promoters and muscle regulatory regions.

CONCLUSIONS

In low commodity livestock or aquaculture species, a common practice in applying genomic
selection is to genotype parents with a high-density SNP panel, genotype young progeny with a
low-density panel and then impute the low-density panel to the high-density panel for genomic
prediction. This study demonstrates that it is important to identify and remove the problematic SNPs
(with negative VIM values) that increase the error variance and decrease accuracy of genomic pre-
diction. The machine learning method — Random Forest has merit in use as a pre-screening tool for
1) identifying problematic SNPs; and ii) identifying subsets of SNPs that have biological functions
for low-density panels.
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IMPORTANCE OF HEAT STRESS ADAPTATION FOR NEW ZEALAND DAIRY
CATTLE

S. Harburg, P.R. Amer, J. Duckles, G.M. Jenkins and J. Sise
AbacusBio Limited, PO Box 5585, Dunedin 9058, New Zealand

SUMMARY

An analysis was undertaken to explore the potential impacts of increased frequency of heat stress
events on New Zealand dairy production systems, with subsequent consideration of the implications
for current breeding strategies. Based on current forecasts, the expected impact of climate change will
increase the frequency of heat stress events. However, it is unlikely that the expected impacts of heat
stress require major deviations from current practices and breeding objectives based on unmitigated
impacts on milk production and the trade-offs associated with mitigation.

INTRODUCTION

Anthropogenic climate change represents a key threat to global agricultural industries and food
production systems via increased temperatures, changes in rainfall patterns, more frequent extreme
weather events, and exposure to new pests and diseases. Given the importance of the dairy industry
to the New Zealand economy, understanding the impacts of climate change on domestic dairy pro-
duction is of national significance.

Increased frequency of hot weather could adversely affect the dairy industry via increased milk
production losses due to heat stress. When exposed to hot conditions, cattle reduce dry matter intake
to reduce production of metabolic heat, and partition energy into heat dissipation behaviours at the
expense of production (Gaughan, Sejian, Mader, & Dunshea, 2019). Consequently, hot and humid
weather is frequently associated with reductions in milk production because of heat stress.

This paper explores the long-term climate change forecasts across key New Zealand dairy regions to
estimate the potential impact of increased heat stress and implications for current breeding objectives.

MATERIALS AND METHODS

Dairy production occurs across all New Zealand regions, albeit with the largest concentrations
of dairy cow numbers occurring in Waikato (23%) and North Canterbury (14%) (LIC and DairyNZ
2018). With Waikato located in the north-western section of the North Island, and North Canterbury
on the eastern coast of the South Island, these locations were selected as case studies in order to
represent geographically diverse locations.

NIWA, the National Institute of Water and Atmospheric Research, produces long range climate
change forecasts for key New Zealand locations. Changes in the frequency of heat stress events for
both Waikato and North Canterbury were obtained using NIWA datasets. Climate comparisons occurred
between a historical average from 1970 to 2015 as a baseline and forecast future climate in 2090.

NIWA climate change forecasts were configured using three Representative Concentration Pathways
scenarios (RCPs) — RCP2.6 (low), RCP4.5 (low-mid), and RCP8.5 (high)- representing hypothetical
pathways for the accumulation of greenhouse gases within the earth’s atmosphere. These pathways
broadly represent conservative (RCP2.6) through to extreme (RCP8.5) levels of climate change impacts
on temperature and rainfall. Across each RCP scenario an average of six different global climate
models was used to forecast changes in the number of annual ‘hot days’ above 25C (NIWA, 2019).

New Zealand dairy cattle have been reported to possess a threshold associated with the onset of
heat stress over a Temperature Humidity Index (THI) range of 68 to 74 (Bryant et al. 2007). Based
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on prevailing levels of relative humidity in both regions, this heat stress threshold overlaps neatly
with a temperature of 25C whereby the THI value at 50% relative humidity is 72, and at 80% relative
humidity the THI value is 75. Consequently, the forecast annual ‘hot days’ frequency was used as a
proxy for the expected annual frequency of days exceeding heat stress thresholds.

Regional milk solid production data was sourced for Waikato (358kg per cow per annum) and
North Canterbury (413kg per cow per annum) from LIC and DairyNZ (2018). Future 2090 production
levels were forecast by adjusting these baseline production levels to account for current genetic trends
in milk solid production (National genetic progress of 2.15kg per year for milk solids). Consequently,
future production was estimated to be 504kg per cow per year in Waikato, and 582kg per cow per
year in North Canterbury.

Berry et al. (1964) established a formula for the prediction of milk production impacts due to
heat stress: Decline in milk production (kg/d) =-1.075 - 1.736 x NL + 0.02474 x NL x THI, where
NL is normal milk production (kg/d) during exposure to temperatures between 10 to 18 °C. NL was
derived from the previously reported regional milk solid production forecasts.

Forecasts of current and future levels of milk loss attributable to heat stress were estimated using
the above formula to determine daily losses at indicative THI values of 75 and 80. Annual losses were
derived by multiplying these daily losses by the expected ‘hot day’ frequency for each RCP scenario.
Due to the uncertainty surrounding average THI values across future ‘hot days’, a conservative average
THI value (THI 75) and extreme average THI value (THI 80) were adopted.

RESULTS AND DISCUSSION
Table 1. displays forecast changes in the forecast frequency of hot days (days exceeding heat

stress thresholds) for each location under the three climate change RCP scenarios.

Table 1. Forecast change in annual hot days under climate change

Current annual Forecast hot day frequency

hot days RCP2.6 RCP4.5 RCP8.5
(low) (mid) (high)
Waikato 30 40 60 100
North Canterbury 35 40 50 70

Table 2. displays estimated milk production losses associated with the increased frequency of hot
days and subsequent heat stress effects.

Table 2. Forecast annual milk solid production losses in year 2090 attributable to heat stress

Average  Current annual Forecast annual losses in milk solid production
THI on milk solid loss (2090)
‘Hot RCP2.6 RCP4.5 RCP8.5
Days’ (low) (low-mid) (high)
. 5.3kg 7.9kg 13.2kg
0,
Waikato 75 2.1kg (0.6%) (1.0%) (1.6%) (2.6%)
. 14.9kg 22.3kg 37.2kg
0,
Waikato 80 7.2kg (2.0%) (3.0%) (4.4%) (7.4%)
8.2kg 10.2kg 14.3kg
0,
North Canterbury 75 4.2kg (1.0%) (1.4%) (1.8%) (2.5%)
20.7kg 25.9kg 36.3kg
0
North Canterbury 80 12.0kg (2.9%) (3.6%) (4.5%) (6.2%)
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Current heat stress losses are approximately 0.5% to 2.0% of annual production in Waikato and 1%
t0 2.9% in Canterbury. Under the more moderate RCP scenarios, expected milk solid loss attributable
to heat stress is proportionally similar to current losses after accounting for expected genetic progress
in milk solid production (2.15kg per year) to 2090. Under the most extreme RCP scenario (RCP8.5),
losses increase up to 7.4% of expected 2090 milk solid production in Waikato and 6.2% in Canterbury.

To provide perspective, under the most extreme THI and RCP scenario (RCP8.5 & THIS0),
additional heat stress losses will amount to 14% of expected genetic progress (at current genetic
trends) for milk solid production for North Canterbury farmers, 21% of expected genetic progress
for Waikato farmers.

Mitigation of expected heat stress impacts on milk production could be undertaken via selection
for heat tolerance. Research undertaken by Garner ef al. (2016) and Nguyen ef al. (2016) has led
to the development of a genomic-based heat tolerance ABV for Australian dairy cattle to facilitate
selection for improved heat tolerance.

The Australian heat tolerance ABV is moderately to strongly antagonistically correlated to milk
production traits (rg =-0.75 to the milk production index). In the absence of a very strong economic
signal for improved heat tolerance it is likely that limited genetic progress will be made due to the
relationship between heat tolerance and current key production traits. Diversion of index selection
emphasis toward heat tolerance could also affect future genetic progress for production traits to an
extent that is equivalent to the expected heat stress impacts.

Based on our analysis of forecast heat stress impacts it is likely that insufficient economic incentive
will exist to warrant the inclusion of a heat tolerance trait within the New Zealand dairy breeding
objective.

Some genetic mitigation of heat stress could be justified to mitigate potential impacts on cow
fertility. The scale of potential impacts was on conception rates was not explored within this study
and is more difficult to quantify and predict. Mitigation could be achieved by revising the index
economic values for fertility based on potential conception rates under future climatic conditions as
opposed to the development of a new trait. This would increase selection emphasis on fertility as a
means of offsetting expected adverse heat stress impacts.

Further options for genetic mitigation could include development of homozygous ‘slick’ sires. The
‘slick gene’ represents an adaptive mechanism utilised by Senepol beef cattle, a tropically adapted
Bos Taurus beef breed originating from Central America. The ‘slick gene’ represents a single gene
haplotype located on chromosome 20 that produces a short, sleek coat and enhanced sweating capacity
(Dikmen et al. 2014). However, validation is required of the heat tolerance benefits within a humid,
pastoral environment with low evaporative cooling potential.

CONCLUSIONS

The forecast impacts of climate change on the frequency of heat stress events do not warrant
significant genetic adaptation strategies for New Zealand dairy farmers. Farmers are encouraged to
understand the expected level of adaptation challenge they will face into the future and make rational
and objective decisions about the relative importance of adaptation within a genetic context. Trading
off significant differences in production for greater heat tolerance would be unwarranted in most New
Zealand dairy regions under the climate change forecasts contained within this paper.
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SUMMARY

Genomic breeding values for heat tolerance in dairy cattle were first released in Australia in
December 2017 to select animals with better tolerance to heat stress. It is also important to identify
animals which perform well in a wide range of temperature and humidities, given the large seasonal
and geographical variation in Australia. The aim of this study was to investigate the magnitude of
genotype by environment interactions for heat tolerance in Australian Holsteins. A total of 2.5 mil-
lion test-day milk yield records from 823,055 cows and 6,615 sires were included in the analysis.
The heritability estimates at 5™ and 95" percentile of temperature-humidity index (THI) were: 0.27
and 0.21, 0.21 and 0.14, and 0.19 and 0.14 for milk, protein and fat yield, respectively. The genetic
correlations at the extreme THI values, that is THI = 60 and THI = 75 (equivalent to the tempera-
ture and relative humidity of around 20 °C and 45 and, 31°C and 50, respectively) were: 0.87, 0.84,
and 0.86 for milk, protein and fat, respectively. A re-ranking among sires was observed in different
environments. These results could allow farmers to make decisions on whether to select sires which
are best suited to specific environments, or those that are consistent across a range of environments.

INTRODUCTION

The desire to breed for robustness in the dairy industry is intensifying, driven in part by climate
change. One of the key components of robustness is genotype by environment interactions (G x E),
which refers to the change in performance or a change in the ranking of animals in different envi-
ronments. In Australia, dairying is carried out in a wide range of production systems and climatic
conditions suggesting that reranking of genotypes may occur.

Various studies have demonstrated the presence of G x E due to heat stress in dairy cattle as
reviewed by Carabaio ef al. (2017). Previous studies in Australia using test-day records reported
evidence of G x E for production traits due to heat stress for Australian Holsteins (Hayes et al. 2003;
Haile-Mariam et al. 2008). These studies used first parity or whole lactation data.

Genetic selection for production traits in Australian dairy cattle has resulted in considerable genetic
gains. However, this may have led to increased sensitivity to heat stress in dairy animals (Carabafio et
al. 2017) and possibly increased G x E because of an unfavourable genetic correlation between heat
tolerance and milk production traits (Ravagnolo et al. 2000). Nguyen ef al. (2017) noted a declining
genetic trend for heat tolerance in Australian Holstein and Jersey dairy cattle at a rate of 0.3%/year.
This declining trend coupled with increasing temperature and frequency of heat events suggests the
importance of revisiting the magnitude of changes in animal performance at different environmental
temperature and humidities. The objective of this study was to investigate G X E for heat tolerance
using test-day milk yield records in combination with temperature and humidity data from publicly
available weather stations over a 15-year period.

MATERIALS AND METHODS

Test-day data. First lactation milk, protein and fat yield data (consisting of 6.6 million records
for Holstein cows between 2003 to 2017) were obtained from DataGene (DataGene Ltd., Melbourne,
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Australia). Data editing was as follows: (1) tests < 5d or >305d days in milk (DIM) and herd test days
with less than 10 cows were removed; (2) sires with daughters in less than 2 herds and herds using
fewer than 2 sires were excluded and (3) only cows with at least 4 records were retained for analyses.
The final dataset comprised 5.2 million records for 823,055 cows and 6,615 sires from 3,732 herds.
The pedigree for these data included up to 15 generations.

Climate data. Climate data included hourly dry bulb and dew point temperature and relative
humidity obtained from the Bureau of Meteorology (Melbourne, Australia) for 163 weather stations in
Australia from 2003 to 2017. The pairwise distances between herds were calculated from geographical
coordinates and assigned to the nearest weather station. Hourly temperature-humidity indexes (THI)
for each weather station were calculated as follows (Yousef 1985): THI= T, + (0 36T, ) +41. 2)
where T, = hourly dry bulb temperature (°C); T, 1s dew point temperature (°C) and T =(237.3b)/
(1.0- b) where b = [log (RH/100.0) + (17.27T )/(237 3+T,)1/17.27, and RH = relatlve humidity.
The THI values were then averaged for 24 hours to get the daily THI. The daily THI on the test day,
1, 2, 3, and 4™ day before test day were then averaged and assigned to the test-day records.

Milk yield traits in Australia have been reported to begin declining at THI > 60 (Hayes ef al.
2003; Nguyen et al. 2016). Therefore, the THI threshold was set at 60 in this study (i.e., if THI <
60 then THI = 60). A small proportion (0.004%) of tests obtained at THI > 75 were given a value of
75. This was to avoid unexpected trajectories as possible artefacts, which are often related to fitting
polynomials with few extreme data points.

Statistical analysis. A univariate random regression sire model was applied to the data as follows:
Vu=u+HID+ YS+ 30 A X+ D Z+52 PT+%Y S, Wte,, wherey, is yield of milk in
11tres fat or proteln in kg from the ith herd test day, ]th year season of calving, and daughter of the
kth sire; p is the intercept; HTD,is the effect of the ith herd test day; YS}. is the effect of the jth year
season of calving; X, Z and P, are the nth-order Legendre polynomials corresponding to age on
day of test, DIM at test, and THI, respectively; A, D and T are the fixed regression coefficient of
traits on age at test, DIM at test, and THI, respectively; S, is a random regression coefficient on THI
for the kth sire; W is either the intercept (n = 0) or slope solution (n = 1) for heat load index (THI)
for cows and sires; and € is the vector of residual effects. The following (co)variance structure was

S AUZV AO’ s
ol s
o o

A a,, Ad®,
from pedigree data; s, s, are thc 1ntercept and slope for sires; 0° , 0, , are (co)variance for sire
effects of THI. Heterogeneous error variance was modelled for 10 DIM intervals over a lactation
(DIM = 5-30, 31-60, 61-90, 91-120, 121-150, 151-180, 181-210, 211-240, 241-270, and 271-300)
as follows: Var (e) = R= dlag{la Io?,... 107, } where o7, 026 .. ‘723 represents error variances
and I is the identity matrix. (Co)vanance components were estlmatcd using ASREML version 4.2
(Gilmour et al. 2015).

Calculation of genetic parameters. Additive genetic variances for sires were extracted from the
diagonal elements of the covariance G matrix calculated as G = 4* (I)Var(s)(l)’, where @ is the matrix
of Legendre polynomial functions for THI; § is the sire (co)variance matrix. The genetic correlations
were obtained from transforming the covariance C matrix to a correlation matrix. The heritability

assumed: Var (S) = , where A is the relationship matrix for sires constructed

2
5,2

as a function of THI was calculated as /°, O'ZF_, where 32 is sire variance at i THI and 37 is
the average residual variance over the lactatlon The estlmated brecding value (EBV) for the sire i
along the THI trajectory was calculated as EBV, = 0,* @', where &', is the vector of estimated random
regression coefficients for the slope and intercept for sire i; 0, is the vector of Legendre polynomials
evaluated at THI j. To examine the changes in performance along the THI trajectory, we estimated

EBVs for sires with more than 1000 daughters with yield records.
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RESULTS AND DISCUSSION

Table 1 shows genetic variances and heritability estimates at the 5%, 50" and 95" percentiles of
THI. The genetic variance and heritability estimates decrease with increasing THI values. The heri-
tability was greater for milk yield at the 5" and 95" percentiles (0.27 and 0.21) compared to protein
yield (0.21 and 0.14) and fat yield (0.19 and 0.14).

Table 1. Additive genetic variances and heritabilities for milk, fat and protein yields at the 5,
50™ and 95" percentiles of the temperature-humidity index (THI)

Additive genetic variance Heritability
S(h 50[]1 95[]1 S[h Solh 95[]1
Milk (kg) 4.55 3.86 3.54 0.27 0.23 0.21
Fat (kg) 0.005 0.004 0.003 0.19 0.17 0.14
Protein (kg) 0.004 0.003 0.002 0.21 0.17 0.14

At the extremes of the trajectory of THI (i.e., THI 60 vs 75), the genetic correlations were 0.87,
0.84, 0.86 for milk, protein and fat, respectively (Figure 1). In the previous study, Hayes et al. (2003)
reported smaller G x E estimates for milk (0.94), protein (0.92) and fat (0.90). Greater G x E in our
study is likely in part due to increased sensitivity to heat stress in study population following continued
selection for production traits over the years or a slight difference between the analyses; Hayes et al.
(2003) included a random regression coefficient on THI for cows in their models.

1.00/

o
©
o

Additive genetic correlation
2
<

0.851

60 62 64 66 68 70 72 74
THI
Figure 1. Additive genetic correlations for milk (o), protein (A) and fat (e) yields at tempera-
ture-humidity index (THI) = 60 and those at THI up to 75

Reranking exists among sires, as seen from the differences in the reaction norms of EBVs for fat
yield (Figure 2). Two groups of sires were identified based their EBVs at thermoneutral (THI = 60)
and heat stress (THI = 75) conditions. The first group (shown in gray) are sires with above-average
EBVs at THI = 60 and smaller EBVs at THI =75 (i.e., environmentally sensitive sires). Daughters of
these sires will likely produce less under heat stress conditions and therefore can be used in regions
with the consistently low heat load. A more controlled environment, such as the provision of shade
and diets designed to reduce core body temperature will be necessary if their daughters are to perform
optimally under high heat load conditions.

The second group (Figure 2; shown in black) are sires with above-average and stable EBVs (i.e.,
resilient or robust sires); their performances are comparatively consistent and are well suited for
variable environments. If the objective is to breed for robustness or resilience, then these sires are
ideal candidates for selection. Australian dairying is predominantly pasture-based characterised by
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an array of factors including weather conditions which vary considerably between years as well as
seasonal variability in feed quantity and quality feeds. Under these conditions and considering current
trends towards extensive exchange of sires between regions or export of sires to other countries, it
would be more beneficial to select for robust sires.

This study only considered first lactation data. Greater reranking is expected with later lactations
due to relatively higher sensitivity to heat stress associated with greater milk yield in multiparous

cows (Carabafio et al. 2017). This will be investigated in further studies.
0.06

0.05

0.04

EBV

0.03

0.02

60 62 64 66 68 70 72 74
THI

Figure 2. Estimated breeding values (reaction norms) along the THI for a sample of 10 sires with
over 1000 daughters with fat yield records; the gray lines (A) represent sires with above-average
EBYV at the thermoneutral conditions (THI = 60) and smaller EBV at heat stress conditions (THI
=75) whereas the black lines (@) are sires with above-average and stable EBVs

CONCLUSION

The results from this study indicate G % E due to heat stress exists at extreme THI for all the milk
traits studied. The differences observed in the reaction norms (i.e., EBVs along the trajectory of THI)
among the sires suggest that genetic variation in sire sensitivity to heat stress exist, which can be used
to select animals that perform optimally in different environments.
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NOVEL SELECTION CRITERIA WILL BE REQUIRED FOR REDUCTION OF
NEW ZEALAND’S NATIONAL GREENHOUSE GAS EMISSIONS INVENTORY
THROUGH DAIRY GENETICS

X. Zhang, G.M. Jenkins, J.A. Sise, B. Santos, C.D. Quinton and P.R. Amer
AbacusBio Limited, PO Box 5585, Dunedin 9058, New Zealand

SUMMARY

The objective of this study was to estimate the reductions in national methane emissions from the
New Zealand dairy industry arising though current genetic trends. Based on recent genetic trends,
the emissions intensity per milk protein equivalents was calculated to be reducing by 0.43% per year
reflecting production efficiency gains. In contrast, emissions per hectare was calculated to be reducing
by only 0.03% per year, and this reduction is critically dependent on the assumption that genetic gain
in milk yield potential is not exacerbating intensification of dairy farming systems. Novel selection
criteria will be required to achieve national reductions in methane emissions from the New Zealand
dairy industry.

INTRODUCTION

The Productivity Commission of New Zealand estimated in 2018 that the methane emissions from
livestock need to be reduced by 10-22% of the amount in 2016, i.e. 2.8-6.1 million tonnes by 2050.
Along with efforts from other sectors, New Zealand would therefore contribute a fair share towards
maintaining the current global warming levels. Genetic improvement is one possible tool that could
assist the New Zealand dairy industry to achieve this goal while still maintaining the critical role of
the industry in export revenue and rural livelihoods.

Previous studies have concluded that methane emissions in dairy cattle were strongly correlated
with dry matter intake (DMI) (Pickering ef al. 2015). Therefore, we applied in this study a meth-
odology which quantifies methane emissions from changes in DMI due to unit genetic changes.
This method was applied to traits in the national breeding goal for the New Zealand dairy industry,
Breeding Worth (BW).

The objective of this study was to compare how current genetic trends in key dairy production traits
are impacting on a range of emission metrics so as to evaluate whether the current breeding strategy
would need to be modified in order to help meet the national methane emissions reduction policy.

MATERIALS AND METHODS

The methane emissions were estimated as their carbon dioxide equivalents (CO,-eq) as a direct
conversion from feed intake energy, i.e. kg DMI x 0.583 kg CO-eq/kg DM (Fennessy et al. 2015).
Feed energy consumed by a breeding cow, and her replacement both on and off the milking platform
were estimated. We proposed 3 measurement definitions to describe the impact of genetic trait changes
on methane emissions as follows:

Gross methane emissions. The gross methane emissions as CO,-eq emitted by a breeding cow
in a year prior to genetic change (£) was estimated as a product of number of animals, feed intake,
and the conversion coefficient described above.

Methane per hectare (ha). The gross CO,-eq emissions per ha of grazing land (£H) was expressed
as a ratio of £ and the total number of ha for grazing land required per cow per annum (H).

Methane intensity on an animal product basis. The emission intensity (£7) was calculated as a
ratio of the £ and total number of product outputs per cow. Here all types of animal product outputs
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were converted to milk protein equivalents (milk protein-eq) using a revenue ratio.

The changes of E, EH and EI due to genetic improvement were denoted as gross value (GV),
emission value on a ha basis (EV") and emission value on an animal product basis (EV™) and were
calculated by obtaining the first derivative of each of the 3 equations with respect to an unit change
in one genetic trait (g) at a time following Amer ef al. (2017).

Response to index selection. Genetic trends averaged over the past 5 years were accessed from
New Zealand Animal Evaluation Ltd (NZAEL). Trait-wise annual responses in £, EH and EI from
index selection were calculated as a product of GV, EV" or EV™ and genetic trend and aggregated
over all breeding objective traits.

RESULTS AND DISCUSSION

The emission values for each of the traits within the breeding objective are listed in Table 1. By
achieving a 1-unit increase in trait genetic merit, the associated annual gross emissions per breeding
cow were estimated to increase for all traits except Residual Survival and Fertility. Similar patterns
were observed for emission per ha. In contrast, emission intensity values per unit of milk protein-eq
were estimated to decrease for Milk Fat, Milk Protein, Residual Survival, Fertility and Body Condition
Score (BCS) as genetic merit improves. Liveweight and Milk Volume emission intensity values were
estimated to be positive but on a much smaller scale compared to other traits. A negative emission
intensity value for any trait indicates that the increase in gross emissions associated with that trait is
proportionally smaller than the increase in either ha or animal product output.

The Productivity Commission (2018) suggested a 10-22% target reduction of gross methane
emissions by 2050 of that in 2016, equals to 2.8-6.1 million tonnes (Ministry for the Environment
2018). However, direct selection for reductions in gross emissions per animal would result in direct
selection against efficiency improving traits (i.e. against Milk Fat and Milk Protein yield). A better
overall outcome than direct selection for inefficiency would be to continue selecting for animal effi-
ciency, but then use other policy mechanisms to reduce the total number of animals or hectare areas
farmed (Quinton et al. 2017).

Table 1. Estimated effects of a 1-unit trait change in gross methane emissions (kg CO,-eq emis-
sion/breeding cow/year, GV), emissions per hectare (kg CO,-eq emission/ha, E}") and emission
intensity (kg CO,-eq emission/kg milk protein-eq, E}™)

Trait Unit GV EV Epm
Milk Fat kg 3.57 0.04 -0.02
Milk Protein kg 2.19 0.02 -0.02
Milk Volume L 0.07 0.001 0.00004
Liveweight kg 2.40 0.12 0.005
Residual Survival day -0.24 -0.32 -0.0007
Somatic Cell Score score 0 0 0.04
Fertility % -6.28 -8.80 -0.04
Body Condition Score score 22 26 -0.29

Table 2 shows the current (2019) values for gross emissions, emission per ha and emission intensity
for all traits within the current breeding objective. The annual and 20-year change estimates for the
aggregated genetic trend are also listed. On average, one breeding cow in New Zealand was estimated
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to emit 3.087 tonnes of CO,-eq in year 2019. Over the years, the gross emissions are estimated to
increase but emission per ha and emission intensity would reduce, and £ was estimated to reduce
proportionally faster than the changes of £ and EH.

Given there are 4.8 M dairy cattle in total across New Zealand (DairyNZ 2017), the country-wise
gross CO,-eq by 2050 would increase by 4.8 M animals x 9.95 kg/year/animal x (2050 - 2019) =
1.5 M tonnes, if there was no reduction in the number of dairy cattle. If the land area remained the
same from 2017 with 2.4 M ha in dairy sector (Beef + Lamb NZ Economic Service statistics 2017),
the country-wise gross CO,-eq by 2050 would change by 2.4 M ha x (-2.31 kg/ha) x (2050 - 2019)
= -171-k tonnes. This is less than 6% of the Productivity Commission 2050 target of 2.8 M tonnes.

Table 2. Aggregated genetic trend predictions for gross CO,-eq emission (kg CO,-eq/cow/
year, E), emission per hectare (kg CO,-eq/ha, EH) and emission intensity (kg CO,-eq/kg milk
protein-eq, EI)

Total value Annual Annual change 20-year 20-year change
at 2019 (kg) change (kg) percentage (%)! change (kg) percentage (%)"
E 3,087 9.95 0.32 199 6.45
EH 6,915 -2.31 -0.03 -46 -0.67
EI 9.27 -0.04 -0.43 -0.80 -8.63

!percentage compared to 2019.

In emissions per ha measurements, we have assumed that stocking rate gets adjusted as feed
requirements per cow increases hence these measurements could adapt to intensive farming system.
In another scenario, often dairy farmers in New Zealand increase supplements, e.g. concentrates, for
higher genetic merit cows to milk more. This part could be assessed by sensitivity tests.

CONCLUSIONS

This study shows that under the current breeding objective, each New Zealand dairy cow was
estimated to produce more gross methane emissions, but also to become more production efficient.
Gains in emissions per ha are at best very modest and critically dependent on the assumption that future
genetic gain in milk production potential will not encourage further trends towards intensification of
New Zealand’s dairy production systems. To reach the 2050 methane reduction goal, new selection
criteria and a changed emphasis of selection beyond the current tightly defined goal of increasing
farm profitability will be required.
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C.D. Quinton’, P.R. Amer', T.J. Byrne?, J.A. Archer', B. Santos', F. Hely'

'AbacusBio Limited, 442 Moray Place, PO Box 5585, Dunedin 9058, New Zealand
2AbacusBio International, Roslin Innovation Centre, Midlothian EH25 9RG, United Kingdom

SUMMARY

In breeding objectives, linear economic values (LEV) are typically applied because they are effec-
tive and easy to implement. However, LEVs can be over-simplifications for some traits in diverse
populations that span a wide range of economic and biological conditions. We have been helping an
increasing number of breeding programs by applying non-linear economic value functions (NLEV).
Although NLEV are more complex to implement in breeding objectives, they can provide more spe-
cific and robust trait and therefore overall index valuation. We describe experiences applying NLEV
for prolificacy, wool quality, dystocia, and maternal ability in sheep and cattle breeding objectives.

INTRODUCTION

Most animal breeding objectives and selection indexes are built as linear functions. For exam-
ple, a linear selection index that estimates individuals’ total merit in units of currency is defined as
1= E(b[_ X g), where, for each trait 7, the individual’s trait value in units of currency is the trait weight-
ing common to all individuals (b, index weight) multiplied by the individual’s estimated genetic
value for that trait (g, e.g. EBV). The individual’s index value / is then the sum of all trait values.

However, many traits have non-linear relationships between genetic values and trait values caused
by complex market signals or biological limits. A classic example is where carcass sale price ($/kg) has
an intermediate optimum relationship with fat cover: below- and above-optimum levels earn reduced
prices. Non-linear economic value functions (NLEV) and selection indexes have been discussed in
scientific literature (see Martin-Collado ef al. 2016), but rarely implemented in practice. Commonly,
breeding objectives apply a linear economic value (LEV) and index weighting that reflects the pop-
ulation mean genotype; i.e. b, = partial derivative of a non-linear function at the population mean.
When the breeding objective is periodically reviewed, the LEV is updated in accordance with the
population mean. This approach is effective for selection and genetic change on a large population
scale (e.g., Goddard 1983) and furthermore is simple to configure in genetic evaluation systems, and
straightforward to report to users.

A crucial limitation to LEVs as approximations of non-linear value functions is that for diverse
populations that span a wide range of economic or biological conditions, LEVs can result in genotypes
at the extremes of the distributions being severely over- or under-valued for that trait. This has further
implications for multi-trait breeding objectives if it causes individuals to rank highly only because of
that trait while being merely average for others. For these reasons, an increasing number of genetic
evaluation systems are applying NLEVs in breeding objectives and selection indexes.

NON-LINEAR ECONOMIC VALUE FUNCTIONS

For NLEYV, a full function is defined that describes the relationship between individuals’ genotype
and profitability. The function form may be a simple quadratic or exponential, or more complex com-
bined function. The full range of available genotypes need to be considered to ensure that the function
properly values extreme genotypes. Ideally, the function should represent industry conditions, yet be
robust and easy to code into genetic evaluation systems.
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A primary outcome of implementing NLEV in a selection index is that relative trait weightings
within the index depend on the individual’s genotype and its location on the function. This is described
further in examples below.
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Figure 1. Illustrations of economic value functions. (a) Sheep reproduction value linear (x)
and non-linear (@) functions. (b) Wool adult ewe fibre diameter non-linear relationship with
relative price

Sheep prolificacy. In 2017, the New Zealand national sheep evaluation system implemented a
NLEV for number of lambs born per litter (NLB) in the NZMW maternal index (https:/www.sil.
co.nz/files/151191893412.pdf) which includes reproduction, growth, survival, and wool sub-indexes.
Previously, the index applied a LEV for NLB which was based on the national population mean.
Although the population mean is below optimum, there is a wide diversity of prolificacy genotypes
in the evaluation so that many individuals have substantially above-optimum genotypes. These
individuals were over-valued for reproduction under the linear system, with the outcome that many
high-prolificacy rams would achieve top index ranking due to their NLB EBV while having only
average EBVs for other index traits such as growth.

ANLEV was developed to better value high prolificacy genetics (preliminary function described
by Quinton ef al. 2017). The function (Figure 1a) is composed of 3 parts: at low prolificacy individ-
uals’ value (cents) increases linearly up to the population mean NLB EBV; from mean to optimum
NLB, value increases in quadratic fashion with diminishing gains; then above the optimum, a flat
“capped” value is imposed so all genotypes receive the same value. Therefore, average rams’ repro-
duction values remained similar, but very high prolificacy rams’ values were capped and therefore
full NZMW index ranking differences amongst these became due to their genotypes for other traits.
Thus, NLB has less influence on the full index value at high prolificacy levels.

This non-linear then flat function has been demonstrated to be the most efficient approach to value
an intermediate optimum trait in a multi-trait selection index, when the population mean is below
and close to optimum (Martin-Collado ef al. 2016). From a full index perspective, this approach is
predicted to mitigate the risk of highly prolific genetics badly overshooting optimum NLB, while
improving selection response in other traits.

Wool fibre diameter. The NZMW index also includes a wool sub-index, which currently values
fleece weights, but a recent industry survey revealed substantial interest in valuing crossbred wool
quality traits including fibre diameter. A NZ wool sale price analysis (unpublished) quantified the well-
known non-linear relationship of fibre diameter with price (c/kg). At stronger micron range (35um+),
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micron has little effect on price. However, at finer microns (33-35um), some price premiums are
awarded. The premiums become greater as fleeces move to the mid-micron and finer ranges. Because
of these differing relationships, a single LEV for fibre diameter is not suited for the diversity of wool
in NZ. The conventional approach of calculating separate LEVs and therefore separate breeding
objectives for categories of sheep based on typical fibre diameter ranges has drawbacks: multiple
ranking systems are confusing to users who will be considering ram purchases across a wide fibre
diameter range; and also incorrectly values individuals that are at the borders of these categories.

ANLEYV for fibre diameter (Figure 1b) has been proposed featuring high values for finer micron,
with a quadratic curve of decreasing values over medium and stronger microns (<38um). The lowest
(base) wool price occurs. At >38um, all are assigned the base price. This approach is suited to the
greater price premiums (c/kg fleece) awarded to mid-micron and finer wool types, compared to cross-
bred and strong wool types. Therefore, the same function can be used to value fibre diameter in all
NZ crossbred and mid-micron breeds and separate breeding objectives are not required for each type.

Dystocia. Dystocia is typically a categorically observed phenotype with an underlying normal
distribution of birthing ease genotypes that results in proportions of a population falling into observed
categories. With an economic value defined as the change in profit per unit change in population
EBY, then a non-linear relationship between profit (costs) and genotype emerges as the population
mean shifts. Distinct category costs (e.g. labour, veterinary, and potential replacement costs) may
also contribute to non-linearity.

A survey of Irish beef and dairy farmers (Martin-Collado et al. 2017) and a recent American
Angus industry survey (unpublished) showed that farmers are prepared to tolerate a small amount of
dystocia, but as herd dystocia levels rise this trait is considered to be increasingly problematic. The
American Angus trait preference survey also revealed that farmers’ opinions of the relative importance
of calving ease within the full breeding objective depends on their herd’s current levels.

We have helped develop NLEV for dystocia in breeding objectives for American Angus and for
an Irish index aimed at selecting beef bulls to mate to dairy cows. In both cases, the NLEV imple-
ments a high cost of differentiation at high levels of dystocia, with diminishing marginal benefits as
genetic values for dystocia improve. Therefore, bulls with poor dystocia have a larger penalty applied,
meaning that fewer of these will appear on leading index lists; conversely, bulls with exceptionally
low dystocia (i.e. less than required by most producers) are unlikely to appear on leading lists based
on this trait alone.

Maternal ability. In the American Angus beef industry survey mentioned above, respondents
judged that the trait weaning weight maternal (WWM, aka maternal ability or “milk’) was over-val-
ued at the higher range. Similar to NLB, farmers opinion was that increased WWM is desirable up
to a point, but then in environments where feed has high availability to cows or supplements can be
provided increased WWM has no further value. In harder environments with low feed availability,
over-optimum WWM is considered a liability as high milk cows lose condition and subsequent
fertility. For this trait, an intermediate optimum NLEV was built that incorporated survey results of
farmers reported lower and upper thresholds of accepted WWM breeding values.

PRACTICAL CONSIDERATIONS FOR IMPLEMENTION

NLEYV are more complex than linear EV and therefore do present some challenges for implemen-
tation in large-scale breeding objectives.

First, the genetic evaluation program software needs to be adapted to incorporate the NLEV and
calculate individual trait values. Most evaluation software code is designed to apply a single linear
index weighting coefficient per trait; therefore, experts are required to program NLEV and test index
value calculations.
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Genetic evaluation systems also must recognize that individual trait values calculated with NLEV
are more sensitive to changes in the genetic base definition. A change in the EBV will change any
individual’s location on the NLEV which may also cause re-ranking.

We have found NLEV most practical if incorporated into modular breeding objective where
each trait economic value fully and independently quantifies revenues and costs associated with the
trait. E.g. a three-trait index containing a non-linear trait weighting may be described as follows:
I=(bxg)+(bxg)+ A&,), where the individual’s trait values for traits 1 and 2 are calculated
in the usual linear approach, but where the trait 3 value is calculated according to NLEV. With this
modular perspective, NLEV can be substituted for LEV or added on to conventional linear breeding
objectives. This modular approach is increasingly useful as breeding programs add new traits (e.g.,
health and welfare, environmental, novel genomics).

Predicting selection response with NLEV requires different approaches than conventional linear
indexes. Most breeding methodologies and software are built around linear breeding objectives and
prediction methods use linear regressions, assuming normal distributions. However, NLEVs can skew
distributions, especially if values are capped as in the sheep prolificacy function. In these cases, it is
preferable to evaluate potential selection intensity and response by analysing real genetic evaluation
data sets and calculating trait mean EBVs of selected individuals. For longer-term predictions, sto-
chastic simulations could be employed.

Our experiences with NLEV are that users (breeders, farmers using GE to select animals) are
generally very receptive to the concept because the resultant individual animal trait values and rank-
ings tend to better reflect industry realities and their preferences for selection candidates. However,
additional education is required for extension services and users who are familiar with reports for-
matted for simple linear index coefficients. Similarly, for users who are used to pie or bar charts to
illustrate relative trait emphases within an index, education is needed to understand how NLEV can
shift relative importance of traits.

CONCLUSIONS

Non-linear economic value functions and selection indexes have been well discussed in breeding
objective theory, but until recently rarely implemented genetic evaluation systems. Although NLEVs
are more complex to apply, these functions are flexible solutions for valuing genetics in diverse
populations and our experience is that they are typically very well received by industry stakeholders.

ACKNOWLEDGEMENTS
The authors thank Angus Genetics Inc. and the American Angus Association, Beef+Lamb New
Zealand Genetics, and the Irish Cattle Breeding Federation for their contributions.

REFERENCES

Goddard M.E. (1983) Theor. Appl. Genet. 64:339.

Martin-Collado D., Byrne T.J., Visser B., and Amer P.R. (2016) J. Anim. Breed. Genet. 133:476.

Martin-Collado D., Hely F., Byrne T.J., Evans R., Cromie A.R, and Amer P.R. (2017) Animal
11:318

Quinton C., Byrne T., and Amer P. (2017) Proc. Assoc. Advmt. Anim. Breed. Genet. 22:94.

50



Proc. Assoc. Advmt. Anim. Breed. Genet. 23:51-54

CURRENT PROGRESS ON DEVELOPING A SELECTION INDEX FOR
AUSTRALIAN MEAT GOATS

M.N. Aldridge'?, W.S. Pitchford' and D.J. Brown?

'Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, 5371, Australia
?Animal Breeding and Genomics, Wageningen University and Research, Wageningen,
Gelderland, 6708PB, the Netherlands
3Animal Genetics & Breeding Unit’", University of New England, Armidale, NSW, 2351 Australia

SUMMARY

Previously meat goat breeders in Australia have used the Carcase Plus (CPLUS) index to make
genetic selections. CPLUS is an index focused on lean meat production which used sheep parameter
estimates and economic values. It was recommended that a new dual purpose index be developed for
increased weaning rate and meat production of goats. The new index “Kid Plus” (K+) uses parameter
estimates and economic values calculated for goats and places an economic value on reproductive
traits, including kid survival. The dollar value response for each doe joined was higher for K+ ($16.56)
compared to CPLUS ($9.53).

INTRODUCTION

Australian goat breeders using the national performance recording scheme (KIDPLAN) use the
Carcase Plus selection index which was designed for Australian terminal sire sheep (Sheep Genetics
2016). The CPLUS index puts a large emphasis on increasing growth and eye muscle depth while
maintaining leanness. There are several issues with this index when applied to KIDPLAN. Currently
there are insufficient breeders consistently recording and submitting data for eye muscle depth or fat
depth to justify the emphasis placed on these traits. The CPLUS index places a negative economic
value on fat depth, but goats are already very lean and have a small amount of variation in fat depth.
Another issue is the economic values used in CPLUS are based on lamb and not representative of the
Australian meat goat market. Lastly, the genetic and phenotypic covariance matrices rely on values
estimated from Terminal sheep breeds, which have been somewhat modified to suit the KIDPLAN
dataset. Australian goat producers have a growing demand for an index built specifically for Australian
meat goats (BCS Agribusiness 2012). The aim of this project was to develop the first Australian meat
goat specific index.

MATERIALS AND METHODS

There were nine traits of interest used in the analysis; birth weight (BWT), weaning weight (WWT),
post-weaning weight (PWT), maternal weaning weight (MWWT), number of kids born (NKB),
number of kids weaned (NKW), kid survival (KSV), eye muscle depth (EMD), fat depth (FAT), and
worm egg count (WEC). Parameter estimates were made with bivariate animal models in ASReml
(Gilmour et al. 2009) using KIDPLAN data (Table 1). Body weight was defined as 50% emphasis
of WWT and PWT. Kid survival was defined as a trait of the kid, between birth and weaning, it was
corrected for birth weight and number of kids born. For EMD and FAT parameter estimates were
combined post-weaning and yearling traits, due to limited records, and the low phenotypic variation of
fat traits. There was insufficient data in KIDPLAN or published literature for genetic and phenotypic
correlations of maternal weaning weight or worm egg count, any analysis that included these traits
used the previous covariance estimates from CPLUS (these traits are only included in CPLUS to

* A joint venture of NSW Department of Primary Industries and the University of New England
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monitor trait changes and are not included in selection).

Table 1. Summary of parameter estimates. Genetic variance (ﬂ',zq), residual variance (o‘i) and
maternal permanent environmental variance (MPE). The heritabilities are on the diagonal,
genetic correlations are below the diagonal, and the phenotypic correlations above

BWT WWT PWT MWWT EMD FAT WEC NKB NKW KSv

cr“i‘1 0.21 1.17 2.45 1.00 025 0.014 140 0.012 0.013  0.013
I:I'EI2 0.12 8.28 15.56 9.20 201 0206 539 0300 0.307  0.133
MPE 0.07 1.56 242 1.00 0.09 0.005 7.00 0.030 *0.321  0.007
BWT 0.53 0.35 0.32 0.20 0.01 -0.02  -0.03 0.00 0.00 0.01
WWT 0.53 0.11 0.81 0.11 0.03 -0.06  0.00 0.00 0.00 0.00
PWT 0.50 0.88 0.12 0.08 0.06  -0.04 0.03 0.08 0.06 0.00
MWWT 0.48 0.50 0.50 0.09 0.00 0.00 0.00 0.00 0.00 0.00
EMD -0.22 -0.21 -0.26 -0.38 0.11 027  -0.06 -0.07 0.01 0.00
FAT -0.27  -024  -0.19 -0.27 0.26 0.06 -0.11  -0.29 0.01 0.00
WEC 0.11 -0.03  -0.24 -0.12 <0.01 <0.01 0.10 -0.02 0.04 0.00
NKB 0.10 0.08 0.12 0.15 <0.01 <0.01 <0.01 0.04 0.41 0.00
NKW 0.01 0.18 0.29 0.33 <0.01 <0.01 <0.01 0.90 0.04 0.00
KSv 0.19 0.05 0.03 -0.06 0.05 0.05 <0.01 0.57 0.63 0.08

* Animal permanent environmental variance

Table 2. Summary of economic values used for each index based on survey results and Sheep-
Object2 (values in SAUD per trait unit)

Trait Units CPLUS  LP2020  SRC LMG MMG K+

BWT kg 0.00 -0.21 -0.21 0.00 0.00 0.00
WWT kg 2.33 0.32 0.40 2.53 2.53 2.53
PWT kg 3.50 0.47 1.48 2.53 2.53 2.53
MWWT kg 0.00 0.00 1.88 0.00 0.00 0.00
EMD mm 11.40 1.54 2.40 11.40 11.40 11.40
FAT mm -4.07 -0.55 0.00 -4.07 -4.07 -4.07
WEC % 0.00 -1.71 -1.71 -1.71 -1.71 -1.71
NKB Number 0.00 0.00 0.00 0.00 11.00 11.00
NKW Number 0.00 0.00 75.00 0.00 30.00 30.00
KSVv Number 0.00 0.00 0.00 0.00 0.00 87.00

Surveys from key industry stakeholders were used to determine breeding objectives, herd structures
and economic values were calculated with SheepObject2, a breeding objective software program
developed by Andrew Swan (AGBU). There were six indexes of interest; including the CPLUS
index. The Lamb 2020 (LP2020) index, designed to increase worm resistance as producers identified
internal parasites as an industry issue. The maternal sheep index, Self-replacing Carcase (SRC). The
first new KIDPLAN index is a Lean Meat Goat index (LMG) that included economic weights for
the body weights and carcase traits. The second KIDPLAN index was a Maternal Meat Goat index
(MMG), which added values for NKB and NKW. The final KIDPLAN index Kid Plus (K+), was a
dual purpose index for lean meat production and reproduction which included a weight for KSV. The
economic values are summarised in Table 2.
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A herd of 280 does was used to model the indexes as per the calculations for the average herd
size of commercial and seedstock producers. The proportion of males selected was 5%, and 50% for
females. Generation intervals of 3 and 4 years were used for males and females respectively. The
selection emphasis for EBVs was 65%. To address the Bulmer effect (Bulmer 1971) for a reduction
in genetic variance caused by genetic selection, an adjustment for males and females was calculated
using Normal distribution theory.

The index calculations were done using R (R Core Team 2016). The index selection theory of
Hazel (1943) was used with the variances and covariances in Table 1. The economic values of Table 2
were used for an economic weights vector (a). The index weights (b = P~ Ga) were then calculated.
The genetic gain (R = b'G(b'Pb)™%) and the total economic gain (&; = (b'Pb)**) of the
index response for one standard deviation of selection was calculated for each of the indexes under
different recording scenarios. The recording scenarios were for growth (only BWT, WWT, and YWT
recorded), carcass (adds EMD and FAT records), reproduction (no carcass traits but NLB, NLW, and
KSV added), standard practice (includes growth traits and reproductive traits but limited carcass
traits recorded), best practice (standard practice with full carcass trait records), and gold standard
(best practice with WEC recorded).

RESULTS AND DISCUSSION

The index dollar value is the $AUD of additional income per doe joined, per generation, with 5%
of males selected and 50% of females, and using the index for the Australian market (Figure 1). The
CPLUS index had an index dollar value of between $6.86 and $9.53 across recording scenarios, and
was similar to the LMG, which was between $5.67 and $8.84. Both indexes had an increasing value
under the following recording scenarios; Growth, Reproduction, Standard practice, Carcase, Best
practice, and Gold standard. The maternal index SRC had index dollar values of between $5.99 and
$8.33. In comparison, MMG had a value of between $6.64 and $9.86 and K+ had the highest values
of between $9.39 and $16.27. Indexes SRC, MMG and K+ increased for the recording scenarios from
Growth, Carcase, Standard practice, Reproduction, Best practice to Gold standard. LP2020 had the
lowest index dollar values of $2.34 for the recording scenario Gold standard and between $1.25 and
$1.35 for the remaining recording scenarios.
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Figure 1. Summary of index response values ($ / doe joined / generation) for each index type
and under Growth (white), Carcase (grey), Reproduction (black), Standard practice (green),
Best practice (blue) and Gold standard (red) recording scenarios

53



Breeding Objectives

There are a number of reasons why the index K+ should replace the current CPLUS for KIDPLAN
users. Most importantly, it better described profit for the breeding objective of Australian meat
goat producers. This was illustrated by the higher index dollar value responses for all recording
scenarios. This was primarily due to the inclusion of KSV and the high economic value calculated with
SheepObject2. Even under the Growth and Carcase recording scenarios, K+ was similar to CPLUS
due to the high economic value placed on body weight and the positive genetic correlations those
traits have between each other and KSV. The higher heritability and variation of survival compared
to sheep was another reason why KSV is a suitable trait to be included in a KIDPLAN index. The
fact that producers must submit the required birth type and rearing types for the KSV calculation
improves the accuracy of estimates. Both NKB and NKW are traits of the doe, including both in the
index could encourage breeders to better record birth and rearing type which has historically been
an issue with the CPLUS index. The high genetic correlation between NKB and NKW could make
reducing the index to NKW beneficial as it is easier to record. However, it is also important to monitor
the direction of changes for both traits as larger litters resulting from increasing NKB, could result in
higher rates of dystocia. Most importantly producers need to have further education on the importance
of accurate pedigree and birth type recording.

CONCLUSIONS

Goats differ to sheep in higher heritabilities for kid survival, even with similar trait definitions.
These differences include a higher genetic correlated between kid survival and birth weight, greater
variation in number of kids born and weaned, less variation for eye muscle and fat depth, and genetic
correlations between production traits were significantly different from sheep. The differences in
genetic and phenotypic parameters, recording practices, economic values, and breeding objectives of
goat breeders led to the creation of new Australian meat goat indexes for KIDPLAN users. The K+
index is based on the best defined breeding objective. This places selection pressure on growth and
reproductive traits, especially kid survival calculated from existing birth and rearing type data. Before
the K+ index is adopted by KIDPLAN users, further investigation is needed, including; predicted
trait changes, differences in economic selection emphasis, selection differential of sires selected
between different indexes, and a sensitivity analysis of the economic values used. Future testing of
the indexes is recommended to compare the theoretical response to the real world and to demonstrate
to producers that a index designed for meat goats is better than the current CPLUS index. Producers
are also strongly recommended to record key traits for WEC and carcase traits.
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SUMMARY

An industry consultation which included an on-line survey distributed to breeders, commercial
cattle producers and finishers was carried out as part of a larger revision of the American Angus
Association’s $Value indexes. A total of 3,174 responses were received. Survey outcomes were used
to cluster respondents according to their farming systems and demographic profiles, understand their
preferences for traits and to gain insight on whether there are different trait priorities within and
between respondents. The survey provided a mandate from industry to review and propose changes
to current $Value indexes. It also provided insight to modify bio-economic models that calculate trait
economic values to accommodate non-economic factors that systematically influence preferences.
The trait preference survey revealed that cow survival, docility, foot score, heifer pregnancy and
weaning weight ranked higher on average than what we would have expected based on provisional
bioeconomic model calculations. There are differences in trait preferences caused by intrinsic views
and beliefs between groups of respondents across and within business activities. These differences
reach beyond typical characteristics that can be readily described, such as production system or
location. The survey has provided important information for development of indexes which are well
aligned with requirements of stakeholders in Angus beef production.

INTRODUCTION

Selection indexes are often developed by bio-economic modelling of production systems. These
models do not fully account for the large heterogeneity of trait preferences that is usually found within
livestock industries (Paakala et al. 2018), for instance when beef cattle farmers choose bulls or select
replacements for their herds. Experience has shown that indexes have greater uptake when they are
aligned with farmer views and preferences. Industry consultation through survey methods provide a
significant and valuable resource to analyse views of farmer trait preferences.

The American Angus Association (AAA) has recently reviewed its current multi-trait economic
selection indexes, also known as Angus $Value Indexes. The aim was to update breeding objectives
and economic selection indexes based on sound scientific methods, and in line with the preferences
of American Angus breeders, cow-calf and feedlot producers and other industry stakeholders.

An on-line survey was designed to describe farming systems and demographic profiles. This stage
is hereafter referred to as industry consultation and it aimed to understand drivers of selection decisions
when breeders and ranchers choose bulls and replacement candidates. The industry consultation also
sought to facilitate understanding of stakeholders’ perceptions of the impact that breeding decisions
have on their businesses, with a goal of understanding the factors that drive industry engagement.

The objective of this paper is to provide an overview of the industry consultation survey and its
key findings. We also provide some perspective on how results of the survey were used to inform
subsequent bioeconomic model calculations.
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MATERIALS AND METHODS

The survey was conducted from July to early October 2018 and was distributed to all AAA
members and made available widely to commercial cattle producers, retained owners and finishers.

The on-line survey was hosted at the American Angus Association; a link directed respondents
to the demographics survey which then conducted respondents to the trait preference survey through
a seamless process. Respondents had to complete the survey once it was initiated, with no option to
pause and return later. The expected time to complete the survey was around 20 to 30 minutes per
respondent with a target of 500 to 600 responses. Respondents had the option to either complete the
process under total anonymity, or to provide their AAA membership number.

Demographics survey. This survey consisted of 53 questions on farmer and farm systems’ to
provide details of the farm operation, such as farm and herd size, location, feeding system, etc. Fur-
ther questions were presented to farmers to determine their views on $Value index and EPDs, and to
understand the importance placed on a range of selection criteria when buying or selecting bulls and
heifers. The demographic survey asked 53 questions.

Demographic data were used to form a priori groups or, where appropriate, to define farmer
typologies which are points of commonality and/or heterogeneity in trait preferences among respon-
dents. Typologies might be associated with respondents’ farming system, location, age or any other
demographic factor.

Trait preference survey. We used the PAPRIKA pairwise comparison methodology which
successively presented two options at a time for respondents to choose between. This approach is
practical and requires less intellectual effort from participants when compared to other methods, such
as choice experiments. The pairwise comparison makes choice decisions simpler and therefore may
be nearer to “true” preferences of respondents. We used the on-line tool 1000Minds® (Hansen and
Ombler, 2009) to prioritize choice alternatives. Fourteen traits of interest for farmers were included in
the preference survey, and the list of traits and extent of trade-offs between them is presented in Table
1. Trait trade-offs were quantified based on industry data and market prices such that each trade-off
produces a similar economic impact, assuming they make sense from a respondent point of view.

Table 1. Trait preference survey questions for the $Value indexes review

Trait Name Unit of trade-off, comparison and clear trade-off

Weaning Weight 15 1bs more weaning weight because of growth potential
Milk 15 1bs more weaning weight because of cow milking ability
Heifer pregnancy 4 more heifers calve per 100 mated per year

Calving ease

Cow survival

Cow mature weight
Cow frame score
Body condition score
Foot score

Docility

Feedlot gain
Feedlot efficiency
Yield grade
Marbling grade

3 less assisted calvings per 100 heifers

6 more cows per 100 live past 5 calvings

60 1bs less cow mature weight

1 less unit (2 inches) of frame score

1 more unit of cow condition score under nutritional stress

8 more heifers per 100 suitable as replacements because of good feet

8 more heifers per 100 suitable as replacements because of good temperament
14 less days to commercial endpoint due to feedlot growth performance

0.5 1b less feed per 1b of live weight gain

5 less carcasses per 100 grading Yield Grade 4+

30 more carcasses per 100 exceeding Mid-Choice grade or better for marbling
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Farmers’ preferences for traits are known to be heterogeneous, and accounting for this heterogeneity
is an attempt to reflect the preferences of a large proportion of farmers. The objective of incorporat-
ing farmer’s trait preferences is to account for intangible non-economic factors when formulating
economic selection indexes.

Survey result analysis. The demographic and trait preference surveys were analysed both sep-
arately and jointly to allow a better understanding of the heterogeneity of responses. Three analyses
were undertaken; an a priori analysis based on demographic information; a principle component
analysis (PCA) to reduce the dimensionality of the data; and a cluster analysis (CA) of the resultant
principle components.

The PCA procedure explores the correlation and the variation in trait preferences from which
the principal components of the preferences are calculated. For CA, the K-means clustering method
was used to measure the distance between preference means for each variable (i.e. trait preference).
K-means clustering aims to group n observations into & clusters in such a way that each observation
belongs to the cluster with the nearest mean.

The combination of these analyses enables application of typologies, or drivers of preferences,
into clustered groups of factors with statistically different patterns of trait preferences. These patterns
can assist in designing selection indexes and tailoring extension efforts.

RESULTS AND DISCUSSION

A total of 3,174 responses were received, including 1,709 full completions of both demographic
and trait preference survey sections. Results indicated a general positive perception about AAA’s
EPDs and $Value indexes. Over 70% of respondents use $Value indexes; there was 50-75% total
agreement regarding the importance and usefulness of the $ Value indexes; and over 80% of Breeders
offer $Value figures to their clients. Of commercial cow-calf producers who responded to the survey,
68% ask for $Values when purchasing bulls.

Table 2. Mean preference ranks (lower ranks mean higher preference) for traits across business
activities

Commercial Retained owner Seedstock K.W.
Trait Name cow-calf breeder P value
Mean Sd Mean Sd Mean Sd
Cow survival 3.9 2.9 53 3.5 4.6 3.1 0.642
Docility 5.4 33 54 3.0 5.1 3.1 0.176
Foot score 6.2 34 6.1 3.5 5.0 32 <0.001
Heifer pregnancy 5.8 3.1 6.5 34 54 3.1 0.046
Weaning weight 6.3 33 7.7 33 6.7 33 0.597
Calving ease 6.3 3.7 7.2 3.9 6.7 34 0.084
Body condition score 7.4 37 8.1 3.7 7.5 3.5 0.433
Marbling grade 8.1 4.0 54 3.5 7.7 39 0.308
Feedlot efficiency 8.0 34 6.8 34 7.8 33 0.877
Milk 7.6 4.0 9.5 3.9 7.9 3.8 0.531
Feedlot gain 9.4 34 7.9 3.6 9.1 33 0.049
Cow mature weight 9.1 35 9.7 3.6 10.1 34 <0.001
Cow frame score 10.2 33 10.6 34 10.8 32 0.203
Yield grade 11.1 2.8 8.8 3.6 10.7 3.0 0.396

There was also support to review and refine $Values, with 75% of respondents at least somewhat
agreeing that there would be value in revised indexes that weight traits differently. Also, about 70%
of respondents agreed there was need for a specific maternal index, which includes fertility and
functional traits such as foot score and docility.
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The trait preference survey revealed that the specified changes (Table 1) in cow survival, docility,
foot score, heifer pregnancy and weaning weight ranked the highest on average (Table 2). There were
differences in trait preferences between groups of respondents across and within business activities.
These differences are caused by intrinsic views and beliefs and reach beyond typical characteristics
that can be readily described, such as production system or location.

The PCA and CA analyses resulted in three distinct groups (or clusters) of respondents, named
Maternal, Production and Cow Hard Environment, according to their pattern of trait preferences
across regional or climatic attributes, and in all production or feeding systems (Table 3). These groups
were distributed among cow-calf producers, seedstock breeders and retained owners. No difference
was found between pattern of preference and business activity. The largest variation in preferences
among respondents were on milk, MW, BCS, feedlot gain and marbling.

Table 3. Definition of preferences clusters with average trait rankings across clusters1

Group WWT Milk HP  CE S mMw SOV BCS Foot Docy [cedlot Feedlot Yield yp 4
survival frame gain _ efficiency grade
Maternal 57 57 4.8 5.5 39 104 112 79 45 43 103 8.9 11.8  10.1
Production 62 7.2 6.5 8.1 56 113 11.8 85 63 59 7.1 6.7 94 44
Cow hard 85 119 5.6 6.6 3.8 71 84 57 58 56 9.8 7.4 106 8.2

The survey has provided important information for development of indexes which are well aligned
with requirements of stakeholders in Angus beef production. Differing trait priorities related to cow
feed requirements (e.g. mature weight, milk, condition score) were identified, but ultimately were
not deemed enough to justify presentation of multiple indexes. Consequently, the current maternal
sub-index was updated targeting the most common feeding systems, with downward pressure on cow
maintenance requirements based on the cost of providing additional feed, and a non-linear emphasis
on maternal weaning weight. The non-linear milk function (Quinton et al. 2019) was constructed to
reward bulls with milk EPDs in the range desired by most breeders, while ensuring that bulls with
very high milk do not rise to the top of the index without being exceptional for other traits. Modi-
fications were also made to existing terminal sub-indexes (focused on growth, yield and marbling
traits), and a new overall index combining maternal and terminal traits will be implemented based
on the industry consultation survey results.

CONCLUSIONS

An on-line industry consultation survey was used to inform economic modelling, and selection
index theory principles to propose revised options for $Value indexes. Different groups of farmers
were identified according to their pattern of trait preferences. The resulting indexes and sub-indexes
are therefore more closely aligned to the requirements of stakeholders in Angus beef production than
those being replaced.
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SUMMARY

Breeding polled (hornless) cattle is a long-term solution to the costly and increasingly unaccept-
able cattle management practice of dehorning. This study simulated introgression of the POLLED
allele into a tropically adapted Australian beef cattle population via conventional breeding or gene
editing for multiple polled mating schemes and compared results to baseline selection on genetic
merit using the Japan Ox Economic Index ($JapOx) alone, over the course of 20 years. Overall, our
simulations show that given the limited number of polled Brahman sires, conventional breeding to
increase the POLLED allele frequency will have to occur gradually to prevent major impacts on the
rate of genetic gain. Furthermore, this study demonstrates how gene editing could help to ameliorate
these impacts if a rapid decrease in HORNED allele frequency is required due to public pressure or
legislation requiring the immediate cessation of dehorning practices.

INTRODUCTION

Dehorning is a standard cattle management practice to protect animals and humans from injury.
It is an unpleasant, costly process subject to public scrutiny. Horns are inherited as an autosomal
recessive trait (Long and Gregory 1978). However, the Brahman breed, which is most commonly
used in extensive grazing systems in Northern Australia (Bunter et al. 2013), is predominantly horned.
Therefore, decreasing HORNED allele frequency through conventional breeding strategies has been
challenging (Prayaga 2007). Alternatively, the use of gene editing to produce high-genetic-merit
polled sires has been proposed (Carlson et al. 2016). Although other genetic factors (i.e., scur and
African horn) have been associated with the presence/absence of horns, these factors are believed to
segregate independently so this study only modeled HORNED and POLLED alleles. The objective
of this study was to simulate introgression of POLLED into a tropically adapted Australian beef
cattle population via conventional breeding or gene editing for multiple polled mating schemes and
compare to baseline selection on genetic merit, using the Japan Ox Economic Index ($JapOx) alone,
over the course of 20 years (yr).

MATERIALS AND METHODS

Simulation. Geneedit.py (Cole and Mueller 2019) was used to simulate introgression of POLLED
into the Australian Brahman population via conventional breeding or gene editing. Ten nucleus (seed-
stock) herds supplied bulls to 200 multiplier (commercial) herds. The seedstock base population was
15,000 cows and 40 bulls. The commercial base population was 35,000 cows and 800 bulls. True
breeding values for $JapOx were determined by randomly sampling from a normal distribution, with
a standard deviation (SD) of $34 for both the seedstock and commercial populations, and a mean of

* A joint venture of NSW Department of Primary Industries and the University of New England
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$34 for seedstock cows and $0 for commercial cows (Johnston and Graser, 2009). Base population
bulls averaged 1 genetic SD higher than cows. The proportion of polled bulls was set to 30% het-
erozygous (Pp) and 2.6% homozygous (PP). PP bulls averaged 0.16 SD lower $JapOx than horned
bulls, and the HORNED frequency for both base populations was set to 80% (Connors ef al. 2018).
Pre-weaning calf loss was set to 8% (seedstock) and 13% (commercial), and the dehorning mortality
for both populations was 2% (Bunter ef al. 2013).

To maintain a maximum population size of 3,000 (~1,800 breeding age) seedstock and 100,000
(~61,000 breeding age) commercial cows, cows were culled first by age (> 10 yr) and then at ran-
dom. Both seedstock and commercial females had their first calf at age 3 and seedstock bulls were
eligible for breeding at age 2. The seedstock population kept the top 5% of $JapOx 2-yr-old bulls
for breeding to seedstock cows and the remainder were mated to commercial cows. To maintain a
population size of 60 seedstock and 1,800 commercial bulls, bulls were culled first by age (> 5 yr) and
then by $JapOx ranking. Ten replicates of each scenario were simulated for 20 yr, with overlapping
generations as described previously (Cole 2015; Mueller ef al. 2019).

Mating schemes. Each herd used a unique portfolio of sires and the maximum sire portfolio sizes
were 6 and 10 bulls for seedstock and commercial herds, respectively. To model mating via natural
service, each bull was limited to 35 matings per year and bulls within a sire portfolio were mated
randomly to cows in all scenarios. Three mating schemes, 1 baseline (A) and 2 polled (B, C) were
modeled. To establish a baseline and model current practice, scheme A used $JapOx as the sole sire
selection criterion. In scheme B, PP bulls were preferentially selected for sire portfolios, and then
both Pp and horned sires were used for the remaining sire portfolios. In contrast, in scheme C only
PP bulls could be included in the sire portfolios and if the mating limit was reached then cows were
left open. Scheme C models a potential situation if producers are prohibited from using sires that
result in horned offspring.

Gene editing. Polled mating scheme C described above was also simulated with the addition of
gene editing for polled. In these scenarios, gene editing was modeled as an added step to the elite
sire production system proposed by Kasinathan et al. (2015), which combines the use of advanced
reproductive technologies and somatic cell nuclear transfer cloning with embryo transfer. In the C-1%
and C-10% scenarios, seedstock bull calves were sorted yearly on $JapOx and the top 1% or 10%,
respectively, of Pp and horned bulls were cloned and then gene edited to be PP.

RESULTS AND DISCUSSION

HORNED frequency. The baseline scenario A did not result in a significant decrease of HORNED
frequency in the Australian Brahman population after 20 yr (Figure 1), which is consistent with US dairy
simulation results (Cole 2015; Mueller et al. 2019). The preferential selection of PP sires in scheme B,
resulted in a significant decrease (P < 0.05) in HORNED frequency after 20 yr compared to baseline
scheme A. However, after only 5 yr scheme C resulted in a
" . A s significantly lower (P <0.05) H ORNED frequency (6§%), than
scheme B (74%). Both scenario C and C-1%, which included
A C —A-C1% ke C10% gene editing only the top 1% of seedstock bull calves per year,
3 100% resulted in a similar (P = 0.81) rapid decrease in HORNED
g frequency to 10.2% after 20 yr. Additionally, scenario C-10%
resulted in a slightly lower HORNED frequency (9.8%; P <

0.05) after 20 years than either scenario C or C-1%.
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Inbreeding. In all scenarios inbreeding increased less than 1% per generation. This level of
inbreeding has been found to have relatively minor effects on traits of economic or biological signif-
icance in tropical beef cattle (Burrow, 1998). A limitation of the simulation is the assumption that all
base population animals were initially unrelated, which is unlikely to be valid in a commercial setting.

Genetic gain. The greatest genetic gain ($JapOx) after 20 yr was achieved in baseline scheme
A ($160). Selection of polled sires resulted in significantly slower (P < 0.05) rates of genetic gain
($JapOx) compared to baseline scheme A (Figure 2), which is consistent with previous findings in
dairy (Spurlock et al., 2014; Mueller et al., 2019). However, the addition of gene editing to scheme
C, scenarios C-1% and C-10% both resulted in significantly greater (P < 0.05) genetic gain than
the polled conventional breeding scenarios B and C. Of the polled scenarios, C-10% resulted in the
greatest genetic gain after 20 yr ($154), which was significantly higher (P < 0.05) than C-1% ($144).
A limitation of the simulation is the assumption that true breeding values for $JapOx are known (i.e.,
breeding value accuracy = 1). Accuracies for cattle in commercial populations with little performance
or pedigree information are likely considerably lower, decreasing the rate of gain.

Avg$Japox B VNS D= —fh—C = =C1% +-ofk++ C-10%

Animals sold Bulls Cows :
! Beef |||||A e Max population &Age
60,000 $160
50,000 glgg G
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Figure 2. Average effect of each mating scenario on the number of animals sold per year by
category on the primary y-axis and the average $JapOx per scenario on the secondary y-axis

Number of cows bred and animals sold for beef. After 10 yr of both scheme A (baseline) and
B (preferential PP), the maximum multiplier cow population size was reached. Due to the delayed
mating age (3 yr) there were ~61,000 cows bred in yr 10 and thereafter, and there were no cows left
open in these mating schemes. Therefore, at maximum population size, scheme A and B resulted in
~26,000 steers sold for beef per year (Figure 2). In contrast, due to the limited number of PP sires
available a significantly greater (P < 0.05) number of cows were left open yr 1 to 7 in scheme C,
which resulted in a significantly smaller (P < 0.05) cow population size until yr 18. Consequently,
scheme C resulted in significantly less (P < 0.05) total animals sold per year until yr 18 (Figure 2).
The addition of gene editing only the top 1% of seedstock bull calves per year to this mating scheme
(C-1%) resulted in similar numbers of total animals sold for beef per year. However, scenario C-10%
resulted in significantly more (P < 0.05) total animals sold per year from yr 3-18 than either scenario
C or C-1%. All 4 polled mating scenarios (B, C, C-1% and C-10%) resulted in significantly more (P
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< 0.05) total animals sold for beef in year 20 than baseline scheme A, as a result of decreased calf
loss due to less calves needing to be dehorned.

Scenarios. Preferential selection of PP sires (B) decreased HORNED frequency to 29% after
20 yr, whereas the obligatory use of only PP sires (C) decreased the frequency to 10% after 20 yr.
The C-1% scenario, which added gene editing only the top 1% of seedstock bull calves per year to
mating scheme C, resulted in similar HORNED frequency, genetic gain and number of total animals
sold for beef per year to scenario C. However, gene editing the top 10% of seedstock bull calves per
year (C-10%) resulted in significantly higher POLLED frequency, genetic gain and number of total
animals sold for beef per year to scenario C.

Scheme C models a situation that could arise if producers are prohibited from using genetics that
result in horned offspring. In this simulation cows were left open if no suitable PP sire was available.
A more realistic alternative would be to use PP bulls from other less tropically adapted breeds, which
could result in higher levels of mortality due to ill-adapted sires and progeny.

Regulatory considerations. Given recent developments outlined by the Australian Office of
the Gene Technology Regulator (OGTR) it appears that animals modified using template-guided
techniques, like the POLLED allele, will be regulated as genetically modified organisms (GMO) in
Australia (Mallapaty, 2019). This is not the case in other countries (e.g., Brazil) and may effectively
preclude the use of gene editing to introduce the POLLED into Australian cattle breeding programs.

CONCLUSIONS

Overall, our simulations show that given the limited number of polled Brahman sires, conventional
breeding to increase POLLED frequency will have to occur gradually to prevent a major impact on
the rate of genetic gain ($JapOx). Furthermore, this study demonstrates how gene editing could help
reduce this loss if a rapid decrease in HORNED frequency is necessary due to public pressure or
legislation ceasing dehorning practices immediately.
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SUMMARY

Brahman cattle, a Bos indicus breed, are well adapted to the harsh environment of northern Aus-
tralia but reach puberty at an older age compared to Bos taurus breeds. Samples from hypothalamus
(HYP), pituitary gland (PIT), both ovaries (OVA), liver (LIV), adipose tissue (AT), uterus (UTE)
and longissimus dorsi muscle (MUS) from pre- and post-pubertal heifers were harvested for RNA
sequencing (RNA-Seq). Four gene categories, including differentially expressed (DE) genes, tissue
specific (TS) genes, key transcription factors (TF) and genes harbouring SNP associated with heifer
fertility, were utilized as nodes of the gene co-expression networks. Significant network connections
were identified using an algorithm that exploits the dual concepts of partial correlation and information
theory (PCIT). Significance analysis (P < 0.01) of RNA-Seq data revealed 2,116 DE genes, 624 TS
genes, 186 TF and 179 genes having SNP associated with heifer fertility within the 14,437 expressed
genes (genes with reads per kilobase of exon per million mapped reads (RPKM) > 0.2). PCIT analysis
pinpoints ZEBI, TEF and NFATC? as the best trio of TF in terms of their ability to span the majority
of the topology of the pre- and post-puberty networks. A new role for SEMA7A in bovine pubertal
development is also postulated. Taken together, our multi-tissue omics analysis revealed candidate
genes that could lead to improved understanding of the mechanisms that guide pubertal development.

INTRODUCTION

Fertility traits are economically important for beef cattle operations. Improvements in reproductive
efficiency can increase profitability and reproduction rate of beef cattle. Although events involved
in the puberty process are similar in Bos indicus and Bos taurus cattle, they are initiated earlier in
Bos taurus (Johnston et al., 2009). Selection programs for early pubertal cattle based on phenotype
require additional expenditure and labour. As the precise mechanisms inhibiting or stimulating bovine
puberty are not entirely clear, identification of molecular regulatory networks modulating puberty
in Bos indicus cattle is required to better manage heifer development, support development of new
biotechnologies, and perhaps develop genetic selection tools of early pubertal cattle.

Our study aimed to identify DE genes, TF, metabolic pathways and networks involved in Brahman
cattle puberty. Key tissues for puberty (HYP, PIT, OVA and UTE) and for growth and metabolism
(LIV, MUS and AT) were collected from six pre- and six post-pubertal Brahman heifers for RNA-
Seq analyses. Gene expression values were obtained and used to construct pre- and post-puberty
co-expression gene networks using an algorithm based on PCIT. The predicted co-expression net-
works were linked by DE genes, TS genes, known TF and genes harbouring SNP associated with
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heifer fertility traits. These analyses provide new insights into candidate regulatory genes and gene
expression pathways involved in bovine puberty.

MATERIALS AND METHODS

Twelve heifers of similar age were managed, handled and euthanized under protocols approved
by the Animal Ethics Committee of the University of Queensland (UQ), Production and Companion
Animal group (certificate number QAAFI/279/12). Heifers were examined every two weeks for
observation of the pubertal development. Post-puberty heifers were in the luteal phase of their second
cycle. There was no statistical difference in either BW (338 + 54 and 363 = 39 kg, P =0.38) or CS
(3.5+£0.4 and 3.8 £ 0.4, P = 0.18) between pre- and post-pubertal heifers.

Tissue samples (HYP, PIT, OVA, UTE, LIV, MUS and AT) were harvested as fast as possible after
slaughter to preserve quality of RNA. In total, 96 tissue samples were available for RNA extraction
(12 per tissue, except for OVA which had 24 samples available corresponding to the left and right
ovaries). Total RNA was purified using a combination of RNeasy (QIAGEN, Australia) and TRIzol
methods as previously described (Fortes et al. 2016; Nguyen et al. 2017a; Nguyen et al. 2018). All
samples were passed quality control with RNA integrity numbers higher than 6.9.

The Illumina TruSeq sample preparation kit (Illumina, San Diego, CA) was utilized to construct
cDNA libraries for each sample. Standard HiSeq 2000 sequencer analyser (Illumina, San Diego,
CA) protocols were used to conduct RNA sequencing. Sequence reads were assembled and mapped
to the annotated bovine genome (UMD3.1). Quality control and RNA-Seq expression analyses
were performed using CLC Bio Genomic workbench software (CLC Bio, Aarhus, Denmark), with
procedures described previously (Nguyen ef al. 2017a; Nguyen et al. 2018). A threshold of the gene
expression value (RPKM) > 0.2 was utilized to annotated expressed genes (Mortazavi et al. 2008).

We applied “omics” pipeline developed by Nguyen ef al. (2017b) to identify DE genes, TS genes,
genes harbouring SNP associated with female fertility (heifer pregnancy, first service conception and
age at first corpus luteum). From the predicted pre-pubertal and post-pubertal networks using PCIT
which comprised DE, TS, TF and genes harbouring associated SNP (Reverter and Chan 2008), we
applied an information lossless approach (Reverter and Fortes 2013) to explore the connectivity degree
of all TF in the network. This approach allowed identification of the best trio of TF that, through their
first neighbours, span most of the network topology. Finally, the list of DE genes (n = 2,116) was
used as target list for functional enrichment analysis using Database for Annotation, Visualization,
and Integrated Discovery (DAVID, Dennis 2013).

RESULTS AND DISCUSSION

An average of 60 million sequence reads were obtained for each individual sample. Previous
studies demonstrated that approximately 30 million reads are sufficient to detect more than 90% of
annotated genes in mammalian genomes (Lee et al. 2013; Wang et al. 2011). Despite the absence
of a Bos indicus reference genome, our transcriptome data provided 60 to 70 % mapped reads. The
relatively high number of sequence reads and mapped reads indicates that our data are adequate for
differential expression studies.

A total of 2,116 DE genes, 624 TS genes, 186 TF and 179 genes harbouring SNP associated with
heifer fertility traits were identified by comparing the pubertal status. Compared to a study by Canovas
et al. (2014) which used similar methods to identify genes in pre- and post-pubertal Brangus heifers,
we found a higher number of DE genes, but lower numbers of TS genes, TF and genes harbouring
associated SNP. The genetic makeup of Brangus heifers is 3/8 Brahman and 5/8 Angus. Differences
in the breed type, the experimental design and sample size need to be considered when comparing
the results of these two studies. Despite these discrepancies, comparing data from these two studies
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could be useful to elucidate genes relevant for pubertal development in cattle, regardless of breed.
Alternatively, specific genes delaying the pubertal process in Brahman heifers may be identified.

Based on gene ontology (GO) analysis of the 2,116 DE genes, we found enriched GO terms
“G-protein coupled receptor protein signalling pathway”, “regulation of hormone levels” and “steroid
metabolic process”. Metabolites and hormones are integrating peripheral signals for reproduction.
Moreover, we also identified the most enriched biological process GO term: “immune response”
(adjusted P = 8.3 x 10°3%). Reproduction is intimately connected to the immune function in women
(Abrams and Miller 2011). The enrichment we found in cattle for the DE genes supports the idea of a
relationship between reproduction and the immune system in cattle. The KEGG pathway neuroactive
ligand-receptor interaction (adjusted P = 2.5 x 10%) has well known roles in puberty. This pathway
comprises ligands and receptors noted to be involved in pubertal signalling such as glycoprotein hor-
mones, alpha polypeptide, GABA receptor, OB-R, prolactin, prolactin receptor and growth hormone
receptor (Ainu Husna et al. 2012).

The hub nodes of pre- and post-pubertal Brahman heifers sub-networks were ZEBI, TEF and
NFATC?2 (Figure 1). Of note, ZEBI may control GnRH expression directly as well as indirectly
(Messina et al. 2016), and was suggested as a candidate gene in a quantitative trait locus (QTL) study
with pleiotropic effects on fatness, stature and reproduction in beef cattle (Bolormaa ef al. 2014).
Both our present study and the Brangus study (Canovas et al. 2014) identified ZEB! as a key regula-
tory factor for bovine puberty. The gene TEF was reported as a transcription factor expressed in the
pituitary gland during embryogenesis (Droplet ef al. 1991). The initiation of TEF gene expression
coincides with that of thyroid stimulating hormone beta (TSHp). Droplet ef al. (1991) reported that
TEF can bind to and lead to effective transactivation of the TSHf promoter. Thyroid hormones have
a role in normal growth and reproductive function (Weber et al. 2013). The third TF of the best trio,
NFATC?2, belongs to the nuclear factor of activated T cells family that has been suggested to mediate
GnRH action (Armstrong et al. 2009). These nuclear factors often generate signals in coordination
with MAPKs (Macian 2005), which also play a role in GnRH regulation (Armstrong ef al. 2009). In
summary, our results amount to a growing body of evidence that supports these TF as important in
the complex modulation of GnRH signaling and pubertal development.

-
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Figure 1. Sub-networks created with the best trio of transcription factors that span most of
the network topology. A: pre-puberty network, B: post-puberty network. Genes are coloured
according to their categories as follows: red = DE genes; pink = TF; blue = TS; dark brown =
genes pertaining to two categories; and yellow = genes pertaining to three categories

Furthermore, examining the interaction between the best TF trio and other nodes in our sub-net-
works, we found that SEMA7A only interacted with the three TF in the pre-puberty network. In mice,
during early development, loss of SEMA7A signaling can alter GnRH neuron migration and therefore
lead to abnormal gonadal development and altered fertility (Messina ef al. 2011). Protein and mRNA
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expression of SEMA7A4 were observed in multiple neuronal systems (Pasterkamp et al. 2007). A study
of the adult female rat brain suggested that SEMA7A4 was required for the neuroendocrine control of
ovarian cycle (Parkash ez al. 2015). Our result revealed only a slight and insignificant increase in the
expression level of SEMA7A4 after puberty in HYP (FC = 0.2). However, significant DE SEMA7A (P
<0.01) was observed in the UTE (FC =-1.3) and PIT (FC =-0.9), representing a decrease in expres-
sion when progesterone signaling was present. We hypothesize that SEMA7A is regulated by the best
trio of TF and could contribute to events leading to GnRH release in pre-pubertal Brahman heifers.

CONCLUSIONS

Our results provided potential candidate genes, pathways and networks related to pubertal devel-
opment. Gene ontology terms and pathways identified from our target gene list might be informative
to explain the molecular mechanisms involving in the onset of puberty in Brahman heifers. However,
our current work was relying only on gene expression data and bioinformatics tools. Therefore,
extensive functional experimental validation for these candidate genes is warranted.
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SUMMARY

The neuronal ceroid lipofuscinoses (NCL) are a group of fatal neurodegenerative inherited diseases.
Ovine models have been instrumental to advance the understanding of the genetics and the underlying
disease mechanism, but most importantly are crucial for the development of therapeutic interventions.
We have commenced to use CRISPR/Cas9 technology to generate an ovine model for the so-called
Turkish variant of late-infantile neuronal ceroid lipofuscinosis (CLN7), a relatively common disease
variant in humans for which currently no ovine model exists. Other groups have created genome
edited and genetically engineered models for CLN1 and CLN3 variants, respectively. We summarise
information about naturally occurring variants of NCL in animals and review the limited information
about genome edited and genetically engineered non-laboratory animal models for NCL.

INTRODUCTION

Neuronal ceroid lipofuscinoses (NCLs/Batten disease) are a group of lysosomal storage disorders
affecting humans and animals. Common characteristics of these diseases include distinctive auto-
fluorescent storage bodies in neurons and many other cells and progressive brain and retinal atrophy
leading to loss of vision, mental and motor deterioration, epileptic seizures and premature death. In
humans, NCL variants have been categorized based on the disease causing genes, i.e. CLN1/PPT1,
CLN2/TPPI, CLN3/CLN3, CLN4/DNAJCS5, CLN5/CLN5, CLN6/CLN6, CLN7/MFSDS8, CLN8/
CLNS, CLN10/CTSD, CLN11/GRN, CLN12/ATP1342, CLN13/CTSF, CLN14/KCTD7 (Warrier et
al. 2013). Despite the identification of the disease-causing genes, the links between protein defects,
lysosomal storage and pathogenesis are not well understood (Cooper ef al. 2015). There is no cure,
but enzyme replacement therapy (ERT) has shown to attenuate the progression of the CLN2 variant
of disease; and research in animal models and human clinical trials suggest that promising results can
be achieved with both ERT and gene therapy for variants that are caused by mutations in genes coding
for the soluble proteins PPT1, TPP1, CLNS5, CTSD, GRN, CTSF (Kohlschiitter et al. 2019; Mole et
al. 2019). However, effective therapeutic interventions for variants that are caused by mutations in
genes coding for the membrane proteins CLN3, DNAJCS, CLN6, MFSDS8, CLN8, ATP13A2 and
KCTD7 are lacking.

NON-LABORATORY ANIMAL MODELS FOR NCL

Naturally occurring NCL diseases have been described in many animal species (Table 1) and both
naturally occurring, and genetically engineered animal models have been crucial in research efforts to
improve our understanding of the genetics and the underlying disease mechanism. Such animal models
of NCL disease are required for safety and proof of concept studies for therapeutic interventions (Bond
et al. 2013). Non-laboratory animal models, such as dogs and sheep, are of specific interests due to
their comparatively large and complex brains, long lifespan and the spectrum of clinical signs with
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which they present. Considerable progress has come from studying sheep with naturally occurring
CLNS5 and CLNG6 forms of disease by the Batten Animal Research Network (BARN) (Palmer et al.
2015; Mitchell et al. 2018). However, naturally occurring models are not available for all variants of
NCL disease (Table 1) and very few non-laboratory animal models have been maintained as research
populations. Recently ovine and porcine models for the NCL variants CLN1 and CLN3 have been
developed using homologous recombination followed by somatic cell nuclear transfer as well as
CRISPR/Cas9 genome editing methods (Table 2; Beraldi ef al. 2016; Eaton et al. 2019).

Table 1. Natural occurring NCLs in animals. NCL variants, genes, species, OMIA/MGI ID, and
breed are shown (OMIA: https://omia.org’/home/; MGI: http://www.informatics.jax.org)

NCL variant/gene  Species (OMIA or MGI ID: breed)
CLNI1/PPTI o Canis lupus familiaris (001504-9615: Miniature Dachshund; Italian Cane Corso)
CLN2/TPP1 o Canis lupus familiaris (001472-9615: Longhaired Dachshund)

e Bos taurus (001482-9913: Devon)
o Canis lupus familiaris (001482-9615: Border Collie, Australian Cattle Dog; Golden
Retriever)
o Ovis aries (001482-9940: Borderdale)
o Canis lupus familiaris (001443-9615: Australian Shepherd)
CLN6/CLN6 o Mus musculus (MGI1:2159328)
o QOvis aries (001443-9940: Merino)

Canis lupus familiaris (001962-9615: Chinese Crested Dog, Chihuahua)
Macaca fuscata (001962-9542: Japanese macaque)

o Canis lupus familiaris (001506-9615: English Setter, Australian Shepherd,
CLNS8/CLNS Alpenlaendische Dachsbracke, Saluki)
o Mus musculus (MGI:1856959)

Canis lupus familiaris (001505-9615: American Bulldog)
Ovis aries (001505-9940: Swedish Landrace)

CLN12/4TP1342 e Canis lupus familiaris (001552-9615: Tibetan Terrier)

n.d/ARSG e Canis lupus familiaris (001503-9615: American Staffordshire Terrier)

Agapornis roseicollis (000181-60468)

Anas platyrhynchos (000181-8839)

Bos taurus (000181-9913: Holstein, Beefmaster)

Canis lupus familiaris (000181-9615: American Pit Bull Terrier, Cocker Spaniel,
Dalmatian, Japanese Retriever, Labrador Retriever, Minature Schnauzer, Polish
Oweczarek Nizinny, Saluki, Welsh Corgi)

Capra hircus (000181-9925: Nubian)

Equus caballus (000181-9796: Aegidienberger)

Felis catus (000181-9685: domestic short-haired, Siamese)

Macaca fascicularis (000181-9541)

Mustela putorius furo (000181-9669)

Ovis aries (000181-9940: Rambouillet)

Sus scrofa (000181-9823:Vietnamese pot-bellied)

CLNS/CLNS

CLN7/MFSDS8

CLN10/CTSD

n.d./n.d.

Due to the large amount of research conducted on naturally occurring ovine CLN5 and CLN6
variants, creation of additional ovine models of NCL disease is of particular interest. Direct comparison
of natural disease history across these different ovine models would be possible. Standardised
assessments of the disease progression as well as gene therapy methods that have been developed
for the ovine CLN5 and CLNG6 research flocks in Australia and New Zealand (Palmer ef al. 2015;
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Mitchell ef al. 2018) could be directly transferred to newly developed ovine models for NCL variants
for which there is currently no non-laboratory research population.

OVINE CRISPR/CAS9 CLN7 MODEL

Until recently there were no non-laboratory animals diagnosed with CLN7 disease (MIM # 610951),
which is the 5" most common variant of NCL disease in humans (NCL-Resource https://www.ucl.
ac.uk/ncl-disease/mutation-and-patient-database). It is unclear if CLN7 research populations can be
established from the recently reported Chihuahua (Ashwini ef al. 2016) and macaque (McBride ef al.
2018) cases. We have therefore commenced to develop a CRISPR/Cas9 genome edited CLN7 sheep
model (Table 2; Tammen et al. 2019) that mimics one of the 39 known human MFSDS& mutations
and will allow direct comparison to the existing natural occurring ovine variants of NCL disease.
We have confirmed that our chosen electroporation approach modified from Kaneko et al. (2013) is
an efficient way to deliver CRISPR/Cas9 components to in vitro produced embryos. We identified
sgRNAs and donor template that create the desired genome edit. However, regulatory uncertainties
have delayed this work as the current requirement to maintain CRISPR/Cas9 genome edited sheep
as genetically modified organisms (GMO) substantially increases the costs for the planned research.
However, amended regulations, which consider animals that are created using CRISP/Cas9 and
Cas9-induced non-homologous end joining (NHEJ) as non-GMO, will take effect in October 2019
in Australia and will allow us to proceed with this research.

Table 2. Genetically engineered and genome edited non-laboratory animal models for CLN3,
CLN1 and CLN7 variants of NCL disease

NCL variant CLN3/CLN3 CLN1/PPTI CLN7/MFSD8
Number of human
patients / families 432 /401 230/177 104 / 88

with disease variant*
late endosomal/
lysosomal membrane,
presynaptic vesicles

Protein location** lysosomal matrix lysosomal membrane

Protein function** unknown palmitoylthioesterase predicted transporter
GE model species Sus scrofa Ovis aries Ovis aries
AexT7-8/Aex7-8
Targeted gene / CLN3 PPTI p.Argl51Ter MFSDS ¢.103C>T
mutation
homologous

recombination in fetal . CRIS}.)R./C?Q HD.R CRIS.PR/CEISQ HDR &

Methodology via microinjection of in ~ NHEJ via electroporation

fibroblasts & somatic
cell nuclear transfer

Animals with

targeted mutation yes
Clinical signs/

histopathology char- o
acteristic of NCL y

disease

Reference Beraldi et al. 2016;

Johnson et al. 2019

vitro derived embryos

yes (3 Indel, 6
heterozygous HDR and 3
homozygous HDR )

yes

Eaton et al. 2019

of in vitro derived embryo

embryos only

unknown

Tammen et al. 2019

* NCL-Resource: https://www.ucl.ac.uk/ncl-disease/mutation-and-patient-database
** Kollman et al. (2013)
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CONCLUSIONS

Variants of NCL have been described in many animal species and the identification of disease-
causing mutations and development of DNA diagnostics allows for effective management of these
diseases in companion animals and livestock. Non-laboratory animal models for NCL have been
instrumental in increasing our understanding of this devastating group of diseases in humans and
are of particular importance for safety and proof of concept studies for therapeutic interventions.
CRISPR/Cas9 technology is an efficient method to develop new animal models for human disease
and can be used to validate the effect of predicted disease-causing mutations in animals. Changes to
the regulation relating to the use of CRISPR/Cas9 technology will make it easier to create animal
models for human disease.
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SUMMARY

The accuracy of genomic prediction for a numerically small sheep breed was investigated based
on a large multi-breed admixed reference set using moderate or high density SNP genotypes, imputed
whole genome sequence genotypes or selected sequence variants based on a genome wide association
study (GWAS). Reference set with weight and eating quality phenotypes was divided into a GWAS
sub set (n=4,000), a training set (n=13,466 to 38,098) and a validation set with data of 143 to 169
purebred Dorper sheep. Genomic BLUP was used to estimate genomic breeding values and prediction
accuracy was evaluated in the validation set based on the correlation between GBV and corrected
phenotypes. Results showed a prediction accuracy between 20% and 30% based on 50k genotypes
across different trait, which increased on average by 2.5% to 7.0% by using HD genotypes or selected
sequence variants derived from an independent GWAS.

INTRODUCTION

Genomic prediction has been successfully implemented in breeding programs of the main livestock
species. In numerically small breeds, it is difficult to establish a reasonably large reference population
and prediction based on other main breeds was shown to be of limited value, (Kachman et al. 2013;
Moghaddar et al. 2014). Low GBV predictability from other breeds would be partly because of low
linkage disequilibrium (LD) across breeds between genetic markers and the causative mutation,
a different distribution of QTL effect and QTL frequency between breeds, or due to genotype by
background genotypes interaction. The problem of low LD maybe overcome when using denser
marker sets or whole genome sequence (WGS) variants in genomic prediction. This study evaluated
the accuracy of genomic prediction for growth and eating quality traits in purebred Dorper sheep
based on a large multi-breed admixed sheep reference population, and to compare predictions based
on common 50k or HD SNP genotypes, imputed WGS genotypes or using selected sequence variants
based on an association study.

MATERIALS AND METHODS

Phenotypes and Animals. Data on post weaning weight (PWT), carcass scanned fat (CCFAT)and
eye muscle depth (CEMD), intramuscular fat (IMF) and shear force at 5 days aging (SF5) recorded
in research and industry flocks between 1999 and 2017 were used in this study. Figure 1 shows the
genetic diversity of the sheep breeds used in this study as a plot of the first versus the second principal
component derived from a genomic relationship matrix (GRM). Phenotypes were corrected for fixed
environmental effects separately for research and industry animals. The fixed effects of the model
were flock, year, sex, management groups, birth and rearing type, age of dam, age at and weight
at measurement (for scanned traits). Random maternal effects were fitted for post weaning weight.
Corrected phenotypes from research and industry data were combined and then corrected for source

* A joint venture of NSW Department of Primary Industries and the University of New England
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of data (research/industry) and random effect of breed proportion derived from a multi generation
pedigree using ASReml 3.0 (Gilmour ef al. 2009). Between 143 and 169 purebred Dorper sheep with
phenotypes and genotypes were used as validation set to represent a numerically small breed. Two
data subsets were formed for a genome wide association study (GWAS); n=4000, either randomly
assigned or selected based on possible higher relationship to the validation set. The rest of population
(between 17,466 and 42,098 across different traits) was used as genomic prediction training set.

Genotypes. Animals were genotyped with the [llumina 50k-ovine (~70%) or 12k-ovine SNP
panel (~30%), which yielded a final 44,101 and 11,377 SNP per animal respectively. Genotypes were
imputed to HD genotypes based on 2,266 animals as reference set and then to WGS based on 726
animals as reference set. The final set was comprised of 31,154,249 SNP and InDels. Selection of
sequence variants was based on significant SNP (—Log Pvalue > 3.5) in GWAS performed on sequence
data and then pruned locally for high LD (>0.95). Association analysis was based on regression of
corrected phenotypes on single sequence variant in linear mixed model (LMM) using Gemma V0.96
(Zhou and Stephens 2012).

Genomic prediction. GBV were calculated based on GBLUP with MTG2 2.02 (Lee et al. 2016)
using the following SNP arrays: 1) 50k (44,101) genotypes, 2) HD (452,998) genotypes, 3) WGS
(30,724,780) and 4) 50k and selected sequence variants (2,583-2,865). The following model was
used to estimate variance components and genomic breeding values in scenarios 1, 2 and 3: y=Xb
+ Za + e, where y is a vector of corrected phenotypes, b is a vector of fixed effect (only mean), a
is a vector of random additive genetic effects and e is a vector of random residual effects. X and Z
are incidence matrices that relate fixed and additive genetic effects to phenotypes respectively. The
additive genetic effects were assumed to be normally distributed with a covariance structure based on
the GRM derived from the respective SNP panels. The genomic prediction model in scenario 4 was
based on fitting two genetic component simultaneously, with covariance structure based on a GRM
from 50k genotypes and selected variants, respectively. Accuracy of genomic prediction in purebred
Dorper sheep was evaluated based on Pearson correlation coefficient between GBV and corrected
phenotypes in the validation set divided by the square root of the trait’s heritability.

RESULTS AND DISCUSSION

Slightly higher heritability, but consistent across different traits, was observed based on imputed
HD genotypes and imputed sequence data compared to 50k genotypes (Table 1). Higher heritability is
related to stronger LD between markers and QTLs and better estimation of realized genetic relationship.

The sum of the heritability based on fitting two random components simultaneously was on average
similar to heritability estimates based on 50k or HD genotypes. Figures 2 and 3 compare the accuracy
of genomic prediction for Dorper sheep according to using 50k or imputed HD genotypes, imputed
WGS variants and 50k SNPs plus selected imputed WGS variants, respectively. Results show a higher
accuracy of genomic evaluation by including the effect of selected sequence variants in the prediction
model as an additional random effect. The extra accuracy was on average 0.065 and 0.077 higher
when fitting selected sequence variants from a random or selected GWAS population, respectively.
SF5 and IMF showed the highest increase in prediction accuracy; 0.11 and 0.09 when using selected
variants derived from random or selected GWAS populations, respectively. Accuracy of genomic
evaluation from using all called sequence variants (~31x10° variants) was not consistently higher than
50k genotypes. SF5 showed an increase of 0.05 and the prediction accuracy was equal or even lower
than 50k genotypes. Prediction from imputed HD genotypes was more accurate (2.4%) compared
to prediction using 50k genotypes in most cases except for PWT and IMF. Results show a base of
between 20% and 32% genomic prediction accuracy on growth and eating quality traits using 50k
genotype data for Dorper sheep based on the use of a large multi-breed reference population (13,466
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to 38,098). This base prediction accuracy was expected and would be related to the use of the large
multi-breed reference set which includes breeds that are genetically close to Dorper sheep (Figure.1).

Table 1. Heritability (h?) estimates based on 50k, HD, WGS and 50k and Selected Sequence
variants for different traits

Trait No of Records  h%,50k h:HD h: WGS h*(50k,Sel SNPs)
Post Weaning Weight (PWT) 38,098 0.182  0.182 0.184 0.174, 0.04
Carcass Scanned Fat (CCFAT) 14,369 0.185 0.214 0.229 0.163,0.06
Carcass Eye Muscle Depth (EMD) 14,507 0.148  0.151 0.149 0.135,0.02
Intra Muscular Fat (IMF) 13,466 0.404 0434 0.455 0.412,0.03
Shear Force day5 Aging (SF5) 14,394 0.172  0.178 0.196 0.146,0.03
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Figure 1. Genetic diversity of the sheep breeds as a plot of the first vs second principal components

Improvement in prediction accuracy by using selected sequence variants in the current study is
in similar range to previous study in main sheep breeds (Moghaddar ef al. 2018) and is in line with
the results of studies on multi-breed dairy cattle. In dairy cattle, Van den Berg ef al. (2016) showed
on average up to 7% higher genomic prediction reliabilities (R?) across milk yield, protein and fat
from a multi-breed reference population. Brendum et al. (2015) reported up to 5% improvement in
genomic prediction reliability on a range of production traits in multi-breed dairy cattle based on
including selected sequence data from GWAS in GBLUP. Using a complete set of imputed WGS a
marginal, zero or even some drop in GBV accuracy observed. This is because WGS provide a very
large amount of genetic markers of which a small subset would be at or in high LD with causative
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mutations. Majority of these imputed sequence variants would not be able to capture genetic variance
and their contribution would be limited to capturing the family relationships between animals, which
would be similar or slightly higher to the relationship captured by 50k genotypes. Similar results of
no improvement in prediction accuracy from using all the sequence variants data have been reported
in Holstein-Friesian dairy cattle (VanRaden et al. 2015).

The extra prediction accuracy based on selected variants derived from a GWAS subset that used
data from animals closely related to the target breed appears to be slightly higher (2% on average)
than using a random GWAS subset. The differences may be not statistically significant and requires
more verification in further studies, particularly based on larger GWAS populations. However, higher
accuracy would be related to probably larger proportion of SNPs derived from a more related GWAS
subset in association with gene that segregate in target breed. This indicates that while multi-breed
GWAS population is more powerful to find larger numbers of causal genomic regions (Duijvesteijn et
al. 2018; van der Berg et al. 2016), our study showed more genetically related GWAS population to
target population is preferable to obtain more accurate genomic breeding values. The GWAS results,
which showed there are some significant genomic regions limited to a random or a selected GWAS
subsets, support these results.

CONCLUSIONS

Genomic prediction accuracy for a numerically small breed population increased by 2.5% and
7% based on using imputed high-density marker genotypes and imputed sequence variants derived
in an independent population respectively. Selection of sequence variants from a genetically more
related population was in favour of higher genomic prediction accuracy in small breed populations.

100 1.00
030 030
080 0.80
070 0.70

40
030
: il ml vttt 1l 0
010 010
» Jull amal wnnn Al « Inll 0 N
pwt imf sfS pwt cfat imf sf5

cefat cemd cemd
W50k WHD WWGS m50ksSelVariants 50k wHD WWGS m50k+Top35

Figure 2. Accuracy of genomic prediction from Figure 3. Accuracy of genomic prediction using
50k, HD and using selected SNPs from random 50k, HD, WGS and selected SNPs from selected
GWAS set GWAS set
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SUMMARY

This study examined trends in the genetic diversity in the Australian Angus cattle population
through the calculation of inbreeding, effective population size, effective number of ancestors and
effective number of founders over time. The effective population size ranged from 68 to 122 depending
on the assumed generation interval. For animals born in 2018, 10 key ancestors explained ~42% of
the genetic diversity within the population. Knowledge of overall genetic diversity will help manage
the population to maintain long-term rates of genetic gain.

INTRODUCTION

The practice of selection in livestock breeding programs has been shown to lead to increases in
inbreeding over time. This has become particularly evident in populations where there is widespread
use of artificial breeding technologies (Bijma 2000). Inbreeding is essentially an increase in the
number of homozygous individuals within a population. With this increase in homozygosity (or the
subsequent reduction is heterozygosity) genetic variation is reduced, which can cause a depression
in fitness (inbreeding depression) and a decrease in future selection response (Falconer and Mackay
1996). Selection based on estimated breeding values (EBVs) that incorporate family information
(genomic or pedigree based) can lead to increased rates of inbreeding due to the high correlation
between EBVs within family, especially when animals are selected at a young age and EBVs are
based on ancestral information.

A number of measures have been used to describe genetic diversity in a selected population,
including the rate of inbreeding, the effective number of founder individuals, ancestral contributions
and effective population size (Boichard et al. 1997). Such measures can give a useful insight into
whether potential reductions in future response to selection may be expected. Knowledge about the
ancestral make up of a population can also have important application in genomic selection where key
ancestors are ideal candidates for genotyping at higher marker densities or whole genome sequencing.

The Australian Angus cattle population has achieved substantial genetic progress in the last several
decades (Parnell 2015). This genetic progress may have impacted the amount of genetic diversity
within the population. The aim of this study was to examine the past and current genetic diversity
present in the Angus Australia population.

MATERIALS AND METHODS

This study used data provided by the Angus Society of Australia. The analysis focused on pedigree
information on animals born between 1990 to 2018. In total, the pedigree data consisted of 1,551,078
animals, including 42,476 unique sires and 447,000 unique dams.

Measures of diversity. /nbreeding. Inbreeding was estimated using the algorithm suggested by
Meuwissen and Luo (1992) for the entire pedigree. The rate of inbreeding per year was estimated as
the regression of year on inbreeding. As stated in Falconer and Mackay (1997) the effective population
size (Ne) is a function of the rate of inbreeding (AF) observed per generation. Therefore, the rate of
inbreeding per year was estimated for assumed generation intervals ranging from 5 years to 9 years.
Effective population size can be described as:
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Ne = ——
¢ = 2AF

Effective number of ancestors. The effective number of ancestors (f) accounts for bottlenecks
since the population formation, adjusting for losses of allelic diversity since the founder generation.

It is estimated by:
Ny -1
fa = zpiz
i=1

where p, is the marginal genetic contribution of ancestor i as defined by Boichard et al., (1997).
The marginal contribution was generated for a given number of ancestors such that the upper and
lower limits to the effective number of ancestors were zero (N =1000).

Effective number of founders. The effective number of founders (f) is an alternative measure to
estimating the total number of ancestors in the population, accounting for the fact that some ancestors
contributed more descendants than others. It is calculated as the number of equally contributing founders
it would take to achieve a similar amount of genetic diversity observed in the current population, i.e.

N, -1
fo= [Z q
i=1

where q is the genetic contribution of founder i as defined by Lacey (1989)).

As noted by Sorensen et al. (2005), the effective number of founders is a useful historical observation
of changes in population structure. It can be used in conjunction with the effective number of ancestors
such that if the ratio between the two measures is less than 1 then some bottlenecks have occurred
since the foundation generation in the population.

RESULTS AND DISCUSSION

Inbreeding. The rate of inbreeding since 1990, shown in Figure 1, was estimated as 0.0082 per
year. The total inbreeding level was on average of 0.03 in 2018. Inbreeding was steadily accumulating
until 2011, after which it has remained steady or slightly reduced. The reduction in inbreeding is most
likely a reaction from breeders to greater efforts to utilise “outcross” genetics, partially in response
to avoidance of sires known to be carriers of recessive genetic disorders identified in the Angus
population (Beever 2009).
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Figure 1. Average inbreeding since 1990 in the Angus Australia population
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Table 1 shows the rate of inbreeding per generation and the corresponding effective population size
for different assumed generation intervals. The effective population size is higher than those estimated
in dairy populations, were values of below 50 are regularly observed (Sorensen et al., 2005). It is
often recommended in animal breeding that it is important to maintain an effective population size of
at least 50 to 100 (Bijma 2000). Such values have been derived from theoretical expectations, where
natural selection counteracts inbreeding depression. Although this is usually not the case in livestock
breeding it gives a useful guide for the management of diversity. The maintenance of the current level
of diversity will ensure that long-term response to selection can be maintained.

It is likely that the estimates of Ne presented are an overestimate of true genetic diversity, given
that the pedigree of the population is relative to a given base. Although, recent estimates of N from
genomic data (N =93) (results not shown) agree with the current estimates from pedigree data.

Table 1: The rate of inbreeding and effective population for alternative generation intervals

Assumed Generation Interval

5 6 7 8 9
AF 0.0041 0.0049 0.0057 0.0067 0.0074
Ne 122 102 87 76 68

The effective number of founders (f)) and ancestors (f)) rapidly declined until 2008, where both
measures plateau (Figure 2). In 2018, the ratio between f and f was 0.32 indicating that a genetic
bottleneck has occurred since the founder generation as a result of selection applied in the population.

Individual marginal contributions of founders to the population were required for the estimation
of the effective number of ancestors. This gave the opportunity to observe the importance of key
ancestors to the population. Table 2 shows the top 10 ancestors based on their marginal contribution
to the population. The top sire explained ~12% of the genetic contributions to the population. The top
10 ancestors collectively accounted for 42% of the total genetic diversity, with the top 50 ancestors
explaining 70% (results not shown).
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Figure 2. Effective number of founders and ancestors since 1990
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Table 2. Summary of marginal contributions for the top 10 individuals

Sire Birth Year Total Marginal Cumulative Offspring
1 1990 0.117 0.117 0.117 7772
2 1995 0.0619 0.0619 0.1789 9862
3 1982 0.0609 0.0609 0.2398 2969
4 1978 0.0548 0.051 0.2908 1272
5 1986 0.0322 0.0322 0.323 1265
6 2006 0.0459 0.027 0.35 5356
7 1988 0.0803 0.0204 0.3704 3708
8 1980 0.0242 0.0196 0.39 117
9 1990 0.0169 0.0169 0.4069 3774
10 1992 0.0205 0.0153 0.4222 703

CONCLUSIONS

This study shows that while the diversity of the Angus cattle population in Australia reduced until
2008, the amount of diversity has been maintained since this time. The Angus population has been
founded by a relatively small number of ancestors, with the top 10 ancestors explaining 42% of the
genetic diversity. Current levels of diversity need to be maintained to ensure losses in response due
to inbreeding are not observed.
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SUMMARY

This study investigated the accuracy of predicting future phenotypes of young Angus and Hereford
cattle using Single-step Genomic BLUP (SSGBLUP) compared to the traditional pedigree-based
BLUP evaluation (NRMBLUP). Forward cross-validation, using two comparison methods, was
used to quantify the predictability of the two evaluations. For each breed, two data sets named “full’
and ‘partial’ were generated. The ‘full’ data set included all relationships, all genotypes and phe-
notypes of animals born up to November 2018. For ‘partial’ data sets, phenotypes of animals born
after December 2014 were removed and the data for animals removed after December 2014 were
used as the ‘validation data set’. SSGBLUP and NRMBLUP analyses were performed separately
for the full and partial data sets and EBVs were predicted for animals in the validation data set. In
Method 1, R squared values (R?), regression coefficients (REG) and adjusted correlation (ACOR),
between pre-corrected phenotypes and predicted EBVs were compared. In Method 2, correlation
ratios between EBVs from full and partial evaluations were estimated to calculate the increase in
predictability between the SSGBLUP and NRMBLUP. The estimated R?, REG and ACOR using
SSGBLUP were higher than those from NRMBLUP. A similar pattern was observed for correlation
ratios from Method 2. The increase in ability to predict future phenotypes using Method 1 ranged
from 30 to 50% and 10 to 36% for genotyped and 2 to 4% and 1 to 2 % for non-genotyped Angus
and Hereford cattle, respectively. Using Method 2, the ability to predict future phenotypes ranged
from 22 to 40% and 6 to 28% for genotyped and 1 to 2% and 0.5 to 1 % for non-genotyped Angus
and Hereford cattle in the validation set, respectively. This study showed that there was an increase
in the accuracy to predict future performance from SSGBLUP compared to NRMBLUP in Angus
and Hereford cattle. The increase in predictive ability varied according to the heritability of a trait,
the number of phenotypes and genotypes included in the evaluation and whether the animals were
genotyped or not in the evaluation.

INTRODUCTION

BREEDPLAN analytical software developed by the Animal Genetics and Breeding Unit (AGBU)
is used for genetic evaluation of beef cattle using best linear unbiased prediction (BLUP) (Graser et
al. 2005). Prior to 2012, EBVs were predicted using pedigree based BLUP models (NRMBLUP).
Since 2012, the BREEDPLAN software has been upgraded to include a range of DNA marker-
based predictions. With the development of 50K micro arrays in 2008, genome wide SNP based
prediction called Molecular Breeding Values “MBVs’ were included using a post-BLUP blending
method. This meant that genotype information did not influence EBVs of pedigree-only animals.
Furthermore, blending of MBVs into existing EBVs is sensitive to various biases which can be
complicated to eliminate. These biases are mostly overcome by implementing Single-step Genomic
BLUP (SSGBLUP). In SSGBLUP, information from pedigree, phenotypes and genotypes are jointly
used. SSGBLUP combines the genomic relationship matrix (G) for genotyped animals with the
pedigree-based relationship (A) for non-genotyped animals (Christensen and Lund 2010). Therefore,
SSGBLUP is expect to produce more accurate EBVs for animals with genotypes than NRMBLUP.

* A joint venture of NSW Department of Primary Industries and the University of New England
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Since 2017, SSGBLUP has been implemented for the genetic evaluation and use in Angus, Brahman,
Hereford and Wagyu breeds in Australia (Johnston ef a/. 2018). An important implementation step is
to quantify the extent of increase in predictability of SSGBLUP over NRMBLUP. A forward cross
validation method proposed by Legarra and Reverter (2018) was used in this study to compare the
predictability of SSGBLUP and NRMBLUP. Predictability is defined as how well the EBVs predict
observed performance.

MATERIALS AND METHODS

Data used in this study were submitted by Angus and Hereford breeders and their breed societies
for use in the November 2018 BREEDPLAN evaluation. Data included 600 day weight (FWT), scan
eye muscle area in heifers (HEMA) and bulls (BEMA), and scrotal circumference (SC). Univariate
analyses were performed for each trait using models described by Graser et al. (2005). Table 1
summarises the number of animals with phenotypes and genotypes for each trait across the two breeds.

Forward cross-validation described by Legarra and Reverter (2018) was used to compare the
predictability of SSGBLUP and NRMBLUP. For each breed, two data sets named ‘full” and ‘partial’
were generated. The Full data set included all relationships, genotypes and phenotypes of animals
born up to November 2018. For the ‘partial’ data set, phenotypes of animals born after December
2014 were removed and the data for animals removed were used as the ‘validation data set’. The
SSGBLUP and NRMBLUP analysis were performed separately for the full and partial data sets
and EBVs were predicted for animals in the validation data set. A strict criteria was implemented to
ensure good convergence.

Two approaches were used to assess the ability to predict the future phenotypes in the validation data
set using EBVs estimated from the partial data. In approach 1, adjusted phenotypes in the ‘validation
set” were regressed against the EBVs from partial analyses of SSGBLUP (SEBVp) and NRMBLUP
(NEBVp) within their respective contemporary group. R-squared values (R?) and regression coeffi-
cients (REG) were estimated. Accuracy of prediction was calculated as a correlation between adjusted
phenotypes and SEBVp or NEBVp and the correlations were adjusted for by dividing by the square
root of the heritability (ACOR). The increase in ability to predict future genotypes (PRED1) of young
Angus and Hereford cattle was assessed as a ratio between ACOR of SSGBLUP and NRMBLUP.

In approach 2, the Pearson correlations between EBVs using full (U f) and partial (ﬁp) for animals
in the validation data set were computed as per the formula given below from Legarra and Reverter
(2018),

Where n is the number of animals in validation set, U are the full EBVs, LT the mean of the
full EBVs, U are the partial EBVs, LT the mean of the partlal EBVs. Legarra and Reverter (2018)
showed that 57 » was equal to the ratio of accuracy of partial (acc) and accuracy of full (acc,) of
SSGBLUP or NRMBLUP. This was modified to get the increase in predictive ability (PRED2) of
SSGBLUP by calculating the ratio between acc, of SSGBLUP and acc, of NRMBLUP as per the
equation given below,

PRED2 = ((corr (SEBV , SEBV)) / corr (NEBV , SEBV))) — 1)*100
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RESULTS AND DISCUSSION

The data used in the methods is summarised in Table 1. In addition to the number of records given
in Table 1, Angus and Hereford had 55999 and 10,971 genotyped animals, respectively, in the full
and partial analyses. The number of animals with phenotypes and genotypes in the validation data for
each trait ranged from 11,455 to 14,162 for Angus and 1,507 and 3,908 for Hereford. Heritabilities
used in the prediction for FWT, HEMA, BEMA and SC for Angus were 0.38, 0.26, 0.24 and 0.39,
respectively and for Hereford were 0.31, 0.24, 0.23 and 0.44, respectively.

Table 1. Summary of data used in the prediction

Trait Angus Hereford

Number of records ! Number in Number of records Number in

Full Partial validation set Full Partial validation set

Geno Non Geno Non

FWT 801,991 673,969 14,162 100,076 514,345 464,703 3,569 40,959
HEMA 368,832 289,344 11,455 68,033 128,810 104,557 1,507 22,746
BEMA 406,378 316,707 13,546 76,125 177,311 148,585 3,908 24818
SC 335,437 256,152 12,404 66,881 133,276 108,026 3,432 21,818

I “Geno’: genotyped animals; ‘Non’: non-genotyped animals.

Genotyped animals. For genotyped animals in the validation set, estimated R?, REG, ACOR and
PREDI1 from Method 1 and the PRED2 from Method 2 are given in Table 2. Using Method 1 for Angus,
estimated R? values ranged from 0.11 to 0.22 for SSGBLUP and from 0.06 to 0.12 for NRMBLUP.
Estimated R? values were higher for SSGBLUP than NRMBLUP for all traits. The estimated REG
using SSGBLUP were also higher than those using NRMBLUP. However, the estimated REG was
higher than 1 for SSGBLUP indicating that EBVs were under-predicted for SSGBLUP. The ACOR
ranged from 0.67 to 0.79 for SSGBLUP and 0.48 to 0.59 using NRMBLUP. Adjusted correlations
were higher for SSGBLUP than for NRMBLUP for all traits. The PRED1 ranged from 30 to 53%.

For Hereford, estimated R? values ranged from 0.08 to 0.17 for SSGBLUP and from 0.05 to 0.13 for
NRMBLUP. As observed for Angus, estimated R? values were higher for SSGBLUP than NRMBLUP
for all traits. Estimated REG using SSGBLUP were also higher than those using NRMBLUP. The
ACOR ranged from 0.56 to 0.62 for SSGBLUP and 0.41 to 0.54 using NRMBLUP. The ACOR were
higher for SSGBLUP than for NRMBLUP for all traits. PRED1 ranged from 10 to 36%.

Using Method 2 for Angus, PRED2 ranged from 23 to 50%, respectively. For Hereford PRED2
ranged from 6 and 28%, respectively.

Non-genotyped animals. Using Method 1 for Angus, changes in the estimated R?, REG, ACOR
and PRED1 between SSGBLUP and NRMBLUP were similar to those observed for genotyped
animals. However, increases were lower than the values observed for genotyped animals, with results
for PRED1 ranging from 3 to 6%. A similar pattern was observed for Hereford where PRED1 ranged
from 1to 3%.

Using Method 2 for Angus, similar to genotyped animals, the predictability of SSGBLUP was
higher than for NRMBLUP for all traits. The PRED2 ranged from 2 to 5%. For Hereford, PRED2
ranged from 1 to 2%.

Results for both procedures showed higher predictability for SSGBLUP as compared to NRMBLUP.
However, estimated regression slopes greater than one indicate that cross-validation using Method
1 may be biased due to errors in adjusting the fixed effects, selection and the heritability used in the
evaluation (Legarra and Reverter 2018). As expected, the advantage in predictability of both procedures
using SSGBLUP (compared to NRMBLUP) was higher for genotyped animals than non-genotyped
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animals. Furthermore, Angus, with a higher number of phenotypes and genotypes animals gave higher
PREDI and PRED?2 for all traits than in Hereford. When the genotyped and non-genotyped animals
were combined, the increase in predictability estimated for SSGBLUP in this study was lower than
the range (25 to 36%) published by Lourenco et al (2018) for Angus cattle in USA. Lourenco et al
(2018) had more animals with records and genotypes than the numbers available in this study.

Table 2. Estimated R squared (R?), regression coefficient (REG) and adjusted correlations
(ACOR) from Method 1and increase in predictability from Method 1 (PRED 1 %) and Method
2 (PRED 2 %) for SSGBLUP over NRMBLUP for genotyped animals

Trait Method 1 Methods

SSGBLUP NRMBLUP 1 2
R? REG ACOR R? REG ACOR PREDI PRED2
Angus

FWT 0.22 1.16+0.02 0.79 0.12  1.07+0.02 0.58 36 28

HEMA  0.15 1.07+£0.02  0.77 0.09 1.08+0.03  0.59 30 23

BEMA  0.11 1.04+£0.03  0.67 0.06 0.93+0.03  0.48 39 26

SC 0.22  1.22+0.02 0.75 0.09 1.09+0.03  0.49 53 50

Hereford

FWT 0.10 1.11+£0.05  0.56 0.05 0.93+0.06 0.41 36 28

HEMA  0.08 0.99+0.09 0.56 0.06 0.92+0.09 0.51 10 6

BEMA  0.08 1.17£0.06  0.61 0.06 1.05+£0.06 0.51 19 13

SC 0.17 1.07£0.04 0.62 0.13  0.99+0.04 0.54 15 12

CONCLUSIONS

Ability to predict the future phenotypes of both genotyped and non-genotyped animals was higher
for SSGBLUP compared to NRMBLUP. Both methods of comparisons yielded very similar results.
Furthermore, ability to predict the future phenotypes was influenced by the number of genotyped
animals in the evaluation and the heritability of the trait used. Higher numbers of genotyped animals
and higher heritability resulted in increased predictability for SSGBLUP.
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FEASIBILITY OF USING IMAGING CARCASS TRAITS IN GENETIC
EVALUATION FOR AUSTRALIAN WAGYU BEEF CATTLE

Y. Zhang and R.G. Banks
Animal Genetics & Breeding Unit", University of New England, Armidale, NSW, 2351 Australia

SUMMARY

This study estimated genetic parameters for AusMeat and camera image analysis carcass traits.
Most carcass traits were moderately to highly heritable. The genetic correlation between AusMeat
marble score and the image analysis marbling percentage traits was close to unity, as was the estimate
between the two eye muscle area traits. Accuracies of genomic breeding values from single step
genomic BLUP (ssGBLUP) were up to 4% higher than those from pedigree based BLUP (PBLUP)
evaluations. The highest increase in EBV accuracies from ssGBLUP over those from PBLUP was for
animals with a genotype but no phenotype. The use of image carcass traits for selection is feasible
for genetic evaluation.

INTRODUCTION

Wagyu is a collective term for Japanese beef cattle breeds (Japanese Black, Japanese Brown,
Japanese Shorthorn and Japanese Polled). Australian Wagyu production started in the 1990s. Genetic
analysis of Wagyu cattle has been reported in a number of studies, with most from Japan and the
USA. As summarized by Oyama (2011), heritability estimates for carcass traits were moderate to
high, for instance, 0.23 to 0.78 for carcass weight, 0.28 to 0.61 for rib eye area, 0.24 to 0.50 for fat-
ness and 0.16 to 0.74 for marble score. Recently applied imaging technology for assessing carcass
characteristics has the potential to accurately and objectively capture carcass characteristics. Those
carcass image analysis traits have been tested in Australian Wagyu cattle on a small scale (Maeda
et al. 2014). Application of genomic selection in livestock could improve the accuracy of selection
and enhance genetic gain. The aims of this study were 1) to estimate genetic parameters for carcass
AUSMEAT and image analysis traits Australian Wagyu cattle, in AusMeat and image analysis traits,
and 2) to test the accuracies of the Estimated Breeding Values (EBV).

MATERIALS AND METHODS

Phenotypes. Phenotypes were extracted from the Australia Wagyu Association BREEDPLAN
database (Aug 2018). Animals used were progeny of 462 sires, with the number of progeny per sire
ranging from 1 to 271. Amongst sires whose progeny had carcass records, 168 had only one progeny
(3% of total carcass records), 207 sires had more than 5 progeny and 12 sires had more than 100 prog-
eny. The average number of progeny per sire was 12. After editing, 6068 carcass records were used
in the analysis. Carcass traits were measured using the AusMeat grading system (AusMeat Limited
2005), including hot carcass weight (CWT, kg), marble score (CMAU, on a scale of 0 to 12), P8 fat
(CP8, mm) depth and carcass eye muscle area (CEMA, cm?). Image analysis traits were obtained in
two steps, 1) colour images of carcass cross-sections between the 5" and 6" ribs were collected using
the digital camera (HK-333, Hayasaka Rikoh, Sapporo Japan, as described by Kuchida et al. 2001); 2)
images were analysed using the image analysis software, BeefAnalyserll (Hayasaka Rikoh, Sapporo
Japan) to generate carcass traits. Details of the processes have been reported previously (Maeda et
al. 2014). The traits generated by the image analysis software are marbling percentage (CCMP, %),
eye muscle area (CCRA, cm?), fineness index or fine marbling particles per cm? (CCFI, count/cm?),

* A joint venture of NSW Department of Primary Industries and the University of New England
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percentages of coarse fat particles (all > 1 pixel, CCCI; the 5 largest, CCCJ; the 10 largest, CCCK,
or the largest one, CCMX, %), number of fat particles (CCNM, count/cm?) and brightness of the eye
muscle area (CCLL).

Genotype and genomic relationship matrix. Animals were genotyped for various sizes of
[llumina Bovine chips (Illumina Inc., San Diego, CA, USA), ranging from 6K to 800K, with most
genotyped with 50K or 150K panels. Genomic data were subjected to quality control (Connors ef al.
2017) and imputed to 150K using Fimpute 2.2 (Sargolzaei et al. 2014). SNP genotypes for 12956
animals were used to calculate the genomic relationship matrix G, (VanRaden 2008)967 bulls and
50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding
coefficients required accurate estimates of allele frequencies in the base population. Linear model
predictions of breeding values were computed by 3 equivalent methods: 1. The numerical relationship
matrix H, that combines the pedigree relationship matrix, 4, and a modified genomic relationship
matrix, G, was used in ssGBLUP analyses. G was manipulated as, G = 4G, +(1—4) A,,, where 4
is the fraction of additive genetic variance explained by markers, ranging between 0 and 1.

Statistical Models. Data were analysed using an animal model fitted with fixed effects and covari-
ates to estimate breeding values, genetic variances and heritabilities. For CWT, the fixed effects were
contemporary group (defined by herd, original owner, sex, management group and killing dates),
and age (days) as linear and quadratic regressors. For other carcass traits linear and quadratic forms
of carcass weight (kg) were fitted instead of age. The same model was implemented for each trait in
PBLUP and ssGBLUP using Wombat (Meyer 2007). ssGBLUP analyses were performed with the

H' matrix calculated for four levels of 1: 0.25, 0.50, 0.75 and 0.95 to identify the optimal 1. The

prediction accuracies of EBVs were calculated as Acc = \j 1- (Z%)V_c‘) , where PEV is the prediction

error variance of the EBV, f"is the inbreeding coefficient and ¢ is the additive genetic variance. The
average EBV accuracies were calculated for all animals or subsets of animals in each of PBLUP or
ssGBLUP analyses. The EBV accuracies were compared amongst subsets of animals which were
identified as animals that were phenotyped, genotyped or both. The comparisons were conducted by
firstly, identifying the highest average EBV accuracy from the 4 ssGBLUP analyses for each trait. The
difference between this accuracy and the PBLUP accuracy was obtained for this subset of animals.

Bivariate analyses were performed for pairs of marbling traits (CCMP, CCFI or CCCI vs CMAU)
and eye muscle area traits (CCRA vs CEMA).

RESULTS AND DISCUSSION

Trait summary. The average slaughter age was 1003 days and the average carcass weight was 419
kg with an AusMeat marble score of 7.2 and an eye muscle area of 66 cm? (Table 1). Image carcass
traits showed the same eye muscle area with higher variation. An average of 27% of the eye muscle
was intramuscular fat (CCMP), 7.3% was coarse fat flecks (CCCI) and 2.7 was fine fat particles per
cm?of rib eye area (CCFI).

Variance and genetic parameters. Heritability estimates for most traits were moderate, with
relatively low standard errors (Table 2). Heritability estimates for AusMeat traits ranged from 0.42 for
CEMA to 0.60 for CWT. This is in line with estimates reported previously. For image analysis traits,
CCMP, CCFI and CCRA were moderately heritable and those estimates tended to be significantly
different from zero. The heritability estimates for coarseness (CCCI, CCCJ, CCCK) were moderate
but with large standard errors. The brightness of eye muscle (CCLL) was also moderately heritable.
The relative proportion of the largest marbling particle (CCMX) had low heritability which was not
significantly different from zero. The current estimates were similar to those by Maeda et al. (2014),
but with lower standard errors. Heritabilities from ssGBLUP (not shown) for different A values varied.
The estimates at a A of 0.25 were the highest and were higher than those estimated from PBLUP.
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EBYV Accuracies from different analyses. The EBV accuracies from PBLUP and ssGBLUP
at 4 levels of A: 0.25, 0.50, 0.75 and 0.95, are shown in Table 3. The highest EBV accuracies from
ssGBLUP were higher than those from PBLUP. Accuracy increases ranged from 0.02 for CCMP to
0.04 for CCMX. The maximum eye muscle area (CEMA or CCRA) EBV accuracies from ssGBLUP
were the same or slightly lower than those from PBLUP. The highest ssGBLUP EBV accuracies were
found at a A of 0.95 and mostly for the fatness traits. The highest ssGBLUP EBV accuracy for CCLL
was identified at a A of 0.25, which was slightly lower than that from PBLUP (-0.02).

The highest increase in EBV accuracies was 0.04 and found in the subset of genotyped animals,
either with (0.03) or without (0.04) phenotypes. For non-genotyped animals, the maximum EBV accu-
racies from ssGBLUP were almost identical to those from PBLUP (with an average increase of 0.01).

Table 1. Descriptive statistics for carcass traits of Australian Wagyu cattle

Trait Count Trait

Animal Sire Dam cg Genotype Mean Std Min Max
CWT 6068 462 4007 1543 1380 418.7 54.28 256 580
CMAU 5634 422 3744 1296 1368 7.23 1.77 2 12
CP8 3496 242 2169 851 1100 22.04 8.34 4 46
CEMA 3374 305 2374 993 1116 65.83 23.17 41 128
CCMP 2109 281 1867 587 727 27.02 7.31 9 49
CCRA 1849 250 1700 386 750 65.92 26.51 0 129
CCFI 1942 263 1743 515 692 2.70 0.60 0 4
CCCI 1838 247 1689 383 750 7.26 5.52 0 42
CCCJ 608 88 601 113 45 4.66 3.02 0 25
CCCK 608 88 601 113 45 5.68 3.42 0 26
CCLL 1113 156 1001 246 656 79.57 10.89 0 118
CCMX 1766 233 1633 371 728 2.47 2.19 0 24
CCNM 608 88 601 113 45 1099.10  688.95 49 4389

Table 2. Variance components and heritability for carcass traits of Australian Wagyu cattle

Trait 6 ’+se ¢ +se h’tse
CWT 832.64+105.65 552.49+72.55 0.60+0.06
CMAU 1.01+0.15 1.38+0.11 0.424+0.05
CP8 17.954+3.09 17.6£2.11 0.51+0.07
CEMA 32.09+6.45 23.32+4.44 0.58+0.09
CCMP 11.97£3.66 20.98+2.94 0.360.10
CCRA 36.04+9.31 38.50+7.25 0.48+0.11
CCFI 0.10+0.03 0.16+£0.02 0.39+0.11
CCClI 1.394+0.71 8.92+0.67 0.14+0.07
cccl 1.97+1.61 4.48+1.43 0.30+0.24
CCCK 2.57+1.95 5.27+1.73 0.33+£0.24
CCLL 24.14+9.23 32.984+7.07 0.42+0.14
CCMX 0.11£0.16 3.65+0.20 0.03+0.04

Bivariate analyses. The genetic correlations between eye muscle area (CCRA vs CEMA) and
marbling traits (CMAU vs CCMP) were close to unity (not shown). Genetic correlations among the
three measures of fat particle coarseness (CCCI, CCCJ and CCCK) were high and positive, suggesting
they were measurements of the same trait. The fat fineness index (CCFI) was negatively correlated
with the coarseness measures CCCJ and CCCK, but not with CCCI.
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Phenotypically, the two measurements of marbling were highly correlated, but were on different
scales. An increase of one unit of AusMeat marble score (CMAU) is equivalent to a 3.5% increase
in marbling percentage (CCMP). Two eye muscle area measures were almost identical (1.0 cm? of
CEAM is equivalent to 0.99 cm? of CCRA). All coarseness indices represent essentially the same
marbling trait, being similarly correlated to the marbling percentage (CCMP) trait. The regression of
CCMP on CCFI showed that increasing fine fat particle per cm? of eye-muscle area by 1.0 increases
CCMP by 9.8%.

Table 3. Accuracies of EBVs from PBLUP (Ped) analyses and ssGBLUP analyses with 4 levels
of A, 0.25, 0.50, 0.75 and 0.95 (H25, H50, H75 and H95)

Trait Ped H25 H50 H75 HO95 Increment
CWT 0.53 0.53 0.53 0.55 0.56 0.03
CMAU 0.50 0.50 0.50 0.51 0.52 0.03
CP8 0.48 0.48 0.48 0.49 0.51 0.03
CEMA 0.49 0.48 0.47 0.46 0.47 0.00
CCMP 0.44 0.44 0.43 0.44 0.45 0.02
CCRA 0.45 0.45 0.44 0.44 0.44 0.00
CCFI 0.42 0.41 0.40 0.41 0.42 0.00
CCCI 0.36 0.37 0.32 0.39 0.41 0.05
CCCJ 0.29 0.27 0.27 0.29 0.31 0.02
CCCK 0.30 0.28 0.27 0.29 0.31 0.02
CCLL 0.42 0.40 0.36 0.36 0.37 -0.02
CCMX 0.22 0.21 0.21 0.23 0.26 0.04
CONCLUSIONS

Most of the AusMeat and image analysis carcass traits were moderately to highly heritable with
moderate standard errors. The genetic correlation between AusMeat marble score and the image
analysis marbling percentage was close to unity. A similarly high genetic correlation was estimated
between the eye muscle area traits. Image analysis of carcass characters is feasible for use during
selection in Australian Wagyu cattle. Accuracies of genomic breeding values at optimal levels of A
could be increased by 4% across traits. For traits from reasonably sized datasets, an increase of 6%
in EBV accuracies could be achievable.
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BULLS USING DATA FROM BRAHMAN AND TROPICAL COMPOSITE
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SUMMARY

Bull fertility directly impacts the outcome of cow herds under a natural mating system. Blood
concentration of the hormone inhibin (INH), measurements of the scrotal circumference (SC18 and
SC24) and the percentage of normal sperm (PNS) in an ejaculate are heritable indicators of bull
fertility. We analyzed bulls from the CRC for Beef Genetic Technologies consisting of three breed
types (Brahman, Tropical Composite, and Crossbreds) to which those four fertility-related traits
were observed. We used 9,012 SNP markers to generate a genomic relationship matrix and to run a
GBLUP analysis. We adjusted the model for the population substructure using the first two principal
components derived from all genotypes. The GBLUP analyses were run twice, one with the whole
dataset and another setting the phenotypes of the Crossbred animals to missing. The accuracy and
bias of genomic estimated breeding values (GEBV) was estimated using the Method LR. Heritability
estimates ranged from 0.17 (PNS) to 0.43 (SC24), and GEBV accuracies from 0.54 (PNS) to 0.81
(SC24). No bias was observed for any trait. Also, there is no evidence of over- or under-dispersion
for INH. However, the GEBVs for PNS seems to be over-dispersed, and the ones of SCs (both SC18
and SC24) seem to be under-dispersed. The use of large enough multi-breed reference populations
can lead to accurate GEBYV for bull fertility traits.

INTRODUCTION

The vast majority of Australian beef cows are bull mated, especially in the north where artificial
insemination is virtually inexistent. Therefore, the bull’s ability to reach puberty, produce good
quality sperm and effectiveness in serving cows are of fundamental importance with a direct impact
on herd productivity. There are several indicators of bull fertility that are polygenic and heritable
traits (Corbet et al. 2013). Serum levels of Inhibin (INH) measured at approx. four months of age is
an early indicator of puberty (Burns ef al. 2013). Scrotal circumference (SC) is related to bull fertility
and correlated to heifer puberty (Fortes et al. 2012, 2013). Percentage of normal sperm (PNS) is an
indicator of calf-output (Holroyd ef al. 2002).

The application of genomic selection approaches for fertility-related traits is of interest. However,
the collection of fertility-related phenotypes is expensive and the number of available animals with
phenotypes and genotypes of any particular breed is too small to generate accurate estimates of breeding
value. Therefore, the use of a multi-breed reference population is a valid alternative approach. The
use of multi-breed genomic selection is a current hot topic of research, with some promissing results
in hard to measure traits, as female fertility (Hayes ef al. 2019).

Here we analyzed data on four traits related to bull fertility, and built a multi-breed reference
population that included Brahman and Tropical Composite, to estimate GEBVs of crossbred animals.
It should be noted that the resutls presented here are part of a work in progress towards a multi-breed
evaluation, and are not final.

MATERIALS AND METHODS
Animals and phenotypes. There were 2,979 bulls of three breed types: Brahman, Tropical
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Composites and crossbreds. They were the progeny of cows from the Beef CRC Lifetime Performance
Population previously described (Barwick et al. 2009; Johnston et al. 2009). The crossbred bulls were
the product of Brahman crosses with Tropical Composites. Four indicators of bull fertility (INH,
SC18, SC24 and PNS) were considered; Descriptive statistics in Table 1.

SNP genotypes. Two SNP genotyping arrays were used, the BovineSNP50 (Illumina Inc., San
Diego, CA) and the Indicus 74K array (Neogen). Initial quality control (QC) for genotypes were
performed within breed and specifically to each SNP chip. After initial QC, SNP were remapped to
the new bovine reference genome ARS-UCD1.2. Only SNP that were genotyped in both platforms and
had a call rate greater than 95% were kept for analyses (n = 9,012 SNP). This SNP set was distributed
across the genome, including the X chromosome.

Statistical Analyses. Principal components analysis on SNP genotypes was conducted using
PLINK 1.09 (Chang et al, 2015; www.cog-genomics.org/plink/1.9/). Following recent approaches
of multibreed datasets (Hayes et al. 2019), our GBLUP was performed using the software Golden
Helix, fitting a mixed linear model with cohort (year and contemporary group) as fixed effect, and the
covariates of age at measurement and PC1 and PC2 that accounts for the different breed composition.
Two GBLUP runs were performed for each trait, one using the full dataset and a second setting the
phenotypes of the Crossbred animals as missing. The accuracy, dispersion and bias were calculated
using the Method LR (Legarra and Reverter 2018). In brief, bias was computed from the difference
between the GEBV using the full data minus the GEBYV setting the crossbred data as missing. Dispersion
was computed from the slope of the regression of the GEBV using the full data on the GEBV with
the crossbred data as missing. Finally, accuracy was computed from the covariance between the two
GEBYV divided by the genetic variance weighted by the average inbreeding coefficient and the average
relationship between individuals.

Table 1. Descriptive statistics of samples* and phenotypes** used for analysis

PNS Inhibin SC18 SC24
Breed n Mean  SD n Mean SD n Mean  SD n Mean SD
BRM 1023 0.70 022 806 7.4l 1.89 1098 26.70 2.71 1098 29.89 2.86
Cross 159 0.60 0.24 161 834  2.05 161 30.18 296 161 33.07 3.00
TCO 1648 0.72 0.19 1329 7.76 1.88 1719 29.82 2.82 1719 3143 2.80
*BRM — Brahman, Cross — Crossbred, TCO — Tropical Composite.
** PNS — Percent of normal sperm at 24 month of age, Inhibin — Blood level of inhibin at around 4 months of
age, SC18 and SC24 scrotal circumference at 18 and 24 months of age. In table, n is the number of animals,
and SD is the standard deviation.

RESULTS AND DISCUSSION

Using the principal components analysis, we captured the expected sub-structure of our population.
Three main clusters were observed corresponding to each of the breed types included in the study
(Figure 1). Also as expected, the Tropical Composite designation showed the highest variation within
each of the breed types. While PC1 captured the differences between the three main populations
(Brahman, Tropical Composites and Crossbreeds), it is the combination of PC1 and PC2 that allows
the separation of substructures within populations. This is particularly the case for the two sub-
populations within the crossbreds (Figure 1).

The estimates of heritability were similar to previously described for Brahman or Tropical Composite
(Corbet et al. 2013), apart from INH that was lower in both cases (0.42, opposed to 0.72-0.74). SC
have higher heritabilities in Brahman (~0.75) compared to Tropical Composite (~0.43), and in this
study was 0.42. PNS on the other hand have higher estimates of heritability in Tropical Composite
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(0.27) than Brahman (0.15), which was closer to the estimate of this study (0.18). Often it is observed
variation in heritability estimates that can be mostly attributed to sample variation. As SC is easy to
measure, relatively inexpensive and highly heritable, it is likely this will remain the reference trait
for bull fertility. Considering the GEBY, there is no evidence of bias for any of the observed traits.
Also, there is no evidence of over- or under-dispersion for INH (Table 2). However, the GEBV for
PNS seems to be over-dispersed, and the ones for SC18 and SC24 seem to be under-dispersed. The
population accuracies estimated using method LR are strong, especially for SC measurements.

« Tropical Comp = Cross = Brahman

0.08

PC2

-0.03

-0.06
PC1

Figure 1. Principal component analysis on SNP genotypes for 2,979 bulls of three breed types:
Brahman (blue), Crossbreds (orange) and Tropical Composites (grey)

The correlation between the GEBV estimated using all dataset, including the crossbred data, and
those estimated setting the crossbred data to missing values varied between traits (Figure 2), from
moderate (0.35) for PNS to high (0.77) for SC18.

Table 2. Estimates of heritability, accuracy, bias and dispersion for GEBYV of fertility-related
traits in bulls

Trait Heritability GEBYV accuracy Bias Slope
PNS 0.176 0.544 -4.36 x101° 0.970
Inhibin 0.419 0.685 -3.50 x10” 1.006
SC18 0.423 0.799 8.15x10° 1.033
SC24 0.428 0.811 1.01 x10°® 1.018

* PNS — Percent of normal sperm at 24 month of age, Inhibin — Blood level of inhibin at around 4 months of
age, SC18 and SC24 — Scrotal circumference at 18 and 24 months of age.

CONCLUSIONS

There are still some improvements that could be done before implementation of multi-breed
genomic selection for bull fertility-related traits e.g. better understanding how to model different
populations in different environments, and consistency in trait measurement. The lack of bias and
the high accuracy of the estimates are encouraging and warrant further research.
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Figure 2. GEBYV of Crossbred using all data, including own record (x-axis) and without own
records (y-axis)
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GENETICS OF HEIFER AGE AT PUBERTY IN AUSTRALIAN HEREFORD CATTLE
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?Beef and Lamb New Zealand Genetics, Dunedin 9058, New Zealand

SUMMARY

Age at puberty has become a key trait in the genetic evaluation of female reproduction traits for
tropically adapted beef breeds in northern Australia. This study aimed to characterise the trait in
Australian Hereford seedstock heifers and to determine the degree to which it, and associated traits,
were under genetic control. Hereford heifers (n = 922) from three seedstock herds were serially
ultrasound scanned to detect their first corpus luteum (indicative of age at puberty) at 4 - 6 week
intervals from 10.6 to 13.2 months of age, at which time heifers were synchronised for artificial
insemination. Results showed that only 52% of heifers were pubertal at synchronisation, and for these
heifers, age at puberty had a heritability of 0.26. When a penalised record (equal to the maximum
age at puberty for their contemporary group plus 21 days) was included for heifers which were not
pubertal into mating, heritability increased to 0.38. For sires with at least 10 progeny, EBVs for age
at puberty ranged from -42 to 28 days. The ability of heifers to conceive early in their first mating
season is linked to lifetime reproductive performance. These results suggest that the proportion which
have reached sexual maturity as they enter their first mating is significantly less than 100% and that
opportunities exist, if the trait were included in the genetic evaluation for the breed, to monitor and
apply selection to improve age at puberty in Hereford heifers.

INTRODUCTION

Results from the Co-operative Research Centre for Beef Genetic Technologies’ Northern Breeding
Project (Beef CRC) showed that age at puberty, identified by serial ultrasound scanning to determine
date at first ovulation, was heritable in tropically adapted beef genotypes (Johnston et al. 2009).
These results have been supported by subsequent research in the Repronomics™ project (Johnston
et al. 2019) (h* = 0.32 to 0.56). Associated research also demonstrated that lower age at puberty
was favourably genetically correlated with lifetime reproductive outcomes (r, = -0.29 to -0.40), and
that selection to improve (reduce) age at puberty would have favourable consequences for lifetime
reproductive performance (Johnston et al. 2014). Morris et al. (2000) showed moderate heritability
for age at puberty in Angus heifers when the trait was based on observed first oestrus (h?> = 0.31),
and a high genetic correlation with first mating pregnancy rate (r,= -0.89). The current study aimed
to exploit methods developed in the Beef CRC to characterise age at puberty in Hereford heifers, to
determine the heritability of the trait and its potential to provide a means to improve and monitoring
female reproduction in the genetic evaluation for the breed.

MATERIALS AND METHODS

Animals and management. Heifers used for this study were made available by three Hereford
seedstock breeders, and represented the entire cohort of females weaned in 2017 and 2018 from each
herd. Herds were selected for inclusion based on a history of high quality pedigree and performance
recording, and a willingness to endure the significant imposition associated with serial ultrasound
scanning required to identify first oestrous. Heifers were managed in accordance with standard practices
for the three seedstock herds, one of which was located in the Southeast of New South Wales (n =

* A joint venture of NSW Department of Primary Industries and the University of New England
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534) and the other two in the New England region (n = 149 and 239).

Heifers were born over a 2-month spring calving period at the Southern New South Wales property
and over three months for the New England herds. The animals evaluated for this study were the
progeny of 99 sires, with 71% from sires with at least 10 progeny, and 20% of heifers from sires used
in at least two herds. Heifers were weaned at an average of 5.4 months, with the two New England
properties weaning at 6.6 months and the remaining herd weaning earlier (averaging 4.5 months old).
Heifers weaned in 2018 were reared under significantly dryer conditions than those in 2017. This
meant that more supplementary feeding was provided for heifers in 2018, but within herd and year,
all animals received the same nutritional interventions. This was also the case for routine management
practices (animals identification and branding, vaccination, parasite control treatments, etc.) as well as
culling for conformation related traits between weaning and syncronisation for artificial insemination.
All herds routinely submit data to BREEDPLAN for genetic evaluation. For the heifers involved in
this study, this included pedigree information, date of birth and weaning weight, and these data were
extracted from the Hereford Australia Ltd. database for these analyses.

Scanning for ovarian function. Ultrasound scanning to detect first oestrous followed the protocols
described by Johnston et al. (2009) for tropical beef females in the Beef CRC. Within herd and year,
scanning was performed by one of three technicians using a Mindray M7 Vet real-time ultrasound
unit equipped with a variable frequency 6LE5Vs intra-rectal transducer, set at SMHz. The timing
of first scans to detect the presence of a corpus luteum (CL), was undertaken when managers at
each location observed the first signs of heat in the heifer cohorts examined for this study (post-
weaning). Subsequent scans were undertaken at 4 - 6 week intervals, until the first progesterone
based synchronisation treatment occurred in each herd, prior to artificial insemination (into-mating).
All heifers in the cohort were scanned at post-weaning and at mating synchronization, with interim
scans performed on heifers which had not displayed a CL. This resulted in the majority of heifers
scanned three times up to synchronisation, with average number of scans per animal, within herd
and year, between 2.3 and 2.8. Based on ovarian scanning results, the following traits were defined:

e Age at puberty (AP) was a trait in females which displayed a CL prior to mating, calculated
as the scanning date at which the first CL was detected minus date of birth.

e Penalised AP (APP) generated an age at puberty record for heifers which had failed to display
a corpus luteum prior to mating. APP was calculated for these animals as the maximum AP for
their contemporary group plus 21 days. For a small number of heifers which failed to display
a CL prior to mating and were in small contemporary groups (for which the maximum AP
was based on too few records (N < 3) to be reliable) no APP was analysed (N = 15 heifers).

e Pubertal into mating (PUB) was a binary trait which identified heifers which had cycled at
any time up to mating (1) or not (0).

e Antral follicle count (FC) was the total number of follicles greater than 2mm, visible by
ultrasound examination of both ovaries at the first scan in heifers which did not have a CL.

Growth and body composition traits. At each scan, records of liveweight weight (LWT), hip
height (HH) and body condition score (BCS) were collected for each heifer following the protocols
for growth and body composition traits described by Johnston et al. (2009). P8 fat depth (P8) was
also measured at each scan using the scanner’s inbuilt callipers, with the exception of the first scan
for heifers from one herd where the records could not be collected.

Modelling, variance component and EBV estimation. Descriptive statistics were generated
using PROC MEANS in SAS. Contemporary group information was extracted from the Hereford
Australia Ltd. database, and was built based on information supplied by participating breeders as
described by Graser et al. (2005).

The contemporary group for 200 day weight was used to analyse heifer growth, body composition
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and the descriptors of ovarian function evaluated for this study. For growth and body composition
traits, dam age and linear animal age were fitted as covariates. Consistent with the protocols established
by Johnston et al. (2009) heifer age was modelled for ovarian scanned traits as month of birth nested
within herd and year. Variance components for each trait were estimated in univariate analyses in
ASReml (Gilmour ef al. 2009), with EBVs for all animals in the three generation pedigree estimated
as the solution for the random animals effect. For this study genetic parameters for the binary PUB
trait were estimated on the observed scale.

RESULTS AND DISCUSSION

Growth and body composition traits. Summary statistics, additive variances and heritabilities
for post-weaning growth and body composition traits are presented in Table 1. On average, heifers
were 10.6 months of age at their post-weaning scan, with mean ages at first scan consistent across
herds. Additive variances and heirtabilities for post-weaning LWT and HH were consistent with
those reported by Donoghue et al. (2018) for Angus and Hereford females prior to their first calving
(h? = 0.45 to 0.57). The heritability for post-weaning P8 was lower than that for Hereford females
prior to their first calving reported for that study (h? = 0.64), but heritability for BCS was comparable
(h? = 0.29). The technicians employed to collect ultrasound data describing ovarian traits were not
accredited BREEDPLAN carcass scanners, and this may explain the slightly lower than expected
heiritability for the scanned fat depth trait.

Table 1. Number of records analysed (N), mean and standard deviation (SD), with additive
variance (c,’) and heritability (h?) (and standard error (s.e.)) for post-weaning growth and body
composition and ovarian scanned traits in Hereford heifers

Traits Units N Mean SD o’ h? s.e.
Post-weaning growth and body composition
AGE Days 922 3214 27.9 . . .
LWT kg 922 262.9 35.0 460.4 0.55 0.11
HH cm 921 116.7 4.6 6.8 0.49 0.11
P8 mm 837 3.6 1.8 0.6 0.29 0.10
BCS Score (1 -5) 922 2.8 0.6 0.03 0.20 0.08
Ovarian scanned traits
AP Days 481 365.8 38.3 363.0 0.26 0.13
APP Days 902 396.2 44.3 588.7 0.38 0.10
PUBA 1/0 917 0.52 0.50 0.05 0.36 0.11
FC Count 729 23.3 7.1 21.1 0.42 0.13

A Variance components for PUB estimated on the observed scale.

Ovarian scanned traits. Summary statistics, additive variances and heritabilities for ovarian
scanned traits are also presented in Table 1. A key result from this work was the proportion of heifers
which were pubertal into mating (PUB = 0.52). This reinforces the need to investigate the genetics
of puberty traits in temperate breeds and for subsequent analyses, which will examine relationships
of the trait with first mating outcomes. The phenotypic and additive variance for APP (1549.2 and
588.7 days respectively) were substantially lower than those reported by Johnston et al. (2009) for
troppically adapted heifers, which was consistent with the much shorter scanning period in temperate
breeds where maiden matings occur approximately 12 months earlier. The moderate heritability
estimated for APP (h?> = 0.38) suggested that opportunities exist to improve the trait by selction in
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the Hereford breed. Both AP and APP were under significantly greater genetic control than days to
calving (h? ~ 0.05) which is currently the key descriptor of female reproductive performance in the
BREEDPLAN genetic evaluation for the breed.

For sires with 10 or more progeny, EBVs for APP ranged from -42 to 28 days. The heifers available
for this study were a reasonably small sample of the breed, but these results suggest that sire selection
could impact age at puberty in the resulting progeny by at least 35 days. With only 52% of females
pubertal into their first mating, and mating periods as low as 2 months in commercial beef breeding
herds in southern Australia, this could have implications for reproductive outcomes for naturally
mated maiden heifers.

Mean and standard deviation for post-weaning FC were consistent with those reported by Walsh
et al. (2014) for dairy heifers in the US and Ireland, with heritabilities also comparable (h? = 0.25
and 0.31 respectively). FC was recorded in this project to investigate its genetic associations with
economically important female reproduction traits and this will be the subject of future analyses.

CONCLUSIONS

This study presents an initial investigation of the genetics of age at puberty and associated traits in
Australian Hereford seedstock heifers. Results showed that there are opportunities to improve (reduce)
age at puberty by selection in the breed and, by including the trait in the breed’s genetic evaluation,
to monitor this aspect of female reproduction as selection is applied to improve other economically
important traits. The proportion of heifers which were not pubertal as they entered their first mating
was a key result of this study. The increasing prevalence of artificial insemination and the associated
treatments to synchronise (and possibly induce) first oestrous, suggest that genetic and environmental
factors which impact a heifer’s capacity to conceive early in their first mating season may warrant
monitoring and inclusion in the genetic evaluation for temperate beef breeds. It is acknowledged
that serial ultrasound scanning to detect first oestrous is an expensive and labour intensive operation,
making it a candidate for evaluation in intensively recorded reference populations, and for further
research to economise the recording regime.
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HOW DOES MATERNAL WEANING WEIGHT (MILK) AFFECT BODY
CONDITION SCORE AT WEANING IN ANGUS CATTLE
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SUMMARY

This paper reports the heritability estimates for mature body composition traits in Australian Angus
cattle and the interaction with the maternal component of weaning weight. These traits include mature
body weight (MCW), mature cow fat score (MBC), mature cow height (MCH), weaning weight
(WWT) and the maternal component of weaning weight (MILK) with industry data obtained from
breeders registered with Angus Australia. Heritability for MCW, MBC, MCH, WWT and MILK was
estimated to be 0.44, 0.49, 0.15 and 0.13, respectively. MCW had a moderate genetic correlation with
MBC of 0.61 and 0.46 for MCH. MBC and MCH had a genetic correlation of -0.06 but had a large
standard error due to low cross-over of cows with phenotypes for the two traits. MILK had a negative
genetic correlation with MBC of -0.48 and small positive genetic correlations of 0.12 and 0.23 with
MCW and MCH, respectively. These results indicate that selection for mature body composition traits
is possible but care should be taken when considering interactions with the maternal trait MILK.

INTRODUCTION

Mature body composition traits of mature beef cows have has not been as well measured in
seedstock populations as compared to corresponding traits at younger ages (Donoghue ef al. 2018).
However, a high percentage of female cattle in a self-replacing herd will spend up to significantly
more time as a mature animal compared to their first two years. Australian seedstock beef breeders
have made significant gains in production traits where traits can be easily measured in large and
complete cohorts in the first two years of age (Walmsley et al. 2018). Given the challenges of mea-
suring traits on mature cows, the estimation of breeding values in routine analysis for mature body
composition traits has been challenging. Mature cow body composition traits are an important aspect
for self-replacing herds to focus on in their breeding objective. Traits such as mature body condition
score (MBC), mature weight (MCW), mature hip height (MCH) are associated with feed maintenance
costs and reproduction rates (Walmsley et al., 2018). Previous studies in Angus research populations
in Australia and United States of America have estimated heritability from MBCS, MCW and MCH to
be 0.11-0.21, 0.40-0.71, and 0.62-0.83, respectively (Choy et al. 2002; Decker et al. 2012; Donoghue
et al. 2018). Genetic correlations of mature body composition traits has not been well investigated in
beef but dairy cattle analysis suggest a negative genetic correlation of 0.50 between milk yield and
MBC (Berry et al. 2003).

The aim of this paper is to estimate genetic and residual variation and correlations of the three
body composition traits above and the maternal component of weaning weight using industry data
from the Angus Australia database.

METHODS

Animals. Industry data from animals in the Angus Australia database born in 2003 and after were
included in the analysis. All males were excluded for MCW, MBC and MCH. For individuals to be
included for these traits, there needed to be at least 10 females in a contemporary group. Records for
WWT to be included were the corresponding progeny measured at the same point of MCW or MBC
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measurement. Contemporary grouping for all traits were created based on Graser ef al. (2005) where
the concatenation of herd, day of measurement and breeder-defined management group was used.
Females were excluded if the first measurement for any trait was older than 5 years of age. Table 1
displays the number of records for traits and pairs of traits. The number of contemporary groups for
each trait is found in Table 1.

Measurements. Weaning weight was measured between 60 and 300 days of age. Both MBC and
MCW were measured within two weeks of weaning. The minimum age for MBC and MCW was 830
days of age while MCH was 730 days of age. All traits were measured following Angus Australia
measuring protocols.

Statistical analysis. Single measurements were used for all traits. Records more than 4 stan-
dard deviations from the database mean were identified as outliers and removed from the analysis.
Contemporary group was fitted as described above and age at measurement was fitted for all traits.
Age of calf was fitted for MCW and MBC, while age of dam was fitted for WWT. The maternal
component for weaning weight was fitted to estimate the maternal affect (MILK). Genetic parameters
and predicted means were estimated using an animal model in WOMBAT (Meyer 2007). Genetic
covariance was not estimated between WWT direct and maternal component of WWT (MILK). A
numerator relationship matrix based on a four generation pedigree was used. Genetic and phenotypic
parameters were estimated from a multivariate analyses.

Table 1: Means, standard deviations, minimums, maximums and number of contemporary
groups for each trait

Records Mean SD Min. Max. GCrgE;s
WWT 56409 237.5 52.0 56 445 2892
MCW 31455 538.2 86.8 316 966 1044
MBC 4915 3.1 0.75 1 6 188
MCH 2952 133.1 5.16 117 155 116
RESULTS AND DISCUSSION

Table 2 contains summary statistics for mature body composition traits. All traits were heritable
with low standard errors which suggests that selection for genetic progress can be made. Heritabilities
from the multivariate analysis matched univariate analysis with small and insignificant differences
between standard errors.

Heritability for MCW was 0.43. This is similar to Johnston ef al. (1996) and Choy et al. (2002)
but lower than Decker ef al. (2012) and Donoghue et al. (2018). Heritability for MCH was 0.44
which was lower compared to most other Angus genetic parameter studies in Australia (Donoghue e?
al. 2018) and the USA (Choy ef al. 2002; Decker et al. 2012) which estimated heritabilities ranging
from (0.58-0.82). Heritability for MBC was 0.16 and was similar to other Angus genetic parameter
studies (Choy et al. 2002; Donoghue ef al. 2018). Results from this study are in agreement with past
published studies that there is the potential to select for mature body composition traits. Weaning
weight and its maternal component was 0.18 and 0.13, respectively. This is in agreement with Meyer’s
(1992) study where covariance between direct and maternal effect is not estimated.
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Table 2: Phenotypic variance and heritabilites (with standard errors) for multivariate analysis

O'p L’
WWT 90.5 0.18 (0.01)
MILK 72.8 0.13 (0.01)
MCW 901 0.43 (0.02)
MBC 0.043 0.16 (0.03)
MCH 6.15 0.4 (0.05)

Table 3: Genetic correlation above diagonal and phenotypic below diagonal from multivariate
analysis with (standard errors)

WWT MILK MCW MBC MCH
WWT - - 0.49 (0.03)  -0.09 (0.11) 0.46 (0.09)
MILK - . 0.12 (0.03) -0.48 (0.09) 0.23 (0.08)
MCW 0.44 (0.01) 0.41 (0.01) - 0.62 (0.07) 0.47 (0.08)
MBC 0.15 (0.02) 0.10 (0.02) 0.44 (0.01) - -0.01 (0.16)
MCH 0.31 (0.03) 0.31 (0.00) 0.45 (0.01) 0.07 (0.03) -

Phenotypic and genetic correlations and their associated standard errors between mature body
composition traits and weaning weight are reported in Table 3. MCW was moderately genetically
correlated with MBC (0.62), MCH (0.47) and WWT (0.49). These genetic correlations are lower when
compared to previous literature. Lower heritabilities and genetic correlations in this study could be
caused by using industry data where culling takes place. The other cause may be due to using single
measurement only where permanent environment effect is not accounted for (Kaps ef al. 1999). Fur-
thermore we did not fit sire-by-herd. Repeated measures to account for permanent environment effects
as well as fitting sire-by-herd should give better genetic estimates. The genetic correlation between
MBC and MCW was close to zero which corresponds to previous studies (Donoghue et al. 2018).
Moving forward, Angus Australia members will need to make sure they are measuring both MBC
and MCH on the same animals to provide more accurate genetic correlations between the two traits.

The genetic correlation between the maternal component of WWT (MILK) and MBC (which was
measured at weaning) suggest that high milking cows will genetically lower body condition score
animals with a genetic correlation of -0.48 (Table 3). However, this correlation could be broken with
body condition score measured at weaning and selection for higher MILK and higher MBC possible.
This genetic correlation is in agreement to Berry et al. s (2003) study in milking cattle where they
estimated a genetic correlation of -0.50 between milk yield and body condition score. The phenotypic
correlation between these two traits is 0.10. This suggests Angus breeders are managing body condition
score to make their performance recorded animals are in good body condition when raising a calf.

We did not estimate genetic covariance of WWT and MILK because our model did not use repeated
records and we could not fit permanent environment effects as well as sire-by-herd effects. Bijma
(2006) and Meyer (1992) explain the difficulties of estimating covariance of direct and maternal
components of traits and is the next step for research with this study.

Mature body condition and MCW were measured at the weaning of their calves or within two
weeks of weaning. The measuring of weight helps with the maternal 200 day weight EBVs of their
calves. However, studies suggest that MBC are different traits at different stages of lactation. Dono-
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ghue et al. (2018) suggested that weaning MBC and pre-calving MBC in Australian Angus cattle
while Wolcott ef al. 2013 demonstrated that joining and weaning MBC were also two different traits
in Bos Indicus cattle.

Investigation of mature body composition traits at joining and the genetic relationships with
maternal productivity traits such as MILK and fertility would be a logical next step.

CONCLUSION

Genetic variation in mature composition traits is present in the Angus Australia database, con-
firming there is potential to select for more efficient females in a self-replacing herd. More cows in
the database need phenotypes for both body condition (fat) score and mature hip height to be able to
calculate genetic correlations with confidence. Including some early in life measurements will give
these mature body composition breeding values some context.
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SUMMARY

Industry data for traits included in the new multi-trait genetic evaluation for reproductive traits
provided by Sheep Genetics were used to investigate variation due to sub-populations (genetic groups)
and due to outcross ewe genotypes in maternal sheep breeds. Substantial variation due to genetic
groups (gg”: typically 11-30% of the phenotypic variance) for traits reflecting development (eg weight,
condition score, muscle depth) were not accompanied by comparable variation for reproductive traits
(gg*: 0-8%). Variation due to outcross ewe genotypes ranged from 0 to 8% across traits, being highest
for adult ewe weight (8%) and yearling conception (6%) traits, which are expected to be affected by
heterosis. Accommodating these sources of variation appropriately may be important for the genetic
evaluation of data affected by admixture of populations.

INTRODUCTION

Two key issues for genetic evaluation of reproductive traits for maternal sheep breeds (referred
to as the MATL evaluation) are the extent of variation between sub-populations described by genetic
groups, as well as fair comparison of ‘homebred’ ewes with outcrossed contemporaries. The diversity
of breeds and breed composition within the MATL evaluation is increasing. Breeds occur in sub-
populations (eg. Australia vs New Zealand) and have also contributed to outcrossing and composite
populations, increasing diversity of breed composition and expression of heterosis. Further, outside
introductions can be accompanied by absence of pedigree and therefore creation of additional genetic
groups. Preliminary investigation of breed composition demonstrated considerable variability in the
genetic architecture of individual flocks (eg. composite vs pure-breeding) and the breed choice of
outcross or introduced sires. Therefore, a general strategy to accommodate variation in the effects
of heterosis is required. In this paper, we provide estimates of genetic parameters for traits included
in the new single-step, multi-breed analyses used to produce breeding values for ewe reproductive
performance traits (Bunter e al. 2019), including variances for genetic group effects and flock-
outcross ewe genotypes.

MATERIALS AND METHODS

Data included in these analyses commenced in 2000, with pedigree and genetic groups extended
back to 1998. Briefly, component traits were defined annually for conception of ewes joined (CON:
O=failed to conceive, 1= conceived) along with litter size (LS: 1 to n lambs born) and ewe rearing
ability (ERA: lambs surviving/lambs born) for pregnant ewes. Pregnancy scan data was a secondary
data source to define CON or LS when lambs were not recorded individually. Additional traits included
maternal behaviour score of the ewe (MBS: scored from 1: good to 5: poor) as well as pre-joining
weight (WT) and condition score (CS) recorded within the 30 days prior to joining. Data describing
development of the young ewes and/or their male relatives was obtained for the subset of flocks
included in reproductive analyses and included scanned post-weaning carcase fat (PFAT) and eye
muscle depth (PEMD), along with post-weaning (PSC) or yearling (YSC) scrotal circumferences.

* A joint venture of NSW Department of Primary Industries and the University of New England
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Based on previous analyses (Bunter and Brown 2013), yearling and adult performances of CON,
LS and ERA were treated as separate traits. Models for reproductive traits accounted for the systematic
effects of CG + age, where CG refers to joining (CON, LS) or lambing (ERA) contemporary groups
(based on site-year-timegp-mgp details) and age refers to age at recording in years (adult ewes). Time
group (timegp) was assigned based on lambing dates, to accommodate evidence of gaps between
joining events, and management groups (mgp) were as specified by breeders. Contemporary groups
for reproductive traits were further refined to include: 1) month of birth and dam age group (yearling,
adult, unknown) in the CG for yearling traits, and 2) previous status of the ewe (no lamb, lambed
and lost or weaned, or unknown) in the CG for 2-year-old traits, enabling flock specific differences
with respect to these factors. Additional model terms included birth-rearing type group for yearling
but not adult reproductive traits and litter size group (1, 2 and 3 or more) at birth for ERA, since
litter size alters the rearing challenge for ewes (Bunter ef al. 2018). For the remaining traits (PFAT,
PEMD, PSC and YSC), contemporary groups were as previously defined for these traits (Brown et
al. 2007), and additional model terms included regressions on age, but not weight, where P<0.05.

Specific model comparisons were made using univariate analyses. Trait dependent base models
(model A) included animal genetic effects for all traits, permanent environmental effect of the dam
(subset of traits), and permanent environmental effects to accommodate repeated records for adult
ewes. Additional random effects subsequently added to base models included genetic groups (GG),
defined as per Swan et al. (2016), and a flock<outcross term intended to represent a pure- or crossbred
(PC) genotype for the individual ewe. Genetic groups were as assigned for the genetic evaluation of
maternal breeds, which are currently kept constant across all relevant analyses and trait sets. Ewes
were considered an outcross if their sire was identified by a different flock code; different types of
outcrosses (Ze sire breeds) were not distinguished. The full model (model GGPC) was only fitted for
traits where each of these terms significantly (P<0.05) improved model fit.

RESULTS AND DISCUSSION

Estimates of heritabilities for early in life development traits (PFAT, PEMD, YWT, YCS) and
scrotal measures (PSC, YSC) were generally consistent with expectation and are not discussed
further. Model comparisons for pre-joining weight and condition score or maternal behaviour score
are currently hindered by relatively low record numbers, but heritabilities were moderate.

Yearling vs adult expressions of reproductive traits. The order of magnitude for heritability
estimates was YERA<YLS<YCON for yearling ewes (Table 1) and CON<ERA<LS for adult ewes
(Table 2). Heritability for ERA was consistently lower than for litter size, reflecting an increase in
environmental contributions to ERA. The relatively higher heritabilities for YCON vs CON and LS
vs YLS support the strong influence of age at puberty, which is a moderately heritable trait, on YCON
for yearling but not adult ewes, and an increased expression of genetic differences for litter size in
adult compared to yearling ewes.

Genetic group effects. Pedigree is generally well known for current animals included in MATL
analyses. Therefore, genetic groups predominantly represent within flock base populations and
missing historical pedigree. Estimates of variances due to genetic group effects for early development
traits ranged from negligible (PCF) to substantial (YWT) and the ratio of genetic group to additive
(rgga) variance increased in magnitude from 0.20 (PCF)<YCS<PEMD< 3.96 (YWT). Considerable
variance due to genetic groups was also evident for AWT and CS of adult ewes (Table 2), but rgga
were lower (<1.5) than for corresponding yearling traits. With respect to reproductive traits, the range
in rgga from GG models was much lower (0.06 to 1.83) across both yearling and adult ewes, and this
ratio was largest when flock-outcross variances were present and not accounted for (Model GG vs
GGPC). This result implies that the ratio of genetic group variance (gg?) is potentially inflated due
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to the effects of multi-breed outcrossing. The ratio gg® was substantial for YCON but not CON, but
generally negligible for all other reproductive traits. The ratios of genetic group to additive variances
were somewhat similar to those reported by Swan ef al. (2016) within trait groups.

Table 1. Parameter estimates for post-weaning fat (PCF), muscle depth (PEMD), post-weaning
(PSC) and yearling (YSC) scrotal circumference, yearling conception (YCON), litter size (YLS)
and ewe rearing ability (YERA), along with pre-joining weight (PWT) and condition score
(PCS). The number of records is presented in brackets

Variances Ratios
Trait Model o’ czgg csz Gzpe | o’ Gzp h? gg®  pc?  ped® rgga
PCF A 0.135 - - 0.020 0460 0.614 022 - - 0.03 -
(302747) APC 0.135 - 0.005 0.020 0466 0.625 0.22 - 0.01 0.03 -
GG 0.134 0.027 - 0.020 0467 0.647 022 004 - - 0.20
PEMD A 141 - - 031 449 621 023 - - 0.05 -
(301908) APC 1.37 - 0.18 032 450 636 022 - 0.03 0.05 -
GG 1.31 2.66 - 0.32 4.54 8.84 0.21 030 - 0.05 2.03
GGPC 132 244 0.11 031 452 871 021 028 0.02 005 1.85
PSC A 1.60 - - 031 359 550 029 - - 0.06 -
(69400) APC 1.60 - 0.15 0.30 3.58 5.50 0.28 - 0.03 0.05 -
GG 1.59  0.001 - 031 359 549 029 000 - 0.06 0
YSC A 1.19 - - 0.14 245 379 031 - - 0.04 -
(42637) APC .16 - 0.07 0.15 246 385 030 - 0.02 0.04 -
GG .16  0.64 - 0.14 246 441 031 0.14 - 0.04 0.55
GGPC 1.15 049 0.05 0.15 247 430 030 0.11 0.01 004 042
YCON A 0.021 - - - 0.151 0.172 0.12 - - -
(24826) APC 0.021 - 0.010 - 0.151 0.181 0.12 0.05 - -
GG 0.018 0.033 - - 0.153 0204 0.10 0.16 - - 1.83
GGPC 0.016 0.011 0.011 - 0.153 0.191 0.09 0.06 0.06 - 0.69
YLS A 0.016 - - 0.233 0.249 0.06 - - - -
(58068) APC 0.016 - 0.001 - 0.233 0249 0.06 - 0.00 - -
GG 0.016 0.001 - 0.233 0.250 0.06 0.00 - 0.06
YERA A 0.005 - - 0.123 0.128 0.04 - -
(41955) APC 0.005 - 0.001 - 0.123 0.128 0.04 - 0.00 - -
GG 0.005 0.003 - 0.123 0.130 0.04 0.02 - 0.60
YWT A 104 - - 4.17 944 240 043 - - 0.17 -
(4515) APC FTC - - - - - - - - - -
GG 566 224 - 5.01 11.8 449 025 050 - 022 3.96
YCS A 0.028 - - 0.001 0.149 0.178 0.16 - - 0.01 -
(2803) APC 0.028 - 0.001 0.001 0.148 0.178 0.16 - 0.01 0.01 -
GG 0.022 0.034 - 0.001 0.151 0.207 0.11 0.16 - 0.00 1.70

Variances due to additive genetic (67 ), genetic group (czgg), flock-outcross (czpc), and maternal permanent
environment (c52pe ) effects, along with the residual (c®) and phenotypic variances (czp). Variance ratios are
heritabilities (h* o°, / czp), variance due to genetic groups (gg’: ngg / Gzp), flock-outcross (pc*: cs2pC / Gzp) or
permanent environmental effects of the dam (ped* >/ Gzp), excluding czgg from Gzp for ratios not involving
cszgg in GG and GGPC models, and rgga= czgg / o® ; FTC: failed to converge.

Flock-outcross effects. There is likely little advantage for accuracy of selection in correcting for
differences in retained heterosis within stabilised composites. However, fair comparison of outcross
with homebred ewes is warranted. Ratios of variances due to flock-outcross terms (pc2) were largest
for fertility (YCON: 6%, CON: 3%) and ewe weight traits (AWT: 8%). For comparison, heterosis
for fertility (17-21%), lamb survival (2-8%) but not litter size, was previously observed in structured
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data involving divergent maternal breeds by Fogarty et al. (1984). The absence of substantial ratios
for pc2 for many traits implies that across the wide range of flocks and crosses, alternative ways to
model heterosis may be required.

Table 2. Parameter estimates for adult conception (CON), litter size (LS) and ewe rearing ability
(ERA), along with maternal behaviour score (MBS), pre-joining weight (WT) and condition
score (CS). The number of records is presented in brackets

Variances Ratios
Trait Model &% cszpe ngg cszpC cszpe . o (52P h? gg®  pc? rgga
CON A 0.002 0.004 - - - 0.073 0.079 0.03 - -
(144803) APC 0.002 0.004 - 0.002 - 0.073 0.081 0.03 - 0.03 -
GG 0.002 0.004 0.001 - - 0.073 0.080 0.03 0.01 - 0.50
GGPC 0.002 0.004 0.001 0.002 - 0.073 0.082 0.02 0.01 0.03 0.53
LS A 0.019 0.012 - - - 0.304 0.335 0.06 - -
(685962) APC 0.019 0.012 - 0.002 - 0.303 0.336 0.06 - 0.01 -
GG 0.018 0.013 0.015 - - 0.304 0.350 0.06 0.04 - 0.83
GGPC 0.018 0.013 0.018 0.002 - 0.304 0.354 0.05 0.05 0.01 1.00
ERA A 0.001 0.003 - - - 0.081 0.085 0.02 - - -
(536320) APC 0.001 0.003 - 0.001 - 0.081 0.086 0.01 - 0.01 -
GG 0.001  0.003 0.001 - - 0.081 0.086 0.01 0.01 - 1.00
MBS A 0.101 0.074 - - - 0.501 0.676 0.15 - - -
(10293) APC 0.101 0.074 - 0.001 - 0.501 0.677 0.15 - 0.00 -
GG 0.100 0.075 0.021 - - 0.501 0.696 0.15 0.03 - 0.21
AWT A 182 3.04 - - 253 257 495 037 - - -
(10709)  APC 18.1 299 112 241 256 603 030 0.19

GG 16.7 372 210 - 257 256 696 034 030 - 1.25
GGPC 16.6  3.68 18.8 11.1 248 256 783 028 0.24 008 1.13
CS A 0.043 0.017 - - 0.002 0.177 0.239 0.18 - -
(14959)  APC 0.043 0.017 - 0.001 0.002 0.177 0.240 0.18 - 0.00 -
GG 0.041 0.018 0.028 - 0.002 0.177 0.266 0.17 0.11 - 0.68

Variance due to repeated records (czpc); accompanying ratios ranged between 0.03 and 0.11. All other abbreviations
as per Table 1. Range for ped”: 0.01 to 0.05.

CONCLUSIONS

Admixture of populations within data used by Sheep genetics for MATL breed analyses requires
strategies to accommodate variance due to genetic groups and outcrossing within flocks. For reproductive
traits without a long and effective selection history within flocks, variances due to genetic groups
were generally lower than or similar to estimates of additive variances. Variation in performance due
to outcrossing explained relatively little variation for all traits except AWT and YCON. Alternative
ways to model heterosis may be required.
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SUMMARY

The underlying causal relationship between traits associated with energy reserves and yearling
reproduction is often a cause of conjecture within the sheep industry in part due to anecdotal evidence
often mistaking phenotypic associations with genetic. The use of graphical models to disentangle the
underlying causal relationships between traits associated with energy reserves and yearling repro-
duction showed that selection for sires with high post-weaning fat and muscle will have little impact
on the reproductive performance of the resulting progeny as yearling dams.

INTRODUCTION

Body weight and traits associated with body composition and energy reserves (fat and muscle) are
important components of breeding objectives in sheep. These traits influence the amount of saleable
meat and therefore have a direct economic value to the production system. However, the economic
value placed on fat to produce a leaner carcase is at odds with the desired direction of change in fat
as an indirect selection criterion for other traits, primarily reproductive performance and maternal
efficiency. Previous studies have illustrated that body weight and body composition traits are asso-
ciated with reproductive performance. The relationship between these traits and reproduction can be
moderate at the phenotypic level but is often lower at the genetic level (Walkom et al. 2014; Walkom
and Brown 2016).

Mixed effects models (often solved using REML) have been commonly used to estimate the asso-
ciations between the traits at both a phenotypic and genetic level. However, such estimates indicate
a correlation between traits rather than discover or define underlying causality. An alternative way to
model the association between multiple traits is using graphical models (Valente et al. 2011). Graphical
models, such as structural equation models and Bayesian networks including Incremental Association
Markov Blankets (IAMB) (Tsamardinos et al. 2003), attempt to model all possible pathways in which
two traits are associated. Hence, they provide insight into possible causal relationships that may exist,
rather than association indicated by correlation alone (Valente ef al. 2011). In this study, we use a
graphical model to explore the underlying causal relationship between traits associated with energy
reserves and yearling reproduction at both the phenotypic and genetic levels.

MATERIALS AND METHODS

Data used for the study were provided by maternal sheep breeders to Sheep Genetics as part of the
routine LAMBPLAN genetic evaluation (Brown et al. 2007). The analysis focussed on six core traits:
post-weaning weight (PWT), post-weaning ultrasound fat (PCF*) and eye muscle depth (PEMD¥*),
yearling conception (YCON), yearling number of lambs born (YNLB) and yearling number of lambs
weaned (YNLW) (Table 1).
Statistical Analysis. For each trait phenotypic, residual and genetic variances were estimated from
univariate animal models. A series of bivariate analyses where then used to estimate correlations
between traits. The initial genetic analyses were conducted using ASReml (Gilmour ef al. 2009)

* A joint venture of NSW Department of Primary Industries and the University of New England
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using a pedigree 22 generations deep and containing 674,028 animals. The model fitted to the
post-weaning traits had fixed effects of contemporary group (as per Brown and Swan 2016), birth
and rearing type group (SS, MS, MM), dam age (years), and linear and quadratic age terms. Unlike
the model for standard Sheep Genetics traits, weight was not fitted as a covariate for the scan traits
(represented by *). The permanent environment of the dam was also fitted as a random effect. Year-
ling reproduction traits were adjusted for a contemporary group, which was formed based on site,
flock, year grouping and developmental factors as discussed by Bunter ef al. (these proceedings).

Table 1. Summary of records available and genetic parameters from a univariate animal model
for maternal sheep breeds. Phenotypic variance (¢°), direct additive variance (¢’ ), maternal
permanent environment variance (¢?), residual variance (¢?)) and heritability (h?)

Trait Records Mean SD o’ o’ o’ o’ h?

PWT 279,872 45.70 8.98 25.1 5.18 2.27 17.63 0.29+0.01
PCF* 282,251 3.20 1.31 0.61 0.13 0.02 0.46 0.27+0.01
PEMD#* 263,555 26.70 4.14 6.20 1.42 0.32 445 0.32+0.01
YCON 68,669 0.90 0.35 0.06 0.01 - 0.06 0.08 +0.01
YNLB 68,085 1.20 0.70 0.33 0.02 - 0.31 0.07£0.01
YNLW 51,496 0.90 0.72 0.37 0.02 - 0.35 0.05+0.01

Graphical Modelling. A subset of the data were used in the graphical model analyses, restricted
to animals with a phenotype for all 6 traits (20,093 animals). For the ‘genetic’ graphical model sires
with single trait breeding values, calculated from the univariate analysis, for all 6 traits were used
(2,261 sires). The graphic models in Figures 1 and 2 provide a graphical representation of Bayesian
networks at the phenotypic and genetic (sire) levels, respectively, and were developed using the bnlearn
package implemented in R (Scutari 2010). The networks were estimated using a constraint-based
structure learning algorithm based on the Markov blanket detection algorithm, which is based on a
two-phase selection scheme (a forward selection followed by an attempt to remove false positives)
(IAMB, Tsamardinos et al. 2003). The need for every animal to have an observation for all traits
resulted in the use of YNLB and YNLW instead of the component traits as per Bunter et al. (these
proceedings). The probability of the connections (strength & direction) between the trait nodes was
estimated using bootstrap sampling with the IAMB learning algorithm (Friedman et al. 1999).

RESULTS AND DISCUSSION

Phenotypic association. The phenotypic correlations from the bivariate analysis are shown in
Table 2. Moderate to strong phenotypic correlations exist between the post weaning traits (PWT, PCF*,
PEMD#*) and between the reproduction traits (YCON, YNLB, YNLW). However, the correlations
between the two trait groups were weak.

The graphical model based on the phenotypic associations, using raw phenotypes, an indication
of the observed variation, is represented in Figure 1. PCF* has a causal effect on PWT. Thus, changes
in PCF* will cause a change in the PWT, but changes in PWT can occur without a responding change
in PCF*. The relationship for PCF* on PEMD* is also causative, with PCF* having both a direct and
indirect association via PWT on PEMD*. The graphical model identifies no direct causative effect
of PCF* or PEMD¥* on the yearling reproduction traits. The graphical model shows that once you
condition on PWT (remove variation associated with PWT), changes in PCF* or PEMD* had no
impact on yearling reproduction.
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Table 2. Estimates of phenotypic (above diagonal) and genetic correlations (below diagonal)
between body composition and yearling reproduction traits

PWT PCF* PEMD* YCON YNLB YNLW
PWT 0.48 +£0.01 0.63 +0.01 0.07 +£0.01 0.11+0.01 0.09 +0.01
PCF* 0.42 £0.01 0.49 £0.01 0.05 £0.01 0.06 +0.01 0.04 £0.01
PEMD* 0.58 £0.01 0.51+0.01 0.06 £0.01 0.07+£0.01 0.07 £0.01
YCON 0.04 £ 0.04 0.09 £ 0.04 0.06 + 0.04 0.60 £0.01 0.43 +0.01
YNLB 0.06 £ 0.04 0.07+0.04  -0.03+0.04 0.69 +0.03 0.64+0.01
YNLW 0.17 £ 0.06 0.09 +0.06 0.08 +0.05 0.70 £ 0.05 0.78 +0.04

The ability to achieve conception (YCON) has a causal effect on values for NLB and NLW, as
expected (Figure 1). The relationship from YCON and YNLW to PWT indicates that there is a phenotypic
association between these traits. However, the direction of the relationship shows that the mechanisms
behind increasing fertility and number of lambs weaned is associated with heavier PWT but increasing
PWT will not necessarily cause a response in YCON or YNLW. The causative relationship of PWT on
YNLB suggests increased weight, possibly as an indicator of maturity, is leading to increased litter sizes.

2.677+0.127
(1.00/0.99)

3.363 £0.033 0.729+ 0.070
(1.00/0.995) (1.00/0.96)

0.986 + 0.009

0.288£0.003 (1.00/0.96)

(1.00/0.93)

0.003 + 0.000
@ (0.97/0.98)

Figure 1. Graphical model of the phenotypic relationship between body composition and year-
ling reproduction. Size of the effect in bold with the probability of the relationship and then
direction of causation using bootstrap techniques shown in parentheses

0.867 + 0.019
(1.00/0.92)

Genetic Association. The genetic correlations between the post weaning traits and the reproduction
traits were weak in maternal breeds (Table 2), which relative to other breeds (eg. Merino) are heavier and
fatter at young ages. This suggests that genetic selection for post-weaning body composition is likely to
have a limited impact on yearling reproduction. The graphical model of the genetic association between
the traits (Figure 2) is very different to Figure 1, indicating that the relationships are different at the
genetic level. As observed in the phenotypic model (Figure 1) the association between the post-weaning
traits remains strong but the causative direction between the traits could not be determined. A causative
association between PWT and YNLW was detected and whilst the association was highly probable, the
observed effect was very small, with a 1 kg increase in the sires’s PWT breeding value (EBV) associated
with an increase of only 0.002 in the sire’s YNLW breeding value. An indirect association, via PWT,
between PCF* and NLW would only see an extra 0.000128 lambs weaned per ewe joined for every
extra (genetic) mm of PCF*. Variation in genetic merit for post-weaning traits is largely independent
of genes which affect ovulation rate, litter size or lamb survival (Bunter ef al., these proceedings). The
causative nature of YNLB and YCON on YNLW also means that the association between post-weaning
traits and YNLW is due to the litter survival component of YNLW and not the variation associated with
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fertility or litter size. This may be related to known associations between lamb birth weight (which
affects survival) and post-weaning development traits (Bunter et al., these proceedings).

0.064 1 0.003 0.002 £ 0.000 0.51310.014
(0.995/0.417) (0.810/0.580) (1.000/0.725)

1.272 £ 0.066 1.286 1 0,027
(1.000/0.535) 0.342 4 0.009 (1.000/0.285)

(1.000/0.500) 0.108 + 0.025
(0.980/0.564)

Figure 2. Graphical model of the genetic (sire breeding values) relationship between body
composition and yearling reproduction. Size of the effect in bold with the probability of the
relationship and then direction of causation using bootstrap techniques shown in parentheses

CONCLUSIONS

This study shows that modelling the relationship between body composition and yearling reproduc-
tion can be complex and not simple to interpret and the association between traits, and the causative
associations between the traits, are strongly associated with the ability to disentangle the environmental
and genetic components. In both phenotypic and genetic graphical models the effect of PCF* and
PEMD* appears to be moderated through PWT. As has been shown from the genetic correlations and
the graphical modelling, selection for higher PCF* and PEMD* sires will have little direct genetic
impact on the reproductive performance of the resulting progeny as yearling dams, although it may
influence the ease with which target weights are met pre-joining.
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SUMMARY

Univariate and bivariate linear models via Restricted Maximum Likelihood (ASReml) were used
to estimate heritability, phenotypic and genetic correlation for growth traits measured at birth (BW),
weaning (WW) around 60 days, 90 days (W90), 120 days (W120) and 150 days (W150) in Hampshire
sheep raised in Mexico. From 2005 to 2009 a total of 1,133 individual records of lambs born on 10
farms from 612 ewes and 63 sires were analysed. Direct heritability estimates for BW, WW, W90,
W120 and W150 were 0.38+0.11, 0.15+0.08, 0.17+0.09, 0.18+0.07 and 0.14+0.06, respectively. All
direct and maternal permanent environmental effect correlations were positive for BM, WW, W90,
W120 and W150. The phenotypic correlations between all traits were positive and ranged from 0.29
to 0.96. The genetic correlations among growth traits were positive ranging from 0.35 to 0.94. The
genetic parameter estimates presented here can be used to estimate breeding values to support genetic
improvement programs for the Hampshire breed in Mexico.

INTRODUCTION

Sheep production in Mexico has increased over recent years, partly because of the demand created
by a growing population with an increased desire for consumption of a traditional dish called Barbacoa.
The Mexican sheep sector is mainly focused towards meat production (Partida e al. 2012) with growth
in the use of specialized breeds such as the Hampshire (approximately 70% of commercial flocks
in central Mexico) leading to recent increases in both productivity and profitability. The Mexican
Hampshire breed has a database of 11,529 animal registrations (UNO 2016). However, knowledge
of genetic parameters for key traits is very limited and thereby, limits the ability to implement any
systematic breeding programs on farm to increase growth rates and meat production. The objective
of this study was to estimate genetic parameters for growth traits at different ages, from birth until
150 days for Mexican Hampshire sheep.

MATERIALS AND METHODS

Weights records for 1,133 lambs were obtained from 10 Hampshire sheep breeding farms in the
central part of Mexico (States of Hidalgo, Tlaxcala and Puebla), which participated in the regional
reference sire program between 2005 and 2009 (UNO 2016). The 1,133 lambs were progeny of 63
sires and 612 ewes with a pedigree of 1,711 over 3 generations available for the Mexican Hampshire
sheep population. Traits considered in this study were birth weight (BW), weaning weight (WW)
around 60 days, weight at 90 days (W90), weight at 120 days (W120) and weight at 150 days (W150).
Data editing and descriptive statistics were performed in R (R Core Team 2018) prior to using an
animal model evaluation in ASReml (Gilmour et al. 2009) in a series of uni-variate and bi-variate
analyses between the weight traits. Significant fixed effects fitted in the model included gender (male

* A joint venture of NSW Department of Primary Industries and the University of New England
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and female), birth type (simple, twins and triplets), age of the animal and contemporary group.
Contemporary group was defined by flock, year and season of birth (early, normal and later) for all
the weight traits. For the weight traits from weaning onwards, the season at weaning was included
in the contemporary group definition. For BW, WW, W90, W120 and W150 a total of 52, 69, 64, 68
and 66 contemporary groups were fitted, respectively. Variances and covariances were estimated to
get the genetic parameters via Restricted Maximum Likelihood (ASReml) using uni-variate linear
models with phenotypic and genetic correlations between traits estimated from a series of bivariate
analysis. The general animal model fitted to the weight traits was:

Y =cgi+gl.+btk+cl+am+pen+e

ijklmn ijkimn

where: )jjk[mn is the observation for the growth traits (BW, WW, W90, W120, W150) measured on
animal m, cg, is the effect of the contemporary group i, g is the effect of the gender j, bz, is the effect
of the birth type k, c¢,is the age of animal as a covariate (not fitted for BW), @ is the random additive
genetic effect of animal m, pe  is the random permanent environmental effect of dam and €kt is the
random error associated with each observation. Variance structures assumed for the random effects
were: var(a) = Ac’ , var(m) = Ac” , var(pe) = Iczpe, and var(e) = Io’ where A is the matrix of pedigree
relationships, and I refers to identity matrixes of appropriate order. Log likelihood ratio tests were
used to test the significance of maternal genetic and permanent environment effects on each trait in
univariate models.

RESULTS AND DISCUSSION

The mean weights at BW, WW, W90, W120 and W150 were 4.13, 24.0, 32.5, 41.4 and 50.1 kg,
respectively (Table 1). Similar values to the means for BW, WW and W150 were reported in another
study in Mexican Hampshire lambs (UNO 2016).

Table 1. Mean (kg), standard deviation, coefficient of variation (%), minimum, maximum weight
and mean age (days) of growth traits in Mexican Hampshire sheep

Traits* aniﬁ)als Mean SD (C%\; Minimum Maximum (fsg];)
BW 1133 4.1 1.1 27 1.0 8.0 -
WwW 1133 24.0 5.5 23 11.0 43.0 63.7+5.5
W90 1133 32.5 7.0 22 14.0 55.0 91.1£6.5
W120 1133 414 8.8 21 19.0 73.0 122.14£5.7
W150 1133 50.1 10.4 21 21.0 84.0 154.4+10.1

"BW: Birth Weight; WW: Weaning Weight; W90: Weight at 90 days; W120: Weight at 120 days; W150: Weight
at 150 days; CV: Coeflicient of variation: SD: Standard deviation

Based on the log likelihood ratio test, maternal permanent environment effects were significant
for BW, WW and W90. The shallow pedigree, low progeny per dam and a lack of weight records on
the dams limited the ability to estimate a maternal genetic effect. Previous studies have shown that
maternal genetic variation exists for weight traits (Brown and Swan 2016), reported low material
heritabilities for growth traits (from 0.18+0.01 to 0.20+0.02).

Direct heritability estimates for BW, WW, W90, W120 and W150 were 0.38+0.11, 0.15+0.08,
0.17+0.08, 0.18+0.07 and 0.14+0.06, respectively (Table 2). The estimate for BW is inconsistent
with previous studies, where authors generally found lower heritability estimates ranging from
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0.14+0.03 to 0.21+0.03 (Fogarty 1995; Safari ef al. 2005; Manzanilla Pech et al. 2012). The slightly
higher heritability is likely to be in part due to inability to disentangle maternal and additive genetic
variation. Brown and Swan (2016) reported a similar heritability estimate of 0.18+0.01 for weight at
120 days. However, for W150 estimated heritability was lower than the literature estimates ranging
from 0.21+0.01 to 0.33+0.02 (Fogarty 1995; Safari e al. 2005). In general, the tendency for estimates
of direct heritability to increase with age (Yazdi ef al. 1997) was not observed in this study. The reason
for this inconsistency may be due to the relatively shallow pedigree information (3 generations) and
small size of the data set.

Table 2. Estimated additive variance (¢?,), maternal permanent environmental variance (czpe),
phenotypic variance (czp), estimated heritability (h*,) for direct genetic effect and the variance
ratio for permanent environment effects (c?) for growth traits in Hampshire breed in Mexico

Traits* o’ o o, h?, c?
BW 0.33+0.10 0.07+0.10 0.87+0.04 0.38+0.11 0.09+0.04
WwWwW 2.67£1.52 1.43+0.80 17.91+0.83 0.15+0.08 0.08+0.05
W90 4.45+2.30 2.15+1.21 26.85+1.25 0.17+0.09 0.08+0.05
WI120 6.81£2.81 - 37.41£1.72 0.18+0.07 -
W150 7.02+3.34 - 50.12+2.27 0.14+0.06 -

“For the trait abbreviation see Table 1.

Table 3. Direct genetic and permanent environmental of dam correlations (above diagonal) and
phenotypic correlation (below diagonal) of growth traits in Hampshire sheep breed in Mexico

Trait* Direct genetic and phenotypic Permanent environmental of dam
BW WwWwW W90 W120 W150 BW WwWwW W90

BW 0.64+0.23  0.35£0.26 0.40£0.20 0.43+0.22 0.34+0.34  0.69+0.33

WW  0.38+0.03 0.85+0.10  0.83+0.08 0.79+0.11 - 0.99+0.05

W90  0.33+0.03  0.89+0.01 0.90+0.05  0.87+0.08 - -

W120 0.29+0.03  0.80+0.01  0.90+0.01 0.94+0.02 - - -

W150 0.29+0.03 0.75£0.01 0.85+0.01 0.96+0.00 - - -

“For the trait abbreviation see Table 1.

The phenotypic correlation between the weight traits were positive and moderate to strong ranging
from 0.29 to 0.96 (Table 3). The weakest correlations were observed between birth weight and the
other weight traits ranging from 0.29 to 0.38. Similar values were estimated in previous studies
ranging between 0.21 and 0.90 (El Fadili ez al. 2000; Brown and Swan 2016). The genetic correlations
between the weight traits ranged from 0.35 to 0.94+0.02. These results are similar to other previous
finding in other breeds, which were in a wide range from 0.29 to 0.92 (Kariuki ez al. 2010). Low to
high genetic correlations were estimated between BW and the other weight traits (range 0.35 to 0.64).
High genetic correlation between BW and WW (0.64) indicates that selection for WW will result
in a significant correlated response in BW. This will allow Hampshire sheep breeders in Mexico to
improve growth rates and weights in the lambs without increasing the rate of dystocia, a common
issue due to broad shoulders (UNO 2016). High genetic correlations between the later weights at W90,
W120 and W150 suggest that Mexican sheep breeders looking to breed for higher growth rates and
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larger lambs can get away with a single later recording point to improve weights at all stages after
birth. We recommend that this occur at W150 due to the proximity of the weight to the final sale age.

CONCLUSIONS

The heritabilities estimated in this study were reasonably consistent with estimates presented in
a range of studies, albeit slightly lower. However, in order to develop genetic evaluation programs
for Hampshire sheep, it is recommended that the Mexican sheep breeders continue to collect weight
records on lambs across ages for future analyses. High correlations between the later weights at W90,
W120 and W150 suggested that selection for W90 and W120 days will improve W150 days at sale age.
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SUMMARY

This study was carried out to test two hypotheses: 1) whether flight distance of the dam (scored
at tagging of her lamb within 24 hours of birth) is an indicator of her maternal behaviour and is a
dam trait correlated with the survival rate of her lambs; and 2) whether the genetic and permanent
maternal environmental effects of survival rate differ between single and multiple born lambs. The
results showed that flight distance was genetically correlated only with survival rate at marking.
The direct genetic effects for survival rate at birth, marking or weaning did not differ significantly
between single- and multiple-born lambs, but the permanent maternal environmental effects were
more important in multiple- than in single-born lambs. These observations support the notion that
ewes that rear multiple-born lambs should be retained as replacement ewes in breeding programs.

INTRODUCTION

Lamb survival is key determinant of a profitable lamb production system, yet it is estimated
that lamb losses in Australia amount to $540 million annually (Lane et a/. 2015). Lamb survival
is affected by a variety of genetic and environmental factors (Brien ez al. 2014). Several lines of
evidence demonstrate the importance of the genetics of maternal behaviour: 1) Ewe temperament is
a heritable trait and survival rate is higher for lambs from calm ewes than for lambs from nervous
ewes (Murphy 1999); 2) Maternal rearing ability to weaning is also heritable and can be improved by
selection (Cloete et al. 2009); 3) Maternal behaviour score is heritable (Brown et al. 2016) suggesting
that it could be improved by selection.

On the other hand, Bunter et al. (2018) reported that litter size at lambing influences genetic
evaluation of maternal rearing ability and suggested that rearing ability traits should be defined sep-
arately by litter-size class to improve the accuracy of genetic evaluation for rearing ability. This paper
therefore investigates the inheritance of flight distance as a maternal behaviour trait and survival rate
of the lambs, both as traits of the dam, and this aims to elucidate the effect of litter size on the genetic
parameters of lamb survival and flight distance.

MATERIALS AND METHODS

Resources. The data were collected on the Breech Strike Resource flocks of the Department of
Primary Industries and Regional Development (previously the Department of Agriculture and Food)
in Western Australia. This flock consisted of approximately 1,000 ewes that were annually mated to
22 sires. The total dataset consisted of 16,788 repeated records that were collected over the lifetime
of 4,767 dams that had been mated annually, from 2005 to 2018, to one of 243 sires.

Management and measurements. Ewes were mated in February/March and lambs were born
in July/August. Body weights and body condition score (1 to 5) were recorded on all ewes pre- and
post-mating. Two weeks prior to lambing, each sire’s lambing ewe group was drafted off, weighed,
condition scored and placed on a lambing plot to obtain accurate pedigrees of the lambs at lambing.
This resulted in lambing plot and sire of the lambs being confounded within year. However, link sires
across years were rotated between mating groups to ensure that repeat mating groups don’t lamb in
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the same paddock again. Between 4 and 18 linked sires were used between years.

The lambs were tagged and weighed within 24 hours after birth. Date of birth, dam identification,
gender of lamb, birth status (single, twin or triplet) and lambing difficulties were recorded at birth.
During the process of tagging and recording birth information, flight distance, as an indicator of
mothering ability, was scored from 1 (dam stays close to lamb) to 6 (>50 meters away from scorer)
based on the average distance between the dam and the lamb. At marking, approximately 4 to 5 weeks
after lambing, the lambs were tail docked, weighed and identification checked. They were weaned
and weighed at an average age of 110 days. All deaths from birth to weaning were recorded.

Statistical analyses. Three survival rate categories were created as traits of the dam: survival
at birth (within 24 hours after birth), survival from birth to marking, and survival from marking to
weaning. The data were analysed with ASREML (Gilmour ez al. 2015). A sire model for dam of the
lamb, with repeat measurements of the dam (of the lamb) as an additional random factor, was fitted to
estimate additive genetic variance and permanent maternal environmental effects for flight distance,
survival at birth, survival from birth to marking, and survival from marking to weaning, as traits of
the dam. The flight distance data were treated as normally distributed. By contrast, the survival data
were binary (alive = 1; dead = 0) so were subjected to a binomial analysis with a logit link function.
Year of birth, lamb gender, litter size, dam age, lambing paddock, and dam body weight and condi-
tion score (pre-mating, post-mating, pre-lambing) were fitted as covariates. All interactions between
fixed effects were initially fitted. Statistically non-significant (P < 0.05) factors were dropped from
the model until the final model only contained statistically significant factors.

The same analyses were carried out where the dataset was split into sets containing only single-
tons or only multiples. The phenotypic variance (Vp) was calculated as the sum of the sire variance,
permanent maternal environmental variance and error variance. As this analysis was on a logistic
scale, a variance of 3.289 was used for the error. The heritability of survival rate was calculated as 4
times the sire variance as a proportion of the phenotypic variation. The importance of the permanent
maternal environmental effect was calculated as the proportion of the permanent maternal environ-
mental variation relative to the phenotypic variation. A series of bivariate analyses were then carried
out between the survival traits and flight distance, using the significant fixed factors from the uni-
variate analyses of the different traits in the model to estimate the genetic covariance between flight
distance and survival traits. The genetic correlation (r ) was estimated as the covariance between
flight distance and the survival traits divided by the square root of the product between the variance
of flight distance and that of the survival traits.

RESULTS-AND DISCUSSION

Table 1 shows the number of records, means and variances for the three survival traits and genetic
parameters for the combined dataset, separately for single- and multiple-born lambs. Survival rates
were 0.95 at birth, 0.87 from birth to marking, and 0.98 from marking to weaning, resulting in 81
lambs surviving per 100 lambs born. Year of birth affected all traits (P <0.01). Larger litters had lower
survival rates at birth, marking and weaning (P < 0.01). Survival rates at marking and at weaning
were lower (P < 0.01) for older ewes. However, older ewes stayed closer to their lambs at tagging
than younger ewes (P < 0.001). For flight distance, interactions (P < 0.001) were observed between
year of birth and litter size, and between year of birth and age of dam.

Heritability estimates (h? ). Where the dataset was split into single- and multiple-born lambs
(Table 1), multiple lambs had higher phenotypic variances at birth, marking and weaning. Heritability
estimates of survival rate in the total dataset were moderate (0.24 £ 0.09) at birth, low (0.09 + 0.04)
at marking, and not significantly different from zero at weaning. The heritability estimates of survival
rate of multiple-born lambs at birth, marking and weaning were higher than those of single-born lambs,
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but all these estimates had large standard errors so were not significantly (2 x SE) different from zero.

The heritability of flight distance was low (0.07 = 0.02). However, for single- and multiple-born
lambs, the heritability estimates were considerably higher than those of the combined dataset. The
heritability of flight distance of multiple-born lambs was higher (P < 0.001) than that of single-born
lambs (0.33 = 0.06 vs 0.17 = 0.04), suggesting that survival rate as a dam trait may not be genetically
the same trait for single and multiple born lambs.

Permanent environmental effects (m? ). A moderate permanent maternal environmental effect
of 0.25 (= 0.03) was found for survival rate at birth, which decreased to 0.10 (x 0.02) at marking. It
had no effect on survival rate at weaning, showing the importance of maternal behaviour early in life.
For flight distance a moderate permanent maternal environmental effect of 0.26 (+ 0.01) was found
in the combined dataset. The effect was more than five times that for multiple born lambs (0.47 +
0.02) compared to single born lambs (0.09 + 0.02).

Table 1. Number of records, means + standard deviation (sd), variances and genetic parameters
of survival rate as a trait of the dam at birth, marking and at weaning, for the combined dataset
and for single- and multiple-born lambs

Parameter Survival rate Flight
Birth Marking Weaning distance
Total dataset
No. of records 15,224 14,445 12,819 14,682
Mean + sd 0.95+0.22 0.87+0.33 0.98 +£0.12 3.69 +1.50
Vp 4.74 3.76 3.56 0.82
h?, £ SE 0.24 +0.09 0.09 +0.04 0.19+0.16 0.07 £0.02
mzpe:t SE 0.25+0.03 0.10 £ 0.02 0.03 +£0.07 0.26 £0.01
Single births
No. of records 6,763 6,503 5,918 6,555
Mean + sd 0.96 +£0.19 0.91+0.29 0.99 +0.09 3.70 £ 1.40
Vp 3.54 3.61 3.74 0.80
h’, +SE 0.02£0.18 0.05£0.08 0.33+£0.21 0.17 £ 0.04
m2pe +SE 0.07 £0.09 0.07 £0.04 0.04 £0.07 0.09 £0.02
Multiple births
No. of records 8,461 7,942 6,901 8,127
Mean + sd 0.94+0.24 0.84£0.37 0.98 £0.15 3.69 £ 1.59
Vp 5.57 3.93 3.61 0.99
h?, +SE 0.17£0.12 0.09 +0.05 0.12+0.19 0.33 +£0.06
m2pc +SE 0.37 +0.04 0.14 +0.02 0.06 +0.08 0.47 +0.02

Correlations. Table 2 shows the phenotypic, genetic and environmental correlations between
flight distance and survival rate as a trait of the dam at birth, marking and at weaning. Correlations
between flight distance and survival rate traits at birth and weaning were very low or not significantly
different from zero, as were the genetic correlations at birth and weaning. The only significant genetic
correlation was between flight distance and survival rate at marking (0.64 + 0.20).
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Table 2. Phenotypic (rp), genetic (rg) and environmental (r ) correlations and standard errors
(SE) between flight distance at tagging and survival rate at birth, marking and weaning as
traits of the dam

Trait Flight distance
r +SE r, % SE r +SE
Survival rate at birth -0.03+£0.01 -0.12+0.24 -0.03 +0.00
Survival rate at marking -0.01 +0.01 -0.64 +0.20 0.01 +0.00
Survival rate at weaning 0.05+0.02 -0.30+£0.45 0.06 = 0.01
CONCLUSIONS

Survival rate as a trait of the dam at birth, was a heritable trait. This study did not show major
differences in direct heritability estimates for survival rate at birth, marking and weaning, in the sepa-
rate estimates for single- and multiple-born lambs. However, the permanent environmental effect was
more important for survival rate in multiple-born than in single-born lambs at both birth and marking.

The direct heritability estimate, and the permanent environmental effect of flight distance were also
significantly greater in multiple-born than in single-born lambs, suggesting that maternal behaviour
as scored by flight distance is an important factor in the survival of multiple-born lambs. These
observations support the conclusion of Hatcher ef al. (2014) that ewes that consistently rear twins
should be retained rather than ewes that consistently rear a single lamb. We conclude that, in breed-
ing programs, permanent environmental effects should be accounted for more accurately to identify
ewes that consistently rear multiple born lambs. More research on the inheritance and importance
of permanent environmental factors is required on this issue as well as the underlying physiological
causes of this phenomenon.
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GENETIC EVALUATION AND RELATIONSHIP ACROSS AGES FOR DAG SCORE
IN MATERNAL SHEEP

A.J. McMillan, S.F. Walkom and D.J. Brown
Animal Genetics & Breeding Unit", University of New England, Armidale, NSW, 2351 Australia

SUMMARY

Daginess in sheep is an undesirable trait with both economic and welfare implications. While the
trait has been investigated in Merino sheep, this is not the case for maternal sheep. With sufficient
records now available from industry and research flocks via Sheep Genetics the genetic parameters
for dag score can now be estimated. The heritability of dag score ranged from 0.13 (+0.01) to 0.38
(+0.02) across age stages with the highest heritability occurring at the yearling stage. Given the
heritability it should be possible for breeders to make genetic progress towards less daggy maternal
sheep, which as an indirect selection tool will potentially assist to reduce labour costs, wool losses
and flystrike incidence. Positive moderate genetic correlations between age classes (0.08 to 0.83)
indicate that selection based on phenotypes recorded at any age will lead to reduced dag score across
investigated stages. The results suggest that breeders should be focussed on recording dag score
when the environmental conditions promote the greatest expression of genetic merit, than scoring
at a specific age class. However, in maternal sheep the greatest phenotypic variation in dag score
appears to occur in yearling sheep.

INTRODUCTION

Dag (measured by dag score) is the accumulation of faecal matter in wool around the breech of
the animal, which is associated with increased flystrike incidence within the Australian sheep pop-
ulation. Previous studies have indicated that flystrike is costing $280m dollars annually (Sacket et
al. 2006) as a result of sheep losses, cost of treatment and loss of wool as well as carcase production
and value. In response to public concern and desire for management practices such as mulesing to
be phased out sheep breeders are utilising indicator traits like dag score to reduce flystrike incidence
(Brown et al. 2010). Dag score (scouring) has been shown to be related to flystrike in previous studies
(James 2008; Greeff and Karlsson 2009; Smith et al. 2009) there are also costs associated with loss
of production as well as crutching costs (Sacket ef al. 2006).

The genetic evaluation of dag score has previously been reported in the Australian Merino popu-
lation (Brown et al. 2010), however, the growth of maternal cross merino ewe flocks and self-replac-
ing maternal flocks has influenced the interest within maternal stud breeders to utilise dag score in
their breeding programs. The heritability of dag score has been shown to be moderate in Australian
Merino sheep (0.20-0.26, Brown ef al. 2010), (0.37-0.63, Greeff et al. 2013) and in another study
where it ranged from 0.07 to 0.32 for animals recorded at 30 day intervals from weaning to hogget
stage (Pollot et al. 2004).

The recent increase in dag score recording by maternal sheep breeders and records from the
Information Nucleus and resource flocks (Fogarty ef al. 2007) has led to an increase in dag score
phenotype submission to Sheep Genetics, the paper investigates the genetic parameters for dag score
within the maternal population and the relationship of dag score in the Weaning (Wdag), Post-weaning
(Pdag), Yearling (Ydag) and Hogget (Hdag). The effect of modelling genetic groups and sire x flock
effects were also explored.

* A joint venture of NSW Department of Primary Industries and the University of New England
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MATERIALS AND METHODS

Data. Pedigree and performance were extracted from the Sheep Genetics LAMBPLAN (Maternal)
database (Brown et al. 2007). This database stores pedigree and performance records submitted by
ram breeders that are used for LAMBPLAN (Maternal) national genetic evaluations.

A summary of records from the maternal database are presented in Table 1. Currently there are
22 flocks who have submitted 39,035 dag phenotypes across the 4 age stages investigated. The most
popular stage for dag score recording was at weaning with almost 18,519 records with yearling records
and post weaning records combined made up the majority of the remaining records. Most flocks who
recorded dag score had records from a number of stages across different years in this dataset. There
were 6,301 animals which had records across multiple stages.

The dag score phenotype are visually scored from 1-5 with a score 1 having no dags in the breach
area up to a score of 5 which has an accumulation of dags in breech area and down the legs of the
animal (AWI. 2013). With increasing age the dag score phenotypes showed both an increase in score
but also an increase in the variation for score.

Table 1. Summary of dag score phenotypes submitted to Sheep Genetics by maternal sheep
breeders across age classes.ncg; number of contemporary groups, ngg; number of genetic groups

Trait Records  Mean sd Pedigree  Sires Dams Flocks  Ncg ngg
Wdag 18519 1.40 0.67 39321 4696 19506 12 213 35
Pdag 7762 1.64 0.85 28283 4843 16765 10 70 38
Ydag 11784 1.83 0.93 36222 5445 20448 11 159 42
Hdag 970 1.98 0.87 11243 3300 7058 9 21 21

Statistical Analysis. Parameters were estimated in bivariate analyses for each trait combination,
ASReml (Gilmour ef al. 2015) was used fitting an animal model. The model included direct genetic,
dam permanent environment effects. Fixed effects of age of animal and age of dam were fitted as
covariates with both linear and quadratic effects for dam age. Birth and rearing effects were treated
as non-interacting fixed effects ranging from 1-4. Flock, year of birth, sex, the date of measurement
and breeder management group were used to define contemporary group.

RESULTS AND DISCUSSION

Genetic parameter estimates and the genetic and phenotypic correlations across age classes are
presented for the base model (Table 2) and the extended model which included genetic groups and
the sire by flock interaction fitted as random (Table 3). These terms are used within Sheep Genetics
Evaluations and improve the fit of models especially for analysing industry data structure and record-
ing are not always balanced (Brown et al. 2007). The results showed that the inclusion of genetic
groups and the sire x flock term within the model had no significant impact on the additive genetic
variance nor the heritability.

The heritability of dag score at weaning, post-weaning, yearling and hogget stage was 0.13, 0.27,
0.38, 0.20, respectively (Table 2). These pattern are similar to that estimated by (Pollot ez al. 2004) in
Merino sheep which had a low heritability at weaning (0.07) before peaking at a moderate heritability
(0.32) at 270 days and then declining to lower estimates of 0.08, 0.13 and 0.16 for 300, 330 and 360
days of age respectively. Although the heritability for these maternal animals may be higher due to
industry recording likely only being undertaken when dag was more strongly expressed with the
mean dag score ranging from 1.4 to 1.98 vs 0.36 to 1.50 (Pollot ez al. 2004) although those merino
animals were scored with a slightly different scoring method (Larsen ef al. 1994).
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The highest heritability estimate, 0.38, was observed for Ydag this is almost double the estimate
for late dag score (1dag) (0.20) in Merinos although it should be noted that ldag includes dag score
from across yearling, hogget and adult stages (Brown et al. 2010).

Phenotypic correlations were positive and range from low (0.19) to moderate (0.45) with stronger
correlations for the later stages, environmental effects have a large impact for the trait to be expressed.

Genetic correlations were generally high and positive although there were some deviations between
the base model and the extended model. The extended model showed slightly higher correlations
between traits although not all of these were significant. However genetic correlations with Hdag
were compromised by the small number of records at this stage leading to high standard errors. Given
these correlations recording and selection for dag score at any of the stages would result in a positive
impact on the other stages.

Table 2. Phenotypic variance (8;) and direct heritability (/%) with phenotypic correlations above
the diagonal and genetic correlations below the diagonal for base model

~2

Trait o, h? Wdag Pdag Ydag Hdag
Wdag 0.35+0.00 0.1310.01 0.1910.01 0.17£0.02 0.08+0.03
Pdag 0.6610.01 0.2740.02 0.6610.07 0.4540.02 0.1940.04
Ydag 0.8340.01 0.3840.02 0.5440.07 0.834+0.04 0.661+0.26

Hdag 0.55+0.02 0.20+0.04 0.75+0.16 0.08+0.18 0.60+0.15

Table 3. Phenotypic variance (Gj) and direct heritability (/%) with phenotypic correlations above
the diagonal and genetic correlations below the diagonal for the model that included genetic
groups and the sire by flock interaction

Trait 812) h? Wdag Pdag Ydag Hdag
Wdag 0.35+0.00 0.13+0.01 0.19+0.01 0.18+0.02 0.08+0.03
Pdag 0.66+0.01 0.26+0.02 0.77+0.08 0.45+0.02 0.18+0.04
Ydag 0.84+0.01 0.38+0.02 0.62+0.07 0.87+0.05 0.81+0.16
Hdag 0.56+0.02 0.16+0.05 0.85+0.24 -0.12+0.23 0.63+0.21

Given the results it appears that the extended model is appropriate for analysis of the data although
the effects estimated were small especially considering the stronger genetic groups effects previously
seen in Merinos. Measurements made at the weaning stage had the lowest heritability estimate and
also the smallest phenotypic variances however still had strong genetic associations with dag score
measured at the other stages. To improve dag score, recording could be at any of the stages with a
preference for later recording. However recording would be best when trait expression is maximised
regardless of stage.

The LAMBPLAN (Maternal) genetic evaluation has been following the MERINOSELECT anal-
ysis approach. Analysing early (edag) and late (Idag) traits with edag including marking and weaning
stage records and late dag including records from yearling, hogget and adult records. The estimated
genetic correlations are moderate-high across stages with the exception of Pdag-Hdag which partic-
ularly suffers from high standard errors due to small number of records. Given these correlations the
traits could be analysed either following the MERINOSELECT model with combined late and early
trait groups or as individual stage based traits.
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CONCLUSIONS

It should be possible to genetically improve dag scores in maternal sheep with appropriate selection
and recording as moderate heritability estimates were observed across stages with moderate- high
genetic correlations between age stages. Given this visual scoring for dag score should be performed
when the trait is showing its greatest expression.
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SUMMARY

This study compared animals from the Dormer and South African Mutton Merino (SAMM) breeds
for birth weight, weaning weight, yearling weight, carcass and meat quality traits. Dormers were lighter
at birth but heavier subsequently than their SAMM contemporaries. Dormer carcasses had greater
fat depths than SAMM’s. SAMM meat was lighter with a slightly higher cooking loss than Dormers.
The observed breed differences reflect the roles the breeds play in the South African sheep industry.

INTRODUCTION

In South Africa, the Dormer is the most prominent terminal sire breed, while the South African
Mutton Merino (SAMM) is the dominant dual-purpose breed (Cloete ef al. 2014). The Dormer was
developed at the Elsenburg Agricultural College in the 1940s when Dorset Horn rams were crossed
with German Merino ewes to establish the composite breed (Van Wyk et al. 2003). The Dormer plays
an important role as a terminal sire breed for crossbreeding with wool breeds. The SAMM originated
from the German Merino, which was imported to South Africa in 1932 (Cloete ef al. 2004c). The
foundation flock was kept at Elsenburg, from where it spread throughout South Africa and to other
countries such as Australia (Brown and Asadi Fozi 2005). The traits recorded in both breeds in the
National Small Stock Evaluation Scheme include birth weight, weaning weight, postweaning weight
and reproduction (Schoeman et a/. 2010). No emphasis is thus directed to wool traits in either breed.
Both breeds have a high growth rate and grow out to a high mature weight compared to other South
African ovine genetic resources (Van der Merwe ef al. 2019). Previous studies comparing these
breeds for meat traits were based on small sample sizes and animals slaughtered at an age of 18 to
20 months (Cloete et al. 2004a; 2012). There is a need to update the earlier results on slaughter traits
with information of animals slaughtered at a more reasonable age.

This study therefore aims to evaluate these breeds in terms of growth, as well as carcass and meat
traits at an age aligned with industry practice. This aim excluded discussion of other fixed effects or
genetic parameters.

MATERIALS AND METHODS

Data were collected from the Dormer and SAMM resource flocks at Elsenburg research farm,
Western Cape, South Africa. The background of flocks was reported by respectively van Wyk et al.
(2003) and Cloete et al. (2004c). Selection in both breeds was mostly based on early growth and
conformation. Expressed relative to the overall means for weaning weight, mediocre annual genetic
gains of 0.2% in Dormers (Van Wyk ez al. 1993) and 0.1% in SAMM’s (Zemuy 2002) were realised.
No direct selection pressure was applied to any meat trait. Both breeds remained in the same flock
during the study, except when mated within breeds in single-sire groups to rams of the same breed.
Both breeds utilised either dryland lucerne or oat fodder crop paddocks during winter and spring,
and irrigated pastures that mainly consisted of kikuyu for the rest of the year. Data collection for the
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weight traits took place from 2007 to 2018. The breed, sex, birth type, age of dam and year of birth of
the lambs were recorded. Lamb birth weights of 3,043 lambs were recorded within 24 hours of birth,
at weaning (at 103 £ 14 days; n = 2,765) and again as yearlings (at 356 + 0.44 days; n = 2,155). A
total of 201 Dormers and SAMM yearlings, born in 2015 and 2016, were slaughtered at an average
age 0of 392 = 51 days to assess meat traits. Lambs were weighed 24 hours prior to slaughter (slaughter
weight). The sheep were slaughtered at a commercial abattoir, using the techniques previously described
by Cloete et al. (2004a). The ante mortem treatment was similar for all the sheep within year-sex
contemporary groups and sheep were slaughtered at random after electrical stunning at 200 V for
4 seconds. The sheep were exsanguinated, Oand carcasses allowed to bleed out before dressing. No
electrical stimulation was applied. The dressed carcasses were hung in a chiller at 2°C for 48 hours
(McGeehin et al. 2011). The carcass weight, temperature and pH were determined after 48 hours
and the dressing percentage was calculated as carcass weight divided by slaughter weight. At this
stage, fat depth 25mm off the midline at the 13th rib and at the rump between the 3rd and 4th lumbar
vertebrae was measured as described by Cloete ef al. (2004a). Loin samples of 8 cm were excised
from the left side of the M. Longgissimus lumborum between the 13th rib and 3rd and 4th lumbar
vertebrae. Two 1.5cm thick slices were cut from these steaks and used to measure cooking loss and
shear force on one and meat colour and drip loss on the other (Honikel 1998). Individual 20 to 30g
meat portions from the first slice were used to determine cooking loss. Samples were placed in thin-
walled plastics bags and put in a water-bath at 80°C for 1 hour. Cooked samples were removed from
the water-bath, cooled in cold water, blotted dry and weighed again. Cooking loss was calculated
as the difference in sample weight before and after cooking and expressed as a percentage of initial
weight. Shear force was determined on these cooked samples using an Instron machine equipped
with a Warner-Bratzler shear head (Honikel 1998). Three subsamples with a diameter of 1 cm were
removed from the core of each cooled (4°C) sample. Maximum shear force values (N) were recorded
for each sample and the mean was calculated. Shear force and tenderness is inversely correlated.
The second slice was used to first measure colour by using a colour-guide 45°/0° colorimeter (BYK-
Gardner, USA) to determine L* (lightness), a* (red-green range) and b* (blue-yellow range). Drip
loss was then determined by attaching a 20 to 50g meat sample to a string and suspending it in an
inflated plastic bag. These bags were left at 4°C for 24 hours and weighed again to derive drip loss
as explained for cooking loss (Honikel 1998).

Data were analysed using ASREML (Gilmour et al. 2015). Fixed effects included in the models
for all traits were breed (SAMM or Dormer), year of birth (2007-2018 for body weights, 2015-2016
for carcass and meat quality traits), age of dam (2-5 years), sex (male or female) and birth type (single
or multiple), two-factor interactions between birth year and sex as well as between birth year and
breed as well as age at measurement as linear covariates. The random effects of sire and dam were
included throughout for the variation it controlled.

RESULTS AND DISCUSSION

SAMM lambs were 7.3% heavier at birth than Dormers (P < 0.05; Table 1). A previous study
by Brand et al. (1985) also reported that Dormers were significantly smaller than SAMM lambs at
birth. In contrast, Dormers were heavier than SAMM contemporaries at weaning (6.8%) and yearling
(13.9%) ages (P<0.05). Slaughter weight of Dormers tended (P=0.054) to be heavier than those of
SAMM contemporaries, bearing in mind that this was based on much fewer records compared to
the other weight traits. Carcass weight was increased by 10.1% in Dormers compared to SAMM
contemporaries. Dressing percentage did not differ between the breeds. Previous studies by Cloete
et al. (2004a; 2012) on these breeds suggested no significant difference between the two breeds for
slaughter weight. However, carcass weight and dressing percentage differed significantly in favour
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of Dormers in the former study. The present results thus concur with those of Cloete et al. (2004a)
for carcass weight.

Table 1. Predicted means (+ SE) for the effect of breed (Dormer or SAMM) on growth and
carcass traits

Trait Breed
Dormer SAMM Significance

Birth weight (kg) 4.59 +0.06 4.95+0.07 K
Weaning weight (kg) 29.7+04 27.8+0.4 K
Yearling weight (kg) 52.5+04 46.1 0.5 ok
Slaughter weight (kg) 493+1.6 449+24 0.054
Carcass weight (kg) 22.8+0.8 20.7+ 1.1 *
Dressing percentage (%) 45.8+0.7 455+1.1 0.443

* P <0.05; ** P<0.01; actual significance for P > 0.05

The ultimate pH recorded 48 h post slaughter did not differ between the breeds (Table 2). An
ultimate pH between 5.8-6.0 is considered as undesirable (Devine ef al. 1993) and the ultimate
pH of both breeds was below this range. The tenderness and texture deceases at an ultimate pH of
5.8-6.0. An ultimate pH above 5.8 also influences the flavour, juiciness and aroma of the meat. The
proportion of high pH carcasses amounted to 0.075 in Dormers and 0.101 in SAMM’s (Chi*=0.98;
degrees of freedom=1; P=0.45). Undesirable high pH carcasses were thus quite infrequent in both
breeds. Ultimate pH was heritable in South African sheep (Naudé et al. 2018), allowing opportunities
for selective breeding.

Table 2. Predicted means (+ SE) for the effect of breed (Dormer or SAMM) on meat quality traits

Trait Breed Sienifi
Dormer SAMM 1gheance
pH48 hr 5.60 +£0.01 5.58 £0.03 0.31
Fat 13" rib (mm) 2.04+£0.22 1.21£0.34 *
Fat rump (mm) 5.31+0.49 3.02 +£0.66 wox
Cooking loss (%) 29.1+0.9 31.8+ 1.4 *
Drip loss (%) 1.91+£0.21 1.82+0.27 0.96
Colour L* 34.1+0.5 358+0.8 Hox
Colour a* 13.4+0.3 13.9+0.4 0.09
Colour b* 9.65+0.21 9.87 +£0.29 0.12
Shear force (N) 50.4+3.2 56.2+4.3 0.14

* P <0.05; ** P<0.01; actual significance for P > 0.05

Fat depth differed significantly between breeds at both sites, with Dormers being fatter than SAMM
contemporaries. Fat depth at 20 months was independent of breed in a previous study on Dormer and
SAMM sheep (Cloete et al. 2012). In contrast, Cloete et al. (2004a) also reported that Dormers were
fatter (P<0.05) than SAMM contemporaries at 18 months. The present analyses use a substantially
larger data set that any of the previous studies, while the animals were also slaughtered younger.
Age and maturity type possibly combined to give the results that were obtained. Carcasses with
subcutaneous fat depth of 1-4 mm fat measured 25mm from the midline at the 13" rib are considered
as acceptable in South Africa (Government Gazette 14060 1992). The frequency of carcasses of each
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breed conforming to this desired fat distribution did not differ (Dormer=0.644 vs. SAMM=0.522,
Chi*>=2.33; P=0.13). However, SAMM carcasses were more likely to be leaner (Dormer=0.197 vs.
SAMM=0.478, Chi*=16.0; P<0.01) and Dormer carcasses fatter (Dormer=0.159 vs. SAMM=0.000,
Chi*>=10.6; P=0.01) than the desired range. The mean cooking loss of SAMM meat was higher than
that of Dormer meat (P<0.05; Table 2). Drip loss was not affected by breed (P>0.05). Cloete et al.
(2004a; 2012) found no differences for cooking loss between Dormers and SAMM’s (P>0.05). This
study involved younger sheep and a larger sample size, both of which could be causative in the
result obtained. Further research is therefore needed. Although Dormer meat may be slightly darker
than that of SAMM, the values differ by such a small margin that a consumer might not be able to
visually perceive the differences (Cloete et al. 2012). The a* and L* values for Domers and SAMM
are regarded as acceptable for the average consumer at respectively 9.5 and 34.0 or higher (Khliji
et al. 2010). There was no significant difference between Dormer and SAMM for meat tenderness.

CONCLUSIONS

This study showed that, although SAMM lambs were heavier at birth, Dormers had higher
subsequent weights. The observed breed differences reflect the different roles of the two breeds
within the South African sheep industry. The thicker fat cover of Dormers compared to their SAMM
contemporaries probably indicate that the focus of selection for growth in this breed was not for lean
growth, as in many other sheep-producing countries. This result stems from the absence of meat
quality as a selection trait in South Africa’s formal recording scheme (Schoeman et al. 2010). Clearly
this state of affairs is undesirable and requires further effort to align sheep recording in South Africa
with international benchmarks.
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SUMMARY

The 1000-Bull-Genome (1KBull) project contains whole genome sequence data of thousands of
cattle with different breeds from various countries. While most 1 KBull cattle do not have phenotypic
data, different breeds display distinct phenotype due to artificial and/or natural selections. For example,
the milk production of Holstein cattle is expected to be higher than that of Angus cattle. Such expected
phenotypic differences between breeds may be useful for validating the informativeness of a set of
prioritised variants. Via meta-analysis of GWAS with 17.6 million imputed sequence variants with
over 44,000 Australian dairy cattle, we prioritised a set of 92.5K pleiotropic variants associated with
multiple traits including milk production, reproduction, management and linear assessment. With
these pleiotropic variants, the genomic best linear unbiased prediction (gBLUP) was used to estimate
dairy-trait breeding values (gEBV) for 2,334 1KBull cattle (Run 6). Based on principal components
analysis, the dairy-trait gEBVs separated the dairy from beef breeds as well as the separation using
whole genome sequence data. For individual trait gEBVs in the 1KBull cattle, while milk, protein
and fat yield, somatic cell count, stature and angularity were significantly higher in dairy than in
beef cattle, the milk protein and fat percentages, muzzle width and teat length were significant lower
in the dairy than in the beef cattle. Compared to 1KBull Jersey cattle gEBVs, Holstein cattle had
significantly higher milk, protein and fat yield and stature, but significantly lower fat and protein
percentages and somatic cell count. Our study provides valuable insights into the genomic predic-
tion of breed differences using within-breed trained equations. Our work also provides alternative
validation strategies for prioritised markers.

INTRODUCTION

The 1000-Bull-Genome (1KBull) project collects whole genome sequence data worldwide via
donations from consortium members. Since 2012 (Daetwyler ef al. 2014), the dataset has grown to
over 2,000 cattle from more than 100 breeds of Bos taurus and Bos indicus. Up to 44 million sequence
variants have been identified in the 1KBull cattle and these variants are used as the basis for sequence
variant imputation in large cattle populations. Large cattle populations with sequence variants have
facilitated genome-wide association studies (GWAS) (Bouwman ef al. 2018) and genomic prediction
(VanRaden et al. 2017) of complex traits. Here we examine a new use for the 1KBull database; the
prediction of trait differences between breeds.

Genomic prediction is usually used to predict differences in breeding value within a breed and it is
unknown if it would correctly predict differences between breeds. One of the aims of this paper is to
test the ability of within breed genomic prediction to predict differences between breeds. We develop
prediction equations within breeds of dairy cattle and combine them with the genotypes of bulls in
the 100KBull database to predict the differences between breeds. These predicted breed differences
are compared to expectations such as higher milk yield in dairy breeds than in beef breeds.
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MATERIALS AND METHODS

The 1KBull data used in this study was part of the Run 6 (http://www.1000bullgenomes.com/).
In total the whole genome sequence data of 2,334 Bos taurus cattle were used. Dairy and beef cattle
breeds and their sample sizes were defined as in Table 1. The defined dairy and beef cattle breeds
were used for gEBV comparisons described later on.

Table 1. Sample size of defined dairy and beef cattle breeds

Dairy cattle Beef cattle

Holstein 567 Angus 266
Brown Swiss 148 Simmental 225
Jersey 66 Charolais 128
Montbeliarde 54 Limousin 82
Normandy 44 Hereford 75
Finnish Ayrshire 25 Guelph composite 30
Norwegian Red 24 Beef Booster 29
Guernsey 20 Blonde dAquitaine 26
Swedish Red 16 Belgian Blue 16

Angus Red 6

Maine Anjou 5

BraunviehBeef 4

A set of pleiotropic sequence variants (92.5K) associated with 34 dairy traits were identified
using Australian dairy bull (N>11,000) and cow populations (N>33,000) and 17.7 million imputed
sequence variants with accuracy R2 > 0.4. The detail of the data and the GWAS model used can be
found in (Xiang et al. 2019). Briefly, the traits were decorrelated by Cholesky transformation (Xiang
et al. 2017). GWAS fitting breed as the fixed effects were conducted for each one of the 34 traits

separately in bulls and cows. For the GWAS results of each trait from two sexes, a weighted t value

Bpuur_, Bcow
sepu® secow?
1 1

. . . Z 2 .
was calculated to combine the variant effects with t,, = w (Xiang et al. 2018) where

1 1
sepuil’ secow

2

B, ,and se, = were the beta and standard error (se) of the bull GWAS and B and se  were the
beta and se of the cow GWAS. The weighted t value across traits and variants were analysed by the
multi-trait meta-analysis method (Bolormaa et al. 2014). Variants with the meta-analysis P-value
< le-6 and MAF > 0.001 were retained as significant pleiotropic variants.

The genomic best linear unbiased prediction (gBLUP) implemented in MTG2 (Lee and Van
der Werf 2016) was used to train prediction equations in the dairy dataset. A genomic relationship
matrix (GRM) was calculated from the prioritized pleiotropic variants. Original traits (deregressed
proofs) were used to perform gBLUP in Australian bulls and cows. The gBLUP model used was
Yy = mean + breed + a + error, where y =vector of phenotypes for bulls or cows, breed =three breeds
for bulls, Holstein, Jersey and Australian Red and four breeds for cows (Holstein, Jersey, Australian
Red and MIX), a=polygenic random effects ~N(0, Gog2) where G=GRM. This estimated the total
genetic value of Australian bulls and cows and was followed by the back-solving for the variant solu-
tion in the Australian data. Then, the variant solutions were combined with the sequence genotypes
to calculate dairy-trait gEBV of the 1KBull cattle.
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RESULTS AND DISCUSSION

A principle component analysis (PCA) was carried out on the sequence genotypes of the 1KBull
database and dairy-trait gEBVs (Figure 1). Overall, the first PC separated Holstein from other breeds
and the 2™ PC separated Angus from other breeds. This may reflect that these two breeds were the
most common in the database. The 1% PC of gEBVs (X-axis of the right panel of Figure 1) associ-
ated with milk production traits separated some dairy cattle breeds but did not separate beef cattle
breeds. This also suggested that the 37 gEBV of dairy traits can be used to distinguish the phenotypic
difference between dairy and beef cattle.

PCA of GRM with whole genome sequences PCA of dairy-trait gEBV
Breed
% o Angus 4
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R % Brown.Swiss
o Chalas
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Figure 1. Principal components analysis results of the genomic relationship matrix and the
dairy trait gEBVs of the 1000-bull-genome cattle

Individual dairy-trait gEBVs were compared between dairy and beef cattle breeds and were also
compared between Holstein and Jersey breeds in the 1KBull individuals (Figure 1 and Table 2).

Table 2. gEBV difference. ns: not significant

gEBVs Trait full name Dairy VS Beef Holstein VS Jersey
Prot Protein yield + +
Fat Fat yield + +
Milk Milk yield + +
FatP Fat percentage - -
ProtP Protein percentage - -
SCC Somatic cell count + -
Temp Temperament - -
MSpeed Milking speed + +
Stat Stature + +
Like Likeability - -(ns)
Angul Angularity + +
MuzW Muzzle width - +(ns)
TeatL Teat length - +(ns)
UdTex Udder texture + +
UdDep Udder depth + +(ns)
RumpL Rump length + +
OType Overall type + +
Mamm Mammary systems + +
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Most dairy trait gEBVs were higher in the 1KBull dairy cattle than those in the 1KBull beef cattle.
Thus, the within breed genomic predictions do predict qualitative differences between breeds. This
result also supports the informativeness of the retained pleiotropic variants. The lower fat (FatP) and
protein percentages (ProtP) in the diary breeds than in the beef breeds was due to that their higher
milk yield. The somatic cell count (SCC) score and milk speed (MSpeed) was higher in the dairy
cattle than in the beef cattle. The dairy cattle are predicted to have better overall type (OType) and
mammary system (Mamm), to be more Angular and have shorter teat length (TeatL). These differences
appeared to be consistent with the common expectations.

In the gEBV comparisons between Holstein Jersey breeds, Holstein cattle had higher milk pro-
ductivities, but lower somatic cell count score, fat and protein percentages than Jersey cattle. Holstein
cattle had better assessment of the overall type and the mammary system. No significant differences
were found for likability, muzzle width (MuzW), teat length and udder depth (UdDep) between the
two breeds. These observations appeared to be consistent with the common knowledge about Holstein
and Jersey cattle.

CONCLUSIONS

Overall, our results show that it is possible to predict qualitative differences between breeds using
genomic prediction based on a set of sequence variants chosen because they are associated with dairy
traits. This study also provides alternative insights into efficient use of available data to conduct
validation analysis. Our analysis included ~900 beef cattle from the Run6 of the 1KBull project. It is
recommended to extend such genomic prediction analysis in a large beef cattle population where the
allele frequency of the prioritised dairy pleiotropic variants can be properly examined and accounted for.
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SUMMARY

The aim of this study was to estimate genetic parameters for test-day milk yield in different pro-
duction systems in Kenya. 10,923, 19,049 and 26,287 first lactation test-day records from multiple
breeds under low, medium and high production systems, respectively, were analysed. On average
cows under high production systems were younger and had a higher test-day milk yield than in low
and medium production systems. A model fitting fourth order Legendre polynomials was found to
be the most parsimonious and was therefore used to model the data. Additive genetic and permanent
environmental variances were heterogeneous along different days in milk and between production
systems. Heritability and repeatability were also different between days in milk and production sys-
tems. Heritability was on average 27%, 48% and 48% and repeatability 72%, 83% and 78% under
low, medium and high production systems, respectively. Genetic correlations ranged from -32%, 34%
and 45% to unity between daily milk yield in different days in milk under low, medium and high
production systems, respectively. These parameters indicate that random regression using Legendre
polynomial order four can be used to model test-day milk yield under the three production systems in
Kenya. The observed heterogeneity of variance indicates that genetic parameters should be estimated
within production systems for sustainable genetic improvement.

INTRODUCTION

Genetic evaluation using test-day milk yield allows better modelling of environmental factors
affecting yield and variation in the lactation curve in addition to providing accurate genetic evalua-
tion (Ptak and Schaeffer 1993). Random regression models using orthogonal Legendre polynomials
are commonly used to model the covariance structure between test-day records. The models should
include the general shape of the lactation curve, variation in test-day yields, effects specific to cows
on the same test-day, and production levels if known (Ptak and Schaeffer 1993). In Kenya dairy pro-
duction systems vary in terms of the level of inputs and outputs such that production systems can be
classified into low, medium and high production systems (Wahinya et al. 2018). Genetic parameters
of milk yield and persistency using test-day records under these production systems are not available.
This paper, therefore, aims at estimating genetic parameters for milk yield using test-day Legendre
polynomial random regression models.

MATERIALS AND METHODS

Data. 56,259 first lactation test-day records were received from the Livestock Recording Centre
(LRC) in Kenya. The records were observed from 5,179 multi-breed cows in 142 herds from 1990
to 2014. The cows were managed under different production systems and in different geographi-
cal regions of the country. Records that were retained for this analysis ranged from 5 to 365 days
post-partum with twelve records on average per cow and a range of three to twenty two records per

* A joint venture of NSW Department of Primary Industries and the University of New England
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cow. Test-day yields were cleaned for outliers using a threshold of four standard deviations from the
mean within the production systems.

Classification of herds into production systems was done in a separate analysis using average pre-
dicted herd 305-day milk yield. To obtain the predicted herd milk yield productivity level, individual
cows 305 days milk yield were estimated using a linear mixed model with calving year, parity and
breed group as fixed effects and herd as a random effect. K-means cluster analyses in R software (R
Core Team 2017) using the Hartigan and Wong (1979) algorithm was then used to group predicted
herd means into three groups here described as low, medium and high production systems, as sum-
marised in Table 1.

Statistical analysis. Variance components were estimated using univariate animal test-day models
using the ASReml software package (Gilmour ef al. 2015). Contemporary group (CG) was defined
based on herd-test month of milk sampling. Test-day milk yield was regressed on days in milk to
account for the lactation curve. A random regression test-day model was fitted as:

Yiu = CG,TAge Bt g+ 0,0,(t) TP, 0,(4) T ey

where Yie is the test-day milk yield sampled on animal k, on t, days in milk within the i CG, with
age at calving (Age) and in genetic group g 5 B, o, and p, are regression coefficients for days in
milk, additive and permanent environmental random effects of each cow k, respectively; (pn(tj) is th
covariate of the regression function of n Legendre polynomial order for the day in milk; and € is
the residual term. Seventy-four g, were defined separately for sires and dams within six categories
based on year of birth: before 1986, between 1986 to 1990, 1991 to 1995, 1996 to 2000, 2001 to
2005 and after 2005, and Friesian, Ayrshire, Guernsey, Jersey, Sahiwal, Brown Swiss, and Unknown
breeds using Westell-Quaas method (Westell ef al. 1988). Residual variance was assumed to be
heterogeneous considering 11 classes of 5 — 15, 16 — 30, 31 — 60, 61 — 90, 91 — 120, 121 — 150, 151
— 180, 181 — 210, 211 — 240, 241 — 270, and 271 — 365 days in milk, however, genetic parameters
were estimated up to 305 days in milk.

Based on log likelihood ratio test, AIC, BIC and variance estimates, a model fitting Legendre
polynomial order 4 (LP4) was found to be the most parsimonious and therefore, was used to estimate
genetic parameters.

Table 1. Test-day data structure and average age (days) and test-day milk yield (kg) (standard
deviation in brackets) under low, medium and high production systems

System Records Cows Herds Sire Dam CG Age Milk yield

Low 10,923 1,034 50 385 916 587 1,112(277) 7.9(3.6)

Medium 19,049 1,659 55 450 1,283 638 990(228) 12.3(4.8)

High 26,287 2,486 37 626 1,580 434 910(140) 16.5(5.8)
RESULTS AND DISCUSSION

Low, medium and high production systems had different phenotypic means and variances for
test-day milk yield (Table 1). Table 2 illustrates variance components, heritabilities and repeatabilities
from model LP4 for selected test-days under the low, medium and high production systems. Variance
components were heterogenous between and within production systems. Additive genetic variances
ranged from 1.3 t0 6.7, 6.9 to 14.6 and 7.9 to 17.2 under low, medium and high production systems,
respectively. Within low and medium production systems, additive genetic variance was highest at
the beginning of the lactation period which is consistent with other reports in the literature (Muasya
et al. 2014). In the high production system additive variance increased from the beginning of lacta-
tion to a peak on day 100 then gradually decreased towards the end of the lactation. Andonov ef al.
(2013) reported higher additive variance in the mid-lactation while Berry et al. (2003) observed a
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similar trend to what was observed in this study. The trend for permanent environmental variance was
different between production systems. In the low production system, it was highest around day 60
then it decreased to the end of the lactation. A similar trend was observed by Andonov ef al. (2013)
although in their study they estimated peaks at the beginning and end of the lactation period. Perma-
nent environmental variance increased gradually from the beginning to the end of the lactation under
the medium production system while under the high production system, it remained constant with
peaks at the beginning and end of the lactation period as reported by Muasya et al. (2014). Residual
variance was constant along the days in milk except for higher residual variances observed in the
early stage of the lactation in high production systems.

Table 2. Additive, permanent environment (Pe) and residual variances, heritability (h?) and
repeatability (r) for daily milk yield in selected days in milk (DIM) under low (L), medium (M)
and high (H) production systems (variances are rounded to the nearest whole number)

DIM Additive Pe Residual h? (%) r (%)
L M H L M H L M H L M H L M H
5 7 15 8 4 2 14 2 3 4 53 74 30 84 85 84
60 2 7 15 5 6 7 2 3 13 22 46 43 79 81 63
100 17 17 4 6 7 2 2 7 18 47 55 71 86 76
180 1 8 14 3 6 7 2 3 5 23 46 53 70 81 80
260 2 7 1 2 6 8 2 2 5 32 44 47 70 82 80
305 2 8 11 3 7 8 2 3 5 28 45 47 66 85 8l

Heritability estimates in this study ranged from 18% to 53%, 44% to 74% and 30% to 55%
under low, medium and high production systems respectively. Similar results have been reported in
literature (Costa et al. 2005). Higher estimates, especially for the medium production system, were
reported here than were reported for Holstein-Friesian cattle in Kenya (Muasya et al. 2014). This
can be attributed to the multi-breed data used in this study which is expected to have a higher genetic
variance than in a single breed population (Gebreyohannes et al. 2016). Heritability estimates were
highest at the beginning of the lactation under low and medium production systems (Bignardi ef al.
2009). Under the high production systems heritability estimates were lowest at the beginning of the
lactation, increased to a peak then gradually decreased to the end of the lactation period. Daily milk
yield was highly repeatable (63% — 87%) and decreased from the start of the lactation to the end in
low production systems but increased gradually from the beginning to the end of the lactation in the
medium and high production systems.

Genetic correlations estimated using model LP4 for test-days up to 305 days are illustrated in
Figure 1. The trend of correlation was different between production systems. In general, correlations
were higher between adjacent days in milk but declined with increasing distance between days of
lactation in all production systems. Most of the correlations were positive except for correlations
between milk yield at the beginning and end of lactation in the low production system. Negative
correlations have been reported in literature (Rekaya et al. 1999) indicating that improvement of
yield at the beginning of the lactation would result in reduced yield at the end and therefore lower
persistency. Positive correlations indicate that selection for high milk yield at the end of the lactation
can be effective based on yield at the beginning of the lactation especially under medium and high
production systems with moderate correlations up to 0.3 and 0.5 respectively.
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Low Medium High

Figure 1. Genetic correlation (rg) between milk yields in different days in milk (DIM) under
low, medium and high production systems

CONCLUSIONS

A fourth order random regression model was most appropriate for modelling milk yield test-day
records in this study. Genetic and permanent environmental variances were heterogenous along the
trajectory of days in milk. Genetic and permanent environmental variances, heritabilities and repeat-
abilities were different in low, medium and high production systems. Genetic correlations between milk
yields in different days of a lactation indicate that selection for improved milk yield at the beginning
of the lactation period in the medium and high production systems would result in improved yield at
the end of the lactation and therefore improved persistency, whereas under low production systems
negative correlations were estimated between early and late lactation. Further analysis of the test day
records is recommended using alternative models such as cubic splines. This study showed that genetic
parameters should be estimated within production systems for sustainable genetic improvement and
selection for milk yield can be effective based on yield at the beginning of the lactation.
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GENETIC CORRELATION BETWEEN MILK UREA AND EFFICIENCY OF
CRUDE PROTEIN UTILIZATION ESTIMATED FROM A RANDOM REGRESSION
MODEL

H.B.P.C. Ariyarathne, M. Correa-Luna, H.T. Blair, D.J. Garrick and N. Lopez-Villalobos

School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston
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SUMMARY

The concentration of urea in milk (MU) can be predicted from mid infrared spectra in routine
herd testing of dairy cattle. A high positive phenotypic correlation between MU nitrogen and urinary
nitrogen has been estimated in controlled indoor trials suggesting selection for low MU nitrogen
might reduce urinary nitrogen excretion. Estimates of genetic correlations (r;) of MU and other
traits are required to evaluate the effects of selection for low MU. The aim of the current study was
to estimate r, between MU and efficiency of crude protein utilization (ECPU; ratio between crude
protein yield in milk and crude protein intake) throughout the lactation using a random regression
animal model (RRM). Results show that r between MU and ECPU was positive in early and late
lactation but was mostly negative from day 40 to 180 of the lactation (mean=-0.09). The r, of MU
with crude protein (mean=-0.15) and fat (mean=-0.27) percentages were negative. Further research
is required to confirm if MU can be used in selection to reduce urea nitrogen excretion and increase
ECPU without reducing cow productivity and farm profitability.

INTRODUCTION

New Zealand cows graze almost exclusively on pasture all year round. Consequently, cows
consume feed with more protein relative to energy than they require. The efficient conversion of feed
protein to milk protein is sensitive to the ratio of protein to energy in the diet. Protein being eaten by
the cows is degraded to amino acids and ammonia by rumen microbes. If the diet has an excess of
protein and is deficient in energy, rumen microbes are less efficient in capturing available ammonia,
therefore the surplus enters the bloodstream and is converted to urea in the liver. The majority of the
urea produced in the liver is excreted as urine, however a proportion of urea is diffused to milk (milk
urea, MU) through the bloodstream (Roseler et al. 1993). New Zealand cows fed at pasture produce
greater levels of MU than levels produced by cows fed balanced mixed rations (Garcia-Muniz et al.
2013). Urea enters the environment as urine breaks down to ammonia and nitrous oxide at the site of
the urine patch making it a major source of air and water pollution in New Zealand. Averaged across
the year, 20% of the nitrogen (N) load is leached through the soil (Selbie ez al. 2015).

Reducing N pollution is an urgent national need and one option may be genetic selection for
less urea in urine (UU) thereby reducing the amount of urea reaching the environment. Measuring
UU is not feasible in outdoor farming systems and even if practical it is very expensive to measure.
However, MU could be useful as an indicator of UU if the strong positive correlation between MU
nitrogen and UU nitrogen in controlled indoor experiments (Jonker ez al. 1998) is confirmed in pastoral
circumstances. Milk urea can be determined from mid infrared spectra generated from milk samples
used for routine herd testing, but it is not reported to dairy farmers.

Milk urea has also been proposed as an indicator of efficiency of crude protein utilization (ECPU)
(Baker et al. 1995), which can be defined as the proportion of crude protein produced in milk in
relation to the intake of crude protein. Cows with high ECPU likely divert more absorbed protein for
milk production rather than excreting and therefore wasting it as urea in urine.
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Some authors have reported negative r, between the concentration of MU and milk production
traits (Miglior et al. 2007). However, few studies have reported estimates of r, between MU and
protein utilization efficiency traits, other than the negative but non-significant correlations found by
Vallimont ef al. (2011) between MU nitrogen and three feed efficiency traits.

There is evidence to suggest that, the additive genetic variance of longitudinal traits can change
over time. Therefore, it is sensible to expect variability in r, between traits over the different stages
of lactation. Random regression models based on test-day records can capture variability in additive
genetic and permanent environmental effects over stages of lactation. To our knowledge there is no
literature on the variability of r,, between MU and ECPU traits at different stages of the lactation
profile. The objective of this study was to estimate r, between MU and each of ECPU, yields of milk
(MY), fat (FY) and crude protein (CPY), percentages of fat (FP) and crude protein (CPP) for every
day of lactation in grazing dairy cows in New Zealand using a test-day RRM.

MATERIALS AND METHODS

Data originated from 468 cows on two mixed-breed herds from Massey University in Palmerston
North, New Zealand for the 2016 and 2017 production seasons were included in this study. Details
of animal management and feeding can be found in Correa-Luna et al. (2018).

Daily MY, FY, CPY, FP and CPP were derived from monthly herd-test records. Three additional
milk samples from each cow were collected in each production season representing early, mid and
late lactation for determination of MU content. Daily ECPU was defined as the ratio of CPY to daily
dietary intake of crude protein and expressed as a percentage. For both herds, daily live weight
measurements were obtained from an automatic walk over scale in the exit race of the milking shed
and body condition scores measurements on a 10-point scale were assigned in synchrony with each
herd-test by a single research technician.

Apparent dry matter intake (kg DM consumed/cow/day) was obtained based on summing up the
estimated metabolisable energy (ME) requirements for maintenance, pregnancy, production and daily
weight variation and then dividing by ME content of the feed offered. Content of crude protein from
feed quality analyses were used to calculate crude protein intake (CPI). Cows with a minimum of 3
herd test records and lactation lengths of not less than 150 days and up to 240 days in milk (DIM)
were included in the analysis. After editing the data 380 cows remained in the data set.

Co(variance) components corresponding to additive genetic effect for MU, ECPU, MY, FY, CPY,
FP and CPP was estimated using bivariate random regression test-day animal models. The model
included the fixed effects of herd-test-date and parity, and as covariates, deviation from median calving
date, proportion of Holstein-Friesian breed and coefficient of heterosis of Holstein-Friesian and Jersey
breeds, and days in milk modelled as second-order orthogonal polynomial. Random effects included
in the model were the animal additive genetic, cow-lactation permanent environment, cow permanent
environment and residual effects. Animal additive genetic effect was modelled using second-order
orthogonal polynomials for all the traits except for MY where a third order polynomial was used.
Constant cow permanent environment, cow-lactation permanent environment variances and residual
variances were also fitted in the model. Variance and covariance components were estimated using
the ASReml package (Gilmour et al. 2009). The matrix of additive genetic (co)variances (C) for each
day of lactation was estimated using the following covariance function, C = ®QGR® " where G
is the matrix of variances of the random regression coefficients for additive genetic effects between
two traits and @ is the matrix of orthogonal polynomial coefficients.
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RESULTS AND DISCUSSION

The r, between MU and ECPU, MY, FY, CPY, FP and CPP fluctuated over the lactation from 1
to 240 DIM (Figure 1). The overall genetic correlation between MU and ECPU was negative (-0.09)
but point estimates at specific stages of lactation fluctuated from -0.46 to 0.81 (Table 1). Although
the r, was positive at the beginning, it turned moderately negative by mid-lactation (-0.46). The high
positive correlation at the end of the lactation could be an artefact of the mathematical properties of
polynomial random regression and reflect the lesser number of herd-test records towards the end of
lactations. However, the strong negative r, between MU and ECPU at the middle of the lactation
when cows are producing more milk suggests that efficient cows convert more feed protein into milk
protein and produce milk with low content of urea. These cows may divert absorbed proteins in a
different manner compared to inefficient cows.

Table 1. Estimates of genetic correlation (r) between milk urea (MU) and efficiency of crude
protein utilization (ECPU), yield of milk (MY), fat (FY), crude protein (CPY), and percentage
of fat (FP) and crude protein (CPP) at different days in milk (DIM) in grazing dairy cows in
New Zealand

DIM rG(MU-ECPU) I (MU-MY) I (MU-FY) I (MU-CPY) I (MU-FP) I (MU-CPP)
1 0.25 0.29 0.06 0.27 -0.36 -0.15
60 -0.23 0.16 -0.16 -0.04 -0.23 -0.13
120 -0.46 0.18 -0.14 0.02 -0.29 -0.17
180 -0.11 0.21 0.17 0.16 -0.27 -0.18
240 0.81 0.29 0.55 0.64 -0.28 -0.09
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Figure 1. Daily genetic correlations (r ) between milk urea (MU) and yield of milk (MY), fat
(FY), crude protein (CPY), percentage of fat (FP), crude protein (CPP) and efficiency of crude
protein and utilization (ECPU) at different days in milk in grazing dairy cows in New Zealand

The estimates of r, of MU and FP and CPP were negative with some small fluctuations throughout

the lactation. The r, between MU and FP fluctuated from -0.23 to -0.36 and MU and CPP from -0.09
to -0.18 (Table 1). These negative correlations indicate that cows produce milk with high CPP and
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FP and low content of MU. Together with the r, between MU and ECPU these results suggest that
cows that allocate more CP from the diet into milk protein divert less urea in milk. However, the
r, between MY and MU was positive throughout the lactation (0.19) with small fluctuations (0.16
to 0.29) (Table 1). A positive relationship between MU and MY has been previously reported by
Godden et al. (2001) and this might be explained by the increased level of feeding that involuntarily
increases the level of protein intake and this also increases the production of milk. Diets with a high
CP:energy ratio reduce the efficiency of rumen microbes, with more ammonia converted into urea
instead of proteins in milk (Baker ef al. 1995).

The estimates of r, of MU with FY and CPY ranged from -0.16 to 0.55 and -0.04 to 0.64 respectively
(Table 1). Despite the small sample size used in this study, the average r, of MU with FY and CPY
estimated in this study were within the range reported by Beatson et al. (2019) using a much larger
data set comprising several mixed-breed dairy herds in New Zealand. Studies by Wood et al. (2003)
reported r, of MU and FY and CPY not different from zero.

CONCLUSIONS

The genetic correlation between MU and ECPU was positive in early and late lactation but was
mostly negative from day 40 to 180 of the lactation indicating that inclusion of MU in a selection
index can cause correlated responses in ECPU. Further research is required to estimate the genetic
correlation between MU and urine urea to fully evaluate if MU can be used as a trait to reduce nitrogen
excretion in grazing dairy cows.
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SUMMARY

Milk electrical conductivity is an indicator trait for mastitis, and for maintaining udder health,
moderate milking speed is important. The heritabilities of sum of daily milk yields, mean milk
electrical conductivity and mean milk flow rate for each 30-day period along the lactation trajectory
in Jersey cows milking in their first lactation in Sri Lanka were estimated. The data included 248,854
daily records and 362,754 morning and evening records from 991 cows that calved from 2015 to
2018. Variance components and variance ratios were estimated from posterior means obtained from
a Gibbs sampler. The heritability as estimated by univariate analyses for milk yield, milk electrical
conductivity and milk flow rate ranged from 0.04 + 0.01 to 0.13 + 0.03, from 0.06 + 0.02 to 0.09 +
0.02, and from 0.06 = 0.02 to 0.18 £ 0.05, respectively. Additive genetic correlations between milk
yield and milk electrical conductivity or milk flow rate along the lactation ranged from -0.31 + 0.49
to 0.77 + 0.19 and from 0.46 + 0.29 to 0.89 + 0.12, respectively. Present heritability estimates were
sufficiently high for milk electrical conductivity and flow rate to be used in a selection index. However,
these estimates should be confirmed with more data.

INTRODUCTION

Mastitis is an important disease among dairy cows in the tropics which causes substantial economic
losses (Bangar et al. 2015). Selective breeding against mastitis susceptibility is important to increase
mastitis resistance in dairy cows. Milk electrical conductivity has been used as an indirect trait to reflect
mastitis incidence (Norberg 2005). Fast milking is associated with a wider teat canal, which could
lead to the entry of pathogens, and increased somatic cell score (Carlstrom et al. 2016). Therefore,
moderate milk flow rate is important for udder health. The increasing use of modern milking systems
in developing countries provides an opportunity to use automatically recorded data such as daily milk
yield and milk electrical conductivity in genetic evaluation (Samaraweera et al. 2018). In Sri Lanka,
milking systems with automatic recording are becoming popular, alongside recent importation of
dairy cows to large-scale farms. The aim of this study was to estimate genetic parameters for milk
yield, milk electrical conductivity and milk flow rate in first-lactation Jersey cows in an intensive
dairy farm in Sri Lanka.

MATERIALS AND METHODS

Data. Milk yield records were obtained from a dairy farm located 37 meters above sea level of
Sri Lanka, using Jersey cows imported from Australia as pregnant heifers. Milk yield, milk electrical
conductivity and milking duration were recorded automatically in a DeLaval™ milking parlour. Daily
milk yield and milking duration data were available from 248,854 daily records and milk electrical
conductivity was available from 362,754 morning and evening (session) records from days five to 305

* A joint venture of NSW Department of Primary Industries and the University of New England
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in first lactation. Data were available for 991 Jersey cows that calved from July 2015 to January 2018.

Data cleaning. Any negative milking durations for daily milk yields were removed and assumed
to be an error in recording. Milking duration (measured in sec) was used to calculate milk flow rate
(as kg/min). Any records with zero milk electrical conductivity were removed assuming a failure to
record the milk electrical conductivity. Daily averages for the milk electrical conductivity (mS/cm)
were calculated. The lactation length was divided into ten, 30-day periods starting from day five and
going through to day 305. The total milk yield (MY), mean milk electrical conductivity (EC) and
mean milk flow rate (FR) were calculated for each period. Outliers that differed by more than four
standard deviations from the mean were excluded from the analyses.

Genetic parameter estimation. For each 30-day period, MY, EC and FR were considered as

separate traits. The univariate animal model fitted was ¥ = Xb+Za + e where y is the vector of
observations, b is the vector of estimates for fixed effects of year-season of calving (Y'S, for all traits)
and lactation length as a covariate (for milk yield), & is the vector of random animal additive genetic
effects estimates, X and Z, the incidence matrices relating records to the fixed effects and random

animal effects, and e, the vector of random residual effects. The YS was used as the contemporary
group and any contemporary groups with less than eight cows were discarded. There were two seasons
as dry (from Dec to April next year) and wet (from May to Nov) and five YS combinations. The
total number of animals in the pedigree was 1572 with information up to 3 generations. Cows with
phenotypic records (991) descended from 39 sires and 521 cows out of total cows with phenotypes
were related to one of 38 maternal grandsires. No maternal grandsires were used as sires. All sires
for cows with data were known, but all dams were unknown. Therefore, maternal grandsires were
fitted into the pedigree using dummy dams assuming a unique dam for each offspring.

Variance components for the three traits were estimated via the univariate model described above,
using a Bayesian approach implemented in the BESSIE software (Boerner and Tier 2016). A blocked
Gibbs sampler was run for 50,000 cycles, with scaled inverted Wishart distributions assigned as prior

[T )

processes to the residual and additive genetic co-variance matrices with parameter “v”’ set to “x” and
“y”, respectively (see Sorensen and Gianola (2002, pp. 576-588) for further details). The additive
genetic and residual variances were calculated as posterior means by averaging the sum of every 100"
iteration omitting the first 1000 iterations as burn-in. The additive genetic correlations between MY
and EC and MY and FR for each period were estimated with bivariate animal models. The additive
genetic correlations between periods within the same traits were estimated with ten-trait animal model.

RESULTS AND DISCUSSION

Milk yield (MY) was highest in the second and third 30-day periods, close to the peak milk
production (around 60 days in milk) (Table 1). The coefficient of variation (CV) for MY was highest
at the beginning (0.32) and at the end of lactation (0.35) whereas in the middle of the lactation the
CV was around 0.22.

Mean EC across the whole lactation was 6.2 mS/cm and EC was highest at the beginning of lactation
(6.4 mS/cm) and slightly decreased towards the end of lactation (6.2 mS/cm) (Table 1), with little
variation in EC over the lactation. Similar ECs were observed in the literature for mastitis-infected
cows, e.g. Norberg ef al. (2004) found healthy, sub-clinically infected and cows with clinical mastitis
had ECs (mS/cm) of 5.30 + 0.03, 5.75 £ 0.04 and 6.73 + 0.06, respectively (P<0.001). Therefore,
the relatively high EC values in this study suggests that some cows had mastitis. However, there are
a number of other factors that affect the milk EC such as milk temperature, bacterial strain, milk fat
content etc. (Nielen et al. 1992; Woolford ef al. 1998; Mabrook and Petty 2003). Therefore, changes
in milk EC need to be validated with mastitis incidences.
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Mean FR for 30-day milking periods throughout the lactation ranged from 1.08 to 1.41 kg/min
(Table 1) and minimum and maximum values ranged from 0.40 to 2.30 kg/min, respectively. A study
with higher mean MY (30 kg/d) than this study (14 kg/d) reported higher mean (2.2 + 0.5 kg/min)
and variation (from 0.3 to 8.2 kg/min) for FR (Firk et al. 2002).

Table 1. Descriptive statistics of milk yield (kg), milk electrical conductivity (mS/cm) & milk
flow rate (kg/min) in each 30-day days in milk class

Days in Milk yield Milk electrical conductivity ~ Milk flow rate
milk # cows Mean SD # cows Mean SD # cows Mean SD
5-34 967 408 131 961 6.40 0.36 966 1.26 0.23
35-64 944 469 113 944 6.31 0.34 831 1.17 0.27
65-94 929 459 96 931 6.26 0.35 728 1.08 0.27
95-124 919 431 89 923 6.23 0.35 945 1.41 0.25
125-154 914 409 85 917 6.21 0.33 932 1.40 0.25
155-184 914 388 87 912 6.18 0.33 924 1.36 0.25
185-214 896 370 86 901 6.18 0.35 918 1.35 0.24
215-244 891 344 88 889 6.16 0.36 917 1.35 0.24
245-274 880 315 88 877 6.20 0.37 898 1.30 0.25
275-305 831 285 100 819 6.19 0.37 891 1.25 0.25

The heritability estimates for MY and EC were low compared to literature (Table 2). For example,
moderate and high heritability for EC (ranged from 0.15 to 0.39) has been reported in Norberg (2005).
FR was moderately heritable (0.10) and our estimates were consistent with Zwald et al. (2005)
(milking duration, 0.17 = 0.03). The phenotypic variance for EC and FR (Table 1) was close to the
observed variance (Table 2) indicating that the YS did not explain much of the variance of EC and
FR. Heritability estimates were slightly higher for all traits in the bivariate and multivariate analyses
but differences from those from the univariate analysis were small.

Table 2. Heritability + standard errors (h? 4+ seh? + se) & phenotypic variance (a'f,a'f,) from
univariate analyses for milk yield, milk electrical conductivity and milk flow rate in Jersey cows

Days in Milk yield Milk electrical conductivity Milk flow rate

milk h? + se ol h? + se o h? + se ol
5-34  0.08+0.03 5099 0.09 +£0.02 0.13 0.06 +£0.02 0.05
35-64  0.13+£0.03 5675 0.06 +£0.02 0.12 0.09 +£0.03 0.07
65-94  0.08 £0.02 5196 0.08 £ 0.03 0.12 0.07 £0.02 0.07
95-124  0.12+0.03 5385 0.09 +0.02 0.12 0.09 = 0.03 0.06
125-154  0.11 +£0.03 4809 0.06 +0.02 0.11 0.13 £0.04 0.06
155-184  0.10+0.03 5067 0.08 +£0.02 0.11 0.18 £ 0.05 0.06
185-214  0.08+£0.02 5564 0.08 £ 0.03 0.12 0.15+0.04 0.05
215-244  0.04+0.01 5593 0.08 +0.02 0.13 0.10+0.03 0.06
245-274  0.04+0.02 5138 0.06 +0.02 0.14 0.11+0.03 0.07
275-305  0.06 +0.02 5443 0.06 +0.02 0.14 0.07 +£0.02 0.06

The low additive genetic correlations (<0.30, results not shown) within the same trait across
30-day periods of lactation show that they were independent traits. Additive genetic correlations
between MY and EC ranged from -0.31 = 0.49 to 0.77 + 0.19 with high standard errors (Table 3). The
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additive genetic correlation between MY and EC was higher and positive around peak milk production
(from 65 to 94 days). Significant positive additive genetic correlations between MY and FR were
also observed, and additive genetic correlations ranged from 0.46 = 0.29 to 0.89 = 0.12 (Table 3).
Therefore, selecting cows solely for high milk yield would lead to a correlated response of increased
FR and EC. Therefore, selection emphasis would need to balance the value of increasing milk yield
with electrical conductivity and an intermediate optimum for milk flow rate.

Table 3. Additive genetic (r,r;) and phenotypic (r,r,) correlations between milk yield (1), milk
electrical conductivity (2) & milk flow rate (3) for each days in milk class in Jersey cows

Days in milk
5-34  35-64  65-94 95-124 125-154 155-184 185-214 215-244 245-274 275-305
a1z - 11£40 25446 77+.19 44432 -03+£49 .26+49 .03£45 .02+.60 -31+49 -31+48
Ipaz -.04+.03 .08+.04 .12+0.03 .09+.03 .09+.03 .08+.03 -.01+.04 -.05+.04 -.09+.05 -.19+.04
Ta13 89+.12  46+.29 .54+35 .54+33 78+22 53436 .79+20 .66+33 .53+.39 .81+.19

Ip13 .69+£.02  50+.03 48+£.03 .51+03 .56+.02 .64+.02 .63£.02 .65+.02 .67+.02 .67+.02

CONCLUSIONS

A significant positive additive genetic correlation between MY and EC was found around peak
milk production and the same between MY and FR was positive. The heritabilities for MY and EC
from this data were lower than anticipated. However, present heritability estimates were adequate to
use EC and FR in a selection index. The genetic parameters for MY, EC and FR should be confirmed
with more data.
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SUMMARY

A previous study investigated the impact of selection for fertility upon milk yield in the first
lactation. The current study extends this analysis to include the yield and content of fat and protein.
Daughter test-day records were used to estimate Wilmink curve parameters of each trait for 2,405 sires.
The sires also had breeding values for the production traits and their fertility index. Correlations and
linear regression between curve parameters and breeding values were carried out with and without
correction for environmental effects. Selection for fertility was found to negatively affect milk, fat
and protein yield. Improved fertility was found to result in an increased initial fat and protein content,
but also increased the rate of decline during early lactation causing a reduced nadir. The persistency
of protein content reduced with increased fertility; whilst, fat content rebounded to a greater extent in
fertile cows than those with lower fertility. Fat-to-protein ratio reached its maximum about 5 weeks
before peak milk production and was higher for less fertile cows, coinciding with time of strongest
energy imbalance. Correction for environmental effects resulted in overall lower production curves
for yield traits and fat content, but higher protein content. After correction, cows with higher fertility
produced more milk compared to lower fertile cows purely on their genetic merit. Similar patterns
were found for fat and protein yield. Fat-to-protein ratio was lower for higher fertile cows throughout
the entire lactation.

INTRODUCTION

With the advent of modern cattle breeding in the mid to late 20" century, milk production has
seen a dramatic increase (Brotherstone and Goddard 2005). With modern breeding, a whole array of
factors such as nutrition, health and fertility came into focus, and it was observed that fertility declined
with increasing milk production (De Kruif and Mijten 1992; Crowe et al. 2018). Consequently, such
factors have been included in breeding schemes which have incorporated weighted indices with health
and fertility traits (Osteras et al. 2007, Boichard and Brochard 2012).

Strucken et al. (2015) concluded that the observed impact of milk production on fertility had
both a functional (to provide optimal birth spacing) and causal (energy deficit) explanation. Other
studies have shown the impact of milk fat and protein on fertility traits, with the fat-to-protein ratio
being an accepted measure for energy balance. The fat-to-protein ratio was shown to affect days-open
(Buckley et al. 2003, Puangdee ef al. 2017); higher fat and protein yields were genetically correlated
with longer calving intervals (Albarran-Portillo and Pollott 2013), and lower protein content was
associated with an increased risk of delayed ovulation (Opsomer et al. 2000).

This study follows on from Strucken et al. (2015) and investigates whether selection for fertility
has resulted in observable effects on the lactation curves for milk, fat and protein yield, and fat and
protein content; or whether the application of indices allowed breeders to break the genetic link
between milk production and fertility.

MATERIALS AND METHODS
Data. Estimated breeding values (EBVs) and the fertility index (RZR) were available for 2,405

139



Dairy

Holstein Friesian sires as provided by VIT, Verden (Germany). EBVs for five milk production traits
represented actual deviations from the population mean at 305 days in milk (DIM). The RZR summa-
rizes pre-corrected breeding values for six fertility traits and is standardized to a mean of 100 with a
standard deviation of 12. Additionally, test-day records of five milk production traits were available
for 1,797,852 daughters (Table 1). Each sire had an average of 747 daughters (min=50, max=84.387),
with a minimum of 386 and a maximum of 731,431 test-day records per sire.

Table 1. Test-day records of 1.8m cows in the first lactation for five milk production traits and
the fertility index (RZR) for 2405 sires

Milk yield Fat yield Protein Fat content  Protein con-

(ke) (ke) yield (kg) %) tent (%) RZR

mean 25.57 1.04 0.87 4.14 3.42 101
min 2.00 0.04 0.05 1.60 2.00 62
max 98.80 5.48 3.84 10.50 7.97 136
SD 6.54 0.25 0.20 0.74 0.35 99

# test-days 14,862,232

Analyses. Test-day records for each trait were used to fit 38 lactation curve models with a mecha-
nistic or biological interpretation of curve parameters, and goodness of fit was assessed using 7 criteria.
All selection criteria provided the same ranking of models except the Durbin-Watson coefficient. The
Wilmink curve (Wilmink 1987) was among the top 10 models for all traits and was selected to allow
for comparison of selection effects between traits.

The Wilmink curve was adjusted to allow for better interpretation of parameters, such that:

y=a+ (b-a) * (I-exp™P™) - ¢ * DIM

where y is the test-day record of yield (kg); a is the y-intercept (kg), i.e. starting yield; b is the potential
maximum daily yield (kg); ¢ is the gradient of the linear decay in yield (kg d'); k is the increase in
yield prior to peak production; and DIM are the days in milk.

Pearson’s correlation coefficients between production EBVs and the RZR, and between the curve
parameters and the EBVs and RZR were calculated. A linear regression of EBVs and RZR on the curve
parameters was used to further assess the impact of selection on the shape of the curve. To separate
environmental from genetic effects, we estimated curve parameters per sire within a linear mixed
model which required the fixation of parameter k based on estimates retrieved from the non-linear
curve previously used. Fixed effects included age at calving, year season, and milk recording system
nested within farm. These calculations were carried out across the top and bottom 9% of sires (216
sires) for the fertility index which showed significant differences based on an unpaired two-sided
t-test assuming unequal variances.

RESULTS

The pseudo-genetic correlations between yield EBVs and RZR were significantly negative (milk
yield =-0.282, fat yield =-0.231, protein yield = -0.305), whilst the content EBV's were significantly
positively correlated with RZR (fat content = 0.077, protein content = 0.049), confirming previous
reports (Oltenacu & Broom 2010).

Correlations between uncorrected curve parameters and RZR described a similar relationship as
the linear regression of RZR on curve parameters (Table 2). Parameter @, determining the y-intercept,
was not significantly affected by fertility for any of the analysed traits. Parameter b, describing the
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potential maximum, was strongly influenced by the level of RZR showing that a better fertility resulted
in lower production for the yield traits (except fat yield), and an increase for the content traits (Table
2). Associations of fertility with parameters k, describing the production slope before the nadir, showed
that better fertility resulted in a stronger increase and earlier peak for milk yield, and a lesser decrease
in early lactation for fat and protein content. Parameter ¢, describing the slope after the nadir, showed
that better fertility resulted in a stronger decrease in fat yield, stronger increase in fat content and a
lesser increase in protein content (Table 2). Fat-to-protein ratio spiked at lactation day 12, after which
it dropped and almost stabilized around lactation day 65. Cows with better fertility showed a lower
fat-to-protein ratio at peak, and higher and slightly increasing ratio after lactation day 65 (Figure 1).

Table 2. Correlation/Regression coefficient for RZR on uncorrected lactation curve parameters
in the first lactation

Milk yield Fat yield Protein yield Fat content Protein content
a -0.031/ 0.002/ 0.017/ -0.017/ -0.008/
-0.01 0.017 0.029 -0.023 -0.002
b -0.181%**/ -0.048/ -0.052F/ 0.077%*/ 0.167%**/
-0.04%** -0.0009 -0.002* 0.002% % 0.001***
. -0.11/ 0.0687/ 0.012/ -0.054%/ 0.12%%%/
-0.000006 0.000002* 0.0000006 -0.000004** 0.000004***
K 0.064*/ 0.032/ -0.018/ 0.036/ 0.05+/
0.00017** 0.0008 -0.00006 0.0001} 0.0003*

**%p>0.0001, **P>0.001, *P>0.01, TP>0.05

Estimating curve parameters under the consideration of environmental effects showed that cows
with a higher fertility also produced more milk (Figure 1), fat and protein yield, less fat content, and
almost no difference for protein content. This being the inverse of the observed negative correlations
between yield and fertility traits for uncorrected parameters. Correction for environmental effects
showed that higher fertile cows have a strongly decreased peak and lower ratio throughout the entire
lactation (Figure 1).

DISCUSSION

Reductions in fertility have been largely attributed to an increase in milk production and inade-
quate nutrition, which (especially at the beginning of the lactation) causes an energy deficit for the
cow. This energy deficit forces the metabolism of the cow to shift energy partitioning in favour of
milk production and results in the observed negative correlation with fertility traits. (Strucken ef al.
2015). As such, it may be expected that breeding for better fertility slows milk production in early
and peak lactation, unless the genetic link between these traits has been broken. We found that better
fertility decreased milk production (especially around its peak), as seen by the significant effects on
parameter b (parameter a in Strucken et al. (2015)); and moreover, similar effects were observed
for fat and protein yield. Fat and protein content increased in early lactation with a better fertility,
however, fat-to-protein ratio was lower for more fertile cows, all confirming the hypothesis of an
energy deficit causing the negative trait correlation.

Correction for environmental effects revealed that highly fertile cows produced more milk, fat,
and protein yield than less fertile cows, however, both high and low fertility cows profited from the
environment. After correction for environmental effects, cows with a low fertility had a higher fat
content, whilst protein content remained nearly unchanged. The fat-to-protein ratio strongly increased
in early lactation around the time when the energy deficit can be expected to be most developed
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(Negussie et al. 2013). After correction for environmental effects, cows with the highest fertility
showed an overall decreased in fat-to-protein ratio, whilst the environment did not seem to affect
cows with a poorer fertility (Figure 1).

milk yield . .
ke 35 fat-to-protein ratio
30
25
20
15
10
5 top fertility 9% bottom fertility 9% 1
0o =~ - top fert. 9% corrected - — - bottom fert. 9% corrected
0.9
o] 100 200 300 400 0 100 200 300 400
DIM DIM

Figure 1. Lactation curves for milk yield and fat-to-protein ratio predicted with corrected and
uncorrected Wilmink curve parameters for bulls ranking at the top and bottom of fertility

CONCLUSIONS

Highly fertile cows seem to be capable of producing more milk compared to low fertile cows purely
based on the genetic merit. This suggests that the negative genetic link between high milk production
and low fertility can be broken. The environment, i.e. favourable management, is not as optimal for
high fertile cows and a limiting factor that can be overcome with better management, but sufficient
for less fertile cows. This is also reflected in the fat-to-protein ratio as a measure of energy balance,
which shows that especially highly fertile cows experience a strong energy deficit in early lactation.
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AGE AT CULLING AND REASONS OF CULLING IN AUSTRALIAN DAIRY COWS
Z.W. Workie, J.P. Gibson and J.H.J. van der Werf

School of Environmental and Rural Science, University of New England, Armidale, NSW,
Australia

SUMMARY

Culling reasons in Australian dairy cattle were examined using culling records from 1995 through
2016. A total of 2,452,124 individual cow culling observations were obtained of which 2,140,337
were Holstein and 311,787 were from Jersey cows. The most important culling reasons identified
were infertility (17.2%), mastitis (13.3%), low production (9.7%), sold for dairy purpose (6.4%)
and old age (6.5%) while 38.7% were “other reasons not reported”. The average age at culling was
nearly the same for Holsteins (6.75 years) and Jerseys (6.73 years). The trend in age at culling over
the last twenty years showed a slight increase for Holstein cows (by 0.01 years) and a decrease for
Jersey cows (by 0.03 years). Over the last two decades, culling age has changed little in both breeds,
whereas culling reasons have changed with low production becoming a less important reason for
culling (decreasing by 29% and 37% in Holsteins and Jerseys, respectively) and infertility increasing
in both breeds by 13% and 19% in Holsteins and Jerseys, respectively).

INTRODUCTION

A key objective of dairy farmers is to reduce replacement costs, by keeping productive and fertile
cows in their herds. However, a number of reasons may trigger farmers to cull cows from their herd;
such reasons for culling can be classified as voluntary, or involuntary culling (Weigel et al. 2003;
Fetrow et al. 2006). Involuntary culling happens when the farmer is coerced to cull a productive,
profitable cow due to illness, injury, infertility, or death. Voluntary culling, on the other hand, occurs
when a farmer chooses to remove a cow due to poor milk production, old age and replacement.
Longevity of a cow is also an important trait affecting dairy farm profitability. Increased longevity
of dairy cattle helps dairy farmers to get more economic return and reduce replacement cost (Allaire
and Gibson 1992; Pritchard et al. 2013). Protein yield and fertility are important traits in the breeding
objective, in addition to being possible reasons for culling. A previous study (Haile-Mariam and Pryce
2015) estimated genetic parameters for survival traits over time, however, information on reasons
for culling and their trend over time is limited in the Australian dairy herd. The aim of this study was
therefore to investigate the main causes of culling in Australian dairy herds and thereby to evaluate
trends in age of culling and culling reasons.

MATERIAL AND METHODS

Data source. For this study, data on culling reasons were provided by DataGene (previously
ADHIS). The data used for this study were extracted from milk recorded herds in Australia. The
data were collected based on farmers’ recording about each culling reason. A total of 2,502,258
records were received with each record including data on cow identification number, national herd
identification number, breed, date of birth of a cow, disposal date of a cow and a code for individual
culling reasons. Only a single reason of culling was recorded for each cow removed from the herd.
Records of all culled cows were examined across year of culling. Analysis based on year of birth
was not considered due to the effect of censored data in recent birth years and relatively older cows
in the data for herds in those earlier birth years.

For an evaluation of trend in age at culling over time, we undertook an analysis based on ordering
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cows by culling year and counting the total number of cows culled for all years from 1970 through to
2016. However, for the years from 1970 to 1994, there were very few recorded reasons for culling.
As a result, records that had a year of culling before 1995 were disregarded. In the final data set, a
total of 2,452,124 records (2,140,337 Holstein and 311,787 Jersey cows) were retained from cows in
11,145 herds culled between 1995 and 2016. Birth season of a cow was classified into two categories;
season 1 contained the records of cows that were born from January to June while season 2 covered
the period from July to December, as in (Visscher and Goddard 1995b). For evaluation of trend of
culling reasons, data were also split into two year groups (1995-2005 and 2006-2015) based on the
differences observed in proportion of culling reasons on these periods.

Statistical analysis. Descriptive statistics were carried out to identify and describe the main disposal
reasons stated by farmers. Trends in age at culling were analysed based on year of culling to evaluate
how herdlife has changed over time according to the animal’s culling year and how it differed between
breeds. Age at culling was analysed using a univariate analysis with the following linear model,

Yijm — B +B +Yj +HS, + Cijkm
where, Yin— is an observed age (in years) on animal ijkm in breed i, year j and in herd-season k,
p = the overall mean, B, = effect of breed, Y= effect of culling year and HS, = the fixed effect of
herd-season, € — CITOT term.

RESULTS

Reasons for culling. About 38.7% of the cows left the herd for ‘other reasons’ (Table 1). Aside
from ‘other reasons’, the main reasons for culling across breeds were infertility, mastitis, low produc-
tion, sale for dairy purpose and old age. The proportion of cows culled due to infertility was slightly
higher for Holstein than Jersey cows. The proportion of cows culled for infertility in both breeds
increased in the culling year group (2006-2015) compared with the culling year group (1995-2005).
Next to infertility, the second and third most common reasons of culling in Holstein cows were mas-
titis and low production. By contrast, the second and third causes for culling were reversed in Jersey
cows. Culling due to low production decreased from 10.4 to 7.4% in Holstein and 18.2 to 11.4% in
Jersey cows, between the decades 1995-2005 and 2006-2015. In contrast, the proportion of cows
culled due to sale reasons increased from 1995-2005 to 2006-2015. Culling of cows for involuntary
culling (IC) reasons included infertility, mastitis and accident, which together accounted for 33.0%
of culling reasons for the 2 breeds. Voluntary culling (VC) accounted for 22.5% of reasons, with
about 9.7%, 6.4% and 6.4% of cows removed because of low production, sale for dairy purpose and
old age, respectively.

Table 1. Proportion (%) of culling reason types by breed and year of culling

Year of culling Year of culling

Culling reasons (1995-2005) (2006-2015) Overall
Holstein Jersey Holstein Jersey

Other reasons 39.8 37.5 38.5 33.8 38.7
Infertility 16.4 14.5 18.5 17.3 17.3
Mastitis 14.0 11.9 12.8 13.6 133
Low production 10.4 18.2 7.4 11.4 9.7
Old age 7.0 7.4 5.7 6.4 6.6
Type defect 33 2.9 3.2 4.2 33
Sold for dairy purpose 33 3.5 9.7 9.6 6.4
Accident 2.7 1.6 1.8 1.4 2.2
Poor temperament 1.9 2.1 1.2 1.8 1.6
Calving difficulties 1.2 1.2 1.2 0.6 1.1
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Trend in culling age. The least squares mean of age at culling across year of culling for Holstein and

Jersey cow breeds is shown in Figure 1. The difference in estimated age at culling was small between
breeds but significant (P<0.05). Holstein dairy cows had slightly higher estimated mean age at culling
compared with their Jersey counterparts (6.75 years for Holstein and 6.73 years for Jersey cows).
The minimum and maximum mean estimated ages at culling for Holstein cows were observed in the
year 2003 (6.55 years) and in 1997 (7.0 years), whereas for Jersey cows the corresponding average
values were 6.45 years in 2005 and 7.10 years in the year 1997, respectively. Holstein cows had a
slightly increasing trend in age at culling (0.01 years) over the last 20 years whereas the estimated
age at culling had declined little in the same period for Jersey cows. Overall, Holstein cows were
culled at a slightly older age, especially in the last decade, and that the age of voluntary culling (VC)
was overall slightly lower than involuntary culling (IC) with more difference for the Jersey cows.
There was also an association between culling reasons, whereby younger cows were culled for low
production and infertility, while older cows were culled for mastitis.

—a—IC Holstein —+—1C Jersey

——VC Holstein ——VC Frey

A

5._' T T T T T T 1
1995 1698 2001 2004 2007 2010 2013 2016

Figure 1. Least squares means of age at culling in each year for Holstein and Jersey dairy cows
by year of culling

DISCUSSION

Descriptive statistics were used to calculate the proportion of culling reasons recorded for the
two dairy breeds. Identifying reasons for culling cows could also be useful in determining the main
problems in dairy herds and in identifying breeding objectives and evaluating results of selection.
Excluding other reasons not reported, the most prevalent reason for culling dairy cows was infer-
tility followed by mastitis and low production. In agreement to the current study, previous research
findings identified infertility as the main reason of culling dairy cows in Sweden (Ahlman et al.
2011) and USA (Bascom and Young 1998; Smith ez al. 2000). In this study, the phenotypic trend of
culling cows due to infertility has increased for both dairy cow breeds from 1995-2005 to 2006-2015,
whereas low production has shown a sharp decline. Culling due to low production could be part of
the economic and management decisions to maintain a required number of dairy cows in a particular
farm where good producing cows might have low chance to be culled (Roxstrom and Strandberg
2002; Pinedo et al. 2014). The proportion of Jersey cows culled for mastitis increased over the year
groups. Previous studies regarding the proportion of cows leaving for mastitis of 12.1% (Hadley et
al. 2006) and 12.0% (Smith et al. 2000) in the US dairy cows are closer to the levels in this study.
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In the current study, culling related to other reasons not reported had the highest proportion for both
dairy breeds. In terms of making management decisions, this category yields no information. A more
descriptive category needs to be developed that can account for the list of reasons that these cows
were removed from the herd.

The pattern of age at culling over time for both dairy breeds was evaluated with the year of birth
and year of culling. When age at culling was evaluated against year of birth, the estimated trend of
age at culling sharply declined (results not presented) but this estimate was deemed to be biased
because of censoring. A censored record can be seen as the minimum survival the cow reaches and this
could be a problem in prediction of breeding values for survival because estimated breeding values
are required for live animals. By fitting year of culling in the model, all age groups of culled cows
were included in the analysis. In the same way, the trend of estimated age at culling for the two dairy
breeds for the last 20 years was less varied (Figurel). The overall estimated least squares mean for
age at culling was about 6.65 years. By assuming the average age of 2 years at first calving for most
of the heifers, the productive life of cows in the present study estimated to be 4.6 lactations, which
is comparable with earlier reports of average productive life of 4.6 and 4.3 lactations for Holstein
and Jersey cows, respectively in Australian dairy cattle (Visscher and Goddard 1995a). The average
herdlife observed in the current study is higher than the average herd life observed in Dutch dairy
cattle (Van Pelt ef al. 2015), which was found to be 3.2 lactations.

CONCLUSION

Phenotypic analysis of culling data showed that the estimated average age at culling has changed
little between 1995 and 2016. The proportion of major culling reasons such as infertility, low produc-
tion and mastitis in both dairy breeds have changed over the past two decades; which might indicate a
change in survival traits over time and a likely change in correlation of survival with other objective
traits such as yield and fertility.
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SUMMARY

Gilts and sows from two nucleus farms (N=1103) were recorded after transfer to the farrowing shed
for a range of health-related traits and subsequent lactation outcomes. Traits recorded pre-farrowing
included fight lesions (FIGHT), caliper score (CAL), udder condition (MAST), haecmoglobin level
(HB), respiration rate (RESP), rectal temperature (RECT) and feed refusal before farrowing (FRBF).
Lactation outcomes included the number of weaned piglets (NWEAN) and lactation failure (LFAIL).
The highest heritabilities (h?) were estimated for CAL (0.34+0.08), FRBF (0.21+0.08) and RESP
(0.2040.09), while the remaining traits were lowly heritable. Antagonistic genetic (rg) and/or phenotypic
(rp) correlations were estimated for NWEAN with FRBF (rg: -0.36+0.30; rp: -0.10+0.03) and for
CAL with HB (rg: 0.33+0.41; rp: 0.15+0.03). The absence of pre-farrowing mastitis was associated
with higher NWEAN both genetically (-0.74+0.30) and phenotypically (-0.05+0.03), indicating that
selection for healthy udder led to increase in NWEAN. Sows with higher levels of HB and fewer feed
refusals had increased NWEAN. Non-zero heritabilities demonstrate that health-related traits have
a genetic component, but evaluation of their potential use as selection criteria to improve lactation
outcomes for sows requires additional data to obtain more accurate estimates of genetic correlations.

INTRODUCTION

Lactation outcomes can be defined by the number of weaned piglets, lactation length or removal
reasons related to poor mothering ability. Selection for litter size in pigs is aimed at increasing the
number of weaned piglets, which can have detrimental effects for health of both sows and piglets and
lead to a poor lactation outcome. Previous studies reported genetic associations between piglet survival
and traits such as body condition, fight lesions, appetite or rectal temperatures of sows (Tabuaciri et
al. 2010). In a phenotypic study, Anil ef al. (2008) reported negative correlations between lactation
outcomes and lactation feed intake, elevated rectal temperature or health issues.

The objective of this study was to test whether health traits (haemoglobin, fight lesions, respiration
rate, mastitis, rectal temperature, appetite or body condition) were heritable and accompanied by
negative genetic correlations with lactation outcomes. The hypothesis was that those traits are heritable
and can be considered for developing breeding goals that balance high production performance with
improved health and welfare of sows and piglets.

MATERIALS AND METHODS

Data. The data used in this study were recorded at two nucleus farms operated by independent
companies, collected during the period October-December 2017 (Farm A, N=558 sows) and March-
June 2018 (Farm B, N=545 sows). The sows recorded included both primi- and multi-parous sows
and represented a total of 10 (maternal or terminal) lines across both farms. Farms differed generally
in their production environment, management, housing, feeding regimes and health status, which are
not described further here. Sows were transferred from gestation housing to the farrowing shed at an

* A joint venture of NSW Department of Primary Industries and the University of New England

147



Pigs and Poultry

average gestation length of 110 days and recorded for a range of health and welfare characteristics by
a single operator. Subsequently, sows farrowed naturally and were managed according to each farm’s
commercial protocols. The targeted lactation lengths were four (Farm A) and three weeks (Farm B).

Late gestation characteristics. The extent of fight lesions (FIGHT) was scored as 0: no lesions;
1: 1-5 lesions; 2: 6-10 lesions; and 3: 10+ lesions (Bunter 2017). Body condition (CAL) was measured
as caliper increments, using procedures described by Knauer et al. (2015), with increasing value
corresponding to increasing body condition. Udder health was assessed by recording pre-farrowing
mastitis (MAST, 0/1), considered to be present (score=1) for sows with a hard and swollen udder,
irrespective of whether this was accompanied by an elevated rectal temperature. Resting respiration
rate (RESP) was recorded as the number of expirations per 30 seconds, expressed per minute. Rectal
temperatures (RECT) were obtained when sows were at rest ensuring the thermometer was in contact
with the bowel wall. Haemoglobin (HB) level was measured using the Hemocue H201+ (HemoVue
AB, Angeloholm, Sweden) using a single drop of blood obtained from a skin prick on the sow’s ear
(Hermesch and Tickle 2012). Sows which farrowed prior to the measurement date or which appeared
distressed at the time of procedure were not sampled for HB. Feed refusal before farrowing (FRBF)
was recorded as the proportion of days observed where less than half the meal was eaten, assessed
3-4 hours after the first feed delivery in the morning. Sows were observed for FRBF for 5.62+2.14
days, on average.

Lactation outcomes. Lactation failure (LFAIL, 0/1) was defined to occur (score=1) for any
combination of: weaned piglets <7; lactation length <15 days; or if removal reasons included poor
mothering ability, bad udder or no milk. A trait frequently used to describe lactation performance
is the number of weaned piglets (NWEAN). Sows which weaned no piglets (due to piglet deaths)
or had all piglets removed prematurely were assigned NWEAN=0. For sows which were used to
foster a second litter (N=4), NWEAN was based on the first litter only. If the sow did not lactate at
all (culled or died), LFAIL and NWEAN were considered missing (N=3). Records clearly identified
with recording errors were excluded from analyses (N=12).

Analyses. Data preparation and summary statistics were obtained using R (R Core Team 2018).
Raw data were firstly examined for errors and outliers, which were excluded from analyses (HB: N=4)
if trait values were more than four standard deviations from the mean, within farm. The combined
farm dataset was then used for analyses. Estimates of variance components were obtained by fitting
a linear mixed animal model using residual maximum likelihood procedures in ASReml (Gilmour
et al. 2014). Systematic effects fitted for all traits included parity group (4 levels: parities 1, 2, 3-4
and >4) and the interaction between breed and farm (10 levels). Estimates for heritabilities were
obtained from univariate analyses. Correlations between traits were estimated using a series of
bivariate analyses. Sows were progeny of 352 sires and 852 dams, and the pedigree was extended
over 5 generations to contain 1261 sires and 3274 dams in total. There were 104 commercial sows
without pedigree retained in the data.

RESULTS AND DISCUSSION

Characteristics of the data. The incidence of sows which experienced undesirable lactation
outcomes (LFAIL) was <10% (Table 1), consistent with results from a different population (Bunter
et al. 2018). Fight lesions were observed on a relatively high percentage of sows, demonstrating
aggression exists amongst group-housed sows in late gestation. The average value for HB was 106 g/1,
with 2.71% of sows considered borderline anaemic (< 80 g/l). The average values for HB align with
previous study by Hermesch and Tickle (2012). The extent of feed refusal was variable (CV=141%),
with an average of 20% of meals observed pre-farrowing with feed refused.
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Table 1. Raw data characteristics, distribution (%X100) of scores, estimates of heritability (h?)
and phenotypic variance (czp) from univariate model, with model R?

Trait N Mean(SD) CV% ODlsmbult“’“ °f52°°res ; RGE o R2(%)

NWEAN 1088 9.38(2.62) 28 na na na na 0.16 (0.08) 6.65 4.50

LFAIL 1100 na na 90.2 9.8 na na 0.09 (0.08) 0.09 2.51
CAL 1098 144 (2.66) 19 na na na na 0.34 (0.08) 5.90 16.5
FIGHT 1103 na na 26.5 363 262 11.0 0.14(0.07) 0.65 29.3
MAST 1103 na na 93.7 63 na na 0.15(0.08) 0.52 10.8
RESP 1067 254 (16.7) 68 na na na na 0.20 (0.09) 225 19.6
RECT 1067 37.8(0.47) 1 na na na na 0.12(0.08) 0.19 13.6
HB 960 106 (14.0) 13 na na na na 0.06 (0.07) 171 12.9
FRBF 1076  0.20 (0.28) 141 na na na na 0.21 (0.08) 0.80 0.56

Abbreviations: NWEAN: count of weaned piglets, LFAIL: lactation failure (0/1), CAL: caliper increments
(count), FIGHT: fight lesion scores (0-3), MAST: pre-farrowing mastitis (0/1), RESP: count of expirations/
minute, RECT: rectal temperature (°C), HB: haemoglobin level (g/1), FRBF: proportion of days observed where
less than half the meal was eaten, na: not applicable

Heritability estimates. Overall, results presented in Table 1 demonstrate genetic contributions
to performance (LFAIL, NWEAN), as well as feeding or interactive behaviours (FRBF, FIGHT),
health or condition (MAST, CAL), and physiological traits (RESP, RECT, HB) recorded prior to
farrowing. LFAIL and NWEAN were two traits for assessing sow performance as nursing sow.
Heritability estimate for LFAIL was 0.09+0.08, which was higher than previously reported (h?> = 0.00)
for crossbred sows (Bunter ez al. 2018). The heritability estimate for NWEAN was higher (0.16+0.08)
than the average of 0.07 reported in the review of Rydhmer (2000), and is potentially influenced by the
minimum cross-fostering, diversity of lines, combined with phenotypes which included zero values
for sows which weaned no piglets. Moderate h? (0.21+0.08) for FRBF suggests that when sows are
observed pre-farrowing for feed refusals following fixed delivery, phenotypic differences between
animals may be accurately observed, revealing differences in appetite before farrowing. Estimate of
heritability for CAL was high (0.34+0.08), consistent with similar traits like sow weight or back fat
(Tabuaciri et al. 2010). Heritability for FIGHT was moderate (0.14+0.07) and align with previously
reported by Bunter (2017).

Correlations. Large genetic (-0.97+0.18) and residual (-0.73+0.03) correlations between NWEAN
and LFAIL are consistent with the use of NWEAN to define LFAIL phenotypes (Table 2). All other
correlations were of lesser magnitude. Genetic correlations were only consistent in direction or
magnitude with phenotypic correlations for some trait combinations, which probably reflects relatively
small sample size. The genetic correlation between NWEAN and MAST was strong (-0.74+0.30),
indicating selection for udder health could contribute to increased NWEAN. Genetic and phenotypic
correlations were positive between CAL and HB, and between FRBF and RECT. Sows with lower
FRBF (rg: -0.36+0.30; rp: -0.10+0.03) or higher HB (rp: 0.08+0.03) weaned more piglets. Iron
status influences appetite and vitality of piglets at birth (cited in Hermesch and Tickle (2012)).
Rectal temperature, RESP and FRBF were positively correlated phenotypically, consistent with the
expectations that animals with elevated body temperature will breathe faster and reduce feed intake.

CONCLUSIONS
Traits related to health of sows (MAST, CAL, FRBF, RESP, RECT, HB) were heritable. Genetic
correlations in this study were preliminary estimates, had high standard errors, and were frequently
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inconsistent in magnitude or direction with phenotypic correlations. More data are required to obtain
more accurate estimates of genetic correlations, particularly for trait combinations where phenotypic
correlations between traits were substantial. However, negative genetic and phenotypic correlations
between NWEAN and FRBF or NWEAN and MAST were implying that feed refusals and udder
health have implications for current performance and for breeding programs.

Table 2. Estimates of genetic (above diagonal), residual (1st row) and (2nd row) phenotypic
(below diagonal) correlations (SE in subscript) between traits

NWEAN LFAIL CAL FIGHT  MAST RESP RECT HB FRBF
NWEAN -0.97 018 -0.56 ©029) -0.03 ©037) -0.74 ©030) 0.89 037 -0.16(040) -0.69 069 -0.36{0.30)
LFAIL 073 . 0.65 o, -0.04 . 0.53 .. 048 . 020 . 0.62 . 047 .
-0.75 01
CAL 017 g 018 0 043 0 007 (0 <042 0 -0.04 0 033, 013
. 0.03) 7 VF (0.03)

FIGHT ~ 0.02 . -0.01 . -0.004 062 4y <021 021 033 047
e 003 TV E 003 T (0.03)

MAST 0.1 ;0 -0.02 0 0.13 0 0.09 003 1 016, =025 . 021 .

VY 0.03) UV 0.03) 2 0.03) 0.03 (0.03)

RESP  -0.16 ;. 0.05 . 020 . -0.07 , .. -0.07 ;. 012, 069 . -049
0 0.03) 01 (0.03) . 4(0.03) -0.09 (0.03) -0.06 (0.03)
RECT  -0.01 ;0 0.02 0 014 0 -0.02 0 -0.05 = 030 0 0.98 1 020 .,

-0.03 ©.03) 0.04 ©.03) 0.10(0‘03) 0.05 ©.03) 0.02 0o 924 003
HB 0.16 o 013 o 013 (0 -0.06 (o -0.02 (0 0.19 =005 -0.08 5,

08 (0.03) -0.06 (0.03) 0'15(0.03) -0.08 (0.03) -0.0 (0.03) 21 0.03) 0. 4(0.03)
FRBF  -0.04 . 0.04  © 006, 004, ©-012 . 024, " 012 . 015
0410(0_03) 410(0_03) 0.01 ©03) 0404(0'03) -0.06(0103) 0.10(0‘03) 0.13(0.03) A2 606

For trait name abbreviations see Table 1.
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SUMMARY

The genetic (rg) and phenotypic (rp) correlations between piglet vitality at birth, traits measured
on sows 2 and 5 days post-farrowing and lactation outcomes were estimated using the data from 2
nucleus farms (N=1103). All observations were analysed as traits of the sow. The highest heritabilities
(h2) were estimated for functional and un-suckled teats (0.36+0.09 and 0.24+0.09) and for the
number of vital piglets (0.09+0.07). Detrimental piglet attributes were genetically and phenotypically
associated with each other and with a lower number of weaned piglets. High respiration rate and
rectal temperature were genetically (0.814+0.31 and 0.73+0.30), but not phenotypically, associated
with the number of weaned piglets. Correlations between other traits were not significantly different
from zero, or had high standard errors and therefore required more data for more accurate estimation
of variance components.

INTRODUCTION

Examination of sows and piglets shortly after farrowing can be used to identify risk-factors, which
might have an impact on lactation outcomes (Madec ef al. 1992). Lactation outcome can be defined by
the number of weaned piglets, lactation length or removal reasons related to poor mothering ability.
While numerous studies reported the association between birth weight and the number of weaned
piglets, relatively fewer studies have considered the implications of other piglet vitality traits at birth
and post-farrowing health indicators of sows for the lactation outcomes. The objective of this study
was to estimate the genetic parameters for the health-related post-farrowing predictors and to obtain
preliminary estimates of the genetic associations with lactation outcomes.

MATERIALS AND METHODS

The data used in this study were recorded at 2 nucleus farms operated by independent companies,
collected between October-December 2017 for Farm A (N=558 sows) and March-June 2018 for Farm
B (N=545 sows). Further details were provided in Vargovic et al. (2019). After farrowing, but before
cross-fostering, sows and their piglets were recorded for a range of characteristics. All observations
were treated as traits of the sow. Sows were progeny of 352 sires and 852 dams and the pedigree
was extended over 5 generations containing 1,261 sires and 3,274 dams in total. There were 104
commercial sows without pedigree retained in the data.

Characteristics of piglets. The vitality of piglets within the birth litter was assessed within 12
hours of the completion of farrowing. Negative indicators for piglet vitality included the number of
pale (NPALE) or thin (NTHIN) piglets, whereas the number of vital piglets (NVITAL) was recorded
as the total number of piglets without any detrimental attributes.

Characteristics of sows. Sows were recorded for a range of attributes, on days 2 and 5 post-
farrowing. Resting respiration rates (RESP2, RESPS) were recorded as the number of expirations per
30 seconds, expressed per minute. Rectal temperatures (RECT2, RECTS5) were recorded ensuring

* A joint venture of NSW Department of Primary Industries and the University of New England
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the thermometer was in contact with the bowel wall. Mastitis (MAST2, 0/1) was considered to be
present (score=1) for sows with a hard and swollen udder. Indicators of suckling load included the
count of un-suckled (TEATU2) and functional teats (TEATF2). Feed refusal after farrowing (FRAF)
was recorded as the proportion of days observed where less than half the meal was eaten, assessed 3-4
hours after the fixed feed delivery. Sows were observed for FRAF over 2.9542.80 days on average.
Lactation failure (LFAIL) and the number of weaned piglets (NWEAN) were defined as described
by Vargovic et al. (2019).

Analyses. Data preparation and summary statistics were obtained using R (R Core Team 2018).
Estimates of variance components were obtained by fitting a linear mixed animal model using residual
maximum likelihood procedures in ASReml (Gilmour ez al. 2014). Systematic effects fitted for sow
traits included parity group (4 levels: parities 1, 2, 3-5 and >5) and the interaction between breed and
farm (10 levels). For piglet vitality traits, models included total piglets born fitted as a linear covariate.
Estimates for heritabilities were obtained from univariate analyses. Correlations were estimated using
a series of bivariate analyses.

RESULTS AND DISCUSSION

Characteristics of the data. Traits that represent piglet vitality (NPALE, NTHIN) and the resulting
un-suckled teats (TEATU2) were highly variable between litters (Table 1). However, no detrimental
attributes were observed on 77.5% of born alive piglets. This study showed that un-suckled teats can be
observed early post-farrowing, which could result in rapid regression (Kim ez al. 2001). Mastitis was
recorded in 15.5% of sows, and 5.49/15.5=35% of these sows also had elevated rectal temperatures.
However, farrowing followed by physiological hyperthermia can cause misinterpretation as to whether
mastitis is present or not (Friendship ef al. 2015).

Table 1. Raw data characteristics, estimates of heritability (h?) with standard errors (SE) and
phenotypic variance (czp) from univariate model, with model R?

Trait N Model effects  Mean (SD) CV% g o, R?(%)
NWEAN 1088 P, BF 938 (2.62) 28 0.16 ;0 6.65 4.50
LFAIL 1100 P, BF 0.098 (0.30) 303 0.09,, 009 231
NVITAL 1072 P, BF, TB 8.83 (2.82) 32 0.09 ., 531 332
NPALE 1072 P, BF, TB 0.93 (1.59) 171 004, 221 12.0
NTHIN 1072 P, BF, TB 2.70 (2.63) 97 0.08 ,,, 496 28.6
RESP2 1025 P, BF 23.7(12.3) 52 0.17 o0 145 3.03
RESP5 973 P, BF 28.1 (15.4) 55 0.10 .0 236 113
RECT2 1064 P, BF 38.9(0.51) 1 021, 023 0.62
RECTS 1060 P, BF 38.9(0.57) 2 0.12 ., 024 245
MAST2 1059 P, BF 0.155 (0.36) 234 005, 013 3.41
TEATU2 1059 P, BF 1.26 (1.33) 105 024, 173 1.39
TEATF2 1059 P, BF 13.8 (1.17) 9 0.36 5, 126 8.18
FRAF 1065 P, BF 0.35(0.39) 114 0.01 0.14 10.3

(0.07)

Abbreviations: NWEAN: count of weaned piglets; LFAIL: lactation failure (0/1); NVITAL, NPALE, NTHIN:
count of vital, pale and thin piglets; RESP2 and RESPS5: count of expirations/minute; RECT2 and RECTS5: rectal
temperature (0C); MAST2: mastitis (0/1); TEATU2 and TEATF2: count of un-suckled and functional teats;
FRAF: feed refusal after farrowing; P: parity group; BF: breed:farm; TB: total born piglets

Heritability estimates. After accounting for systematic effects, heritability estimates (h?) were low
(<0.07) for NPALE, MAST2 and FRAF (Table 1). The h? for NPALE was similar to that reported by

152



Proc. Assoc. Advmt. Anim. Breed. Genet. 23:151-154

Tabuaciri et al. (2011). The highest h? was for TEATF2 (0.36+0.09), consistent with Lundeheim et al.
(2013). With respect to sow attributes, RECT2 and RESP2 were moderately heritable (0.21+0.09 and
0.17+0.09), and lower than reported by Gourdine et al. (2017), averaged across lactation (0.35+0.09
and 0.39+0.13). The h? for NWEAN was higher (0.16+0.08) than the mean (h*=0.07) previously
reported by Rothschild ez al. (1998).

Correlations for piglet attributes. NTHIN and NPALE were positively correlated with each other
and negatively with NVITAL (Table 2). Both phenotypic (rp) and genetic (rg) correlations indicated
that NVITAL was positively correlated with NWEAN and negatively correlated with LFAIL and
TEATU?2. Piglet vitality at birth is an important contributor to successful lactation outcomes assessed
for sows. Lower rg and rp were estimated between piglet traits (NTHIN, NVITAL, NPALE) and sow
health-related traits (RESP2, RESP5, MAST?2), suggesting independence of these traits genetically.

Correlations for sow attributes. Rectal temperature and respiration rate were strongly correlated
with each other (Table 2), and favourably associated with NWEAN, while attributes measured day 5
were less informative, due to lower h? and higher standard errors. Sows with high genetic potential for
NWEAN had genetically higher RESP and RECT, suggesting better environmental management may
be required for genetically superior sows. Moderate to high rg between MAST2 and NWEAN/LFAIL
were favourable, indicating that visual observation of udder for mastitis (even without confirmation
by taking rectal temperature) was correlated with the number of weaned piglets. Moderate rg between
NWEAN and TEATF2 demonstrated that the number of functional teats post-farrowing was favourably
associated with the number of weaned piglets. Large rg (-0.97+0.18) and re (-0.73%0.03) between
NWEAN and LFAIL are consistent with the use of NWEAN to define LFAIL phenotypes.

CONCLUSIONS

Results presented in this study demonstrated that piglet vitality contributes to sow lactation
performances. Sows which wean more piglets were genetically predisposed to higher rectal temperature
and respiration rate. Visually assessed presence of mastitis was genetically associated with the lactation
outcomes. Large standard errors in genetic parameters were observed, with further data required to
reduce this error.
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SUMMARY

This study examined the effect of temperature grouping (T-group) on genetic parameters for
farrowing rate from first insemination (FR). Further, this study investigated if genotype by T-group
interaction for FR exists. The lowest FR was observed in T-group 1 and 3, which were both characterised
by high mean maximum temperature (>29°C) prior to mating. The heritability of FR across all T-groups
differed only marginally from each other and were low (0.03, 0.00, 0.03, 0.02, and 0.03 for T-group
1,2, 3,4 and 5, respectively). Genetic correlations between FR recorded in different T-groups were
generally positive and high (>0.70), with the exception of the genetic correlation for FR between
T-group 1 and 5 which was lowly negative and close to zero (-0.10+0.27). This is an indication that
FR in T-group 1 and T-group 5 were two genetically different traits and should be treated as separate
traits in pig breeding programs.

INTRODUCTION

Seasonal infertility in pigs has been described as a reduction in reproductive performance during
late summer and early autumn (Love 1978). In domestic pigs, seasonal infertility seems to be mainly
explained by changes in photoperiod, but can be elevated or alleviated by multiple factors, such as
heat stress or management strategies (for example shed cooling systems) (Auvigne et al. 2010). The
heat stress component of seasonal infertility is becoming more important in Australia, as severity
and frequency of extreme heat events have increased across large parts of the country (Whetton et
al. 2011). Since environmental modification and management seem unlikely to eliminate all heat
stress effects or their consequences for seasonal infertility, selection for reduced seasonal infertility
in pigs should be explored.

Seasons are classically defined by grouping calendar months according to specific climate
characteristics. Most studies have used the classic definition of season to analyse seasonal differences
in reproduction performance (Lewis and Bunter 2011). However, seasonal variation may not be well
described by this classic definition of season and a more flexible approach is required. A methodology
has been developed using cluster analysis to define temperature groupings (T-group) influencing
farrowing rate (Bunz et al. 2019). These T-groups accounted for different maximum temperature
histories that sows were exposed to around mating events. Farrowing rate is an indicator trait for
seasonal infertility.

The objective of this study was to investigate the effect T-groups had on genetic parameters for
farrowing rate (FR) at first insemination and if genotype by T-group interactions exist for FR.

MATERIALS AND METHODS

Mating data and outcomes from two maternal lines (Large White and Landrace origin) and one
terminal line (Duroc origin) were collected from a single farm in southern New South Wales, Australia.
The climate is characterised by very hot summers, cool winters and low humidity. The full pedigree
information was used, extending over 18 generations. Data included 36,767 FR records of 17,090

* A joint venture of NSW Department of Primary Industries and the University of New England
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sows (daughters of 977 sires) from the first insemination event within each mating cycle (FR: 0=fail,
I=pregnant) collected from 2012 to 2017. The data set was limited to records from the first three parities
of sows. All mating events were performed using artificial insemination, with each sow receiving 2
inseminations of the same boar’s semen, supplied from a single boar stud. Boars were housed in sheds
with an evaporative cooling system and their semen had to pass quality-control checks before use.
Sows were housed in naturally ventilated sheds and had drip cooling provided during their lactation
period when shed temperature exceeded 30°C. The following steps outlined further in Bunz et al.
(2019) were applied for defining 5 T-groups (n = 5): a) a generalized linear model with a logit link
was used to identify the most informative days (p-value<0.05) for FR at first insemination regarding
maximum ambient temperature (Tmax) in the time period 35 days prior to and 35 days post mating
date; b) for every mating date the Tmax of significant days were extracted; and, c) a cluster approach
based on partitioning around medoids (PAM; Kaufmann and Rousseeuw 1990) methods was applied
to group temperature patterns for every mating date according to their similarity. Parameter estimates
for each trait were obtained using an animal model applying ASREML (Gilmour et al. 2014). Using
a general formulation, the model for FR at first insemination was:
Yik =XB+ Zya; + Z1p; + L35, + ey (1)

where Vi, ae observations for the ith animal inseminated by the kth service sire, X is an incidence
matrix of factors (). Z, is the incidence matrices relating records to additive genetic and permanent
environment effects and, Z,is the incidence matrices relating records to service sire effect, and a, p
and s are vectors of additive genetic, permanent environment and service sire effects, respectively.
Significant systematic effects included first insemination year-quarter (24 levels, contemporary
groups), breed (3 levels) and sow parity (3 levels). Effects were distributed as Var(a) = Ao, where
A is the numerator relationship matrix, Var(p) = Io, Var(s) =1Io, . . and Var(e) = Io, where I is
an identity matrix.

To investigate the genotype by T-group interaction data on FR was subsequently split into five
traits based on T-group at first insemination, as outlined by Bunz et al. (2019). Estimates of genetic
correlations between FR in each T-group were then obtained from a series of bivariate analyses. For
the bivariate analysis only one record per season per sow was kept avoiding multiple records per sow
in one season, leading to 34,838 records. The permanent environment effect of the sow was therefore
not fitted in bivariate analyses.

RESULTS AND DISCUSSION

The lowest mean FR was observed in temperature group 1 and 3, which were both characterised
by high maximum temperature prior to mating (Table 1). Observation in T-groups were independently
distributed from season of the year (Table 2). This study found low heritabilities for FR (Table 3),
similar to those reported by Sevillano et al. (2016). Farrowing rate was not heritable in T-group 2.
However, heritability estimates for FR differed only marginally between T-groups.

Further, the phenotypic variance and the ratio between service sire variance and phenotypic variance
was larger in more stressful environments (T-groups 1 and 3) than in less stressful environments
(T-groups 2,4,5), which is consistent with results from Sevillano et al. (2016).

Estimates of genetic correlations between the same trait recorded in different T-groups are shown
in Table 5. The standard errors for genetic correlations were high due to the low heritability in T-group
and partially low representation of sows and sire of sows across T-groups (Table 4). Further, it was
not possible to estimate genetic correlations between T-group 2 and other T-groups due to non-
existence of additive genetic variation in T-group 2. The genetic correlations between FR recorded
in different T-groups were high with one exception; the genetic correlation between T-group 1 and
5. This genetic correlation was negative and close to zero, suggesting the existence of a genotype
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by temperature grouping interaction. T-group 1 and T-group 5 were the opposite in the maximum
temperature characteristics, which is a possible explanation for the low genetic correlation for farrowing
rate at first insemination between these two T-groups. Sevillano et al. (2016) found a higher genetic
correlation (0.76+0.19) of FR between opposite environments (stressful and non-stressful) using a
bivariate model.

Table 1. Data characteristics for farrowing rate according to temperature group (T-group)

T-group Temperature characteristics of T-group n records n SOWs Mean (sd) CcvV
1 high prior and post mating 8686 8080 0.77 (0.42)  54.6
2 low prior and medium post mating 6989 6648 0.85(0.35) 415
3 high prior and medium post mating 5471 5399 0.75(0.43) 575
4 medium prior and low post mating 5204 5093 0.84 (0.37) 442
5 low prior and post mating 10411 9618 0.86 (0.34)  40.0

Abbreviations: Mean Maximum temperature characteristics: high >29°C; medium 21-29°C; low <21°C

Table 2. Distribution of records across T-groups and season

T-group n records Summer AuFumn Winter Spring
(Jan-Mar) (April-Jun)  (July-Sept) (Oct-Dec)
1 8686 4859 3827
2 6989 31 1377 5581
3 5471 4190 1152 129
4 5204 48 5081 39 36
5 10411 2766 7434 211

Table 3. Estimates of variances due to additive genetic (6” ) and service sire effects on farrowing
rate, along with the residual (¢* ) and phenotypic (czp) variances and ratios of heritability (h%:
se in brackets) or service sire effects by temperature grouping (T-group)

T-group o’ Gzpe o’ o’ Gzp h? pe? ss?
1 0.0051 0.0101 0.0041 0.1550 0.1642 (00'.0031121) ?69065135) ?000205 62)
2 0.0000 0.0080 0.0026 0.1128 0.1154 (8888) ?(59066993) ?(59020263)
3 0.0050 0.0071 0.0037 0.1677 0.1763 (00'.00218;; ?00141027) (069020078)
4 0.0023 0.0000 0.0012 0.1321 0.1356 (00'9011772) (00'9000000) (00'9000866)
5 0.0031 0.0000 0.0010 0.1139 0.1179 (069029691) (069000000) (069000%15)
Abbreviations: h* = 62 / czp; pe*= Gzpe/Gzp; ss?=0’_/ (52p

The current study focused only on the temperature component of seasonal infertility. However, the
methodology can be further developed accounting also for the photoperiod component. The presence
of genotype by T-group interaction can be explore for other traits.
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Table 4. Number of sows by temperature grouping (T-group) on the diagonal; the number of
sows in common between T-group above the diagonal, the number of sire of sows in common
between T-group below the diagonal

T-group 1 2 3 4 5

1 8080 1827 1310 2153 5415
2 437 6648 2226 2669 2392
3 332 494 5399 695 3279
4 495 545 254 5093 1656
5 672 541 612 436 9618

Table 5. Genetic correlations (above diagonal), residual correlations (below diagonal 1st row)
(SE) and phenotypic correlations (below diagonal 2nd row) and for farrowing rate at first
insemination between temperature groupings (T-group)

T -group 1 3 4 5

1 0.82(0.23) 0.85(0.48) -0.10(0.27)
0.00(0.04)

3 0.04(0.03) 0.98(0.55) 0.79(0.34)
0.09(0.03) 0.04(0.05)

4 0.11(0.03) 0.07(0.04) 0.89(0.39)

5 0.03(0.02) -0.03(0.02) 0.04(0.03)
0.03(0.02) 0.00(0.02) 0.00(0.03)

CONCLUSIONS

This study was able to show that genotype by T-group interactions exist for FR, which is a trait used
to indicate seasonal infertility. Farrowing rates observed in T-group 1 and 5, which were characterised
by opposite mean temperature patterns around mating events, were genetically two different traits.
The results of this study show that using trait-specific T-groups can provide an opportunity to improve
the heat stress component of seasonal infertility in pigs genetically. Additionally, this methodology
can be extended to include photoperiod information and applied to other reproduction traits.
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SUMMARY

Alternative models for genetic evaluation of pre- and post-weaning mortality traits were investigated.
For pre-weaning mortality, the best model accounted for direct piglet effects, common litter effects
of both the nurse sow and biological dam, repeated records of the nurse sow and the maternal nurse
sow genetic effects. For post-weaning mortality, the most parsimonious model included only direct
piglet effects and the common litter effects of both the nurse sow and biological dam. After accounting
for systematic effects, genes of the piglet contribute to both pre- and post-weaning mortality (direct
h?=0.02 £ 0.002 for pre- and post- weaning), whereas the nurse maternal genes only contribute to
pre-weaning (maternal m*= 0.01 + 0.002). While heritabilities were low, there is potential for genetic
improvement of both pre- and post-weaning mortality traits.

INTRODUCTION

Selection for efficient, lean growth and increased litter size can increase piglet pre-weaning
mortality (Bunter 2009), with recent pre-weaning mortality rates reported as high as 18% in Australian
herds (Australian Pig Industry Benchmarking Report, 2018). Therefore, breeding values for survival
have become an important component of breeding programs. It is possible to make improvements by
genetically enhancing a piglet’s ability to survive (Mesa ef al. 2006), while also improving litter size,
although an antagonistic relationship occurs between the two traits (Bunter 2009). Piglet survival
involves different phenotypes and genes, including that of the piglet’s biological dam, the sow nursing
the piglet, and the genotype of the piglet itself (Knol ez al. 2002). In addition, piglets born and/or
nursed within a common litter have common environmental effects contributing to their mortality
(Bunter 2009). In the review of Bunter (2009), heritability estimates were on average 0.05 at the
piglet level, and 0.11 at the sow level, indicating that both direct and maternal components should
be considered. The purpose of this study was to investigate alternative models for genetic evaluation
of piglet pre- and post-weaning mortality, treated as a trait of the piglet.

MATERIALS AND METHODS

Data. Data on individual piglet mortality (alive = 0, dead = 1) before weaning or post-weaning
and other related traits, were recorded at a commercial piggery located in southern New South Wales,
Australia. Data included 466,012 individually identified pedigreed piglets born between 2009 and 2018,
from two Maternal (Large White and Landrace) and one Terminal (Duroc) selection line. This data set
represented progeny of 1,535 sires, 19,867 dams and 28,228 nurse sows, which were included in the
pedigree, extending over 10 generations, born in 43,462 litters. Piglets were individually identified
within 24 hours from birth, with individual birth weights and sex recorded. Cross fostering occurred
after identification, and all movements and deaths of individual piglets were recorded, along with
corresponding dates. A piglet was recorded as a pre-weaning death if it was born alive and died before
weaning (average of 26 days). A post weaning death was recorded if the piglet had been weaned and
was less than 70 days of age at death. Piglets with a pre-weaning record equal to 1 do not have a
post-weaning mortality record.

* A joint venture of NSW Department of Primary Industries and the University of New England
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Statistical Analysis. Preliminary analyses confirmed that the following fixed effects significantly
(P<0.0001) contributed to mortality outcomes: piglet breed; gender (2 levels: male and female);
piglet fostering status (un-fostered = 0, fostered by day 2 = 1, fostered after day 2 = 2), which was
concatenated with sow (birth-nurse) parities and farrowing farm (totalling 48 levels); and birthweight
class (6 levels: 0.60-1.21, 1.22-1.39, 1.40-1.54, 1.55-1.69, 1.70