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PRESIDENT’S MESSAGE 
 

A very warm welcome to the AAABG’s coming 
of age meeting, the 21st conference in Lorne, 
Victoria. Previous Victorian conferences have 
been held in Melbourne in 1981, 1991 and 2003 
but this time we hope you enjoy a chance to visit 
the Great Ocean road, a famous tourist 
destination, and enjoy a swim in the pleasantly, 
cool and refreshing Southern ocean!  
 
The scientific program reports a wide variety of 
research and I trust contains much of interest to 
everyone. We have reached the stage where 
genomic selection is no longer novel and is being 
imbedded in traditional breeding programs. There 

is still much to do to get the most out of DNA technology and I hope the 
conference helps a little to push this topic forward. 
 
Since the first conference in 1979, AAABG has established itself as the premier 
meeting of Australian and New Zealand scientists working on the genetic 
improvement of livestock. It has always been intended that AAABG was also an 
opportunity for scientists and breeders to meet and discuss livestock breeding. 
However, over the years the number of conferences covering this field has 
increased and it is not obvious how to structure the conference to meet both 
objectives. I hope you will come to the OGM to discuss how AAABG should 
proceed in the future. 
 
I wish to thank the sponsors who have supported the conference, allowing us to 
invite several overseas speakers and the conference organisers ASN and 
especially to thank the committee who have organised the Lorne meeting. 
 
 
 
Mike Goddard 
President, AAABG 2015 
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AAABG was formerly known as the Australian Association for Animal Breeding and Genetics. 
Following the 1995 OGM the name was changed when it became an organisation with a joint 
Australian and New Zealand membership. The Association for the Advancement of Animal 
Breeding and Genetics is incorporated in South Australia. 

THE ASSOCIATION FOR THE ADVANCEMENT OF 
ANIMAL BREEDING AND GENETICS INCORPORATED 

OBJECTIVES 
(i) to promote scientific research on the genetics of animals; 
(ii) to foster the application of genetics in animal production; 
(iii) to promote communication among all those interested in the application of genetics to 

animal production, particularly breeders and their organisations, consultants, extension 
workers, educators and geneticists. 

To meet these objectives, the Association will: 
(i) hold regular conferences to provide a forum for: 

(a) presentation of papers and in-depth discussions of general and industry-specific topics 
concerning the application of genetics in commercial animal production; 
(b) scientific discussions and presentation of papers on completed research and on 
proposed research projects; 

(ii) publish the proceedings of each Regular Conference and circulate them to all financial 
members; 

(iii) use any such other means as may from time to time be deemed appropriate. 

MEMBERSHIP 
Any person interested in the application of genetics to animal production may apply for 

membership of the Association and, at the discretion of the Committee, be admitted to 
membership as an Ordinary Member. 

Any organisations interested in the application of genetics to animal production may apply for 
membership and, at the discretion of the Committee, be admitted to membership as a Corporate 
member. Each such Corporate Member shall have the privilege of being represented at any 
meeting of the Association by one delegate appointed by the Corporate Member. 

Benefits to Individual Members 
• While it is not possible to produce specific recommendations or “recipes” for breeding plans

that are applicable for all herd/flock sizes and management systems, principles for the
development of breeding plans can be specified. Discussion of these principles, consideration
of particular case studies, and demonstration of breeding programs that are in use will all be of
benefit to breeders.

• Geneticists will benefit from the continuing contact with other research workers in refreshing
and updating their knowledge.

• The opportunity for contact and discussions between breeders and geneticists in individual
members’ programs, and for geneticists in allowing for detailed discussion and appreciation of
the practical management factors that often restrict application of optimum breeding programs.
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Benefits to Member Organisations 
• Many of the benefits to individual breeders will also apply to breeding organisations. In

addition, there are benefits to be gained through coordination and integration of their efforts.
Recognition of this should follow from understanding of common problems, and would lead to
increased effectiveness of action and initiatives.

• Corporate members can use the Association as a forum to float ideas aimed at improving
and/or increasing service to their members.

General Benefits 
• Membership of the Association may be expected to provide a variety of benefits and, through

the members, indirect benefits to all the animal industries.
• All members should benefit through increased recognition of problems, both at the level of

research and of application, and increased understanding of current approaches to their
solution.

• Well-documented communication of gains to be realised through effective breeding programs
will stimulate breeders and breeding organisations, allowing increased effectiveness of
application and, consequently, increased efficiency of operation.

• Increased recognition of practical problems and specific areas of major concern to individual
industries should lead to increased relevance of applied research.

• All breeders will benefit indirectly because of improved services offered by the organisations
which service them.

• The existence of the Association will increase appreciably the amount and use of factual
information in public relations in the animal industries.

• Association members will comprise a pool of expertise – at both the applied and research
levels – and, as such, individual members and the Association itself must have an impact on
administrators at all levels of the animal industries and on Government organisations, leading
to wiser decisions on all aspects of livestock improvement, and increased efficiency of animal
production.

CONFERENCES 
One of the main activities of the Association is the Conference. These Conferences will be 

structured to provide a forum for discussion of research problems and for breeders to discuss their 
problems with each other, with extension specialists and with geneticists. 
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ASSOCIATION FOR THE ADVANCEMENT OF ANIMAL BREEDING AND GENETICS 
FELLOWS OF THE ASSOCIATION 

“Persons who have rendered eminent service to animal breeding in Australia and/or New Zealand 
or elsewhere in the world, may be elected to Fellowship of the Association…” 

Elected February 1990 
R.B.M. Dun 
F.H.W. Morley (deceased) 
A.L. Rae (deceased) 
H.N. Turner (deceased) 

Elected September 1992 
K. Hammond 

Elected July 1995 
C.H.S. Dolling 
J.R. Hawker 
J. Litchfield 

Elected February 1997 
J.S.F. Barker 
R.E. Freer 

Elected June 1999 
J. Gough 
J.W. James 

Elected July 2001 
J.N. Clarke 
A.R. Gilmour 
L.R. Piper 

Elected September 2005 
B.M. Bindon 
M.E. Goddard 
H.-U. Graser 
F.W. Nicholas 

Elected September 2007 
K.D. Atkins 
R.G. Banks 
G.H. Davis 

Elected September 2009 
N. Fogarty 
A. Fyfe 
J. McEwan 
R. Mortimer 
R. Ponzoni 

Elected September 2011 
B.P. Kinghorn 
A. McDonald 

Elected October 2013 
H. Burrow 
P. Fennessy 
G. Nicoll 
P. Parnell 

Elected October 2015 
P. Arthur 
D. Johnson 
K. Meyer 
B. Tier 
R. Woolaston 
Citations for the 2015 Fellowships 
are presented in the following pages. 

HONORARY MEMBERS OF THE ASSOCIATION 
“Members who have rendered eminent service to the Association may be elected to Honorary 
Membership…” 

Elected September 2009 
W.A. Pattie 
J. Walkley 
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PAUL ARTHUR 

Originally from Ghana, Paul Arthur completed his postgrad research 
and worked in Canada before commencing his very prolific career with 
the New South Wales Department of Primary Industries. Paul is an 
expert in animal breeding and genetics with a strong national and 
international reputation, and simultaneously has made an enormous 
contribution in leadership and direction of animal production research 
within the NSW public service. 

Paul completed his M.Sc. thesis on the use of large dairy breeds in 
crossbreeding for range beef production, and Ph.D. thesis on the nature, 
genetics and physiology of double-muscled cattle, at the University of 

Alberta, Edmonton. The winters of Canada finally proved too long and cold for Paul and he 
moved his young family to sub-tropical Grafton, NSW, to join the research team at the then NSW 
Agriculture Grafton Research Station, and became immersed in publication of results from the 
decade-long beef-cattle crossbreeding and growth research projects being conducted in NSW.  

Then a move to Trangie and Paul took on leadership of the Net Feed Conversion Efficiency 
project, and then onto Sydney where Paul’s emerging skills in leadership and management were 
recognised and he was appointed Director of the Elizabeth Macarthur Agricultural Institute. His 
research output never slowed and Paul was invited to work in cattle feed efficiency projects in 
Japan and France, and pigs in Australia. Over the past decade Paul has been a leader in research 
into the genetics of greenhouse gas emissions in beef cattle, and development of genetic 
technologies to reduce methane emissions from Australian beef cattle. 

Paul has achieved a number of career highlights. He earned promotion to the rank of Senior 
Principal Research Scientist, the highest rank available to a public-service scientist, with more 
than 250 scientific publications to his name, including one paper now ranked 3rd among the top 50 
most-frequently cited papers ever published by the Journal of Animal Science. He has been 
awarded the Public Service Medal (PSM), under the Australian Honours System, for “Outstanding 
public service in the field of animal breeding and genetics”. The cattle methane research was 
runner up for 2013 Eureka Award for Sustainable Agriculture. 

To recognise Paul’s quiet determination, hard work, leadership and achievement in animal 
breeding and genetics research, the Association for the Advancement of Animal Genetics and 
Breeding is pleased to enrol him as a Fellow of the Association. 
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DAVE JOHNSON 
 Dave Johnson was born and bred in Southland, New Zealand. 

After completing his BSc and MSc at Otago University, Dave 
undertook a PhD at the University of Toronto (his thesis was titled 
"The symmetric structure theorem for reductive Lie algebras”). He 
then joined Ag Research as a research statistician: analysing numerous 
field experiments, as well as providing animal breeding expertise to 
New Zealand’s sheep and beef cattle breeding programs. 

Dave also worked in the area of variance component analysis 
during his years at Ag Research, and this lead to the development of 
variance component software based on the AI REML algorithm. The 

software enabled both univariate and multivariate analyses  and was subsequently used to estimate 
genetic and phenotype parameters from the data recorded in progeny test herds at Livestock 
Improvement. These analyses were based on 100,000s of records collected on multiple traits: 
analyses that would have been computationally infeasible with any other available software at that 
time. Many of the genetic and phenotype parameter estimates are still in use in the current national 
genetic evaluation. 

Dave joined Livestock Improvement in 1993 and continued there until now. Over this period 
Dave has made a significant contribution to New Zealand’s dairy cattle genetic evaluation. In the 
early 1990s many countries, including New Zealand, were adopting the animal model 
methodology for routine genetic evaluation. During the introduction of the animal model, Dave 
developed a new methodology to predict total lactation yields from individual test-day information 
thus providing phenotypic production records for the mixed model analysis. These records 
accounted for any number of herd tests over any testing frequency and allowed for variable 
information among herd-mates and for the effects of culling. 

Dave was involved in research to improve the methods for estimating the reliability of 
estimated breeding values. Exact reliabilities can be calculated from the inverse of the mixed 
model equations. However, in national evaluations, the mixed model contains more than 10 
million equations, making them computationally infeasible to invert. A new method of 
approximating reliability that was computationally fast and provided estimates with low amounts 
of bias was developed and published by Dave Johnson and Bevin Harris in 1998. This method has 
been extended to several complex models including test-day and genomic selection models, and to 
estimation of reliability for Interbull multiple across country sire genetic evaluations (MACE).   

In 2007, Dave was an integral member of the team that developed a test-day model (TDM) to 
provide a national genetic evaluation for dairy production traits. One aspect of the TDM 
development that has gone unrecognised was Dave’s on-demand TDM build for herd-testing 
customers. The national TDM model is only run approximately every 3 weeks, but farmers 
required a system to provide updated results at the time of an individual herd-test to enable 
breeding and culling decisions based on the most up-to-date information. Dave developed a 
computationally simple solution that incorporated the latest herd-test results into the most recent 
TDM evaluation, allowing up to 1000 herds (300,000 cows) to be processed daily in peak season. 
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Over recent years, considerable research effort  has been directed towards the application of 
genomic selection in a national evaluation system for a number of livestock species, including 
dairy cattle. In New Zealand there was the additional complication of requiring an across-breed 
genomic evaluation system in order to get genomic evaluations on progeny-tested Jersey Holstein-
Friesian crossbred sires. Dave made valuable contributions to a method for the prediction of 
breeding values incorporating genomic information in an across-breed evaluation: the novel 
component being the estimation of the genomic relationship matrix in the context of a multi-breed 
population. 
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KARIN MEYER 
Originally from Germany, Karin completed her training in quantitative genetics with a PhD 

program at the University of Edinburgh.  It would be difficult find three more outstanding people 
to have had as supervisors in one place than hers of Bill Hill, Alan Robertson and Robin 
Thompson. Her studies there sparked her lifelong interest in characterising genetic variation.  

A series of short-term post-doctoral appointments in Australia, Canada and Edinburgh 
followed. These appointments generally focussed on specific problems. Indeed, her outstanding 
ability to assess a task, prepare and analyse the data and, most importantly, complete the study by 
publication in a scientific journal was recognised widely and her talents were in high demand. 
Eventually Karin settled into a full time position at AGBU where she still plies her craft. 

Estimating variance components for unbalanced data and writing software to do so are the 
centre pieces of her career. Her work generally involved examining alternative models methods for 
the analysis of very large sets of data.  Generally it required writing the software to complete the 
analysis as ‘off the shelf’ programs were unavailable.  While at AGBU her primary focus has been 
the analysis of Beef cattle data, and a seminal paper describing a series of alternative models for 
analysing data with maternal effects is still cited today.  She is, and has been, a key player in the 
team at AGBU involved with the development of its beef (BREEDPLAN) genetic evaluation 
system.  Her theoretical and practical contributions to characterising genetic variation in livestock 
have also been appreciated by evolutionary biologists and the plant breeding community where 
she has made regular contributions over the last 15 years. 

Providing software was essentially a ‘spinoff’ of having solved her own problems but for 
colleagues, it was often their introduction to Karin and her methods.  She was in the vanguard 
when sire models were replaced by animal models.  With DFREML, she played the central part in 
providing the animal breeding community with the tool they needed.  The early 1990s saw new 
algorithms for maximising likelihoods – some developed by Karin herself – which were quickly 
incorporated into DFREML.   In the late 1990s a new method for analysing longitudinal data – 
random regression – was added to DFREML.  Karin has always been interested in getting the best 
out of the data.  Advances in computing technology has meant that more difficult questions could 
be posed, but there has always been an underlying goal of having her programs run more quickly.  
Regular enhancements were made to DFREML and in 2006 Karin released a new incarnation 
called WOMBAT which she continues to enhance today. 

By providing tools for the job, Karin has had an immeasurable impact on the animal breeding 
community and other related communities. Some indicators of her output include more than 
21,000 downloads of WOMBAT since its release, over 90 refereed scientific articles with more 
than half as sole author, and 51 papers presented to the AAABG including a number of invited 
papers.  Highlights of her career to date were the award of a D.Sc for her contributions to the 
estimation of variance components by the University of Edinburgh in 2002, her addition to the list 
of highly cited researchers in 2004 and her elevation to Professor in 2013.  Her ability to focus on 
a task until it is completed with one or more publications is an example to all young scientists. 
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BRUCE TIER 
After science studies at the Australian National University and 

service with the Department of  Foreign Affairs, Bruce Tier 
completed a Bachelor of Agricultural Sciences at the University of 
Western Australia in 1980, majoring in Plant Breeding and 
Agricultural Economics subjects.  Raised on a diet of logic puzzles at 
the family dinner table, Bruce became interested in computer science 
and programming early in his studies and insisted on including 
respective courses in his degree schedule, despite discouragement 
from the faculty. Bruce began his career at AGBU in October 1981, 
making him the longest serving staff  member. 

Affectionately known as “Dr. Thong”, Bruce was awarded a Ph.D. from the University of New 
England in 1999 and became a full professor in 2011. In his spare time, Bruce is an avid and 
competitive Bridge player at national level. 

During his 34 years at AGBU, Bruce has played a pivotal role (together with Hans Graser) in 
the development and implementation of genetic evaluation schemes for Australian livestock.  
Indeed, Bruce more or less single-handedly devised, built and maintained the software engines 
driving genetic evaluation for beef (BREEDPLAN) and sheep (OVIS) and provided major inputs 
to schemes for pigs (PIGBLUP) and trees (TREEPLAN), among others. In this time, 
BREEDPLAN progressed from a multi-trait analysis of three traits to twenty-five or more traits 
and, for the larger breeds, millions of animals in the pedigree. 

This expansion posed major computational challenges and would not have been feasible 
without Bruce’s analytical and programming skills which allowed him to develop his own, highly 
efficient strategies – unsurpassed worldwide – to cope with them. Currently, Bruce is 
implementing the next generation of BREEDPLAN and OVIS, incorporating genomic information 
through the so-called single-step method, having postponed retirement to do so. No doubt, he will 
deliver another Rolls-Royce of genetic evaluation schemes to put, yet again, cutting edge 
methodology for genetic improvement at the fingertips of Australian livestock producers. 

Moreover, Bruce has an impressive record of scientific publications in refereed journals and 
has been highly active in disseminating research results at conferences. He first attended a 
AAABG meeting in 1984 and has been an author on 78 AAABG conference papers (until 2013), 
which speaks volumes for his involvement with the society. His key journal papers not directly 
related to genetic evaluation addressed diverse topics ranging from efficient REML estimation, 
fast calculation of inbreeding coefficients and gametic imprinting to one of the first studies on the 
use of multiple genetic markers. 

Bruce has provided essential and substantial leadership in scientific research in a range of 
areas, both within AGBU and with collaborating institutions. For instance, he has been a key 
person in both the Beef and Dairy Collaborative Research Centres and served on the advisory 
board of the Australian Dairy Herd Improvement Scheme. Bruce has been instrumental in 
developing strategies to deal with the avalanche of genomic data in AGBU, and made 
contributions to problems of genome scans, haplotyping, genotype imputation and polled horn 
testing, to name a few. 
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Last but not least, Bruce’s impact as a supervisor and colleague has been immeasurable. 
Known for his irreverence and critical thinking, he has been and is a great team player, willing to 
work with all sorts and unstinting with his time, advice and, where needed, hands-on assistance to 
anyone asking, may it be colleagues, students, visiting scientists or emeriti. 

For his enormous contributions to animal breeding and quantitative genetics, reflecting 
brilliance paired with dedication, the Association for the Advancement of Animal Breeding and 
Genetics is delighted to elect Bruce Tier to a Fellowship of the Association. 
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ROB WOOLASTON 
Raised at Somerton, NSW, Rob grew up on a livestock and grain 

property, attended Farrar Agricultural High School, and then completed a 
B.Sc(Agric) degree at UNSW, graduating with first class honours.  He 
then undertook postgraduate training under the supervision of Professor 
Euan Roberts.  After attaining his PhD in 1975, Rob returned to the 
family farm and spent 7 years finding out about the vagaries of primary 
production.  A desire to return to research saw him then spend 7 very 
productive years at the Animal Breeding and Research Institute, 
Katanning, WA, where he began his studies of genetic variation in 

Merino sheep.  Working with Bob Howe and Roger Lewer, Rob’s research outputs and delivery to 
breeders, had a major impact on Merino breeding in WA during this time. 

After a stint as Senior Biometrician in the Tree Breeding Section of Queensland Department of 
Forestry, in 1989 Rob joined CSIRO as Quantitative Geneticist and Project Leader of the Parasite 
Resistance group at CSIRO Animal Production in Armidale, NSW.  During the ensuing 5 years, 
Rob initiated and conducted many insightful investigations into the genetics of host-parasite 
interactions in sheep, with particular focus on Haemoncus contortus in Merino sheep.  During this 
period he was also involved in breeding research in Fiji and China. 

From 1993 Rob’s career in CSIRO moved increasingly into research management, and 
between 1996 and 2001, he was the Manager of the CSIRO Livestock Improvement Program and 
the Senior Officer-in-Charge of the CSIRO Pastoral Research Laboratory at Armidale.  It was 
during this time that Rob led the successful bid for the establishment of the Australian Sheep 
Industries Cooperative Research Centre. In 2001 Rob moved to Brisbane, and between this time, 
and when he left CSIRO in 2004, Rob filled roles as Deputy Chief, and Acting Chief of the 
Division of Livestock Industries. This was a particularly exciting time within CSIRO as the 
molecular technologies began to become available to research into livestock breeding.  Under 
Rob’s leadership CSIRO made key strategic investments that led to leadership in the international 
efforts to map key livestock genomes. 

Rob’s career since 2004 has focussed on provision of consulting services to the major livestock 
industries.  He has performed roles as MLA R&D co-ordinator and technical advisor, and R&D 
Manager of Pfizer Animal Genetics, and contributed to many other industry boards and advisory 
committees. In particular Rob has made a major contribution to the Technical Committee of Sheep 
Genetics, filling the role as Chair between 2005-2008, and again currently. 

Rob is the author of over 130 scientific and technical publications, including invited papers at 
international conferences in Australia, New Zealand, Canada, UK, USA, Uruguay, China, Pakistan 
and Indonesia.  He has co-edited three books on the genetics of host-parasite interactions and 
animal breeding. 
 For Rob’s very significant contributions to the Australian livestock industries through his 
research, research management, and contributions to industry boards and advisory bodies, the 
Association for the Advancement of Animal Breeding and Genetics is please the elect him as a 
Fellow of the Association. 
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HELEN NEWTON TURNER MEDAL TRUST 

The Helen Newton Turner Medal Trust was established in 1993 following an anonymous 
donation to the Animal Genetics and Breeding Unit. The Helen Newton Turner Medal is awarded 
to provide encouragement and inspiration to those engaged in animal genetics. The Medal is 
named after Dr Helen Newton Turner whose career with CSIRO was dedicated to research into the 
genetic improvement of sheep for wool production. The Medallist is chosen by Trustees from the 
ranks of those persons who have made an outstanding contribution to genetic improvement of 
Australian livestock. 

The Helen Newton Turner Medal was first awarded in 1994 to Associate Professor John James 
and a list of all recipients to date is given below. The recipient of the Medal is invited to deliver an 
Oration on a topical subject of their choice. The Oration of the 2013 Medal recipient, Prof. 
Michael Goddard, is reproduced in these  proceedings. 

Trustees of the Helen Newton Turner Trust are: 
• Dr Richard Sheldrake AM (Chairman), representing NSW Department of Primary

Industries 
• Professor Brian Kinghorn, representing the University of New England
• Mr Scott Dolling, representing the Association for the Advancement of Animal Breeding

and Genetics
• Dr Roly Nieper, Representative of the National Farmers Federation
• Dr Robert Banks, Director, Animal Genetics and Breeding Unit

MEDALLISTS 

1994  J.W. James  
1995  L.R. Piper  
1997  J. Litchfield  
1998  J.S.F. Barker  
1999  C.W. Sandilands 

2001  G.A. Carnaby 
2003  F.W. Nicholas 
2005  K. Hammond 
2007  L. Corrigan 
2009  R. Hawker 

2011  R. Banks 
2013  M. Goddard 
2015  A. Gilmour 

HELEN NEWTON TURNER AO 
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HELEN NEWTON TURNER MEDALIST ORATION 2013 

LIVESTOCK GENETIC IMPROVEMENT IN THE 21ST CENTURY – 
OPPORTUNITIES AND CHALLENGES 

M.E. Goddard 
Faculty of Veterinary and Agricultural Science, University of Melbourne, and 

Department of Economic Development, Jobs, Transport and Resources, Victoria. 

INTRODUCTION 
It is a great honour to receive the Helen Newton Turner medal. I knew Helen at the beginning 

of my career and towards the end of hers. Her knowledge and passion were an inspiration to all of 
us. In this Helen Newton Turner oration to AAABG I will attempt to take a broad view of the 
opportunities and challenges facing genetic improvement of livestock, especially cattle and sheep, 
in the early part of the 21st century. 

We are frequently told that the development of an Asian middle class will increase the demand 
for livestock products especially meat and dairy products. The frustration for producers is that this 
increased demand does not translate into higher prices. I suspect this is due to competition among 
suppliers. There are other suppliers of livestock products including the intensive poultry and pig 
industries and there are plant based substitutes. However, the price of farm inputs does rise. I can 
only see further rises in the price of feed grain, water, labour and the costs of compliance with 
animal welfare and environmental regulation. Therefore, to remain profitable I suggest that farm 
businesses need a 2% per annum increase in economic efficiency, that is, in the ratio of income to 
costs.  

This implies a doubling of efficiency over 35 years. Is that possible? The poultry meat industry 
has easily achieved this increase, largely through genetic improvement of broilers. Between 1980 
and 2010 the Victorian dairy industry increased production per ha 3 fold. The challenge is to do 
this again. In northern Australian  beef production a doubling of production per ha could be 
achieved if weaning rates were lifted to 80% with reduced cow losses, on farm growth rates 
averaged 0.7 kg/day and the feedlot finishing phase was shortened. This is a tall order. Perhaps it 
could be achieved with a cross breeding program using a small, fertile, adapted dam breed and a 
fast growing sire breed producing calves that graze a feed source of high nutritional quality? 

Doubling economic efficiency could be achieved by a combination of increasing the price for 
products, decreasing cost per ha and increasing production per ha. I suggest it will have to come 
mostly from increasing production per ha because I cannot see that the prices for farm outputs will 
increase enough or that costs for farm inputs will decrease enough. Therefore this paper will 
concentrate on the opportunities to increase production per ha by genetic improvement. While 
acknowledging that non-genetic improvements will be important they are not the subject of this 
paper.  

Genetic improvement in economic efficiency depends on breeding objectives being aligned 
with economic efficiency and the use of tools that will deliver genetic progress. 

BREEDING OBJECTIVES 
The objective should be to increase profit where profit is understood to include all objectives 

including non-monetary ones such as safety, animal welfare and environment. In the past the most 
common mistake has been to ignore some traits such as fertility, health and feed conversion 
efficiency. Especially if there are unfavourable correlations between these traits and other 
selection criteria, this risks undesirable and costly changes in these traits that are ignored. 
Fortunately most industries have moved to a more comprehensive breeding objective. However, 
there are aspects of the objective that are still ignored. For instance, where the commercial animal 
is crossbred but selection is within purebreds or where breeding stock are selected in a different 
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environment to the one where their offspring will be farmed. As discussed later, genomic selection 
offers a better opportunity to select for the traits in the breeding objective than we have had before. 

What changes in breeding objectives can we anticipate in the future? The risk of predicting the 
future is high and, fortunately, objectives change relatively slowly so selection for today’s 
objectives is satisfactory. However, possible changes might be an increased community concern 
for animal welfare and environmental outcomes, changes in production systems such as robotic 
milking,  sexed semen, cows with twins, once-bred heifers, adaptation to a hotter , drier climate, 
inclusion of the effect of one animal on the performance of herd mates (so-called social breeding 
values), and the use of lines specialised for a certain product or environment. We need to include 
changes in objectives as soon as they become apparent. 

TOOLS FOR GENETIC IMPROVEMENT 
The tools considered are choice of breed, crossbreeding, avoidance of inbreeding, selection, 

transgenesis, use of major genes, specialised lines to account for GxE or differences in objectives 
and mate allocation. 

Breed differences can be large but the choice of the best breeds is a once only improvement. 
Often obvious changes are made quickly by industry and after that the gain from changing breed is 
small because each breed has some advantages and disadvantages. 

Heterosis is also a once only improvement but is an almost cost free improvement in efficiency 
that is under-utilised. 

If heterosis is nearly always an economic advantage, inbreeding depression is nearly always an 
economic loss. Inbreeding is an inevitable result of small effective population size (Ne) and many 
breeds have Ne about 100-200. Consequently, inbreeding slowly increases with the expected 
outcomes such as a rise in frequency of a succession of recessive abnormalities.  The management 
of these recessives is an increasing problem which needs to be put in the usual economic index 
approach. That is, selection should be based on estimated breeding value for profit including the 
effect of recessive abnormalities. This will result in culling of animals carrying the more common 
recessives and culling animals that carry multiple, undesirable genes. However, overall inbreeding 
levels should be held down by optimising selection decisions to maximise breeding value while 
minimizing future inbreeding. 

Selection is a major opportunity to drive long term improvement in livestock but it is not a new 
opportunity and in the absence of new technology we can perhaps not expect sudden 
improvements in its use. The new technology is genomic selection. This is already adopted in the 
dairy industry and being introduced in other industries. By itself it is beneficial but it is synergistic 
with 3 other technologies. Traditionally, recording of performance had to be done on selection 
candidates or their close relatives. This was a problem where the trait was difficult or inconvenient 
to measure on stud animals. For instance, meat quality is hard to measure on live animals; disease 
traits are difficult to select for because stud animals are managed to minimise disease; crossbred 
performance cannot be recorded on purebred animals; feed intake is too expensive to measure 
routinely. Genomic selection can potentially overcome these problems because the training 
population can be separate from the elite breeding population. Therefore, the training population 
can consist, in part, of commercial animals not closely related to the stud animals. This 
opportunity may be difficult to utilise because traditionally the cost of recording is paid by the 
owners of elite or stud animals. However, the opportunity is important enough that we should find 
a new method of paying for the costs. For instance, we could train a genomic prediction equation 
using crossbred lambs slaughtered and evaluated for FCE and meat quality and yield. Automatic 
measurement technology would be a synergistic technology with genomic selection because it 
could reduce the cost of collecting the data for the training population. Another synergistic 
technology is reproductive technology that allows reproduction at an early age so that generation 
interval can be reduced. Since DNA can be obtained from an animal at birth or before, selection 
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decisions can be made earlier in life when using genomic selection than when selection is based on 
phenotype. 

The technology to make transgenic animals has recently improved with the invention of 
CRISPR and talens. However, this improvement does not overcome the main obstacles to use of 
transgenesis in agricultural livestock and I suspect we are still years away from adoption of this 
technology in livestock. 

Genotype by environment interactions (GxE) are not uncommon if we interpret E to include 
the market for which the livestock or their products are intended, the management system and the 
physical environment. Therefore, one might expect that efficiencies can be gained by breeding a 
line of animals for a particular environment – management- market combination (EMM). For 
instance, a line of dairy cows for cheese production or a line of meat sheep carrying the booroola 
gene for crossing with Merinos. However, the economies of scale work against this idea. It may be 
more economical to breed a general purpose line that can be sold to many customers rather than a 
specialist line that is sold to a few customers. This conflict deserves further consideration. 

Most of the traits in the breeding objective of sheep and cattle are quantitative traits controlled 
by a very large number of genes, most of which have a small effect. However, in a few cases, there 
are known genes of large effect such as booroola for litter size in sheep and myostatin mutations 
causing double muscling in cattle and sheep. Few of these genes of large effect are deliberately 
used partially because they have unfavourable side effects. Generally their logical use would be in 
a line used for crossbreeding for a particular EMM and so utilisation of them depends on 
specialised lines as discussed above. 

CHALLENGES FOR YOUNG SCIENTISTS 
The biggest opportunities to increase the rate of genetic gain are in utilising the synergy 

between genomic selection, reproductive technology and automatic phenotyping. Therefore we 
should aim to make genomic selection very accurate by using a large, across breed training 
population including commercial animals under commercial conditions and automatically 
recorded for traits in the breeding objective. To achieve high accuracy regardless of breed, we 
need a Bayesian statistical method rather than BLUP, based on genome sequence data from which 
we have identified the causal mutations or markers in near complete linkage disequilibria with 
them. To identify these causal mutations we will need to make use of biological information from 
which we can predict which sites in the DNA cause an effect on phenotype when mutated. 
Capturing phenotypic information on commercial animals is partly a technology problem (to make 
measurement very cheap) but also an organisational problem requiring support from industry 
leaders. To gain full benefit from this technology we need much cheaper reproductive technology 
such as JIVET and very cheap DNA testing. Cheap DNA testing will lead to more animals being 
tested and hence, potentially, a large training population provided phenotypic information on these 
animals can be captured and used for improving the accuracy of the genomic prediction equation. 
Among many advantages, this will allow animals to be allocated to their most profitable EMM 
based, in part, on DNA tests. 

CONCLUSIONS 
For sheep and cattle farming to remain profitable, the economic efficiency will need to double 

over the next 35 years mainly by increasing production per ha. Genetic improvement can 
contribute to this objective by careful choice of breeding objectives, use of new technology such 
as genomic selection, reproductive technology and automated phenotyping 
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2015 HELEN NEWTON TURNER MEDALLIST CITATION 

DR ARTHUR GILMOUR 

Dr Arthur Gilmour has made an outstanding 
contribution to the genetic improvement of Australian 
livestock, in particular through his development of and 
support for, software for analysing complex data for 
research and implementation. 

Arthur joined NSW Agriculture in 1970, and spent 
10 years as a Biometrician before completing a PhD at 
Massey under Professors Al Rae and Robert Anderson. 
He returned to NSW Agriculture where he continued 
working to 2009, retiring from the role of Principal 
Research Scientist with 41 years’ service. 

In his roles in NSW Agriculture, he assisted 
countless researchers in the design and analysis of 

experiments, particularly in sheep and plant breeding, as well as developing software used widely 
in Australia and overseas. These software tools have become “tools of the trade” for researchers 
and practitioners. An example of implementation software developed by Arthur is BVEST, which 
was the genetic analysis tool for LAMBPLAN in its formative decade, configured both for use by 
LAMBPLAN scanning operators and later for centralised analysis of increasingly large across-
flock datasets. 

Arthur is perhaps best known for the ASREML software, the development of which was 
stimulated by Arthur’s interaction with Dr Robin Thompson, to apply REML methods efficiently, 
and with Dr Brian Cullis, leading to greatly enhanced models for analysis of plant breeding data. 
ASREML grew out of REG, which was attractive to users because it was comprehensive and 
allowed a wide choice of models – features central to ASREML. ASREML is cited in thousands of 
publications world-wide, and continues to be developed under Arthur’s guidance and with his 
inputs. 

Key to Arthur’s contribution has been that the tools are backed by seemingly inexhaustible 
willingness to help others – in his own words: “My role has been to make new ideas in the area of 
mixed models accessible to general researchers so they can effectively explore their data.” 

This willingness to share was encapsulated in the citation for Arthur’s 2001 Fellowship of the 
AAABG: “Not only has ASREML been made readily available to researchers throughout the 
world, but a discussion group has also been set up that is better described as ‘ask Arthur a 
question’. His generosity in time to individually answer and his resistance to describing perhaps 
50% of the questions as stupid are exemplary.” 

Without accurate estimates of genetic parameters, understanding of how traits work genetically 
and hence genetic evaluation and improvement, are impossible. Arthur Gilmour’s life work has 
enabled this fundamental task of genetics research, development and implementation to be 
conducted rigorously and accordingly is an extremely important underpinning contribution to the 
genetic improvement of livestock (and plants) in Australia.  

Footnote: 
The full text of Dr Gilmore’s oration will be published in the 22nd Proceedings of AAABG 2017. 
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SUMMARY 

Breeding objectives (BO) have been extended recently for sire lines in Australia to include 

average daily gain (ADG), backfat, post-weaning survival (PWS), loin weight and belly weight 

and some consideration of feed cost as either feed conversion ratio (FCR) or daily feed intake 

(DFI). This study evaluated six selection strategies for two BO that included either FCR or DFI 

using genetic parameters previously estimated for Australian populations. Response was expressed 

for one round of selection and a selection intensity of one which is similar to the annual genetic 

gain that can be achieved in practice. The predicted response in the BO with FCR varied from 

$3.61 to $4.59 per pig and from $3.48 to $4.00 for the BO with DFI. The lower response in the BO 

with DFI was partly due to unfavourable genetic association of DFI with ADG. Although PWS 

was the most important trait in the BO relative to the genetic variation, response in PWS was less 

than 0.0009 (or 0.09%) due to limited information available for selection candidates. No genetic 

associations between PWS and other traits were modelled because this information is currently 

lacking and response in PWS will depend on its genetic associations with other traits. Adding FCR 

records to the selection index increased response in the BO by 3.6% only because FCR has 

multiple favourable genetic associations with other traits. In contrast, selection response in DFI 

was achieved only when juvenile IGF1 and/or DFI were recorded. Therefore, considering feed 

costs in the BO with DFI is most effective if DFI is also recorded. 

INTRODUCTION 

Breeding objectives (BO) have been extended over time to better reflect the economic 

importance of a wider range of traits. Barwick et al. (2011) summarised the development of BO 

used in beef, sheep and pigs in Australia in their review. In pigs, bio-economic models have been 

used to define BO which may have hindered extension of BO due to the complexity of the 

underlying models. Recently, Amer et al. (2014) and Hermesch et al. (2014) presented an 

alternative approach to derive the economic value of individual traits directly using independent 

sub models which facilitates future extensions of BO. Hermesch et al. (2014) presented economic 

values for traits of growing pigs which can be used to setup a BO for sire lines. The relative 

economic importance of traits was outlined based on the genetic standard deviation of each trait 

indicating the importance of post-weaning survival (PWS) for selection decisions. However, 

predicted response from different selection strategies was not evaluated by Hermesch et al. (2014). 

The aim of this study was to compare six selection strategies for two BO that are relevant for 

Australian sire lines. 

MATERIALS AND METHODS 

The BO included average daily gain (ADG), backfat (BF) and feed conversion ratio (FCR) or 

daily feed intake (DFI). Further, PWS as well as loin and belly weight (LW, BW) were considered. 

Economic values for the BO traits were based on Hermesch et al. (2014) and Hermesch and Jones 

(2010, Table 1). Two BO were considered including either FCR or DFI to take feed costs into 

account. The economic value for ADG, shown in $/pig, was 0.09 or 0.16 $ per g/day when either 
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FCR or DFI was part of the BO, respectively. The economic value for ADG differs for these two 

BO because FCR accounts for savings in feed costs due to higher growth (Hermesch et al., 2014). 

Six different indexes were compared for both BO. The base index (index 1) included records 

for ADG and BF only. The number of selection criteria was extended through stepwise inclusion 

of piglet birth weight (PBW, index 2), PWS (index 3), LW and BW (index 4), juvenile insulin-like 

growth factor 1 (IGF1, index 5) and lastly FCR or DFI (index 6). Piglet birth weight and IGF1 

were considered as selection criteria because both traits have favourable genetic associations with 

efficient lean meat growth (Hermesch et al., 2001; Bunter et al., 2005) and are recorded in young 

growing pigs. Genetic parameters are outlined in Table 1 based on these previous studies outlined 

above as well as Hermesch (2008). No information was found about genetic or phenotypic 

correlations between PWS and other performance traits which consequently were assumed to be 

zero. Index calculations were performed using the MTIndex program of van der Werf 

(http://www.personal.une.edu.au/~jvanderw).  

It was assumed that ADG, BF and PBW were available for the selection candidate, six full sibs 

and 30 half sibs. Although PWS is available for all animals, only surviving pigs are selected and 

no distinction can be made between pigs with high or low liability for survival. For this trait, 

family selection is more effective because it is a threshold character with low incidence (Falconer 

and Mackay, 1996). Therefore, it was assumed that information about PWS was only available for 

the sire because the mean reliability for survival of sires is better known based on information 

about progeny from multiple litters. The carcase traits LW and BW were available for two full sibs 

and ten half sibs. For IGF1, information was available for the selection candidate, one full sib and 

ten half sibs. Feed intake is most expensive to measure and it was assumed that FCR or DFI were 

only recorded on the selection candidate and five half sibs. 

 

Table 1. Genetic standard deviations (GSD), heritabilities (h
2
), economic values (EV) and 

genetic (below diagonal) or phenotypic (above diagonal) correlations for traits. 

 
 GSD h2 EVFCR/DFI

A ADG BF FCR DFI PWS LW BW IGF1 PBW 

ADG 30.000 0.31 0.09/0.16A  0.11 -0.20 0.32 0.00 -0.14 0.20 0.09 0.38 

BF 1.000 0.33 -1.70 0.02  0.06 0.11 0.00 -0.37 0.11 0.06 -0.14 

FCR 0.150 0.12 -27.44/0.00A -0.37 0.10  0.00 0.00 -0.14 0.02 0.15 -0.10 

DFI 0.094 0.24 0.00/-36.12A 0.50 0.35 0.00  0.00 -0.05 0.05 0.09 0.10 

PWS 0.038 0.05 182.88 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

LW 0.680 0.42 3.60 -0.15 -0.54 -0.40 -0.20 0.00  -0.29 -0.05 0.05 

BW 0.390 0.27 1.20 0.16 0.30 0.25 0.20 0.00 -0.51  0.05 -0.05 

IGF1 13.070 0.21 0.00 0.06 0.21 0.65 0.41 0.00 -0.20 0.20  0.04 

PBW 0.064 0.04 0.00 0.56 -0.43 -0.30 0.20 0.00 0.20 -0.20 -0.33  

Trait abbreviations: ADG: average daily gain (g/day), BF: back fat (mm), FCR: feed conversion ratio (kg 

feed/ kg gain), DFI: daily feed intake (kg/day), PWS: post-weaning survival (0/1), LW: loin weight (kg), BW: 

belly weight (kg), IGF1: juvenile insulin-like growth factor-I (ng/ml), PBW: piglet birth weight (kg). 
A Economic values ($/pig) differ for breeding objectives with either DFI (first value) or FCR (second value) 

 

RESULTS AND DISCUSSION 

The response to selection is shown per generation assuming a selection intensity of one. This 
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response is similar to expected annual genetic gains because the selection intensity achieved in 

practice is similar to the generation interval of about 1.65 years. For the BO with FCR, the overall 

response was $3.61 per pig for Index 1. This index, which has traditionally been used in pig 

industries, leads to favourable responses in FCR and LW due to favourable genetic associations 

with ADG and BF. Individual PBW has a low heritability and recording PBW (index 2) is of 

limited value for genetic improvement of efficient lean meat growth in growing pigs.  

Post-weaning survival was the most important BO trait in both BO accounting for 38% (FCR) 

or 35% (DFI) of the selection emphasis relative to genetic standard deviations of traits. Using 

information about PWS for the sire in index 3 resulted in a predicted response of 0.0009 (or 

0.09%) which implies that it would take about 12 generations to improve PWS by one percent. 

The index calculations in this study assumed no genetic associations between PWS and other 

traits. Additional analyses demonstrated (results not shown) that response in PWS was lowly 

negative when unfavourable genetic correlations with a magnitude of 0.2 were assumed with other 

BO traits. Knap (2014) demonstrated favourable genetic trends for survival of pigs from birth to 

slaughter based on combined pre- and post-weaning survival. Genetic trends for PWS were not 

explicitly shown. It is therefore important to estimate genetic associations between PWS and other 

performance traits to monitor genetic trends in PWS better and to establish whether genetic 

improvement of PWS is feasible. 

 

Table 2. Traits measured in index, accuracy of index (Acc), overall selection response (ΔG in 

$/pig) and response in breeding objective traits per generation with selection intensity of one 

– breeding objective includes feed conversion ratio instead of daily feed intake. 

 

Index Traits measured1 Acc ΔG ADG BF FCR PWS LW BW 

1 ADG, BF 0.361 3.61 15.63 -0.467 -0.036 0.00000 0.121 -0.0228 

2 Index 1 + PBW 0.364 3.63 15.90 -0.466 -0.037 0.00000 0.119 -0.0202 

3 Index 2 + PWS 0.372 3.72 15.55 -0.455 -0.036 0.00090 0.116 -0.0197 

4 Index 3 + LW + BW 0.414 4.13 13.75 -0.429 -0.047 0.00081 0.224 -0.0611 

5 Index 4 + IGF1 0.444 4.43 12.99 -0.416 -0.062 0.00075 0.220 -0.0644 

6 Index 5 + FCR 0.460 4.59 12.62 -0.396 -0.069 0.00073 0.230 -0.0684 

1 for trait abbreviations see Table 1. 

 

Adding information about LW and BW led to the highest marginal gain in the overall BO with 

FCR. The response increased by 11.0% from 3.72 to 4.13 $/pig due to genetic gain in LW for the 

BO with FCR. No favourable response was achieved in BW due to unfavourable genetic 

correlations with LW or BF. In comparison, adding IGF1 and FCR to the selection index for the 

BO with FCR increased the overall response to $4.43 and $4.59 per pig equivalent of an increase 

of 7.3% and 3.6% relative to the preceding index. Therefore, recording FCR does not lead to 

substantial additional response once other traits with favourable genetic correlations to FCR 

(IGF1, LW, ADG and BF) have already been considered. 

Responses in ADG and FCR contributed most to the overall response of the BO with FCR 

accounting for 39% and 27% in index 1, and 25% and 41% in index 6, respectively. As more traits 

were added to the index, responses in BF decreased while responses in the additional carcase trait 

LW increased. Backfat and LW accounted for 22% to 15% and 12% to 18% of the overall 

responses in the BO which demonstrates that selection for carcase traits related to lean meat 
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content continues to provide economic returns.  

Including DFI in the BO is an alternative selection strategy to consider feed cost (Table 3). 

Selection response in DFI was only achieved after juvenile IGF1 or DFI were recorded (index 4 

and 5). All other selection strategies did not lead to any response in DFI due to its unfavourable 

genetic correlation with ADG of 0.50. Consequently, the response in the overall BO with DFI was 

lower in comparison to the previous BO with FCR ranging from $3.48 to $4.00 per pig for index 1 

to 6. The favourable genetic correlation between DFI and BF implied that more response was 

obtained in BF in comparison to the BO with FCR. Further, the added response in the BO due to 

recording an additional trait was highest for DFI contrary to recording FCR in the previous BO. 

Therefore, considering feed costs in the BO with DFI is most effective if DFI is also recorded.  

 

Table 3. Traits measured in index, accuracy of index (Acc), overall selection response (ΔG in 

$/pig) and response in breeding objective traits per generation with selection intensity of one 

– breeding objective includes daily feed intake instead of feed conversion ratio. 

 

Index Traits measured1 Acc ΔG ADG BF DFI PWS LW BW 

1 ADG, BF 0.383 3.48 11.84 -0.583 0.000 0.00000 0.179 -0.049 

2 Index 1 + PBW 0.386 3.51 12.15 -0.580 0.000 0.00000 0.176 -0.046 

3 Index 2 + PWS 0.396 3.60 11.86 -0.566 0.000 0.00093 0.172 -0.044 

4 Index 3 + LW + BW 0.406 3.69 11.47 -0.560 0.000 0.00091 0.226 -0.059 

5 Index 4 + IGF1 0.416 3.78 11.30 -0.556 -0.003 0.00088 0.228 -0.062 

6 Index 5 + DFI 0.440 4.00 10.13 -0.557 -0.015 0.00084 0.221 -0.064 

1: for trait abbreviations see Table 1. 
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SUMMARY 

To date, commercial strains of Nile tilapia (Oreochromis niloticus, L.) are not available to 

culture in brackish water systems. Our attempts were to develop a genetic line of Nile tilapia that 

can perform well not only under a moderate salinity water environment, but also have desired 

eating and marketing characteristics. The genetic line developed from our study showed a 

significant improvement in growth performance, with an average genetic gain for body weight of 

about 8% per generation (one year per generation). Selection for high growth did not have any 

adverse effects on survival or deformity. Under on-farm testing conditions, our selected line 

outperformed other strains especially in saline water environments. The overall eating 

acceptability of the improved genetic line was superior to other freshwater tilapia counterparts. It 

is concluded that the moderate salinity tolerant tilapia line developed from our selective breeding 

program can be cultured effectively under a diverse array of farming systems.   

 

INTRODUCTION 

Tilapia is the second most important commercial freshwater fish, after carp, for freshwater 

aquaculture around the world. The species are widely cultured in more than 100 countries (El-

Sayed, 2006). Among over 100 tilapia species, about three major species are being used 

for aquaculture, Nile tilapia (Oreochromis niloticus, L.) contributes about 71% of the 

global tilapia production (4,207,900 metric tons with an estimated value of US$ 6,923 million 

in 2012) (Fitzsimmons, 2013). Despite the significant role of tilapia in the fishery sector, there 

has been a lack of improved stocks that can produce high quality seed to supply fish 

producers and farmers. As a consequence, commercial production is not highly economically 

viable due to low productivity of existing stocks. A number of breeding programs have been 

initiated to develop improved lines of Nile tilapia (O. niloticus) such as the Genetically Improved 

Farmed Tilapia (GIFT) strain (Nguyen et al., 2010; Hamzah et al., 2014) or GIFT-derived strain 

called as NOVIT4 (Luan et al., 2008). However, these strains are suitable for a freshwater culture 

environment only. To date there are no improved lines of Nile tilapia that can perform well in 

brackish water systems (> 10 parts per thousand; ppt). In this project, we aimed to d evelop a fast  

gro wing strain of Nile  tilapia with high survival and good adaptation to a range of aquaculture 

production systems. 

The specific objectives of our study were: (i) to improve growth performance of the genetic 

line under saline water environments (10 – 20 ppt), (ii) to explore possibilities to select for new 

traits such as early survival, delayed maturity or disease resistance, (iii) to examine the effect of 

genotype by environment interaction, (iv) to evaluate physiological stress response and flesh 

quality characteristics of the improved strain relative to tilapia counterparts currently available for 

freshwater culture systems, and (v) to understand osmoregulation of salinity tolerance in this 

improved strain. In this paper, we present the selection response achieved from the genetic 

improvement program, specifically selection response to growth rate after seven generations in 

moderately salinity water. In addition, we highlight some of the main findings obtained from this 

study in relation to the objectives (ii) to (v). 
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MATERIALS AND METHODS 

Origin of the selection population. The selection population was established in 2007 at 

Research Institute for Aquaculture No.1 (RIA1), Vietnam, from a complete diallel cross involving 

three different strains: genetically improved farmed tilapia (GIFT), GIFT-derived strain named as 

NOVIT4 and Taiwanese Nile tilapia. A detailed description of the population is given in Ninh et 

al. (2014) and Thoa et al. (2015). 

 

Family production and performance testing. In each generation from 2007 to 2014, between 

66 and 108 full- and half-sib families were produced within a six week period. After hatching, 

each family was kept separately in hapas (net cages of 1m
3
) until the fish reached a fingerling size 

of 5-10 g for physical tagging. A random sample of 50-100 individuals were then identified using 

Passive Implant Transponder (PIT). The tagged fish from all families were communally grown out 

in a saline water pond of 15 – 20 ppt over a period of about 4 months for successive annual 

generations between 2007 and 2013. Representatives of each family produced in 2014 were also 

tested in a freshwater pond environment. At harvest, body measurements were made on all 

individual fish, including body weight, standard length, body depth and body width. In the latest 

generation (year 2014), fitness (early survival, sexual maturity) and disease related traits (gill 

condition, deformity) were also recorded.  

 

Genetic evaluation and selection. Best linear unbiased prediction (BLUP) was applied to a 

multi-trait mixed model and used to estimate breeding values (EBV) for harvest body weight for 

all individuals in the pedigree. Based on EBV ranking for harvest body weight, a combined 

within- and between- family selection was applied to select the best (highest EBV) individuals to 

become parents of subsequent generations. Across generations, the proportion of females and 

males selected were about 4.5% and 3.5%, respectively. Selection was practised on body weight at 

harvest. Mating of closely related individuals was avoided and the number of individuals 

contributing to next generations was constrained to minimise inbreeding. The average inbreeding 

rate was less than 0.5% per generation.    

 

 Estimation of genetic parameters. Restricted maximum likelihood method (REML) was 

applied to estimate genetic parameters for traits studied. A linear mixed model was used to analyse 

continuous traits such as body weight or food conversion ratio. The random effects were the 

additive genetic effects of individual fish and full-sib family groups and the fixed effects were 

generation, sex, environment and their two-way interactions. Age from birth to harvest within sex 

and generation was fitted as a linear covariate for body weight traits. For binary characters 

including survival or sexual maturity, generalised threshold mixed models were applied as 

described by Thoa et al. (2015) and Nguyen et al. (2014). 

 

RESULTS AND DISCUSSION 

Response to selection. Genetic evaluation of 36,145 individual animals with performance 

records showed that direct genetic gain for body weight in the selection program was averaging 

8% per generation or 0.20 to 2.84 genetic standard deviation units (Figure 1). Correlated changes 

in survival rate during grow-out were close to zero (Ninh et al. 2014). The moderate heritability 

for body weight (h
2
 = 0.53 ± 0.12) also shows that the present population will continue to respond 

to future selection. 
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Figure 1. Genetic gain for body weight in standard deviation units achieved in the selection 

population of Nile tilapia under moderate salinity water environment (10 – 20 ppt) over 

seven generations including the base population in 2007. 

 

Genetic parameters for new traits. To broaden the breeding objectives for this species, we 

examined the quantitative genetic basis of new traits collected in the latest generation (2014). 

REML analysis showed that there are additive genetic components for early survival rate, sexual 

maturity, gill condition and morphological deformity (heritability range from 0.05 to 0.29), 

suggesting potential to include these traits in a future breeding program for this population. 

 

Offspring of the salinity tolerance line can perform well under freshwater ponds. We 

attempted to understand if the moderately salinity tolerant line can perform well in freshwater 

systems. The data, from performance testing under both salinity and freshwater environments, 

were combined with a full pedigree including a total of 36,145 individual animals recorded from 

2007 to 2014. The estimates of genetic correlations for homologous trait expressions between 

salinity and freshwater environments were very high and close to one (0.78 – 0.99, s.e. 0.07 to 

0.29). This result suggests that the genotype by environment interaction was not significant for 

growth and fitness related traits in this population. It is also suggested that the moderately salinity 

tolerant genetic line developed from this selective breeding program can be used in freshwater 

farming systems. 

 

Physiological response. One indicator of physiological response measured in the selected line 

was Na
+
 and K

+
-ATPase activity. Under the same salinity culture conditions, the improved line 

showed an increase in Na
+
 and K

+
-ATPase activity relative to other ‘freshwater’ counterparts. 

 

Flesh attributes and eating quality. Preliminary analyses show that in comparison with 

commercial ‘freshwater’ tilapia strains, our salinity tolerant line had better flesh quality attributes 

and overall eating quality.   
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Osmoregulation. Future studies will examine possible changes at the molecular and genomic 

levels as well as osmoregulatory adaptation that may have been accompanied by the selection 

program in the present population.  
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SUMMARY 

The genetic evaluation of calving difficulty in Ireland is currently based on farmer reported 

scores. The predicted transmitting abilities (PTAs) can then be converted using non-linear 

regression on phenotypic calving difficulty for high reliability bulls to an estimate of the 

percentage of difficult calvings for Dairy Cows and Dairy Heifers. A non-linear penalty is 

proposed to account for the risk that a low reliability bull may have a much higher percentage of 

difficult calvings than initially predicted. In addition to this penalty, a non-linear weighting is 

proposed for calving difficulty within a dairy beef index to reflect that a 1% increase in calving 

difficulty at a level that is already considered high has a larger economic impact than a 1% 

increase at a lower level.  

 

INTRODUCTION 

Calving difficulty is a trait of economic importance in cattle, with costs including loss of calf, 

loss of milk for dairy cows and veterinary costs incurred by difficult labour (Dekkers, 1994). Work 

carried out by Amer et al. (2001) determined the economic weighting of calving assistance in the 

Ireland and incorporated this economic value into breeding objectives for beef. Currently, 

prototype genetic evaluations for dairy calving difficulty traits are computed by the Irish Cattle 

Breeding Federation (ICBF) for “Dairy Heifer” (DH) and “Dairy Cow” (DC) matings. While all 

data (including data from beef matings on dairy cows) is simultaneously used in the multi-trait 

evaluation, the evaluation produces separate PTAs for heifers and cows. The genetic evaluation 

system uses calving category scores as input phenotypes in a way that was found to optimise the 

heritability of the traits and the stability of the evaluation system. However, the resulting PTAs 

need to be transformed from the underlying 4 point score scale (defined as 1 = no assistance, 2 = 

some assistance, 3 = considerable difficulty, 4 = veterinary assistance), to a percent difficult scale 

(defined as percentage of scores 3 and 4), in order to align with economic value calculations and to 

make more sense to farmers. The translation is undertaken using a non-linear function, separately 

for each type of calving (e.g. DH versus DC), and is based on comparing PTAs for high reliability 

bulls with the actual number of difficult calvings in their daughters. 

 

MATERIALS AND METHODS 

Two levels of non-linear weightings were integrated into the transformed calving difficulty 

PTAs, firstly incorporating a non-linear penalty for low reliability bulls and secondly applying a 

non-linear weighting for percentage of difficult calvings in an index for dairy beef suitability.  

Non-linear reliability penalty. The conversion of PTAs from the underlying genetic 

evaluation scale to the percent difficult scale involves fitting a quadratic to the PTAs for high 

reliability bulls using their progeny percentage of difficult calvings for DH and DC as the 

independent variable. However, the direct conversion to a PTA based on percentage of difficult 

calvings does not take account of the downside risk associated with getting a high percent difficult 

bull, which is not completely offset by the upside risk of the bull turning out to have lower than 

expected difficulty. For this reason, an adjustment calculation has been made to translate the raw 

PTA into a weighted average expected level of percent difficulty.  
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To do this, each quadratic function was combined with an assumed normal distribution of 

uncertainty around the PTA. This distribution has a standard deviation combining the breed 

specific genetic variance (σ
2
) calculated from de-regressed PTAs, by breed, and the reliability (ρ

2
) 

of the bull’s own PTA. In order to get the expected average percentage of calving difficulty that 

takes into account the uncertainty of the calving difficulty PTAs, the estimates were weighted by 

the normal distribution around the point using the integral in the following equation, where x is the 

PTA.  
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This integral simplifies to the following weighting function: f(x, σ

2
, ρ

2
) = ax

2
 + bx + c +a σ

2
(1- ρ

2
) 

where the intercept of the quadratic changes depending on the breed specific genetic variance of 

calving difficulty and reliability of a particular bull of interest.  This gives a penalty function of a 

σ
2
(1- ρ

2
)  which can be applied to the transformed PTA. Using this adjustment adds larger weight 

to PTAs with lower reliabilities in breeds with a high amount of variability, as they have a larger 

spread, which represents higher risk. 

    Non-linearity in utility of calving difficulty. A linear weighting on calving difficulty within an 

index suggests that at any level of calving difficulty, an additional increase of 1% in calving 

difficulty has the same negative impact for farmers. However, in reality it is more likely that 

farmers would be more averse to an increase in calving difficulty when the mean level is already 

high compared to at lower levels. This suggests a non-linear economic weighting transformation 

would be appropriate for calving difficulty. The justification for this transformation is that with the 

high rates of assistance, a significant proportion of the herd is compromised in their health and 

rebreeding success, and a large amount of this cannot be compensated for as easily as a small 

amount. Barwick et al. (2001) investigated employing non-linear selection emphasis on calving 

ease EBVs in beef and determined that the method was useful in responding to the different levels 

of calving ease found in beef cattle.  

    Three non-linear weighting function options for calving difficulty were compared with a 

traditional linear economic weight derived based on the economic cost involved in the increased 

stockman hours, veterinary interventions, cow mortality, disposal and infertility as well as loss in 

milk sales as originally calculated by Berry et al. (2005). These economic weights were combined 

into an index designed to identify profitable beef bulls for use in Irish Dairy herds that combines 

calving difficulty, calf value incorporating a mortality adjustment and gestation length (McHugh et 

al. 2012).  

 

RESULTS AND DISCUSSION 

Non-linear reliability penalty. Figure 1 shows the penalty function as reliability increases 

from 0 to 1 (0 to 100%) for three different levels of variation which were equivalent to the 

variances observed in a trial data set of raw Angus (0.05), Charolais (0.09) and Belgian Blue 

(0.18) bull PTAs from ICBF. When the reliability was low (<0.1), the penalty in the high 

variability breed was around 3-3.5%, so the percentage of difficult calvings was inflated by the 

penalty of 3-3.5% to account for the risk that, due to the poor reliability of the PTA, the bull 

produces more difficult calvings than expected. The risk is lower in the breeds with less variability 

as the spread in potential PTAs is smaller at the same reliability.  

Table 1 shows the genetic variance by breed for the dairy heifer and dairy cow PTAs as 

derived from the initial set of AI bulls from ICBF. The average penalty applied by breed to these 

AI bulls is also shown for dairy heifers and dairy cows, along with the average penalty applied to a 

dataset of young bulls that do not have any progeny records. Table 1 shows that the breeds with 
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the highest variance in the dairy heifer PTAs were Herefords, Belgian Blue and Simmentals, 

although of these three breeds only Belgian Blues also had a large variance in the dairy cow PTAs.  

The variance for the Angus PTAs was reasonably low for both dairy heifer and dairy cow PTAs, 

and thus the average adjustment was fairly low, with an average of 0.37-0.44% additional in the 

AI sires, and 0.52-0.63% additional in the young bulls. In comparison, the average adjustment for 

the Belgian Blue sires was around 1.3% in the AI sires and around 2% extra in the young bulls.  

 
Figure 1. The additional penalty applied in percentage calving difficulty as the PTA 

reliability increases from 0 to 1 for three different levels of within breed variance.  

 

Table 1. The derived genetic variance, average penalty for an initial set of AI bulls and the 

average penalty for a set of young bulls with no progeny records, by breed for both dairy 

heifer and dairy cow evaluations.  

Breed1 

Dairy heifer Dairy cow 

Genetic 

var 

Avg sire 

penalty 

% 

Avg young bull 

penalty % 

Genetic 

var 

Avg sire 

penalty % 

Avg young bull 

penalty % 

AA 0.05 0.37 0.52 0.05 0.44 0.63 

AU 0.06 0.54 0.61 0.02 0.17 0.20 

BA 0.08 0.60 0.81 0.02 0.19 0.28 

BB 0.18 1.37 1.88 0.16 1.30 2.03 

CH 0.09 0.69 0.96 0.04 0.29 0.46 

HE 0.34 3.40 3.46 0.05 0.58 0.58 

LM 0.07 0.40 0.65 0.03 0.15 0.30 

PI 0.06 0.58 0.66 0.02 0.17 0.21 

PT 0.07 0.61 0.75 0.02 0.19 0.25 

SA 0.04 0.29 0.42 0.01 0.10 0.17 

SH 0.07 0.66 0.73 0.02 0.28 0.32 

SI 0.12 0.90 1.17 0.04 0.36 0.53 
1Angus (AA), Aubrac (AU), Blonde D’Aquitaine (BA), Belgian Blue (BB), Charolais (CH), Hereford (HE), 

Limousin (LM) Piedmontese (PI), Parthenaise (PT), Saler (SA), Shorthorn (SH).    
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Non-linearity in utility of calving difficulty. The three proposed non-linear economic weightings 

place moderate, strong and very strong non-linear penalties on high calving difficulty bulls (Figure 

2). The weighting functions showed a widening difference between the linear and quadratic 

indexes as the percentage difficulty increases, with bulls whose calving difficulty was greater than 

20% being severely penalized by the non-linear index equations. In the linear index formulation 

some of the bulls with high calving difficulty percentages were being balanced out (at the overall 

index level) by a high calf value, so the non-linear transformation applies a harsher weighting to 

these bulls, meaning that they have low index values. While the non-linear index is successful in 

applying a stronger negative weighting at higher levels of calving difficulty, the trade-off between 

calf value and calving difficulty at low versus higher levels of calving difficulty is not known. A 

survey has been designed for Irish farmers to try and quantify the trade-off between calf value and 

calving difficulty in both dairy cows and heifers, with the strength of the non-linear index 

weighting that ultimately gets applied in the industry to be determined by the results of the survey.  

 

 
 

Figure 2. The linear and non-linear index transformations for calving difficulty percent.  
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SUMMARY 

 An extended procedure is described for modelling cow liveweight change over the production 

year for valuing cow liveweight in breeding objectives. The pattern of change, before and after 

trait change, is able to be approximated from breeder-described variables for any production 

system. Examination of seven datasets showed cow liveweight changes systematically over age in 

many herds and breeds. Analyses showed liveweight loss from pre-calving to mating and cow 

liveweight at mating both change in proportion to the liveweight of the cow pre-calving. 

Differences in cow liveweight pre-calving are thus larger than are the differences at mating, which 

affects feed costs in valuing cow liveweight at mating. Adoption of the procedure will increase the 

precision with which feed cost is associated with cow liveweight in beef cattle breeding objectives.  

 

INTRODUCTION 

 The breeding female’s liveweight is an important breeding objective trait because it affects, 

especially, the feed needed to maintain the herd or flock. The increase in feed requirement with 

increasing breeding female liveweight has to be assessed over all parts of the year where feed has a 

cost. In the BreedObject system for deriving breeding objectives and indexes for beef cattle, cow 

liveweight in the breeding objective usually has a negative economic value (Barwick and Henzell 

2005). The value for cow liveweight is based on modelling liveweight change throughout the year, 

though that is not very precise. In this study, cow liveweight modelled over the year is extended to 

better account for the manner in which liveweight loss occurs between pre-calving and mating.  

 

BACKGROUND 

Breeding objective traits and values. The breeding objective in BreedObject includes cow 

weaning rate, cow survival rate, cow liveweight, cow condition score, calving ease (direct and 

maternal), weaning liveweight (direct and maternal), feedlot entry liveweight, finished sale 

liveweight, residual feed intake (pasture and feedlot), fat depth, dressing %, carcase meat % and 

carcase marbling score. Feedlot traits are included when there is a feedlot phase. Cow traits are for 

an average cow of the herd, with cow liveweight defined at mating (i.e. bull-in). Economic values 

of a trait are calculated at constant levels of all other breeding objective traits. Included in the 

economic value of cow liveweight is the cost of the increased feed required for maintenance and 

liveweight change of the cow. Procedures for assessing feed requirement are given by Freer et al. 

(2007). An increase in cow liveweight also affects returns, as these are greater when surplus cows 

are heavier.  

 

Breeder description of the production system. Deriving breeding objectives and indexes with 

BreedObject relies on a breeder description of the production system, where the description is in 

terms of readily understood variables. Two types of annual feed period affecting cows are 

recognised: one when feed requirement cannot be increased without there being a cost (i.e. a 

‘limited pasture’ period), and a period (often short) when there would usually be surplus pasture.  

                                                           
*
 AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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METHODS 

Cow liveweight data. Records were available from an autumn-calving (Struan) Angus herd in 

southern Australia (Pitchford et al. 2015), and from spring-calving Tropical Composite (Belmont-

TC, Brian Pastures and Toorak-TC) and Brahman (Swans Lagoon, Belmont-B and Toorak-B) 

herds in northern Australia (Barwick et al. 2009; Wolcott et al. 2014). Struan data were available 

for only 3 parities. Cows in the Struan herd were born in 2 consecutive years and cows in the 

northern herds were born in 4 consecutive years. Cows in a herd represented 26 to 113 sires. 

Liveweights in each herd were recorded every 2 to 3 months, including 54 to 60 days pre-calving. 

Figure 1 shows average weights of cows, in relation to calving and mating, relative to cow age. 

For convenience, only 4 of the 7 herds are illustrated. Average weight loss between pre-calving 

(prior to the first calving opportunity) and re-mating (46 to 59 days after calving) in the Struan, 

Belmont-TC, Brian Pastures, Toorak-TC, Swans Lagoon, Belmont-B and Toorak-B herds was 

70.0, 50.8, 66.5, 88.8, 50.1, 54.8 and 67.4 kg, respectively. Corresponding average pre-calving 

weights were 545.8, 470.6, 454.1, 484.0, 417.2, 450.0 and 464.7 kg. 

 

                

          

Figure 1. Average cow liveweights (kg), by cow age, for four herds. Also shown are the 

approximate occurrences of annual calvings (C) and matings (M). 

 

Annual pattern of cow liveweight change. The annual pattern of cow liveweight change can be 

approximated from the breeder’s description of the production system. The illustration in Figure 2 

is for an example northern Australian system where the annual dry season is the period of limited 

feed and the wet season is the period of surplus feed. The system descriptors enabling the pattern 

to be derived are the timetable of management events, the average liveweight of cows at mating, 

the average liveweight loss occurring between pre-calving and mating, the length of any time 

interval pre-mating where the liveweight loss from pre-calving is maximum (shown as ‘b’ in 

Figure 2), the length of any period immediately pre-calving where cow liveweight is not increasing 

(shown as ‘a’ in Figure 2), and the relative rates of liveweight change between mating and 

weaning, post-weaning in surplus pasture, and in the early stages of the limited feed period. 

 

Statistical analyses. The liveweight change in cows from pre-calving to re-mating, and mating 

liveweight, were analysed for each dataset to examine the effect of the regression on pre-calving 

liveweight. The records included were those from all cows present at the first calving opportunity. 
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Figure 2.  The derived annual pattern of cow liveweight change for an average cow, for an 

example northern Australian production system (schematic) 

 

SAS Proc Mixed and the R lme procedures were used. The statistical model in each case also 

included effects that were significant in earlier analyses of the original experiments (Barwick et al. 

2009; Wolcott et al. 2014; Laurence et al. 2015). These fixed effects included, for Struan: dam 

age, year, genotype (Fat vs RFI), genotype x year, High-Fat vs Low-Fat cows within genotype, 

management group (mg), and age at mating as a covariate nested within genotype (Laurence et al. 

2015); for Tropical Composite (Brian Pastures, Belmont-TC and Toorak-TC): herd of origin 

(orig), mg, mg x orig, calf birth month (cbm) x orig (Wolcott et al. 2014); and for Brahman 

(Belmont-B, Toorak-B, Swans Lagoon): mg, cbm, calf sex, cbm x mg (Wolcott et al. 2014). For 

Struan data, replicate within year and herd of origin were fitted as random effects. Sire was 

included as a random effect in all analyses.  

 

RESULTS 

The regression coefficients in Table 1 show cow liveweight loss from pre-calving to mating, 

and mating liveweight, depend on the cow’s liveweight pre-calving. Cows that differed by 100 kg 

pre-calving were estimated to differ by 8 to 32 kg in their weight loss, on average, across herds 

and breeds, and by 68 to 92 kg in their mating weight. Differences in cow liveweight, defined at 

mating, are thus associated with larger liveweight differences at the preceding calving.  

 

Table 1.  Regression coefficients (b) for regressions of cow liveweight loss from pre-calving to 

mating
1
, and mating liveweight, on pre-calving cow liveweight in seven herds  

Herd and breed  Liveweight loss (kg) from 

pre-calving to mating  

 Mating liveweight (kg) 

  b S.E. Prob  b S.E. Prob 

Struan – Angus  0.32 0.06 <.0001  0.68 0.06 <.0001 

Belmont - Trop.Comp.  0.20 0.03 <.0001  0.81 0.03 <.0001 

Brian Pastures - Trop. Comp.  0.18 0.02 <.0001  0.81 0.03 <.0001 

Toorak – Trop. Comp.  0.24 0.04 <.0001  0.77 0.04 <.0001 

Swans Lagoon - Brahman  0.08 0.04 0.0724  0.92 0.04 <.0001 

Belmont - Brahman  0.19 0.03 <.0001  0.81 0.03 <.0001 

Toorak - Brahman  0.13 0.06 0.0316  0.87 0.06 <.0001 
1
Liveweight loss between a cow’s first calving opportunity and the subsequent mating 

 

The cow liveweight curve that applies after a change in cow liveweight at mating (ie. at parity 

n+1) (Figure 3) is able to be approximated using the same variables. The relationship that is used 

(parity n) 

b b 

a 

(parity n) 

Cow 
liveweight 

mating weaning 
(parity n-1) 

calving 

limited feed           surplus feed  
 

mating (parity n+1) 
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between cow liveweight loss from pre-calving to mating and pre-calving liveweight is taken from 

the breeder description and thus is specific to the production system described. 

  

 

 

 

 

 

 

 

 

 

 
 

Figure 3.  The derived annual pattern of cow liveweight change, before (    ) and after (    ) 

change in cow weight, for an example northern Australian production system (schematic) 

 

DISCUSSION AND CONCLUSIONS 

 Figure 1 illustrates the systematic annual pattern of cow liveweight change that occurs in many 

herds and breeds. It supports the description given by Cole (1970). The annual pattern for an 

average cow, before and after change in cow liveweight, can be approximated from breeder-

described variables for any production system (Figures 2 and 3).  

     Table 1 shows cow liveweight loss from pre-calving to mating, and cow weight at mating, 

change in proportion to the liveweight of the cow pre-calving. A change in cow liveweight at 

mating is consequently associated with a greater change in cow liveweight pre-calving (Figure 3). 

This affects the value of cow liveweight in the breeding objective, as the greater requirement pre-

calving usually affects feed costs. It is the difference in feed requirement over all periods of the 

year when feed has a cost, before and after trait change, that determines the feed cost associated 

with the change.  

 The described procedure has been incorporated in BreedObject and will improve the precision 

with which cow liveweight is linked to feed cost in deriving individual breeding objectives.  
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SUMMARY 

This paper presents a simulation which evaluates the performance of alternative selection index 

configurations in the context of a breeding program where traits with non-linear economic value 

are approaching an economic optimum. The simulation described uses a simple population 

structure that approximately mimics selection in dual purpose flocks in New Zealand, where 

number of lambs born is believed to be approaching an optimum, while other genetically 

correlated traits with linear economic values are assumed to not be approaching any economic 

optimum. A “non-linear below the optimum and then flat” approach to index formulation was 

found to be at least comparable in efficiency to the approach of regularly updating the linear index 

with short (15 year) and long (30 year) time frames, especially when the current average value of 

the “non-linear” trait is at a reasonable distance from the optimum. Use of a non-linear index that 

is efficient may have other benefits in highly heterogeneous industries (breeds and production 

environments) such as the New Zealand sheep industry.  

 

INTRODUCTION 

Number of lambs born (NLB) is a key trait that has delivered significant economic value from 

genetic improvement to the New Zealand sheep industry to date. However, its genetic 

improvement might be reaching an economic optimum above which further increases are not 

desirable, because of an increase in costs that would decrease the profitability of animals. There is 

therefore a need to define a selection index which could hold traits such as NLB at their optimum 

levels, while focusing selection on other traits which are not approaching any economic optimum. 

The predominant view among theoretical livestock geneticists, that has not been revised for a 

number of years, is that when faced with a non-linear profit function for one or more traits, the 

best approach is to still use linear selection indexes as they are optimal when regularly updated 

(Goddard 1983; Meuwissen and Goddard 1997; Dekkers and Gibson 1998). However, when the 

trait average is near the optimum or when profit functions are extremely non-linear, linear 

selection indexes would be unsatisfactory (Goddard 1983; Dekkers and Gibson 1998). 

Furthermore, Meuwissen and Goddard (1997) showed that non-linear indexes can approach the 

response achieved by linear indexes while not requiring any updating. Nevertheless, there are 

more options which, to our knowledge, have never been tested:  for example use of a non-linear 

index before the optimum and then “flat”, i.e. the marginal economic value is assigned a value of 

zero.    

The aim of this study is to the compare the effect of alternative selection index approaches on 

the genetic change in a trait with non-linear economic value, approaching its economic optimum, 

and traits with linear economic value. The efficiency of the selection indexes is measured in terms 

of genetic progress achieved in the population and in economic benefits achieved in the short, 

medium, and long-term.   

 

METHODS 

The model simulates 30 generations of a population of 1000 males and 1000 females. Two 

genetically correlated (0.07) traits were simulated: one trait with a non-linear economic value (TNL, 
h

2
=0.1) and the other one with a linear economic value (TL, h

2
=0.25). Genotypes for the animals in 
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the base population were simulated from a random normal distribution 𝑁 (0, √ℎ2). Phenotypes and 

genotypes of the base population and subsequent generations were simulated using standard 

approaches as described by Hely et al. (2012). In each generation estimated breeding values 

(eBVs) were calculated by applying alternative selection index functions (described below) to their 

phenotype. The best 20% of the males born in each year are selected to become sires in the next 

generation. Conversely, for dams an aging process was simulated. In the base population females 

were assigned randomly to one of three cohorts (age groups). In each year the oldest dam cohort 

was culled and replaced by the best females born from the previous year. Dams and sires were 

randomly mated. One offspring was simulated for each unique parent mating type. Then, the 

economic performance of the selection approach was calculated by applying the profit functions 

(described below), to the average population phenotypic value of TNL and TL. The economic 

performance is given as discounted profit to express the profit of future generations at present 

value with a discount rate of 0.07 per year. 

Profit functions. Profit functions defined the true economic merit of the individuals and were 

used to quantify the economic performance of alternative selection approaches at population level. 

They consisted of a linear function for TL and a non-linear function (quadratic) for TNL. Two profit 

functions were defined which differed in the distance of the TNL optimum to the initial population 

TNL average (TNL=0): (1) a “close to the optimum” profit function that had the optimum at TNL=2, 

and (2) a “distant to the optimum” function that had the optimum at TNL=4. TNL optimum values 

where arbitrarily defined so that the optimum values were reached in the time frame considered 

(30 years) when applying some of the selection index functions evaluated.  

Selection index functions. The selection index functions always gave TL a constant linear 

weighting. The weighting approach for TNL defined the four alternative selection index functions 

evaluated:  

Linear index. The TNL component is linear, with the linear slope value calculated as the partial 

derivative of the profit function at the initial population mean. 

Linear index updated periodically (LUP index). The TNL component is linear but the slope of 

the linear function is updated (each 3 or 5 years) to match the slope of the TNL non-linear profit 

function being used. 

Non-linear index. The TNL component is non-linear and is identical to the corresponding TNL 

profit function being used. 

Non-linear then flat index (NLTF index). Before the optimum, the TNL component is non-linear 

and is identical to the corresponding TNL profit function being used. After the optimum the 

marginal economic value takes a value of zero. Thus, animals with eBVs below the optimum are 

penalised, while animals with eBVs at or above the optimum are not penalised. 

 

RESULTS AND DISCUSSION 

Table 1 presents the economic performance of the alternative selection indexes evaluated with 

the two profit functions for selecting for TL and TNL. Figure 1 shows the evolution of the population 

average TL and TNL phenotypic values and of the discounted profit when the profit function is set 

so that the TNL optimum was distant from the initial population value.  

Linear selection indexes are initially the fastest way to increase average TNL and reach the 

optimum but since they continue selecting above the optimum they ultimately become 

counterproductive. This selection pressure on TNL reduces the selection space for TL which is 

therefore not heavily selected for.  

LUP indexes are more efficient than Linear indexes since while they still achieve a fast 

improvement of TNL before the optimum, once the population average reaches the optimum they 

stop selecting for TNL. However, since the same index is applied to all the individuals in the 
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population, once the population average reaches the optimum, individuals below the optimum are 

not penalised which results in a loss of some selection potential for TNL.  

Non-linear selection indexes decrease the rate of response as the population gets close to the 

optimum and negatively select those individual above the TNL optimum. Therefore, the non-linear 

selection indexes do not allow the population to surpass the optimum. Animals at either extreme 

from the optimum are not considered as selection candidates, even though with relatively balanced 

selection of animals at both extremes, the population mean would not move away from the 

optimum. These effectively excluded candidates are not considered for selection on TL and 

therefore the potential selection on TL is not fully realized. The selection pressure on the non-linear 

trait, when close to the optimum, is not very intense so the rate at which the non-linear index 

approaches the optimum is slower than linear selection indexes.  

A NLTF index achieves a selection speed before the optimum intermediate to the linear 

selection indexes and the pure non-linear indexes, leaving more selection space to the TL than 

linear selection indexes. After the optimum the NLTF keeps on penalizing for TNL all those 

animals below the optimum, while those animals above the optimum are not negatively selected 

for TNL, allowing them to be selected for TL.  

 

Table 1. Cumulative discounted profit achieved by applying alternative selection indexes 

 

Trait with non-

linear profit 

function 

Period 

(years) 

Selection indexes 

Linear 
Linear 3-year 

update 

Linear 5-

year update 

Non-

linear 

Non-linear 

then flat 

Close to 

optimum 

1-10 12.4 14.9 14.2 10.1 15.8 

1-15 16.2 26.6 24.9 18.4 27.4 

1-20 13.4 38.1 35.1 26.4 26.4 

1-25 4.6 48.4 44.1 33.5 44.7 

1-30 -8.5 57.2 51.7 39.4 50.5 

Distant from 

optimum 

1-10 16.6 17.0 17.0 14.8 18.1 

1-15 28.1 30.6 30.4 26.8 32.7 

1-20 36.4 43.5 43.1 38.2 46.2 

1-25 41.1 55.1 54.5 48.2 57.8 

1-30 42.3 64.9 64.3 56.5 67.3 

 

 

CONCLUSION 

NLTF selection indexes are the most optimal indexes to select for traits with non-linear 

economic values in the short and mid-term when the average population is relatively close to the 

optimum (Table 1). After that period it becomes less profitable than the updated linear selection 

indexes because the negative profit, due to the TNL average population value being far above the 

optimum, is not offset by the better selection for TL. However, when the optimum profit is set to 

be relatively distant from the current TNL average population value, the NLTF selection index is 

the most profitable of all the indexes assessed for the time span evaluated. There could well be 

other advantages of the NLTF selection approach. For example, a single index of this makeup 

could be applied across a wide diaspora of breeds and flocks differing in their current level of 

merit for the non-linear trait. In the New Zealand sheep context, breeder flocks with low average 

genetic merit for NLB would have a high weighting applied to NLB, while those with average 

merit at or beyond the economic optimum would not. However, there are also some challenges for 

the implementation of an index with a NLTF selection function. The simple multiplication of 

eBVs by known economic weights, to produce a selection index, is lost for the non-linear trait 
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when NLTF selection approach is applied. This has the potential to create a communication and 

extension challenge for index users. Consideration will also need to be given to the base value for 

the non-linear index. 

 
 

Figure 1. Evolution of average population phenotypic value of the traits with non-linear and 

linear economic value when selected on the alternative selection indexes. Case of profit 

function with distant optimum for the non-linear trait.  
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SUMMARY 

We applied a pairwise comparison method using the 1000Minds® software to assess farmers’ 

preferences for cow trait improvements. A Principal Component Analysis (PCA) followed by a 

Cluster Analysis (CA) of the principal components led to the identification of three farmer clusters 

(farmer types in the rest of this document) according to the trait improvements to which the 

farmers had the highest preference. This way, Australian dairy farmers can be classified into 

production-focused (n = 192), functionality-focused (n = 187), and type-focused (n = 172) 

farmers. As a result of this study, and bio-economic modelling, three indexes were released to the 

Australian dairy industry. The Balanced Performance Index aligns with the average preferences, 

while the Health Weighted and Type Weighted indexes reflect the preferences identified for 

functionally-focused and type-focused farmer types, respectively. These three indexes include new 

traits and offer a range of options to choose from when selecting bulls, while all driving gain 

towards the National Breeding Objective (NBO). 

 

INTRODUCTION 

Breeding objectives can play an important, but not exclusive, role in determining the optimal 

size and direction of genetic changes in traits. Economically efficient multiple-trait selection is 

normally achieved through the definition of breeding objectives and the development of 

appropriate selection indexes for specific production systems (James 1981). In nations with 

industrialised dairy industries a breeding objective is often controlled at the national level (e.g. 

Harris et al. 1996). The NBO underpins the selection index for the ranking of dairy cattle for 

profitable genetic merit in Australia (Pryce et al. 2010). The aim of this study was to update the 

NBO by calculating economic weights for a range of traits that impact profitability of Australian 

dairy farms. The final choice of selection indexes was informed by analysing the heterogeneity of 

farmers’ preferences (from surveys) for improvements in dairy cow traits using farmer typologies.  

This paper broadly describes the methodology used to analyse heterogeneity of farmers’ 

preferences and how the outcomes of this were used, along with economic analysis underpinning 

the breeding objective, to develop selection indexes.   

 

METHODS 

Survey questionnaire and analysis. We applied a pairwise comparison method to assess farmers’ 

preferences for trait improvements, using the 1000Minds® software. This software is simple to 

implement and reduces the level of burden on respondents compared to other more complex 

methods (Hansen and Ombler 2009). The software asks a series of questions to respondents, who 

are asked to choose, repeatedly, between pairs of alternatives until all possible pairs of alternatives 

are evaluated. A ranking of the presented alternatives is derived from these choices. We 

considered most of the traits included in the Australian Profit Ranking (APR), at the time of 
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surveying, as well as other traits that were considered of potential importance for the Australian 

dairy industry. Survey traits included; protein yield, cow live weight, fertility, longevity, mastitis 

resistance, milking speed, temperament, calving difficulty, feed efficiency, lactation persistency, 

lameness, mammary system, and overall type. The magnitude of the suggested improvement in 

each trait was such that our estimate of the economic impact on farm would be as similar as 

possible across traits (Martin-Collado et al. 2015). Farmer attitudes towards genetic evaluation 

tools were assessed by asking farmers to rate, in a five-level Likert scale (Likert 1932), their level 

of agreement with specific statements. Farmers were also asked a set of farmer and farm 

descriptors that were thought to have a potential influence on farmers’ preferences for 

improvements in traits. These included farmer age, role on farm, farm location, herd size, total 

milk production, cow breed distribution, cows registered with breed society, replacements sired by 

AI or herd bulls, labour profile, calving system, and feeding system. Farmers of all 6314 

Australian dairy farms were sent the survey. In addition, 200 levy-paying farmers were randomly 

selected from the list of all Dairy Australia farmers. The survey produced 618 responses, of which 

551 were fully completed and were used for this study. 

A Principal Component Analysis (PCA) followed by a Cluster Analysis (CA) of the principal 

components was used to investigate the patterns of relationships between farmers’ preferences for 

the different trait improvements. We determined the principal components (PCs) of the trait 

preferences and implemented a Ward’s Hierarchical CA of the first five principal components. The 

selection of the number of clusters was based on the loss of inertia (within cluster sum of squares) 

at each partitioning of clusters (Ward 1963). We described the farmer types according to their 

preferences for animal trait improvements. We analysed the relationship between farmer types and 

farmer attitudes, criteria used for selecting bulls (results not shown) and other farm and farmer 

descriptors (as reported above). Differences for the normally distributed variables were analysed 

with the ANOVA test followed by Duncan’s multiple comparisons test to analyse pairwise 

differences. The non-normally distributed variables were analysed with the Kruskal-Wallis test 

and multiple comparisons were tested with the Wilcoxon’s procedure. Finally, the Fisher’s exact 

test was used to analyse pairwise differences between discrete variables among farmer types. 

 

Formulation of breeding objectives and selection indexes. Economic weights in the breeding 

objective were calculated as the economic effect on profit per unit change in each of the traits 

independently, allowing for the Australian dairy production system diversity of feeding systems 

and calving patterns. These economic weights are reported elsewhere (Byrne et al. in preparation). 

Selection indexes were defined using a combination of economic principles and desired gains 

approaches, such that indexes remained relevant for improving on-farm profit based on strong 

scientific principles which were also consistent with farmers’ preferences. 

 

RESULTS AND DISCUSSION 

In the overall ranking of preferences for trait improvements at population level we could 

distinguish the most preferred and the least preferred trait improvements, as well as a large number 

of trait improvements with medium preference. Mastitis (average rank 4.3) was the most preferred 

trait followed by longevity (5.1) and fertility (5.4) whereas the least preferred traits were milking 

speed (8.2), lactation persistency (8.3), and cow live weight (10.4). These preferences are relative 

to crude calculations that equalise the economic effects of each offered trait difference; thus the 

preferences are more likely to be driven by perception than by economics. 

Principal Component Analysis of Farmers’ Preferences for Trait Improvements. The scores 

of farmers’ preferences for trait improvements in the first two PCs are described in Figure 1. These 
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first two PC accounted for 26.6% of the total variability of the farmers’ trait improvement 

preferences, and five PCs were needed to explain 55.5% of the initial variability. 

 
Figure 1. Scores of the preferences for improvements on cow traits on the first two principal 

components. 

 

Cluster Analysis of the principal component. While the data indicates a continuum of 

preference, the cluster analysis of the first five PCs determined the existence of three farmer types 

of very similar sizes, named according to the trait improvements to which the farmers had the 

highest preference. This way, Australian dairy farmers can be classified into production-focused (n 

= 192), functionality-focused (n = 187), and type-focused (n = 172) farmers. 

Production-focused farmers gave the highest preference to improving longevity (mean 

rank±SE: 4.4±0.23), feed efficiency (5.2±0.22), and protein yield (5.3±0.23). Compared to the 

other  farmer types production-focused farmers gave the highest importance of all to protein yield, 

lactation persistency (6.3±0.25), feed efficiency, cow live weight (9.0±0.25), and milking speed 

(6.9±0.26). Conversely, they gave lowest importance of all the farmer types to improving mastitis 

(5.8±0.27), lameness (8.1±0.23), and mammary system (8.4±0.21).  

Functionality-focused farmers gave the highest preference to mastitis (2.8±0.17), followed by 

lameness (4.6±0.26), calving difficulty (5.2±0.22), and fertility (5.4±0.25). Compared to the other 

farmer types, functionality-focused farmers gave the highest preference of all to mastitis, 

lameness, and calving difficulty. 

Type-focused farmers preferred improvements in mammary system (3.7±0.15), longevity 

(4.0±0.19) and mastitis (4.1±0.20) the most. Compared to the other farmer types, type-focused 

farmers gave the highest preference of all to mammary system, and type (4.9±0.19). On the 

contrary, type-focused farmers gave the lowest importance of all to protein yield (8.5±0.22).  

There was an expectation that factors such as farm size and calving or feeding system would 

explain some of the variability in farmers’ preferences for trait improvements, but we did not find 

significant differences between farmer types for any of the farm descriptors. However, in a 

univariate analysis of the survey results, we observed that the importance given to specific traits 
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was related to some of the farm features. Seasonal calving farmers gave higher preference 

(ANOVA p-value < 0.05), average rank 4.9, to an improvement in cow fertility compared to 

farmers of split-calving herds (5.5) and all-year-round herds (5.8) and to not increasing live weight 

(ANOVA p-value < 0.001), average rank 9.6, compared to the other calving systems (pooled 

average of 10.7). There was also no clear relationship between farmers’ preferences and breed 

when analysing the PC clusters. The results could imply that farmers’ preferences are intrinsic to 

the farmer, rather than being strongly linked to external system factors. 

   

Formulation of selection indexes informed by farmers’ preferences. Australian dairy farmers 

can be divided into three types according to the pattern of their preferences for trait improvements. 

As a result of detailed bio-economic modelling, and this study, three indexes were released to 

Australian dairy farmers (Figure 2) in September 2014. These three indexes include new traits, 

informed by trait preference data, and offer a range of options to choose from when selecting bulls. 

The Balanced Performance Index aligns with the average preferences, while the Health Weighted 

and Type Weighted Indexes reflect the preferences identified for Functionally-focused and Type-

focused farmer types, respectively. The economic weights for all traits were calculated based on 

economic principles, with the exception of a number of trait weightings in the Type-weighted 

index, which were calculated using a desired gains approach informed by trait preference data. 

 
Figure 2. Relative emphasis in the three new indexes and the APR. 

 

CONCLUSION 

There are different groups of Australian dairy farmers with specific needs. This has led to the 

three indexes including new traits and offers a range of options when selecting bulls. 

    

REFERENCES 

Hansen P. and Ombler F. (2009) J. Mult. Crit. Dec. Anal. 15: 87. 

Harris B., Pryce J.E. and Montgomerie W. (1996). Proc. Assoc. Advmt. Anim. Breed. Genet. 17: 

434. 

James, J.W. (1981). In D. K. Belyaer, (ed.), Proc. 14th Int. Con. Genet.  Moscow, pp. 221.  

Likert R. (1932) Arch. Psychol. 22: 5. 

Martin-Collado D., Byrne T.J., Amer P.R., Santos B.F.S., Axford M. and Pryce J.E. (2015). J. 

Dairy Sci. 98: 4148. 

Pryce J.E., van der Werf J.H.J., Haile-Mariam M., Malcolm B. and Goddard M. (2010) A 

technical manual describing the Australian Profit Ranking (APR Index) - Version 2. 

Ward J. H. (1963) J. Am. Stat. Assoc. 58: 236. 

Animal Breeding and Selection

24



 

 

FEED SAVED BREEDING VALUES FOR AUSTRALIAN DAIRY CATTLE 

 

J.E. Pryce
1,2

, O. Gonzalez-Recio
1
, G. Nieuwhof

1,3
, W.J. Wales

4
, M.P. Coffey

5
,  

B.J. Hayes
1,2

,  and M.E. Goddard
1,6

 

 
1
 AgriBio, Economic Development and Dairy Futures CRC, VIC 3083, Australia 

2
 School of Applied Systems Biology, La Trobe University, VIC 3083, Australia 

3
Australian Dairy Herd Improvement Scheme, 22 William Street, Melbourne, VIC 3000, Australia 

4
 Economic Development, Ellinbank, VIC 3820, Australia 

5
SRUC, Easter Bush Campus, Midlothian EH25 9RG, UK 

6
Faculty of Vet. and Agric. Sciences, The University of Melbourne, Parkville,VIC 3010, Australia 

 

 

SUMMARY 

A new breeding value is described that includes the amount of feed saved per year through 

assumed improvements in lifetime metabolic efficiency and reduced maintenance requirements. 

The breeding value includes a genomic breeding value for residual feed intake, which is available 

for Holsteins only, combined with either genomic or pedigree estimated breeding values for 

maintenance requirements predicted using type traits. The standard deviation of estimated 

breeding values for feed saved was 65.6 kg/year. The mean reliability of feed saved was 0.37 and 

the standard deviation was 0.06, with the range from 0.24 to 0.74.  The breeding value, which will 

be known as “feed saved”, has been available for dairy farmers and breeding companies to use in 

their selection decisions since April 2015. 

 

INTRODUCTION 

While it is widely recognised that selecting for feed efficiency in dairy cattle is highly 

desirable, as feed costs comprise a large proportion of variable costs, there has been little success 

in developing breeding values to select directly for this trait in dairy cattle breeding (Berry and 

Crowley, 2013). 

Genomic selection is well suited to traits that are measured in small, well recorded populations. 

Residual feed intake (RFI) is one such trait that fits this description when measured on genotyped 

individuals. The reference population can be used to develop genomic prediction equations that 

can then be applied to genotyped animals without phenotypes. 

Here, a breeding value called feed saved is proposed. Feed saved is made up of genomic 

breeding values for RFI of cows and calves combined with maintenance requirements predicted 

from type breeding values, so that feed requirements are quantified in a single breeding value. For 

example, where 2 individuals have similar breeding values for milk production traits, it becomes 

obvious that the animal requiring less feed (for maintenance predicted from BW and RFI 

combined) will be more efficient and save more feed, all other things being equal.  

The aim of this paper is to describe how breeding values could be calculated and implemented 

for this new trait. 

 

MATERIALS AND METHODS 

The process to estimate genomic breeding values (GEBVs) for feed saved includes: 1) 

calculating phenotypes for RFI of animals included in the reference population; 2) calculating 

direct genomic values (DGVs) for RFI in the growth and lactation stages of life, and 3) calculation 

of feed saved GEBVs by combining body weight (BW) EBVs with RFI DGVs. 

The reference population used for genomic prediction of RFI was similar to the population 

used by de Haas et al. (2012) and Pryce et al. (2014), except additional Australian lactating cows 
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were included and RFI was the phenotype instead of dry matter intake (DMI). 

The residual feed intake of 843 growing calves (RFIcalf) was calculated from means of DMI 

measured over a 6 to 7 week period in growing Holstein calves of around 6 months of age, 

regressed on average BW and growth over the experimental period (Williams et al. 2011). 

Phenotypes for RFI in Australian lactating cows (RFIcow) were calculated from means of DMI 

measured over a 30 day period in multiparous lactating cows regressed on average BW and energy 

corrected milk.  

The UK and Dutch data reported by de Haas et al. (2012) were used to calculate RFI in 

overseas cows (RFIov), and included DMI phenotypes pre-corrected for fixed effects and 

regressed on energy corrected milk calculated from GEBVs for milk production traits and BW. 

These GEBVs were calculated using Australian Dairy Herd Improvement Scheme’s (ADHIS) 

official genomic prediction equations, as phenotypes for these overseas animals were not 

available. 

There were 28,621 SNPs in common between Australian and overseas datasets and the SNPs 

were very similar to those used in the study of de Haas et al. (2012). Briefly, the Australian calves 

were genotyped using the Illumina High Density Bovine SNP chip (Illumina, San Diego, CA; 

www.illumina.com/agriculture), after quality control procedures described by Pryce et al. (2014), 

624,930 SNP remained. The Australian, UK and Dutch cows were genotyped using the Bovine 

SNP50 Beadchip (Illumina Inc., San Diego, CA) and were edited as described by de Haas et al. 

(2012).   
A multi-trait analysis (RFIcalf, RFIcow, RFIov) was used to generate GEBVs for RFI in 

Australian calves and cows, and in overseas cows. This model allowed for the correlations 

between traits to be estimated.  

The model used was:  

yT = XTbT + ZTgT + eT      
Where yT is the 3xn matrix of observations on all traits, XT is the incidence matrix for fixed 

effects, bT is the matrix of solution of fixed effects (in this case the mean for each trait and country 

of origin), ZT is an incidence matrix mapping records to animals, gT is the corresponding genomic 

breeding values for animals with genotypes for all traits, and eT is a 3xn matrix of residual terms. 
Variance components were estimated with ASREML (Gilmour, 2006). 

Regression equations that allow both RFIcalf and RFIcow to be computed from SNP markers 

were calculated by back solving the mixed model equations. The estimation of SNP coefficients 

was calculated as 𝛽 = 𝐻′(𝐻𝐻′)−1�̂�, where H is the n x 28,621 matrix of the genotypes of n 

animals in the reference set, with genotypes coded as 0, 1, 2 for aa, Aa and AA respectively, and �̂� 

is the DGV for RFIcalf or RFIcow.   

RFIcalf and RFIcow DGVs were combined to calculate lifetime RFI (RFIlife). RFIlife was 

expressed in kg of feed per year and it was assumed that the rearing period is 2 years and cows 

have 4 lactations on average. This was done by multiplying the DGV for RFIcow by days in 

lactation (days), which was assumed to be 305d and deliberately excluded the dry period when 

feed costs and daily feed intake were lower (than during lactation). Similarly, RFIcalf was 

multiplied by days of life before lactation commenced, which was assumed to be 700d (i.e. 

ignoring the period from birth to weaning, which is approximately 30d, when the diet is 

predominantly milk). Finally, there is a division by 6 (2 years as a calf + 4 years as a lactating 

cow). 

The feed saved breeding value is defined as the annual feed required for maintenance 

combined with residual feed intake. Maintenance requirements (in MJME) are generally 

considered to be a function of BW (e.g. Visscher et al. 1994). In Australia, BW breeding values 

are calculated from type traits (see Haile-Mariam et al. (2014) for more details). The marginal 

change in feed required to maintain a given EBV of BW was calculated. Finally, the direction of 
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the EBV was reversed, so that high values meant that more feed was saved. 

 

The reliabilities of BW EBVs are already calculated routinely as part of the genetic evaluation 

service of the ADHIS. A method to estimate the reliabilities for RFIcalf and RFIcalf for genotyped 

animals without phenotypes was also required. This was achieved by inverting the coefficient 

matrix that incorporates animals with and without records in the system of equations. 

 

RESULTS AND DISCUSSION 

The rationale for combining RFI and feed required for maintenance predicted from BW is that 

annual feed requirements are accounted for in the same breeding value. Selecting for this trait in 

tandem with other traits of economic importance via a selection index, leads to selection for 

improved feed efficiency. The advantage of feed saved is that animals with the same RFI can be 

distinguished on the basis of their maintenance requirements. Then, everything else being equal, 

larger animals will be penalised for greater maintenance costs. An important distinction and the 

reason why feed saved (integrating RFI and maintenance costs associated with higher BW) is a 

more desirable trait for implementation than RFI, is because RFI is corrected for BW. 

 

Table 1. Phenotypic SD, heritability (diagonal) and genetic correlation estimates for RFI 

measured in Australian cows (RFIcow), Australian calves (RFIcalf) and UK and Dutch cows 

(RFIov) (above the diagonal). Standard errors are presented in parentheses. 

 
 Phenotypic 

SD 

RFIcow RFIcalf RFIov 

RFIcow 1.26 0.20 (0.20) 0.67 (0.45) 0.76 (0.60) 

RFIcalf 0.42  0.35 (0.08) 0.30 (0.22) 

RFIov 0.97   0.35 (0.06) 

 

The heritability of RFI in Australian cows, estimated using genomic relationships between 

animals, was 0.20 and for growing calves and a combined dataset of Dutch and UK cows, 

respectively, was 0.35 (Table 1), both of which are in the range of previous studies (e.g. Berry and 

Crowley, 2013). The standard errors of the estimates were large in general, as expected given the 

limited data, especially for Australian lactating cows. As more Australian lactating cow data 

accumulates, the standard errors are expected to reduce, which would lead to less reliance on data 

from other countries.  

In addition to a small number of Australian cow records for RFI, the other limitation in how 

RFI has been evaluated in this study, was a failure to account for differences in body composition 

or changes in body composition. Although body condition score (BCS) is the accepted measure of 

fat reserves in dairy cattle, it is generally scored on a relatively limited scale which makes 

evaluating changes in BCS difficult for a dataset of only several hundred cows over a relatively 

short time period. Advancements in accurately quantifying body reserves in dairy cattle will 

benefit genetic prediction of RFI. For the time being, including feed saved as part of a multi-trait 

selection index for profit, that also includes fertility as well as traits like survival and mastitis 

resistance, should help to guard against undesirable correlated responses, for example in fertility. 

The DGVs for RFIcalf and RFIcow had standard deviations of 0.09 kg/d and 0.21 kg/d 

respectively. The standard deviations of estimated breeding values for RFIlife and feed saved were 

50.5 and 65.6 kg/year. The mean reliability of feed saved was 0.37 and standard deviation was 

0.06, with the range from 0.24 to 0.74.   

The genetic trend for feed saved is shown in Figure 1 and includes a subset of the genotyped 

bulls that were born from 1990 onwards. It can be seen that from around 2000 there has been an 
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increase in breeding values for maintenance requirements and RFI, consequently the genetic trend 

for feed saved is unfavourable.  

 

 
 
Figure 1. Genetic trend of estimated breeding values for bulls born in or after 1990 for 

RFIlife (▲), annual feed required for maintenance (●) and Feed Saved (■). 

 

To conclude, selection for feed efficiency in dairy cattle historically has relied on 

approximations of maintenance requirements. However, this is unlikely to capture all the variation 

in feed efficiency. Through genomic selection, there are now opportunities to extend this to 

include measures of efficiency derived from actual feed intake data, such as RFI. This study 

described how a feed efficiency breeding value can be derived by combining RFI with 

maintenance requirements. Although the mean reliability of this new trait was comparatively low 

when compared to other traits, this is expected to improve as the reference population is expanded.  
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SUMMARY 

An economic value for sheep meat eating quality was derived using consumer taste panel 
sensory trait scores and willingness to pay data. Improving eating quality by one score generated a 
price premium to commercial producers of $0.15/kg relative to a carcass price of $4.50/kg. Eating 
quality was included in a breeding objective with growth and lean meat yield. Under selection 
index scenarios modelled, simultaneous improvement of all traits was only possible with genomic 
testing of male selection candidates due to antagonistic correlations involving yield, eating quality, 
intramuscular fat, and shear force. Economic gain could be increased by up to 20% compared to 
current industry selection indexes. 
 
INTRODUCTION 

Terminal sire breeders in Australia have made sustained genetic gains over a long period of 
time (e.g. Swan et al., 2009). One of the ingredients for this success has been a simple breeding 
objective targeting increased growth and lean meat yield, which can be accurately evaluated from 
a young age using selection indexes based on body weight, and eye muscle and fat depth scanned 
on live animals. While the genetic gain in lean meat yield has contributed to lamb becoming a 
highly desirable product with increased consumer demand, care is needed to avoid making 
carcasses too lean and creating problems with eating quality. 

The Sheep CRC has undertaken an extensive measurement program of carcass and eating 
quality traits on individual animals in the Information Nucleus (IN) flocks (Van der Werf et al., 
2010). In this study this data is used to develop an economic value for sheep meat eating quality 
which can be included in a breeding objective with economic traits including lean meat yield, and 
compare selection responses for indexes with and without eating quality and genomic selection. 
 
MATERIALS AND METHODS 

Eating quality traits. An eating quality trial based on consumer taste panels was conducted by 
the Sheep CRC on samples taken from IN animals born in 2009 and 2010. The design of the trial 
has been described in detail by Pannier et al. (2014), but briefly, ten samples were taken from both 
the loin and topside portions of carcasses of IN slaughter animals (n=1400+). These were prepared 
using a standard cooking method, and then consumed by the taste panels. The taste panel members 
scored each sample for five sensory eating quality traits on a 0 – 100 scale: odour, flavour, 
juiciness, tenderness, and overall liking.  

The sheep meat industry uses the Meat Standards Australia (MSA) retail grading system with 
four effective grades (ungraded, and grades 3, 4, and 5). These are determined by an MSA score 
often derived as a linear function of the consumer eating quality traits (e.g. Johnston et al., 2003) 
and expressed on the 0 – 100 scale. Genetic parameters estimated from the IN data (Mortimer et 
al., 2015) show that within the loin and topside cuts genetic correlations between eating quality 
                                                           
∗ AGBU is a joint venture of NSW Dept. of Primary Industry and the University of New England 
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traits were always greater than 0.9, and the genetic correlation between loin and topside overall 
liking was 0.93. Therefore for the purposes of this study, topside overall liking is defined as the 
eating quality breeding objective trait (denoted as tmsa). After correcting for fixed effects 
including breed, the mean and standard deviation of tmsa in the IN data were 52.1 and 9.1 
respectively. These values were used in the derivation of the economic value, defining the base 
distribution of eating quality in a commercial flock as �(� = 52.1, 
 = 9.1).  

Two measured carcass traits, intramuscular fat (imf, %) and shear force (sf5, Newtons) are 
strongly related to eating quality, and these were also considered as selection criteria. 

Economic value for eating quality. There were thresholds assumed on the tmsa trait scale 
which determine MSA retail grade, as shown in Table 1. Further, consumer willingness to pay 
surveys establish price relativities between retail grades, and the values assumed are also shown in 
Table 1. These two pieces of information can be used to derive an economic value for eating 
quality. Firstly, carcass value (CV) to the commercial producer can be expressed as: 

� = �� × [(1 − �)�� +���Σ�����] 
where �� is carcass weight (kg), �� is the price of lean meat for MSA grade 3 ($/kg), �� is the 
price of the residual carcass component (“non-lean”, $/kg), � is the ratio of lean meat yield, �� is 
the probability of a carcass achieving MSA grade � from the base distribution of eating quality 
defined above, and �� is the price relativity for MSA grade � as shown in the willingness to pay 
column of Table 1. Increasing tmsa by 1 score changes the MSA grade probabilities, increasing 
the probability of achieving a higher grade, and reducing the probability of ungraded meat. The 
carcass price premium associated with a 1 score increase in tmsa can be expressed as: 

Δ� = ���Σ�(��
∗ − ��)�� 

where ��
∗ is the probability of achieving MSA grade � in the improved flock. The economic value 

for tmsa on a per carcass basis is now: 
"#�$% = �� × Δ�  

Table 1. Lower threshold tmsa value for each MSA grade (Min tmsa), probabilty of MSA grade in base 
(&') and improved (&'

∗) flocks, and willingness to pay price relativities 

MSA grade Min tmsa �� ��
∗ Willingness to pay 

Ungraded 0 0.4079 0.3658 0.5 
3 50 0.5140 0.5388 1.0 
4 65 0.0722 0.0874 1.5 
5 75 0.0059 0.0080 2.0 

 
Breeding objectives including eating quality. A terminal sire breeding objective targeting a 

terminal sire x Merino dam commercial enterprise was developed using the SheepObject system 
(Swan et al., 2007), based on growth (post-weaning body weight, pwt) and carcass traits including 
lean meat yield (lmy), dressing percentage (dress), carcass eye muscle depth (cemd), and carcass 
fat depth (cfat). The key price and production variables were carcass weight = 23kg, lean meat 
yield ratio = 0.56, and carcass price received by the producer = $4.50/kg. The eating quality 
economic value was added to the objective and converted to a per ewe joined basis by multiplying 
by a weaning rate of 0.95 lambs weaned per ewe joined, and discounted using a discount rate of 
7%. This objective is denoted LMY_EQ. It was extended to include imf as a desired gains trait 
accounting for 5% of the total economic gain, and this objective is denoted LMY_EQ_IMF. 

Genetic parameters for breeding objective and selection index traits. Genetic parameters 
were estimated using the IN animals in the eating quality trial. To increase confidence in the 
consistency of correlations, a multivariate analysis was performed using the R package 
MCMCglmm (Hadfield, 2010) simultaneously including the breeding objective traits pwt, lmy, 
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dress, cemd, cfat, and tmsa, and potential selection index traits weaning weight (wwt), post-
weaning eye muscle (pemd) and fat depth (pfat), imf, and sf5. 

Prediction of genetic gains. Genetic gains from index selection over 10 years were calculated 
for the LMY_EQ and LMY_EQ_IMF objectives and compared to gains from the current Carcass+ 
(CPLUS) industry objective. Gains were calculated for a terminal sire breeding flock of 300 ewes 
with 10 sires mated annually and a weaning rate of 1.3 lambs per ewe joined. Selection intensities 
were 2.328 for males and 0.860 for females and generation intervals were 2.6 for males and 3.2 for 
females. These figures were derived from the LAMBPLAN genetic evaluation database. For each 
objective response was calculated from two scenarios. In the first, phenotypes were available on 
the base traits of wwt, pwt, pemd, and pfat. The second added genomic predictions on young 
males for base traits (all objectives) and the carcass traits lmy, cemd, cfat, dress, imf and sf5 
(LMY_EQ and LMY_EQ_IMF only) using the accuracies for genomic predictions currently used 
in the LAMBPLAN genetic evaluation system (Swan et al., 2014). 
 
RESULTS AND DISCUSSION 

Economic values for the LMY_EQ and LMY_EQ_IMF breeding objectives are shown in 
Table 2. The economic value for eating quality was $3.21 per ewe joined. Relative to a carcass 
price of $4.50 per kg, the price premium for a 1 score increase in eating quality was $0.15 per kg. 
This premium is currently not realised by commercial producers as there is no supply chain 
feedback for eating quality at the level of individual carcasses. 

Genetic correlations for lmy and tmsa with other economic and selection criteria traits are also 
shown in Table 2. There was a small antagonistic correlation between lmy and tmsa (-0.12), and 
large antagonisms involving lmy, tmsa, imf and sf5. The latter two traits are important selection 
criteria for eating quality, with improved eating quality associated with higher imf (0.31) and 
lower sf5 (-0.31). However, the reverse is true for lmy, which is strongly associated with lower imf 
(-0.55) and higher sf5 (0.40). These antagonisms limit the genetic gain which can simultaneously 
be made in lean meat yield and eating quality. 

Mortimer et al. (2015) estimated genetic correlations for a wider range of sensory scores and 
found that eating quality in the loin was more strongly associated with imf, while for the topside, 
shear force had the stronger association. We note that it is possible to extend the approach outlined 
above to calculate economic values separately for different carcass cuts.   

Table 2: Economic values for LMY_EQ and LMY_EQ_IMF breeding objectives ($/ewe joined), and 
genetic correlations used in index predictions for lmy (rg lmy) and tmsa (rg tmsa) 

Trait Units LMY_EQ LMY_EQ_IMF rg lmy rg tmsa 
pwt kg 1.834 1.834 0.10 0.03 
lmy % 1.879 1.879 1.00 -0.12 
dress % 2.042 2.042 0.00 -0.10 
cemd mm 3.267 3.267 0.10 -0.17 
cfat mm -0.966 -0.966 -0.66 -0.05 
tmsa 0 – 100 3.211 3.211 -0.12 1.00 
imf %  15.727/7.867A -0.55 0.31 
sf5 Newtons   0.40 -0.31 

AIndex dependent (15.727 with base traits measured, 7.867 with genomic predictions added) 

Genetic gains in Table 3 show that the current industry objective CPLUS is predicted to 
produce significant gains in growth rate (pwt), lean meat yield and carcass eye muscle, at the 
expense of a reduction in eating quality. The base and genomic testing scenarios produce very 
similar outcomes for CPLUS. For the LMY_EQ objective, gains in growth and lean meat yield 
were further enhanced compared to CPLUS and while eating quality gain was still negative, it was 
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closer to zero. Genomic testing increased economic gain for this index by 9%, and compared to the 
CPLUS scenarios by up to 20%. When only base traits were available, including the restriction on 
imf in LMY_EQ_IMF resulted in a negative response in lean meat yield, a strong positive 
response in carcass fat, and a small positive response in eating quality. Compared to the 
economically optimum index, economic gain was reduced by 29%. By adding genomic testing in 
LMY_EQ_IMF favourable responses were achieved in lean meat yield, eating quality, imf and sf5, 
and economic gain was reduced by only 9%. 

Table 3: Trait gains over 10 years for CPLUS, LMY_EQ and LMY_EQ_IMF objectives with base and 
genomic selection criteria, total dollar gain and economic efficiency 

Trait Units CPLUS LMY_EQ LMY_EQ_IMF 
 base genomic base genomic base genomic 

pwt kg 4.28 4.46 5.36 5.30 5.41 4.98 
lmy % 1.07 1.10 1.43 1.46 -0.50 0.19 
dress % 1.19 1.27 0.63 0.80 0.72 0.81 
cemd mm 1.55 1.66 0.71 0.85 0.39 0.62 
cfat mm 0.24 0.27 -0.25 -0.21 0.48 0.29 
tmsa 0 – 100 -1.25 -1.34 -0.44 -0.19 0.10 0.64 
imf % -0.26 -0.27 -0.34 -0.28 0.04 0.10 
sf5 Newtons 1.14 1.17 1.88 1.16 0.55 -0.68 
$ gain  13.11 13.66 14.93 16.47 11.61 14.95 
Efficiency  80 83 91 100 71 91 

 
CONCLUSIONS 

The breeding objectives presented in this study demonstrate that terminal sire breeders can 
simultaneously improve growth, meat yield and eating quality, albeit with restrictions due to 
antagonistic genetic correlations between traits. To realise the benefits of the breeding objectives it 
is necessary to increase the accuracy of genetic evaluations of carcass traits and eating quality 
traits including intra muscular fat and shear force. Genomic testing is one way to achieve this 
increased accuracy. 
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SUMMARY 

Female reproductive technologies, such as MOET and JIVET, have been shown to increase the 

rate of genetic gain. However, they incur substantial costs to breeders using them. In this work, 

optimal contribution selection was used to find the balance between genetic merit, co-ancestry and cost 

of reproductive technologies in sheep breeding programs. To offset the cost of using the reproductive 

technologies, breeders received a premium based on the value of the genetic gain achieved by the ram 

buyers. Australian terminal sire and Merino breeding programs were simulated, using industry 

indexes.  For the terminal sire breeding program, the premium needed to be greater than 50% before 

reproductive technologies were used. In the Merino breeding program, where the standard deviation of 

the index is 3 times higher than the terminal index, reproductive technologies were used with lower 

premiums (6% and 32% premiums, respectively).  For both breeding programs, the rate of genetic gain 

increased with more allocations of reproductive technologies. There was also a higher proportion of 

JIVET assigned compared to MOET, due to a lower cost per lamb. The benefits of genomic selection 

were greatest in the merino program, due to the higher use of JIVET. Assigning costs of reproductive 

technologies allows for robust and practical breeding programs to be designed. 

 

INTRODUCTION 

Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and 

juvenile in vitro fertilisation and embryo transfer (JIVET) have been shown to increase rates of genetic 

gain by increasing selection intensity and decreasing generation interval. However, use of these 

reproductive technologies can result in higher rates of inbreeding through selection emphasis on elite 

families rather than elite individuals within families. JIVET has become a more viable reproductive 

technology option since the introduction of genomic testing as it increases the selection accuracy of 

juvenile animals. Optimal contribution selection (Wray and Goddard 1994) is an effective selection 

tool to maximise genetic gain while maintaining sustainable rates of inbreeding. It has been shown to 

be an effective method in optimising allocation of reproductive technologies in stochastic simulations 

where long-term genetic merit and co-ancestry are balanced, and could also be used to account for the 

cost of reproductive technologies. To warrant breeders investing in expensive genetic acceleration 

programs using reproductive technologies, a premium per ram should be paid by ram buyer which 

reflects the proportion of total benefits of increased genetic gain that flows to the buyer. 

This paper aims to explore, via a stochastic simulation study, the optimal allocation of 

reproductive technologies using optimal contribution selection and accounting for the cost of 

reproductive technologies. 
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MATERIALS AND METHODS 

We evaluated reproductive technologies in both terminal sire and Merino breeding programs, with 

selection based on industry indexes (“Lamb 2020” for terminal sires and “Merino Production” for 

Merinos, from http://www.sheepgenetics.org.au). A closed breeding nucleus of 250 sheep were 

stochastically simulated and then bred over 15 years over 100 replications. For each scenario an 

unrelated base population and subsequent overlapping generations were generated. True breeding 

values and phenotypes were simulated with variances and co-variances used in the Sheep Genetics 

evaluation system (Huisman et al. 2008). Each year individual animals had breeding values estimated 

(EBV) via pedigree based on multi-trait Best Linear Unbiased Prediction (BLUP) using ASReml 

software (Gilmour et al. 2009).  

There were up to three types of matings allowed in the breeding programs: 1) artificial 

insemination or natural mating (AI/N) 2) MOET and 3) JIVET. Individuals were selected for one of 

these mating types using optimal contribution selection (Wray and Goddard 1994). The objective 

function M+C-R was optimised, where M=x’b where x is a vector with   genetic contributions and b is 

a vector with BLUP EBV on n selection candidates; C=λ·x’Ax where λ is a negative value to maintain 

inbreeding rate at 1% (±0.05) per generation, and A is the pedigree relationship matrix among 

selection candidates; R = β∙x’dt where dt is cost per lamb resultant from reproductive technology (t) 

(Table 4). β is a scaling factor to express the cost of using reproductive technologies on the same scale 

as the additional genetic merit of the animals selected. Hence, β= W2/(p∙W1) where W2 is the number 

of progeny born in the nucleus each year multiplied by 2, W1 is the number of commercial animals 

bred by rams from nucleus multiplied by the cumulative discount expression (CDE) of genetic 

superiority (Hill 1974) and p is a premium paid by ram buyers which is the equivalent to a proportion 

of the genetic benefit (resultant change in index) they will receive in their commercial flock(s) of 5000 

ewes and paid back to the ram breeder. The premiums paid (p) varied at levels of 0.06, 0.32 and 0.64 

as representations of low, medium and high premiums. The cost of reproductive technology and 

average number of lambs born per technology are shown in Table 1. Costs included drugs, 

professional services and price of failed transfers. The fecundity was averaged from previous studies 

and costs averaged from questionnaires completed by advanced reproduction companies in Australia.   

For each breeding program and index the impact of genomic selection (GS), assuming all animals 

had genomic information available at birth, was assessed. The cost of GS was not accounted for in this 

study. Genomic information was modeled following the method of Dekkers (2007) which simulates a 

genomic breeding value as a correlated trait with a heritability of 0.999 and a correlation r to the 

measured trait, where r is the accuracy of the genomic breeding value for each trait. The accuracy of 

the genomic test varied for each trait (Swan et al. 2014).  

 

 

Table 1. Average cost per lamb and number of progeny per program. 

 

Technology Cost ($/lamb) Ave. progeny (n) 

No mating 0 0 

AI/N 20 1 

MOET 160 4 

JIVET 130 8 
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RESULTS AND DISCUSSION 

In the terminal sire breeding programs, the proportion of benefit paid to the breeder had to reach 0.64 

before any reproductive technologies were assigned. At a premium of 0.64 for the terminal breeding 

program, it was observed an increase in annual response in the nucleus of 5% was associated with 3-

5% of lambs born via JIVET technology (Table 2). By contrast, the Merino breeding programs had 

reproductive technologies assigned when the proportion of benefit was as low as 0.06 (Table 2). This 

is expected with the Merino index having a larger index dollar genetic standard deviation and therefore 

a higher value of the genetic gain achieved. In the Merino index it was observed that as the premium 

increased, the allocation of reproductive technologies increased, as did the genetic gain (Table 2). In 

the AI/N+ MOET+JIVET program (using GS) a 75% higher rate of genetic gain was observed for the 

0.64 premium scenario compared to the 0.06 premium scenario. 

 

Table 2. Proportion of lambs born to reproductive technologies, number of dams required to 

breed 250 lambs, annual genetic gain (G/yr) and average generation interval (L) in respective 

breeding programs using terminal sire Lamb 2020 and Merino MP indexes at 1% increase in 

inbreeding per generation. 

 

Proportion of benefit 

paid to breeder AI MOET JIVET Dams Used G/yr ($) L 

Lamb 2020 

AI/N + MOET + JIVET (GS) 
    

0.06 1.00 0.00 0.00 271 1.24 1.83 

0.32 1.00 0.00 0.00 268 1.28 1.86 

0.64 0.95 0.00 0.05 259 1.31 1.81 

AI/N + MOET + JIVET      
0.06 1.00 0.00 0.00 269 1.13 1.94 

0.32 1.00 0.00 0.00 273 1.18 1.98 

0.64 0.97 0.00 0.03 268 1.19 1.91 

MP 

AI/N + MOET + JIVET (GS) 
  

  

0.06 0.95 0.00 0.05 261 2.26 1.87 

0.32 0.77 0.04 0.19 221 2.82 1.46 

0.64 0.36 0.10 0.54 136 3.96 1.21 

AI/N + MOET + JIVET      

0.06 0.94 0.01 0.05 268 1.32 1.98 

0.32 0.82 0.03 0.15 233 1.85 1.51 

0.64 0.41 0.12 0.47 129 2.02 1.38 

SEM for dams used ≤±4.3, ΔG/yr  ≤±$0.05, L ≤± 0.05 for all breeding programs. 

 

The impact of using genomic selection in breeding programs varied between indexes. For terminal 

breeding programs, when comparing the same breeding program with and without genomic selection, 

a 6-10% increase in annual response was found (Table 2). This low increase is expected with the key 

traits measured within 6 months of life and very little JIVET assigned, where genomic selection would 

be most beneficial in a terminal breeding program. However, we observed increases of up to 96% in 

the Merino breeding program. The larger response with genomic selection is expected with all traits 

measured after one year of age and key traits, such as number lambs weaned, not phenotypically 

measured. 
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In both Merino and Terminal breeding programs where only up to 5% of progeny resulting from 

JIVET, slight increases in annual genetic gain of up to 7% were found (Table 2). It is expected that 

these matings are performed on females that are outliers in the population and would produce progeny 

that significantly contribute to subsequent generations (i.e. ram progeny selected in future years). 

These matings are strategic and may be observed in current breeding practices in industry.   

When the cost of reproductive technology is accounted for during selection and the premium paid 

by buyers is zero, the extra income received through higher performance (i.e. increased fleece weight, 

etc.) facilitated via genetic gain is not high enough to justify its use. Therefore, ram buyers who want 

genetically superior rams derived from the use of advanced reproductive technologies, will need to pay 

some form of premium to the ram breeders.  However, past experience has shown that the value of 

premiums paid by ram buyers can be somewhat arbitrary and usually follow market trends rather than 

benefit captured by the buyers (Banks et al. 2014). 

 

CONCLUSIONS 

Applying a true cost to reproductive technologies during the optimal contribution selection method 

delivered practical mating solutions in breeding programs. A premium paid as a proportion of the 

benefit received by ram buyers for stud rams provides an avenue to justify and recover the costs of 

using reproductive technologies by stud breeders. Higher premiums paid resulted in more reproductive 

technologies used and as consequence, faster annual rates of genetic gain. Genomic selection 

facilitated better selection decisions on younger selection candidates and provided the most benefit in 

the Merino breeding programs, where most traits in the index are measured later in life, not measured 

at all, or are hard to measure. A terminal sire program using the Lamb 2020 index had limited 

justification for investment in reproductive technologies to accelerate genetic gain due to 

comparatively low rates of true dollar genetic gain. 
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SUMMARY 

This research initiative explores the value of performance recording in the multiplier flock of 

multi-tiered sheep breeding schemes integrating commercial and breeding structures. Discounted 

gene flow theory was used to model the flow of genes from the selected multiplier rams that are 

mated to commercial ewes. A model which predicts genetic trends and gene flows at an individual 

trait level was combined with trait economic values to aggregate the total industry benefits 

associated with alternate recording and selection strategies. While recording efforts and molecular 

technology adds significant costs to the breeding schemes, their application in multiplier flocks 

also adds considerable margins by increasing accuracy of selection with consequent higher rates of 

progress.  

  

INTRODUCTION 

In New Zealand, the sheep breeding sector is part of a wider multi-tier structure. The majority 

of sheep breeding is structured in two tiers, nucleus and commercial, with the special case where 

an intermediate tier multiplies rams to be mated in commercial flocks; a multiplier tier. The highly 

varied production systems across the country require that breeders, and ultimately commercial 

farmers, have the ability to rank selection candidates on combinations of performance traits 

applicable to their systems. Recently, an increasing number of sheep breeder conglomerates and 

groups have been formed allowing larger investments in breeding program design. It is important 

to increase the accuracy of prediction, and consequently the rate of genetic progress, which in 

lower tiers is equal to the progress obtained in the nucleus, although more accurate selection in the 

multiplier will reduce the genetic lag that exists between nucleus and commercial flocks. Given 

the opportunity to integrate information flow across tiers through the application of new molecular 

and phenotype data collection technologies, higher genetic gains can also be achieved by 

expanding performance recording in the commercial flock. The role of multiplier flocks has 

increased due to demand for more productive and affordable rams which originate from flocks that 

apply up to date selection technology. In multi-tiered breeding schemes the informed selection of 

replacement ewes and rams for use in lower tiers results in added value to the commercial farmer. 

This research examines breeding scheme design and the integration of breeding and commercial 

performance data to achieve faster genetic gain. This study investigates the value of selection 

based on performance recording in the multiplier tier of a breeding scheme in which commercial 

sheep production is part of a vertically-integrated breeding structure. 
 

MATERIAL AND METHODS 

This research was based on multiple trait deterministic simulation using New Zealand industry 

parameters. The primary focus was on meat sheep production for a commercial operation where 

there is limited use of terminal sires, which means that flocks in this operation are mainly using 

livestock selected for maternal traits. A number of scenarios based on different strategies for 

implementing recording in the multiplier flock were simulated and their benefits evaluated. 

Simulation scenarios. The simulation scenarios accounted for the recording strategy, the use of 

genomic selection in the different tiers, selection and culling of candidates based on breeding 

index (full trait range) or production index (limited trait range), and alternative replacement 
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policies. The policies for replacing ewes in the nucleus flock assume candidates are available from 

two sources; young female hoggets from the nucleus flock, or older mixed-age proven ewes from 

the multiplier flock.  Full recording practices and parentage were assumed within the nucleus 

flock, whilst simple trait performance recording, such as pregnancy scanning, live weight and 

body condition score, were assumed in the multiplier flock. The simulation scenarios modelled in 

this study were: Base scenario, no performance recording in the multiplier tier; Scenario 1, 

performance recording in the multiplier tier implemented in Year 1, including DNA parentage, the 

top 5% of  rams tested on 50K SNP chip, the top 15% of rams tested on 5K SNP chip (Genomic 

Selection, GS), selection on a breeding index, and young female hoggets from the nucleus flock 

selected as replacements; Scenario 2, same recording as Scenario 1, but without GS; Scenario 3, 

performance recording in multiplier tier from Year 1 without parentage, and selection based on 

phenotypic performance of ewes and a phenotypic selection index; Scenario 4, same as Scenario 1, 

but with selection of mixed-age proven ewes to replace the nucleus flock; Scenario 5, same as 

Scenario 2, but with selection of mixed-age proven ewes to replace the nucleus flock; and 

Scenario 6, where GS is implemented based on genotyping of the flock, but without phenotypic 

recording.  

Genetic trends. Average genetic trends were calculated for each trait in each tier based on 

deterministic prediction, for which calculations included trait specific genetic parameters and 

accuracies, selection intensity and generation interval. The calculation of genetic progress in ewes 

born in the nucleus before the base year of selection in the multiplier flock (Year 1) was assumed 

as a linear relationship between age at selection and the annual rate of genetic progress for the 

different traits. The average genetic merit of the flock was calculated based on recursive equations 

which account for the proportion of animals in each age class. The selection differential and 

consequent genetic progress was calculated using selection index theory principles combined with 

the methodology proposed by Ducrocq and Quaas (1988). The average genetic merit in the 

different tiers was calculated based on the reported response to selection values obtained from a 

selection index model from van der Werf (1999). These responses were converted into selection 

differentials which form the basis to calculate genetic trends across tiers and scenarios. The 

progeny merit in a given year for a specific trait is equivalent to the mean genetic merit of sires 

and dams selected to produce the progeny, calculated as described above, and the selection 

differential applied in the progeny. Accuracies of GS predictions were modelled as additional 

traits, genetically and phenotypically correlated with traits included in the selection index model 

(van der Werf, 2009). 

Discounted genetic expressions. The discounted genetic expression coefficients (DGEs) account 

for the proportion of superiority transmitted over time to an individual’s descendants through 

transfer of genes. The expressions of genes in different age classes, discounted at 7% per annum, 

were calculated through a series of transition matrices for a self-replacing ewe (Amer, 1999). In 

the current study, genetic expressions were used to model the flow of genes from multiplier rams 

once they pass into the commercial flock for mating. Discounted genetic expression coefficients 

for traits expressed at different time points were grouped as vectors (with dimension equal to the 

year of expression) of: annually expressed traits, traits expressed at end of life or cull traits in 

ewes, traits expressed at birth, and at slaughter in lambs. Age composition, and reproductive and 

survival rates used in the calculations of DGEs within the gene-flow model were obtained from 

industry data.  

Cost-benefit analysis. Benefits were calculated across all tiers for the different scenarios. The 

genetic merit of cohorts combined with DGEs and trait economic values were used to generate the 

monetary impact observed in the commercial tier with and without recording in the multiplier 

flock for all scenarios. The total economic impact is presented as the additional benefits of the 

implementation of varying recording practices in the multiplier tier, relative to base scenario, after 
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accounting for the costs of parentage testing, genomic selection, electronic identification, 

recording, and genetic evaluation. The economic impact was estimated for a large commercial 

operation with 180,000 ewes lambing per year. 

RESULTS AND DISCUSSION 

 Within scenarios, there were significant differences in traits’ selection differentials between 

tiers. Across scenarios, selection differentials were higher in the nucleus in comparison to the 

multiplier and commercial flocks, and they differed considerably between scenarios. The rates of 

genetic progress in the commercial tier of scenarios 1 and 4 were the highest, followed by 

scenarios 2, 5 and 6 which had similar rates. The rates of progress for scenarios 1 and 4, and for 

scenarios 2 and 5 were nearly identical. The lowest progress was achieved in Scenario 3. In time, 

genetic progress tended to stabilize and become constant across tiers, although differences in 

average merit (genetic lag) between tiers and between scenarios remained. These results also 

reflect the variation in the timing of actual expressions of traits; e.g. lamb birth trait impacts occur 

first, and cull ewe trait impacts occur last. Table 1 presents, for each trait, the genetic lag between 

the nucleus and the commercial flock in the different scenarios. A reduction of approximately two 

years in the lag between the nucleus and the commercial flock was achieved when recording was 

implemented in the multiplier tier for all scenarios, except for Scenario 3. 
 

Table 1. Genetic lag (years) in year 20 between the nucleus and the commercial tier in different 

scenarios, where Comc represents the commercial flock after recording is implemented in the multiplier. 

 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Trait (Abbrev.) Com Comc Com Comc Com Comc Com Comc Com Comc Com Comc 

Carcase weight 7.92 5.78 7.93 5.90 8.29 7.01 7.93 5.71 7.93 5.80 7.86 5.53 

Weaning weight 7.92 5.78 7.93 5.89 8.36 7.48 7.93 5.72 7.93 5.82 7.86 5.54 

Number of lambs born 8.79 6.63 8.79 6.59 8.99 6.79 8.78 6.65 8.77 6.93 8.74 6.39 

Ewe mature weight 8.79 6.77 8.79 7.14 8.97 6.56 8.80 6.50 8.82 6.75 8.53 5.68 

Ewe BCS 8.78 6.04 8.78 5.92 9.22 9.22 8.76 6.58 8.77 6.34 9.21 7.94 

Survival mat 8.78 6.27 8.78 6.58 9.44 9.44 8.78 6.27 8.78 6.58 9.68 9.68 

Weaning weight mat 8.79 6.65 8.79 6.59 9.44 9.44 8.79 6.59 8.77 7.00 8.65 6.09 

Stayability 8.44 5.84 8.43 4.73 8.98 8.98 8.43 6.23 8.42 5.24 8.87 7.74 

Lamb survival 8.00 5.80 11.1

0 

11.1

0 

11.1

0 

11.1

0 
8.00 5.80 11.1

0 

11.1

0 
8.00 5.80 

  Figure 2 presents the difference from the Base scenario of the cumulative net present value 

(NPV), estimated as the sum over time of the present values of benefits and costs discounted at 7% 

per annum. The NPV for scenarios 4 and 5 lie exactly underneath those for scenarios 1 and 2 

respectively, as a consequence of nearly identical rates of genetic progress. Scenarios assuming 

parentage assignment (i.e. all scenarios but Scenario 3) presented an early spike in costs associated 

with DNA testing in the multiplier flock which stabilised over time. Yearly recording costs also 

include trait measurement, electronic identification (EID) and genetic evaluations. The marginal 

(relative to Base scenario) commercial flock benefit, which includes the multiplier flock as a 

significant component of the commercial operation, accumulated steadily after a delay and then 

stabilized after ten years as a constant flow of benefits. Benefits stabilized after a given number of 

years because genetic progress becomes constant. Losses are reversed after 5 – 7 years in all 

scenarios with exception of Scenario 3, and in the long run, annual benefits exceed annual costs by 

a factor of two. Scenario 3, which assumed phenotypic selection without parentage assignment, 

did not result in enough extra genetic progress to offset the performance recording costs.  
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Figure 2- Cumulative net present value across scenarios assuming different strategies of performance 

recording in the multiplier tier of multi-tiered breeding scheme.  
   

 Selection intensity and age structure differences between scenarios assuming mixed-age ewe 

replacements did not result in changes in NPV when compared to the policy where young ewe 

lambs are selected as flock replacements. Results demonstrated that higher genetic progress can 

still be achieved through more accurate selection based on selection of proven mixed-age ewes. 

 The results demonstrated the potential that GS has to increase genetic progress in the breeding 

scheme. Increased progeny merit and reduced genetic lags were achieved in scenarios 1 and 4, 

which assume GS, when compared to equivalent scenarios without GS. The implementation of a 

GS strategy was cost-effective when including current costs of genetic testing.  The strategy where 

GS without phenotypic recording is undertaken was promising, and its feasibility relies on the 

accuracy of genomic predictions.  

 

CONCLUSION 

The results of this study demonstrate that performance recording in the multiplier tier can 

reduce the long genetic lag between the nucleus and commercial flocks in multi-tiered breeding 

programs. The results also demonstrate that economic benefits can be generated by implementing 

recording in the multiplier tier. Such recording is justified if the breeding scheme captures all of 

the benefits through value added to slaughter lambs and replacement females produced in the 

commercial tier. The investment in genotyping was the major expense in the scenarios where it 

was applied. Strategies where proven mixed-age ewes are selected as replacements of the nucleus 

flock produce identical margins to those which select young ewes, offsetting eventual increases in 

generation interval. It is important to note that the biggest benefits came from a combination of 

full recording of functional traits plus parentage assignment. 
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SUMMARY 

We investigated how well rare variants can be imputed, using 1000 bull genomes sequence 

data set (1147 sequences) as a reference for imputation, and a target set of dairy cattle with 630K 

SNP genotypes, that were also genotyped for four rare recessive defects (BLAD, CVM, HH1 and 

JH1).   The proportion of carriers correctly imputed ranged from 1, for JH1, to 0.04 for CVM.  

There was a general trend for the proportion of carriers correctly imputed to increase as the 

frequency of the rare allele increased.  CVM did not follow this trend – the frequency of the rare 

allele for this locus was 10 times higher than for BLAD, but proportion of carriers correctly 

imputed was much lower than BLAD. On closer inspection, the core haplotype of sequence 

variants common to all CVM carriers was found in many non-carriers, and even in breeds other 

than Holstein (the disease has only been reported in Holstein).  This was in contrast to JH1, where 

the core haplotype shared by carriers was unique to carriers, and was not found in other breeds.  

These results shed light on why we can impute some rare sequence variants well, while others are 

very difficult to impute. 

 

INTRODUCTION 

One motivation for using whole genome sequence data in genomic prediction and genome 

wide association studies (GWAS) is that whole genome sequence data will include rare variants 

which may explain some variation in the targeted complex traits.  SNP arrays have limited power 

to capture this variation, as the SNP on these arrays are selected to have high minor allele 

frequency (MAF), and are therefore unlikely to be in high linkage disequilibrium with the rare 

variants.  The cost of whole genome sequencing is currently too high to sequence the large number 

of individuals required for accurate genomic predictions or powerful GWAS.  Therefore an 

alternative strategy has been proposed – sequence a proportion of the individuals in the population 

(1000 Genomes Project Consortium et al. 2012), or preferably the key ancestors of the population 

(eg Daetwyler et al. 2014), and then impute the sequence variants into all individuals genotyped 

with SNP arrays.  How much variation is explained by rare variants in subsequent genomic 

predictions or GWAS will then depend on how much the rare variants truly explain, and the 

accuracy of imputing these rare variants.        

Here we investigate how well rare variants can be imputed, using 1000 bull genomes sequence 

data set as a reference, and a target set of dairy cattle that were actually genotyped for four rare 

recessive defects.  In order to gain insights into parameters affecting accuracy of imputation of rare 

variants, we investigated the length of core haplotype surrounding the disease allele for each 

recessive defect, the occurrence of this haplotype (minus the disease allele) in non-carriers and the 

frequency of this haplotype in breeds other than the one in which the disease occurs.   

 

MATERIALS AND METHODS 

Carrier status (from genotyping the causal mutation was available for four recessive diseases -  

Bovine leukocyte adhesion deficiency (BLAD, Shuster et al. 1992), complex vertebral 

malformation (CVM, Thomsen et al. 2006), Holstein Haplotype 1 (HH1, Adams et al. 2012) and 
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Jersey Haplotype 1 (JH1, Sonstegard et al. 2013).  Genotypes for these mutations were available 

for 5987 Holstein (BLAD, CVM), 707 Holstein (HH1) and 16 Jersey bulls (JH1), respectively, as 

well 630K Bovine HD real or imputed SNP genotypes (eg. Erbe et al. 2012).  In order to impute 

the BLAD, CVM, HH1 or JH1 genotypes into these animals, to compare with their actual 

genotypes, we used a reference data set of 1147 bulls and cows of 20 breeds with whole genome 

sequence, These reference animals were sequenced at between 4 and 40 times coverage, with an 

average of 11.2x, from 1000 bull genomes Run4.0.  The breeds with largest number of sequenced 

individuals were Holstein, Angus and Fleckvieh.  Variant calling and filtering was as described by 

Daetwyler et al. (2014).  Variants with less than 4 copies of the minor allele were removed.  We 

checked that all known carriers of BLAD, CVM, HH1 or JH1 that had whole genome sequence 

data (eg were part of the 1000 bull genomes) were genotyped correctly for these mutations, this 

was the case.  Two imputation strategies to impute sequence variants into the target populations 

were tested, Fimpute (Sargolzaei et al. 2014) or Beagle phasing followed by Minimac imputation  

(Howie et al. 2012).  Differences between these programs are that Fimpute uses full pedigree 

information, while Minimac does not, and Fimpute considers variable length haplotypes, starting 

from long haplotypes, when deciding if a pair of animals share a haplotype.  Actual genotypes of 

the recessive lethals for target animals were not included when target animals were imputed to 

whole genome sequence genotypes.  Imputed genotypes were then compared to actual genotypes 

for these defects.   

 

RESULTS AND DISCUSSION 

The proportion of genotypes imputed correctly was close to one for all loci, Table 1.   

 

Table 1.  Proportion of genotypes and proportion of carriers correctly imputed for four 

genetic defects.    

 BLAD CVM HH1 JH1 

Chromosome 1 3 5 15 

Location (bp) 145114963 43412427 63150400 15707169 

Frequency 0.001 0.010 0.025 0.156 

Bulls genotyped in target population 5987 5987 707 16 

Genotypes imputed correctly     

   Fimpute 5970 5836 701 16 

   Minimac 5860 5860 705 16 

Prop. genotypes imputed correctly     

   Fimpute 0.997 0.97 0.99 1.00 

   Minimac 0.98 0.98 0.997 1.00 

Number of carriers 17 123 35 5 

Carriers correctly imputed     

   Fimpute 13 5 29 5 

   Minimac 11 12 33 5 

Prop. carriers correctly imputed     

   Fimpute 0.77 0.04 0.83 1.00 

   Minimac 0.65 0.10 0.94 1.00 
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However this is a poor measure of how well imputation has performed for rare variants, given the 

high probability of filling in the correct genotype by chance (a very high proportion of animals are 

homozygous for the non-disease allele).   

A better measure of how well imputation has performed is the proportion of carriers correctly 

imputed – for GWAS and genomic prediction, this will determine how well the SNP effect can be 

estimated.  This ranged from 1, for JH1, to 0.04 for CVM.  There was a general trend for the 

proportion of carriers correctly imputed to increase as the frequency of the rare allele increased.   

The imputation of CVM genotypes did not follow this trend – the frequency of the rare allele for 

this locus was 10 times higher than for BLAD, but the proportion of carriers correctly imputed was 

much lower than for BLAD.                 

To investigate why this might be the case, and given imputation is based on haplotype 

information shared between individuals, we determined the length of haplotype in the sequenced 

bulls (from the 1000 bull genomes project) surrounding the rare allele of each locus that was 

common between all carriers, the “core haplotype”.  To do this, we allowed for sequencing error, 

such that the shared haplotype was considered to end only when there were at least two differences 

in the alleles of the haplotype of the carriers (eg one difference was considered to be likely 

sequencing error - in fact there were only one or at most two instances of this per disease).  HH1 

had the longest core haplotype, while CVM had the shortest, Table 2.  We then investigated how 

many non-carriers amongst all the Holstein sequenced bulls (for BLAD, CVM, and HH1) or 

Jersey sequenced bulls (JH1) had the core haplotype (not considering the disease allele itself).  

This ranged from zero, for JH1, to 159, for CVM.  For all diseases except JH1, the core haplotype 

also occurred in other breeds (where these diseases have never been observed), though at very low 

frequency, and in only a small number, except for CVM.     

 

Table 2.  Length of core haplotype shared by all whole genome sequenced carriers of the 

disease (rare) allele for four lethal recessive diseases, number of non-carriers in which core 

haplotype is found, and number of other breeds in which core haplotype is found.   

 BLAD CVM HH1 JH1 

Number of carriers with whole genome sequence 6 30 7 12 

Variants in core haplotype (shared by carriers) 302 93 437 633 

Length of core haplotype (bp)* 40,362 21,020 57,173 48,608 

Number of non-carriers in which core haplotype is found 4 159 1 0 

Number of other breeds in which core haplotype is found 1 24 2* 0 

*One of these was Danish red, which has Holstein introgressions 

 

Given these results, we can start to speculate why the imputation of CVM genotypes is so poor, 

while for JH1, HH1 and BLAD imputation is more precise.  The background haplotype in which 

the CVM mutation occurs, appears to be very common, even across breeds.  It is likely that the 

CVM mutation occurred recently into this common haplotype background, such that there are 

otherwise identical haplotypes at reasonable frequency, without the mutation.  This makes 

imputation, which is based on haplotype information, very challenging.  In contrast, the JH1 

mutation is imbedded in a longer haplotype which was likely at a lower frequency at the time the 

mutation occurred, such that carriers of the haplotype are also very likely to be carriers of the 

mutation as well.  Parameters such as the frequency of the core haplotype into which the rare 

mutation occurred likely explain results from other studies as well, such as those of Bouwman et 

al. (2014), where reference sets for imputation which included multiple breeds improved accuracy 

of imputing a proportion of rare variants, but not others, compared to single breed reference sets.   
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Is there any way to improve the precision of imputing rare variants in light of the above?  One 

of the first tasks is to reduce the error rate of genotyping variants from the whole genome sequence 

data – this complicates the identification of the core haplotype shared by carriers of the rare allele, 

and importantly might reduce the length of the core haplotype that can be confidently identified, 

which will reduce the accuracy of imputation (longer shared haplotypes between individuals lead 

to more precise imputation, eg Sargolzaei et al. 2014).  Phasing errors are also important (phasing 

is necessary for imputation both in the sequenced animals and in the animals genotyped with 

630K, and there could be errors in either), and are compounded by genotyping errors.  So reducing 

genotyping errors could also improve the accuracy of phasing the data, which is desirable as any 

switch errors (false positive recombinations), if these are in the reference animals, will also reduce 

precision of imputation in the target animals.  A practical way to remove some genotyping errors 

would be to run imputation for very rare variants within a breed, or combine LD information 

across closely related breeds (based on Fst for example) ), only considering variants that segregate 

within the breed or group of breeds.  This would reduce the number of variants (per breed), and 

therefore the opportunities for genotyping error, by 50% (Daetwyler et al. 2014).  Information 

could then be accumulated across breeds.                 
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SUMMARY 

SNP chips are transforming animal breeding; low cost “assay-by-sequencing” methodologies 

and high quality reference genome sequences provide the opportunity for further significant 

improvement in both breeding and management. The Functional Annotation of ANimal Genomes 

(FAANG) consortium is applying methods developed by the human ENCODE project to annotate 

the genomes of livestock (sheep, cattle, pigs, etc.) with functional information including the 

probability that variation at a particular nucleotide has a causal role in any phenotype. We will 

contribute the detailed annotation of the transcriptome of the gastrointestinal tract of sheep to 

FAANG. We will undertake an integrated analysis of the variation in: genome sequence, 

transcription, gastrointestinal tract phenotypes and the environment across ~100 animals. This will 

be combined with analysis of a developmental time course of the gastrointestinal tract 

transcriptome from 30 days post conception to weaning, and an in-depth analysis of the 

gastrointestinal tract transcriptome from the new reference sheep, a North American Rambouillet. 

From this, and public FAANG data, we will estimate the probability that variation in a particular 

nucleotide has an impact on gastrointestinal phenotypes of interest (methane, nutrition, infection, 

microbial population) and identify the biological processes underlying the phenotype. This 

information will inform breeding schemes, identify management options and define phenotypes 

more precisely. 

 

INTRODUCTION 

Over the last ten years there has been a paradigm shift in the use of genetic markers in animal 

breeding. Microsatellites have been very quickly replaced by Single Nucleotide Polymorphisms 

(SNPs). For sheep the first whole genome SNP data was generated using a 1536 SNP platform 

(Kijas et al. 2009). This was soon followed by the Ovine SNP50 BeadChip with 50K SNPs (Kijas 

et al. 2012) and more recently a high density SNP-Chip with more than 600K SNPs (Kijas et al. 

2014). In addition, targeted small SNP chips have been designed for specific purposes, such as 

parentage testing and use in industry breeding programs (Heaton et al. 2014). SNP genotyping 

information from large numbers of individuals is being applied in sheep breeding programs 

(Auvray et al. 2014, Moghaddar et al. 2014). However, the vast majority of the SNPs are still 

markers in linkage disequilibrium with the causative variation, not the causative variation 

themselves. Accurate identification of the causative variants would increase the accuracy of the 

prediction equations, by removing the linkage uncertainty. In addition, SNPs are not the only 

variations in the genome with a causal role in phenotype variation, for example duplications and 

rearrangements are involved in agouti (Norris and Whan 2008) and weight of lamb weaned 
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(Gonzalez et al. 2013). Copy number variations (CNVs) of a range of sizes are common in the 

sheep genome (Jiang et al. 2014). Some, but not all, of this variation is captured by linked SNPs 

(Gonzalez et al. 2013). 

The search for causative mutations has identified a small number of large effect in sheep, 

including myostatin (Clop et al. 2006) and Callipyge (Smit et al. 2003). In both cases the causative 

mutations are not in the coding region of genes, but are in associated regulatory sequences, a new 

micro RNA-binding site (myostatin) and a methylated control region (Callipyge). Whilst the effect 

of variations in coding sequences on the function of the gene products can be predicted fairly 

reliably, this is not the case for variations in non-coding sequences such as long non-coding RNAs 

(lncRNAs) and regulatory sequences to which transcription factors bind. Experimental validation 

of causative mutations can only be justified for mutations of large effect. For most phenotypes 

many genes of small effect are involved and high throughput data generation followed by 

computational analysis is the only realistic way to approach the genome-wide identification of 

causal mutations. The first major barrier to effective prediction is that the role of the majority of 

individual nucleotides in the genome of production animals is not known. One of the major goals 

of the human and model organism ENCODE projects is to identify the role, or not, of each 

nucleotide in the genome (Dunham et al. 2012). To do this these projects have focussed on a small 

number of approaches, generally “assay-by-sequencing” methodologies including: in-depth 

transcriptomics, methylation, chromatin accessibility and conformation, transcription factor 

binding sites etc. Thus, across the vast majority of the genome each nucleotide can be annotated 

for a number of attributes: in a transcription factor binding site, transcribed, in an exon, in a splice 

site, in open or closed chromatin, etc. For each of these attributes the effect of variation on the role 

of the nucleotide in the functional element can be estimated (Gulko et al. 2015). This prediction is 

phenotype independent. Subsequently in studies of the association between variation in the 

genome and variation in the phenotype and the calculation of predictive equations, the probability 

that variation in a particular nucleotide will affect a downstream process can be included into the 

equations, and genetic relationship matrices (GRM) can be built using causative sites. The utility 

of this approach has been demonstrated in preliminary analyses (Gusev et al. 2014, Koufariotis et 

al. 2014). The FAANG consortium has been established to coordinate the international projects for 

the annotation of the roles of the nucleotides within the genomes of the major production animal 

species using the methodologies validated in the ENCODE projects (Andersson et al. 2015) 

(Figure 1). 

However, association studies using the FAANG generated datasets will also inform our 

understanding of biological processes underlying a phenotype, by providing an estimate of the 

probability of a particular variation in the genome sequence affecting the phenotype of interest. 

The increased understanding of the 

biological processes will also be used to 

improve the management of the animals 

to reach their genetic potential. In 

addition, understanding the biological 

processes underlying the phenotype may 

enable us to define phenotypes better, 

reducing complex phenotypes to a series 

of simple phenotypes based on different 

biological processes (Figure 1). 

The gastrointestinal tract (GIT) is the 

Figure 1. Pipeline for FAANG annotation (highlighted) and delivery. 
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major source of nutrients in animals and an important source of their waste, such as methane 

(Johnson and Johnson 1995); appropriate function of the GIT is essential for the efficient 

production of animals and their products. A more detailed understanding of the genes and gene 

products (and their regulation) contributing to the development and function of the GIT, and hence 

the biological processes involved, will facilitate the development of new breeding strategies, 

methodologies for feeding animals, and managing the function of the GIT. Successful 

implementation of these will increase production efficiency and reduce waste products/kg of meat, 

milk, wool etc.  

MATERIALS AND METHODS 

In preparation for FAANG a new version of the sheep reference genome sequence is being 

assembled (Oar v4) using the long read PacBio sequencing technology. In addition, we will 

initially build scaffolds de novo using Hi-C (Burton et al. 2013), followed by using the ovine BAC 

library (Dalrymple et al. 2007), and the SNP-based sheep linkage and RH maps (Jiang et al. 2014). 

The individual being sequenced, a North American Rambouillet, will also be the source of 

reference tissue samples for the FAANG consortium assays. The Oar v3.1 assembly (Jiang et al. 

2014), based on a male and a female Texel, will be gap-filled and errors corrected using a low 

coverage of PacBio sequencing of the male Texel to generate Oar v3.2. 

Samples along the GIT, salivary gland, reticulum, sacs of the rumen, omasum, abomasum, 

duodenum, cecum, colon and rectum, have been collected from 63 Australian sheep (ewes) with a 

diversity of origins (Merino and Suffolk, Border Leicester, Dorset cross bred animals) and from 48 

NZ sheep (ewes and rams) from a high/low methane selection line, also with a diversity of origins 

(Pinares-Patino et al. 2013). Samples from a time course of the development of the whole GIT of 

Merino sheep from 30 days post conception to weaning have been collected. Sampling times were 

selected based on the development of the sheep GIT (Franco et al. 1992). We will develop a 

detailed description of the transcriptome of the GIT of sheep by undertaking Illumina RNA-Seq 

and PacBio Iso-Seq on mRNA, lncRNA and small RNA (miRNA, snoRNA etc.) of the sheep GIT 

tissues. Gene and transcript models of protein and non-coding RNAs will be built using both 

assembly guided and de novo methodologies. The significantly expanded GIT-relevant 

transcriptome will identify transcript isoforms currently poorly represented in the sheep transcript 

models. The focus of the targeted manual annotation of transcripts will be gene products identified 

as likely to play key roles in the development and function of the GIT. We will use the correlation 

of the expression of transcripts with each other and with development and productivity GIT 

phenotypes measured (and microbial samples from the GIT collected) as part of the Australian 

Department of Agriculture funded “Host control of methane emissions from sheep” project to 

create gene/transcript networks, and to identify sets of genes and their transcripts informative of 

key biological processes in the sheep GIT. We will also map the changes in the processes during 

development of the GIT. We will use the sets of transcripts to identify transcription factors and 

other regulatory molecules likely to be involved in the regulation of key processes in the sheep 

GIT. All the data will be generated following the FAANG standard operating protocols and will be 

contributed to the FAANG consortium. We will promote and facilitate the use of the data by 

making it publicly available prior to publication in accordance with standard data sharing 

protocols and by providing online support for users. 

 

RESULTS AND DISCUSSION 

Analysis of the sheep genome and transcriptome has identified a strong relationship between 

the rumen and cornified and keratinized tissues such as the skin and ruminant specific genes 

encoding proteins predicted to be involved in the cornification of the rumen epithelium (Jiang et 

al. 2014). A first generation sheep GIT transcriptome atlas is currently being constructed using 
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data generated as part of the sheep reference genome project. Initial analysis of the rumen gene 

expression from 24 NZ ewes has been undertaken demonstrating that the expression of genes 

relating to the cornified epithelium is dynamic, probably due to dietary effects (Ruidong et al., in 

preparation).The initial output of this work will be an in-depth and detailed catalogue of the 

transcriptome of the sheep GIT tissues increasing the number of alternate splice variants from an 

average of one per gene to more than four. Annotation accuracy and coverage of transcript 

isoforms is expected to be high for mRNAs and slightly lower for short RNAs, such as miRNAs. 

Conversely the discovery rate of new lncRNAs is expected to be high and of new protein coding 

genes is expected to be low.The developmental gene expression atlas of the GIT of sheep and the 

integration of other FAANG datasets with the atlas will support global research activities into the 

development and function of the GIT and how putative causative SNPs and other genomic 

variation affects the efficiency of animal growth, methane production, parasite resistance and other 

traits critical to the profitability and sustainability of livestock production. For example it is 

expected that reticulo-rumen, and possibly salivary gland gene expression will be associated with 

differences in rumen morphology and digesta flow and in turn methane production, and that 

abomasal and duodenal gene expression patterns will inform how sheep differ in parasite 

resistance.  
 

CONCLUSIONS 

From the research described above causative SNPs and CNVs weighted for phenotypic impact 

on GIT function will be available for inclusion in GRMs and prediction equations in breeding 

schemes. It is likely that these analyses will also identify biological pathway based phenotypes 

which may enable new approaches to the selection of animals for production traits to be identified. 

In contrast the pathway to the utilization of the outputs for improved management of sheep is 

much more poorly defined and likely to be more challenging. 
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SUMMARY 

The aims of this paper were to detect SNP and genes that affect the fatty acid composition and 

other carcass and meat quality traits in sheep. We performed genome-wide association studies 

(GWAS) for 56 traits including carcass weights, muscling, fatness, tenderness, meat color, mineral 

content, and fatty acid composition on 10,613 animals genotyped for 510,174 SNPs. The use of a 

meta-analysis to combine information from the 56 traits increased the power to detect QTL 

compared with the single trait analyses. We found pleiotropic QTL, which appear to cluster into 5 

functional groups based on their trait effects. Candidate genes were identified in the groups that 

have functions consistent with the biology of the traits.  
  

INTRODUCTION 

The fatty acid (FA) composition (FAC) of meat products has received considerable attention 

for its significance to human health. The FAC of meat is influenced by various environmental 

effects such as diet (e.g. Suzuki et al. 2007), the level of fatness, and genetic factors. Changing 

FAC through selection could decrease the saturated FA (SFA) content of meat and perhaps 

improve human health. Breed or genotype differences in the FAC have been reported, even after 

correction for fat level (De Smet et al. 2004). FAC can be described by a combination of traits, but 

GWAS are usually performed one trait at a time, which may reduce the power to detect mutations 

that affect the trait complex. In fact, mutations that affect FAC may also affect other quality and 

carcass traits, therefore a multi-trait GWAS analysis is expected to be more powerful to assess the 

effect of a mutation on multiple related traits. Multi-trait analysis of linkage experiments has been 

reported to increase the power to detect QTL (e.g. Knot and Haley. 2000). Bolormaa et al. (2014) 

found increased power to detect QTL by a meta-analysis that combined the results from GWAS 

for 32 individual traits in beef cattle. The objectives of this study were to identify genes that affect 

FAC and other meat quality and carcass traits using a multi-trait GWAS in Australian sheep.  
 

MATERIALS AND METHODS 

SNP and phenotype data. In total, 510,174 single nucleotide polymorphisms (SNP) were 

genotyped or imputed from lower density SNPs. The SNP genotype and phenotype data was 

collected by the CRC for Sheep Industry Innovation (Sheep CRC) and SheepGENOMICS 

projects. The SNP were obtained from two different SNP arrays: the Illumina 600k (HD) and 50k 

Ovine SNP chips (Illumina Inc., San Diego, CA, USA). All SNP were mapped to the OAR 3.1 

build of the ovine genome sequence assembled by the SNPchiMp v.3 (Nicolazzi et al. 2015). 

Details on genotyping, editing and imputation of the Sheep CRC 50k data set has been described 

by Daetwyler et al. (2012). The imputation from 50k to HD was done using Fimpute (Sargolzaei et 

al. 2014). Out of 22,684 animals with 50k and 1,735 HD genotypes, the accuracy of imputation 

between 50k and HD genotypes for non-50k SNPs was 0.9871. A total of 10,613 sheep (from 

multiple breeds and crosses) HD genotyped were measured for up to 56 meat related traits (carcass 
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weight, fatness, muscling, tenderness, meat colour, pH level, and FAC). A complete description of 

the design, methods and analyses of carcass and meat quality assessments is given by Mortimer et 

al. (2014).  

Statistical analysis. A GWAS was carried out for each trait using ASReml software (Gilmour. 

2009) to fit a mixed model: trait ~ mean + fixed effects + SNPi + animal + dam + sire by flock 

interaction + error; with animal, dam (permanent environment), and sire by flock interaction, and 

error fitted as random effects including relationships between animals. All models included 

dataset, management group, flock, date of observation, drop year, sex, birth type, and rear type as 

fixed effects. The FA traits were corrected for intramuscular fat content. The individual trait 

results were combined using the meta-analysis described by Bolormaa et al. (2014). To avoid 

identifying a large number of closely linked SNPs, whose association with traits is due to the same 

QTL, only the most significant SNP (P<10
-5

) from each 1Mbp interval was retained for validation. 

In a further restriction, a maximum of two or three SNPs on the same chromosome were selected, 

and only if they clearly represented different QTL based on the multi-trait test. In this way, 23 

“Lead SNP” representing different QTL across the genome were selected. For each lead SNP, a 

linear index of the 56 traits, that was maximally correlated with the Lead SNP genotypes in the 

reference population (4/5 of total animals) was constructed and used to validate SNP effect in the 

other 1/5 of the data, as described by Bolormaa et al. (2014). Clustering analysis based on a 

correlation matrix among the 23 Lead SNP genotypes was used to assign the lead SNPs into 5 

groups such that the SNPs within a group had a similar pattern of effects across the 56 traits. To 

find additional SNPs with a similar pattern of effects to each of the 23 lead SNPs, the linear index 

for the corresponding Lead SNP was used as a new “phenotype” in GWAS (which fitted the 23 

Lead SNP themselves as fixed effects). Genes that occurred within 30 kb of the significant SNPs 

were annotated using UCSC Genome Bioinformatics (genome.ucsc.edu) and Ensembl 

(www.ensembl.org/biomart/). The statistical enrichment of the biological function or pathways in 

groups of genes were checked using the STRING program (Franceschini et al. 2013).  
 

RESULTS AND DISCUSSION 

Using the multi-trait analysis, 586 SNPs were significant (P < 5×10
-7

), corresponding to a false 

discovery rate of 0.04%, and this was better than for any individual trait. When traits were 

analyzed individually, for only 10 out 56 traits the FDR was less than 2.5%. Many highly 

significant SNPs from the multi-trait analyses were found within narrow regions on Ovine 

autosomal chromosomes (OAR) 2, 3, 5, 6, 11, 12, 14, 18, 20, and 26. Many of the significant 

SNPs in both single trait and multi-trait analyses were closely linked and could be associated with 

the same QTL. When only the most significant SNPs in each Mb interval were retained from the 

multi-trait analysis of the discovery dataset for validation purpose, 98 SNPs were significant at P < 

10
-5

. In the validation population, all 98 SNPs had an effect in the same direction as in the 

discovery population and 35 were significant (P < 0.05). One of the best single-traits was 

DRESSING% where 9 of 31 significant (P < 10
-5

) SNPs found in reference population were 

significant at P < 0.05 in the validation population. Therefore the multi-trait analysis detected 

associations with higher reliability than single-trait analysis.  

The multi-trait analysis was particularly successful in detecting pleiotropic QTL. Genes that 

operate in the same pathway might be expected to show the same pattern of pleiotropic effects. 

The cluster analysis of the 23 Lead SNP revealed 5 loosely-defined groups of SNPs where the 

SNPs within a group had a similar pattern of effects across traits: 1) changing skeletal or carcass 

size; 2) changing fat deposition (SFA profile and fatness); 3) influencing meat eating quality; 4) 

affecting meat colour; 5) a poorly defined group affecting only specific trait(s) (e.g. changing only 

glycogen level, omega-3 or omega 6 FA). The GWAS using Lead SNP linear indices identified 

687 significant SNPs (P < 5×10
-7

) assigned to each of the 5 groups as follows: 1) 518; 2) 30; 3) 99, 
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4) 25; and 5) 15.  

 
Figure 1. Correlation matrix between the effects of lead SNPs and their linear index SNPs 

(chromosome_position_annotated gene name) within Group 2.  
 

Group 2 initially consisted of four strongly correlated Lead SNP on OAR 6 (OAR6_15.2Mb), 

11 (OAR11_13.3Mb and OAR11_49.9Mb), and 26 (OAR26_13.9Mb). These 4 SNPs have alleles 

that increase the concentration of SFAs with carbon chain of C16, C14, C12, and C10 (palmitic, 

myristic, lauric, and capric acids, respectively) and may decrease stearic acid profile (C18:0) 

(Table 1). There was also a tendency for SNP alleles that increased saturated FAC to increase 

fatness. If each QTL group represented a particular physiological pathway, one might expect the 

genes that map near the QTL of a group to show some similarity of function. The 4 Lead SNPs in 

Group 2 were expanded with 7 additional SNP from the linear index GWAS and the clustering 

was repeated within group (Figure 1). These additional 7 SNPs were chosen to represent different 

QTL or as multiple candidates for the same QTL where more than one gene was a suitable 

candidate. The 11 SNPs were clustered into two subgroups (Figure 1) and they map near to or 

within genes affecting FA traits. Sub-group 1 consists of SNPs whose effects were moderately to 

highly correlated (r > 0.4) and tagged genes such as FASN, MLXIPL, EVOLV6, ACACA, and 

SYNRG. The other more loosely correlated sub-group included the ACSL1, ISYNA1, SGK2, and 

AGPAT9 genes (Figure 1). The former group includes genes which play a role in the synthesis of 

fatty acid formation and the latter includes genes with a role in (glycero)lipid biosynthesis. The 

MLXIPL protein activates carbohydrate response element motifs in the promoters of triglyceride 

synthesis genes. Studies in gene expression (e.g. De Jager et al. 2013) have reported that ACACA, 

FASN, and DGAT2 may directly influence IMF percentage in sheep and cattle. Dervishi et al. 

(2011) noted that changes in FA profile due to feeding systems implicate changes in the mRNA 

expression level of genes related with fat metabolism. Thus, group 2 does represent a set of genes 

with known function in fatty acid and lipid synthesis. This was confirmed by KEGG and GO 

enrichment analysis. There were some enriched interactions at medium confidence level (P = 

6.9x10
-6

) between some Group 2 genes. GO and KEGG analysis found some evidence for 
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statistically significantly enriched in the biological function or pathways in our FA genes. For 

example, according to KEGG and GO terms, two proteins (FASN and ACACA) were involved 

together in FA biosynthesis (Bonferroni P = 3.8×10
-4

), 5 proteins (FASN, ACACA, ACSL1, 

AGPAT9, and ISYNA1) in metabolic pathways (Bonferroni P = 7.6×10
-3

), and 4 proteins (FASN, 

ELOVL6, ACSL1, and ISYNA1) in lipid biosynthesis process (Bonferroni P = 3.8×10
-2

). 

Although the SNPs within a group share some features they may also be associated with 

seemingly quite different traits. Two SNPs from Group 3 (near to genes MRPS25 and CYP27A1), 

one SNP from Group 4 (near GLTPD1) and two from Group 5 (within genes PNPLA3 and FADS2) 

affected the concentration of polyunsaturated FA (Table 1).  
 

Table 1. Effect of a subset of significant multi-trait SNPs in the individual fatty acid traits 

(signed t-values >1 are shown) 

   Fatty acid with chain of 

#1 OAR2 POS3 

C22: 

6n-3 

C22: 

5n-3 

C20: 

5n-3 

C20: 

4n-6 

C20: 

3n-6 

C18: 

2n-6 

C18: 

0 

C16: 

0 

C14: 

0 

C12: 

0 

C10: 

0 

2 26 13.9 2.8 

  

1.5 -1.2 2.7 

   

-4.5 -3.3 

2 11 13.2 1.0 

 

1.1 1.3 2.6 

 

-2.5 3.6 4.9 2.2 7.2 

2 11 49.9 

      

-1.6 4.9 8.4 3.3 3.8 

2 6 15.2 -1.8 

  

-1.4 -1.2 

 

-1.8 6.0 3.7 3.0 3.0 

3 19 57.1 2.4 2.8 2.4 1.9 2.2 

 

-1.0 

   

-2.1 

3 2 219 3.6 1.0 4.1 5.4 2.8 3.7 

 

-1.6 -2.9 -3.3 -3.0 

4 12 49.6 -6.8 -5.8 -8.2 -4.6 -5.7 -6.1 1.4 

    5 3 21.8 

 

3.5 3.3 -1.6 2.4 

  

-2.0 

 

2.9 1.2 

5 21 39.7 1.5 

  

3.1 8.2 -1.8 

     1Group; 2Chromosome; 3Ovine chromosome position in megabases. 
 

The pattern of effects of each QTL studied here indicated that some may be more useful for 

selection than others depending on the breeding goal. Some QTL have an allele with desirable 

effects on more than one trait and appear to be good targets for selection. For instance, the QTL on 

OAR 2 had allele that increases tenderness, improves meat colour, increases myoglobin, glycogen, 

and omega-FAs and decreases long chain saturated FAs, which is a highly valuable pattern. 

Selection for this allele would be beneficial in sheep intended for most markets because lamb 

prices reflect colour, tenderness, palatability, and juiciness. 
 

ACKNOWLEDGEMENTS  

We thank Klint Gore and Ken Geenty for managing the CRC information nucleus database and 

the many staff involved at the CRC and SG sites across Australia.  
 

REFERENCES 

Bolormaa S., Pryce J.E., Reverter A., Zhang Y., et al. (2014) PLoS Genet. 10:e1004198 

Daetwyler H.D., Swan A., van der Werf J.H.J., Hayes, B.J. (2012) Gen. Sel. Evol.  44:33. 

De Jager N., Hudson N.J., Reverter A., Barnard R., et al. (2013) J. Anim Sci. 91:1112–1128. 

De Smet S., Raes K., Demeyer D. (2004) Anim. Res. 53:81. 

Franceschini A., Szklarczyk D., Frankild S., et al. (2013) Nucl. Acids Res. 41:D808-D815. 
Knott S. Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson. (2009) HP1 1ES, UK. 

Knot  A. and Haley C. S. (2000) Genetics. 156:899. 

Mortimera S.I., van der Werf J.H.J., Jacobd R.H., et al. (2014) Meat Sci. 96:1016. 

Nicolazzi N.L., Caprera A., Nazzicari N., Cozzi P., et al. (2015) BMC Genomics 16:283. 

Sargolzaei M., Chesnais J., Schenkel F. (2014) BMC Genomics. 15:478. 

Suzuki S., Ishikawa S., Arihara K., Itoh M. (2007)  J. Anim. Sci. 78:293.  

Detecting causal variants

52



FINE-MAPPING SINGLE NUCLEOTIDE POLYMORPHISMS ON BOS TAURUS 

CHROMOSOME 26 AFFECTING ADIPOSE MYRISTIC ACID 

1

D. Lu
1
,
 
S.M. Hickey

2
, N.G. Cullen

2 and S. Miller
1 
Invermay 

Agricultural Centre, Mosgiel 9053, New Zealand 
2
Ruakura Research Centre, Hamilton 3240, New Zealand 

SUMMARY 

It may be desirable to change the genetic selection program of cattle to make them produce less 

myristic fatty acid (alternatively C14:0) in milk and adipose fat, providing food products to 

consumers with enhanced health attributes. As phenotypic measures on an industry-wide basis are 

not practical, a genomic test related to levels of C14:0 would provide a viable method to enhance 

animal selection programs. Therefore it is important to identify genome segments and nucleotides 

that control the trait. The study reported herein was able to locate a region of ~250Kb on 

chromosome 26 that accounted for 26.47% of the phenotypic variation in C14:0. Two of eight 

haplotypes of this region were found to reduce C14:0 significantly in subcutaneous fat of beef 

cattle. 

INTRODUCTION 

Dietary fatty acids, especially C14:0, have a major influence on lipoprotein concentrations in 

human plasma (Katan et al. 1994; Adamsson et al. 2014), which in turn affects cardio-vascular 

health (Mozaffarian et al. 2005). Those fatty acids that increase undesirable cholesterol in humans, 

are mainly derived from milk fat (Gunstone et al. 1994), and beef meat (Youssef et al. 2012). 

Therefore reduction of those fatty acids in milk and beef is desirable. 

From a genetics perspective, the proportion of C14:0 to total lipid amount shows evidence of 

being under genetic control (Tait et al. 2008; Bouwman et al. 2011). Its heritability in beef adipose 

fat was reported to be 0.50 (Tait et al. 2008). This means it is possible to select cattle for the 

reduction of C14:0 in meat. Selecting animals via traditional progeny testing is time consuming 

due to a long generation interval and the complexity of measuring C14:0, would result in slow 

genetic gain. Current DNA technology can help facilitate the genetic improvement process via 

marker assisted selection or genomic selection. For this to happen, it is important to identify single 

nucleotide polymorphisms (SNP) that are associated with levels of C14:0. 

Morris et al. (2007; 2010) identified quantitative trait loci (QTL) on bos taurus autosomes (bta) 

15, 19, 26, 27 and 29 for C14:0 in adipose fat. However, the QTL regions covered long segments 

of chromosomes, for example, 18-29cM on bta 26 (Morris et al. 2010). Using higher density 

genetic markers would allow for fine mapping genomic regions in association with the trait. 

The study reported here was aimed at refining the QTL regions reported by Morris et al. (2007; 

2010) for C14:0 in a New Zealand experimental population of Jersey-Limousin backcrosses. 

MATERIALS AND METHODS 

Animals and Phenotype. Records of fatty acid profiles were available on 406 backcrossed 

Jersey (J) x Limousin (L), which were sired by three JxL bulls via artificial insemination with J 

and L dams. The animals were raised on pasture and slaughtered at 22-28 months of age. 

Subcutaneous fat from over the longissimus dorsi muscle was used to extract fatty acids and nine 

(C14:0, C14:1, C15:0, C16:0, C16:1, C17:0, C18:0, C18:1 and C18:2) were measured, and 

presented as percentage of the total of the nine fatty acids. The mean for C14:0 was 3.41±0.48. 

More details of the animals and phenotype measurement are described by Morris et al. (2010). 

Genotypes. Genotypes were available on only 160 heifers and 106 steers born in 1996-1997. 

These animals formed three half-sib families with 74, 94 and 98 progeny. The genotyping was 
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performed on DNA extracted from blood, ear tissues, and meat samples. A total number of 54,609 

SNP were typed across the bovine genome by Delta Genomics Laboratory (Edmonton, Alberta, 

Canada), using the Illumina BovineSNP50 Beadchip (Illumina Inc., San Diego, USA). Animals 

with a call rate less than 90% were removed. Quality control filtered out SNP that had a minor 

allele frequency less than 1%, or a spurious location, or a GC score less than 0.15. Missing 

genotypes were imputed using FImpute v2.2 (Sargolzaei et al. 2014), which makes use of both 

family and population information. A subset of 39,988 SNP on 29 autosomes was used for 

subsequent analyses. 

Linkage Disequilibrium. Pairwise linkage disequlibrium (LD) was estimated using 𝑟2 =
𝐷2

𝑓(𝐴).𝑓(𝑎).𝑓(𝐵).𝑓(𝑏)
 (Hill and Roberson 1968), with 𝐷 = 𝑓(𝐴𝐵) − 𝑓(𝐴). 𝑓(𝐵), where 𝑓(𝐴𝐵) is the 

estimated frequency of haplotype AB using the observed genotype frequency (McVean 2007) and 

assuming Hardy-Weinberg equilibrium, 𝑓(𝐴), 𝑓(𝐵), 𝑓(𝑎), 𝑓(𝑏) being the observed frequencies of 

alleles A, B, a, b, respectively. The metric r
2
 was computed using software Snppld v1.0 (Sargolzaei 

2010). 

Statistical analyses. Genome-wide association analysis was carried out to identify 

chromosome segments that potentially harbour SNP or haplotypes in strong association with 

C14:0. The trait was adjusted for fixed effects, including breed of dam (J or L), farm of birth 

(n=3), birth type (single or twin) within breed of dam, slaughter group (sex and year included), sire 

family, then fitted in the following model 𝑦𝑖𝑗 = 𝜇 +β𝑋𝑖𝑗 + 𝑒𝑖𝑗 , where 𝜇 is the overall mean, 𝑦𝑖  the 

adjusted C14:0 for animal i, β the regression coefficient for genotype X {0,1,2} at locus j, 𝑒𝑖𝑗 the 

residual.  

Haplotype phase. Haplotypes were reconstructed for only chromosome regions that had high 

LD between pairs of SNP and contained SNP highly associated with C14:0, using Beagle software 

v3.3.2 (Browning and Browning 2007). Haplotype effects were estimated from the statistical 

model mentioned above by replacing genotypes with haplotypes. 

 

RESULTS AND DISCUSSION 

Genome-wide association. Significance levels of SNP from the association analysis are 

presented in Figure 1. The two peaks were observed at rs41921177 (19:51326750; FDR= 1.03E-6) 

and rs110857021 (26:21832456; FDR = 1.03E-6). Within 500kb of rs41921177 are four other 

SNP significant at FDR<5% and gene FASN (fatty acid synthase), which is reported to be 

associated with fatty acid composition in beef muscle (Zhang et al. 2008; Yokota et al. 2012), and 

milk fat (Roy et al. 2006). Two of the four other significant SNPs were within 50kb of gene FASN. 

Within 500kb of rs110857021 are 14 other SNP significant at FDR<1% and gene Stearoyl-CoA 

Desaturase, which is reported to affect fatty acid composition of adipose tissue in beef cattle 

(Brooks et al. 2011; Yokota et al. 2012; Costa et al. 2013), and of milk fat (Rincon et al. 2012). 

 
Figure 1. Significance levels of SNP from the association with myristic fatty acid. 
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Linkage disequilibrium was estimated for pairs of all SNP on bta 19 and 26. Figure 2 displays 

the LD heatmap for chromosome segments of approximately 500kb on each side of rs41921177 

and rs110857021. Single nucleotide polymorphism rs41921177 on bta 19 did not appear to have 

strong LD with its surrounding SNPs, while SNP rs110857021 on bta 26 was highly correlated (r
2 

≥ 0.6) with five other SNPs immediately adjacent to it. This finding supports the number of SNPs 

found significantly associated with C14:0 in these two chromosomal regions. Regions around 

rs41921177 might need denser SNPs to capture higher LD, enabling higher confidence in 

identifying nucleotides that are causative for differences in C14:0.  The region of six consecutive 

SNPs (~250kb) on bta 26 was further investigated, using phased haplotypes.      

 
Figure 2. LD heatmap for segments of chromosomes 19 and 26. 

 

Haplotype analysis. Eight haplotypes were found out of the six SNP region mentioned above. 

Their frequency is presented in Table 1. Four haplotypes with very low frequency (<1%) were 

grouped together and given code hap1. Five haplotypes (hap1-5) were used in a linear regression 

to estimate haplotype effect (Table 2).  

 

Table 1. Distribution of haplotypes on bta 26 

 

  Table 2. Haplotype effect 

Haplotype (Code) Sire1 Sire2 Sire3 Freq (%)   Hap Effect P value 

CACGGA (hap1) 1 0 4 0.94   hap4 0 N/A 

CATAAC (hap2) 41 25 67 25.00   hap1 -0.07 ± 0.27 > 0.05 

CCCAAC (hap1) 0 0 1 0.19   hap2 -0.68 ± 0.09 < 0.001 

CCCGGA (hap3) 4 6 6 3.00   hap3 -0.63 ± 0.22 < 0.005 

TACGGA (hap1) 0 0 1 0.19   hap5 -0.03 ± 0.19 > 0.05 

TCCAGA (hap1) 0 0 1 0.19      
TCCGGA (hap4) 96 151 105 66.17      
TCTAAC (hap5) 6 6 11 4.32      

 

In the analysis, effects of hap1, hap2, hap3, hap5 were contrasted against the effect of hap4. 

Hap4, as the most frequent haplotype among the studied animals, and a common haplotype among 

the three sires, appeared to be associated with the highest percentage of C14:0 in adipose fatty 

acids. Hap2 was the second most frequent haplotype, and appeared to be associated with a 

reduction in C14:0. Hap3 differed from hap4 only at locus rs110857021, where T in hap4 was 

replaced by C that subsequently caused a significant reduction in C14:0 (P<0.005). The ~250kb 

segment of bta 26 accounted for 26.47% of the phenotypic variation in C14:0.  
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CONCLUSION 

Chromosome regions were refined, which were previously reported to be associated with 

C14:0. A very high LD segment of ~250kb on bta 26 was located accounting for 26.47% of the 

variation in C14:0 in the research animals. Two haplotypes (hap2 and hap3), which had a 

combined frequency of 28% and caused a reduction of myristic fatty acid, should be tested for 

association with other economically important traits, and tested in other cattle breeds or 

populations. 
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SUMMARY 

Previous genome-wide association analyses indicated QTL regions located in X chromosome 

for scrotal circumference (SC) and percentage of normal sperm (PNS). The association between 

SNP in two potential candidate genes (TEX11 and AR) on chromosome X and observed 

phenotypic variation of SC and PNS were analysed. As expected from QTL findings, these SNP 

could explain more than 1% of the additive genetic variance for SC. Three SNP in TEX11 and a 

SNP in AR were significant for SC measurements taken at 12, 18 and 24 months of age. SNP in 

exon 1 of TEX11 gene had extremely significant effects on SC12, SC18 and SC24 with P-values 

ranging from 10
-39

 to 10
-46

. An association between a SNP in TEX11 and weight measurements 

was also identified. Associations reported herein suggest that these SNP in TEX11 and AR might 

aid genomic selection for SC and weight if included in genotyping panels.  

 

INTRODUCTION 

Fertility has important economic impact for livestock and fertility traits are considered in 

breeding programs. However, fertility is a rather complex phenotype that can be described by 

many indicator traits, such as scrotal circumference (SC) or sperm quality (Cammack et al. 2009). 

Traits considered as indicators of fertility are expressed late in life and mostly have low 

heritability (Cammack et al. 2009). Complexity, low heritability and late expression create 

challenges for selective breeding. Yet, some fertility traits are of moderate heritability, such as SC 

(heritability ranged from 0.29 to 0.78) (Cammack et al. 2009) and percentage of normal sperm 

(PNS, heritability = 0.35 (Kealey et al. 2006)).  Bull fertility traits including SC and PNS are 

commonly measured at bull breeding soundness evaluation and can be used for improvement of 

fertility. Bull SC is also utilized for female fertility improvement due to its correlation with heifer 

age at puberty (Evans et al.,1999). Thus, SC and PNS are selection traits for beef cattle fertility. 

Previous genome-wide association analyses reported QTL regions in chromosome X as 

associated with SC and PNS in Brahman and Tropical composite bulls (Fortes et al. 2012; Fortes 

et al. 2013). These QTL regions indicate that the TEX11 and AR genes are candidates for 

identifying putative causative mutations. This study was carried out to identify and test putative 

causative mutations in these genes. 

 

MATERIALS AND METHODS 

Animals and phenotype. Animal care and Use Committee approval was not required for this 

research since samples and data used were from existing databases. Data were obtained from 1,178 

Brahman bulls, 1,360 Tropical Composite bulls and 167 crossbreds (Tropical composite vs 

Brahman). These animals were the progeny of sires from Beef CRC. In total, 2705 bulls were 

analysed together in this study. Traits analysed were: SC and weight (WT) measured at 12, 18 and 

24 months and PNS measured at 18 and 24 months. Measurement details for the Beef CRC 
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populations were described previously (Burns et al. 2013; Corbet et al. 2013). Genomes of 16 

Brahman bulls (sires of genotyped animals) were utilized to generate VCF format files with 

variants information. Variant Effect Predictor (VEP) was used to predict the functional 

consequences of detected variants. 

Genotyping and Linkage. Using Taqman assays, 2,705 bulls were genotyped for 4 SNP: 

Tex11-r38k, Tex11-g297d, Tex11-r696h and AR-intron6. Linkage disequilibrium (LD,𝑟2 ) was 

estimated pair-wise for genotyped SNP, using SVS software (Release 8.3.0, Golden Helix, Inc.).  

Analyses. Association of selected SNP with SC, WT and PNS was examined using SVS 

software (Release 8.3.0, Golden Helix, Inc.) A mixed model analysis of variance was used to 

estimate the SNP effect and its significance level. The mixed model can be written as an equation: 

Yi = Xβ + Zµ + Sjaj + ej, where Y represents the phenotypic measurement for the i
th

 animal, X is 

the incidence matrix relating fixed effects in β, Z is the incidence matrix relating to random 

additive polygenic effects of animal in µ, S is a vector of genotypes of each animal at SNP (j), aj is 

the additive effect of the jth SNP, and ej is the random residual effect. SNP is fitted was random 

and fixed effects were those of contemporary group (year, management group and breed). Age was 

fit as a covariant. 

 

RESULTS AND DISCUSSION 

Only 3 nsSNP discovered in TEX11 and none in AR using the genome sequences available. 

These SNP are more likely to alter protein sequence and structure, and be beneficial or deleterious. 

It would however be inaccurate to state that all functional changes are based on protein coding 

sequence. The alteration of regulatory sites also can disrupt the expression of target genes (Knight 

et al. 2003). An intronic SNP in AR was also tested. From LD analysis, the SNP Tex11-r38k and 

Tex11-r696h were completely linked with r
2 

value of 1. Therefore, it was impossible to 

differentiate the effects between these two SNP in all animals. Consequently, the SNP Tex11-r38k 

was used to represent both in the following results and discussion. For all the other pairs, the 

estimates of LD were lower than 0.6. The effect of these SNP could be interpreted separately. 

The Tex11-g297d SNP had a slightly lower association with SC and WT measurements 

relative to the results obtained for Tex11-r38k, which had P-values in the range of 10
-39 

to 10
-46

 

(Table 1). In Brito et al. (2002), increased SC has been related to increased sperm production but 

decreased semen quality. In our results, these same SNP were not associated with PNS, a 

measurement of semen quality. In 2003, Martínez-Velázquez reported that SC is positively 

correlated with growth traits. SNP that showed associations with both SC and WT could be 

expected. The SNP in AR showed an association with SC but not WT. We tested the relative 

relevance of Tex11-r38k to the QTL previously described (Fortes et al. 2012; Fortes et al. 2013) 

by fitting it as a fixed effect in the GWAS model. When Tex11-r38k was utilized as a fixed effect, 

the associations between common SNP in chromosome X (Illumina chip variants) and SC 

measurements were reduced (Figure 1). This result is consistent with expectations from causative 

variants that are able to explain the underpinning QTL.  

Associations TEX11 SNP with bull fertility were first studied by Lyons et al. (2013). The 

results obtained here validated that study. The substitution from G to A on TEX11 might have 

negative effect on bull performance (smaller SC). Deleterious effect of Tex11-r38k was predicted 

according to SIFT. TEX11 competes with estrogen receptor beta for a specific binding to HPIP 

protein (Yu et al. 2012). The TEX11 protein region that binds to HPIP protein is between amino 

acids 370 and 947 (Yu et al. 2012), indicating that SNP Tex11-r696h that change amino acid at 

position 696 and are completely linked to SNP Tex11-r38k may be the best functional mutations. 

Further studies about biological role played by TEX11 and its SNP in bull fertility are warranted. 

 

Detecting causal variants

58



 

 

Table 1.Significance and estimated effects of selected SNP on reproductive and growth traits 

in mixed bull population 

 
Trait SNP p-value Effect SE %Va 

PNS18 Tex11-r38k 0.0124 -1.6716 0.6676 0.3180 

Tex11-g297d 0.1112 1.5053 0.9447 0.1291 

AR-intron6 0.1472 -1.4475 0.9982 0.1069 

PNS24 Tex11-r38k 0.4681 -0.3611 0.4977 0.0215 

Tex11-g297d 0.2197 0.8396 0.6839 0.0614 

AR-intron6 0.7849 0.1848 0.6771 0.0030 

SC12 Tex11-r38k 2.39x10-39 -0.7431 0.0557 6.2944 

Tex11-g297d 0.0002 -0.2863 0.0775 0.5120 

AR-intron6 0.0105 -0.1937 0.0757 0.2467 

SC18 Tex11-r38k 6.03x10-46 -0.8270 0.0570 7.3867 

Tex11-g297d 0.0003 -0.2842 0.0794 0.4837 

AR-intron6 1.04x10-05 -0.3430 0.0776 0.7339 

SC24 Tex11-r38k 2.44x10-43 -0.7708 0.0548 6.9741 

Tex11-g297d 0.0005 -0.2646 0.0765 0.4516 

AR-intron6 1.94x10-05 -0.3200 0.0748 0.6900 

WT12 Tex11-r38k 7.04x10-08 -3.0673 0.5674 1.0926 

Tex11-g297d 0.0003 -2.7609 0.7704 0.4832 

AR-intron6 0.3354 -0.7250 0.7525 0.0351 

WT18 Tex11-r38k 3.97x10-08 -3.7138 0.6742 1.1329 

Tex11-g297d 0.0016 -2.8693 0.9110 0.3732 

AR-intron6 0.35401 0.8534 0.9206 0.0324 

WT24 Tex11-r38k 2.50x10-07 -3.7426 0.7237 1.0010 

Tex11-g297d 0.0007 -3.2871 0.9785 0.4249 

AR-intron6 0.1255 1.5132 0.9874 0.0887 

 

CONCLUSION 

Our results provide evidence for a key role of TEX11 in male reproduction in beef cattle. The 

SNP Tex11-r38k and/or Tex11-r696h are proposed as functional mutations in TEX11. The AR 

gene remains as a candidate gene as its SNP was also associated with SC. As shown, SNP in these 

candidate genes influence SC and PNS in Bos indicus and their crossbreds. As a result, these 

associated SNP could be incorporated in low-density chips to facilitate genetic evaluation. 
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Figure 1. The association between SNP in 30 chromosome regions of beef cattle and scrotal 

circumference at 3 different ages. The chromosomal positions are in the x-axis and –Log (P-

values) are in the y-axis. The blue indicates effect of all SNP on SC, the green reveals effect of 

SNP on SC with Tex11-r38k as a fixed effect.  
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SUMMARY 

Casein proteins comprise about 80% of the protein in bovine milk.  The casein complex 

occupies a 300 kb region of the genome on BTA6.  To disentangle the number of variants 

affecting protein percentage in bovine milk near the casein complex, we use single variant 

regressions with imputed full sequence variants and quantified αS1-, β- and κ-casein protein levels 

in 444 Holstein Friesian cows.    We find 2 variants, located near CSN3 (coding κ-casein) and 

within CSN1S1 (which codes for αS1-casein), with independent effects on P% and which affect 

concentration of their corresponding casein gene products.  Previously described  protein 

polymorphisms in the casein genes were sometimes associated with the quantity of their respective 

proteins but it seems unlikely that these variants are causing variation in casein concentrations. 

 

INTRODUCTION 

Four types of casein proteins (αS1-, αS2-, β- and κ-casein) constitute about 80% of the protein in 

milk and the genes encoding the casein proteins are located in a 300kb region on Bos taurus 

autosome (BTA) 6 (Table 1).  Polymorphisms in the amino acid sequence of these proteins have 

been known for many years and have been found to be associated with milk protein yield and 

concentration.  However, the associations have not been consistent across studies perhaps because 

the mutations causing variation in amount of casein are not the same as those causing differences 

in amino acid sequence although they may be in linkage disequilibrium with them (reviewed by 

Goddard & Wiggans 1999). 
 

Table 1. Genomic location of the casein genes on Bos taurus autosome (BTA) 6* 

 

Gene description Symbol location (bp) protein product 

Bos taurus casein alpha-S1, mRNA (+) CSN1S1 87,141,556-87,159,096 αS1-casein  

Bos taurus casein beta, mRNA (-) CSN2 87,179,502-87,188,025 β-casein 

Bos taurus casein alpha-S2, mRNA (+) CSN1S2 87,262,457-87,280,936 αS2-casein 

Bos taurus casein kappa, mRNA (+) CSN3 87,378,398-87,392,750 κ-casein 
*Other genes also located in the region. Locations from UMD3.1 (www.ensembl.org/Bos_taurus/). The 

forward (+) or reverse (-) orientations for transcription are indicated after the gene description. 

 

Kemper et al. (2015) identified a sequence variant (Chr6:87296809) as affecting protein 

content (P%) from a multi-trait meta analysis of Holstein and Jersey cattle.  This variant was 

located within an intergenic region, closest to the Bos taurus casein alpha-S2 coding region 

(CSNS2).  However, this analysis did not exclude the possibility that this variant was associated 

with cumulative effects of several different underlying P% causal variants in the region.  The 

simplest hypothesis is that mutations in the regulatory region of each casein gene cause variation 

in the amount of that casein produced and therefore in the amount of total protein.  The aim of this 

study is to disentangle the P% QTL observed in Holstein cattle near the casein complex by using 

phenotypes consisting of P% and quantification of three casein proteins (αS1-, β- and κ-casein).  
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MATERIALS AND METHODS 

Overview.  The paper aims to identify variants (either causal variants or variants in strong LD 

with the causal variant) underlying αS1-, β- and κ-casein concentrations in a small dataset and then 

to test whether or not these variants can explain the variation in  P% due to the QTL near the 

casein complex.  The methods are detailed below and consist of single variant regression for αS1-, 

β- and κ-casein concentration, followed by conditional single regression analysis for P% using 

imputed whole genome sequence data. 

Phenotypes and genotypes.  There are two datasets. The first dataset consists of genotypes 

and phenotypes for 444 cows measured for αS1-, β- and κ-casein concentration (mg/g) using 

capillary zone electrophoresis (Kanning, Casella & Oliman 1993) on combined morning and 

afternoon milking at two sampling days, approximately 6 weeks apart.  A model with fixed (mean 

concentration, breed, 4
th

 order polynomials for age & days-in-milk) and random (herd, permanent 

environment (PE), animal) effects was fitted to the data and trait-deviations for animals 

constructed as the average of PE, animal and residual effects for animals with two measurements.  

Genotypes were available for the 50K bovine single nucleotide polymorphism (SNP) chip and 

these genotypes were imputed to the high-density array (632,002 SNP) following Erbe et al. 

(2012).  Protein types for αS1-, β- and κ-casein were determined using gel electrophoresis 

following Ng-Kwai et al. (1984). 

The second dataset,  described by Kemper et al. (2015), consists of P% phenotypes and 

genotypes of 632,002 (real and imputed) high-density SNP for 8478 Holstein cows.  Unlike 

Kemper et al. (2015), this analysis uses only Holstein animals. 

Sequence variants.  Sequence variants consisted of SNP and small INDEL from a 5 Mb 

region centred on the casein complex (BTA6: 84.5-89.5 Mb).  Data were obtained from run 4 of 

the 1000 bull genomes project (Daetwyler et al. 2014). 

Imputation and the association study.  Sequence variants were imputed into the 2 datasets 

for the target region on BTA6 using Minimac (Fruchberger, Abecasis and Hinds 2015) and 260 

sequenced Holstein animals as the reference population.  The association study for each phenotype 

used EMMAX (Kang et al. 2010) following Kemper et al. (2015).  Multi-allelic protein 

polymorphisms were treated as a series of contrasts (i.e. A1 & B types vs. A2 for β-casein).  The 

conditional analysis for P% was also conducted using EMMAX. 

 

RESULTS AND DISCUSSION 

Variants associated with individual casein concentrations.  The most significant results 

were obtained for κ-casein, followed by β- and αS1-casein concentrations (Table 2).  The variant 

most highly associated with κ-casein concentration was Chr6:87405588, located about 13 kb 

downstream of CSN3 (P = 7.7x10
-12

).  Similarly for β- and αS1-casein, the most significant variants 

were outside the coding regions for the genes, where Chr6:87098077 is 43 kb upstream of 

CSN1S1 and Chr6:87206907 is 19 kb upstream of CSN2 (N.B. that CSN2 is transcribed on the 

reverse strand).  However, there are a number of other sequence variants which are also highly 

associated with the casein concentrations and any one of these could be the causal mutation 

(Figure 1). 

Variants associated with protein variants.  The frequency of the protein polymorphisms 

varied widely between the casein genes, with β-casein A1 and A2 variants being of intermediate 

frequency (0.44 & 0.51 respectively), the κ-casein B variant having a relatively high frequency 

compared to the C variant (0.78 vs. 0.22) and the β-casein B having a low frequency (0.04).  There 

were few observations of the C allele for αS1-casein and the A3 allele at β-casein, effectively 

rendering the αS1-casein protein type monomorphic.   

The missense mutations causing the known protein polymorphisms were associated with the 

protein variants as expected.  In each case, there were a number of other sequence variants that 
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also associated with the protein type due to the high degree of LD in the region and the small 

sample size (Table 2).  These sequence variants were 20-30 kb away from the variants identified as 

influencing the quantity of these proteins.  Both the κ-casein B/C protein polymorphism 

(Chr6:87390576; P = 4.3x10
-11

) and the β-casein B protein polymorphism (Chr6:87181453; P = 

1.3x10
-4

) were strongly associated with the concentrations of their respective proteins.  However, 

these variants were more than 1 log10 unit from the most significant variant and it seems likely that 

they are in LD with variants affecting the protein concentrations. 
 

Table 2. Most significant sequence variants for casein concentrations and protein types, where the 

variants within 1 log10 unit (number; location range, bp) assesses level of confidence in the top variant 

 

phenotype top variant (P value) additional variants within 1 log10 unit 

κ-casein conc. Chr6:87405588 (7.7x10-12) 132 (87,333,107 – 87,407,175) 

αS1-casein conc. Chr6:87098077 (9.2x10-6) 18   (87,085,525 – 87,154,594) 

β-casein conc. Chr6:87206907 (8.3x10-6) 4     (87,090,414 – 87,115,771) 

κ-casein B vs. C protein type1 Chr6:87393434 (4.7x10-14) 122 (87,363,855 – 87,405,868) 

β-casein A1/B vs. A2 protein2 Chr6:87184548 (2.2x10-167) 8     (87,169,673 – 87,184,548) 

β-casein A1/A2 vs. B protein3 Chr6:87186827 (1.8x10-319) 2     (87,185,552 – 87,189,903) 
1Chr6:87390576 is the mutation causing Ile>Thr (ref>alt) substitution in κ-casein and was ranked 29th in the 

analysis; 2Chr6:87181619 is the mutation causing the His>Pro substitution in β-casein and was ranked 5th; 
3Chr6:87181453 is the mutation causing the Ser>Arg substitution in β-casein and was ranked 3rd. 

 

 
Figure 1. Association study in the casein region for quantity of αS1-, β-, and κ-casein.  The most 

significant variant for each trait (Chr6:87098077, Chr6:87206907 & Chr6:87405588) is highlighted 

with vertical lines. 
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Dissecting the P% QTL observed in the casein region.  The variant identified by Kemper et 

al. (2015), Chr6:87296809, was highly significant for P% (6.7x10
-14

) but was not within a log10 

unit of the top variant for any of the three individual casein concentrations.  Thus the analyses 

aimed to discover independent variants for P%, based on the most significant κ-casein variant, 

followed by any variants remaining significant (P < 1x10
-6

) after a conditional analysis on the κ-

casein variant.  It was found that fitting two variants (Chr6:87405588 and Chr6:87154594) 

reduced all other variants to P > 1x10
-6

 (Figure 2).  The Chr6:87154594 variant was located within 

an intron of CSN1S1 and was within 1 log10 unit of the top variant for αS1-casein concentration (P 

= 6.8x10
-5

).  The most significant variant for β-casein concentration (Chr6:87206907) was not 

significantly associated with P% (P = 0.82) after adjusting for Chr6:87405588.  This suggests there 

is not an independent effect of β-casein concentration on P%.  It is possible that Chr6:87206907 is 

capturing the effect of a haplotype which affects both κ- and β-casein concentrations. 
 

 
Figure 2. Association study in the casein region for P% without fitting covariates (top), and after 

fitting covariates of Chr6:87405588 and Chr6:87154594 (bottom, variants indicated by vertical lines). 

 

We conclude that the significant result for Chr6:87296809 (Kemper et al. 2015) was likely due 

to the cumulative effects of at least two variants affecting P% in the casein complex.  Our results 

suggest 2 independent variants that influence κ- and αS1-casein concentrations and therefore cause 

variation in P%.  It seems that these variants are distinct (but sometimes associated with) the 

known mutations causing the protein polymorphisms for αS1-, κ- and β-casein. 
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SUMMARY 

The cost of SNP genotyping is of major importance in genomic selection programs.  One 

possibility for reducing the expense of applying genomic selection would be to take advantage of 

recent dramatic decreases in the cost of genome sequencing, by using genotyping-by-sequencing 

(GBS) techniques to provide cheaper genotypes. This paper presents a GBS method that can target 

individual variants and therefore any SNP of interest. Comparing array and GBS genotypes from 

471 individuals for 5119 SNP we show that with GBS we can achieve sample call rates of 93%, as 

compared with 95% for arrays, and that genotypes called from the GBS are 98% concordant with 

those from SNP arrays. With further refinement of the custom reference we will be able to achieve 

higher call rates and genotyping accuracy. 

 

INTRODUCTION 

Genomic selection has now been widely implemented in dairy cattle industries worldwide, 

predominantly for the selection of sires. Genomic selection uses SNP genotypes to estimate SNP 

effects in a reference population, such reference populations have been established within most 

dairy countries. These SNP effects are used along with SNP genotypes of individual animals to 

make genomic predictions of breeding value in selection populations. Hence the cost of SNP 

genotyping is of major importance in genomic selection programs. Array based genotyping 

methods have been widely used to genotype cattle, particularly the Illumina Infinium 7K, 50K and 

HD beadchips. These are robust and accurate genotyping platforms, however the costs required to 

genotype an animal can be too high, preventing many dairy farmers from using such tests for 

heifer selection for example (Pryce, Hayes 2012).   

Next generation sequencing has dramatically decreased in cost over the past decade and so 

many have turned to GBS techniques to provide cheaper genotypes for genomic selection 

programs. Many GBS techniques rely on the cleavage of DNA with restriction enzymes to 

generate a pool of DNA fragments, which are sequenced to enable SNP discovery and genotype 

calling (Elshire et al. 2011). These methods provide SNP that are randomly located across the 

genome. However much work has now been done to identify the most informative variants to use 

for genomic selection, and this work will continue into the future. Therefore, GBS techniques that 

can target individual variants would be more informative and flexible than those that use random 

variants. The GBS technique presented here is one such method. In this paper we present results 

demonstrating the performance and accuracy of this targeted GBS technique on 479 Holstein cows 

for 9102 SNP. 

 

MATERIALS AND METHODS 

Probes were designed to the flanking sequencing of 9102 target SNP, 5119 of which form part 

of the Illumina Infinium BovineSNP50 beadchip. These probes were used to capture DNA 

fragments containing the target sites from 479 bovine DNA samples in a method similar to that of 

(Shen et al. 2013). The products were PCR amplified using indexed primers that provided 
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compatibility with sequencing on the HiSeq2000 genome analyser platform, and sequenced using 

single read chemistry.  

An informatics pipeline was created to perform the following steps: 1) Sequence reads were 

trimmed of adapter sequence and poor quality bases (qscore < 20) using in-house scripts. 2) The 

quality filtered reads were aligned using BWA v0.7.7 (Li, Durbin 2009) to a custom reference 

genome (described below) allowing 4 mismatches and performing an exhaustive search for each 

read. 3) Samtools v0.1.19 (Li et al. 2009) mpileup tool with an input file listing all target SNP sites 

was used to create vcf files for all samples which in turn were used to create allele counts at all 

9102 target SNP sites. 4) Allele counts were used to call genotypes, where the total count must be 

6 or greater and a heterozygote had to have a minimum minor allele frequency of 0.167 (1 in 6 

counts). Where the total allele count was <6, the genotype was set to NC (no call). 5) The 

genotypes (in UMD3.1 forward format) were then converted to TOP-TOP format 

(http://www.illumina.com/documents/products/technotes/technote_topbot.pdf).  

471 of the DNA samples were also genotyped with the Illumina Infinium BovineSNP50 

beadchip as per manufacturer’s instructions, with genotype calls output in TOP-TOP format.  

Starting contigs, consisting of the SNP and it’s flanking sequence captured by the probes, were 

created for each SNP. Additional SNP within those sequences, discovered in the 1000 bull 

genomes (Daetwyler et al. 2014) run3.0 dataset, along with phased genotypes of all Holstein and 

Jersey animals, were used to create known haplotypes for each contig. Starting contigs were then 

edited to reflect the new haplotypes and new contigs created. All contigs were then combined into 

the custom reference genome which was used in the above informatics pipeline. 

 

RESULTS AND DISCUSSION 

Custom reference. The custom reference consisted of 27,918 contigs for 9102 target SNP. 

Target SNP had up to 17 SNP within the flanking sequence, and up to 53 different haplotypes per 

target. For targets with such large numbers of flanking SNP and so many different haplotypes, 

using standard reference genomes to align reads would result in reduced numbers of reads 

mapping as many reads would exceed the 4 allowed mismatches. This in turn would result in 

inaccurate genotype calls. Therefore custom reference building is essential, and must be revised 

periodically to incorporate new haplotypes within the population being genotyped. 

GBS performance. On average 1.9 million reads were generated per library, of which 1.2 

million reads passed quality filtering and trimming. On average 82% of all reads for each sample 

mapped to the custom reference genome. The rank ordered distribution of log10(read counts) 

between samples (Figure 1a) and between SNP across samples (Figure 1b) showed each sample 

had relatively uniform representation and that the majority of SNP were evenly covered. The 

method is very flexible and so the assay can be changed to include different or additional SNP. 

Therefore in the future SNP that failed, ie had very low read count, would be removed from the 

assay and new SNP that are deemed important would be included. This dataset presented here 

targets 9102 SNP, however this could be increased to very large numbers if need be, however 

proportionally more sequence reads would be required. The informatics pipeline for each sample 

took on average 4 hours to run, using less than 2 gigabases of memory. 
 

Table 1. Average call rate for GBS and Infinium genotypes and concordance between the two for SNP 

and samples, where N is the number of SNP or samples and SD is the standard deviation 

 

 N GBS call rate (SD) Infinium call rate (SD) Concordance (SD) 

SNP 5119 92.51% (0.175) 99.96% (0.002) 97.40% (0.069) 

Sample 471 92.51% (0.073) 95.05% (0.067) 97.74% (0.047) 
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Figure 1. Distribution of reads amongst A) 479 samples (rank ordered) for raw and mapped reads and 

B) 9102 SNP (rank ordered) for mapped reads only. Read counts are expressed as log10(read count). 

 

GBS and Infinium Beadchip concordance. We calculated the call rate and concordance for 

the targeted GBS and infinium genotypes for each sample for the 5,119 SNP common to both 

assays (Table 1). The average call rate for the 471 samples was 93% and 95% for the targeted 

GBS and infinium assays, respectively. The concordance between assays was 98% (Table 1). The 

majority of samples had both high call rates and high concordance (Figure 2a). Only one sample 

failed to generate genotype calls in the targeted GBS assay. In a separate experiment, we observed 

a correlation between the proportion of reads mapping and the amount of DNA used in the 

targeted GBS assay. This experiment showed a consistent high proportion of reads mapped could 

be achieved with an input amount of >400 ng DNA (Figure 3). Where samples have high 

proportion of reads mapped call rates are maximised. 

While the average genotype concordance between the targeted GBS and Infinium assays was 

high (97%, Table 1), there was a subset of SNP with low concordance (Figure 2b). Upon closer 

investigation it was found that the target region for those SNP had additional variants, either other 

SNP or indels, that were previously unknown. As these variants were not represented in our 

custom reference, they often caused the number of mismatches to exceed the limit of 4 specified in 

the alignment. This resulted in not all of the reads associated with the target loci being mapped, 

and therefore incorrect genotype calling. Further work is currently being undertaken to discover 

new variants to update the custom genome and improve genotype calling accuracy. 
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Figure 2. Infinium and GBS call rates as well as concordance between the two genotypes for A) samples 

(rank ordered) and B) SNP (rank ordered). 

 

 
Figure 3. Relationship between the amount of input DNA in nanograms and the proportion of reads 

mapped to the custom genome for the GBS assay. 
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SUMMARY 

This study aimed to identify loci underlying variation in parasite resistance, as measured by 

worm egg count (WEC), in a large multi-breed sheep population using genome-wide association 

studies (GWAS) and regional heritability mapping (RHM) approaches. A total of 7153 animals 

with both genotype data and WEC phenotypes were included in this analysis. Strong evidence of 

association was observed on chromosome 2 by both approaches. However, RHM had a greater 

power to identify loci than GWAS analysis. RHM identified an additional region at the genome-

wide significance level on chromosome 6. This region was also previously found to be associated 

with mastitis resistance and facial eczema susceptibility in sheep, indicating that some pleiotropic 

effects are possibly affecting a wide range of sheep diseases. Three other regions on chromosome 

1, 3 and 24 reached the suggestive threshold. However, the regions accounted for a small 

proportion of genetic variance (hg
2 < 0.01). It seems that parasite resistance is a complex disease 

with a large number of genes involved in the mechanism of resistance.  

 

INTRODUCTION 

Gastrointestinal nematode infections are one of the most important health problems affecting 

sheep and other grazing ruminants in Australia and worldwide.  Selection for parasite resistance 

has been suggested as a viable method for parasite control (Roeber et al., 2013). Most breeding 

programs for parasite resistance are based on phenotypic indicators, particularly worm egg counts 

(WEC) in faeces, but trait measurement is unattractive, costly and time consuming. Therefore, it 

would be very useful to select directly for parasite resistance. To date, several quantitative trait loci 

(QTL) mapping studies have been conducted for parasite resistance in sheep (e.g. Dominik et al., 

2010 and Marshall et al., 2009). However, little overall consensus has emerged from these studies. 

This may be due to the physiological complexity of parasite resistance, and the fact that these 

studies are very diverse, involving a variety of analytical approaches, experimental designs, 

parasite species and sheep breeds. Further, genome-wide association studies (GWAS) for complex 

diseases, such as parasite resistance, have generally failed to explain the majority of genetic 

variation influencing the trait (Kemper et al. 2011).  The objective of this study was to identify 

loci underling variation in parasite resistance in a multi-breed sheep population. 

 

MATERIALS AND METHODS 

Animals. Parasite resistance trait, as measured by WEC, was investigated in a multi-breed 

sheep population from the Sheep Cooperative Research Centre information nucleus flock (INF). A 

total of 7,539 animals with both genotype data and WEC phenotypes were included in this 

analysis. Various breeds were represented in the population (Table 1) but with a significant 

proportion of Merino sheep, and only this breed had a substantial proportion of purebred animals. 

The remaining breeds were mainly represented by their crosses with Merino (van der Werf et al. 

2010).  

  Genotypes. Animals were genotyped using the 50k Ovine marker panel (Illumina Inc., 

SanDiego, CA, USA). SNPs were removed if they had a minor allele frequency (MAF) < 1%,  an 

Illumina Gentrain score (GC) less than 0.6,  a call rate less than 95%, or not in Hardy-Weinberg 

equilibrium. Furthermore, positions of SNPs were obtained from the latest sheep genome 
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Ovis_aries_v3.1, and any SNP with unknown position was removed.  After applying these quality 

measures, 7,539 animals and 48198 SNPs were retained. 

 
Table 1. Proportions of different breeds in the population 

 

Breed BL COR COOP EF WD PD TEX AF PS MER 

Proportion (%) 11.1 0.8 10 0.7 0.4 1.8 2.3 2 1.1 69.8 

Border Leicester: BL, Corriedale: COR, Coopworth: COOP, East Friesian: EF, White Dorper:WD,  Poll 

Dorset: PD, Texel: TEX, Australian Finnsheep: AF, Prime Samm: PS, Merino:MER 

 

Data analysis. Genome-wide association studies (GWAS) and regional heritability mapping 

(RHM) approaches were performed using ASReml-R (Butler et al., 2009). GWAS was performed 

using the GRAMMAR approach (Aulchenko et al., 2007). In the first step, we fitted the following 

animal model to the data:  

𝒚 = 𝑿𝒃 + 𝒁𝟏𝒒 + 𝒁𝟐𝒂 + 𝒆 

where 𝒚 is a vector of cube root transformed WEC records, 𝑿 is a design matrix of fixed 

effects,  𝒃 is a vector of fixed effects, 𝒁𝟏 and   𝒁𝟐 are design matrices of random effects, 𝒒 is a 

vector of random breed effects, 𝒂 is a vector of random genetic effects, and  𝒆 is the vector of 

residuals.  The following distributions were assumed:  𝒒 ~𝑁(0, 𝐼𝜎𝑞
2), 𝒂 ~  𝑁(0, 𝐴𝜎𝑎

2)  and 

 𝒆  ~𝑁(0, 𝐼𝜎𝑒
2),  where 𝑨 is the numerator relationship matrix (NRM) calculated from deep 

pedigree records, 𝝈𝒂
𝟐 is the additive genetic variance explained by pedigree, 𝝈𝒒

𝟐  is the variance of 

breed effects, and 𝝈𝒆
𝟐 is the residual variance. The fixed effects were sex, rearing type × birth type, 

contemporary group (flock site  × group of management × year of birth), age of animal at WEC 

recording and its quadratic polynomial.  Second, residuals obtained from the animal model were 

treated as corrected phenotypes for a single- SNP regression:      

   �̂� = 𝟏𝝁 + 𝑾𝒂 + 𝒆 

where 𝒚 ̂ is a vector of adjusted phenotypes, 𝝁 is the overall mean, 𝑾 is a vector of a single 

SNP`s genotype for each of the animals, 𝒂  is the effect size of the SNP, and  𝒆 is the vector of 

residuals. The second approach was RHM, in which each chromosome was divided into windows 

of predefined number of SNPs, and the variance attributable to each window was calculated. In 

this analysis, two window sizes were used, 100-SNP and 50-SNP windows.  The following model 

was fitted to the data: 

𝒚 = 𝑿𝒃 + 𝒁𝟏𝒒 + 𝒁𝟐𝒂 + 𝒁𝟑𝒈 + 𝒆 

where the terms are as described in the animal model, and 𝒈 is the regional genomic effect 

estimated from SNPs within each window. 𝒈 was assumed to be distributed as 𝑁(0, 𝐺𝜎𝑔
2), where  

𝐺 is the regional genomic relationship matrix built from SNPs within each window, and 𝜎𝑔
2 is the 

regional genomic variance.  Phenotypic variance, 𝜎𝑝
2, was then given by 𝜎𝑞

2 + 𝜎𝑎
2 +  𝜎𝑔

2 + 𝜎𝑒
2. 

The whole heritability was calculated as ha
2 =  𝜎𝑎

2/𝜎𝑝
2, whereas the regional heritability was 

calculated as  hg
2 =  𝜎𝑔

2/𝜎𝑝
2 . Significance thresholds of GWAS and RHM were determined using 

the Bonferroni correction (significance threshold = α / N, where N is the number of tests) at the 

genome-wide (α =0.05) and suggestive (α=1) levels.  

 

RESULTS AND DISCUSION 

The most significant GWAS results were observed on chromosome 2. Two SNPs, 

OAR2_119123707.1 and OAR2_119557086.1, were significantly associated with parasite 

resistance at the genome-wide and suggestive levels, respectively (Figure1). These results were 

also confirmed with RHM using 100 SNP window size (Figure 2).  Both of GWAS and RHM 
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analyses generally agreed when there was a strong evidence of association (e.g.: chromosome 2). 

In this study, however, RHM detected more genomic regions significantly associated with parasite 

resistance therefore suggesting the method has greater power than GWAS analysis.  For example, 

RHM using 100 SNP window size identified a significant region on chromosome 6 that was below 

the suggestive level by GWAS analysis. Furthermore, a region on chromosome 24 reaching the 

suggestive threshold was detected only with RHM.  However, all significant regions identified by 

RHM explained a small proportion of WEC variation (RHM ranged from 0.0036 to 0.01), 

indicating that parasite resistance is a largely polygenic trait with a large number of loci involved 

in conferring resistance.  Nagamine et al. (2012) showed that RHM captured more of the genetic 

variation than a single-SNP GWAS approach, especially when associated SNPs have very small 

effects to be declared significant at the genome wide level.  

 
Figure1. Manhattan plot of GWAS results.The solid line represents the genome-wide significance 

threshold (α = 0.05) and the dashed line represents the suggestive threshold (α = 1). 

 
Figure2. Regional heritability mapping (RHM) across the genome. The solid line represents the 

genome-wide significance threshold (α = 0.05) and the dashed line represents the suggestive threshold 

(α = 1). 

 

Significant regions with 100 SNP window size as well as those below the suggestive level were 

also analysed with a 50 SNP window size. The 50 SNP window size analysis confirmed the 

significant regions on chromosome 2 and 6, but did not confirm the region on chromosome 24. 

From all the region below the suggestive level, only two regions on chromosome 1 and 3 were 

significant.  The results for RHM using 50-SNP window size are given in Table 2. Comparison 
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with other studies showed that significant region in chromosome 2 was contained within 

previously identified QTLs for parasite resistance (Hu et al., 2013). This region has also been 

found to be associated with mastitis resistance in sheep (Jonas et al. 2011). Candidate genes in this 

region include: DEAD box polypeptide 60 (DDX60) and annexin A10 (ANXA10), which their 

expression found to be involved with immune response. Significant region in chromosome 6 has 

recently been identified by Riggio et al., (2013) for parasite resistance using the 50K-SNP array. 

Potential candidate genes in this region include: polycystin-2 (PKD2) and ATP binding cassette G 

member 2 (ABCG2), which have been reported as being under selection in a study of large 

number of breeds (Kijas et al., 2012). Although, ABCG2 has been investigated as a candidate gene 

for facial eczema in sheep (Duncan et al., 2007). 

 
Table 2: Summary of significant regions for RHM using 50 SNP window size analysis 

 

OAR Window start Window finish LRT 𝐡𝐠
𝟐 Candidate genes 

2 105083320 107564404 10.07 0.0043 PALLD, DDX60, ANXA10 

2 106585530 108470142 16.12 0.0045 

2 107564404 109633672 16.13 0.0048 

2 109633672 113113775 15.59 0.0051 

2 110827578 114955024 16.69 0.0051 

2 113113775 116350674 18.42 0.0084 

6 34614727 38019817 16.97 0.0083 PKD2, ABCG2, SP1 

6 36522166 39035619 10.70 0.0054 

1 92157812 94722198 10.14 0.0048 CD58, CD2, CD101, IGSF3, VTCN1, 

FAM46C 

3 129451837 1311779166 9.23 0.0047 SOCS2 

 

CONCLUSION 

This study has been successful at identifying QTLs for parasite resistance in a large multi-

breed sheep population. The most significant regions were detected on chromosome 2 and 6. Four 

other regions on chromosome 1, 3 and 24 reached the suggestive threshold. These results also 

showed that there are a number of common genes that are underlying resistance to a wide range of 

parasite species. Furthermore, some of these common genes are possibly pleiotropic with other 

sheep diseases.   
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SUMMARY 

We report on the association with reproductive phenotypes of a genetic marker mapped to the 

HELB gene, in tropically adapted beef cattle. The genetic marker is a single nucleotide 

polymorphism (SNP) in chromosome 5 that is non-synonymous and has a predicted deleterious 

effect on the coded protein. Reproductive phenotypes used in these analyses were from a 

population of the Cooperative Research Centre for Beef Genetic Technologies (Beef CRC). Bulls 

(n = 1,023) were from a mixed-breed population and represented animals not included in the 

original genome-wide studies (GWAS) that reported SNP associations on chromosome 5 for 

scrotal circumference (SC). Cows (n = 1,089) were Tropical Composites and most were from the 

population used in the original GWAS that described SNP associations on chromosome 5 for 

puberty and post-partum anoestrus interval (PPAI). Animals were genotyped with Taqman assays 

designed for 3 non-synonymous SNP. The results indicate that the SNP in HELB is significant for 

SC and PPAI at P < 10
-7

 and for heifer puberty (P = 0.0029). This SNP might aid across breed 

phenotype prediction for reproductive phenotypes given its significance in these mixed and 

composite cattle with both Bos taurus and Bos indicus ancestry. Future studies should target this 

HELB SNP in other breeds and populations to confirm the associations we described. 

INTRODUCTION 

Discovery of functional mutations related to QTL has merit in the context of animal breeding. 

Functional mutations, such as non-synonymous single nucleotide polymorphisms (SNP) or 

frameshift SNP have potential biological meaning: they might be the causative mutation or be in 

strong linkage disequilibrium (LD) with the causative mutation. For these reasons, functional 

mutations might overcome an important issue faced by genomic selection in the beef cattle 

industry: prediction of crossbred performance (Jonas and de Koning, 2015). Crossbred 

performance is especially important in tropical regions where beef cattle herds carry a mixture of 

Bos indicus and Bos taurus ancestry. Functional mutations associated with reproductive traits 

would especially benefit Bos indicus influenced cattle. Bos indicus breeds tend to have a 

prolonged post-partum anoestrus period, later puberty and overall lower reproductive performance 

when compared to Bos taurus breeds (Abeygunawardena and Dematawewa, 2004). Despite lower 

reproductive performance, Bos indicus breeds and crosses are largely used in tropical regions 

because of their adaptive advantage in those environments (Burrow, 2012). Improvement of 

reproductive performance of Bos indicus breeds and crosses would benefit beef production. 

Herein, we investigated the association between 3 non-synonymous SNP in candidate genes 

mapped to Bos taurus autosome 5 (BTA 5) and reproductive phenotypes, in tropically adapted 

cattle. Previous studies have reported regions of BTA 5 to be associated with male and female 

reproductive phenotypes in various cattle breeds (Kappes et al., 2000; Kim et al., 2009; McClure 

et al., 2010; Fortes et al., 2012; Hawken et al., 2012; Fortes et al., 2013a). In Tropical Composite 

cattle, the QTL on BTA 5 was significant for scrotal circumference (SC) and post-partum 

anoestrus interval (PPAI). The SNP investigated in the present study are predicted deleterious 

mutations in FAU, INHBC and HELB, candidate genes mapped to this region of BTA 5. Our 

objective was to search for SNP that could explain the previously identified QTL. 
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MATERIALS AND METHODS 

Animals. Blood for DNA extraction was obtained from 1021 bulls and 1089 cows. Bulls were 

113 Brahman, 741 Tropical Composite and 167 crossbred, which were from the Beef CRC 

populations previously described (Burns et al., 2013). Importantly, the bulls used in this study had 

not been genotyped for previous GWAS (Fortes et al., 2012; Fortes et al., 2013a). Cows were 

Tropical Composites used in previous GWAS (Hawken et al., 2012). Crossbred bulls are the 

product of mating Brahman to Tropical Composites. Animals studied varied in Bos indicus and 

Bos taurus ancestry. 

 

Mutations and genotype assays. Non-synonymous SNP were identified within three 

candidate genes - FAU, INHBC and HELB - by mining whole genome sequences of 64 bulls of a 

variety of breeds including Brahman and Senepol. Potentially deleterious mutations were 

identified using the bioinformatics software known as Variant Effect Predictor (VEP) from 

Ensembl (http://www.ensembl.org/info/docs/tools/vep/index.html). Custom TaqMan assays were 

developed for the selected non-synonymous SNP according to TaqMan Array Design Tool 

(Applied Biosystems, 2010). Further, bulls were also genotyped with the 90K Illumina SNP chip. 

 

Analysis. Single SNP regression was applied for genotyped animals using a mixed model 

analysis of variance with the SNP & Variation Suite software (Release 8.3.0, Golden Helix, Inc.). 

The mixed model can be described with the equation: yi = Xβ + Zµ + Sjaj + ei ; where yi represents 

the phenotypic measurement for the i
th

 animal, X is the incidence matrix relating fixed effects 

(contemporary group and breed) in β with observations in y, Z is the incidence matrix relating to 

random additive polygenic effects of animal in μ with observations in y and Sj is the observed 

animal genotype for the j
th

 SNP (coded as 0, 1 or 2 to represent the number of copies of the B 

allele), aj is the estimated SNP effect, and ei is the random residual effect. Age was fitted as a 

covariate for SC and PPAI. Same model for candidate SNP and GWAS. 

 

RESULTS AND DISCUSSION 

Previous QTL mapping and GWAS reported the importance of BTA 5 for cattle reproduction. 

A QTL for ovulation rate was mapped to 40 cM in the mixed-breed population known as MARC 

herd (Kappes et al., 2000). In Angus, a QTL for SC was reported at 13 Mb, at 104 Mb and at 127 

cM (McClure et al., 2010). Associations with twinning rate for SNP between 55 and 75 Mb were 

reported in Holstein cattle (Kim et al., 2009). Hawken et.al (2012) carried GWAS in Brahman and 

Tropical Composites cows and found SNP associated with female reproductive traits in Tropical 

Composites located on BTA 5. The largest concentration of SNP associated with PPAI was on 

44.0 to 44.3 Mb, 58.2 Mb and 113.6 Mb. Age of puberty was also reported to be associated with 

BTA 5 in 2 positions: 28.7 Mb and 96 Mb (Hawken et al., 2012). In Tropical Composite bulls, 

significant SNP association for levels of inhibin hormone were located between 42 and 61 Mb 

(Fortes et al., 2013a). Subsequently, significant SNP in BTA 5 were found for levels of inhibin and 

insulin-like growth hormone (IGF1) in Brahman and Tropical Composite bulls (Fortes et al., 

2013b). Taken together the evidence points to one or more QTL on BTA 5 that could be important 

for reproductive physiology in many cattle breeds, with various Bos indicus and Bos taurus 

ancestry. In the current study, we tested 3 SNP in candidate genes located between 47 and 56 Mb 

of BTA 5, because these locations were important for tropically adapted cattle in the literature. 

We have identified a SNP in HELB associated with SC and PPAI (Table 1, P < 10
-7

). An 

association with heifer puberty, defined by the age at the first corpus luteum, was also noted (P = 

0.0029). Breeding cows with the favourable allele could reduce PPAI in 30 days and puberty in 18 

days. This SNP explained more than 2% of the genetic variance for SC and PPAI. The SNP in 
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FAU and INHBC failed to associate with studied phenotypes. Out of the 3 tested SNP, the one in 

HELB is the only mutation likely to be in high LD with the causative mutation in BTA 5. We 

considered the HELB SNP a potential functional mutation because it is non-synonymous and has 

predicted deleterious effect. It is a G to A substitution that causes a T to M residual change in the 

protein, with a SIFT score 41, deemed deleterious (0.04). The physiological effect of this protein 

change in SC, PPAI and AGECL is unknown and merits investigation. The causative mutation(s) 

in BTA 5 could be affecting the endocrine pathways that control both male and female 

reproduction; so that it is associated with SC, AGECL and PPAI. Previously, we observed an 

association between this QTL in BTA 5 and levels of IGF1 and inhibin (Fortes et al., 2013a). 

Links between this QTL and reproductive hormones should be explored. 

 

Table 1. Estimated significance and effect of non-synonymous polymorphisms mapped to 

candidate genes on chromosome 5.* 
 

Bulls 

Phenotype Gene P-Value Effect % Variance 

SC18 

FAU 2.82x10-1 0.3507 0.12 

HELB 5.23x10-7 0.7018 2.50 

INHBC 7.86 x10-1 -0.0368 0.01 

SC24 

FAU 5.77 x10-1 0.1724 0.03 

HELB 1.94x10-11 0.8949 4.40 

INHBC 4.22x10-1 -0.1044 0.06 

Cows 

AGECL 

FAU 7.67x10-1 3.9005 0.01 

HELB 2.90x10-3 18.3899 0.95 

INHBC 8.47x10-1 1.1082 0.00 

PPAI 

FAU 7.68x10-1 3.4762 0.01 

HELB 2.15x10-8 30.4043 3.87 

INHBC 8.53x10-1 -0.9703 0.00 

*Genes and values highlighted in bold represent significant associations for reproductive traits: scrotal 

circumference at 18 and 24 months of age (SC18 and SC24, cm), age at first corpus luteum (AGECL, days) 

and post-partum anoestrus interval (PPAI, days). The SNP Effect is provided in the same measuring unit at 

the trait and % Variance is the percentage of the additive genetic variance explained by each SNP. 

 

The relevance of the SNP in HELB to previously described QTL was tested by fitting this SNP 

as a fixed effect in the GWAS (Figure 1). When comparing the P-values between two models, we 

observe that the P-values are reduced from 10
-8

 to 10
-6 

for SC18, and from 10
-13

 to 10
-10

 for SC24. 

However, the strong association signal from common chip SNP was still present after fitting the 

HELB SNP. This result is different from expectations for causative mutations. When the causative 

mutation in the PLAG1 gene was fitted the QTL on BTA 14 practically disappeared from GWAS 

(Fortes et al., 2013c). This result suggests that more in-depth molecular characterisation is 

required. It is unlikely that the SNP in HELB is the only causative mutation associated to 

reproductive traits in this genomic region. 
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Figure 1. Significance of the associations with SC18 and SC24 for SNP across the genome. 

P-values are on y-axis and genomic positions are on x-axis. Note the reduction in P-values from 

the blue dots (animal model) to the green dots (animal model with HELB SNP fitted as a fixed 

effect). 

  

CONCLUSION 

The identification of a SNP associated with SC in a mixed population of bulls and with PPAI 

and AGECL in Tropical Composite cows might aid across breed phenotype predictions. Future 

studies should target this HELB SNP in other breeds and populations to confirm associations. For 

female traits, this SNP needs to be validated independently from the original GWAS. 
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SUMMARY 

Mutations can affect phenotypes by changing the amino acid sequence in a protein or by 

changing the expression of a gene. The gene expression in a particular tissue can be measured 

using mRNA sequencing and counting the number of mRNA copies of the gene. The aim of our 

research was to find mutations which affect expression of genes in cis. We detected the mutations 

that are associated with the expression of each gene in muscle (45 Angus bulls) and liver (38 

Angus bulls) by correlating the mRNA count with the alleles carried at single nucleotide 

polymorphisms (SNPs) within 50kb of the genes that were tested. Furthermore, the SNPs and 

genes with at least one SNP significantly associated with one or more traits (p < 0.001) were found 

by genome-wide association studies (GWAS) in a beef cattle dataset including 6,114 genotyped 

animals with 20 traits recorded. We compared the results to find the SNPs significantly associated 

with gene expression (p < 0.001) and also with the variation in phenotype. The SNPs which were 

significantly associated with gene expression (p < 0.001) were more likely to be significant in 

GWAS for concentration of Insulin like growth factor1(IGF-1), residual feed intake (RFI) and in a 

multi-trait significance test. 

 

INTRODUCTION 

The mutations underlying variation in complex traits are generally identified using genotypes 

and phenotypes in GWAS (Goddard and Hayes 2009). However, most of the SNPs found in 

GWAS are not located in the coding regions of the genome and  so may influence the variation of 

the traits by changing the expression of genes. These polymorphic sites are likely to affect the 

expression of the copy of the gene on the same chromosome and are called cis-expression 

quantitative trait loci (cis-eQTL) (Arnold et al. 2012).  

The next generation sequencing (NGS) technology which is used for sequencing DNA is also 

applicable for sequencing mRNA. In genome-wide transcriptome studies using the mRNA 

sequencing (RNA-seq) data, the abundance of mRNA for each gene can be measured by counting 

the number of sequence reads aligned to the gene in the reference genome.  

Although GWAS have found many associations between SNPs and traits, it has proved 

difficult to identify the causal mutation or the gene(s) whose structure or expression they affect. 

On the other hand, a cis-eQTL affects the expression of a specified gene, so if a cis-eQTL is the 

same as a QTL for a traditional phenotype, this defines the gene through which the QTL probably 

acts. In addition, the cis-eQTL may help to identify the causal mutation for both itself and the 

traditional QTL. However, the RNA-seq data is more expensive to obtain than most traditional 

phenotypes and therefore the number of animals in whole transcriptome studies is limited. Also, 

the results depend on the tissue which was sampled for mRNA and so, even if a QTL is identical 

with a cis-eQTL, this may not be discovered if the wrong tissue is sampled. 

The aim of our research was to find if SNPs which were significantly associated with gene 

expression (cis-eQTL) were more likely to be significant in GWAS of traditional traits. 
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MATERIALS AND METHODS 

Animals. The animals used for RNA-seq were young Angus bulls from lines of cattle 

divergently selected for residual feed intake (RFI) from the selection lines established in 1993 at 

the Agricultural Research Centre, Trangie, NSW, Australia (Arthur et al. 2001). The bulls with 

liver (L-bulls) and muscle (M-bulls) samples were from the lines after approximately 3 and 4 

generations of selection, respectively. 

RNA-seq. The transcriptome data was for 43 muscle and 38 liver samples. The extracted RNA 

from the sampled tissues (Chen et al. 2011) were sequenced with a HiSeq 2000 (Illumina Inc) 

after mRNA enrichment, by the modified protocol of Illumina sample preparation for RNA-seq. 

All of the raw reads were passed through quality control filters and trimming the ends of reads 

based on Phred quality scores (minimum quality of each nucleotide base=15, minimum average 

quality of the read after trimming=20, minimum read length after trimming=50 and maximum 

consecutive nucleotide bases with poor quality=3). 

Genotypes. For 43 M-bulls we had 800K SNP chip and whole genome sequence data (WGS)  

with average coverage 6.7 fold from the 1000 bull genomes project (Daetwyler et al. 2014). The 

L-bulls had 800K SNP genotypes imputed from 50K (Illumina BovineSNP50K chip) using 

BEAGLE (Browning and Browning 2009) and then imputed to WGS using FImpute (Sargolzaei et 

al. 2014). We also used FImpute to rephase the genotypes of M and L bulls. 

Alignment. The bovine genome assembly UMD3.1 was modified using the WGS data to 

produce a genome sequence for each individual bull. For each bull the RNA-seq data were aligned 

to its customised reference genome using TopHat2 (Kim et al. 2013). 

Abundance of genes. For each gene in the reference genome, the mapped mRNA was counted 

using HTSeq python package (Anders et al. 2015). The number of sequence reads for all genes in 

each animal were normalised with a weighted trimmed mean of the log expression ratios using 

edgeR package in R (Robinson and Oshlack 2010). Finally, the normalised gene counts were log 

transformed to have normal distributions across animals. 

eQTL mapping. The genes expressed in more than 25% of L-bulls and M-bulls were used to 

find eQTL. The association between the gene counts and the SNPs in WGS data within 50kb of 

the gene was calculated with ASReml for muscle and liver samples separately. 

GWAS. A GWAS was carried out  for 20 traits (including meat quality and production traits) 

using up to 6114 cattle and 729,068 HD SNPs. As well as individual traits, a multi-trait test was 

performed as described by Bolormaa et al (2014), except that only Bos taurus cattle were included. 

The SNPs were from the Illumina high density panel and were either genotyped or imputed from 

lower density. Only SNPs within 50 kb of a gene were used so that the same SNPs were tested in 

the GWAS as were tested for cis-eQTL.  

The SNPs were classified as significant or not for association with gene expression (p < 0.001) 

and for association with one of the traits (p < 0.001) and we performed a chi-squared test of the 

hypothesis that SNPs affecting gene expression are more likely to be significant in GWAS. We 

also classified genes as either containing a significant cis-eQTL or not and as having a SNP within 

50kb associated with a trait or not, and performed a chi-square test to test the hypothesis that genes 

containing an eQTL were also likely to be near a SNP associated with a traditional phenotype.  

 

RESULTS AND DISCUSSION 

RNAseq. In the muscle samples, there were on average about 8.5×10
6
 (100%) RNA-seq raw 

reads per animal, 6.5×10
6
 (75%) reads that passed the quality control filters, 5.9×10

6
 (70%) that 

aligned to the reference genome and 5.5×10
6
 (65%) that were mapped uniquely. In the liver 

samples, there were on average roughly 7.6×10
6
 (100%) raw reads per animal, 5.5×10

6
 (72%) 

reads that passed the quality control filters, 4.6×10
6
 (60%) that aligned to the genome and 4.5×10

6
 

(52%) that were mapped uniquely. The percentage of reads mapped to the reference genome in L-
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bulls is less than M-bulls probably because we used imputed genotypes to enhance the L-bulls 

reference genomes. In all chromosomes (and autosomes), 12,278 (11,842) in muscle and 12,233 

(11,821) genes in liver were expressed (about 50% of the known genes were expressed in muscle 

and liver).  

cis-eQTL.. In the muscle samples, each of the expressed 12,278 genes were tested for cis-

eQTL using SNPs within 50kb of the gene. Among the HD SNPs, there were 240,818 SNPs that 

were tested for association with expression of one or more genes. 5,042 of these SNPs were 

significantly (p < 0.001) associated with expression of at least one gene in muscle. Similarly, of 

227,488 SNPs tested, 2,420 were associated (p < 0.001) with expression of at least one gene in 

liver (Table 1).  

Trait QTL. Table 1 presents results for two individual traits (blood concentration of IGF1 and 

residual feed intake) and the multi-trait test. For instance, 1,047 SNPs, out of 240,818 tested, were 

significantly associated with RFI (The number of SNPs tested varies slightly between M and L 

bulls and by trait because some SNPs had to be dropped from some analyses because they had a 

MAF below 1% in that dataset and only SNPs near genes expressed in that tissue were used). 

Overlap between trait QTL and eQTL. There were only 3 SNP in common between the 386 

SNPs that were associated with blood concentration of IGF-1 and the 5,041 associated with 

expression of at least one gene in muscle. This is not more than expected by chance (p=0.07) 

(Table 1). However, as shown in Table 1, there was more overlap between SNPs associated with 

traits and gene expression than expected by chance (p < 0.05) in 3 of the 6 tests. For instance, there 

were 169 SNPs associated with both the multi-trait test and with gene expression in muscle and 

this was far more than expected by chance (p=8.2×10
-9

).  

Where a SNP is significantly associated with a trait and with expression of a gene, the 

expression of this gene may also be affecting the trait. Genes identified in this way  (and the 

number of significant SNPs associated with their expression) for the cis-eQTL in muscle and  

affecting IGF1 are: PPM1H (2), MTHFD1 (1). For muscle cis-eQTL and RFI: POLR2I (33), 

PTPRR (5), ATP5E (4), SSFA2 (2), CARD6 (2), THAP8 (1), DNER (1), ATPIF1 (1) and in cis-

eQTL in liver and IGF-1: DAB1 (2), EVC (1), RFI: MVK (9), GSK3A (4), LOXL3 (1), DPYD (1), 

DNER (1), and 2 SNPs were in an uncharacterized gene. For example, GSK3A ( glycogen synthase 

kinase 3 alpha) was reported to regulate glycogen metabolism in liver (Ali et al. 2001). So it 

seems reasonable that this gene can affect feed efficiency and RFI. The number of SNPs found 

significant in eQTL mapping and in the multi-trait GWAS was 169 in muscle and 48 in liver and 

these SNPs were spread across 51 genes in muscle and 25 in liver. 

Table 1 also contains the corresponding numbers based on testing genes instead of SNPs. 4,044 

genes had a cis-eQTL, 303 genes had a SNP within 50kb associated with IGF-1 and 125 genes had 

both which was significantly more than expected by chance (p=0.002). Note that the SNPs 

associated with IGF-1 are not necessarily the same as the SNPs associated with gene expression, 

they are just near the same gene. In addition, the eQTL analysis used whole genome sequence 

whereas the QTL analysis used HD SNPs. 

In all 6 tests, there were more genes that contained both a QTL and an eQTL than expected by 

chance (Table 1). Examples of genes that contain a QTL and an eQTL are: in muscle, SH3-domain 

GRB2-like (endophilin)-interacting protein 1 (SGIP1) gene was previously reported to have a role 

in regulating food intake, fat mass, energy balance and energy homeostasis. Its roles in regulation 

of feeding behaviour affects any process that activates or increases the frequency, rate or extent of 

feeding behaviour (Trevaskis et al. 2005; Cummings et al. 2012) and therefore might affect RFI. 

Bos taurus bone morphogenetic protein 2 (BMP2) is one of the genes found to significantly 

associated with IGF-1 concentration and differentially expressed in muscle. BMPs, are also called 

growth and differentiation factors have negative regulation of the IGF receptor signalling pathway 

and affect any process that stops, prevents, or reduces the frequency, rate or extent of IGF receptor 
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signalling (Kronenberg 2003). 

We conclude that traditional QTL are sometimes in fact cis-eQTL. Therefore mapping cis-

eQTL will help us to identify causal variants for conventional phenotypes and the genes through 

which these variants act. A benefit of eQTL is that the gene whose expression they affect is known 

so, if the QTL is an eQTL, this identifies the gene through which the QTL acts. cis-eQTL often 

explain a large proportion of the variance in expression and so there is some power to identify the 

causal variant even in small datasets. In addition, as information builds up about regulatory regions 

in livestock genomes, we will have functional information to help us identify sites that might 

change the expression of the target gene.  

 

Table 1. SNPs and genes association with traits variation and gene expression in muscle and 

liver 
 

Tissue / 

Trait 

Total SNPs (genes) Number of SNPs (genes) significantly 

associated with: 

 

QTL eQTL QTL & eQTL X2 p-value for  

SNPs (genes) 

Muscle      

IGF-1  240,586 (12,278) 386 (303) 5,041 (4,044) 3 (125) 0.070 (0.002) 

RFI 240,818 (12,278) 1,047 (502) 5,042 (4,044) 49 (204) 4.6×10-09 (1.8×10-04) 

Multi-Trait 239,726 (11,842) 5,240 (3,102) 5,030 (3,923) 169 (1,099) 8.2×10-09 (0.002) 

      

Liver      

IGF-1  227,473 (12,233) 366 (287) 2,420 (2,246) 3 (85) 0.649 (6.2×10-07) 

RFI 227,488 (12,233) 985 (497) 2,420 (2,246) 18 (113) 0.019 (0.010) 

Multi-Trait 226,564 (11,821) 4,907 (2,973) 2,413 (2,202) 48 (630) 0.550 (3.3×10-05) 
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SUMMARY 

A multi-breed genome wide association study (GWAS) can potentially improve QTL mapping 

precision and detection power. Alternatively to a multi-breed GWAS, meta-analysis can combine 

within breed GWAS results. Our objective was to compare within breed GWAS, multi-breed 

GWAS and meta-analysis of within breed GWAS results. Imputed whole-genome sequences and 

deregressed proofs for milk, fat and protein yield of 16,031 bulls of five French and Danish dairy 

cattle breeds were used for the analyses. GWAS were performed within each breed, combining 

French and Danish Holstein, combining Jersey, Montbéliarde, Normande and Danish Red, and 

combining all breeds. Within breed GWAS results were combined using three different meta-

analysis models. The multi-breed GWAS resulted in more distinct peaks by increasing the p-

values of some variants and decreasing the p-values of others. For some QTL not segregating in 

Holstein, combining all breeds except Holstein was useful, because they were overshadowed by 

larger QTL segregating in Holstein when all breeds were combined. The meta-analysis gave 

results similar to the multi-breed GWAS and can be used as an alternative. The results obtained by 

the weighted Z-score model were closest to those of the multi-breed GWAS. 

 

INTRODUCTION 

Genome wide association studies (GWAS) can help in the identification of causative mutations 

influencing quantitative traits. With the increasing number of re-sequenced individuals, more 

causative mutations are directly present in the data. In addition, however, there is also a large 

number of variants in linkage disequilibrium (LD) with the causative mutations. As a 

consequence, especially in populations with high levels of long range LD, as is the case within 

dairy cattle breeds (de Roos et al., 2008), GWAS generally results in large number of variants 

associated with a QTL, over a large region. Across breed, LD is only shared for short distances, 

and multi-breed GWAS could therefore improve QTL mapping precision. Furthermore, with the 

large number of sequence variants, high thresholds are necessary to avoid too many false positives. 

For breeds with small study populations, the detection power of a within breed GWAS might not 

be sufficient to detect QTL with a small effect. If causative mutations are shared across breed, a 

multi-breed GWAS could help to improve detection power and aid the identification of such QTL.  

A multi-breed GWAS could thus potentially improve both mapping precision and detection 

power. It is, however, not always possible to have all data required for a multi-breed GWAS. 

Alternatively, a meta-analysis can be performed, that combines results of individual GWAS 

(Begum et al., 2012). In human, Lin and Zeng (2010) found similar efficiency for a meta-analysis 

as for a full joint analysis. 

Our objective was to compare different multi-breed GWAS approaches, using whole-genome 

sequence data of five French and Danish dairy cattle breeds. GWAS was performed both within 

breed and multi-breed, and three meta-analysis methods were compared to the multi-breed GWAS. 
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MATERIALS AND METHODS 

Imputed sequences of 4993 Danish Holstein, 984 Jersey, 768 Danish Red, 5626 French 

Holstein, 1935 Montbéliarde and 1725 Normande bulls and deregressed proofs obtained following 

Garrick et al. (2009) for milk yield, fat content and protein content were used for the analyses. 

First, bulls genotyped with the 50K chip were imputed to HD. For the French data (Hozé et al., 

2013), this step was performed using Beagle 3.0.0 (Browning and Browning, 2007), while for the 

Danish breeds, IMPUTE2 was used (Howie et al., 2009). Subsequent imputation to whole-genome 

sequence was for all breeds done using IMPUTE2. The reference used for imputation to sequences 

of the Danish bulls consisted of the bulls in run 4 of the 1000 bull genome project (Daetwyler et 

al., 2014), while for the imputation of the French bulls, a combined French-Danish reference set 

was used. The latter consisted of 122 Holstein, 27 Jersey, 28 Montbéliarde, 23 Normande and 45 

Danish Red bulls. In total, 24,550,115 polymorphisms were used for the analysis, after filtering for 

imputation quality (IMPUTE2 info score ≥ 0.6) and minor allele frequency (MAF) (≥ 0.005).  

To study genomic relationships between breeds, a genomic relationship was constructed using 

SNP from the 50K chip for 500 randomly selected individuals of each breed. Genomic 

relationships were standardised and scaled based on allele frequencies estimated in the animals 

used to construct the genomic relationship matrix, following VanRaden (2009). Subsequently, a 

principal component analysis (PCA) was performed using the prcomp() command in R (2015). 

A GWAS was performed within each breed, using a single marker model with a random sire 

effect: 

𝑦𝑖𝑗 = 𝜇 + 𝑆𝑗 + 𝛽𝑔𝑖𝑗 + 𝑒𝑖𝑗  , 

where yij is the DRP for individual i with sire j, S the random effect of sire j, b the effect of the 

polymorphisms, gij the allele dose (ranging from 0 to 2) of individual i with sire j and eij a random 

residual. 

Afterwards, for all variants with a within breed p-value below 10
-5

 in French or Danish 

Holstein or below 10
-3

 in one of the other breeds for at least one trait were used for the multi-breed 

GWAS. The multi-breed GWAS was performed combining French and Danish Holstein (HOL), 

combining Jersey, Danish Red, Montbéliarde and Normande (REST), and combining all 

populations (ALL). The model used was identical to that used within breed, except for the addition 

of a breed effect.  

Three meta-analysis approaches were used to combine within breed GWAS results: the 

weighted Z-scores model using METAL software (Willer et al., 2010), and the fixed and random 

effects models using META software (Liu et al., 2010). The inputs of the Z-score model are 

within breed p-values, effect direction and sample size, while the fixed and random effects models 

use the within breed effects and standard errors. The random effects model accounts for 

heterogeneity between studies using Cochran’s statistic.  

 

RESULTS AND DISCUSSION 

Figure 1 shows the genomic relationship between the different breeds used for the studies. 

French and Danish Holstein populations were very similar, and Danish Red was closer than 

Montbéliarde and Normande, while Jersey was the most distinct from the other breeds.   

The multi-breed GWAS generally resulted in more distinct peaks than the individual within 

breed GWAS. When only the two Holstein populations were combined, p-values decreased due to 

the larger detection power. When all breeds or all breeds except Holstein were combined, p-values 

of some variants decreased, but increased for others.  

For QTL segregating in multiple breeds, adding more breeds resulted in stronger associations 

and decreased p-values. Peaks became more distinct when more different breeds were added, also 

for QTL that were segregating in only one or few breeds. For such QTL, the p-values of variants 

segregating in the breeds where the QTL is not present increased. When, however, a region 
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contained different QTL segregating in different breeds, QTL segregating in breeds with a smaller 

sample size were sometimes overshadowed by QTL segregating in Holstein.  

Figure 2 shows a peak around 94 Mb on chromosome 5 associated with fat yield in Holstein. 

Within breed, the peak was present in both Holstein populations with a –log10(p) around 33, and a 

smaller peak on the same location was detected in Normande. Combining the two Holstein 

populations increased the –log10(p)  of the top variant to 62.6, and adding the other breeds resulted 

in a further increase in the peak. The most significant variant had a –log10(p) of 71.6, and was an 

intron in MGST1, with rs-id rs211210569, a gene known of for its association with fat yield 

(Raven et al., 2014).  

In the other breeds, several peaks were detected in the same region. In the multi-breed GWAS 

combining all breeds, these peaks seem to disappear due to the large peak in MGST1. When all 

breeds except Holstein were combined, however, a clear peak was detected around 112.5 Mb, as 

shown in figure 4. Within breed, this peak was observed in Normande and Jersey. The most 

significant variant in the multi-breed analysis excluding Holstein was an intron in MKL1, with rs-

id rs110294643. MKL1 plays an important role in mammary gland development in mice (Sun et 

al., 2006). 

 

 
Figure 1. Principal component analysis of genomic relationships. Showing principal 

components (PC) 1, 2 and 3, dark blue = Danish Holstein, light blue = French Holstein, green = 

Jersey, black = Montbéliarde, orange = Normande, red = Danish Red. 

 

 
Figure 2. -log10(p) for fat yield in the multi-breed analysis on chromosome 5 (93-95Mb) 

 

Table 1 gives the correlation between p-values obtained in the multi-breed analysis and those 

obtained in the different meta-analyses. The weighted Z-score model gave the most similar results 

to the multi-breed GWAS. The weighted Z-scores model uses p-values as input rather than 

estimated effects, and is therefore less influenced by scaling differences. The random effects 

model gave for some variants very similar results to the multi-breed GWAS. For a large part of the 

variants, however, heterogeneity detected by this model was large, resulting in high p-values, even 

for variants that showed strong associations in the multi-breed analysis. All meta-analyses gave 

more different results from the multi-breed GWAS when different breeds were combined than 
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when the two Holstein populations were combined. Not all QTL are segregating in all breeds, and 

as a consequence, it is more difficult to estimate an overall effect in a multi breed analysis.  

 

 
Figure 3. -log10(p) for fat yield in the multi-breed analysis on chromosome 5 (111-113Mb) 

 

Table 1. Correlations between p-values obtained in multi-breed analysis and p-values 

obtained by meta-analysis for variants with a p-value below 10
-5

 in Holstein or 10
-3

 in Jersey, 

Montbéliarde, Normande or Danish Red in a within breed GWAS 

 
  milk   fat   protein  

 Z F R Z F R Z F R 

HOL 0.97 0.87 0.84 0.97 0.88 0.86 0.96 0.87 0.85 

REST 0.54 0.26 0.45 0.81 0.70 0.78 0.90 0.79 0.85 

ALL 0.48 0.28 0.34 0.85 0.69 0.57 0.86 0.70 0.57 

Z = weighted Z-scores, F = fixed effects and R= random effects 

 

CONCLUSIONS 

The multi-breed analysis helped to improve the precision of QTL mapping compared to the 

within breed GWAS. However, due to the much larger number of records available for Holstein 

than for the other breeds, when different QTL are segregating in different breeds in the same 

region, the Holstein QTL tended to dominate the results. Combining all breeds except Holstein 

was therefore useful to detect some QTL segregating in the other breeds that were overshadowed 

by larger Holstein QTL. A meta-analysis can be used as an alternative for a full multi-breed 

analysis. The weighted Z-score model gave results most similar to those of the multi-breed 

GWAS.  
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SUMMARY 

The rumen microbiome plays a key role in the production of methane, a critical greenhouse 

gas. Two graphical methods aiding visualization of rumen microbiome data are presented. Marker 

gene sequence data generated from 520 rumen samples from 260 sheep were used to estimate the 

relative abundance of bacteria. These were assigned to 54 bacterial taxa, which were then clustered 

into four groups of co-occurring taxa. Sheep were measured for methane emissions in open circuit 

respiration chambers. Heatmaps and simplex plots were used to visualise the rumen data and their 

relationship to methane emissions from the sheep. Although the relationship of these dimensions 

to methane emission was not clear-cut, the simplex graphic suggests that there is a continuum of 

low methane emitters across rumen profiles. The analysis indicated that the bacterial microbiome 

data set is broadly two-dimensional; two rumenotypes dominate. This in turn creates a challenge - 

to uncover the origins of this relative simplicity of rumen biology. 

 

INTRODUCTION 

Methane emission from ruminants (primarily sheep and cattle) contributes approximately 30% 

of annual anthropogenic greenhouse gas (GHG) production in New Zealand. Methane is produced 

in a two-stage process in the rumen: feed digestion aided by rumen bacteria yields hydrogen as a 

by-product, which in turn is converted to methane by methanogenic archaea.  

The bacterial composition of the rumen microbiome can be determined through sequencing 

part of the gene coding for a slowly evolving ribosomal RNA. Sequenced sections are aligned to 

reference sequences of the gene in different bacteria and then assigned to bacterial taxa. This 

approach resulted in 54 taxa in the data set used in this study. The relative abundance of these taxa 

in the rumen of each animal can then be estimated. Taxa, once established, can be clustered if their 

relative abundances vary in concert across animals; in turn, this allows clustering of taxa. These 

co-occurring taxa are not necessarily related evolutionarily – instead, they are probably linked 

ecologically. A final research aim, of which the current research is a part, is to determine an 

animal measure which can be used to select for lower methane emission. It is known that animal 

genetics influences methane production (Pinares-Patiño et al. 2013) and that the rumen 

microbiome influences methane production (Kittelmann et al. 2014; Ross et al. 2013; Wallace et 

al. 2014).   

The microbiome consists of multiple microbial species, each representing a dimension in the 

data set. Microbiome compositions within large animal groups are unlikely to form discrete 

clusters (where each point is a rumen sample), and so methods for simplifying these large data sets 

are useful in order to make progress. One route is to reduce the dimensionality – from 54 to a 

workable number. Classical methods are available, such as correspondence analysis. The aim here, 

however, is to present two simple visual methods, first a marriage of cluster analysis and heatmaps 

and second (related to correspondence analysis, (Greenacre 1983)) a marriage of cluster analysis 

and simplex plots. Each presents graphically, but in different ways, the relationship between 

animals, microbiome and methane production.  

It is stressed that this paper focuses on exploratory graphical methods, designed to allow the 
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researcher to “see”, and hence conjecture, relationships; confirmatory standard statistical tests are 

not conducted. Graphical methods are readily accessible; two examples are presented here with a 

view to providing useful tools to aid the progress of microbiome research.   

 

MATERIALS AND METHODS 

A full description of the selection lines used together with the materials and methods for 

measuring methane emissions can be found in Pinares-Patiño et al. (2011). Selection began in 

2009 and the sample of sheep used in this study were from the 2011 and 2012 birth cohorts. Two 

rumen contents samples were collected by stomach tube from each of 260 New Zealand crossbred 

sheep at ~10 months of age. Rumen samples were collected 14 days apart approximately 18 hours 

after the last feed. The sheep were from selection lines phenotypically divergent for methane 

emissions per unit of dry matter intake (CH4/DMI; g/kg) and were measured in open circuit 

respiration chambers for methane emissions continuously for 48 hours prior to each rumen 

sampling Pinares-Patiño et al. (2013). Sheep were offered a ration of lucerne pellets based on 2.0× 

maintenance energy requirements. Feed was offered twice daily and individual dry-matter intakes 

were recorded. Breeding values were estimated using ASReml 3 software (Gilmour 2009).  
The method for assigning amplified 16S rRNA gene sequences to taxa is described by 

Kittelmann et al. (2014). The statistical package R was used for clustering and heatmaps and 

Matlab for the production of rotatable three-dimensional simplex plots (two representative 

screenshots are presented here). Simplexes can be drawn in each dimension; one-dimensional 

(line), two-dimensional  (triangle); three-dimensonal (tetrahedron), etc. They provide the regions 

in which to picture “compositional” (summing to one) data, such as rumen relative abundances.   

For both the heatmap and simplex plot, the bacterial taxa were reduced to four “rumenotypes” 

or clusters using k-means clustering; distance between taxa were established using the relative 

abundance profiles across animals. Four taxa clusters were chosen for two reasons: first they 

capture the bulk of the variation across taxa and second, this choice is the largest that can be 

readily pictured in simplex plot. It is important to stress that the rumenotypes cluster by co-

occurrence across animals, and not by phylogenetic relationship of the bacterial taxa. Relative 

abundances of taxa in a cluster were summed and assigned to the four rumenotypes. For the 

heatmap, rows in the resulting 520×4 matrix of animals by rumenotypes were again clustered 

using k-means. Cluster centre values were log transformed to accentuate the differences in the 

animal groups seen in the heatmap.  

  

RESULTS AND DISCUSSION 

The two graphical approaches are now described, both employing clustering, with the first 

using heatmaps and the second using simplex plots. Each has advantages; the simplicity of the 

heatmap reveals the animal clusters readily whereas the greater detail of the simplex plot (which 

does not cluster animals) reveals the relationship between animal groups and methane emission 

more clearly.  

Heatmaps. The resulting dendrogram of rumenotype clusters is shown against the columns, 

and the dendrogram of animal similarities by rumen bacterial community is shown on the left, in 

Figure 1. Finally, zero-centred breeding values for CH4/DMI were added in the right column of 

Figure 1. Three aspects of this heatmap are noteworthy. First, the row profiles (animals) are 

broadly of two types, indicated by the row dendrogram. The row microbiome profiles run either 

“red, red, yellow, yellow” or “red, yellow, red, yellow”. Second, the methane breeding values run 

counter to this division. The two lowest values, 0.037 and 0.016, lie in the lower and upper 

microbiome profile types. This suggests two broad bacterial community types, each with high and 

low methane variants. This will be seen again, in different form, in the second graphical 

presentation. Third, the relative abundance of Rumenotype4 is generally high. 
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Figure 1. A heatmap (red low, yellow high) of relative abundance of bacterial clusters within 

the sheep microbiome. Four animal clusters (Gp1-Gp4, with animal counts of 70, 95, 214 and 

141 respectively) by four microbiome clusters (Rumenotype1-Rumenotype4) are shown. Zero-

centred breeding values for CH4/DMI for each animal group (with a more negative breeding value 

corresponding to lower expected CH4/DMI  in progeny) are shown in the right hand column. The 

main conclusion is that high abundance of Rumenotype4 and moderately low abundance of 

Rumenotype3 can be associated with lower methane emission (the asterisked Gp4 animal row).  

 

Simplex plots. Using the same co-occurring taxon clusters (Rumenotype1-Rumenotype4) but 

without animal clustering, we can plot all 520 sample relative abundance profiles in a three-

dimensional simplex (a tetrahedron), colouring the resulting points according to level of methane 

emission. The resulting plot can be rotated; a selection of views is given in Figure 2. It suffices to 

plot the first three components of each point; this corresponds to mapping the tetrahedron spanned 

by the unit vectors in R
4
 onto the unit vectors in R

3
 together with the origin, in the canonical way. 

Three main conclusions can be drawn from Figure 2. First, the dimensionality of the clustered 

microbiome is essentially two (seen in this approach in the planarity of the points). Second, the 

high relative abundance of Rumenotype4 (the (0,0,1) corner where many points lie).  Third, lower 

CH4/DMI (coloured red) occur in a continuum across the microbiome space, with some 

concentration at high levels of Rumenotype4.  

Conclusions. We conclude with some overall remarks:  

i) The microbiomes are essentially two-dimensional (this emerges from both graphical 

approaches). This is justified generally in that the four rumenotype clusters used capture the bulk 

of across animal variation. 

ii) The relationship of these dimensions to methane emission is not yet clear cut using this 

data set; each graphic indicates that low emission occurs across the spectrum of animal groups.  

iii) Each graphical approach offers advantages. For example, the heatmap shows the relative 

abundances in the animal groups more clearly while the simplex plot shows the two-

dimensionality of the microbiome space more clearly.  

iv) The challenge remaining is to provide a fundamental biological explanation for the core 

two-dimensionality of the rumen microbiome suggested here.  

0.022 

0.031 

-0.037* 

-0.016 

CH4/DMI (g/kg) 
(zero centred) 
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 Figure 2. Tetrahedron plot of animal microbiome profiles. Each point represents the four- 

component (summing to one) relative abundances of Rumenotype1-Rumenotype4 for an animal 

microbiome sample. These are plotted within a three-dimensional tetrahedron, spanned by (0,0,0), 

(1,0,0), (0,1,0) and (0,0,1) ; colours represent level of CH4/DMI (with red low and yellow high, but 

here note that these refer to level of methane emission, not relative abundance as in Figure 1). Four 

vertices of the unit cube represent extreme microbiomes (specifically, (0,0,0), (1,0,0), (0,1,0) and 

(0,0,1) correspond to all weight on Rumenotype1, Rumenotype2, Rumenotype3 and Rumenotype4 

respectively) . Two perspectives are shown (the source object can be rotated in Matlab): in a) the 

planar nature is apparent while in b), the Rumenotype4 animals, with red (low) colour, show a 

microbiome region of low methane emission. 
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SUMMARY 

 Traits such as feed efficiency in dairy cattle are likely to be influenced by the genome of the 

host and the composition and abundance of microbiomes in the rumen. Here we describe an 

integrative approach that utilizes both genomic (SNP) and rumen microbiome data to predict 

future residual feed intake (RFI). The approach was tested in a small sample, of 28 Australian 

Holstein-Friesian dairy cattle that had 30K SNP genomic predictions for RFI and rumen 

microbiome profiles. The genomic and microbiome profile predictions were combined using a 

linear regression model. Results are very preliminary due to the small size of the data set, 

however, the prediction accuracy in cross validation was maximized when both SNP and rumen 

microbiome profiles were used (r=0.57; 95% CI: 0.33:0.72). These results, while promising, 

should be repeated in a larger data set. 

 

INTRODUCTION 

Feed efficiency is a key economic trait for livestock species, including dairy cattle. One 

measure of feed efficiency is residual feed intake, which is the approximate difference between the 

actual feed intake and estimated feed intake based on a regression model that takes into account 

energy costs for body maintenance and production over a defined production period (Connor, 

2014). Macdonald et al. (2014) and Pryce et al. (2014) both demonstrated that genomic estimated 

breeding values (GEBV) for RFI could be derived which predict residual feed intake (RFI) with 

moderate accuracy. In addition to the cow’s own genome, the profile of the rumen microbiome 

(species composition and abundance) has been shown to be associated with some traits, 

particularly methane emissions (Ross et al. 2013a; Kittelmann et al. 2014). So an obvious question 

is, can we improve predictions of future RFI phenotypes by integrating genomic predictions from 

SNP genotypes with rumen microbiome profiles. This seems promising, as integration of genomic, 

transcriptomes, proteomics and metabolomics information has already returned high accuracy in 

predicting type 2 diabetes (Chen et al. 2012). The objectives of this study were to investigate: (1) 

can rumen microbiome profiles be used to predict RFI for dairy cattle? (2) can the accuracy of 

prediction be increased by integrating using GEBV and rumen microbiome profiles? 

 

MATERIALS AND METHODS 

The dataset included 28 first parity Australian Holstein-Friesian dairy cows which were born in 

2 different years at the Ellinbank research station, Victoria, Australia. Fifteen out of 28 cattle were 

born in July to September 2008, referred to here as FCE1 animals. The rest, referred as FCE2 

animals, were born in July to September 2009. Rumen samples and dry matter intake data were 

collected during 1
st
 lactation, which was in February 2011, at the age of 938 ± 12 day for FCE1 

cattle, and in November 2011, at the age of  812 ± 18 day for FCE2 cattle, respectively. All 

animals were fed similar diets, which constituted predominantly of alfalfa hay pressed into cubes. 

In lactating cows the diet was supplemented with crushed wheat. Feed was always available ad 

libitum. RFI phenotypes were calculated by regressing DMI on fixed effects and liveweight and 
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growth in heifers and DMI on fixed effects, liveweight and production in lactating cows as 

described by Macdonald et al. (2014).  

To calculate GEBVs for the 28 animals, the reference dataset comprised a total of 815 

Australian growing heifers of which 74 also had RFI measurements in first lactation (Macdonald 

et al. 2014). The genotype data described by de Haas et al. (2012) that comprised 30,949 SNP 

were used to construct the genomic relationship matrix using the Yang et al. (2010) method. The 

analysis, using G-REML, was performed using ASReml software (Gilmour et al. 2009). A 

bivariate model similar to that derived from Pryce et al. (2015) was fitted, so that the covariance 

between growing heifer and cow RFI could be estimated. The model used was: 

𝑦𝑇 =  𝑋𝑇𝑏𝑇 + 𝑍𝑇𝑔𝑇 + 𝑒𝑇 

Where 𝑦𝑇  was the 2𝑥𝑛 matrix of observations on all traits, 𝑋𝑇 was the incidence matrix for fixed 

effects, 𝑏𝑇 was the matrix of solution of fixed effects, 𝑍𝑇 was an incidence matrix mapping records 

to animals, 𝑔𝑇 was the corresponding genomic breeding values for animals with genotypes for all 

traits, and 𝑒𝑇 was a 2𝑥𝑛 matrix of residual terms. The 𝑔𝑇 was assumed to be distributed as 

𝑁(0, 𝐺⨂𝐾), where 𝐺 was the animal by animal genomic relationship matrix and 𝐾 was a 2𝑥2 

matrix of additive genetic variances between heifers and cows. Then 𝑉(𝑒𝑇) = 𝑅⨂𝐼, where 𝑅 was 

a 2𝑥2 matrix of error variances and 𝐼 was an 𝑛𝑥𝑛 identify matrix. 

Twenty-eight microbiome samples were extracted using the PowerMaxSoil DNA Isolation kit 

(MoBio) and sequenced on the HiSeq 2000 (Illumina) as per Ross et al. (2013b). Raw sequencing 

reads were trimmed from 5’-end and retained for downstream analysis if the 5’-end reached a 

maximum of 3 bases whose phred quality score were <15; the average remaining read quality was 

≥20; and remaining read length was ≥50bp. This resulted in more than 268 million reads from all 

samples passed filtering. Trimmed reads were subsequently aligned to reference library using 

Bowtie2 (version 2.2.2; Langmead and Salzberg 2012). The reference library was composed of 

assembled rumen microbiome contigs from 3 smaller collections of sequences (Hess et al. 2011; 

Ross et al. 2012; Ross et al. 2013b). Contigs from the 3 sources were concatenated and sequences 

<250bp were removed. An overall alignment rate of 17.36% from all animals was attained and the 

distribution of sequences aligning to reference contigs was plotted in  Figure 1. 
 

 
Figure 1. A histogram of read distribution. The majority of contigs had 10 to 100 reads aligned to. 

Contigs that had less than 10 reads aligning were removed from analysis. 

 

Rumen microbiome profile prediction (RMP) for RFI was performed in the free R statistical 

software (version 3.1.2; The R Foundation for Statistical Computing; http://www.r-project.org/) 
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and package rrBLUP (Endelman et al. 2011) was used. A metagenomics relationship matrix 

calculated as per Ross et al. (2013a) was fitted into best linear regression model (BLUP) and 

validated using two-fold cross-validation (CV), where FCE1 and FCE2 were either training or 

validation sets and an alternative procedure, called leave-one-out where we sequentially removed 

just one animal from the dataset to estimate its genomic breeding value using the remaining data. 

Animals being predicted were always omitted from training set. Integrative (genomic and 

metagenomics) prediction was performed in R statistical software. Twenty-eight measured RFI 

values, GEBVs for RFI and RMP were fitted into a linear regression model. The coefficients in the 

output were multiplied with GEBV and RMP respectively to calculate the integrative predicted 

RFI. Accuracy was assessed by Pearson’s correlation, ‘r’, that is, the correlation between the 

measured values with predicted values. Ninety-five percent confidence interval (CI) was 

calculated via bootstrapping with 10,000 replicates. Coding scripts are available upon request. 

 

RESULTS AND DISCUSSION 

The accuracy of genomic prediction was 0.33 (95% CI: 0.07:0.59; Table 1). A non-zero 

accuracy was observed for RFI calculated using rumen microbiome profile prediction under leave-

one-out CV (r=0.49; 95% CI: 0.2:0.67; Table 1), but the accuracy of rumen microbiome profile 

prediction under two-fold CV was much lower (r= 0.08; 95% CI: -0.39:0.34; Table 1).  

When both the cow’s genome and rumen microbiome information were used for predicting 

RFI, the accuracies were the highest in both two-fold (r=0.38; 95% CI: 0.05:0.65; Table 1) and 

leave-one-out (r=0.57; 95% CI: 0.33:0.72; Table 1) testings. 

 
Table 1 accuracy comparison among genomic, metagenomics and integrative predictions 

 

Sequence source CV2 method Correlation  95% CI# Significant 

Cow’s Genome  Not available 0.33 (0.07, 0.59) Y 

Rumen microbiome  Two-fold 0.08 (-0.39, 0.34) N 

Leave-one-out 0.49 (0.2, 0.67) Y 

Integration1 Two-fold 0.38 (0.05, 0.65) Y 

Leave-one-out 0.57 (0.33, 0.72) Y 
1Integration: both cow’s genome and rumen microbiome information were used. 
2CV: cross validation. 
#95% Confidence interval of the Pearson’s correlation coefficient r based on 10,000 bootstraps. 

 

Our results showed two main findings: firstly, rumen microbiome profiles may be able to 

predict RFI in some circumstances; secondly, integrating genomic and metagenomics information 

can increase prediction accuracy. The idea of integrating genetic information has already been 

realised in human research (Chen et al. 2012), but to our knowledge this study is the first to apply 

it to predict RFI in livestock. Four main elements affect the performance of prediction from rumen 

microbiome profiles: the number of samples in the study, size of the reference library, diversity of 

reference library and sequence depth (Ross et al. 2012). Even though the number of samples 

involved in our study was small, by updating the rumen reference library and maintaining a 

sequence depth of  a minimum of 3 million reads, we obtained a similar accuracy as that in Ross et 

al. (2013a) study. We saw a growth of overall alignment rate as compared with Ross et al. 

(2013a). This could continually be improved by adding internationally collaborative references 

such as the Hungate1000 database (Nordberg et al. 2014). Currently rumen samples are still 

relatively hard to obtain; therefore a wider mining of ruminant metagenomics sequencing data will 

rely on technical improvements on sample collection. 

In conclusion, microbiome information appears to be useful in predicting RFI of the same host 

animals. Prediction accuracy could be increased when both cow’s genome and rumen microbiome 
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profiles are used together, though given the small samples size used here, the analysis needs to be 

repeated in a larger data set. 
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SUMMARY 

Methane emissions from beef cattle contribute to greenhouse gas emissions in the atmosphere 

and waste gross feed energy consumed by cattle. Screening tests for methane emissions in cattle 

would be useful in genetic selection programs to reduce emissions. This paper reports results for 

136 yearling-age Angus heifers and bulls tested for methane production in respiration chambers, 

and rumen fluid samples taken 3 hours post-feeding analysed for concentrations of volatile fatty 

acids (VFAs). A subsample of animals had repeat rumen samples taken 24 hours after feeding. 

The animals were fed a roughage ration offered at 1.2-times maintenance through testing. 

Concentrations of major VFAs (acetate, propionate and butyrate) and their proportions in the 3 

hours post-feeding sample were strongly associated with methane production (g/d) (correlation 

coefficients up to 0.62), but less strongly  with methane yield and residual methane production 

(correlation coefficients up to 0.17 and 0.28, respectively). Taking a rumen fluid sample during 

peak fermentation revealed stronger associations between methane emissions and VFA 

concentrations than previously reported for samples collected 24 hours after feeding. These 

relationships open the possibility of using VFA concentrations in rumen samples obtained at peak 

fermentation as indicator traits for methane emissions. For genetic selection, scrutiny of VFA as a 

screening test for methane emissions is still warranted.  

 

INTRODUCTION 
Cattle and sheep emit methane, a potent greenhouse gas, as part of the fermentation of feed in 

their rumen. There exists phenotypic and genetic variation in methane production traits of 

sufficient magnitude in Angus cattle that breeding for cattle with lower emissions is possible 

(Bird-Gardiner et al. 2015; Donoghue et al. 2015). From mechanistic fermentation models, 

changes in methane production should correspond with changes in the supply of hydrogen from 

the formation of volatile fatty acids (VFA) during diet substrate fermentation (Ellis et al. 2008). 

However Herd et al. (2013) were not able to detect significant associations between methane 

production rate (L/day) (MP; L/day) and concentrations of VFA in rumen fluid (mmoles/L) 

collected 24 hours after feeding, and only modest correlations with methane yield (MY = MP per 

unit feed intake; L/kgDMI) were observed. Those authors concluded that phenotypic associations 

were too low for VFA concentrations at 24 hours after feeding to be used in screening for high or 

low methane emitting cattle.  

This experiment investigated whether VFA concentrations in rumen fluid collected shortly 

after feeding, during peak fermentation, were correlated with phenotypic and genetic variation in 

methane production traits and offer a strategy for screening cattle for methane emissions.  

 

MATERIALS AND METHODS 
A total of 140 animals (62 heifers and 78 bulls) born in the NSW Department of Primary 

Industries Trangie Angus research  herd (Donoghue et al. 2015) in 2013 were tested for methane 
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production as yearlings in 2014 at the University of New England (UNE) methane measurement 

facility. They were sampled for rumen fluid before being measured for methane production. 

Animals were moved to UNE in cohorts of approximately 40 animals of the same sex, and kept in 

group pens for at least 3 days, or until they were tested, in groups of 10. Groups of animals were 

moved from group feeding pens (last meal offered 24hours earlier) to individual pens, and offered 

a meal containing their individual daily allowance. Animals were fed lucerne:cereal chaff at 1.2 

times maintenance level, based on their body weight record before transport (TWT). Rumen 

samples were then taken from each animal 3 hours after feed was offered (the same day they were 

moved to individual pens). This was predicted to be close to peak methane production, based on 

Deighton et al. (2014). A 2-day methane production test was conducted using open circuit 

respiration chambers (Herd et al. 2014) after 2-3days of feeding in the individual pens. For 2 

groups of heifers (n=20), a repeat sample was taken following the methane test period, 

representing approximately 24 hours after feeding, as done previously by Herd et al. (2013). 

Rumen samples, collected using stomach tubing, were preserved by acidification and stored at -

18°C. Liquid chromatography was performed on samples to analyse VFA concentrations. 

Dry matter intake (DMI; kg/d) was calculated as the average of measured dry matter intake for 

the two days of methane measurement. Methane production rate was taken as an average over the 

two days of measurement. Methane yield was calculated as MPR divided by DMI. Residual 

methane production (RMP; g/d) was calculated as the residual from actual MPR against DMI 

predicted MPR, from the regression of test data for MPR against DMI, as described in Herd et al. 

(2014). Phenotypic associations between traits were assessed using Pearson’s correlation tests (R 

Core Team 2014). To assess the associations for VFA traits with genetic variation in methane 

emissions, correlations were determined with within-herd Estimated Breeding Value (EBV) for 

MPR, MY and RMP, the latter calculated as described in Donoghue et al. (2015). Four animals 

were removed from the analysis because of large feed refusals. 

 

Table 1. Summary statistics for n=136 yearling Angus bulls and heifers tested for methane 

production and with rumen fluid samples taken 3 hours post feeding 

 
Trait Average SD Maximum Minimum 

Pre-test liveweight (TWT; kg) 390 58 512 270 

Dry-matter intake (DMI; kg/d) 6.2 0.8 7.8 3.5 

Methane production rate (MPR; g/d) 137 20 180 89 

Methane yield (MY; g/kg DMI) 21.9 1.2 26.1 18.2 

Residual MPR (RMP; g/d) 0.0 6.6 23.1 -18.0 

Acetate (mmoles/L) 62.3 11.5 94.2 22.0 

Propionate (mmoles/L) 17.8 3.8 27.4 4.0 

Iso-butyrate (mmol/L) 0.24 0.10 0.43 0.02 

Butyrate (mmoles/L) 11.3 4.5 26.7 2.1 

Iso-valerate (mmol/L) 0.94 0.33 1.75 0.20 

Valerate (mmol/L) 1.52 0.52 3.31 0.27 

Total VFA (mmoles/L) 94.1 16.1 136.8 29.3 

Acetate% (% total VFA) 66.3 4.9 75.0 57.2 

Propionate (% total VFA)% 18.9 2.4 25.6 13.7 

Butyrate% (% total VFA) 12.0 4.2 23.4 6.3 

EBV_MPR (g/d) -0.2 4.1 8.4 -12.8 

EBV_MY (g/kg DMI) 0.00 0.39 1.02 -0.74 

EBV_RMP (g/d) 0.02 2.34 6.49 -4.40 
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RESULTS 

Summary statistics for all animals with 3-hour post-feeding VFA measurements are presented 

in Table 1. There was substantial variation in methane traits, with MPR strongly influenced by 

TWT and DMI (Table 2). However, these relationships did not persist for MY or RMP, and there 

was variation independent of feed intake (CV for MY and RMP; 5.2% and 3.5%). The 

concentrations and proportions of VFAs (except total VFA) had significant correlations with 

MPR, but most not with either MY or RMP. Propionate concentration was the only VFA trait 

which had a significant correlation with MY and iso-valerate was the only VFA with a significant 

correlation with RMP. Analysis of variance showed that TWT and sex significantly influenced the 

VFA traits. 

Phenotypic variation in the VFA concentrations and ratios were not associated with genetic 

variation in the 3 methane traits, as indicted by a lack of significant correlation coefficients with 

the EBV for MPR, MY or RMP (Table 2). The exception was iso-valerate concentration (a minor 

VFA) which had a significant (P<0.05) correlation with the EBV for MY and RMP (regression 

coefficients; 0.18 (±0.07) and 0.03 (±0.01)).  

 

Table 2. Pearson correlations for methane production rate (MPR), methane yield (MY), 

residual methane production (RMP) and their respective within-herd EBV with pre-test 

animal weight (TWT), dry-matter intake (DMI) and rumen volatile fatty acid concentrations  

 

 MPR 

(g/d) 

MY 

(g/kg DMI) 

RMP 

(g/d) 

EBV_MPR 

(g/d) 

EBV_MY 

(g/kg DMI) 

EBV_RMP 

(g/d) 

TWT (kg) 0.93*** 0.13 -0.01 0.35*** 0.03 0.03 

DMI (kg/d) 0.94*** 0.04 -0.06 0.32*** 0.02 0.02 

Acetate (mmoles/L) -0.26** -0.13 -0.03 -0.07 -0.06 -0.06 

Propionate (mmoles/L) 0.19* -0.17* -0.13 -0.00 -0.04 -0.04 

Iso-butyrate (mmol/L) -0.55*** -0.12 0.08 -0.08 -0.02 -0.03 

Butyrate (mmoles/L) 0.46*** 0.05 -0.07 -0.03 -0.07 -0.07 

Iso-valerate (mmol/L) -0.21* 0.13 0.28*** 0.13 0.22** 0.21* 

Valerate (mmol/L) -0.24** -0.07 0.06 -0.03 -0.05 -0.05 

Total VFA (mmoles/L) -0.03 -0.12 -0.06 -0.06 -0.07 -0.07 

Acetate% -0.62*** -0.05 0.06 0.00 0.00 0.01 

Propionate% 0.39*** -0.13 -0.12 0.02 0.02 0.02 

Butyrate % 0.57*** 0.12 -0.04 -0.04 -0.04 -0.04 

*P<0.05; **P<0.01; ***P<0.001. 

 

Linear models to predict methane from multiple VFAs indicated significant (P<0.05) models 

utilising the major VFAs and Isovalerate, with or without Iso-butyrate, and some interactions, 

explain variation in methane traits and their EBVs. These models were stronger for methane traits 

(P<0.001 and R
2
=0.52,0.28 and 0.23 for MPR, MY and RMP), and weaker for EBVs (P<0.05, 

R
2
=0.14 for EBV_MPR and P<0.01, R

2
=0.19 and 0.17 for EBV_MY and EBV_RMP). 

For the 19 animals with repeated rumen fluid samples and methane data, VFA concentrations 

were generally higher in samples taken at 3 hours compared to those taken 24 hours after feeding 

(eg. Total VFA 96.9mmoles/L at 3hr and 61.4 mmoles/L at 24hr). Correlations between the 3-hour 

and 24-hour sample values were generally low or negative, except for propionate concentration at -

0.47 (only significant correlation, P<0.05), with low correlations for their proportions.  

In general, the magnitude of the correlations for the major VFAs with MPR were higher for the 

3-hour sample (0.26 to 0.13) than for the 24-hour sample (0.05 to 0.07). Correlations at 3-hours 

and 24-hours with MY and RMP were in different directions. However, the only statistically-

Proc. Assoc. Advmt. Breed. Genet. 21: 93-96

95



significant (P<0.05) correlation in this data set was acetate proportion at 24 hours after feeding 

with MY (r=0.46), with none of the correlations with 3hr samples reaching significance. 

 

DISCUSSION 

Comparing the results from the repeated samples taken 24 hours after feeding during this study 

with the results from Herd et al. (2013), all taken 24hours after feeding, the concentrations of the 

major fatty acids fall within one standard deviation of the mean from the previous study. In 

common with Herd et al. (2013), the associations between total VFA, concentrations of the three 

most abundant VFA, and their molar proportions in rumen fluid samples collected 24 hours after 

feeding, with MPR, were weak. With MY the relationships were in the same direction as reported 

by Herd et al. (2013), although mostly non-significant in the present experiment, presumably due 

to the small sample size. Herd et al. (2013) concluded that the strength of the phenotypic 

associations between VFA concentrations in rumen fluid taken 24 hours after feeding with 

methane emissions to be too low for an accurate screening test for high or low emitting cattle.  

Taking a rumen fluid sample during peak fermentation revealed stronger associations between 

methane production and VFA concentrations than reported by Herd et al. (2013) for samples 

collected 24 hours after feeding. These stronger relationships open the possibility of using VFA 

concentrations in rumen samples obtained at peak fermentation as indicator traits for variation in 

MP if feed intake cannot be measured. The significant relationships with MY reported by Herd et 

al. (2013) were not replicated in the VFA concentration in 24-hour rumen samples collected in this 

study. For genetic selection, more careful scrutiny of VFA as markers for methane emissions is 

still warranted.  

Examining the relationships between the new EBVs for methane traits and VFA 

concentrations, the only VFA with a significant relationship with methane trait EBVs was Iso-

valerate concentration, a minor VFA, with MY and RMP and these relationships were still 

relatively weak. Iso-valerate is associated with fibre digestion (Liu et al. 2009), and differences in 

iso-valerate concentrations have been related to Net Feed Intake (Hernandez-Sanabria et al. 2010). 

This relationship is worth further investigation to understand how rumen fermentation changes as 

animals are genetically selected for increased or decreased methane emissions. 
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SUMMARY 

MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate 

expression of mRNAs in many biological pathways. The liver plays a critical role in the synthesis 

of molecules that are utilized elsewhere to support homeostasis, in converting molecules of one 

type to another, and in regulating energy balances. We sequenced 48 liver microRNAome from 

young Angus bulls divergently selected for residual feed intake (RFI). In total we obtained 135 

million high quality short sequence reads and more than 93 million unique mapped sequence 

reads. The top 10 most abundant miRNAs families expressed in liver, represented on average 46-

90% of total expressed miRNAs. We did not observe any significant miRNA expression profile 

for low RFI animals.  However, there are distinct miRNA expression patterns separating the 

animals into two groups that differ significantly in P8 and rib fat thickness.  This is consistent with 

previous finding where high RFI animals had an up-regulated AHR signalling pathway, which 

plays an important role in fat metabolism. This suggested that some animals have a high RFI value 

due to excess fat metabolism. 

 

INTRODUCTION 

MicroRNAs (miRNAs) are small (~ 22 nucleotides) non-coding RNA that regulate gene 

expression by targeting messenger RNA (mRNA) in a sequence-specific manner, leading to either 

translational repression or degradation of targeted transcripts. In animals, miRNAs target the 

3’untranslated regions of mRNA through a RNA-induced silencing complex (RISC), and subject 

to the accuracy of the sequence complementarities, either repression of translation or cleavage of 

the mRNA target is achieved (Huntzinger and Izaurralde 2011). MicroRNAs are now known to 

repress thousands of target genes and regulate cellular processes, including cellular proliferation, 

differentiation and apoptosis (Meltzer 2005). The aberrant expression or alteration of miRNAs 

also contributes to a range of human pathologies, including diabetes and cancer (Lu et al. 2005).  

Feed efficiency is an economically important trait in beef production and can be assessed using 

residual feed intake (RFI) (Archer et al. 1999). This is the difference between an animal’s actual 

feed intake recorded over a test period and its expected feed intake, predicted for its body weight 

and growth rate (Koch et al. 1963). Residual feed intake estimates the feed required by an animal 

for a given daily weight and for the maintenance of its metabolic weight. Therefore, understanding 

the molecular mechanism regulating RFI will help in breeding profitable animals in agriculture. 

Genome wide association studies have been carried out to identify gene markers associated with 

RFI in beef cattle (Bolormaa et al. 2011) and a large proportion of SNP markers associated with 

RFI are not located in annotated genes in bovine genome. Gene expression studies in cattle from 

high and low RFI selection lines have revealed a list of differentially expressed genes with 

functions related to extracellular matrix growth and fat metabolism in the liver (Chen et al. 2011). 

The liver plays a critical role in the synthesis of molecules that are utilized elsewhere to support 

homeostasis, in converting molecules of one type to another, and in regulating energy balances. 

MicroRNAs (miRNAs) are important natural regulators of global gene expression. The objective 
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of the study is to profile the expression of miRNA in liver by next generation sequencing and 

identify miRNAs related to the efficiency of feed utilization in beef cattle.  

 

MATERIALS AND METHODS 

Ninety young Angus bulls resulting from approximately three generations of divergent 

selection for RFI were used in this study. The selection lines were established in 1993 at the 

Agricultural Research Centre, Trangie, NSW, Australia and the animals were used for the 

microarray experiment previously reported by Chen et al. (2011). In brief, bulls were born in 2005 

and feed intake was measured for each animal using an automated recording system in the Beef 

Research Feedlot Tullimba, NSW, Australia. During the 70-day test, the animals had ad libitum 

access to a barley-based feedlot ration containing 12 MJ metabolizable energy per kilogram dry 

matter and 15–17% crude protein. Post-weaning RFI was measured using the linear regression of 

daily feed intake on mean metabolic mid-test weight and average daily gain. Liver biopsies were 

taken at the end of the RFI test from 24 animals with the lowest RFI and 24 animals with the 

highest RFI. Total RNA from liver was isolated using TRI Reagent (Ambion, Applied Biosystems, 

Austin, TX, USA ) following the manufacturer’s protocol and the quality and integrity of RNA 

was assessed with the RNA 6000 Nano Lab Chip Kit using the Agilent 2100 Bioanalyzer (Agilent 

Technologies, CA, USA).  

Small RNA libraries were constructed for each animal using 1µg total RNA with NEXTflex™ 

Small RNA-Seq Kit v2 (Bioo Scientific, TX, USA) following the protocols supplied by the 

manufacturer. The libraries were sequenced at Ramaciotti Center, University of NSW with 

Illumina HiSeq 2000 Sequencing System.  

Sequencing data were analysed using miRanalyzer (Hackenberg et al. 2011). In brief, known 

bovine miRNAs were identified by mapping all sequence reads to known bovine miRNAs in 

miRBase (version 21), and reads that matched known bovine miRNAs were grouped and removed 

from the dataset. Reads that mapped to known miRNAs in other species were grouped as 

homologue miRNAs. The remaining reads were aligned to libraries of known transcripts. To 

identify bovine-specific novel miRNAs, the remaining sequence reads were mapped to Bos taurus 

genome (bostau6, UMD_3.1). The microRNA expressed was normalized by total mapped reads 

from each sample and was measured as reads per million mapped reads (RPM).  

Differential expression analysis was carried out with Bioconductor package DESeq (v3.1) 

(Anders and Huber 2010) to identify differentially expressed miRNAs between high and low RFI 

animals. GenStat (V17) was used for the cluster analysis and phenotype differences between 

clusters were evaluated using Student’s t-test.  

 

RESULTS AND DISCUSSION 

We obtained 135,042,220 high quality sequence reads and 88% of the sequence reads mapped 

to bovine genome. About 69% (93,336,181) of sequence reads mapped to known bovine mature 

miRNA (bostau6, UMD_3.1).  A total of 560 known miRNAs were detected for which at least one 

read was observed in the dataset. Only 224 miRNAs had more than 10 reads per million across 

most of the samples and were used for the subsequent analysis.  There were large variations of 

expression of miRNAs and the top 10 most expressed miRNA (bta-miR-143, bta-miR-100, bta-

miR-99a-5p, bta-miR-192, bta-miR-21-5p, bta-miR-122, bta-miR-148a, bta-miR-191, bta-miR-

26a, bta-miR-30a-5p) accounted for 50-to 90 % of the total miRNA expression. Bta-miR-143 is 

the most abundant miRNA in bovine liver and takes up on average 17% of the total miRNA 

expression. Our results differ from reported liver miRNA expression in negative energy balance 

(NEB) dairy cows (Fatima et al. 2014). In NEB dairy cows 53 miRNAs were expressed and the 

top 10 miRNA accounted for more than 95% of the miRNAome. This difference was most likely 

due to the different miRNA extraction and library construction methods used for sequencing. In 
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this study we used the total RNA for the small RNA library construction, while in NEB dairy 

cows, an enriched miRNA protocol was used for the RNA extraction.  

To identify differentially expressed miRNA we only used 224 miRNAs that had on average 

more than 10 RPM. We first divided the animals into high and low RFI groups and used DESeq 

(Anders and Huber 2010) to identify differentially expressed miRNAs between high and low RFI 

animals based on a negative binomial model. No miRNA expressed differently between high and 

low RFI animals when the Benjamini and Hochberg corrected P value cut-off of <0.05 was applied 

to correct for multiple testing. Next, we carried out the cluster analysis of all animals based on 

miRNA profile (224 miRNAs) and top 10 miRNA only as the top 10 most expressed miRNAs 

accounted more than 70% of the total miRNA population. The animals were clustered in two 

major groups. Then we divided the animals into two groups based on cluster analysis. In Table 1 

we summarize phenotypes between these two groups. The most significant difference between 

these two groups was in fat deposition; both P8 and rib fat were different. There was no difference 

in ADG, DFI and RFI. 

  

Table 1. Trait means (± standard deviation) for two groups based on the miRNA profile 

 Cluster ADG DFI RFI P8 RIB IMF% EMA 

Cluster 1 

1.99 

± (0.05) 

11.54 

±0.30 

-0.38 

±0.24 

11.77 

±0.57 

9.73 

±0.60 

5.03 

±0.10 

82.55 

±0.68 

Cluster 2 

2.04 

±0.06 

11.16 

±0.34 

-0.52 

±0.22 

10.05 

±0.54 

8.29 

±0.36 

4.94 

±0.10 

80.38 

±0.91 

P 0.570 0.404 0.671 0.033 0.048 0.565 0.063 

ADG: average daily gain during the 70day; RFI test. DFI: average daily feed intake; P8: P8 fat thickness 

(ultrasound) at the end of RFI test; RIB: RIB fat thickness (ultrasound); EMA: eye muscle area (ultrasound); 

P: probability of significance. 

 

It is believed that RFI is highly associated with the energetic costs of protein turnover and 

basal metabolic rate and that selection for low RFI animals will reduce maintenance energy 

requirements (Richardson and Herd 2004). Global miRNA profiling of the current study showed 

clear expression patterns related to fatness instead of RFI, although the animals were from the 

third generation of divergent selection lines for RFI. Indeed, there was a significant correlation 

between P8 fat thickness and RFI (Figure 1).  It is likely that animals with high P8 fat (>1 sd) are 

high RFI animals and animals with low P8 fat (<1sd) are low RFI animals. Therefore, some 

proportion of RFI’s variation can be explained by differences in body composition. Alternatively, 

at a constant weight and daily gain, some of the high RFI animals deposited more fat than the low 

RFI animals. There has been earlier reports on the genetic and phenotypic correlations between 

RFI and lipid metabolism (Robinson and Oddy 2004). Previous gene expression work with 

microarray identified up-regulated p450 induced xenobiotic signalling pathways in high RFI 

animals. P450 induced xenobiotic signalling pathway plays an important role in lipid metabolism. 

A recent study on miRNA in the liver of NEB dairy cows identified that mir-143 was down 

regulated in severe NEB cows (Fatima et al. 2014). One of the target genes of mir-143 is LRP2 

which is involved in lipid metabolism  
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Figure 1. Scatter plot of RFI and P8 fat. The scales of X (P8) and Y (RFI)   are standardized  

unit of standard deviation.  

 

In conclusion, we have identified 224 known bovine miRNA expressed in bovine liver. There 

is distinct expression profile difference between high and low fatness animals. Some of the 

variation in RFI can be explained by the observed differences in lipid metabolism.  
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SUMMARY 
Efficiency of production in beef cattle is limited by their relatively low reproduction rate. In 

this paper, we present the results of a fourteen year breeding program aimed at increasing 

prolificacy in a mixed beef x dairy herd, grazing at Armidale in the New England region of NSW. 

The herd was established by purchasing cows with a repeated history of twinning and bulls from 

dams with unusually high prolificacy. For the 51foundation cows with at least one subsequent 

calving record, the average prolificacy was 1.11 +/- 0.05 (123 total records. For all cows born in 

the herd, the mean ovulation rate was 1.12 and the mean prolificacy was 1.03. The twinning rate 

was lower than expected based on reports from other experimental  herds aimed at increasing 

prolificacy that have been established in the USA, New Zealand and France. The observed genetic 

trends for ovulation rate and prolificacy were essentially zero but were moderately positive for 

fertility, cow rearing ability and reproduction rate. The desired outcome of generating a positive 

genetic trend in reproduction rate was achieved, albeit to a limited degree, but not as a result of 

genetic response in ovulation rate or prolificacy, the traits under direct selection pressure.   

 

INTRODUCTION 

 Efficiency of production of temperate beef cattle herds is limited by their reproduction rate 

(calves weaned/cow joined). In NSW for example, each breeding cow weans on average only 

0.85 calves per year (Wilkins, personal communication). Increasing reproduction rate can 

increase efficiency of production (Dickerson, 1978) but the focus of genetic improvement 

programs has largely been directed to increasing fertility (cows calving/cow joined) by direct 

selection or reducing rebreeding interval or cow rearing ability (calves weaned /calf born) 

rather than prolificacy (calves born/cow calving). As demonstrated by multiple ovulation and 

embryo transfer experiments, there are no limits to increased prolificacy from the ability of the 

bovine ovary to produce more than one egg per cycle or from the ability of the uterus to carry 

more than one foetus. The cow has four functional mammary glands and is therefore equipped 

to suckle more than one calf. Milk production is more than adequate in many breeds and if not, 

could readily be improved by selection or crossing with dairy breeds. Despite these attributes, 

the frequency of twinning in most breeds is less than 2% but is higher within some of the large 

European breeds. 

As noted by Piper and Bindon (1990), renewed interest in genetic manipulation of 

prolificacy in cattle began in the 1970’s with experimental herds selected for increased 

twinning rate established in France, Australia, the USA and New Zealand. These new herds 

were based on highly selected foundation males and females (Piper and Bindon, 1979). 

Comparative twinning frequencies for the foundation females before and after purchase and for 

their first generation daughters were summarised by Morris and Day (1986). Cows with a 

minimum of two sets of twins prior to purchase averaged around 14 percent of twin births in 

subsequent calvings, while their daughters averaged about 8 percent of twin births. These 
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twinning rates are in general agreement with expectations based on the repeatability and 

heritability of twinning and on the approximate selection intensities applied in establishing the 

respective herds. 

In this paper we present the final results from a long term selection experiment for 

increased prolificacy in a mixed beef/dairy herd grazing at Armidale in the New England 

region of NSW. 

 

MATERIALS AND METHODS 

Foundation Animals. CSIRO began establishing its twin selection herd in 1973/74 by 

purchasing cows with a repeated history of twinning (2 or more sets of twins or a set of triplets 

or quads) and bulls from dams with unusually high prolificacy (3-10 sets of twins, 10 bulls) or 

because there was a history of twinning in the bulls pedigree (2 bulls). The foundation cows 

and bulls came from multiple herds and documented pedigree information was almost never 

available. The details of the twinning history of the 65 foundation cows and 12 foundation 

bulls were given in Piper and Bindon (1990). For the 51foundation cows with at least one 

subsequent calving record, the average prolificacy was 1.11 +/- 0.05 (123 total records). By 

contrast, 70 unselected Hereford cows, joined with the twin herd bulls and grazing throughout 

the year with the selected herd, had an average litter size of 1.01 (234 records). All foundation 

cows and bulls were culled prior to the February 1983 joining. 

Cows born in the herd. As reported by Piper and Bindon (1990), all females born in the 

herd up to and including the 1980 drop, were retained and given from 6 to 8 opportunities to 

calve (more for the earlier, less for the later drops). There was no joining in 1981 (due to 

drought) or in 1982 (due to a change of joining time). For the 1983 to 1986 joinings, male and 

female replacements were chosen on the basis of selection indexes combining information on 

the twinning records of their dams and grand-dams (1983 and 1984) and for the later joinings, 

on the ovulation rate (determined by the technique of Holland et al., 1981) and twinning 

records of their dam and the twinning records of their grand-dams. Details of the selection 

procedures for replacements entering the herd for the 1983 to 1989 joinings are given in Piper 

and Bindon (1990). 

Observations and data analysis. Ovulation rate and reproduction records for females born 

from 1975 to 1986 have been included in the analyses for this paper. Single trait, repeated 

record mixed linear models, adjusting for fixed effects were fitted using Wombat (Meyer, 

2007). The fixed effects fitted included calving year (1977 to 1989 with 12 levels) and cow age 

(in years from 2- 10 with 9 levels). The random effects included a direct additive genetic effect 

fitted with the numerator relationship matrix and permanent environment of the cow. There 

were between 418 and 453 animals in the pedigree depending on the trait, with 36 sires for all 

traits. Bivariate models were fitted to estimate genetic correlations but they were poorly 

behaved due to the small size of the data set and are not presented in this paper. Genetic trends 

for each trait were estimated by taking the single trait EBVs for each cow, averaging by year of 

birth (1975-1986) and calculating the regression between year of birth and average EBV. The 

annual trends shown in Figure 1 are scaled to the genetic standard deviation for each trait. The 

annual trends shown in Table 1 are multiplied by 100, so they are estimates of the annual 

average trait change per 100 cows. 

 

RESULTS AND DISCUSSION 

The number of cows, number of records, estimated means, phenotypic variances, 

heritabilities(+/-se) and  repeatabilities (+/-se) and genetic trends for fertility (FERT), ovulation 

rate (OV), prolificacy (NCB), calf survival (SURV) and reproduction rate (NCW) are given in 

Table 1. The mean ovulation rate was 1.12 but the mean prolificacy was 1.03 which is a 
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disappointing outcome given the selection pressure applied to prolificacy in assembling the 

foundation animals for the herd and to prolificacy and ovulation rate in the experimental herd 

for the 1983-1989 joinings. This outcome no doubt reflects the observed low heritability and 

repeatability of both traits and the fact that, due to the requirement build up numbers in the 

herd, there was no selection pressure applied in choosing incoming male and female 

replacements until the 1983 joining. From the 1983 joining onwards, selection intensities for 

male and female replacements averaged 12 percent and 72 percent respectively. The 

heritability and repeatability of fertility and reproduction rate were significantly higher than for 

ovulation rate or prolificacy but the means for both traits were below or about average for beef 

herds in NSW. 

Genetic trends for all traits for animals born from 1975 to 1986 and calving from 1977 to 

1989 are shown in Table 1 and Figure 1. 

 

Table 1. Number of cows, number of records, estimated means and phenotypic variances, 

heritability and repeatability for each of Ovulation rate, Fertility, Prolificacy, Cow 

rearing ability (Calf survival), Reproduction rate and Genetic trend (Annual genetic 

change *100) 

 
Trait Co

ws 

Recor

ds 

Me

an 

P. 

Va

r. 

Heritabil

ity 

Repeatabil

ity 

Tre

nd  

Si

g. 

FER

T 

380 1387 0.8

0 

0.1

6 

0.09(0.0

5) 

0.27(0.03) 0.23 0.0

7 

OV 354 1134 1.1

2 

0.1

1 

0.02(0.0

2) 

0.02(0.02) -

0.02 

n.s

. 

NC

B 

347 1110 1.0

3 

0.0

3 

0.01(0.0

2) 

0.03(0.03) 0.02 n.s

. 

SUR

V  

347 1140 0.8

3 

0.1

2 

0.04(0.0

4) 
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Figure 1. Genetic trends in fertility, ovulation rate, prolificacy, cow rearing ability and 

reproduction rate, scaled by the genetic standard deviation (GSD) for each trait. 

 

The genetic trends for ovulation rate and prolificacy were essentially zero which is 

disappointing given the positive but modest selection pressure applied to both traits in choosing 

replacement males and females for the 1983 to 1989 joinings. By contrast the genetic trends for 

fertility, calf survival and reproduction rate were positive indicating slow genetic improvement 

in all three traits but especially in fertility and reproduction rate.  

As indicated earlier, it is disappointing that the traits under direct selection pressure, 

ovulation rate and prolificacy, showed little or no response over the life of the experiment. 

Because of that observed outcome, it is not clear why there was a positive genetic trend in 

fertility, cow rearing ability and reproduction rate. One possible explanation may be that 

selection for prolificacy puts direct pressure on fertility because prolificacy cannot be observed 

unless the cow is pregnant. This positive genetic trend in fertility, accompanied by a positive 

but not significant trend in cow rearing ability has resulted in a positive but modest genetic 

trend in reproduction rate. The desired direction of outcome was achieved, albeit to a limited 

degree, but not as a result of genetic response in ovulation rate or prolificacy, the traits under 

direct selection pressure.   

The results from this experimental herd are in sharp contrast to the results obtained in 

experimental herds undergoing long-term selection for increased prolificacy in New Zealand 

(Morris and Wheeler, 2002 and Morris, personal communication, 37 percent of twin births in 

2006-2008) and in the Clay Center herd in the USA (Echternkamp et al., 2002, 52% of twin 

births in 2000).  In both these herds, as in the herd reported in this paper, the foundation 

animals were highly selected for repeated history of twinning. By contrast with the selection 

procedures employed in the present study, replacements in the Clay Centre herd in the USA, 

were chosen on the basis of repeated (6-8) observations of ovulation rate determined by rectal 

palpation (incoming young female replacements) and on the basis of repeated ovulation rate 

progeny tests, and in later years QTL marker adjusted EBV, for incoming replacement males.  
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The difference in response in prolificacy between the Clay Centre herd and our 

experimental herd may be due to a combination of factors including large differences in 

selection accuracy and intensity, the number of years that effective selection was able to be 

applied and in the difference in the initial response achieved in the offspring of the highly 

selected foundation males and females. It is also probable that there were differences in the 

accuracy of the records of the foundation cows and bulls. By contrast with the USDA herd, in 

the CSIRO herd these records were generally not documented in herd recording schemes and 

were based on the testimony of the producers who supplied the foundation cows and bulls.   

The overall response in prolificacy in the CSIRO herd may have increased had the 

experimental breeding program been allowed to continue. However, a decision to redirect 

resources to pursue non-genetic methods of increasing prolificacy in cattle resulted in the 

breeding program being terminated when the 1986 drop animals had their second calving in 

1989.   
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SUMMARY 

Residual Feed Intake (RFI) as a measure of feed efficiency has not been reported for New 

Zealand maternal sheep breeds.  This study reports on a pilot study that generated RFI data on 37 

16-month old maternal composite ewes.  Records on ten were obtained utilising a prototype 

automated feeder, with the remainder fed in individual pens. The animals were introduced to 

lucerne pellets before daily feed measurements were taken over 42 days with animals weighed 

twice weekly.  The RFI model fitted, to determine the relationship between the liveweight and 

average daily weight gain and the animal intake, had an R
2 

of 0.79, with the partial R
2
 for 

liveweight the most significant at 0.70.  The observed phenotypic standard deviation of RFI was 

209 g of DM/d which is 8% of the average daily intake. The animals were ranked for RFI, with the 

16% most efficient animals (low RFI) consuming on average 0.6kg/day less feed, or 20% less than 

the 16% least efficient animals (high RFI).   Additional data, collected for the animals using the 

prototype automated feeder, included the number and size of feeding events per day which showed 

consistent variation. Further animals will be evaluated over the coming years with the aim to 

collect data on 1000 animals.  The animals will be sourced from the Central Progeny Test and will 

represent NZ maternal sheep breeds which will be measured for a range of other production traits 

allowing the heritability of the trait and its genetic correlation with other traits to be estimated.  

 

INTRODUCTION 

The trait of Residual Feed Intake (RFI) proposed by Koch et al. (1963) as a measure of feed 

efficiency has been shown to be heritable in beef and dairy cattle.  A meta-analysis of 39 published 

RFI papers by Berry and Crowley (2013) for cattle resulted in a pooled heritability estimate of 

0.33 ± 0.01 (range of 0.07 to 0.62).  There are very few published estimates for measures of feed 

intake and efficiency in sheep.  Heritability estimates of 0.32 to 0.41 were reported by Forgarty et 

al. (2006) for feed intake at pasture and Cammack et al. (2005) reported heritability estimates of 

0.11 to 0.33 for measures of feed efficiency in growing terminal sired lambs.  There are currently 

no published genetic parameter estimates for New Zealand maternal sheep breeds. 

Other important aspects of the genetics of RFI include the repeatability of the trait between 

growing and mature animals, and the genetic correlation with other economically important traits 

such as reproduction. The trait of RFI has been shown to be highly genetically correlated in cattle 

when measured in young growing animals and older mature animals (Herd et al. (2003)).  

Although relatively few significant genetic correlations have been observed in cattle, there is some 

evidence of a negative genetic correlation between RFI and puberty onset and post-partum 

anoestrus period intervals resulting in a delay for both (Crowley et al. 2011).   

A study to generate RFI data over several years to estimate its heritability, repeatability 

and genetic correlation with other traits is due to commence in July 2015.  Pilot studies have been 

conducted to gain insight in to the phenotypic variability of the trait, and the repeatability of the 

trait on a group of ewes fed different feeds (fresh cut grass versus lucerne pellets) at different times 

(9 and 16 months). This paper reports results based on 37 animals from the second study when the 

animals were 16 months old and were all fed lucerne pellets, with ten measured via the prototype 

automated feeder and the remainder fed in individual pens.  
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MATERIALS AND METHODS 

Permission for this study was granted from the AgResearch Invermay Ethics Committee  

(Ethics Numbers 13257 and 13456).  Thirty-seven 16 month old maternal composite ewes (ewes 

that were surplus to requirement from the Central Progeny Test and were therefore from a variety 

of breeds as described by McLean et al. 2009) previously used in a feed intake study (Study 1) as 

nine month olds were used. The ewes were introduced to Lucerne pellets (sourced from Dunstan 

Feeds, Hamilton New Zealand; Dry Matter Content 85%; Metabolisable Energy (ME) content 10.1 

MJ ME) over a two-week period before the study with ad libitum Lucerne pellets available.  A 

random sub-set of ten of the ewes were placed in a pen with the prototype automated feeder, with 

the remainder placed in neighbouring individual pens in a raised-floor shed.  The feeder was 

designed by AgResearch and utilized a feed trough on load cells with an automated feed delivery 

through an auger  For the ewes utilising the prototype automated feeder approximately 2.5kg of 

feed was always available, allowing ad libitum access to feed, with the weight of feed consumed 

recorded in real time against the animal through the use of electronic identification.  The resulting 

data was summed across a day for an animal to provide the total feed consumed, but the number of 

feeding events and the average weight of feed consumed at each feeding event was also calculated.  

The animals in the individual pens were offered 4-5kg of feed per day at approximately 9am each 

morning, with the residual feed weighed 24 hours later, at least 10% residual was targeted to 

ensure that the animal had ad libitum access to feed.   

The animals were weighed twice weekly, at approximately 9am.  The animals were fed 

for forty-two days.  The importance of using multiple measures of liveweight across the duration 

of the study to accurately estimate average daily live weight gain (ADG) was demonstrated by 

Johnson et al. (2015) using data from the first study using the same animals. The animals were 

Computed Tomography (CT) scanned at the beginning and conclusion of the study, but the images 

are not yet analysed. 

A model based on Koch et al. (1963) was used to calculate Residual Feed Intake (RFI) 

using the General Linear Model (GLM) procedure in SAS:  y = β0 + β1MMWT + β2ADG + 

Previous Feed + Feeder (Previous Feed) + ε; where y is measured feed intake calculated using the 

MIXED procedure in SAS fitting day as a repeated measure, β0 = intercept, MMWT = metabolic 

mid-weight (mid-weight
0.75

), ADG = the slope of model estimated by REG procedure in SAS 

(SAS Inst. Inc., Cary, NC) using the bi-weekly liveweight measurements and the day of 

measurement (with the first measurement made on day 0), Previous Feed=Lucerne pellet or grass 

in study one, Feeder=Individual pen or auto-feeder and ε = the residual which is the trait of RFI. 

The animals were ranked based on their RFI values and the bottom and top 16% (n=6) 

assigned as being Low or High RFI respectively, with the remainder being assigned as medium.  

The significance of differences between the groups was assessed using the GLM procedure in SAS 

fitting RFI group as a fixed effect. 

 

RESULTS AND DISCUSSION 

 The model fitted which included liveweight, ADG, previous feed and feeder in current 

trial and the intake of the animals had an R
2 

of 0.79, of which the partial R
2
 for liveweight was the 

most significant at 0.70.  This value is higher than those reported in growing sheep by Redden et 

al. (2013) and Cockrum et al. (2013) whom reported R
2
 values of between 0.45 and 0.65 using the 

same model.   Computed Tomography images have also been collected on the animals which will 

be used to estimate the relative proportions of fat and lean in the animals.  The addition of fat to 

the RFI model has been shown to improve the description of feed intake over and above 

liveweight and liveweight gain in cattle (Basarab et al. 2011), but not in sheep (Redden et al. 

(2013) and Cockrum et al. (2013)).  The observed phenotypic standard deviation of RFI was 209g 
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of DM/d for RFI which is 8% of the average daily intake, a value consistent with values 

summarised for beef and dairy cattle by Williams et al. (2011).    

The results from the grouping of the animals in to Low, Medium and High RFI groups is 

in Table 1.  Liveweights and growth rates were not significantly different between the RFI groups 

as expected.  Both RFI and daily dry matter intake were significantly different between the RFI 

groups, with the most efficient animals (low RFI) consuming on average 0.6kg/day less feed, or 

20% less than the least efficient animals (high RFI).   This level of difference is consistent with the 

results of the sheep studies of Redden et al. (2013) and Cockrum et al. (2013) and a dairy heifer 

study of Williams et al. (2011) whom observed differences of 17%, 30% and 20% respectively.     

This study also involved the testing of a prototype automated feeder.  In addition to 

providing data on the total weight of feed consumed in a day, the automated feeder provides 

information on the number of feeding events per day, and the weight consumed at each feeding 

event.  A basic summary of the average number and average weight of individual feeding events 

per animal per day for the ten animals that utilised the automated feeder is provided in Figure 1.  

From Figure 1, there are consistent trends observed between animals, at the extremes one ewe 

(7018) had an average of 26 feeding events per day consuming an average of 128 grams of feed 

per feeding event, whereas another ewe (58) had an average of 14 feeding events per day but is 

consuming on average 288 grams of feed per feeding event.   In the longer term study it will be 

interesting to determine whether these are heritable traits, and whether or not they are correlated to 

either RFI or other traits including methane emissions. 

The longer term data collection, which will take place over the next 3-5 years, will aim to 

collect data on 800-1000 animals.  The animals will be sourced from the Central Progeny Test 

which will represent NZ maternal sheep breeds.  A range of other traits will also be measured on 

the animals some of which will be measured before entering the feed intake facility including 

weaning weight, onset of puberty and others will be measured post- time in the facility including 

mature weight and reproductive performance.  The ram lamb brothers of the ewes will have been 

grown out and slaughtered as lambs, which will provide carcass breeding values for the sires.  

Repeated feed intake data will be collected on the same animals as mature ewes to investigate the 

genetic correlation between feed efficiency measured in a growing lamb and a mature ewe to 

consider whether the two measures should be considered as repeated measures of the same trait or 

different traits.  There will also be the opportunity to investigate alternate predictor traits reviewed 

by Berry and Crowley (2013).  

 

CONCLUSIONS 

The results from this study suggest that the feed intake system established, is obtaining RFI 

phenotypic data with a co-efficient of variation of 8%, which is consistent with RFI data in other 

production species.  The next stage is to collect sufficient data to estimate the heritability of RFI in 

NZ maternal sheep, and its genetic correlation with other economically important traits.   

  

Table 1. Characteristics (average ± SE) among residual feed intake (RFI) group traits  

 

 RFI Group Signif. of 

 

Low (n=6) Medium (n=25) High (n=6)  RFI Group 

Study Mid Weight (kg) 71.7 + 2.98 70.9 + 1.46 71.3 + 2.98 NS 

Average Daily Gain (g/day) 231 + 24.1 248 + 11.8 247 + 24.1 NS 

Dry Matter Intake/Day (kg) 2.7 + 0.18a 3.0 + 0.09ab 3.3 + 0.18b P<0.001 

Residual Feed Intake (g/day) -309 + 43.0a 3 + 21.0b 323 + 43.0c P<0.001 
 

1Values within a row with different superscripts are significantly different (P<0.05)  
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Figure 1.  Boxplot summary of number of, and average size of feeding events per day for 

individual animal data collected over 42 days from a prototype automated feeder. 
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SUMMARY 

Methane production in sheep is a novel trait that requires the development of consistent 

measurement protocols. The objective of this study was to estimate repeatabilities for methane 

production adjusted for liveweight measured in portable accumulation chambers in Merino ewes 

on pasture. Repeatabilities were low to moderate. No improvements in accuracy of the phenotypic 

variance could be achieved by additional measurements. Most likely the trait expressed at different 

ages and in particular different physiological status was not the same in lactating and dry animals, 

but the analysis in this study was not able to support this hypothesis.  

 

INTRODUCTION 

Methane emission from livestock could in future pose a constraint on freedom to operate if 

green house gas emissions are capped. As a novel target trait for ruminant livestock systems it 

calls for the development of measurement methods that are beyond current industry practice. 

Ideally that includes not just the measure of methane production but also of predisposing factors 

such as feed quality and intake leading to the amount of fermentable substrate. The objective of 

this study is to produce background knowledge for the development of a measurement protocol for 

methane production of ewes on pasture. Repeatabilities of methane production were estimated at 

different ages and physiological states and the increase in accuracy of measurement through 

repeated records investigated.  

 

MATERIALS AND METHODS 

Data on methane production was collected on 96 Merino ewes at different ages. The times of 

measurements reflect not only a trajectory in age, but the animals also differed in their 

physiological state (Table 1). Sheep were measured twice at approx. 15 months of age with 3-4 

weeks between the two measurements (Treatment 1 and 2 (T1 and T2)), twice as lactating adults at 

about 21 months of age with 2 weeks between measurements (Treatment 3 and 4 (T3 and T4)) and 

once as dry adults at around 27 months of age (Treatment 5 = T5). Measurements were repeated 

once for each treatment within 3 days except for T5.  

 

Table 1. Treatment names, age and physiological status of experimental sheep and pasture 

availability and time of year (Date) 

 
Treatment Age Reproductive 

status 

Repetition Date Pasture availability 

(kgDM/ha) 

T1 Yearling (15m) Dry 2 February 2013 1500 

T2 Yearling (15m) Dry 2 March 2013 1800 

T3 Adult (21m) Lactating 2 Early November 2013 915 

T4 Adult (21m) Lactating 2 Mid November 2013 1100 

T5 Adult (27m), Dry 1 May 2014 1100 
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Animals were kept on pasture at the Glen Innes Research and Advisory Station in the New 

England area of New South Wales, Australia. Feed availability varied from 900 to 1800 kg total 

dry matter per hectare (DM/ha) (Table 1). Methane production was measured using portable 

accumulation chambers (PAC), which enable individual animal measures of methane production 

in the field over a short period of time (Goopy et al. 2011). For this study individual animals were 

confined to the PAC for 40 or 60 minutes (Table 2). Liveweight (LWT) was recorded immediately 

after gas measurement. Animals were removed from feed and water one hour before measurement. 

Twelve sheep were measured per run, four runs were conducted each day. Animals were randomly 

assigned to runs and chambers in the order they entered the race. Therefore, short-term repeat 

measures after 3 days within each treatment, were recorded in a different order. It was not possible 

to record feed intake.  

Statistical analysis. A univariate animal model for repeated measures was fitted using 

ASReml (Gilmour et al. 2009) to estimate repeatability (r) of methane emission in sheep. The 

repeatability is the ratio between the permanent environmental or between-animal variance (VEg) 

and the phenotypic variance (VP), which is the sum of VEg and the temporary or within-animal 

variance (VEs) (Falconer and Mackay 1996). It was not possible to fit a meaningful additive 

genetic effect with only four sires and limited pedigree.  

Repeatabilities were estimated within and across treatments. Fixed effect levels within 

treatment comprised: day of measurement, run, repetition, chamber number and number of lambs 

at foot (none, single or twin lambs) for T3 and T4. Liveweight was fitted as a covariate to adjust 

for potential variation in feed intake and rumen volume. An identity matrix for the animal effect 

was fitted as random.  

For the sake of comparison, we hypothesised that CH4 in adult ewes (T5) is the most suitable 

measure to relate to lifetime CH4 production, which was ultimately the trait that will become the 

breeding objective. The improvement in accuracy of phenotypic measurement is evaluated by 

adding measurements as lactating (T3 and T4) and young sheep (T1 and T2). Improvement was 

assessed by the associated effect on the phenotypic and environmental variances.  

 

RESULTS AND DISCUSSION 

CH4 production is due to fermentation of feed in the rumen (Blaxter and Clapperton, 1965). As 

a consequence CH4 production is expected to increase when more feed is ingested due to increased 

feed on offer or by increasing energy demand, e.g. lactation. Data was adjusted for liveweight, 

which was significant as covariate, but mean total CH4 production differed significantly between 

treatments (Table 2). Total CH4 production was highest during T3 and T4, despite low feed 

availability, because of increased feed intake due to the animals lactating during that time. Higher 

CH4 production also occurred during T2 compared to T1 because more feed was on offer. Mean 

CH4 production was the lowest for T5, most likely due to lowest intake as a consequence of 

amount of feed on offer and the ewes neither growing nor being pregnant or lactating.   

 

Table 2. Descriptive statistics for methane production in Merino ewes at increasing age at 

pasture (mmol CH4/min). Time = time period (mins) over which CH4 was measured 

 
Treatment Time No of records Mean Min Max StdDev 

T1 60 192 0.91 0.38 1.59 0.23 

T2 60 192 1.12 0.54 2.11 0.25 

T3 40 192 1.32 0.55 2.47 0.38 

T4 40 192 1.61 0.47 2.85 0.41 

T5 40 96 0.84 0.39 1.30 0.22 
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Heritabilities (h
2
) for methane production in sheep have been reported at h

2
 ~0.29 for 

gCH4/day, 0.13 for gCH4/kg feed measured in respiration chambers (Pinares-Patino et al. 2013) 

and ~0.1 for gCH4/day adjusted for LWT measured in PACs (Robinson et al. 2014). Given the 

low to moderate heritabilities for methane related traits, the repeatability, which is the upper limit 

for the heritability, was expected to be moderate.  

Repeatability with treatments. This study established that short term repeatabilities, measured 

within 3 days, for CH4 adjusted for LWT were moderate for ewes at yearling age 

(r(T1)=0.33+0.09 and r(T2)=0.37+0.09). During lactation the repeatabilities were moderate 

(r(T4)=0.40+0.09) to high r(T3)=0.62+0.06. The increase in repeatability was due to higher 

between-animal and consequently phenotypic variance. In T5 all animals were only measured once 

and short term repeatabilities could not be established. The repeatability estimates were lower than 

repeatabilities from respiration chamber data on consecutive days (r = 0.94 + 0.003, Pinares-Patino 

et al. 2013), which demonstrates the influence of controlled feed intake and highlights the 

problematic adjustment for LWT, as was done in this study.  

 

Table 3. Repeatabilities and variances for CH4 emission adjusted for LWT at different ages 

 

Treatment Repeatability VP VEg VEs 

T1 & T2 0.25 + 0.07 0.027 0.007 0.020 

T1 & T3 0.26 + 0.06 0.039 0.010 0.029 

T1 & T4 0.28 + 0.05 0.047 0.013 0.034 

T1 & T5 0.17 + 0.05 0.029 0.005 0.024 

T2 & T3 0.32 + 0.08 0.034 0.011 0.023 

T2 & T4 0.20 + 0.05 0.043 0.009 0.034 

T2 & T5 0.27 + 0.06 0.026 0.007 0.019 

T3 & T4 0.40 + 0.07 0.057 0.023 0.034 

T3 & T5 0.38 + 0.06 0.037 0.014 0.023 

T4 & T5 0.30 + 0.06 0.047 0.014 0.033 

 

Repeatability across/between treatments. Repeatabilities for CH4 production adjusted for LWT 

across treatments, measured at least one month apart were low to moderate (Table 3). The 

estimates were lower than estimates reported by Pinares-Patino et al. (2013) of r=0.55+0.02 for 

gCH4/day, but align with estimates of r=0.25 for gCH4/day adjusted for LWT measured in PACs 

reported by Robinson et al. (2014). Repeatabilities are slightly higher at later ages, which was due 

to an increase in between-animal variance.  

Low repeatabilities indicated that the accuracy of CH4 measurement with PACs on animals 

from pasture would benefit from repeated measures. As outlined earlier, CH4 emission at T5 was 

assumed to be the representative trait of life time CH4 emission. It was investigated if the measures 

at different treatments were appropriate to add as repeated measures to increase the accuracy of the 

phenotypic variance. The results in Figure 1 demonstrate that any of the other treatments are 

unsuitable as repeated measures to increase the accuracy of phenotypic variance for CH4 

production in T5. CH4 production in lactating ewes (T3 and T4) added variance, mainly through an 

increase in the within-animal variance. This could indicate that CH4 production adjusted for LWT 

is a different trait in dry and lactating ewes. It also demonstrates that LWT might not be an 

appropriate adjustment for feed intake. This makes sense because lactating ewes would eat more 

and produce more CH4 compared to dry ewes at the same LWT. A small decrease in phenotypic 

variance was observed by combining T5 and T2, but the addition of either T2 or T1 decreased the 

between-animal variance, which again, might be a reflection of a smaller additive genetic variance 

for T1 and T2 than T5. Differences in magnitude of the CH4 measurements between the 
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treatments would have contributed to the lower repeatability estimates when treatment data is 

added. 

 

 
Figure 1. Phenotypic (Vp), permanent environmental (VEg) and special environmental 

variance (VEs) with increasing number of measurements. 

 

CONCLUSION 

It is suggested that a measurement protocol for CH4 production in Merino ewes on pasture in 

young or pregnant sheep is not a reliable indicator of adult performance. However, this data relates 

only to CH4 adjusted for LWT and ignores the poor relationship between feed intake and LWT. A 

more desirable and appropriate phenotype for CH4 production would account for the amount and 

quality of feed eaten, such as methane yield. However, it is not possible to measure feed intake 

with PACs in the field.  
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SUMMARY 

This paper reports heritability estimates for methane traits and genetic relationships with 

production traits in beef cattle. Traits recorded during the methane test period included dry matter 

intake (DMI), test liveweight (TWT), methane production (MPR) and methane yield (MY; 

MPR/DMI). Two methods of calculating residual methane traits (RMP) were evaluated. 

Production traits included birth (BWT), weaning (WWT), yearling (YWT) and final (FWT) 

liveweight. Heritabilities for MPR, MY and RMP traits were moderate (0.19 to 0.27), indicating 

that there is potential to use genetic improvement to reduce methane emissions in Australian beef 

cattle. MPR was moderately genetically correlated with MY (0.50) and RMP traits (0.50 to 0.63). 

However, MPR was also moderately to highly genetically correlated (0.36 to 0.86) with weight 

traits. Methane yield and RMP traits, however, were lowly to moderately genetically correlated (-

0.06 to 0.45) with weight traits. These results indicate that selection for lower MPR would have a 

negative impact on growth in beef cattle. Selection for reduced MY or RMP, however, would lead 

to reduced MPR with minimal impact on animal productivity. The use of a ratio trait, like MY, in 

animal breeding is generally undesirable, thus selection on RMP traits is a better alternative. 

 

INTRODUCTION 

Livestock make a significant contribution (14.5%) to greenhouse gas (GHG) emissions 

worldwide, and ruminants are the primary source (Gerber et al., 2013). The use of genetic 

improvement to reduce GHG emissions would produce small, cumulative and permanent changes 

and would be particularly useful in extensive beef production systems. Methane production (MPR) 

has been found to be moderately heritable in sheep (Pinares-Patino et al., 2011), and in 

preliminary reports from this study (Donoghue et al., 2013; Herd et al., 2014b). However, 

preliminary results indicate that MPR is highly genetically correlated to production traits (Herd et 

al., 2014b). Alternative methane traits studied include methane yield (MPR/dry matter intake) and 

residual methane (difference between actual and predicted MPR), with both found to be 

moderately heritable (Donoghue et al., 2013; Herd et al., 2014b). The objective of this study was 

to quantify whether genetic variation existed for several methane traits, and to gain better 

understanding of the relationships between methane and production traits. 

 

MATERIALS AND METHODS 

Progeny born from Angus cows in 2 research herds at the New South Wales Department of 

Primary Industries Agricultural Research Centre, Trangie NSW, were measured for methane 

production in 10 respiration chambers on the University of New England campus, Armidale NSW. 

Herd et al. (2014a) provides details on the management of animals and methane measurement 

procedure. The 1,043 animals were progeny of 73 sires (average 14 progeny per sire, range 1-30), 

born across 4 drops. Each year, within herd and sex, cohorts of 40 head in 4 groups of 10 were 

formed, and progeny of individual sires were stratified across groups and cohorts.  
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Data. Methane production was measured over 2 x 24h consecutive periods. For animals born from 

2011 to 2013 these measurements were taken at approximately yearling age (mean=339 days). 

However, for animals born in 2009, these measurements were taken at approximately two years of 

age (mean=738 days) due to delays in construction of the chamber facility. Traits measured 

included pre-test weight (TWT), dry matter intake (DMI), daily methane production (MPR) and 

methane production per unit feed intake (methane yield: MY). Two different forms of residual 

MPR (RMP) were defined to target MPR independent of feed intake, with RMP defined as actual 

MPR minus expected MPR (expMPR). For RMPJ, expMPR was calculated using a published 

prediction equation (Johnson et al., 1995), while for RMPR, the residuals from a simple regression 

of MPR on DMI were used.  

Data for growth traits were collected on all animals in the research herds, including animals 

that had not been measured for methane. Growth traits recorded included birth (BWT), weaning 

(WWT), yearling (YWT) and final (FWT) weight, which were measured at birth and at mean 

(±SD) age of 231 (±23), 423 (±28), and 606 (±71) d, respectively. There were growth records 

available on 1,471 animals, who were the progeny of 75 sires (average 20 progeny per sire, range 

1-38), though not all animals had all traits recorded. Editing of records included removal of 

animals with incomplete pedigree, missing birth date, large feed refusal during testing and trait 

measurements greater than 4 standard deviations from the contemporary group mean. 

Model of analysis. Variance and covariance components were estimated with an animal model 

using ASReml (Gilmour et al. 2009). A fixed effect of contemporary group, random direct genetic 

effects, and residual effects were included in the standard model. Contemporary group was defined 

by cohort, methane group and management group. Covariates were added to the standard model 

where these variables were significant (P<0.05) for a particular trait. The standard model was used 

for RMPR. For BWT, age of dam (in years) was added to the model as a linear covariate, while for 

FWT, a linear covariate for age of animal (in days) was included. For the remaining traits (TWT, 

DMI, MPR, MY, RMPJ,WWT and YWT), age of animal as well as age of dam were added to the 

model as linear covariates. For the traits of BWT, WWT and YWT, maternal genetic and maternal 

permanent environmental effects were also included in the model, with the direct-maternal genetic 

relationship fixed at zero. Pedigree records for all animals with records and 2 further generations 

of ancestors were used.  

 

RESULTS AND DISCUSSION 

Table 1 contains summary statistics for the methane test and weight data.  

 

Table 1 Descriptive statistics for methane and growth traits 

 
Trait No. records Average (SD) Minimum Maximum 

TWT (kg) 1,043 356.4 (89.6) 156 640 

DMI (kg/d) 1,043 6.07 (1.31) 3.59 9.42 

MPR (g/d) 1,043 132.2 (25.4) 78.9 251.0 

MY (g/kg DMI) 1,043 22.0 (2.3) 13.1 29.5 

RMPJ (g/d) 1,043 10.7 (15.0) -55.9 70.7 

RMPR (g/d) 1,043 0 (9.5) -39.6 64.0 

BWT (kg) 1,471 34 (4.8) 19 50 

WWT (kg) 1,456 242 (37) 110 355 

YWT (kg) 1,377 370 (54) 172 592 

FWT (kg) 1,011 450 (58) 265 648 

 

Genetic parameters for methane and production traits are reported in Table 2. Heritabilities for 

methane traits were moderate (0.27 and 0.22) and are similar to estimates of Donoghue et al. 

Proc. Assoc. Advmt. Breed. Genet. 21: 114-117

115



 

 

(2013) and Herd et al. (2014b) using a smaller subset of the animals in this study. Pinares-Patino 

et al. (2011) also reported a moderate heritability (0.30) for MY in sheep. Heritabilities for RMP 

were moderate (0.19), similar to preliminary estimates from this study (Herd et al., 2014b) and 

offer the potential to make selection decisions to target MPR independent of feed intake while also 

avoiding using a ratio trait, such as MY. The results from this study, together with published 

estimates, indicate that there is potential to lower  methane emissions from livestock through 

selection.  

 

Table 2 Genetic parameters (SE) for methane and growth traits  

 
Trait σ2

d σ2
m σ2

c σ2
p h2

d h2
m c2 

TWT 446.9 (98) - - 1,016 (54) 0.44 (0.08) - - 

DMI 0.080 

(0.017) 

- - 0.175 

(0.009) 

0.46 (0.08) - - 

MPR 44.0 (12) - - 164.3 (8) 0.27 (0.07) - - 

MY 0.383 

(0.111) 

- - 1.76 (0.09) 0.22 (0.06) - - 

RMPJ 15.7 (4.88) - - 84.1 (4.01) 0.19 (0.06) - - 

RMPR 15.7 (4.79) - - 83.8 (3.96) 0.19 (0.05) - - 

BWT 6.32 (1.60) 3.31 (1.10) 0.32 (0.90) 18.38 

(0.84) 

0.34 (0.08) 0.18 (0.06) 0.02 (0.05) 

WWT 172.6 (49) 73.7 (35) 95.7 (35) 670.8 (29) 0.26 (0.07) 0.11 (0.05) 0.14 (0.05) 

YWT 465.7 (94) 48.6 (45) 30.8 (48) 1,002 (47) 0.46 (0.08) 0.05 (0.05) 0.03 (0.05) 

FWT 827.5 (147) - - 1,390 (77) 0.60 (0.08) - - 

 

Table 3 Genetic (above diagonal) and phenotypic (below diagonal) correlations (SE) for 

methane traits 

 
Trait TWT DMI MPR MY RMPJ RMPR BWT WWT YWT FWT 

TWT  0.99 

(0.01) 

0.80 

(0.07) 

-0.10 

(0.18) 

0.05 

(0.19) 

-0.09 

(0.19) 

0.58 

(0.13) 

0.80 

(0.07) 

0.98 

(0.02) 

0.96 

(0.02) 

DMI 0.93 

(0.01) 

 0.84 

(0.06) 

-0.04 

(0.18) 

0.10 

(0.18) 

-0.05 

(0.18) 

0.54 

(0.14) 

0.84 

(0.06) 

0.94 

(0.03) 

0.95 

(0.03) 

MPR 0.68 

(0.02) 

0.71 

(0.02) 

 0.50 

(0.14) 

0.63 

(0.11) 

0.50 

(0.14) 

0.36 

(0.18) 

0.84 

(0.09) 

0.86 

(0.06) 

0.79 

(0.08) 

MY 0.04 

(0.04) 

-0.01 

(0.04) 

0.68 

(0.02) 

 0.99 

(0.01) 

0.99 

(0.01) 

-0.01 

(0.21) 

0.27 

(0.21) 

0.21 

(0.18) 

0.05 

(0.17) 

RMPJ 0.11 

(0.03) 

0.08 

(0.04) 

0.76 

(0.01) 

0.97 

(0.01) 

 0.99 

(0.01) 

0.03 

(0.22) 

0.45 

(0.20) 

0.38 

(0.17) 

0.18 

(0.17) 

RMPR 0.02 

(0.04) 

-0.02 

(0.04) 

0.69 

(0.02) 

0.97 

(0.01) 

0.99 

(0.01) 

 -0.06 

(0.22) 

0.32 

(0.22) 

0.23 

(0.19) 

0.06 

(0.17) 

BWT 0.43 

(0.04) 

0.39 

(0.04) 

0.26 

(0.04) 

-0.01 

(0.04) 

0.02 

(0.04) 

-0.03 

(0.04) 

 0.53 

(0.15) 

0.56 

(0.12) 

0.54 

(0.14) 

WWT 0.71 

(0.03) 

0.71 

(0.03) 

0.53 

(0.03) 

0.03 

(0.04) 

0.11 

(0.04) 

0.04 

(0.04) 

0.36 

(0.04) 

 0.92 

(0.04) 

0.92 

(0.05) 

YWT 0.85 

(0.01) 

0.80 

(0.02) 

0.61 

(0.03) 

0.09 

(0.04) 

0.16 

(0.04) 

0.08 

(0.04) 

0.40 

(0.04) 

0.66 

(0.04) 

 0.99 

(0.01) 

FWT 0.84 

(0.01) 

0.79 

(0.01) 

0.56 

(0.03) 

0.10 

(0.04) 

0.13 

(0.04) 

0.07 

(0.04) 

0.39 

(0.04) 

0.62 

(0.03) 

0.84 

(0.01) 
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Phenotypic (rp) and genetic (rg) correlations and their associated standard errors between 

methane and growth traits are reported in Table 3. MPR was highly genetically correlated with 

both TWT (0.80) and DMI (0.84), indicating that reducing MPR would also lead to correlated 

reductions in TWT and DMI. In contrast, MY was not genetically correlated with TWT (-0.10) or 

DMI (-0.04), but was positively genetically correlated with MPR (0.50), indicating that reducing 

MY would have little impact on DMI or TWT, but have the correlated effect of reducing MPR. 

Large positive rg (0.99) were observed between MY and the residual methane traits, indicating 

that, genetically, animals with higher MY also had higher RMP. Genetic relationships between the 

residual methane traits and TWT (-0.09, 0.05) and DMI (-0.05, 0.10) were low. This indicates that 

there is potential to select for reduced RMP with little impact on DMI and TWT, with the 

correlated effect of reducing MPR and the benefit of avoiding selection on a ratio trait. The genetic 

correlation between MPR and BWT (0.36) was moderate, while correlations with later growth 

traits (WWT, YWT and FWT) were large (0.79 to 0.86). These results are similar to those reported 

in sheep (Pinares-Patino et al., 2013), where large genetic correlations were observed between 

MPR and WWT (0.71) and WT at 8 months of age (0.80). These correlations indicate that directly 

selecting for reduced MPR will also select for lighter animals. MY and residual methane traits 

were not genetically correlated with BWT or FWT (-0.06 to 0.18), but were lowly to moderately 

genetically correlated with WWT and YWT (0.21 to 0.45), however large standard errors were 

associated with all estimates. Pinares-Patino et al. (2013) reported little genetic relationship 

between MY and WWT (0.06) and WT at 8 months of age in sheep (0.06). The results in our study 

indicate that it may be possible to select for reduced MY or residual methane with minimal impact 

on animal productivity.  

 

CONCLUSIONS 

Genetic variation in methane emissions is present in this population of Angus cattle, 

confirming the potential to use genetic improvement to reduce methane emissions in livestock. For 

Australian beef cattle herds, selection for lower methane production (MPR) may lead to selection 

for lower weight and have detrimental effects on animal productivity. In contrast, selection for 

lower MY or RMP would lead to lower MPR with minimal impact on herd productivity. The use 

of a ratio trait, like MY, in animal breeding is generally undesirable, and thus selection on either of 

the residual methane traits is a better alternative.  
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SUMMARY 

Methane emissions for beef cattle are heritable, whether measured as methane production, 

methane yield (methane production/dry matter intake), or residual methane (observed methane 

production – expected methane production).  This suggests methane emissions could be reduced 

by selection.  Genomic selection is perhaps the most feasible approach to implement for the beef 

industry, given the high cost of measuring methane production from individual cattle.  Here we 

derive genomic estimated breeding values (GEBV) for methane traits from a reference set of 747 

Angus animals measured for methane traits, and genotyped for 630K SNPs.  The accuracy of 

GEBV was evaluated in a cohort of 273 Angus animals.  Accuracies ranged from 0.29, for 

methane yield, to 0.35 for residual methane.  Selection on GEBV using the genomic prediction 

equations derived here could reduce emissions for beef cattle by roughly 5% over 10 years.   

 

INTRODUCTION 

Methane emission levels, whether measured as methane production, methane yield (methane 

production/dry matter intake), or residual methane (difference between actual and predicted 

methane production) are all heritable traits (Donoghue et al. 2013; Herd et al. 2014).  Selection for 

reduced emissions could therefore result in likely small annual but cumulative and permanent 

changes in emission levels.  Residual methane production (RMP) or methane yield (MY) are more 

attractive targets for selection than methane production (MPR), as they are not unfavourably 

correlated with production traits (Donoghue et al. 2015).   

Unfortunately given the cost and difficulty of measuring these traits, it is unlikely that either 

MY or RMP could be measured on the scale that would be necessary to calculate estimated 

breeding values (EBV) on an ongoing basis for the beef industry.  An alternative is to use genomic 

selection for these traits.  This entails measuring a large reference population for MY or RMP, 

genotyping the reference population for a large number of SNP markers, and then using the 

information to derive a genomic prediction equation, that can be used to calculate genomic 

estimated breeding values (GEBV) for any selection candidate that is genotyped.  Here we use a 

large group of Angus animals measured for methane emission levels (as described by Donoghue et 

al. 2015), and real or imputed genotypes for 632,003 SNPs were used, to derive GEBV for MPR, 

MY and RMP.  The accuracy of the GEBV was demonstrated to be moderate, enabling selection 

for reduced methane emission levels for Australian beef cattle.     

 

MATERIALS AND METHODS 

Phenotypes. For a full description of phenotypes, see Donoghue et al. (2015), in this 

proceedings. Briefly, 1,020 Angus animals were measured for methane production in 10 

respiration chambers on the University of New England campus, Armidale NSW (Herd et al. 

2014a) provides details on the management of animals and methane measurement procedure. The 

animals were progeny of 73 sires (average 14 progeny per sire, range 1-30), born across 4 drops. 
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Progeny of individual sires were stratified across groups and cohorts.  Methane production was 

measured over 2 x 24h consecutive periods. For animals born from 2011 to 2013 these 

measurements were taken at approximately yearling age (mean = 339 days). However, for animals 

born in 2009, these measurements were taken at approximately two years of age (mean = 738 

days).  Traits measured (Table 1) included pre-test weight (TWT), dry matter intake (DMI), daily 

methane production (MPR) and methane production per unit feed intake (methane yield: MY). 

Four different forms of residual MPR (RMP) were defined to target MPR independent of feed 

intake, with RMP defined as actual MPR minus expected MPR (expMPR). For RMPJ, expMPR 

was calculated using a published prediction equation (Johnson et al., 1995), while for RMPR, the 

residuals from a simple regression of MPR on DMI were used. 

  

Table 1. Definition of traits 

 

Trait name Abbrev-

iation 

Units Definition 

Test  Weight TWT Kg Pre-test weight 

Dry matter intake DMI kg/day Dry matter intake during methane measurement 

Methane production rate MPR g/day Methane produced 

Methane intensity MI g/kg MPR per unit TWT (MPR  TWT) 

Methane yield MY g/kg  MPR per unit DMI (MPR  DMI) 

Residual methaneB RMPB g/day MPR net of expected MPR (expMPR) from the DMI, 

with expMPR obtained by formula of Blaxter and 

Clapperton (1965) 

Residual methaneJ RMPJ g/day MPR net of expected MPR from DMI, with expMPR 

obtained by formula of Johnson et al. (1995) 

Residual methaneI RMPI g/day MPR net of expected MPR from DMI, with expMPR 

obtained by formula of IPCC (2006) 

Residual methaneR RMPR g/day MPR net of expected MPR from the DMI, with 

expMPR obtained by regression of MPR on DMI 

 

Genotypes.  1,020 Angus cattle, that have been measured for methane traits, were genotyped 

with either 777,000 SNPs Illumina Bovine HD Array (847 animals) or the Bovine 54,000 SNP50 

array (173 animals).  The SNP positions used were from bovine genome assembly UMD 3.1 

(University of Maryland, College Park, MD). Stringent quality control procedures were applied to 

the data.  Monomorphic SNPs and SNPs with less than 5 copies of the rare allele were removed.  

Then genotype calls with GenTrain score (GenCall) > 0.6 are high quality; below this value they 

were excluded. For the animals genotyped with the HD array, there were 650,934 SNPs genotyped 

at GenCall > 0.6. Furthermore, 343 mitochondrial SNPs, 1,124 Y chromosome SNPs, and 1,735 

unmapped SNPs were excluded.  SNPs with duplicate positions or dubious positions given linkage 

disequilibrium with surrounding SNPs were also removed.  632,003 SNPs remained.  Samples 

(animals) were checked for excess heterozygosity (>0.4 is a sign of sample contamination), and 

had to have more than 90% of SNP with GenCall scores >0.6. All 1,020 samples passed these 

quality control criteria, and 97.9 % of SNPs were genotyped at GenCall > 0.6.  Missing genotypes 

for animals genotyped with the 777K were imputed using Beagle3 (Browning and Browning 

2009), and the same program was used to impute the animals genotyped for the 50K to 632,003 

genotypes, after quality control on 50K genotypes as for the 777K genotypes 

  Genomic heritabilities and genomic breeding values.  The models fitted to the data were as 

described by Donoghue et al. (2015), except that genomic relationships were used to describe 

relationships between animals: 
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𝒚 = 𝑿𝒃 + 𝒁𝒈 + 𝒆, where y is a vector of trait records (WT, DMI, CH4, MY, MI, RMPB, 

RMPJ, RMPI or RMPR), b is a vector of fixed effects including contemporary group, age and dam 

age, X is a design matrix allocating records to fixed effects, g is a vector of genomic estimated 

breeding values (GEBV), Z is a design matrix allocating records to breeding values, and e is a 

vector of random residuals ~ N(0, I
2

e), where 
2
e  is the error variance.  The g were assumed 

distributed  N(0, G
2

gen), where 
2

gen  is the additive genetic variance and G is the genomic 

relationship matrix constructed from the 632,003 SNP markers genotypes, following Yang et al. 

(2010).  Variance components were estimated on the full data set (1,020 records) using ASReml 

(Gilmour et al. 2009).  Genomic heritabilities were then calculated as: 

ℎ2 =
𝜎𝑔𝑒𝑛
2̂

𝜎𝑔𝑒𝑛
2̂ +𝜎𝑒

2̂
.   

The accuracy of genomic estimated breeding values (GEBV) was evaluated by predicting the 

youngest cohort of animals, those screened in 2014 (273).  The reference population were then all 

the other animals (747).  The accuracy of prediction was taken as for the animals in the validation 

set, the correlation of their genomic estimated breeding values and their phenotypes (corrected for 

fixed effects), divided by the pedigree heritability of the trait: 𝑟(𝐺𝐸𝐵𝑉, 𝑦 ∗)/√ℎ2.   

RESULTS AND DISCUSSION 

    The estimates of genomic heritabilities were very similar to those previously calculated using 

pedigree data (Donoghue et al. 2015) for most traits, and were within one standard error for all 

traits (Table 2).   

 

Table 2.  Estimates of heritability from analysis using either pedigree or genomic 

information to construct relationships between animals, and accuracy of genomic estimated 

breeding values in a validation cohort. Standard errors are in brackets.  

      
Trait name h2 pedigree* h2 genomic Proportion of genetic variance 

explained by SNP 

Accuracy 

of GEBV 

Weight (kg) 0.43 (0.08) 0.42 (0.07) 0.96 0.37 

Dry matter intake 0.44 (0.08) 0.37 (0.07) 0.82 0.35 

Methane Production 0.27 (0.06) 0.28 (0.06) 1.05 0.35 

Methane Yield 0.22 (0.06) 0.20 (0.05) 0.92 0.29 

Methane Intensity 0.28 (0.06) 0.25 (0.06) 0.83 0.29 

Residual methaneB 0.19 (0.06) 0.18 (0.05) 0.97 0.30 

Residual methaneJ 0.19 (0.05) 0.18 (0.05) 0.98 0.34 

Residual methaneI 0.19 (0.05) 0.18 (0.05) 0.96 0.34 

Residual methaneR 0.19 (0.05) 0.18 (0.05) 0.94 0.35 

 

*From Donoghue et al. (2015) using the same data.   

     

    The proportion of the additive genetic variance captured by the SNP (the estimated genetic 

variance from the SNP divided by the genetic variance estimated from pedigree) ranged from 0.82 

to 1, and was close to 1 for most traits.  This is encouraging, indicating the SNPs are picking up 

most of the genetic variation for the traits (the proportion of genetic variation explained by the 

SNP sets an upper limit on the accuracy of GEBV that can be achieved).     
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     The accuracies of GEBV from GBLUP were moderate, and quite similar across traits (Table 2). 

Accuracies were all significantly different to zero - the standard error of the correlation between 

GEBV and phenotypes (which divided by square root of heritability gives the accuracy) was 0.06, 

and for all traits the correlation was positive and at least twice this standard error.  The accuracies 

of GEBV are similar to those for methane traits in sheep (Rowe et al. 2014).      

     In conclusion, results were encouraging – accuracies of GEBV for all traits were moderate, 

even though no SNPs with large effects for any of the methane traits was observed.  Given an 

accuracy of GEBV of 0.3 (e.g. for methane yield and methane intensity), we can calculate 

response to selection for these traits that could be achieved per year (very roughly) as:  

∆𝐺 =
𝑖𝑟𝜎𝑔𝑒𝑛

𝐿
 

where i is the intensity of selection (assume 1.5), L is the generation interval (assume 3.5), r = 0.3 

is the accuracy of genomic breeding values, gen is the genetic standard deviation for the trait.  The 

selection response for methane yield and methane intensity would be 0.084 g/kg DMI and 0.002 

g/kg live weight respectively.  This is 0.4 % and 0.5 % of the mean for these traits – suggesting 10 

years of selection could lead to a 4 % reduction in methane yield, or a 5 % reduction in methane 

intensity, using the genomic breeding values derived with the data set used here.  This compares 

not too unfavourably with for example milk yield in dairy cattle, a much easier trait to measure, 

where roughly a 1.5 % gain per year is achieved.   
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SUMMARY 

Genetic selection and breeding to reduce methane production is one option to reduce 

greenhouse gas emissions, but correlated responses in production traits also need to be considered.  

The objective of this study was to quantify the effect of divergent selection for methane yield 

(MY), on methane and body weight traits in Angus cattle. High and Low MY selection lines were 

created in each of two performance-recorded Angus research herds during the 2011 mating season. 

This study is a preliminary report on the divergence of these selection lines, as assessed by the 

performance of the 2013 born progeny. There was no significant selection line by herd interaction.  

Approximately half a generation of selection was achieved. There was a significant (P<0.05) 

divergence between the two lines in the selected trait, methane yield. This was also reflected in the 

significant (P<0.05) selection line differences in the residual methane (actual minus expected 

methane production) traits and also in the estimated breeding values for these traits. There were no 

significant selection line differences in birth, weaning and yearling weights. 

 

INTRODUCTION 

Ruminants emit methane, a potent greenhouse gas (GHG). Methane is the main GHG emitted 

by ruminants and is a by-product of enteric microbial fermentation of plant material mainly in the 

rumen (McAllister et al. 1996).  Hence reducing enteric methane production is essential to any 

GHG emissions reduction strategy in livestock. Higher feed intake is associated with higher 

methane production in ruminants (Blaxter and Clapperton 1965; Pelchen and Peters 1998). Feed 

intake is highly correlated with growth and other production traits in ruminants (Arthur et al. 2001; 

Lancaster et al. 2009). Therefore, breeding animals for lower methane production per se, may 

have a detrimental impact on ruminant productivity due to reduced feed intake. Consequently there 

has been increased interest in the amount of methane produced per unit feed intake, also known as 

methane yield (MY).  

In 2009, a research project was started at the Agricultural Research Centre at Trangie, NSW, 

Australia, to investigate the potential of genetic improvement to reduce methane GHG emissions 

in cattle. Details of the project have been reported by Donoghue et al. (2015). This study is one of 

the components of the main project, and it provides a preliminary report on the performance of 

cattle divergently selected for methane yield at yearling age. The objective of this study was to 

establish if breeding could be used to reduce methane production and what effect this would have 

on methane and body weight traits 

 

MATERIALS AND METHODS 

Cattle utilized in this study were from a performance recorded registered Angus stud, 

comprised of two research herds (an Autumn calving and a Spring calving herd), located at the 

Trangie Agricultural Research Centre, NSW.  As part of the main project, cattle born in 2009, 

2011, 2012 and 2013 were measured for methane production in 10 respiration chambers at the 

University of New England campus, Armidale, NSW.  For cattle born in 2009, males from both 

herds and females from one of the herds were measured for methane at approximately two years of 
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age (mean=748 days) in 2011 due to delays in construction of the methane test facility.  For cattle 

born in subsequent years, animals from both sexes in both herds were measured as yearlings. 

Animals were on a restricted (alfalfa and oaten hay chaff) ration of approximately 1.2 times their 

estimated daily energy requirement for maintenance, when measured for methane. Details on the 

methane measurement protocols have been published earlier by Herd et al. (2014). 

This study commenced in 2011 with the establishment of High and Low MY selection lines in 

each of the 2 research herds, comprising 330 females. Due to the limited number of females tested 

for methane in each of the two herds, untested females were also randomly allocated to the 

selection lines and included as the foundation animals. Therefore the 2008, 2009 and 2011 born 

animals formed the foundation herd for this study. Foundation females were randomly allocated to 

the High MY line (High MY) (174 cows) and the Low MY line (Low MY) (156 cows), 

irrespective of their individual MY values. All 16 bulls used for mating had methane 

measurements. Within herds, the four bulls with the highest MY were allocated to the High MY 

line and the four bulls with the lowest MY to the Low MY line. The sole selection criterion for 

bulls in the High MY line and Low MY line was individual MY. Throughout the project bulls and 

heifers were mated at approximately 14 months of age, and bulls were used for only one mating 

season.  Animals from each selection line were grazed together throughout the year, except during 

mating. Allocation of mates within selection line was completely random, except for the avoidance 

of half-sib and son-dam matings.  All matings were by natural service and the breeding herd were 

on pasture all year round, with supplementary feed offered during times of limited pasture growth.  

A total of 304 and 264 (dams and 2013 drop progeny) animals were tested for MY in the high MY 

and Low MY selection lines respectively. The progeny of the selected sires were born in 2013. 

Calves (287) were reared by their dams until weaning and were on pasture all year except during 

methane measurement.  Pastures comprised native and introduced perennial and annual grasses 

and forbs (Windmill grass, Chloris truncate; spear grass, Stipa spp.; barley grass, Hordeum 

leporinum; burr-medic, Medicago spp.; and crowsfoot, Erodium spp.). 

 

Traits studied. The definitions of all the traits studied are provided in Table 1. Methane 

production was measured over 2 consecutive 24 hour periods. Traits measured included pre-test 

 

Table 1. Definition of traits 

 
Trait name Abbreviation Units Definition 

Pre-test weight TWT kg Weight at time of methane test 

Dry matter intake DMI kg/day Dry matter intake during methane test 

Methane production MP g/day Methane produced 

Methane yield MY g/kg  MP per unit DMI (MP/ DMI) 

Residual methaneB RMPB g/day MP net of expected MP (expMP) from the DMI, with 

expMP obtained by formula of Blaxter and Clapperton 

(1965) 

Residual methaneJ RMPJ g/day MP net of expected MP from the DMI, with expMP 

obtained by formula of Johnson et al. (1995) 

Residual methaneI RMPI g/day MP net of expected MP from the DMI, with expMP 

obtained by formula of IPCC (2006) 

Residual methaneR RMPR g/day MP net of the expected MP from the DMI, with 

expMP obtained by regression of MP on DMI 

EBV for MY  EBV_MY g/day Estimated Breeding Value for methane yield 

EBV for RMPR EBV_RMPR g/day Estimated Breeding Value for residual methane RMPR  

Birth weight BWT kg Weight at birth  

Weaning weight WWT kg Weight at weaning (~ 200 d of age) 

Yearling weight YWT kg Weight at one year of age (~ 400 d of age) 
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weight (TWT), dry matter intake (DMI), daily methane production (MP) and MY.  Body weights 

were taken at birth and approximately every 3 months, for research and routine husbandry 

practices. Estimated breeding values (EBV) for MY and RMPR, generated for all animals in the 

main project (Donoghue et al. 2015), were also evaluated. 

 

Statistical analysis. Data from the 2013-born progeny were analysed to study the responses to 

selection as they were the most advanced generation of selection.  Analyses were conducted using 

ASReml (Gilmour et al. 2014), fitting generalized linear mixed models to evaluate fixed effects 

and sire fitted as a random effect.  Fixed effects included herd, selection line and sex, with dam 

age and age at measurement fitted as covariates. Herd by selection line, herd by sex and selection 

line by sex were fitted as interactions.  For the methane traits, test cohort (management test group 

within herd and sex) was also fitted as an additional fixed effect.   

 

RESULTS AND DISCUSSION 

There was no significant selection line by herd or selection line by sex interactions for any of the 

traits studied in the 2013 born cattle. This implies that the selection line responses were similar 

across the two herds and sexes. Methane test cohort was not significant for any of the methane 

traits. The 2013-born progeny were the first generation, but were only half a selection generation, 

as only one parent (sire) was selected on methane tests, dams were not allocated to selection lines 

on methane tests.  Selection line means for the traits studied are presented in Table 2. There was a 

significant (P<0.05) divergence between the two selection lines in methane yield. There were also 

significant (P<0.05) selection line differences in residual methane traits and the EBVs for these 

traits. This difference is important given that it was achieved in half a generation of selection. This 

simulates what could be achieved at a commercial level, where only introduced sires/bulls are used 

to make genetic progress within the herd. There were no significant selection line differences in 

body weight.  

 

Table 2.  Least squares means (± standard errors) for methane production and growth traits 

of 2013 born cattle from the methane yield (MY) selection lines 

 
 Selection line  

Trait1  High MY line Low MY line Significance2 

Number of animals  153 134  

Dry matter intake, kg/day 5.7 ± 0.1 5.7 ± 0.1 ns 

Methane Production, g/day 127.4 ± 1.4 125.2 ± 1.5 ns 

Methane yield, g/kg DMI 22.6 ± 0.1 22.1 ±  0.1 * 

Residual methaneB, g/day -13.5 ± 0.7 -16.7 ± 0.7 * 

Residual methaneJ, g/day 14.5 ±  0.7 11.4 ± 0.7 * 

Residual methaneI, g/day 5.2 ± 0.7 2.1 ± 0.7 * 
Residual methaneR, g/day 1.5 ± 0.7 -1.6  ± 0.7 * 

EBV for MY, g/day 0.2 ± 0.1 -0.2 ± 0.1 * 

EBV for RMPR, g/day  0.8 ± 0.3 -1.4 ± 0.3 * 

Birth weight, kg 31.3 ± 0.5 31.5  ± 0.5 ns 

Weaning weight, kg 257.4 ± 3.8 259.9 ± 3.8 ns 

Yearling weight, kg 416.2 ± 4.5 421.2 ± 4.5 ns 
1See Table 1 for full trait names and definitions 
2 ns denotes non-significant difference (P>0.05); * denotes significant difference at P<0.05  

 

Breeding cattle for lower methane production per se, may have a detrimental impact on 

productivity since low methane production is associated with a reduction in feed intake. Results 
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from this preliminary study support phenotypic and genetic correlation estimates between MY and 

live weight reported by Herd et al. (2014) and Pinares-Patino et al. (2013), through finding no 

significant difference between selection lines in live weight.  Results of of this study reveal that 

selection for low methane yield (measured in respiration chambers, on restricted DMI) is possible 

and will result in a reduction in GHG emissions, which appear to have no impact on the growth of 

these Angus cattle. Further research is required to substantiate if these results are applicable to: 

unrestricted DMI of various feed types in cattle of various physiological state and breeds. 
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SUMMARY 

We have entered the big data paradigm. Now that whole genome sequence data is available on 

a population scale basis, a fundamental issue is: what can be done with sequence data that cannot 

be achieved with former datasets? This question does not have a closed response, partly due to the 

fact that information contained in sequence data is highly repetitive (e.g., linkage disequilibrium) 

and also noisy (e.g., missing data due to shallow coverage). We argue that using accurate biology 

informed decisions can make a big difference in the prediction of genetic merit when sequence is 

available. Here we review the main kinds of external biological information and some approaches 

to combine these disparate sources. Despite the richness of resources available, two main 

difficulties lie ahead: (i) an improved understanding of the phenotype's biology to make the right 

the choice among the plethora of datasets available, and (ii) how this information is weighed and 

incorporated into selection decisions.    

 

INTRODUCTION 

The whole classical paradigm of animal breeding has been traditionally based on large datasets 

consisting of phenotypes and pedigree. Both kinds of information are rather homogenous and a 

unified, well accepted method was used for genetic evaluation, namely best linear unbiased 

prediction (BLUP). Molecular information in the form of low and high-density SNP arrays started 

to disrupt this data homogeneity. The amount of available molecular information in most livestock 

breeding programs has vastly increased recently, and this pace will only accelerate in the coming 

years. Today, the continuous decrease in sequencing and high performance computing (HPC) costs 

have made it conceivable the use of fully sequence in commercial breeding programs (Daetwyler 

et al. 2014).  

Yet, it is important to realize that sequence data is not simply an increased SNP density. It is 

often said that, with sequencing, the causal mutations are in the data. But what is sometimes 

overlooked is that sequence data are very noisy, expensive to analyse, and error prone, especially 

at low coverage. As a result, derived genotypic data are highly unbalanced. For instance, in a large 

scale SNP discovery effort, where we analysed 120 pig genomes, only a few hundred SNPs out of 

all 45 million identified in total were called in all samples (Figure 1). This is to be the rule rather 

than the exception with this kind of data. 

Despite initial enthusiasm based on simulation studies (Meuwissen & Goddard 2010), the 

limited empirical evidence on use of complete sequence for genomic selection so far calls for 

caution. Hayes et al. (2014) reported only a small (~4%) increase in accuracy compared to 

standard high-density array based selection. More recent simulations by Druet et al. (2014) and 

MacLeod, et al. (2014) suggest that the actual advantage will be heavily influenced by the allele 

distribution of causal variants and by recent demography (i.e. linkage disequilibrium). In parallel 

to the availability of larger genotype datasets and improved algorithms to predict genetic merit, 

vast amounts of new functional information are becoming available. After the sequencing of high 

quality reference genomes, gene expression datasets by RNA-seq across tissues are becoming 

available (e.g. Liao et al. 2014), and current and future essays on histone marks, methylation, 

open-chromatin transcription binding and chromatin conformation promise to unravel the 
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regulatory landscape governing biological processes (Andersson et al. 2015). An advantage of this 

kind of information is that it can, partly, be transferred across species (Villar et al. 2015). For 

instance, metabolic pathways are well conserved across mammals or even across eukaryotes for 

fundamental pathways as well as gene expression levels (Brawand et al. 2011). On the contrary, 

the regulatory levels across mammals are highly dynamic (Schmidt et al. 2010; Villar et al. 2015). 

Here, we review the different sources of current and foreseeable available information, and we 

suggest that careful utilization of this biological information might boost genomic selection. 

 

 

 

 

 

Figure 1: Number of 

individuals in which a given 

variant (SNPs) is observed. 

The data pertain to 128 pig  

genomes sequenced at varying 

depths, 4-20x, analysed with 

bwa and samtools.  Figure 

from Bianco el al. (2015). 
 

 

 

 

 

WHY FUNCTIONAL INFORMATION CAN BE USEFUL 

Knowing the causal mutations is the holy grail for quantitative genetics. If these were known, 

much more accurate genetic predictions could be made, but note that this is but an extreme case of 

strong priors assigned to the SNPs available in the sequence dataset. In a recently published 

simulation study (Perez-Enciso et al. 2015), we showed that there is a clear law of diminishing 

returns when SNP density increases, and that the use of sequence would deliver only modest gains 

in accuracy. We predicted that only when using accurate biological information was sequence to 

pay off. Figure 2 shows our results. The two extremes are sequence data when used 'blindly', that 

is, without giving any different prior to any of the SNPs and inclusion of only the causal SNPs in 

the model. The latter strategy approaches an accuracy of 1, confirming our conjecture. Because all 

causal mutations are in the sequence, it is clear that wise choice of priors for each SNP can have a 

dramatic influence on prediction. Now, if all genes containing causal SNPs could be identified (red 

line) accuracy would increase by ~40%, as a result of disequilibrium with causal mutations. Yet, 

unfortunately, our simulations also show that miss- or incomplete specification of causal genes 

quickly diminishes accuracy (magenta and blue lines). 

 

KINDS OF AVAILABLE INFORMATION 

Table 1 shows a very shortlist of databases illustrating the wide diversity of data available that 

can be potentially used for improving the prediction of SNP functionality. These are: QTL, 

genome annotation, SIFT prediction, expression, methylation status, pathway information, gene 

ontology, among others. The new Functional Annotation of Animal Genomes (FAANG) 

consortium is currently gathering efforts to provide the same data to the animal genetics research 

community (www.faang.org) (Andersson et al. 2015) thus procuring a high quality genome 

annotation for domestic animals with unprecedented detail. Expression data are of particular 
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relevance. Defining which genes are expressed in which cell types and developmental time points 

is fundamental to our understanding of development and disease. RNA-seq data pictures whole 

genome expression levels independently of the species/breed of interest. Coupling differentially 

expression analysis together with motif discovery or pathway analysis results in further insight 

into regulation and biology. Seminal studies comparing the regulatory landscape across vertebrates 

have proven that regulatory regions are highly dynamic with only a core being conserved across 

species (Schmidt et al. 2010; Villar et al. 2015). Therefore, the regulatory annotation of distinct 

tissues and developmental stages across domestic species is crucial for their study. 

 

 
Related to this is the understanding of gene regulation itself. Motif discovery analysis on gene 

expression signatures is a popular alternative to detect regulatory regions and regulators in a given 

biological process. The underlying hypothesis to this strategy is that co-expressed genes tend to be 

co-regulated and therefore they might present similar Transcription Factor Binding Sites (TFBSs) 

in their regulatory region. Motif discovery analyses applied to differentially expressed (DE) gene 

sets predict changes in regulation. Differentially expressed genes are a consequence of a lack of 

functionality or mis-expression of a particular Transcription Factor, which triggers the downstream 

mis-expression of its direct target genes and a vast amount of indirectly related genes. Successful 

motif discovery tools in human are ModuleMiner, PhylCRM/Lever and i-Regulon (Janky et al. 

2014; Van Loo et al. 2008; Warner et al. 2008). 

In our opinion, the most promising approach for genomic selection is to utilize the information 

of how genes interact with each other, i.e., pathway analyses or 'gene set analyses' (GSEA). There 

are several tools for pathway analysis and, broadly, three kinds of functional pathway analysis: 

over-representation analysis, functional class scoring and pathway topology. Over-representation 

analysis requires that the input is a list of DE genes, this method evaluates the genes in a specific 

pathway that show changes in expression, counting the number of DE genes that are in the 

pathway. Functional class scoring analysis uses the entire data as input, this method follows three 

steps: first, computes differential expression of individual genes or proteins; second, the gene-level 

statistics of the genes of a specific pathway are aggregated into a single pathway-level statistic; 

finally, estimates the statistical significance of this pathway-level statistic. Pathway topology 

analysis uses the number and type of interactions between gene products, this method is essentially 

the same as the functional class scoring method but with the difference that the pathway topology 

analysis uses the additional information of the genes to compute the gene-level statistics. 
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COMBINING DISPARATE SOURCES OF INFORMATION 

Formal integration of information from seemingly disparate sources aims at elucidating the 

congruency of these sources to further gain biological insight in a manner not possible by each 

individual source in isolation. The underlying premise is that inaccuracies are less likely to be 

present when separate data sources corroborate each other. Most applications for combining 

disparate sources in molecular biology follow one of three general approaches: meta-analysis, 

graph theory and cluster analysis. Here, we provide a brief description of each approach and when 

available present and discuss references of relevance to animal breeding and genetics. 

Meta-analysis can be seen as an attempt to increase sample size. The objective is to achieve a 

higher statistical power by aggregating the results from separate studies linked by a common 

measure such as the effect of a SNP or the abundance of a gene.  PRISMA is an organisation that 

provides guidelines for the systematic reporting of meta-analyses (http://www.prisma-

statement.org/index.htm). Many journals endorse the PRISMA guidelines and require their authors 

to adhere to them. As an example, Pérez-Montarelo et al. (2012) undertook a meta-analysis of 20 

gene expression studies in porcine spanning 134 experimental conditions on 27 distinct tissues. In 

an attempt to control the experimental design effects that may contribute to bias, the authors 

normalised the data by fitting a mixed-model approach that accounted for the disparity in the 

origin of the studies. With a focus on transcription factor genes and tissue-specific genes, a gene 

co-expression network was inferred where genes clustered by tissue and tissues clustered by 

embryonic origin. In another example, and in order to characterise inbreeding depression across 

species and traits, Leroy (2014) conducted a meta-analysis on 57 studies, 37 phenotypes and seven 

livestock species. Reported estimates of inbreeding depression were analysed using a multiple 

regression model that included the effect of study and phenotype. As result, the author reported an 

average decrease of 0.35% of the mean of a trait per 1% of inbreeding.  

Graph-theoretic approaches have the intuitive appeal of network systems where objects 

(typically genes) are represented by nodes and relationships (typically interactions) are represented 

by edges. A number of attributes can be overlaid in the visualization schema and the resulting 

network visualized and explored using a (more or less friendly) software platform such as 

Cytoscape (www.cytoscape.org). Beyer and May (2003) developed a graph-theoretic algorithm, 

namely PARTITION, to the partition of individuals into full-sib families. Input to the algorithm is 

a list of individuals and their genotypes at each locus. For each pair of individuals, a likelihood 

ratio is calculated from the likelihood of being truly full-sibs over the likelihood that the pair is 

unrelated. The output is a list of full-sib families in the data set. A second example of graph-

theoretic approaches is the work of Balasubramanian et al. (2004), who presented an approach for 

testing the association between multiple sources of functional genomics data, namely the edge 

permutation and node label permutation tests. 

Finally, Bayesian correlated clustering (eg. Kirk et al. 2012), and Bayesian consensus 

clustering (Lock and Dunson 2013) are gaining momentum in the simultaneous integration of 

information from a wide range of different datasets and data types. In correlated clustering, the 

allocation of objects (e.g. genes) to clusters in one dataset has an influence on the allocation of 

genes to clusters in another dataset. Instead, consensus clustering is most commonly used to 

combine multiple clustering algorithms, or multiple realizations of the same clustering algorithm, 

on a single dataset.  

 

TOWARDS A BIOLOGY INFORMED BREEDING ECOSYSTEM 

The usefulness of sequence or high-density genotyping for genetic prediction is likely to reach 

a plateau rapidly, when used in isolation. In other words, there is so much redundancy in this kind 

of data that the likelihood ratio becomes flat when comparing alternative models with varying SNP 

density. In our opinion, the most promising way to move forward is by embracing the ‘big data’ 
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paradigm. However, contrary to what is normally understood by ‘big data’, the challenge is not in 

its size, but rather in its heterogeneity. Very much like internet companies try to make sense of the 

wide array of information collected by their clients in order to predict their behaviour, animal 

breeding companies should combine in an optimal way the huge public datasets containing 

biological information with their own phenotypic and polymorphism data. This is, admittedly, a 

vague recommendation and there is not, as of today, closed recipes to make the most of this 

information. 

 

CAUTIONS 

Even if very short and incomplete, this review points to the main issue that genomic selection 

will be facing if external biological information is to be successfully employed: how to weigh in 

an optimal way the vast diversity of external data that is already available. Our starting hypothesis 

is that there is not enough information in the data (i.e., in the likelihood) to tell whether a SNP is 

of sufficient relevance to be included or not in the predictive model and that, therefore, external 

information will be key to the successful use of sequence data. 
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Table 1. Selected list of sites containing biological information 

 

Database Website Description 

Sequence 

GenBank http://www.ncbi.nlm.nih.gov/entrez An annotated collection of all publicly available DNA sequences. 

EMBL http://www.ebi.ac.uk/ Framework that provides free access to a range of mainstream sequence analysis 

applications. 

DDBJ http://www.ddbj.nig.ac.jp/ Primary nucleotide sequence database that provides analytical resources for biological 

information. 

Protein 

SWISS-PROT http://www.expasy.org/sprot Swiss-Prot is the section of UniProtKB (central hub of protein knowledge) where the 

information is manually curated. 

PIR http://pir.georgetown.edu/ Resource that provides protein databases and analysis tools to support research on 

molecular evolution, functional genomics and computational biology. 

SCOP http://scop.mrc-lmb.cam.ac.uk/scop Database that provides a detailed and comprehensive description of the relationships of all 

known proteins structures. 

Genomic 

Entrez biosystems http://www.ncbi.nlm.nih.gov/biosystems/ Database providing integrated access to biological systems and their component genes, 

proteins, and small molecules, as well as literature describing those biosystems and other 

related data. 

Entrez Genomes http://www.ncbi.nlm.nih.gov/entrez Database that contains sequence and map data from the whole genomes of over 1000 

organisms. 

KEGG http://www.genome.ad.jp/kegg Database of biological systems that integrates genomic, chemical and systemic functional 

information. 

Organism-specific  

AnimalQTLdb http://www.animalgenome.org/cgi-bin/QTLdb/ Contains reported QTL in livestock 

FlyBase http://flybase.bio.indiana.edu/ Database of genetic and genomic data for the insect family Drosophilidae. 
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OMIM http://www.ncbi.nlm.nih.gov/Omim Knowledgebase of human genes and phenotypes. 

Transcription factor binding 

AnimalTFDB http://www.bioguo.org/AnimalTFDB/ TF database specialized in livestock 

TRANSFAC http://transfac.gbf.de/  

DBD http://www.transcriptionfactor.org/ Database of predicted transcription factors in completely sequenced genomes and their 

sequence specific DNA-binding domain families. 

Epigenetic databases 

Epigenomics http://www.ncbi.nlm.nih.gov/epigenomics Resource for whole-genome epigenetic data sets. 

MethDB 

The Histone Database 

http://www.methdb.de/ 

http://genome.nhgri.nih.gov/histones/ 

Database for DNA methylation and environmental epigenetic effects. 

Resource for histones and histone fold-containing proteins. 

CREMOFAC http://www.jncasr.ac.in/cremofac/ Database dedicated for chromatin-remodeling factors. 

Biochemical databases 

ENZYME http://www.expasy.org/enzyme Repository of information relative to the nomenclature of enzimes. 

BRENDA http://www.brenda-enzymes.org/ Database on functional and molecular information of enzymes. 

AAindex http://www.genome.ad.jp/dbget/aaindex.html Database of phyisicochemical and biochemical properties of amino acids. 

 

Genomic prediction in practice

132



HIGH THROUGHPUT GENOTYPING-BY-SEQUENCING IN LIVESTOCK - ION 

AMPLISEQ
TM 

 

 Kristian Ridley
1
, Jeremy Walker

2
, Matthew Hickenbotham

3 

1
Thermo Fisher Scientific, 33 Marsiling Industrial Estate Rd, Singapore 

2
GeneSeek, 48

th
 St, Lincoln, NE, USA 

3
Thermo Fisher Scientific, 81 Wyman St, Waltham, MA, USA 

 

SUMMARY 

Genotyping-By-Sequencing (GBS) is rapidly gaining popularity for high throughput applications in 

livestock genetics and agriculture biotechnology.  Ion Ampliseq
TM

 is a highly multiplexed, PCR-based 

resequencing technology that enables the targeting of hundreds to thousands of markers across 

hundreds of samples in a single sequencing run using the Ion Torrent
TM

 Sequencing.  We recently 

demonstrated the power of Ion Ampliseq
TM

 GBS for high throughput cattle genotyping by designing a 

panel targeting over 4800 markers in a single pool.  Furthermore, we have developed a simple, low 

cost, high throughput and rapid protocol ideal for commercial testing environments.  The data shows 

excellent reproducibility, accuracy and >95% concordance with existing microarray data even at high 

(384) sample multiplex.  GBS may also reveal novel variants within the targeted region that can enrich 

existing mapping data.  Ion Ampliseq
TM

 offers the flexibility to design customized GBS panels for any 

species with a reference genome, and with little to no optimization required.   

 

INTRODUCTION 

Ion AmpliSeq
TM

 Designer is a simple assay design tool which can be used to create primer pools 

targeting any region of interest within a reference sequence.  Amplicons ranging between 125 and 375 

bp can be designed to target individual genetic loci such as single nucleotide polymorphisms (SNPs), 

or tiled across a total targeted region of more than 30,000 bp.  For GBS applications, the reference 

genomes for mouse, cow, pig, sheep, dog, Chinese hamster, corn, rice, soybean, and tomato are 

preloaded into the Ion AmpliSeq
TM

 Designer.  Additionally, Ion AmpliSeq
TM

  Designer allows the 

creation of Ion AmpliSeq
TM

 panels for private reference genomes or known target regions in a secure 

cloud computing environment. 

With the simplicity and speed of PCR, Ion AmpliSeq
TM

  technology allows automated preparation 

of sequencing libraries.  In combination with the Ion Proton
TM

  Sequencer, rapid molecular marker 

screening by GBS can be performed for hundreds of samples and thousands of targets in a single run.  

This study describes a collaborative investigation into the use of Ion Ampliseq
TM

 technology for 

developing a bovine SNP panel for a high throughput commercial testing application.   

 

METHODS 

Ion Ampliseq
TM

 panel design 

Using the BosTau6 assembly with Y chromosome sequences from BosTau7 plus 2 custom contigs, 

a total of 4,874 SNP loci were submitted for to the Ion Ampliseq
TM

 Designer tool, of which 4,818 

satisfied the design tool’s in silico requirements (>99%). 

Ion Torrent
TM

 Sequencing 

Automated library preparation, including normalization using the Ion Library Equalizer
TM

 Kit was 

performed using the Tecan Freedom EVO® 150 platform using Ion Ampliseq
TM

 2.0 reagents for 384 
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bovine gDNA samples using this custom primer pool.  192 or 384 libraries were then pooled prior to 

automated template preparation and chip loading using the Ion PI™ IC 200 Kit with the Ion Chef
TM

 

platform.  Finally, samples were sequenced in duplicate using Ion PI
TM

 Chip Kit v2 BC on the Ion 

Proton
TM

 Sequencer.   

Data analysis 
Sequencing reads were aligned to the reference sequence using Torrent Suite

TM
 Software under 

standard parameters and variants identified using the Torrent Variant Caller plug-in under default 

germline variant call parameters. 

 

RESULTS  
Call rates of 88% and 80% were observed at 192 and 384 sample multiplex respectively.  The 

average genotype concordance to previous microarray data was >95% (r>0.95) for 4,469 positions in 

common between the two assays (excluding no-calls by both assays), with robust genotyping, 

regardless of sample multiplexing, of 192 or 384 libraries per sequencing run (Figure 1.).  A set of 96 

‘beef diversity’ samples, representing a wide range of cattle breeds was included to demonstrate the 

ability of GBS to identify polymorphisms within the amplicon target sequences surrounding the 

targeted SNPs. The numbers of novel SNPs identified by alignment of the sequencing reads to the 

bosTau6 genome assembly for all 384 samples is presented in Figure 2.  

 

DISCUSSION 

The study describes a novel genotyping-by-sequencing approach using Ion Ampliseq
TM

 

technology.  This is the first account of multiplexed PCR targeted resequencing for a panel of SNPs of 

similar number to those currently used in low density bovine arrays (3000-7000 markers) for 

applications such as genomic selection.   The high level of concordance and sample multiplexing 

demonstrated here indicate that Ion Ampliseq
TM

 may represent an ideal solution for developing both 

smaller and larger bovine SNP panels for a range of livestock applications including parentage, 

inherited disease and key production trait testing. Ion Ampliseq
TM

 panels can easily be modified by 

addition or subtraction of primers ‘on-the-fly’ without the need for extensive re-optimization, and this 

represents a major advantage over existing array-based or mass spec-based genotyping platforms.  

Furthermore, genotyping-by-sequencing generates additional SNP data from the amplicon fragments 

surrounding the targeted SNP, providing researchers with additional variant data that may aid mapping 

studies. 
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Figure 1. Genotype concordance data between an Ion AmpliSeq™ GBS panel and bead-

based microarray analysis.  
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Figure 2. Number of novel SNPs identified by Ion Ampliseq

TM
 sequencing for all 384 samples 

tested, including a set of 96 bovine diversity samples. 
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SUMMARY 

 Genotype by environment (GxE) interaction can reduce genetic gain because there is often 

insufficient information for accurate selection in each environment. Traditionally the estimation of 

GxE effects has been based on the performance of half siblings across environments. This limits 

the estimation of GxE to specifically designed datasets with close relatives where all realized 

relationships may not be utilized. Genomic information can also be used to link animals and 

presents an opportunity to compare genotypes across different environments using realized 

relationship information. This study examines the use of genomic information to estimate GxE 

interaction. The genetic correlation between animal phenotypic performance in two different 

environments was estimated using pedigree or genomic information. A higher genetic correlation 

between environments was observed when using genomic information (0.9) than when using 

pedigree information (0.71). This study suggests that genomic information may be a useful 

alternative to pedigree information in understanding GxE in livestock populations. 

  

INTRODUCTION 

 In livestock production, animals are recorded and selected in a wide range of environments. 

While for most economically important traits there is little evidence for genotype by environment 

interaction (GxE), for some traits, animals or genotypes may perform differently in each 

environment (i.e. across different geographic locations or from one year to another). This can 

involve a change in the differences between alternative genotypes (often referred to as scale 

effects) and it can also relate to a change in the ranking of genotypes across environments.  

Traditionally, GxE interactions can be estimated by measuring relatives across environments. 

Genotype by environment interactions can be estimated using mixed model analyses treating 

performance across environments as two different traits (Falconer 1952) and estimating the genetic 

correlation between performances across each environment. Past studies examining GxE have 

been limited to experimental designs that primarily focus on the use of common sires across 

various environments. The advent of genome-based technologies allows for the possibility of 

changing the way GxE interactions may be estimated. 

Genome-wide association studies and genomic prediction have become common place for 

the prediction of disease risk in human populations and for predicting genetic merit in livestock 

(Goddard 2012). Genome-wide association and genomic prediction rely on a group of individuals 

with both genotypic and phenotypic information to enable the prediction of marker effects 

(directly or indirectly). Often these phenotypes come for a wide range of environments and the 

genomic information can be used to define the covariance between relatives (in the form of a 

genomic relationship matrix (GRM)) (VanRaden 2008). Genomic information presents an 

opportunity to enable a more diverse range of animals, not just close pedigree relatives, to 

contribute to estimating a genetic correlation between environments. It also presents the 

opportunity to observe whether specific genomic regions are more important than others for 

performance in varying environments.  

The aim of this study was to use genomic information to estimate GxE and to examine the 

impact of such information when compared to pedigree based estimates. 
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METHODS 

 The data used in this study consisted of phenotypic and genotypic records from Merino 

animals in the Australian Sheep Cooperative Research Centre (CRC) information nucleus flock 

(INF). The INF is a specifically designed dataset that includes animals that have been recorded in 

eight environments across Australia. This dataset consisted of a dataset of phenotypic and 

genotypic records from 4433 Merino animals for the Post Weaning Weight (PWWT) trait. This 

dataset was further broken down such that phenotypic data from 1807 animals from 227 sires 

measured across two environments were extracted for the analysis. Location 1 (E1), Armidale 

(NSW) is a temperate environment with a primarily summer-dominant rainfall (n=921) and 

Location 2 (E2) Katanning (WA) is located in a winter-dominate rainfall zone (n=886).  

All animals in each dataset were genotyped using the Illumina 50K ovine SNP chip. All SNP 

in this dataset underwent a number of genotyping quality control measures (see Daetwyler et al. 

(2010) and 48 599 markers remained following the quality control. 

Genotype by environment interaction was estimated using both pedigree and genomic 

information. Phenotypic performance in the two environments was modelled as two separate traits. 

A bivariate animal model was fitted in ASReml (Gilmore 2009) and the genetic correlation 

between performance across environments was estimated using either a genomic or pedigree based 

relationship matrix. The following fixed effects were fitted in the analysis of PWWT: Sex, birth 

type, rearing type, age of dam, contemporary group (birth year • site • management group) and 

age-at-trait recording. We assumed the following model;  

 

𝑦𝑖 =  𝑋𝑖𝑏𝑖 + 𝑍𝑖𝑎𝑖 + 𝑄𝑖𝑠 + 𝑒𝑖 (1) 

 

where yi is a vector of phenotypes for environment i, Xi is a design matrix relating the fixed effects 

(as described above) to each animal for environment i, bi is a vector of fixed effects, Zi is a design 

matrix allocating records to breeding values, a is a vector additive genetic effects for animals, Qi is 

a matrix relating animals to genetic groups and s is a vector of genetic group effects and ei is a 2x2 

diagonal matrix of random normal deviates 𝐈σ𝑒𝑖
2 . Furthermore V(a) = [

Aσ𝑎1
2 Aσ𝑎

Aσ𝑎 Aσ𝑎2
2  ] where σ𝑎𝑖

2  if the 

genetic variance for environment i and σ𝑎  is the covariance between environments and A is the 

numerator relationship matrix. In the genomic analysis, the genomic relationship matrix (GRM) 

replaced the A such that V(g) = [
Gσ𝑔1

2 Gσ𝑔

Gσ𝑔 Gσ𝑔2
2  ] (VanRaden 2008).  

 Marker effects for each environment were also estimated using single marker regression 

using the R package lm. The model fitted was 

 

𝑦 = 𝑋𝑏 + 𝑄 + 𝑆𝑁𝑃𝑗 + 𝑒𝑖  (2) 

 

Again y is a vector of phenotypes, X is a design matrix relating the fixed effects (as described 

above) to each animal.  Genetic groups (Q) were fitted as fixed effects. Each SNP was individually 

fitted until all markers had been tested. In this analysis three groups of phenotypic data were used 

to estimate the marker effects; the complete INF dataset of Merino animals with PWWT records 

(n=4433) across all eight environments, records from E1 (n=921) and records from E2 (n=886). 

The 500 most significant markers from E1 and E2 were then used to estimate a correlation across 

environments.  

  

RESULTS 

 A moderate genetic correlation between environments was estimated for PWWT in Merino 

sheep using pedigree information (Table 1). By contrast, when the GRM was used to define the 
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covariance between individuals the genetic correlation between performances across environment 

was higher. Similar variance components were estimated for E2 when using either genomic or 

pedigree information. However, large differences between the variance component estimates were 

observed for E1 which contributes to the variable genetic correlation estimates. There was a high 

standard error surrounding each genetic correlation such that each correlation was not significantly 

different however it is interesting to observe such large dissimilarities between the estimates.  

 
Table 1. Genetic variance (Va), Phenotypic variance (Vp), heritability (h2) and genetic correlation (rg) of 

performance across alternative environments using either pedigree or genomic information (S.E). 

 Pedigree Genomic 

 E1 E2 cov rg E1 E2 cov rg 

Va 10.35 13.00 8.32 0.71 

(0.18) 

6.79 12.15 8.192 0.90 

(0.15) 

Vp 15.55 23.04   15.19 22.77   

h2 0.66 

(0.11) 

0.56 

(0.12) 

  0.44 

(0.074) 

0.53 

(0.085) 

  

LogL -3458.36 -3434.29 

  

The marker effects were different across environments (Figure 1). When information from 

eight environments was used to estimate marker effects a large significant peak was observed on 

Chromosome 6. This location is consistent with that reported by Al-Mamun et al (2014). The 

strength of this peak reduced when the dataset was limited to either location 1 or 2 information 

(Figure 1b and 1c). Figure 1d shows the relationship between the effects of the most significant 

markers from each environment (E1 and E2).  

 
Figure 1 Manhattan plot of marker significance using data a) from all eight INF environments b) from 

location 1 c) from location 2.  d) The relationship between the 500 most significant SNP from b & c. 
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The correlation between the SNP effects of significant markers estimated from each 

environment was lower than that estimated from the bivariate analysis (0.39). Estimating marker 

effects from individual environments is somewhat problematic given the reduction in the number 

of records available to detect marker effects, which can only be improved by increasing the 

amount of data used to estimate such effects. Combining data from many environments allowed 

for greater statistical power to be achieved and for a significant region to be observed. If a 

significant GxE interaction was to exist, marker effects may also be affected by this interaction 

and therefore may not result in consistent predictions across environments (if data was separated 

into specific environments). Furthermore, the estimated correlation between significant effects 

may not be a true reflection of the actual genetic correlation across environments due to the high 

degree of similarity between significant markers (i.e. many markers are in fact tracing the same 

genomic region). There would have also been a large amount of Linkage disequilibrium between 

markers due to the structure of the data. This could be corrected for by fitting all markers within 

the model (i.e. RR BLUP) but given the equivalence between gBLUP and RRBLUP (Habier et al 

2013) the current gBLUP analysis would have resulted in a better estimate of the genetic 

correlation between environments.  

The reasons for the disparity between pedigree and genomic estimates are not completely 

clear. The Log likelihood from each analysis suggests that using genomic information was in fact a 

better model, significantly increasing the likelihood of the data. This increase, however, may have 

been due to a number of factors. The first explanation is that the GRM may have better 

parameterized the relationship between the commercial dams that were used to create this dataset 

and better corrected for the genotypic effects across environments than what was captured by 

pedigree. A second explanation is that the GRM may have also included some genetic group 

information that was not available to the pedigree based matrix and could not be separated from 

the GRM. This would imply that the genomic estimate may be overestimating the genetic 

correlation across environments.   

  

CONCLUSION 
 Genotype by environment interactions can be estimated using either pedigree or genomic 

information. Genomic information allows for the comparison of all animals across environments, 

not just animals from sire families or that have close pedigree links. Estimates of GxE may be 

different when comparing pedigree or genomic relationships and careful consideration needs to be 

made when interpreting such differences.  
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SUMMARY 

The lamb industry has made significant genetic change in growth rate, leanness and muscling, 

but has not been able to efficiently effect genetic change in eating quality.  Research breeding 

values (RBVs) for intramuscular fat (IMF) and shear force (SF5) have been developed for the 

Australian sheep industry and the effectiveness of these was determined in 16 prime lamb 

production systems.  Ewes were inseminated with semen from rams with divergent RBVs for IMF 

and SF5 and their lambs were processed through 13 abattoirs for seven lamb supply chains. 

A 1% increase in terminal sire IMF RBV resulted in a 0.57% increase in lamb IMF and a 1N 

decrease in sire SF5 RBV resulted in a 0.7N decrease in shear force.  However, there were 

unfavourable effects of these eating quality RBVs on other carcase traits; in particular, selection 

for improved eating quality using SF5 or IMF RBV is likely to decrease lean meat yield (LMY).  

Therefore, both eating quality and other carcase traits need to be taken into consideration 

simultaneously in genetic improvement programs in terminal lamb productions systems. 

 

INTRODUCTION 

Eating quality of lamb meat is largely driven by tenderness, juiciness and flavour, with 

consumers both domestically and internationally demanding premium quality and value for money 

when purchasing prime lamb meat (Pethick et al., 2011).  Meat tenderness, measured objectively 

as shear force at five days aging (SF5) and intramuscular fat (IMF) are the two key traits that 

determine eating quality and therefore consumer satisfaction for lamb (Pannier et al., 2014) and 

both traits are heritable (IMF h
2
=0.48; SF5 h

2
=0.27; Mortimer et al., 2014).  The lamb industry has 

made significant genetic change in growth rate, leanness and muscling, but has not been able to 

efficiently effect genetic change in eating quality (EQ) due to the difficulty in measuring and 

selecting for these traits.  In addition, there is a growing concern that the use of sires that are 

superior for lean growth might have a negative impact on the eating quality of lamb meat for 

consumers.  Genetic selection for leanness and muscling has been linked to declining IMF levels 

(Hopkins et al., 2005), which can have detrimental effects on the eating quality of lamb (Pannier et 

al., 2014).  The development of research breeding values (RBVs) for hard to measure traits by the 

Sheep CRC and Sheep Genetics may enable the sheep industry to genetically manage eating 

quality of lamb (Daetwyler et al., 2012).  Meat quality traits lend themselves particularly well to 

genomic prediction given they are currently impossible to measure in a live sheep.  The aim of this 

project was to deliver “proof of concept” for eating quality attributes within major lamb supply 

chains and to determine the impact that selection of sires for these newly generated RBVs will 

have on eating quality of their lamb progeny in a commercial production system. 
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MATERIALS AND METHODS 

Producer demonstration sites (PDS) were located in Western Australia (N=2), South Australia 

(N=2), Victoria (N=6), Tasmania (N=3) and New South Wales (N=3). Animal use in the project 

was approved by the respective organisational Animal Ethics Committees.   

Commercial lamb producers prepared ewes for an artificial insemination (AI) program and 

commercial AI operators were engaged to undertake the process.  Composite, Merino, White 

Suffolk x Merino, Corriedale, Cormo and Coopworth ewes (N=5752) were mated with semen 

from terminal sires (Poll Dorset and White Suffolk).  Rams were selected for divergent RBVs for 

IMF and SF5.  RBVs were calculated using single step genomic prediction that included all known 

genomic information from sheep with a 50K SNP test and all phenotypic information collected 

from the Sheep CRC Information Nucleus and Resource Flocks.  The IMF RBVs ranged from -

0.89% to 1.21% between sires and the SF5 RBVs ranged from -5.3N to 6.4N. Eight rams were 

used at each site with the exception of one site where semen from one sire was unviable so only 

seven rams were used at this site.  A total of 86 terminal sires (39 Poll Dorset, 47 White Suffolk) 

and one maternal sire (Corriedale) were used, with 24 terminal sires (9 PD; 15WS) used at more 

than one site.  Sires were given equal opportunity within site with ewes randomised for weight and 

body condition score.  Sire RBVs were provided by Sheep Genetics from a run completed in 

September 2014, which did not contain data from the progeny in this experiment.  A small blood 

sample was collected from the ear of each lamb at marking and sent to a commercial provider for 

parentage testing (sire only).  Lambs were finished under normal commercial conditions to meet 

the individual producers target market and were slaughtered at 13 different plants.  Carcase and 

eating quality measurements were undertaken in accordance with those developed by the Sheep 

CRC (Pearce, 2009).  The carcases had an average IMF of 4.05% (SD=0.852%, min=1.42%; 

max=7.98%) across the 1303 lambs measured and PDS averages ranged from 3.33 ± 0.893% to 

4.81 ± 0.865% across the 16 PDS. The average shear force was 36.9N (SD=13.63N; min=14.2N; 

max=100.1N) across the 1292 lambs and PDS averages ranged from 23.9 ± 7.89N to 53.4 ± 

13.66N across the 16 PDS.  

Statistical Analysis. IMF and SF5 data were analysed with a linear mixed effects model (SAS 

v9.3, SAS Institute, Cary, NS, USA).  The model included site, kill group within site, birth type 

within site (single, multiple, unknown), sex and breed (PD, WS) as fixed effects.  The curve linear 

term for each RBV along with interactions with sex and farm were also included in the models.  

Sire was included as a random effect.  HCWT and its interaction were included as a covariate.  

The sire solutions from the analysis of each trait were estimated from the model with the RBV 

removed. 

 

RESULTS & DISCUSSION 
Relationship between IMF RBV and progeny performance. Sire was a significant covariate 

for IMF (P=0.0002).  When IMF RBV was included as a covariate, the RBV had a significant 

effect on progeny IMF (P<0.0001).  Across a 1.5% IMF RBV range, progeny IMF increased by 

0.86 units of IMF, resulting in a 0.57 ± 0.097% increase in IMF associated with 1% increase in 

IMF RBV (Figure 1a).  The use of the IMF RBV is likely to illicit a more rapid change in IMF 

levels than using PFAT ASBV which achieves between 0.1% IMF to 0.17%IMF per mm PFAT 

(Pannier et al., 2014; Hopkins et al., 2007). 
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Figure 1. Relationship between (a) intramuscular fat (IMF) RBV and sire estimate of 

progeny IMF and (b) shear force (SF5) RBV and sire estimate of progeny SF5. Solid lines 

represent least square means of the sires RBV and dashed lines are the SEM.  Sire estimates 

are obtained from the model not containing sire RBV. 

 

At a constant IMF RBV, progeny from PD rams had 0.22±0.092 units more IMF than lambs 

from WS sires (P=0.015; Table 1).  There was no interaction between IMF RBV and breed, 

indicating that the effect of IMF RBV on IMF of the progeny is the same across the two terminal 

breeds. 

Sex, PDS and HCWT had a significant effect on IMF (P<0.001; Table 1).  Female lambs had 

0.17 ± 0.041% units more IMF than males.  As the HCWT of the lamb increased from 18kg to 

30kg, IMF increased from 3.8 ± 0.08% to 4.5 ± 0.10%.  Therefore, for every 1kg increase in 

HCWT, there was a 0.06 unit increase in IMF.  These effects are similar to those reported for the 

Information Nucleus Flock (Pannier et al., 2014). 

 

Table 1. Degrees of freedom (number [NDF]; and denomimator [DDF]), F value and 

probabilites of the fixed effects in the mixed model for IMF and Shear Force 

 

 
IMF Shear force 

 
NDF, DDF F Value Pr > F NDF, DDF F Value Pr > F 

RBV 1, 1167 35.53 <0.001 1, 1125 21.26 <0.001 

Breed 1, 1167 5.99 0.015 1, 1125 0.27 n.s. 

FARM 15, 1167 15.13 <0.001 15, 1125 3.16 <0.001 

SEX 1, 1167 17.59 <0.001 1, 1125 5.2 0.023 

SLDATE(FARM) 6, 1167 1.37 n.s 6, 1125 15.1 <0.001 

BT(FARM) 12, 1167 1.68 n.s. 12, 1125 1.44 n.s. 

FARM*SEX 
   

15, 1125 1.74 0.038 

HCWT 1, 1167 35.17 <0.001 1, 1125 7.95 0.005 

HCWT*HCWT 
   

1, 1125 6.57 0.011 

HCWT*FARM 
   

15, 1125 2.65 <0.001 

HCWT*SEX 
   

1, 1125 4.28 0.039 

 

Relationship between SF5 RBV and progeny performance. Sire was a marginally 

significant covariate for shear force (P=0.052).  When SF5 RBV was included as a covariate, the 

RBV had a significant effect on progeny shear force (P<0.001).  Across a 10N SF5 RBV range, 
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progeny shear force increased by 7.2 N of shear force, resulting in a 0.7 ± 0.16N increase in shear 

force associated with 1N increase in SF5 RBV (Figure 1b).  There was no effect of breed, nor any 

interaction between breed and SF5 RBV (Table 1). 

PDS, sex and slaughter date within PDS had a significant impact on shear force (P<0.001; 

Table 1).  Female lambs (35.9 ± 0.71N) were more tender than male lambs (37.4 ± 0.65N; 

P=0.023).  HCWT and HCWT*HCWT were significant covariates for shear force (P<0.001; Table 

1).  As the HCWT of the lamb increased from 18kg to 30kg, shear force changed from 41.8 ± 

1.38N to 37.1 ± 2.4N. 

SF5 RBV had a significant effect on LMY (P<0.001); a 1 N decrease in SF5 RBV resulted in 

0.1 ± 0.03% decrease in progeny LMY.  There was a 1.9% range in LMY sire solutions across the 

dataset examined, and 11.7N range in sire SF5 RBVs.  This means that producers of terminal sired 

lambs selecting rams based solely on SF5 are likely to decrease LMY in their lambs. 

IMF RBV had a significant effect on SF5 (P=0.003); a 1% increase in IMF RBV resulted in a 

3.3 ± 1.10N decline in shear force.  Similarly, a 1N decrease in SF5 RBV resulted in a 0.08 ± 

0.016% increase in IMF (P<0.0001).  This means selecting for either SF5 or IMF will have a 

positive effect on both eating quality traits in terminal lambs. 

 

CONCLUSION 
The newly created RBVs for EQ traits for terminal sires have a significant linear impact on the 

phenotypic expression in their progeny for IMF and SF5.  Use of terminal rams with desirable 

IMF and SF5 RBVs will provide lamb consumers with better eating quality product.  Both eating 

quality and other carcase traits need to be taken into consideration simultaneously in genetic 

improvement programs in terminal lamb productions systems. 
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SUMMARY 

In this paper we proposed a method to improve the accuracy of prediction of genomic best 

linear unbiased prediction (GBLUP). In GBLUP a genomic relationship matrix (GRM) is used to 

define the variance-covariance relationship between individuals and is calculated from all 

available genotyped markers. Instead of using all markers to build the GRM, which is then used 

for trait prediction, we used an evolutionary algorithm (differential evolution – DE) to subset the 

marker set and identify the markers that best capture the variance-covariance structure between 

individuals for specific traits. This subset of markers was then used to build a trait relationship 

matrix (TRM) that replaces the GRM in GBLUP (herein referred to as TBLUP). The predictive 

ability of TBLUP was compared against GBLUP and a Bayesian method (Bayesian LASSO) using 

simulated and real data. We found that TBLUP has better predictive ability than GBLUP and 

Bayesian LASSO in almost all scenarios.  

 

INTRODUCTION 

Genomic selection is a method based on marker-assisted selection that is used to determine the 

genetic value of individuals so that they can be selected as parents in breeding programs. In 

genomic selection, marker effects are estimated from a discovery (or training) dataset that 

comprises individuals that have both genotypic and phenotypic information. Then genomic 

estimated breeding values (GEBV) for selection candidates without phenotypic records are 

estimated based on these marker effects. Within the framework of genomic selection, two different 

approaches are commonly used to estimate the marker effects in the training data. The first 

approach assumes all SNP have a non-zero contribution to the variance of the trait of interest and 

the distribution of the SNP effects follows a normal distribution. Both ridge regression best linear 

unbiased prediction (RR-BLUP) and genomic best linear unbiased prediction (GBLUP) are based 

on this assumption. The second approach is based on non-linear methods that emphasize certain 

genomic regions and allow marker effects to come from different statistical distributions. Bayes A, 

Bayes B (Meuwissen et al. 2001), Bayes C (Habier et al. 2011) and Bayesian LASSO (Least 

Absolute Shrinkage and Selection Operator) (de los Campos et al. 2009) are examples of such 

non-linear methods for genomic selection.  

GBLUP was first suggested by VanRaden (VanRaden 2008) and has been used for prediction 

of breeding values for use in agricultural selection programs (Goddard & Hayes 2009). In GBLUP 

a genomic relationship matrix (GRM) is used to define the variance-covariance relationship 

between individuals and is calculated from all available genotyped markers. Most of the proposed 

(VanRaden 2008; Goddard et al. 2011) implementations of the GRM are based on the 

infinitesimal model which assumes that a very large number of genes are evenly distributed across 

the genome, each contributing a minute amount to the trait of interest. In GBLUP the same GRM 

is used for the estimation of GEBV irrespective of the trait. Most traits of interest in animal or 

plant breeding are in fact polygenic but not necessarily infinitesimal; i.e. different traits are 
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controlled by (a limited) different sets of genes. The true underlying genetic structure of any trait 

deviates from the infinitesimal model to a certain extent and most quantitative traits are 

significantly affected by a finite set of genes (Meuwissen et al. 2001). Therefore, a GRM estimated 

based on the assumption of the infinitesimal model cannot optimally describe the variance-

covariance relationships between individuals for the trait of interest. A model that uses only the 

SNP that track the relevant regions (QTL) of the traits of interest may be more appropriate to 

construct the variance-covariance relationship matrix.  

Whereas methods that place different weightings on markers have also been proposed (i.e. 

Bayes A, B, C, and R), studies in which evolutionary algorithms like Differential Evolution (Storn 

& Price 1995) were applied to solve such a problem are few. Differential Evolution (DE) is a 

reliable and versatile function optimizer that is easy to implement, fast to converge, and does not 

require complex initial settings. DE has been successfully used in a wide range of biological 

optimization problems. The objective of this study was to apply DE in identifying an optimum 

subset of SNP to construct the variance-covariance relationship matrix for a specific trait, followed 

by estimation of the GEBV using BLUP based on this matrix. The performance of this method, 

called Trait Best Linear Unbiased Prediction (TBLUP) was assessed by comparing it with 

GBLUP and a Bayesian method (Bayesian LASSO) on simulated and real data.  

 

MATERIALS AND METHODS 

Data. One real dataset and one simulated dataset were used to assess the proposed method. 

Genotype information on 50K Illumina BeadChip array was available for a total of 1,937 cattle 

from pure-breed Korean Hanwoo with four phenotypic data: back fat (BF), carcass weight (CW) 

eye muscle area (EMA), and marbling score (MS). The simulated dataset contains genotype 

information on 10,000 samples for 40,000 SNP with simulated phenotypes. Genotypes were 

simulated by random sampling from frequencies under Hardy-Weinberg equilibrium (in effect an 

unstructured population). Phenotypes were simulated for different numbers (50, 100, 200 and 500) 

of known QTL. Randomly selected SNP were assigned different effects drawn from a normal 

distribution. Then the phenotypes were created by summing up the SNP effects plus a random 

environmental effect component. Both the real and the simulated datasets were divided into 

discovery and validation populations: 100 samples were randomly selected as validation samples; 

the remainder of the data were used as the discovery population. The 100 random samples selected 

for validation were the same for all scenarios.  

Evolutionary algorithm. An algorithm based on DE was developed to select the best SNP 

subset in order to create the genomic relationship matrix (GRM). To select a SNP subset for the 

GRM, random keys were used. A random key is an evolvable vector of real values (one for each 

SNP) that are sorted by the objective function. The ranking of the key is then used to rank the 

SNP. The idea is that SNP that are better for genomic prediction evolve to higher values in the key 

with the rest to lower values. Once the keys are sorted, they reflect the relative value of a given 

SNP. An additional parameter to be optimized is the number of SNP in the panel – a cutoff value. 

The DE evolves the cutoff value, sorts the SNP based on their key values and uses the top ranked 

ones up to the number defined by the cutoff value. More in-depth details on the algorithm are 

given in (Gondro & Kwan 2012). An objective function was used to calculate the fitness of the 

selected SNP. In the objective function, the discovery population was further divided into two 

subsets: i) a subset population with known phenotype, and ii) another subset population with 

unknown phenotype (phenotypes were set to missing for these samples). A genomic relationship 

matrix was constructed using only the selected SNP for all discovery samples, which was then 

used to predict (by using GBLUP) the phenotype for the samples in the unknown subset 

population. The fitness of a selected SNP subset was defined as the correlation between the actual 

phenotype and the predicted phenotype. For each phenotype the DE evolved for 1,000 generations. 
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RESULTS AND DISCUSSION 

Figure 1 shows a comparison of true genetic value (TGV) vs predicted breeding value for 50 

known QTLs. Table 1 shows the comparison between prediction accuracies for 50, 100, 200 and 

500 known QTLs with the simulated dataset for the different methods of genomic prediction 

(GBLUP, Bayesian LASSO, and our proposed method TBLUP). For the simulated data, the 

proposed method performed better than GBLUP and Bayesian LASSO. For the real dataset, 

heritability of the phenotypes were estimated using the GCTA software (Yang et al. 2011) which 

were 0.54, 0.56, 0.53 and 0.43 for BF, CW, EMA and MS respectively. Table 2 shows the 

genomic prediction accuracies for the validation samples obtained in the real data achieved by the 

three methods. Once again, the proposed method outperformed the two other methods for all four 

phenotypes. 

 
Figure 1. Prediction accuracy comparison (simulated phenotype with 50 known QTL). Blue dots are 

predicted values for the training data while the red dots are predicted values for the validation data. (a) 

Accuracy using all SNP, (b) accuracy using only the true QTL (QTN), (c) accuracy using Bayesian Lasso 

(BLR), and (d) accuracy using DE. 

Table 1. Prediction accuracy comparison with 

the simulated data 

 
True 

QTL 

GBLUP BL* TBLUP 

Accuracy SNP used / 

QTL found 

50 0.40 0.94 0.97 111 / 36 

100 0.32 0.89 0.96 172 / 62 

200 0.33 0.83 0.98 469 / 107 

500 0.20 0.69 0.95 1041 / 186 
 

Table 2. Prediction accuracy comparison 

with the real data 

 
Trait GBLUP TBLUP BL* 

BF 0.370 0.440 0.394 

CW 0.350 0.416 0.263 

EMA 0.355 0.410 0.325 

MS 0.236 0.245 0.233 

*Bayesian LASSO 

 

Improved accuracy of genomic prediction has immediate practical and commercial value for 

agricultural production as it leads to improved accuracy of selection and higher rates of genetic 

gain. GBLUP and various Bayesian methods for genomic prediction have been successfully 

employed in a large number of scenarios. The accuracy of these genomic predictions depends on 
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the genetic architecture of the trait, e.g. number of QTL and their effect sizes (Hayes et al. 2010), 

marker density, linkage disequilibrium (LD) and family relationships (Goddard et al. 2011; Clark 

et al. 2012; Wientjes et al. 2013), population structure (Moghaddar et al. 2014), sample size 

(Goddard 2009) and also the method used to estimate marker effects (Clark et al. 2011). Bayesian 

methods tend to outperform BLUP approaches when the trait is less polygenic (Clark et al. 2011). 

In practice, differences between methods in prediction accuracy are generally quite small. While 

these methods have well characterised statistical properties they are constrained by the underlying 

model assumptions. Given the dimensionality of the solution space, even very small estimates of 

effects in non-informative markers (noise) will, collectively, reduce prediction accuracy. This is an 

increasing problem with the increasing number of genetic variants to predict from. In TBLUP, we 

have attempted to reduce the noise from the system and tried to identify only the SNP that tracked 

relevant regions. In essence, the approach attempts to create a relationship matrix that tracks 

relationships between causal regions while excluding spurious associations and even true genetic 

relatedness that is not relevant to the trait of interest. We suggest that a model free heuristic 

optimisation approach choosing a small subset of best predictors is expected (and shown in the 

present study) to perform better in the context of genomic prediction. 

 

CONCLUSION 

In summary, we have described a novel BLUP method for estimation of breeding values using 

a trait-based relationship matrix, which we called TBLUP. The only difference between 

conventional GBLUP and the proposed TBLUP is that TBLUP focuses more closely on those 

markers that effectively contribute to the variation of the trait of interest and removes some of the 

noise that reduces accuracy of prediction. The preliminary results with real data were promising 

but further sudies (with more real data) are required to properly validate the method and better 

understand its advantages and limitations. In practice, the method can be used to develop smaller 

panel sets and this should reduce genotyping costs which can lead to a wider adoption by industry.  
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SUMMARY 

Genomic predictions derived from one breed but applied in another breed typically have low 

accuracy due to SNP x breed interactions (due to either QTL x breed interactions or differences in 

LD between breeds) and due to differences between breeds in QTL allele frequency. In this paper 

we discuss the importance of these two factors and the implications for livestock breeding. 

 

INTRODUCTION 

Genomic selection (Meuwissen et al. 2001) has been very successful in predicting the breeding 

value of animals from DNA marker data. It works best in Holstein cattle for milk production traits 

where there is a large amount of high quality data on which to train the prediction and the animals 

where the prediction is to be used (target animals) are closely related to the training population 

(often their sons). As the test animals become less closely related to the training population the 

accuracy of prediction declines (Habier et al 2010) and when they are of different breeds, the 

accuracy is typically low (eg. Kemper et al 2015a). Unfortunately there are many traits where we 

do not have a large training dataset within every breed. For instance, the expense of measuring 

feed conversion efficiency limits the size of training datasets. Therefore we would like to use a 

multi-breed training dataset to maximize the number of training animals and to predict breeding 

value in animals of a breed included in the training data or even a breed not included in the 

training data. In these situations the low accuracy of across breed prediction is a severe 

disadvantage. Alternately, if a method was available in which across breed prediction was of high 

accuracy, it seems likely that within breed prediction would also be more robust and not affected 

by the degree of relationship between training and test animals. In this paper we consider reasons 

for the low accuracy of across breed prediction and what might be done to increase the accuracy. 

 

ACROSS BREED ACCURACY OF GENOMIC PREDICTIONS 

Information from another breed can be used in prediction in two ways. Firstly, Brondum et al. 

(2012) and Khansefid et al. (2014) showed that the accuracy of prediction in breed B could be 

increased by including in the statistical model SNPs that were associated with the trait in breed A 

but by estimating the effect of the SNP entirely within breed B. This implies that some of the same 

QTL segregate in both breeds. Secondly, the accuracy can be improved slightly by estimating the 

effect of each SNP across all target breeds (Bolormaa et al. 2013a, Hoze et al. 2014, Makgahlele 

et al. 2013) and some accuracy is obtained even in a breed not included in the training population 

(Kemper et al. 2015a). For instance, Kemper et al. (2015a) found the accuracy in Australian Red 

cattle for milk production traits averaged 0.3 based on a training population of Holstein and 

Jerseys. They also reported that the regression of phenotype on genomic EBV (bias) was 0.6 on 

average indicating that the EBVs exaggerated the predicted differences between animals. 

 

REASONS FOR LOW ACCURACY 

There are two reasons for low across breed prediction accuracies – SNP x breed interactions 

and differences in QTL allele frequency between breeds. Khansefid et al. (2014) analysed residual 
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feed intake using genomic relationship matrices and found the SNP variance and the SNP x breed 

variance to be about equal. SNP x breed interactions could be due to QTL x breed interactions or 

differences between breeds in linkage disequilibrium (LD) between QTL and SNPs.  

The extent of QTL x breed interactions, due to non-additive gene effects, is largely unknown. 

It is similar to sire by breed interaction which is seldom above 0.2 of the genetic variance, so it 

seems unlikely that QTL x breed would explain 0.5 of the genetic variance. One type of non-

additive variance is dominance which Bolormaa et al. (2015) estimates to explain 5% of 

phenotypic variance across a number of traits in beef cattle. 

Differences in LD between breeds depend on the distance which separates the QTL and SNP. 

GBLUP uses LD over long distances within a breed but this LD breaks down between breeds 

(deRoos et al. 2008). Therefore this will explain some of the SNP x breed interaction found by 

Khansefid et al. (2014). Differences in LD occur even at short distances in the case of a QTL 

mutation which has occurred since the breeds diverged. In this case, an ancestral haplotype may 

exist in one breed with the ancestral QTL allele and in the other breed with the mutant QTL allele. 

Thus even with sequence data and methods such as BayesR (Erbe et al. 2012), SNP x breed 

interaction will occur for recent QTL mutations unless the QTL mutation itself is used. 

Differences in QTL allele frequency will occur due to selection and drift. QTL with minor 

allele frequency (MAF) near to 0.5 contribute more to genetic variance and have their effect 

estimated more accurately than QTL with low MAF. This increases the accuracy of prediction 

within a breed. However, if the MAF is low in the training population but high in the target 

population, the QTL is important to genetic variance in the target population but its effect will be 

estimated poorly. This will reduce the accuracy of the genomic prediction in the target population. 

The extreme case of this phenomenon is when the QTL segregates in the target population but not 

in the training population. In that case, no estimate of its effect can be made and the variance it 

explains will be totally missed. This can happen if the QTL mutation is recent and has occurred in 

one breed since the breeds diverged. It can also occur if the QTL is old but has become fixed in the 

training population but not the target population. This extreme case, where the QTL segregates 

only in one breed, places an upper limit on the potential accuracy attainable using across breed 

genomic prediction. Kemper et al. (2015b) recently estimated that about ½ the QTL discovered for 

milk production traits in Holstein also segregated in Jersey cattle. Even among random SNPs in 

sequence data, 20% do not segregate in both Holsteins and Jerseys (Kemper et al 2015b). 

The factors that cause low accuracy of across breed predictions can also cause bias. For 

instance, if a QTL mutation has occurred in the training population since the breeds diverged, the 

genomic predictions will predict that the QTL contributes to variance in the target population 

when it does not segregate.  Kemper et al. (2015b) documented several examples where Holstein-

only QTL were predicted for Jersey cattle when the QTL did not segregate in that breed.  

 

AGE AND BREED DISTRIBUTION OF QTL 

From the discussion of factors causing low accuracy it emerges that two closely related 

parameters are important - the age of QTL mutations and the range of breeds in which they 

segregate. Since the mutation causing a QTL (a QTN) is seldom known, the age and distribution of 

QTL is not well understood. For neutral mutations we can estimate their average age from the ratio 

of the heterozygosity per site (in cattle this is typically about 0.001) to the heterozygosity 

introduced each generation by mutation (2 x mutation rate e.g. 2 x 10
-8

) which gives an average 

age of 50,000 generations or well before domestication of cattle and sheep. This average disguises 

a large range in age from new mutations in the last generation to very old ones. 

QTL are unlikely to be neutral and so selection will modify this average age. One estimate of 

average age is the genetic variance (e.g. 0.5VE) divided by the variance added by mutation each 

generation (e.g. 0.001VE) or about 500 generations. However, this average includes detrimental 
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mutations of large effect which are soon eliminated from the population, so the average age of 

those that are segregating is likely to be much greater than 500 generations and to vary greatly 

about this average. The age of QTL can also be estimated from the length of a common haplotype 

which surrounds the mutant allele. For myostatin mutations causing double muscling O’Rourke et 

al. (2010) estimated their age to be <100 generations. Consistent with this, each mutation 

segregates in one or a few related breeds.  

Kemper et al. (2015b) examined the length of haplotype surrounding QTL for milk traits in 

Holstein. They found examples of QTL that appeared recent (800 generations) and occurred in 

Holsteins but not Jersey and others that appeared old (12000 generations) and occurred in both 

breeds. By comparison de Roos et al. (2008) estimated the age of the Holstein-Jersey divergence 

at 400 generations. There were also QTL that appeared old but did not segregate in Jerseys. This is 

expected to occur because breeds of Bos taurus cattle have suffered some inbreeding since they 

diverged and consequently lost a proportion of polymorphisms including QTL. Of 11 QTL in 

Holstein, 6 also segregated in Jerseys. 

Saatchi et al. (2014) found 4 QTL for weight that segregated in several breeds of US beef 

cattle and we have found QTL in the same position in Australian beef cattle. On the other hand, 

Bolormaa et al. (2013b) concluded the QTL seldom segregate in both B. taurus and B. indicus, 

which diverged perhaps 100,000 generations ago.  

Thus we conclude that while many QTL segregate in multiple B. taurus breeds, some QTL 

segregate only in some breeds, either because they are recent mutations or because they are old but 

fixed in some breeds. 

 

IMPLICATIONS FOR LIVESTOCK BREEDING 

We conclude that the poor accuracy of genomic prediction when the training dataset comes 

from one breed and the predictions are applied to another breed is due to a combination of QTL x 

breed interactions, differences in LD between breeds and differences in QTL allele frequency 

between breeds (especially when a QTL segregates only in some breeds). What strategies can be 

used to overcome this problem? 

One strategy is to do all prediction within breed. This is simple to implement because a low 

density SNP panel (e.g. 50K) is satisfactory and simple statistical methods, such as BLUP, can be 

used. However, this strategy cannot be implemented in all cases and even where it can be used it 

has disadvantages – some 10% of the genetic variance is not explained by a 50K SNP panel and 

the predictions may not be robust when applied to target animals not closely related to the training 

population (MacLeod et al. 2014a). 

The alternative strategy is to use a multi-breed training population. This requires dense SNPs, 

ideally sequence data, and a statistical method which can find and utilise the causal mutations or 

markers in near complete LD with them. Figure 1 shows results for a mixed breed reference 

(Holstein and Jersey) where accuracy was evaluated in 3 validation sets that differed in their 

relatedness to the reference. We compared accuracy for different SNP densities: including a 

combined set of high density markers and imputed sequence in and near coding regions (SEQ). 

Instead of real phenotypes, we simulated 4000 QTL into the real genotypes (h
2
=0.6) so that the 

true breeding value was known. We found accuracy increased as the density of SNP increased to 

SEQ and this was most apparent in the target population that was least related to the training 

population (Australian Red). However, there was still a drop in accuracy even with the QTL 

included in the SEQ data. This must be partly a result of the BayesR analysis spreading the effect 

of a single QTL across several SNP in strong LD with the QTL in the training population. Figure 1 

also demonstrates that the BayesRC method (Macleod et al. 2014b), which is similar to BayesR 

but includes a broadly defined biological prior, also increases the accuracy of across breed 

genomic predictions. 
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As causal mutations or markers in near perfect LD with causal mutations are discovered we 

will be better able to assess the importance of non-additive genetic effects causing QTL x breed 

interactions and fit them in the model if necessary. 

 

 
Figure 1. Accuracy of genomic prediction for simulated QTL using different densities of genotypes 

[(10K, 50K, 800K SNP or including sequence variants (SEQ)] with BayesR or BayesRC. Validation 

populations were either closely related to the reference (Black & White [B&W] Holstein), somewhat related 

(Red Holstein) or a different breed (Australian Red) 
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SUMMARY 

Gene discovery relies on knowledge of animal relatedness. This in turn exploits correlation 

based measures of similarity now based on shared patterns of genome-wide single nucleotide 

polymorphism (SNP) genotypes. These comparisons are captured by the genomic relationship 

matrix (GRM). However, it is not clear whether correlation is the best way of quantifying those 

shared patterns. Here, we continue our exploration of whether one can build relationship matrices 

based on the concept of compression efficiency from Information Theory. Drawing on 4 

commercial broiler lines, 2 lines based on growth and efficiency selected roosters, and 2 lines 

based on reproductive performance selected hens, we found that data compression clustered the 

lines by gender. Further, a sliding window version of the approach identified different gene 

regions apparently selected in male versus female lines. In males two prominent regions harboured 

IGF-1 (Chromosome 1) and a cognate IGF-1 receptor INSR (Chromosome 28). In the female lines, 

the reproductive hormone receptor GNRHR (Chromosome 10) and folate metabolism FOLH1 

(Chromosome 1) were prioritised.  

 

INTRODUCTION 

Gene discovery through genome-wide association studies (GWAS) and identification of 

signatures of selection require that population structure and relatedness can first be quantified and 

subsequently accounted for. Genetic relatedness is currently estimated by a combination of 

traditional pedigree-based approaches (Henderson 1975) and, given the recent availability of 

molecular information, the use of marker genotypes via the genomic relationship matrix (GRM) 

(Van Raden 2008). To date, GRM from SNP genotypes are essentially estimated using correlation. 

Here, we continue our exploration as to whether the concept of compression efficiency from 

Information Theory can provide a complementary method for establishing patterns of genetic 

relatedness. The basic principle of Normalised Compression Distance (NCD) (Cilibrasi and 

Vitanyi 2005) is that if patterns of data in one genotype file can be used to compress shared 

patterns of data in the second genotype file, the two genotypes are considered related. 

Consequently, a short distance (high similarity) will be awarded. This process can be repeated 

across a genotyped population of animals to build a Compression Relationship Matrix (CRM) 

analogous to a GRM. This concept has previously been used by our group in both sheep and cattle 

populations where we have found that the NCD method can sensitively discriminate sire groups, 

breeds and indeed half-sibs from full sibs, in circumstances where GRM could not (Hudson et al. 

2014 WCGALP). Moreover, we found CRM explained more genetic variance, reduced the 

missing heritability and yielded higher phenotype accuracies than GRM (unpublished data). 

Additionally, a preliminary version of the approach was able to cluster individual humans by 

ethnic group in a manner consistent with FST and known phylogeography (Hudson et al. 2014). 

In this exploratory paper we assess the application of NCD to patterns of relatedness between 4 

commercial lines of broiler chickens, Gallus gallus domesticus. We also use a genome-wide 

sliding window based on compression efficiency to identify possible signatures of selection 

present on a gender-specific basis. 
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MATERIALS AND METHODS 
Populations and data resources. We used data from 988 chickens from 4 commercial lines of 

broilers – hereon in denoted as Lines A, B, C and D (Table 1). Individuals were selected from a 

much larger population of over 50,000 birds and based on full sib families to a near-balanced 

design of ~250 individuals per line. 

 

Table 1. Summary of the 4 chicken lines used for this analysis 
 

Line Selection Birds Full-Sib 

Families 

Females Males 

A Female 204 14 167 37 

B Female 244 5 153 91 

C Male 254 18 195 59 

D Male 286 50 220 66 

 

Two of the lines (A and B) are lines that have been generated for selecting genetically superior 

females – the selection focus being primarily on desirable reproductive traits. For male lines (C 

and D), the selection foci have been growth rate, muscle mass and feed efficiency. All animals 

were genotyped for 51,713 SNP (Groenen et al. 2009) distributed genome-wide.   

 

Population clustering. We used NCD to compare pairs of individuals (x and y) from all 4 

lines based on their respective SNP genotypes as follows: 

 

𝑁𝐶𝐷(𝑥, 𝑦) =  
𝑍(𝑥𝑦) − min {𝑍(𝑥), 𝑍(𝑦)}

max {𝑍(𝑥), 𝑍(𝑦)}
 

 

Z(xy) represents the size of the compressed file containing both concatenated SNP genotype 

sequences to be compared and Z(x) and Z(y) is the size of the compressed file with the isolated 

SNP genotypes for x and y, respectively. We used GZIP to perform the data compression. 

 

Signatures of Selection. In order to find signatures of selection and regions of evolutionary 

interest, we next applied a sliding window version of compression efficiency (CE) as previously 

described in Hudson et al. (2014). This approach exploits the sensitive pattern recognition 

capability of CE to find haplotype blocks that occur in one population but not another. In brief, the 

population level CE of non-overlapping windows was computed separately for the 4 broiler lines, 

corrected for heterozygosity (CEh). We used non-overlapping sliding windows of 100 consecutive 

SNP. The experimental design made use of two ‘independent’ lines of male and female  

populations, whose output could be overlaid. This approach helps improve the signal to noise ratio 

for identifying bona fide signatures of selection, against background noise emerging from 

population bottlenecks and other phenomena. 

 

RESULTS AND DISCUSSION 

Population clustering. Self-Self pairs (panel A) possess a GRM of close to 1, with deviations 

above 1 representing extent of inbreeding. GRM and NCD are both in agreement that the lines 

cluster by gender comparison (Panel B). Female-male line comparisons in blue are awarded a low 

similarity and high distance, whereas male-male and female-female line comparisons are more 

closely related. 
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Figure 1. GRM and NCD values for the 4 chicken lines with the various gender comparisons 

colour coded. 

 

Overall, there is a clear negative relationship between GRM and NCD because similarity (via 

correlation) is the inverse of distance (via NCD).  

Signatures of selection. The genomes of all 4 lines were characterised by a large number of 

small peaks and a much smaller number of larger peaks. These outlier regions have particularly 

strong population-level scores in these regions. They would be predicted to potentially play an 

important role in providing the genetic basis for the phenotypes that have been selected in those 

populations. We manually explored the outlier regions that were gender-specific.  

 

 
Figure 2. Compression efficiency (y-axis) of windows of 100 consecutive SNPs along the 

genome (x-axis) for the four chicken lines. Highlighted are the regions described in Table2. 
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Table 2. Regions captured by the compression efficiency of windows of 100 consecutive SNPs 
 

Lines Regions (Chr: 

Coordinates) 

Example Genes in region Total number of genes 

Female 1:186.4 Mb – 1:193.3 Mb  FOLH1, THRSP 62 

Female 10:16.7 Mb – 10:17.9 Mb GNRHR 37 

Male 1:53.4 Mb – 1:56.1 Mb IGF-1, MTERF 45 

Male 5:30.1 Mb – 5:32.4 Mb mir-1718, mir-3532 19 

Male 28:3.81 Mb – 28:4.44 Mb INSR, SIN3B, PEX11G 28 

 

In the two male lines the clear identification of two different regions containing serial components 

of a single functional pathway (IGF-1 and one of its cognate receptors INSR) is particularly 

intriguing. The male lines, unlike the female lines, have been selected for increased muscle mass. 

IGF-1 is a well characterised master regulator of muscle mass whose molecular structure is similar 

to insulin. It mediates the anabolic effect of Growth Hormone (Barton 2006). This functional 

pairing (IGF-1 and INSR) is unlikely to occur by chance as IGF-1 is one of only three proteins to 

bind the insulin receptor.  In an independent population of broiler chickens derived from Plymouth 

Rock and Cornish lines IGF-1 had also been identified as a signature of selection (Stainton et al. 

2015). In the female lines which have been selected for reproductive traits, we detected regions 

containing GNRHR (encoding the receptor for the reproductive hormone gonadotropin releasing 

hormone) and FOLH1 (that hydrolases the vitamin folate).  

Future work could fine map these genomic regions using a higher resolution (50 SNP) window, 

and sliding it one SNP at a time in an overlapping fashion to attempt to home in on the exact genes 

under selection. We have previously used this method to successfully home in on single genes 

across human populations, such as lactase persistence in northern Europeans and Masaai Kenyans 

(Hudson et al. 2014). The relationship matrices described in the first part of the manuscript could 

be ‘ground-truthed’ through estimation of genetic parameters, computation of missing heritability 

and calculation of phenotype accuracies for a phenotype of commercial interest in the broiler 

industry such as feed efficiency. 
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SUMMARY 

 

Data on type traits of Holstein cows scored between 1990 and 2014 were analysed to examine 

the extent of change in trait definition and to assess if these changes affect the accuracy of direct 

genomic values (DGV) of validation animals. The results showed that for 10 of the 20 traits, the 

genetic correlation of a trait that was scored before 2007 was less than 0.9 with the same trait 

scored after 2006. For 7 of the 10 traits, where the low genetic correlation suggested some level of 

change in trait definition, accuracy of their observed DGV were also markedly lower than the 

expected accuracy and accuracy predicted from the deterministic formula.  

 

INTRODUCTION 

Until recently type traits were not included directly in the economic index in Australia. 

However, from 2015, in the three new indexes (Balanced Performance Index, Health Weighted 

Index, Type Weighted Index), introduced by the Australian Dairy Herd Improvement Scheme 

(ADHIS) some type traits are included directly with their own economic values. Therefore these 

traits are now more important than they have been in the past. Recent results show that accuracy  

of direct genomic values (DGV) of type traits such as overall type and mammary system are lower 

than expected (Haile-Mariam et al. 2015). In addition, the accuracy of DGV for type traits varied 

considerably and explanations for such variation were not readily available  (Haile-Mariam et al. 

2013; 2015). Furthermore, results from ADHIS show that the variation in DGV among young 

bulls, particularly for overall type, is lower than expected. As part of the breed development 

program of Holstein Australia (HA) definition of some type traits has changed over time, and this 

may contribute to the lower than expected accuracy of DGVs for some traits.   

This study explores if the low accuracies of DGVs observed for some type traits are related to 

changes in definitions of some type traits introduced in 2007 and we explore ways of minimising 

these effects on accuracy of DGVs. This is done in the following way: 1) for each type trait, 

estimating the genetic correlation for the trait scored on cows before 2007 and the trait scored 

after 2006, then assessing if the observed accuracy of DGV can be related to the genetic 

correlation of a trait in the two time periods; 2) for the two composite traits, namely overall type 

and mammary system, we assessed if predicting them from individual type traits can be used to 

increase genetic correlation between the two periods and thereby improve accuracy of DGVs.  

MATERIALS AND METHODS 

Data on Holstein cows type scored between 1990 and 2014 were obtained from the ADHIS. 

Cows were type scored by classifiers once during the first lactation. Details of the data used for 

this study is given by Haile-Mariam and Pryce (2015). The traits considered are those with 

relatively large amounts of data in the two periods (Table 1). The data included 18 linear traits 

scored on a scale of 1 to 9 and two composite traits scored on a scale of 1 to 16. In 2007 HA 

introduced some changes in the way type traits are scored. To assess the effect the change, data of 

cows scored before 2007 (period 1) and after 2006 (period 2) were split into two groups. Table 1 
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shows the numbers of cows scored with the mean and standard deviation for 20 traits in each 

period. Of the 2,724 bulls, with progeny in the second period 32% were also sires of 46% of the 

cows scored in the first period reflecting a good level of connectedness between the datasets.   

 

Table 1. Number of cows classified, mean and standard deviation (SD) for type traits scored 

before 2007 and after 2006  

Traits Scored before 2007 Scored after 2006 

 No. Mean SD No. Mean SD 

Overall type 434,207 9.47 1.79 101,189 10.08 1.59 

Mammary system  433,770 9.81 1.75 100,720 10.36 1.60 

Stature  434,207 5.99 1.42 101,189 6.74 1.53 

Udder texture 434,207 6.04 1.13 101,188 5.97 1.29 

Bone quality  434,207 6.11 1.25 101,189 6.82 1.26 

Angularity 434,207 5.46 1.14 101,189 5.84 1.10 

Muzzle width 434,207 5.68 1.05 101,189 6.03 1.12 

Body depth 356,080 6.25 1.12 101,189 5.59 1.32 

Chest width 434,207 5.68 1.01 101,189 5.48 1.28 

Pin width 434,207 5.75 1.19 101,189 6.67 1.30 

Pin set 434,200 4.23 1.39 101,189 3.98 1.22 

Foot angle 356,083 4.92 1.09 101,189 5.23 0.99 

Rear leg set 434,203 5.47 1.01 101,189 5.28 1.07 

Udder depth 356,068 5.89 1.15 101,188 5.18 1.59 

Fore attachment 434,207 5.51 1.08 101,189 5.55 1.33 

Rear attachment height  434,206 5.84 1.08 101,189 6.58 1.30 

Rear attachment width  434,207 5.34 1.11 101,189 5.64 1.46 

Central ligament 434,201 6.09 1.08 101,188 6.46 1.18 

Teat placement fore  434,204 5.04 1.19 101,189 5.18 1.30 

Teat length  356,025 4.44 1.46 101,188 4.55 1.35 

 

To explore if the low DGV accuracy that we observed (e.g. Haile-Mariam et al. 2013; Haile-

Mariam et al. 2015) for some traits is related to the change in the definition of type traits over time 

the following analyses were performed. First, to assess the extent of change in trait definition, type 

data of cows scored in the two time period were analysed as two different but correlated traits in a 

bi-variate sire model to estimate heritability (h
2
) for each period and genetic correlation between 

the two periods. Data were analysed fitting sire as a random effect and Herd-Classifier-Round as 

the main fixed effect. Age and days in milk at scoring were also fitted as covariates. For overall 

type and mammary system, the two composite traits, value for cows scored in period 1 were 

predicted from other type traits that were less affected by trait definition (Table 2). A genetic 

correlation of below 0.90 between the two periods was considered as criteria to designate a trait 

whose definition changed. For both traits, a linear prediction equation based on selected linear type 

traits and the composite traits was developed based on data of cows scored in period 2 and applied 

to data of cows scored in period 1, assuming the period 2 scores as ‘gold standard’. Secondly DGV 

for validation bulls born in 2004 and after were predicted and accuracy was calculated as a 

correlation between DGV and daughter trait deviation (DTD). These DGV accuracy were adjusted 

using the average accuracy of the DTDs (calculated from h
2
 and number of daughters) and 

compared to expected accuracy calculated from the prediction error variance and to the accuracy 

calculated using deterministic formula (e.g. Hayes et al. 2009). For these analyses the DTD and 
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genotype data of 2,407 bulls were obtained from the ADHIS. Details on the DTD, genotype and 

methods for genomic prediction are provided elsewhere (e.g. Haile-Mariam et al. 2015). The 

parameters used for prediction of accuracy using the deterministic formula were the same as those 

assumed by Hayes et al. (2009). However, the reference population size was 2,056 bulls for 14 of 

the 20 traits and 1,860 bulls for udder depth, body depth, foot angle and teat length. The h
2 

in 

Table 2 estimated based on the data in period 1 were used to calculated effective h
2
.  

 

RESULTS AND DISCUSSION 

The mean type score of cows increased from period 1 to period 2 for all traits except udder 

texture, body depth, chest width, pin set, rear leg set and udder depth (Table 1). The reason why 

the mean score of cows for udder texture and these other traits decreased could be related  to the 

change in the way cows were scored, or to selection, if the optimum for the trait is a lower or 

intermediate score. For all traits, the h
2
 was lower in cows scored in period 2 compared to those in 

period 1 (Table 2). The genetic correlation of cows scored in the two periods was very high for 

traits such as pin set, but was the lowest for mammary system followed by overall type (Table 2). 

When predicted overall type and mammary system were used for cows scored in period 1, instead 

of the scores by the classifiers, the genetic correlation between the two periods increased only 

marginally. In the case of mammary system, the correlation increased to 0.63 when 4 udder traits 

(udder depth, teat length, teat placement fore and fore attachment) were used as predictors. In the 

case of overall type, the use of 10 traits (teat length, teat placement fore, udder depth, rear set, foot 

angle, pin set, body depth, muzzle width, angularity, bone quality) increased the correlation to 

0.68. This is slightly lower than the prediction using all type traits (0.70).  

 

Table 2. Estimates of heritability (h
2
), genetic correlation of a trait between scored before 

2007 and after 2006, adjusted observed accuracy, expected accuracy and differences (Diff) 

Traits  h
2
 before 

‘07 

h
2
 after ’06  Genetic 

correlation 

Adj. 

accuracy  

Exp. 

accuracy  

Diff 

Overall type 0.27±0.01 0.13±0.01 0.66±0.08 0.36 0.56 0.20 

Mammary system  0.27±0.01 0.14±0.01 0.59±0.07 0.33 0.55 0.22 

Stature  0.45±0.01 0.30±0.02 0.84±0.03 0.46 0.61 0.15 

Udder texture 0.23±0.01 0.13±0.01 0.68±0.06 0.46 0.61 0.15 

Bone quality  0.30±0.01 0.25±0.01 0.97±0.02 0.54 0.64 0.10 

Angularity 0.26±0.01 0.18±0.01 0.93±0.03 0.55 0.61 0.06 

Muzzle width 0.23±0.01 0.20±0.01 0.90±0.03 0.53 0.63 0.10 

Body depth 0.38±0.01 0.28±0.02 0.95±0.02 0.70 0.64 -0.06 

Chest width 0.25±0.01 0.21±0.01 0.81±0.04 0.53 0.66 0.13 

Pin width 0.35±0.01 0.26±0.02 0.85±0.04 0.57 0.64 0.07 

Pin set  0.37±0.01 0.29±0.01 0.99±0.01 0.51 0.61 0.10 

Foot angle 0.20±0.01 0.17±0.01 0.93±0.03 0.55 0.61 0.06 

Rear leg set 0.18±0.01 0.10±0.01 0.94±0.03 0.44 0.54 0.10 

Udder depth 0.40±0.01 0.33±0.02 0.93±0.02 0.71 0.65 -0.06 

Fore attachment 0.22±0.01 0.16±0.01 0.88±0.04 0.42 0.61 0.19 

Rear attachment height  0.27±0.01 0.16±0.01 0.71±0.06 0.52 0.59 0.07 

Rear attachment width  0.23±0.01 0.18±0.01 0.69±0.06 0.59 0.62 0.03 

Central ligament 0.24±0.01 0.12±0.01 0.70±0.06 0.27 0.63 0.36 

Teat placement fore  0.35±0.01 0.30±0.02 0.90±0.03 0.54 0.67 0.13 

Teat length 0.44±0.01 0.34±0.02 0.94±0.02 0.52 0.66 0.14 
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For 18 of the 20 traits analysed the observed accuracy of DGV was lower than the expected 

accuracy (Table 2). The observed accuracy being lower compared to the expected accuracy could be a 

result of change in trait definition (Table 2) over the period. In fact Table 2 shows that for 7  of the 10 

traits whose genetic correlations between the two periods were < 0.9 the observed accuracy was less 

than the expected accuracy by at least 0.1. However, for rear attachment height and rear attachment 

width where the genetic correlations between period 1 and 2 were low (Table 2) the observed 

accuracy was only marginally lower than the expected accuracy. For teat length, pin set, rear leg set 

and bone quality despite having genetic correlations of > 0.9, the observed accuracy was lower than 

the expected accuracy by 0.1 to 0.14 (Table 2), suggesting that issues other than correlations that 

cover the current period may contribute to the difference.  

The accuracy of prediction from the deterministic formula varied from 0.59 for foot angle (the 

lowest h
2
) to 0.65 for stature (the highest h

2
). The small variation in the formula predicted accuracy 

among traits is expected because all the parameters that influence accuracy, except the h
2 
are the same. 

The highest differences between the formula predicted and the expected accuracy (0.07-0.08 in favour 

of the formula) were for mammary system, overall type and rear leg set. For all the other traits the 

difference was 0.04 or less. An additional evidence of the effect of change in trait definition detected 

as low genetic correlation of a trait over time on DGV accuracy was observed because the relationship 

of DGV accuracy with the product of h
2
 and genetic correlation was stronger (R

2
 = 0.49) than that of  

DGV with h
2
 alone (R

2
 = 0.41) based on all traits. Thus taking account of the genetic correlation 

improved agreement between observed DGV and expected accuracy.  

The broader implications of these results are, when assessing the accuracy of DGV of traits that 

are subjectively scored the possible effects of changes in the trait definition should be considered. 

Overall changes in definition of traits may be important for valuing current cows according to current 

standards, but it should be done with care, considering its effect on genetic progress, accuracy of BV 

and trait harmonisation with Interbull member countries. The impact of change in trait definition on 

DGV accuracy could be more pronounced if the change in trait definition coincides with the 

subdivision of bulls into reference and validation set as was case in the current study. A gradual 

decrease in genetic correlations of a trait over time will most likely affect the data of all bulls and will 

be realised as low h
2
 and consequently low DGV accuracy. For traits where there is marked change in 

trait definition that result in reduced accuracy of prediction of BV alternative genetic evaluation 

models including multi-variate and random regression models (Tsuruta et al. 2004; Haile-Mariam and 

Pryce 2015) or ignoring old data (Jamrozik and Schaeffer, 1991) should be considered.  

In conclusion for most traits s the discrepancy between the adjusted and expected accuracy of 

DGVs can be related to change in trait definitions. However, there were cases where differences 

between observed and expected accuracy could not be related to the absence or presence of change in 

trait definition that can be detected by calculating genetic correlations.  
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SUMMARY 

We predict genomic selection accuracy from a heterogeneous reference population that contains 

close relatives, herd- or flock mates and individuals from the wider population, using an established 

theory. The various sources of information were modeled as different and independent reference 

populations with different effective sizes. We show that information on close relatives can have a 

substantial effect on genomic prediction accuracy. We also show the increase of the genomic 

prediction accuracy to be less reliant on higher marker density or total reference population size when 

there are more closely related individuals to predict from. Conversely, the value of close relatives is 

smaller when the total reference population size is larger. Our modelling is useful to assess the value of 

a population reference versus a breeder’s own reference, based on own animals genotyped.  

 

INTRODUCTION 

Genomic selection requires a reference population of individuals having information on both 

genotype and phenotype. The accuracy of genomic prediction depends on various parameters, 

including size of the reference sample, its genetic structure and the genetic architecture of the trait of 

interest. An important parameter is the effective size of the population. The effective population size is 

a predictor of the effective number of chromosome segments that are represented in the population. 

Theoretical predictions have usually considered a homogeneous population. However, in most 

practical applications, the reference population used for genomic predictions possibly consists of many 

subpopulations, e.g. breeds, lines or strains within a breed and part of the reference population maybe 

be directly related via pedigree to the animals to be predicted. Hence, reference populations consist of 

individuals that vary in relatedness to each other and to the target animals to predict. The distinction 

could be relevant for a breeder with genotyped individuals to assess the importance of own 

measurement versus that in the wider population.  

Clark et al. (2012) showed that genomic predictions are more accurate if the genomic relationship 

between the target animal and the reference population is higher. Habier et al (2013) distinguished 

between three types of information in genomic prediction; linkage disequilibrium, additive-genetic 

relationships and co-segregation of QTL predicted from marker genotypes within a pedigree. They 

argued that it would be useful to understand how these sources contribute to the accuracy of genomic 

predictions, especially when designing reference populations for breeding programs. They show these 

contributions via simulated examples but did not provide simple predictions for them. Hayes et al. 

(2009) also considered the influence of relationships on genomic prediction. They followed the same 

approach as the general theory, i.e. by considering the number of independently segregating 

chromosome segments within families.  They showed the accuracy of genomic prediction from 

varying sizes of full- and half- sib families, but did not consider the information from combined 

sources. We propose a simple approach to assess the importance of various sources of information 

used for genomic prediction in animal breeding. 

Proc. Assoc. Advmt. Breed. Genet. 21: 161-164

161



MATERIALS AND METHODS 

Predicting genomic selection accuracy. The accuracy of genomic breeding values (GBV) based 

on DNA marker genotypes can be predicted from theory (e.g. Daetwyler et al., 2008; Goddard, 2009; 

Goddard et al., 2011), assuming that prediction is based on a reference population of animals with 

phenotypes and genotypes for the same DNA markers, and these markers are linked to quantitative 

trait loci (QTL). Based on the infinitesimal model, the accuracy depends on i) the proportion of genetic 

variance at QTL captured by markers and ii) the accuracy of estimating marker effects. The proportion 

of genetic variance at QTL captured by markers (b) depends on LD between markers and QTL, which 

in turn depends on the number of markers (M) and the number of ‘effective chromosome segments’ 

(Me);  b = M/(Me + M).  Prediction of Me is not easy and various approximations have been presented 

by largely the same authors (Goddard, 2009; Hayes et al., 2009, Goddard et al., 2011, Meuwissen et 

al., 2013). We will use Me = 2NELk/ln(2NE) (Meuwissen et al., 2013), where  NE = effective 

population size;  L = average chromosome length;  k = number of chromosomes. The accuracy of 

estimating marker effects depends on the captured genetic variance as a proportion of the total 

variance (b.h
2
), the number of (unrelated) animals observed in the reference population (T), and Me. 

The accuracy is the variance of the estimated (random) marker effects (q) as a proportion of the 

variation in true marker effects: V(�̂�)/V(q). This term is estimated as /(1+), where  = Th
2
b/Me.  

Reliability of GBV is then r
2 
= b.V(�̂�)/V(q) and the accuracy is the square root of this value. 

 

Effective population size in a heterogeneous population. A critical parameter in the accuracy of 

genomic prediction is the effective population size (NE). It is not easy to define ‘population’ in many 

practical cases and it is not possible to represent a reference population by a single value for NE. We 

propose a very simple model relevant for breeding programs for beef cattle or sheep. For the prediction 

of an individual within a herd/flock we consider three sources of information based on animals that are 

measured and genotyped 1) N1 individuals from a certain breed but not closely related to the target 

animal, 2) N2 herd/flock mates of the target animal and 3) N3 close relatives of the target animal. We 

will refer to these sources of information as breed, flock and relatives, respectively. This is, of course, 

a simplified representation of heterogeneity, but a useful start to consider the contribution of each to 

overall prediction accuracy. We consider these three subsets as populations that differ in relatedness to 

the target animal as well as to each other, to be modeled as three different populations with different 

effective size, indicated as NE1, NE2, and NE3, and a different number of chromosome segments, i.e. 

differing also in the size of the segments shared amongst each other and with the target animal. Each 

of these sources provides an estimation of breeding value and the reliability (r
2
i) of each GBVi can be 

calculated as above. The three information sources are combined as GBV = GBVi by using 

cov(GBVi, GBVj) = r
2

i. r
2

j.VA, and cov(GBVi, a) = r
2
i.VA, where a is the true breeding value and VA is 

the additive genetic variance. The accuracy of the GBV can then be calculated using standard selection 

index theory. 

 

Study Design. For each of the three resources contributing to genomic prediction we varied values 

for NEi and Ni and marker density. We compared accuracy of GBV from just breed with predictions 

that included also information from flock and relatives. The total number in the reference population 

was kept equal between such comparisons. We evaluated the contribution of each information source 

as ‘value of variate’, defined as the relative loss in accuracy if that resource was removed. The trait 

heritability was 0.25.  
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RESULTS AND DISCUSSION 

In a base scenario we assumed a population with a large diversity, NE1 = 1000, e.g. similar to the 

Merino population. Subsets of flock mates and relatives were represented by N2 = 400 and N3 = 50, 

with effective size NE2 = 50 and NE3 = 8. This scenario represents a lower value for the breed 

information source due to its large diversity, and a large number of individuals in the flock and 

relatives information sources. Results are shown in Figure 1, showing that the flock and relatives 

resources contribute substantially to the prediction accuracy, especially when the accuracy of the breed 

Fig. 1. Accuracy of GBV depending on total reference population size for low (Nmarkers=12k, 

left) and high (Nmarkers = 500k, right) marker density, comparing ‘with’ (continuous line) and 

‘without’ (dashed line) information on flock and relatives. 

 

resource is low. This is the case with low N1 and with low marker density coupled with high 

population diversity (NE1). The influence of flock and relatives decreases with large N1 and also with 

higher marker density. Further comparisons are summarized in Table 1. The results show that for 

populations with lower NE1 the contribution of flock and relatives declines rapidly. If the contribution 

of flock and relatives is smaller due to less own data being available (lower values for N2 and N3) then 

their influence decreases accordingly, but it can still be substantial for small N1
 
and high NE1. 

 

Overall the results illustrate that the GBV accuracy is likely higher than predicted based on the size 

in the reference population and the effective population size of the breed, due to information from 

relatives and more closely related individuals in the flock or herd. The effect will be larger when the 

information from the wider breed resource is of lower value, e.g. for smaller reference populations, or 

breeds with higher diversity. The effect of marker density is more notable if the breed diversity is high 

(high NE1). The information from the own flock genotyping and recording can contribute substantially, 

and even if the numbers are relatively low (low N2 and N3) if the breed resource is small (e.g. N1 = 

2000). The assumption about NE2 and NE3 have some effect on the observed differences, e.g. when NE3 

increases from 8 to 16 in the first case, the accuracy increase (diff) reduced from 95% to 87% and 

when NE2 increases from 50 to 100, the increase is further reduced to 64%.  

 

The purpose of this study was to use a simple model to estimate of the importance of information 

on closer relatives in genomic prediction. This is relevant for breeders that have developed their own 

reference population. The value of this own reference can be substantial, unless a fairly large breed 

reference is available, and the value would be higher for more diverse breeds such a Merino.      
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Table 1 Value of the various information sources, accuracy of GBV with and without the flock 

and relatives information sources
2
 and the relative accuracy difference (diff).  

   Value of information source
1 

N1   breed flock relatives  GBV_acc_with GBV_acc_wo     diff
3 

 
NE1=1000,  N2=400, N3=50 

2,000   16% 52% 21%  0.428  0.220              95% 

5,000   31% 39% 15%  0.471  0.318              48% 

10,000   45% 26% 10%  0.528  0.420              26% 

       
NE1=1000,  N2=100, N3=10 

2,000   48% 36% 12%  0.279  0.205              36% 

5,000   68% 19% 6%  0.357  0.309              15% 

10,000   79% 11% 4%  0.445  0.414  7% 

       
NE1=200, N2=400, N3=50 

2,000   45% 26% 10%  0.528  0.448             18% 

5,000   62% 12% 5%  0.640  0.599  7% 

10,000   72% 5% 2%  0.739  0.718  3% 
1 Percent decrease in accuracy if this information source was removed. Note that these do typically not add up to 

100%. 
2 NE2 = 50, NE3 = 8, Marker density = 50k. 
3 Difference between prediction accuracy with and without information from flock and relatives 

 

CONCLUSIONS 

This work shows a simple approach for modeling genomic prediction in a heterogeneous reference 

population by considering several subpopulations that differ in effective size. The model allows 

quantification of the importance of the own flock or herd information versus the wider breed 

information used for genomic prediction. We show that as a result of using some information from 

relatives, the increase of prediction accuracy with increasing the size of the wider reference population, 

or increasing marker density, maybe lower than expected. The validity of the approach needs to be 

tested with simulated as well as real data.  
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SUMMARY 

High-density (HD) marker genotypes could increase the accuracy of genomic prediction by 

providing stronger linkage disequilibrium (LD) between markers and quantitative trait loci 

affecting a trait, especially in populations with a high genetic diversity such as Australian Merino 

sheep. The aim of this study was to compare the accuracy of genomic prediction for Merino 

yearling and adult wool traits based on observed and imputed 600K single nucleotide 

polymorphism (SNP) marker genotypes with the accuracy based on moderate-density (50K) 

marker genotypes. Genomic best linear unbiased prediction (GBLUP) and a Bayesian approach 

(BayesR) were used as prediction methods. Results showed a small relative increase in accuracy 

between 2 to 15% (of the previous accuracy) when using a HD marker set. The results of BayesR 

were on average similar to GBLUP. Considerably higher (up to 25% relative increase) in 

prediction accuracy was observed for animals with lower genomic relationship to the reference 

population. 

 
INTRODUCTION 

Genomic prediction of selection candidates (Meuwissen, et al. 2001) is becoming more 

practical in animal breeding programs. Genomic prediction is based on genome-wide single 

nucleotide polymorphism (SNP) marker genotypes assumed in LD with quantitative trait loci 

(QTLs) affecting a polygenic trait. Genomic prediction based on denser SNP panels is expected to 

improve the prediction accuracy and hence the selection response compared with using lower-

density markers because of a higher LD between markers and QTLs. Higher marker density could 

be more important in more genetically diverse breeding populations such as Australian Merino 

sheep, in which the effective population size is reported to be large (Kijas et al 2012). The 

objective of this study is to compare the accuracy of genomic prediction between a HD (600K) and 

a moderate-density (50K) SNP marker panel for wool traits in Australian Merino sheep using 

either Genomic Best Linear Unbiased Prediction (GBLUP) or a non-linear Bayesian prediction 

approach. 

 
MATERIALS AND METHODS 

Reference population, phenotypes and validation population. The investigated traits were 

yearling and adult wool quantity and quality traits as summarized in Table 1. The size of the 

reference population for each trait and age group was different, ranging from 2,413 to 4,662 

purebred Merinos. These animals belonged to the Sheep Cooperative Research Centre Information 

Nucleus Flock (INF) and the Sheep Genomics Flock (SGF). The INF consisted of eight flocks 

located across different regions of Australia and these were linked to each other by using common 

sires through artificial insemination between 2007 and 2011 (van der Werf et al. 2010). The SGF 

was a single research flock located in southern New South Wales, Australia with data collection in 

2005 and 2006 (White et al, 2011).  
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The validation population was a group of 175 Merino sires with highly accurate EBVs 

(average accuracy ~ 0.92). Furthermore, the validation population was divided into two sets of 

animals; one with a high genomic relationship to the reference population (mean of top 30 

relationships was greater than 0.20) and one with a low genomic relationship to the reference 

population (maximum genomic relationship was less than 0.10). 

 

Genotypes. Genotypes were available based on the 50K Ovine marker panel (Illumina Inc., 

San Diego, CA, USA). This marker panel provided 48,559 SNP genotypes after applying quality 

control on genotypes. All INF and SGF sires and a number of progeny (1,735 purebred and 

crossbred Merino animals) were genotyped using the 600K (Illumina Inc., San Diego, CA, USA) 

marker panel, which provided 510,174 SNPs after quality control. Using animals with observed 

HD genotypes as an imputation reference set, the rest of Merinos were imputed from 50K to 600K 

using FImpute (Sargolzaei 2014). 

  

Statistical methods. Genomic best linear unbiased prediction (GBLUP) and a BayesR 

approach (Erbe et al. 2012) were used to calculate the Genomic Breeding Values (GBV) using 

ASReml (Gilmour et al. 2009) and BESSiE (Boerner and Tier, 2015), respectively. The following 

model was used for data analysis: y = Xb + Z1g +  Z2m + Z1Qq+e where y is a vector of 

phenotypes, b is a vector with fixed effects, g is the random additive genetic effect of the animal, 

m is a vector with maternal effects, q is a vector of genetic groups and  e is vector of random 

residual effects, X, Z1 and Z2 are incidence matrices. g, m, q and e are considered normally 

distributed as 𝑔 ~ 𝑁(0, 𝐺𝜎𝑔
2), 𝑚 ~ 𝑁(0, 𝐼𝜎𝑚

2 ), 𝑞 ~ 𝑁(0, 𝐼𝜎𝑞
2) and 𝑒 ~𝑁(0, 𝐼𝜎𝑒

2), respectively, 

where G is the genomic relationship matrix calculated based on 50K or 600K genotypes using the 

VanRaden (2008) approach. The fixed effects in the model were birth type, rearing type, gender, 

age at measurement (for weaning weight and post weaning weight) and contemporary group which 

was flock × birth year × management group.  

 

Table 1. Summary statistics and heritability of yearling (Y) and adult (A) wool traits. 

Trait Nr. records Mean s.d Range *h2 

Y1-GFW 4,662 3.64 1.04 1.2 - 7.8 0.57 (0.04) 

Y-CFW 4,423 2.46 0.65 0.93 - 4.76 0.51 (0.05) 

Y-FD 3,969 19.93 5.39 12.8 - 42 0.62 (0.04) 

Y-FDCV 3,554 19.26 2.86 11.7 - 31.8 0.47 (0.04) 

Y-SS 3,554 33.8 9.82 13 - 88 0.55 (0.04) 

Y-SL 3,554 80.93 13.06 38 -236 0.56 (0.04) 

A2-GFW 4,541 5.75 1.97 1.50 - 14.30 0.69 (0.04) 

A-CFW 4,540 4.19 1.39 1.13 -  9.91 0.70 (0.04) 

A-FD 3,001 18.17 1.84 13.80 - 24.60 0.64 (0.05) 

A-FDCV 2,436 18.07 2.56 11.80 - 27.70 0.57 (0.07) 

A-SS 2,414 36.61 10.31 3.00 - 68.00 0.37 (0.07) 

A-SL 2,413 98.57 18.34 41.00 - 149.00 0.67 (0.07) 
1
Y=Yearling, 

2
A=Adult, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), 

FDCV=Fibre Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm),*: estimated based 
on pedigree 

 

The BayesR method considers a mixture of four normal distributions for the SNP effects with 

variances σ1
  2 = 0, σ2

  2 = 0.0001 σ𝑔
2   ,  σ3

  2 = 0.001σ𝑔
2 ,  σ4

  2 = 0.01σ𝑔
2. Starting values for σ𝑔

2  were taken 

from GBLUP analysis and the priors for the proportion of markers in each distribution was drawn 

from a Dirichlet distribution. 50,000 iterations (with 10,000 burn-in) were run for analysis. The 
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genomic prediction accuracy was assessed based on the Pearson correlation coefficient between 

GBV of the validation sires and their accurate EBV based on progeny test. 

 

RESULTS AND DISCUSSION 

The accuracy of genomic prediction for the two marker panel densities is shown in Tables 2 

and 3 for yearling and adult wool traits, respectively, based on GBLUP and BayesR prediction 

methods. Results showed a slight increase in accuracy for both yearling and adult wool traits based 

on HD genotypes. The relative increase in prediction accuracy was ranging from 2% to 15% with 

an average relative increase of 5.9%. The percentage point of gain in accuracy was between 0.00 

and 0.09 and on average 0.04. BayesR did not show notably higher accuracies than GBLUP based 

on 600K across all yearling and adult wool traits. 

Table 4 shows the change in GBV accuracy for groups of validation sires with high or low 

genetic relationship to the reference population. A considerable increase in accuracy was observed 

across almost all traits for animals with lower genetic relationship to the reference population, 

while the increase in accuracy for highly related animals was small.  

This study showed a small gain in GBV accuracy based on HD genotypes in Merino sheep, 

except for animals with lower genetic relatedness to the reference population in which extra 

accuracy was notable. As Table 3 and 4 show, the genomic prediction of wool traits based a 

moderate-density marker set (50K) is already high (up to 0.68) which is because of a relatively 

high genetic relatedness of validation sires to the reference population. This indicates for highly 

related animals a moderate density marker panel (~50K) could explain most of the additive genetic 

variance of the wool traits used in this study. 

Results showed significantly higher GBV accuracy based on HD genotypes for lowly related 

animals to reference population. Animals with lower relatedness share smaller chromosome 

segments and rely more on higher marker density to achieve sufficient LD for accurate genomic 

prediction.  

 
Table 2.  Accuracy of genomic prediction based on using 50K or 600K marker genotypes in yearling 

wool traits. 

Trait Size 
GBV Accuracy 

GBLUP (50k) GBLUP(600k) Bayes-R(600k) 

Y1-GFW 4,662 0.681 0.692 0.669 

Y-CFW 4,423 0.621 0.634 0.632 

Y-FD 3,969 0.686 0.752 0.718 

Y-FDCV 3,554 0.462 0.469 0.470 

Y-SS 3,554 0.366 0.412 0.369 

Y-SL 3,554 0.594 0.617 0.621 
1
Y=Yearling, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre 

Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 

 

Genotype imputation errors might be a potential reason of limiting gain in GBV accuracy from 

HD genotypes. However the chance of this error should be very low in this study because the HD 

genotyped animals (1,735) were selected based on high genetic relationships to the rest of 

population. Furthermore, our previous results showed high imputation accuracy of low-density 

(12K) to moderate density (50K) genotype if there is a high genetic relatedness between test set 

and imputation reference set (Moghaddar et al. 2015). Imputation of a moderate (50K) to high 

density (600K) is expected to be more accurate than imputation of low to moderate marker 

density.  
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Table 3.  Accuracy of genomic prediction based on using 50K or 600K marker genotypes in adult wool 

traits. 

Trait Size 
GBV Accuracy 

GBLUP (50K) GBLUP(600K) Bayes-R(600K) 

A1-GFW 4,541 0.650 0.691 0.691 

A-CFW 4,540 0.594 0.631 0.626 

A-FD 3,001 0.610 0.673 0.703 

A-FDCV 2,436 0.324 0.366 0.370 

A-SS 2,414 0.590 0.669 0.664 

A-SL 2,413 0.400 0.461 0.464 
1
A=Adult, GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre 

Diameter Coefficient of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 

 

Table 4.  GBV accuracy for genetically highly or lowly related animals to reference population 

 

Trait 
50K-Marker Density 600K-Marker Density 

Highly Related Lowly Related Highly Related Lowly Related 

Y-GFW 0.712 0.398 0.721 0.410 

Y-FD 0.667 0.665 0.766 0.754 

Y-SS 0.471 0.226 0.496 0.261 

Y-SL 0.720 0.190 0.733 0.237 

A-GFW 0.712 0.512 0.712 0.608 

A-FD 0.690 0.570 0.735 0.628 

A-SS 0.760 0.548 0.762 0.617 

A-SL 0.573 0.361 0.586 0.452 

GFW=Greasy Fleece Weight(Kg), CFW=Clean Fleece Weight(Kg), FD=Fibre Diameter(µ), FDCV=Fibre Diameter Coefficient 
of Variation (%), SS=Staple Strength(Newton/ktex), SL= Staple Length(mm) 
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SUMMARY 

Using data collected on commercial animals for genetic evaluation is appealing due to the 

larger volumes of data potentially available, and the fact that such data may be on objective traits, 

or traits more closely correlated with consumer end-point traits. However, there are important 

considerations, the most significant being the degree of genetic relationship between commercial 

animals and current candidates for selection. There will continue to be advantages in using data 

collected in structured programs, rather than relying on commercial data. 

 

INTRODUCTION 

There is growing interest in the use of commercial data in genetic evaluation of beef cattle and 

sheep, stimulated in part by the proliferation of means of capturing and transporting data and of 

interrogating databases at lower cost, coupled with broader discussion of “big data”. In general 

terms, big data refers to finding patterns or associations between factors in large datasets, with a 

lively debate continuing over what potential this offers and which traditional approaches to finding 

meaning will be rendered redundant. 

One application is in livestock production, where databases built for different purposes are 

starting to be linked through the common identity provided by NLIS, (National Livestock 

Identification Scheme: - for example data collected in processing plants for meat eating quality 

assessment (Meat Standards Australia, or MSA)), and with genetic databases such as those 

containing pedigree, performance and genotype information for use in BREEDPLAN and Sheep 

Genetics evaluations. The appeal behind this area of application has several elements: 

- Wanting to get the most out of the substantial investments in building these data systems 

- Seeking to engage commercial producers more directly with genetic information, in part by 

providing a means for them to contribute to the evaluations, and 

- Seeking to exploit data that is already captured on otherwise hard-to-measure (HTM) traits 

related to carcase and meat characteristics, and potentially animal health data. 

This paper briefly explores this opportunity and highlights important considerations that impact 

the value of the enterprise of increasing connections between various data systems, to generate big 

data.  

For this exploration, it is important to briefly summarise the genetic structure of the beef and 

sheep industry populations, but focussing mainly on beef. 

 

INDUSTRY GENETIC STRUCTURE 

 In both the beef cattle and sheep industries, there are well-defined and separate sire breeding, 

or seedstock, and commercial production sectors, with much larger numbers of animals in the 

commercial sector. For example, the national commercial cow herd is approximately 12m head 

and includes approximately 100,000 enterprises. The seedstock sector comprises approximately 

250-300,000 animals in 1,500-2,000 enterprises. 

The sires of commercial animals – herd bulls in the beef industry (and flock rams in sheep) – 
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are in simple terms bulls born in seedstock herds that are not retained as sires of sires, and which 

are marketable. These herd bulls will be bred to approximately 100 cows in a working life. Genetic 

evaluation is based predominantly on records of performance taken in seedstock herds on 

pedigree-recorded young bulls and heifers, and similarly in sheep. 

Given that the majority of males born will be used as herd bulls – to sire commercial progeny –

the closest commercial relatives of young candidate males will be the progeny of half-brothers. If 

any of these are themselves used to breed herd bulls, this adds 2 more steps in the relationship path 

between young candidates and commercial relatives. Because AI is essentially only used at the 

seedstock level, cases where young male candidates have commercial half-sibs that can be 

recorded are very rare in “normal” commercial practice. 

This structure contrasts with that in dairy cattle, where commercial cows being herd-recorded 

are half-sisters of young bulls, and in pigs, where full- and half-sibs of young candidates can be 

recorded for slaughter/carcase traits. What does this mean for the value of commercial data in beef 

cattle and sheep? 

 

ACCURACY OF ESTIMATED BREEDING VALUES USING COMMERCIAL DATA 

 It is straightforward to calculate potential accuracies of EBVs for various data combinations. 

Table 1 shows the results for a sample of scenarios. 

 

Table 1. EBV accuracy for candidate animals, with varying heritability and combinations of 

effective records on relatives. 

 

Heritability 

of trait 

Records available Accuracy of EBV for 

candidate animals in 

seedstock herd/flock 

0.4 Own record 0.63 

0.4 29,850 grand-progeny of candidate’s paternal grand-sire 

(PGS). PGS has 100 sons each with 30 progeny 

0.25 

0.4 930 progeny of 1 son of the same paternal grand-sire as 

the candidate 

0.125 

0.3 Own record 0.55 

0.3 Own record plus 3 half-sibs plus 3 animals with same 

paternal grand-sire, each with 30 progeny 

0.60 

0.3 60 progeny of 2 animals that share the same paternal 

grand-sire 

0.15 

 

The overall pattern is simple and clear: 

- Information from animals that share the same grand-parents is of limited value for genetic 

evaluation of young candidates in the seedstock sector 

- Recorded and/or progeny-tested half-sibs can add accuracy 

This simple example is for the situation where the trait recorded is the same for all animals. 

Data from relatives is potentially more useful when data can be collected on a trait more closely 

correlated with an objective trait, or that cannot be recorded on the candidate at all. This situation 

applies for carcase marbling (or other eating quality traits). Animals in seedstock herds can be 

indirectly assessed for marbling using live scanning or other correlated traits, but not for the 

objective trait itself. 

In this situation, direct carcase measures on very small numbers of progeny generate more 

accuracy than even very large numbers of recorded half-sibs, for example. However, the 

contribution to accuracy of EBV on the candidates depends on the genetic relationship with the 
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animals recorded for the objective trait – the value of the data declines as the square of the number 

of steps in the relationship path. 

MAKING COMMERCIAL DATA WORTH HAVING 

From the perspective of genetic evaluation of young candidate animals in seedstock herds/flocks, 

the most likely situation to be practical is to collect data on commercial progeny of half-sibs, or on 

half-sibs themselves. The former requires that each crop of young sires generates commercial 

progeny which are recorded, the latter that seedstock sires are mated to produce both seedstock 

and commercial progeny routinely. 

Examples of these 2 scenarios exist in beef cattle in Australia: 

1. In the Team Te Mania program commercial herds use semen from stud sires of sires, or

current young bulls, and capture slaughter data. Accordingly, young bulls are evaluated with

data from animals with either the same sire (relationship = 0.5) or grand-sire (0.25)

2. In the Wagyu breed to date, a high proportion of commercial animals are AI progeny of

widely used sires. This means that young bulls have commercial half-sibs with data. Zhang

(2015, in press) details the data currently available in this breed for genetic evaluation, but in

simple terms it is much more like dairy data than beef in terms of the relationship x data

pattern.

In both these cases, higher accuracy of genetic evaluation is achieved for breeding objective 

traits of young seedstock animals than is usual in beef cattle in this country.  

The reference populations (or information nucleus herds/flocks) established in beef and sheep 

combine some aspects of these 2 examples, but with potentially wider reach. In each, elite young 

sires are being progeny tested including for direct objective traits. The impact on accuracy of 

young animals in the seedstock population at large then depends on the animals’ relationship with 

the animals being progeny tested. Here the intention is more to generate reference data for 

genomic selection, which partly overcomes the variable impact on accuracy of evaluation caused 

by the variation in relationships. At the same time, animals that are progeny-tested in this way will 

inevitably achieve higher accuracy of EBV for the traits recorded which in turn will increase their 

likelihood of being selected as parents in the seedstock sector. 

CAVEATS 

There are two obvious concerns regarding use of commercial data: 

1. unless data is collected in identifiable management groups, the heritability of the data will be

compromised, and may in fact reach zero

2. such groups must have more than one sire represented, or if genomic pedigree is used, be

sufficiently diverse to support some statistical contrast.

These aspects of data have been examined in the Wagyu case, which is to date simply a semi-

random sample of commercial datasets, analysed by Zhang et al. (2015, pers. comm.). Within the 

data: 

- 5,270 recorded were recorded in 1,161 management groups) for an average group size of 4.5 

animals 

- 692 management groups (60% of groups) contained 0 effective progeny, but 1,197 recorded 

animals (or 23% of the data) 

- The overall average effectiveness of data (the ratio of effective number to actual) was 24%, 

with the value for groups with at least 1 effective progeny being 60%. 

In general, utility of commercial data will be maximised when: 

- Management groups are accurately recorded, and effective and actual progeny numbers are 

as similar as possible 

- The commercial animals are as closely related to selection candidates as possible 
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- The animals are recorded for objective traits, or traits highly correlated with objectives. 

 

IMPLICATIONS FOR USE OF COMMERCIAL DATA 

Even in the Wagyu situation, at least currently inherently favourable for use of commercial 

data, 60% of data collected (as measured by number of groups or datasets) provides no 

information that can be used for genetic evaluation. 

More generally in the beef and sheep industries, it is not easy to predict the distribution of 

management group effective size, but there is no obvious reason to expect it to be dramatically 

different from in this example, and just as importantly, the genetic relationship between records 

and current candidates is likely to be lower. This last reflects the fact that widespread AI is very 

unlikely to be commercially practical – certainly use of AI in bull or ram multiplication makes 

growing sense as high merit, high accuracy sires are identified, but bulls and rams are extremely 

efficient AI technicians for extensive operations. 

If these surmises are correct, it will be important to proceed carefully in harvesting commercial 

data, or more precisely, in what benefits are promoted from that harvesting. Even if the capture 

were free, costs will be generated in data storage and analysis. If the capture is not free, it will be 

imperative to develop, and communicate very clearly, ways of valuing data in advance of its 

collection so that informed investment decisions can be made. 

The discussion to this point presupposes that the only purpose of capturing commercial data is 

for genetic evaluation. This may not be the case – management decision tools may be developed 

around real-time commercial data, essentially akin to herd recording in dairy cattle. In this 

scenario, as long as simple ways of screening in the data that is useful for genetic evaluation can 

be applied, some benefit is possible. 

More generally, the multiplication and dissemination structure of the beef and sheep breeding 

and production industries inherently favour development of structured data collection. Harvesting 

data on close relatives of current selection candidates is genetically and hence economically more 

efficient, with the caveat that the “commercial” conditions must be commercial, otherwise there is 

a GxE to contend with and possible loss of confidence in the EBVs. 

Livestock genetic improvement has been a “quite big data” enterprise ever since the 

introduction of BLUP methods, and is automatically becoming genuinely big as volumes of 

genotypic information grow. Because the field has always been focussed on extracting maximum 

value from precious (ie expensive) data, basic principles for valuing data and for designing 

efficient recording structures are well developed. 

 

CONCLUSIONS 

Increasing use of large volumes of commercial data is very appealing in principle, and 

becoming more feasible through developments in data transfer and storage, and greater willingness 

to link databases. 

However, “data ain’t data” – commercial data will vary enormously in its value for genetic 

evaluation, and simply assuming that incorporating large amounts of commercial data will lead to 

dramatic increases in genetic progress is misguided. It is almost certain that the greatest value will 

come from carefully structured and managed data collection, and those breeding enterprises that 

can incorporate such activity into their business plans will always be at an advantage. 
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SUMMARY 

An antagonistic genetic relationship between direct and maternal effects for birth weight (and 

weaning weight) makes the concurrent genetic improvement of the two traits more challenging 

than if the correlation was zero or favourable. The direction and magnitude of the genetic 

correlation between maternal and direct effects for lamb birth weight are equivocal with several 

moderate negative and several near zero estimates being reported. A number of experiments over 

the last decade undertaken at Massey University in the pursuit of developmental programming 

effects in sheep, have provided serendipitous results that suggest a negative phenotypic correlation 

between dam and offspring birth weight can be induced by some environmental stressors during 

pregnancy. These correlations could be interpreted as having an underlying genetic effect, since 

the relationship is generated without any experimental manipulation of second generation lambs. It 

is proposed that mining existing datasets might be a fertile ground to conduct research for further 

exploration of this possible explanation of the negative genetic correlation between direct – 

maternal effects for birth weight. 

 

INTRODUCTION 

The dam – fetal conflict has long been recognised in both domestic animals and humans. A 

series of papers in the Journal of Animal Science in 1972 reviewed maternal and direct genetic 

effects in various species and also reviewed techniques for estimating the effects; Bradford (1972) 

is particularly relevant to this paper. Haig (1993) published a seminal paper entitled “genetic 

conflicts in human pregnancy” which advanced thinking about the biology of human pregnancy. 

Haig’s contribution has become encapsulated in the phrase “Haig’s conflict”, which describes the 

need for dams to control the resources that a foetus demands from its mother. At a similar time 

Hales and Barker (1992) proposed the thrifty phenotype (also known as the Barker hypothesis) to 

explain a putative effect of events during pregnancy on new-born and adult phenotypes. 

An important feature of the dam – fetal relationship is that many estimates of maternal – direct 

correlations for both birth weight (and weaning weight – not discussed further) are negative (Table 

1; see also reviews by Gootwine et al. 2007 and Brien et al. 2014). This is suggestive of an 

evolutionary effect that may avoid risk to the dam of gestating a large foetus that cannot easily 

pass through the birth canal and/or minimises the opportunity for a species to outgrow its 

ecological niche by continuing to increase in body size over time. Female mammals with low 

fecundity must successfully reproduce at least 3 times to maintain population size and therefore 

they cannot afford to invest all their bodily resources in the current foetus. However, the neonate is 

often born into a dangerous environment and they want to be large and healthy with energy 

reserves and therefore it has a drive to scavenge resources. 

Since the late 1990s, there has been a growing interest in developmental programming and the 

likely epigenetic mechanisms (Langley-Evans 2006). While the various epigenetic mechanisms 

(methylation, acetylation, small RNA’s) are now accepted, there is still much to learn about their 

roles in intra- and inter-generational effects on animal phenotypes. The phenotypic effects of 

maternal and paternal imprinting (involving epigenetic mechanisms) have also been recognised in 

production animals, and it is possible that imprinting contributes to quantitative variation in 

production traits (Wolf et al. 2008). 
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The purpose of this paper is to report on some serendipitous results for lamb birth weight 

obtained from a series of experiments designed to identify possible developmental programming 

effects. One possible explanation of the results is an epigenetic effect for either maternal or direct 

effects on birth weight. 

 

METHODS 

Sheep experiments were undertaken at Massey University from 2005 to 2014 in which birth 

weights were collected for 2 generations. The first generation (G1) were born to dams which were 

either exposed to differential feeding during pregnancy (Kenyon et al. 2011, Paten et al. 2011) or 

whose dams differed in age (Loureiro et al. 2012). Female offspring (G2) were retained, treated as 

one group and the birth weight of their offspring recorded. 

G1 birth weight data were analysed using PROC GLM in SAS with a linear model that 

included the effects of dam treatment (level of pregnancy feeding or dam age), lamb sex and lamb 

birth rank and a covariate for date of birth. G2 birth weights were analysed in a similar manner 

except the treatment effect was that of their grand-dams. 

 

Table 1. Heritability estimates for direct lamb birth weight, maternal effect and the genetic 

correlation between maternal and direct effects 

 

Author Maternal Direct Correlation 

Tosh and Kemp (1994) 0.13 to 0.31 0.07 to 0.39 -0.13 to -0.56 

Nasholm and Danell (1996) 0.30 0.07 +0.11 

Larsgard and Olesen (1998) 0.42 0.22 -0.10 

Yazdi et al. (1999) 0.14 0.15 +0.10 

Ligda et al. (2000) 0.19 0.18 -0.44 

Al-Shorepy (2001) 0.33 0.42 -0.60 

El Fadili and Leroy (2001) 0.28 0.01 +0.01 

Ekiz et al. (2004) 0.10 to 0.27 0.09 to 0.33 -0.48 to -0.55 

Oliveira Lôbo et al. (2009) 0.18 0.42 -0.47 

Prince et al. (2010) 0.08 to 0.34 0.14 to 0.28 -0.48 to -0.57 

 
RESULTS AND DISCUSSION 

 In the first experiment where ewes were differentially fed during pregnancy (Kenyon et al. 

2011), there was an interaction between feeding treatment and birth rank for birth weight such that 

only G1 twins were affected, with those from restricted-fed dams being lighter (Table 2). In all 4 

years of G2 birth weight data (ewes aged 2 to 5 year-old), ewes from restricted-fed dams gave 

birth to heavier lambs than the ewes from ad lib-fed dams. In the second differential feeding 

experiment (Paten et al. 2011), restricted feeding during pregnancy did not decrease G1 birth 

weight and there were no effects of grand-dam feeding on G2 birth weights (data not shown). 

It was unsurprising that the G1 birth weights of lambs born to one-year-old ewes were 

substantially lighter than lambs born to mature dams (Loureiro et al. 2012). Indeed, twin lambs 

born to one-year-old dams were on average 1.5kg lighter than singleton lambs born to mature 

dams (3.4±0.14kg versus 4.9±0.18kg). This live weight handicap persisted into maturity with G1 

1½ year-old ewes being nearly 10kg lighter than their singleton born counterparts (55.9±1.01kg 

versus 65.2±1.30kg). However, what was surprising was that these lighter G1 ewes gave birth to 

heavier G2 lambs in their first three lambings (Table 2). 

The above results suggest that the birth weights of lambs born to the stressed dams are often 

lighter than those from non-stressed dams. However, exceptions did occur, whereby singletons 
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born in the first differential pregnancy feeding experiment did not have modified birth weight 

according to their dams pregnancy feeding and also in the second differential feeding trial where 

differences in birth weight did not eventuate. Similar variable results are commonplace in the 

literature. 

In second generation animals, there is a surprising effect whereby ewes which were born small 

due to a stress on their dam during pregnancy, themselves go on to give birth to heavier lambs. 

There are few reports from similar experiments in the literature. Contrary to the above observation, 

Gardiner et al. (2007) reported that lamb birth weight increased by 149g for every 1kg increase in 

the dam’s own birth weight. However, their study did not entail any systematic manipulation of the 

pregnant dam. Furthermore, analyses considering singleton versus twin born ewes do not show 

that twin-born ewes produce heavier lambs. These inconsistent outcomes suggest there is some, as 

yet unexplained, biological phenomenon that occasionally results in the reversal of light birth 

weight between generations. The challenge is to understand the biological mechanisms that 

underpin the dam-foetus relationship so that it might be manipulated. 

Based on the results presented here it might be worthwhile for those analysing the association 

between direct and maternal effects to reconsider how the relationship is construed both in 

biological and biometrical terms. A typical analysis assumes only genetic and environmental 

effects, whereas it is possible there could be epigenetic effects acting on birth weight via either the 

direct growth genes or the maternal uterine genes. Geoghegan and Spencer (2013) proposed a 

simple model that could be developed to examine epigenetic effects, while Goddard and Whitelaw 

(2014) suggested that it might not be necessary to change the way in which animal genetic merit is 

predicted in the presence of epigenetic effects. However, when there are two traits in a selection 

objective that are apparently antagonistically genetically correlated, genetic gain in each of those 

traits will be less than when compared to a situation where the traits are favourably correlated. The 

question then arises as to whether a seemingly antagonistic genetic correlation that is caused by an 

epigenetic effect can either be accounted for or ignored (rg set to 0). 

 

Table 2. Lamb birth weights of dams which were either differentially feed during pregnancy 

or were of different ages (G1) and the birth weights of their offspring (G2) 

 

Dam treatment G1 birth weight 

(kg) 

G2 birth weight (kg) 

Pregnancy feeding  2007 2008 2009 2010 

Ad lib 6.0 (single)     

 5.1 (twin) 4.3 4.5 4.8 5.0 

Restricted 5.9 (single)     

 4.6 (twin) 4.7 4.8 5.2 5.2 

Std error 0.07 0.10 0.10 0.11 0.11 

Dam age  2011 2012 2013  

Mature 4.6 5.1 5.1 5.7  

One-year-old 3.7 5.6 5.7 6.0  

Std error 0.15 0.11 0.09 0.13  

 

Various commentators have noted that much research effort is being devoted to exploring 

epigenetic effects. However, repeatable farm animal paradigms are sparse in the literature, 

experimental costs are significant and experiments take years to complete (Kenyon and Blair 

2014). As a first step, it might be worthwhile to mine datasets used to estimate genetic parameters, 

although in the absence of a systematic manipulation of the dam during pregnancy to induce a 
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significant change in birth weight, it may be difficult to detect swings in birth weight such as those 

reported in Table 2. It would seem worthwhile for those with quantitative animal breeding and 

genetics skills to brainstorm with those having interests in epigenetic mechanisms to examine 

whether current models of some quantitatively inherited traits need to be reconfigured. If the 

biological mechanisms underlying the apparent negative genetic correlation between maternal and 

direct effects for birth weight (and weaning weight) can be untangled it may be possible to directly 

manipulate the mechanisms to benefit animal growth and consequently farm profit. 
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SUMMARY 

The genetic correlation between purebred and crossbred performance has implications for the 

utility of Australian Sheep Breeding Values (ASBVs) and the accuracy of genomic predications. 

The aim of this study was to estimate the genetic correlations between purebred and crossbred 

performance for terminal sire breeds. The genetic correlations estimated between purebred and 

crossbred progeny performance were all very high ranging from 0.44 to 1.00 and not significantly 

different from one for the weight and carcase traits examined in this study. These result support 

the use of the LAMBPLAN across breed ASBVs produced from animals with variable breed 

composition and also the use of crossbred animals in the genomic reference populations. 

  

INTRODUCTION 

Historically the LAMBPLAN genetic evaluation was based mostly on performance data from 

purebred flocks. The composition of ram breeding flocks is slowly changing with recent drops of 

rams becoming more composite in their breed makeup. In the 2014 drop of animals in the 

LAMBPLAN terminal sire analysis, only 24% of the animals recorded were purebred based on the 

pedigree information supplied. 

ASBVs are used by commercial ram buyers across a wide variety of production systems but 

most likely these will be with the aim to produce crossbred progeny of varying breed composition. 

Thus it is important that the ASBVs predict sire ranking both in purebred and crossbred progeny. 

Ingham et al. (2005) demonstrated that LAMBPLAN ASBVs were moderately to highly 

correlated with crossbred progeny performance in maternal breeds. Banks et al. (2009) using data 

from terminal sire breeds observed similar correlations, however they highlighted the large 

variation in outcomes across traits and sites. Wei et al. (1991) pointed out that the correlation 

between purebred and crossbred performance (rPC) depends on the amount of dominance in a trait, 

the distance between breeds (differences in allele frequency) and is also often confounded with 

genotype by environment interaction (GxE). 

Furthermore most of the reference populations that underpin the Australian genomic 

evaluations for terminal sires are based on crossbred progeny (van der Werf et al. 2010). Thus an 

rPC value of less than 1.0 could mean that the genomic breeding values derived from crossbred 

performance and ASBVs based on purebred performance could have different accuracies 

depending on what the breeding goal traits are. The aim of this study was to estimate the genetic 

correlations between the performance of purebred terminal sires and the performance of their 

crossbred progeny. 

 

MATERIALS AND METHODS 

Data. Pedigree and performance data were extracted from the Sheep Genetics LAMBPLAN 

terminal sire database (SG) (Brown et al. 2007). This database consists of pedigree and 

performance records submitted by Australian terminal sire ram breeders, and is used for genetic 
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evaluation purposes. The database also contains information from the Sheep CRC Information 

Nucleus Flocks (INF) where all progeny from terminal sires have either a Merino dam (~50%) or a 

first cross Border Leicester x Merino dam. 

From these data all animals with at least sire and dam pedigree for 2 generations and born from 

2005 and later were included. Data were extracted for birth weight (Bwt), weaning weight (Wwt), 

post weaning weight (Pwt), post weaning fat depth (Pfat) and post weaning eye muscle depth 

(Pemd). All contemporary groups were transformed to a common mean within each group as is 

done routinely for Sheep Genetic analyses (Brown et al. 2007). Two analyses were undertaken 

using different combinations of records; 

INF. Using data from all industry flocks animals with records were classified into a purebred trait 

if they had at least 90% breed composition of the breed of interest and animals from the Sheep 

CRC INF flocks into a crossbred trait if they had 50% of the breed of interest. Only the Poll Dorset 

breed had sufficient sires with purebred progeny in SG and first cross progeny in the INF flock to 

estimate the genetic correlations. The data set was reduced to all animals from the contemporary 

groups where the sires with progeny in both traits were represented. 

SG. Using data from all flocks in Sheep Genetics, animals with records were classified into a 

purebred trait if they had at least 90% Poll Dorset breed composition and into a crossbred trait if 

they had between 25% and 75% of the Poll Dorset breed. In this dataset the breed composition of 

the progeny was highly variable and represented mostly crosses between terminals but also some 

crosses with maternal and Merino breeds. 

The pedigree and breed composition was built using all ancestral information available. This 

resulted in pedigree files comprising between 10,835 and 132,138 animals for the INF dataset and 

between 379,047 and 223,424 animals for the SG dataset, depending on the trait being analysed. A 

summary of the number of records available for each trait in each data set is shown in Table 1.  

 

Table 1. Summary of the number of records used for the purebred (PB) and crossbred 

(XB) traits, the number of sires with progeny for both traits (Sires) and the number of 

progeny records (Prog) from these common sires for each trait in the INF analysis (INF) and 

entire Sheep Genetics analysis (SG) 

 

 
Bwt Wwt Pwt Pfat Pemd 

 
PB XB PB XB PB XB PB XB PB XB 

INF - Poll Dorset           

Rec. 117,958 3,898 120,237 3,254 107,696 3,070 91,686 2,559 90,580 2,559 

Sires 118 125 126 123 123 

Prog. 27,131 3,464 28,719 3,098 25,123 2,986 21,832 2,468 21,652 2,468 

SG - Poll Dorset          

Rec. 207,237 66,753 298,053 80,994 217,139 58,637 174,783 48,859 174,631 48,793 

Sires 321 459 346 299 298 

Prog. 51,470 4,504 71,499 5,650 46,291 3,702 35,498 2,913 35,408 2,912 

 

Models of analysis. Parameters were estimated in bivariate animal model analyses for each trait in 

ASReml (Gilmour et al. 2006) with purebred and crossbred performance considered as two 

different traits with a genetic correlation rPC. For weight traits the fixed effects of contemporary 

group, birth type, rearing type, age of dam, and animal’s age at measurement were fitted. For the 

carcase traits the fixed effects of contemporary group and the animal’s liveweight at measurement 
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(as quadratic) were fitted. Contemporary group was defined as flock, year of birth, sex, date of 

measurement, management group subclass. A random term for the direct genetic effects was 

modelled for all traits. An additional random term for sire by flock year interactions was fitted for 

all traits and maternal effects included for the weight traits. 

 

RESULTS AND DISCUSSION 

In the INF analysis the phenotypic variances and heritabilities were both significantly higher 

for the crossbred traits (Table 2). This might be due to the more diverse sampling of sires and also 

a greater genetic diversity in the dams, of which many were lacking complete pedigree with which 

to account for these effects. In the analyses of the entire SG datasets the phenotypic variance and 

heritabilities were not significantly different between the purebred performance and crossbred 

traits and also agreed with previously published estimates from these data (Brown et al. 2015).  

 

Table 2. Phenotypic variance (σ
2

p), direct (h
2
) heritability purebred (PB) and crossbred (XB) 

performance for each trait and breed in the INF analysis (INF) and entire Sheep Genetics 

analysis (SG) (s.e. in parentheses) 
 

  Bwt Wwt Pwt Pfat Pemd 

  PB XB PB XB PB XB PB XB PB XB 

INF 

σ2
p 

0.66 

(0.00) 

0.76 

(0.00) 

26.00 

(0.14) 

34.31 

(1.16) 

34.05 

(0.19) 

48.27 

(1.71) 
NC NC 

4.53 

(0.03) 

5.47 

(0.16) 

h2 
0.15 

(0.01) 

0.07 

(0.03) 

0.29 

(0.01) 

0.82 

(0.10) 

0.27 

(0.01) 

0.64 

(0.09) 
NC NC 

0.27 

(0.01) 

0.28 

(0.04) 

SG 

σ2
p 

0.64 

(0.00) 

0.60 

(0.00) 

25.34 

(0.08) 

22.59 

(0.14) 

32.93 

(0.12) 

32.08 

(0.24) 

0.36 

(0.00) 

0.40 

(0.00) 

4.48 

(0.02) 

4.41 

(0.04) 

h2 
0.16 

(0.00) 

0.20 

(0.01) 

0.08 

(0.00) 

0.10 

(0.01) 

0.13 

(0.00) 

0.14 

(0.01) 

0.22 

(0.01) 

0.24 

(0.01) 

0.25 

(0.01) 

0.28 

(0.01) 

NC: Analysis did not converge 

 

Estimates of genetic correlations between purebred and crossbred performance are shown in 

Table 3. Taking into account the standard errors of each estimate, all correlations were not 

significantly different to one. This indicates that genetically the performance of animals in 

purebred flocks is the same as that in crossbred flocks. This also suggests that crossbred data is 

just as valuable as purebred data for both estimation of breeding values and development of 

genomic predictions for Poll Dorsets. We expected to observe lower correlations in the INF 

dataset compared to the SG dataset as the INF dataset was dominated by terminal x Merino crosses 

which are genetically more divergent crosses than terminal x terminal crosses which dominate the 

SG dataset, but this was not supported by our estimates.   

 

Table 3. Genetic correlation between purebred and crossbred performance for each trait in 

the INF analysis (INF) and entire Sheep Genetics analysis (SG) (s.e. in parentheses) 
 

Dataset Bwt Wwt Pwt Pfat Pemd 

INF 0.97 (0.15) 0.94 (0.16) 1.00 (0.14) 0.95 (0.10) 0.99 (0.07) 

SG 0.97 (0.06) 0.99 (0.06) 0.97 (0.07) 0.92 (0.07) 0.89 (0.06) 

 

Pfec was also analysed however there were only sufficient data available for the Poll Dorset 

breed when using the entire SG database, There were 46 sires with both purebred and cross bred 

progeny and the estimated genetic correlation was 0.92 (0.40). 
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Our results agree with those of Nakavisut et al. (2005) who estimated high correlations 

between purebred and crossbred performance for growth and conformation traits in pigs. Wei and 

van der Werf (1995) estimated genetic correlations between purebred and crossbred performance 

for poultry egg production traits ranging between 0.56 and 0.99.  Nakavisut et al. (2005) observed 

that for reproduction traits rPC was lower and in some cases significantly less than one. Thus 

further investigation of these correlations for wool and reproduction traits is warranted in sheep, as 

it would be expected that such traits have more impact from dominance effects and therefore lower 

purebred crossbred correlations. 

 

CONCLUSIONS 

The genetic correlations estimated between purebred and crossbred progeny performance were 

all very high and not significantly different to one. These preliminary estimates from industry data 

are consistent with those in the literature and reconfirm the use of the LAMBPLAN across breed 

ASBVs produced from animals with variable breed composition and also the use of crossbred 

animals in the genomic reference populations. 
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SUMMARY 

 Bos indicus content is a key predictor of beef eating quality under Meat Standards Australia 

(MSA)  quality grading scheme. Initially a phenotypic estimate of the proportion of B. indicus was 

used in the MSA model although more recently this has been estimated from hump height and 

carcass weight. The Admixture software was used to develop an estimate of B. indicus content 

using genomic information. It was demonstrated that B. indicus content could be accurately 

estimated from SNP genotype data (BB_genotype). This knowledge was used to examine the 

accuracy of estimating B. indicus content from hump height (BB_hump). The estimation of B. 

indicus content using BB_hump was found to provide a moderate accuracy of estimating B. 

indicus percentage.  However, this difference in accuracy  did not translate into substantial 

differences in the prediction of eating quality under the MSA model.   

 

INTRODUCTION 

The Meat Standards Australia (MSA) beef grading model uses commercial inputs at grading to 

predict beef eating quality. The MSA prediction of eating quality is based on a series of equations 

for individual cuts for up to five different cooking methods.  The MSA model inputs include the 

following traits, estimated Bos indicus content (estBI%), whether the animal was treated with 

hormonal growth promotants (HGP), sex (female or steer), carcass characteristics (carcass 

suspension method, carcass weight, marbling and ossification scores, ribfat, and ultimate pH), and 

value adding effects (cooking method and days aged). One of the key animal predictors in the 

MSA model is estBI% (Thompson 2002, Watson et al. 2008). The impact of estBI% on eating 

quality was estimated by Watson et al. (2008) to be between three and 13 MQ4 score units for the 

different cuts in the carcase. For the MSA model development, estBI% was derived largely from 

pedigreed animals, or from herds of known B. indicus content. 

When the MSA model was initially implemented nationally in 2000, estBI% was determined 

from the national vendor declaration (NVD) in conjunction with a physical inspection of the cattle 

by a trained MSA grader.  Mixed lots of cattle were graded to the highest estBI% in the lot. This 

often necessitated redrafting mixed lots into like groups at the abattoir, which generally increased 

stress on the animals prior to slaughter. Hump height adjusted for carcass weight was proposed as 

an alternative method of assessing estBI% (Sherbeck et al. 1996) and this was included in the 

MSA model. Over time, the usage of hump height adjusted for carcass weight has increased until it 

is now preferred to NVDs for assessing estBI% at grading (MSA, unpublished data). 

Given that the regression coefficients for the effect of estBI% on eating quality were largely 

generated from animals of known genotype it was timely to confirm the accuracy of using hump 

height adjusted for carcass weight compared with using animal phenotype to predict eating quality. 

A series of experiments performed by CRC and MSA provided the opportunity to explore 

relationships between estBI% estimated from hump and carcass weight (BB_Hump), genomics 
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(BB_Genotype) and BI% from known phenotype. It was also possible to compare the relative 

accuracy of BB_Hump and BB_Genotype as predictors of eating quality in the MSA model. 

MATERIALS AND METHODS 

     A series of datasets were used to investigate different objectives. The first objective was to 

develop a estimate of B. indicus content from genomic SNP panels and then test this estimate 

using independent data. The second objective was to evaluate the relationship between estimated 

B. indicus content (estBI%) predicted from hump height and carcass weight (BB_Hump) and 

estBI% from genomic information (BB_Genotype). Finally, the accuracy of using either 

BB_Hump, or BB_Genotype along with other MSA input traits to predict eating quality, was 

assessed. 

Development of BB_Genotype estimate. To develop an estimate of B. indicus content 

(BB_genotype) and evaluate its efficacy for prediction of BI content, the CRC III genotype and 

phenotype databases were used.  To build the estimate, a training set of 5,650 animals and a 

validation set of 9,734 animals were selected from the total data set. Within breeds, animals were 

randomly assigned to training and validation groups. The diversity of breeds in the CRC III 

database meant there was a wide range of breeds and crossbred animals used to test the accuracy 

and precision of the Bos indicus content estimates. A subset of 5,817 markers that were common 

across all Illumina 10k, HD50k and 700k genotyping platforms were selected in the prediction 

equation for BB_Genotype. 

Admixture software was used to develop estimates of BB_Genotype from SNP data 

(Alexander et al. 2009, Alexander and Lange 2011). The animals selected as training animals were 

coded as either Bos taurus (BT) or Bos indicus (BI) and the supervised option was used. The 

animals set coded as BT included Angus (n=2,000), Murray Grey (n=200), Shorthorn (n=500), 

Hereford (n=500), Limousin (n=50) and Charolais (n=400). There were 2,000 Brahmans used in 

the analysis as the BI reference. This program has been used previously (Porto Neto et al. 2014) to 

estimate breed composition in beef cattle.  

The relationship between BB_Hump and BB_Genotype. This relationship was assessed using 

three data sets. Firstly, the CRC II data which comprised 1,012 animals that had been slaughtered 

and MSA graded. Secondly, the long distance transport (LDT) data set (Polkinghorne et al. 2013) 

which comprised 343 cattle, and lastly, 50 animals from a Rigor Temperature Experiment (RTE) 

(J Thompson, unpublished data). A simple linear regression was used to estimate the relationship 

between BB_Hump and BB_Genotype. 

Prediction of eating quality using either BB_Hump or BB_Genotype in the MSA model. The 

LDT and RTE data sets had consumer eating quality on striploin samples. For both data sets 

regression models to predict eating quality (MQ4 score), included MSA input traits (carcass 

weight, marbling and ossification scores, ribfat and ultimate pH) along with terms for either 

BB_Hump or BB_Genotype.  A multiple regression was used to assess the relationship between 

BB_Hump and BB_Genotype following adjustment for components routinely considered in the 

MSA eating quality prediction model. 

 

RESULTS AND DISCUSSION 

The genomic estimate of Brahman content using SNP data was shown to be closely related to 

Brahman content from pedigree (R
2
=98%). This was slightly higher than the estimate of Frkonja et 

al. (2012) who was able to explain approximately 94% of the breed composition.  However, in the 

earlier study, the breeds comprised Simmental and Red Holstein Friesian which were much less 

divergent than in the current data set. In addition, the study by Frkonja et al. used a much smaller 

training data set (495 cattle).  Likewise, Kuehn et al. (2011) was able to explain between 77% and 

92% of the variation in breed composition within Bos taurus beef breeds.  
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Table 1. The coefficient of determination (R
2
), residual standard deviation (RSD), intercept 

and slope for the relationship between BB_Genotype and BB_Hump for three data sets. 

Data set Range 

BB_Genotype 

R
2
 RSD Intercept Slope 

CRC II 40-100% 0.44 25.3 0.08 (2.07) 0.84 (0.02) 

RTE 0-100 0.70 17.8 22.2 (3.06) 1.43 (0.14) 

LDT 0-100 0.40 15.5 44.8 (1.21) 0.56 (0.04) 

 

To examine the relationship between hump height and B. indicus content three data sets were 

used (Table 1). Within all three data sets there was a positive relationship between BB_Genotype 

and BB_Hump, the coefficient of determination ranging from 40 to 70%. The residual standard 

deviation indicated that the error in predicting BB_Genotype from BB_Hump was similar for the 

two RTE and LDT datasets, but larger for the CRC II dataset. The slopes of the different 

regressions indicated that BB_Genotype was under or overestimated in the different data sets. 

Thus, there may be scope to adjust the equation used to predict BB% from BB_Hump in order to 

reduce bias. 

 

Table 2. F ratios for input traits used to predict palatability (MQ4) using data from the rigor 

temperature (RTE) and the long distance transport (LDT) experiments.  

MSA traits F Ratio 

 
RTE 

 
LDT 

 
Model 1 

 
Model 2 

 
Model 1 

 
Model 2 

BB_Genotype 18.52 
 

- 
 

15.33 
 

- 

BB_Hump - 
 

12.62 
 

- 
 

10.04 

Steak Position 7.19 
 

7.09 
 

13.17 
 

16.05 

Sex 1.49 
 

1.89 
 

- 
 

- 

Hang 26.32 
 

26.13 
 

- 
 

- 

Hang*position 1.74 
 

1.72 
 

- 
 

- 

HSCW 0.51 
 

0.65 
 

2.68 
 

2.4 

Ribfat 0.73 
 

0.57 
 

2.28 
 

1.76 

Ossification 2.11 
 

2.11 
 

1.92 
 

2.49 

Marbling 26.64 
 

24.91 
 

23.62 
 

27.04 

Ultimate pH 3.22 
 

2.8 
 

1.08 
 

0.88 

Days aged 15.57 
 

16.48 
 

- 
 

- 

HGP - 
 

- 
 

0.18 
 

0.6 

Residual standard deviation 10.46 
 

10.55 
 

10.6 
 

10.65 

R
2
 39.38 

 
38.16 

 
24.50 

 
23.22 

Model 1 includes BB_Genotype and Model 2 includes BB_Hump. Degrees of freedom (DF) for 

Rigor temperature 1,281 for all terms except position (2,281), hang (2,281), position* hang 

(4281)  and days aged (3281)  

DF for LDT was 1312 for all terms except position (2,212) 
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When adjusted for other terms in the MSA model the regression coefficients for the two 

estimates of B. indicus content differed slightly. When B. indicus content was estimated by 

BB_Hump the regression coefficient indicated that an increase in B. indicus content from 0 to 

100% resulted in a decrease of 14 MQ4 units in palatability.  By contrast when BB_Genotype was 

used the decrease was only 9 MQ4 units. 

Using two MSA datasets the accuracy of predicting eating quality (MQ4) was similar 

regardless of whether it was estimated using BB_Genotype, or BB_Hump (Table 2). The use in 

isolation of BB_Genotype or BB_Hump had a large effect on the total F ratio (data not shown). 

However, there was little difference in the overall percentage of variation explained when using 

either BB_Hump or BB_Genotype to adjust for BB% under the MSA model. The coefficient of 

determination dropped by approximately 1% in both cases. In both experiments, the F ratios were 

slightly higher when estBI% was predicted from BB_Genotype compared with using BB_Hump. 

As the variation explained using all the MSA inputs did not change substantially, the variation that 

should have been due to BB% under the BB_Hump term was partitioned across other terms in the 

model. In the case of LDT this variation was picked up by marbling score possibly due to the 

correlation between marbling score and BB% in this data set. In RTE it was less clear which 

individual terms accounted for the difference in using BB_Genotype or BB_Hump.  

 

 

IMPLICATIONS 
Using data from a number of MSA experiments, BB_Hump predicted BB_Genotype with 

reasonable accuracy, although in the different data sets there was a tendency to either over or 

underestimate BB_Genotype. This could be corrected by adjusting the formula used to convert 

hump height to BB_hump, or by using a genomic estimate of B. indicus content. When used in a 

regression model with other MSA inputs, both BB_Hump and BB_Genotype were similar in their 

ability to predict consumer eating quality. 
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SUMMARY 

The effects of increasing Australian Profit Ranking (APR) were assessed in 5 herd feeding 

systems and at various levels of milk production. In total, 505 herds and 250,857 and 43,941 

lactations for Holstein and Jersey cows, respectively, were used for analyses. Effects of sire APR 

on milk yield variables were positive in all feeding systems and at all herd average solids per cow 

levels. Effects were similar for the most commonly used feeding systems but were approximately 

twice as large in herds with a total mixed ration feeding system than in low bail feeding herds. 

Cows with higher sire APRs were just as likely or more likely to recalve by 20 months as cows 

with lower genetic merit. Thus selecting high APR sires had benefits in all feeding systems, 

supporting the use of the same APR across all of these feeding systems. Herd managers using 

artificial breeding should select high index sires with an appropriate semen price and Australian 

Breeding Values that are aligned with the breeding objectives for their herd. 

 

INTRODUCTION 

The APR, introduced by the Australian Dairy Herd Improvement Scheme (ADHIS) in 2001 as 

a national selection index for dairy cattle, was most recently revised in 2009 (Pryce et al. 2009), 

and replaced in April 2015 with a new economic breeding index, the Balanced Performance Index 

(BPI). At the same time, 2 additional breeding indices were also introduced: the Health Weighted 

Index (HWI) and the Type Weighted Index (TWI) (Byrne et al. 2015; Martin-Collado et al. 2015). 

These 3 new breeding indices are closely correlated with the APR (correlation coefficients 0.98, 

0.96 and 0.95, respectively (Nieuwhof G, personal communication).  

The Australian dairy industry is characterised by a diverse range of feeding systems and the 

Australian Breeding Values used to calculate APRs are based on animal performance data pooled 

across Australian herds across all feeding systems. However, some advisors and farmers have 

questioned the validity of the APR for specific situations i.e. they ask whether there is an 

important genotype by environment interaction (G*E). Several trials assessing genetic merit by 

feeding interactions have been conducted in research herds including Kennedy et al. (2003), 

Beerda et al. (2007) and Fulkerson et al. (2008), and numerous large scale cohort studies have 

compared cows of varying genetic merit in commercial herds with various environments. 

However, only a few of these latter studies compared effects of varying genetic merit between 

different feeding systems; recent examples include Kearney et al. (2004a,  2004b) and Ramirez-

Valverde et al. (2010). No such studies have been conducted in Australia. 
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Milk production and cow longevity are important to herd managers. To describe 'lasting 

ability', recalving by 20 months can be used to collectively describe short to medium term 

reproductive performance, culling and death. Thus, G*E effects on recalving by 20 months are of 

interest as they would impact on cow survival, lifetime milk yields, herd culling policy and 

replacement rates. 

Milk production per cow is generally lower where the feeding system consists of pasture and 

conserved fodder with low concentrate use, and is much higher in herds using the total mixed 

ration feeding system. Herd average milk yield is readily calculated with routinely collected milk 

recording data whereas feeding system data are not routinely collected. When studying G*E or 

assessing sires in different environments, it would be simpler to define environment as herd 

average milk yield than feeding system. Accordingly, it was also important to assess whether 

feeding system is a surrogate 'environment' for herd average milk yield when assessing G*E. This 

could also inform the nature of any interactions detected. 

The major aims of the project were: a) to estimate the effects of APR on milk production, and 

recalving by 20 months in cows in commercial Australian dairy herds using various feeding 

systems; b) to ascertain whether these effects differ substantially between herds with different 

feeding systems; and c) to assess whether feeding system is a surrogate environment for herd 

average solids (i.e. fat plus protein) per cow when assessing G*E. 

 

MATERIAL AND METHODS 

In 2012, all herds in which at least 30 Holstein cows calved in 2011 and/or at least 30 Jersey 

cows calved in 2011 were selected from the ADHIS database. Herds with less than 50 cows calved 

in 2011 were excluded. Letters were sent to managers of the remaining 2016 herds asking them to 

complete a simple herd data questionnaire to identify their herd's feeding system. In total, 505 

herds provided data suitable for analyses and cow and lactation data for these herds were obtained 

from ADHIS. From these herds, 250,857 and 43,941 lactations for Holstein and Jersey cows, 

respectively, were used for analyses. Each cow’s sire’s APR was as estimated by ADHIS on 20th 

August, 2012. Each lactation was classified as having been followed by another calving within 20 

months or not. 

For 2008, 2009, 2010 and 2011, each herd's feeding system was classified as follows: low bail 

(grazed pasture, fed other forages and fed ≤1t grain/concentrates in parlour during milking 

annually/cow); moderate/high bail (grazed pasture, fed other forages and fed >1t 

grain/concentrates per cow in parlour during milking); partial mixed ration (a portion of the ration 

was fed on a feed pad using a mixer wagon and cows are fed pasture for at least 9 months of the 

year); hybrid (a portion of the ration was fed on a feed pad using a mixer wagon and cows are fed 

pasture for 2-8 months of the year); and total mixed ration (cows are fed pasture for no more than 

1 month of the year). These definitions were specified based on a scheme developed by Dairy 

Australia (Dairy Australia 2015). Herd average solids per cow were calculated for each herd-year 

as the averages of each cow's 305-day fat plus protein yields. 

For all analyses, the unit of analysis was the individual lactation. Phenotypic relationships 

between sire APR and 305-day milk yield variables were assessed using multilevel linear models; 

relationships between sire APR and recalved by 20 months were assessed using logistic models 

with herd fitted as a random effect. 

Additional analyses were conducted with ASReml (Gilmour et al. 2009) using a genetic model 

to estimate genetic correlations between feeding systems for 305-day milk volume, with a subset 

of the data containing 60,532 first-lactation Holstein records from 3136 herd-year-season (HYS) 

combinations across 439 herds. Of the 2293 sires, approximately 1/2 (1131) had daughters in just 

1 feeding system while only 89 had daughters in all 5 feeding systems. Most sires (87%) had fewer 

than 20 daughters in any feeding system and only 5% had moderately-sized families (>19 
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daughters) in more than 1 feeding system. Thus, the power of this data set for evaluating genetic 

performance in more than 1 feeding system was not strong. For analysis, base ancestors were 

assigned to 1 of 58 genetic groups, HYS was fitted as a fixed effect, and separate residual and sire 

variances were fitted for each of the 5 feeding systems, with 3 alternative structures for the latter: 

diagonal, correlated (uniform), and factor analytic. A second genetic model was tested using 

random regression, with the average milk volume of each HYS as a simple (linear) environmental 

descriptor instead of feeding system. 

 

RESULTS AND DISCUSSION 

Effects on milk production. For Holstein cows, effects of sire APR on milk production 

variables were positive in all feeding systems but differed by feeding system (Table 1). They were 

approximately twice as large in total mixed ration feeding system herds compared with low bail 

feeding herds. However, effects were more similar for the more commonly used feeding systems 

(low bail, moderate to high bail, and partial mixed ration feeding systems). Effects of sire APR on 

milk volume and protein yield also differed by herd average solids per cow. Effects were positive 

at all herd average solids per cow levels. However, no such interaction was evident for fat yield. 

 

Table 1. Estimated effects*of cow’s sire’s APR on 305-day milk production for lactations 

from Holstein cows by feeding system (95% CI) 

 

Milk 

production 

variable 

Feeding system 

Low bail 
Moderate to 

high bail 

Partial 

mixed ration 
Hybrid 

Total mixed 

ration 
Milk volume 

(l) 

56.2  

(40.9 to 71.5) 

68.0  

(60.4 to 75.6) 

53.7  

(39.8 to 67.7) 

79.7  

(58.8 to 100.6) 

109.9  

(75.1 to 144.8) 

Fat yield 

(kg) 

2.6  

(2.0 to 3.2) 

2.5  

(2.2 to 2.8) 

1.5  

(1.0 to 2.0) 

3.5  

(2.7 to 4.3) 

5.7  

(4.4 to 7.1) 

Protein yield 

(kg) 

2.6  

(2.1 to 3.1) 

3.4  

(3.2 to 3.6) 

2.9  

(2.5 to 3.4) 

4.0  

(3.3 to 4.6) 

5.1  

(4.0 to 6.2) 

*Coefficients represent estimated change in milk production variable per 50 unit increase in the cow’s sire’s 

APR; coefficients were adjusted for maternal grandsire's APR and age at calving; herd and cow within herd 

were fitted as random effects 
 

For milk volume and protein yield, the interaction between APR and feeding system was 

largely accounted for by interaction between APR and herd average solids per cow. In contrast, the 

interaction between APR and feeding system for fat yield was not accounted for by interaction 

between APR and herd average solids per cow. These results indicate that the biological 

determinants of G*E for fat yield differ from those for milk volume and protein yield. Features of 

feeding systems determine APR effects on fat yield. In contrast, factors associated with herd 

average milk yield determine G*E effects of APR on milk volume and protein yield. 

For Jersey cows in herds using low and moderate to high bail feeding systems and partial 

mixed ration feeding, increases in sire APR increased milk volume, and fat and protein yields. 

Increases in milk volume, and fat and protein yield were smaller for the low bail feeding system 

than for the other 2 feeding systems. 

In the genetic analyses of milk volume, a uniform structure was found to be statistically the 

best fit for the genetic correlation between feeding systems, with an estimate of 0.81±0.06. Data 

structure limited the power to test more complex correlation structures. The random regression 

model revealed a correlation of 0.81±0.08 between the slope of the regression and its intercept (i.e. 

between responsiveness to production level and genetic merit). Collectively these indicate that 
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genetic expression for milk volume was strongly correlated across all 5 feeding systems, and that 

the superiority of bulls with high ABV tended to increase as the herd’s average milk volume 

increased. 

Effects on recalving by 20 months. Cows with higher sire APRs were just as likely (if not 

more likely) to recalve by 20 months as cows with lower genetic merit. Estimated effects of 

increasing APR on whether a cow recalved by 20 months were weakly positive across all except 

the total mixed ration feeding system, and across all herd milk yield categories; effects were 

stronger in herds with higher herd average solids per cow. 

 

CONCLUSIONS 

In all feeding systems, the daughters of higher APR sires produced more milk and were just as 

likely (if not more likely) to last in the herd as daughters of lower APR sires. This shows that herd 

managers do not need to feed high rates of supplements to benefit from selecting high APR sires 

and that the daughters of high APR sires are likely to last as long or longer in the herd than 

daughters of lower APR sires. 

The magnitude of benefits of greater genetic merit varies between feeding systems (i.e. there 

was an interaction between genetic merit and feeding system). The response from selecting high 

APR sires was realised in all systems but was greater in herds using more intensive feeding 

systems (hybrid and total mixed ration). The biological determinants of G*E for fat yield differ 

from those for milk volume and protein yield. Features of feeding systems determine APR effects 

on fat yield. In contrast, determinants associated with herd average milk yield determine APR 

effects on milk volume and protein yield. 

Given the very close correlations between APR and each of the 3 new indexes, similar 

conclusions should apply for these. In summary, herd managers using artificial breeding should 

select high BPI, HWI or TWI sires with an appropriate semen price and Australian Breeding 

Values that are aligned with the breeding objectives for their herd. 
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SUMMARY 

A large number of Angus cows (3,768) were ultrasound scanned for eye muscle area, rib and 

rump fat depth and intramuscular fat both as yearlings and at weaning of their first calf.  They also 

had weight,  height  and body condition recorded.  Response to selection for a number of scenarios 

was evaluated following current industry index weightings.  Single trait selection for reduced cow 

weight at time of weaning her calf would result in shorter cows with less fat, muscle and 

condition.  However, selection indices that include some positive weighting on carcass fat (low 

weighting on subcutaneous fat depth or large weighting on intramuscular fat) would result in 

increased body condition of cows even when adjusted for changes in weight or mature size.  

Recently updated Angus selection indices do have positive weightings on both subcutaneous and 

intramuscular fat. 

 

INTRODUCTION 

The Cooperative Research Centre for Beef Genetic Technologies (Beef CRC) included a large 

Maternal Productivity project.  The Project was motivated by seedstock breeder concerns that the 

body composition of cows is changing in response to selection for feedlot performance which is to 

the detriment of the breeder herd, especially during seasons with reduced feed availability 

(Pitchford et al. 2015).  These concerns were captured in a social science study of seedstock 

breeders (Lee et al. 2015a).  Implicit in this concern is a lack of confidence in selection indexes at 

the time.  The specific concern addressed in this paper is that selection for low mature weight 

which is designed to account for feed costs of cows will result in cows that are of lower body 

condition rather than being of “more moderate frame”. 

 

MATERIALS AND METHODS 

One part of the Maternal Productivity Project was scanning cows that were already recorded 

for existing BREEDPLAN traits.  The results reported herein are for 3,768 Angus cows that were 

measured at the time of weaning of their first calf as reported by Donoghue et al. (2015).  The 

traits measured on the cows were weight (WT, kg), hip height (HT, cm), condition score (CS; 1-5 

scale; Graham 2006), ultrasound scanned eye muscle area (EMA, cm
2
), fat depth at the 12/13

th
 rib 

and P8 rump sites (RIB and P8, mm) and intramuscular fat (IMF, %).  These cows (mature, M) 

were also measured as yearling (Y) heifers for 400 day WT, EMA, RIB, P8 and IMF for routine 

estimation of BREEDPLAN EBVs.  

The effects on cow weight and composition were assessed using selection index theory (Hazel 

1943).  This was based on correlations rather than covariances as the relative changes were 

considered more important than the absolute changes.  The relative value of 12 traits was a vector 

of weights, v.  The vector of 7 selection weights (b) were calculated as: 

 

b = G11
-1

G12v 

                                                           
 AGBU is a joint venture of NSW Dept. of Primary Industry and the University of New England 
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where G12 is a 7x12 matrix of correlations between the 7 cow traits and the 12 potential traits 

(7 cow plus 5 yearling) and G11
-1

 is the inverse of the correlation matrix between the 7 cow traits. 

The variance of the index (I
2
) and the vector of response to selection in the 7 cow traits (R) 

were calculated as: 

 

I
2
 = bʹG11b 

 

R = bʹG11/I 

 

Note that responses are in standard deviation units and should only be considered relative as 

they are scaled by the standard deviation of the index. 

The genetic correlations between cow traits and yearling heifer traits are taken from Donoghue 

et al. (2015, Tables 4 and 8) and are presented in Table 1.  The cow traits used were from time of 

weaning of their first calf because this time point had the most data and were very highly 

genetically correlated (generally >0.9) with traits recorded after this time point.  Thus, the 

measurements used herein are assumed to represent cow condition at later ages.  The correlations 

between heifer traits and cow traits were only reported for the same trait across time, so the 

correlations between heifer (yearling, Y) trait x and cow (mature, M) trait y were estimated from 

the same data set but have not been published previously. 

 

Table 1. Heritabilities, genetic standard deviations and genetic correlations between 5 heifer 

(Y) and 7 cow (M) traits (G12’) 

Trait h
2
 A MWT MP8 MRIB MEMA MIMF MCS MHT 

A
 

MWT 0.45 22.5 1 0.22 0.19 0.53 0.18 0.39 0.70 

MP8 0.44 1.33 0.22 1 0.96 0.46 0.71 0.87 -0.15 

MRIB 0.46 0.97 0.19 0.96 1 0.45 0.73 0.87 -0.14 

MEMA 0.26 3.07 0.53 0.46 0.45 1 0.33 0.65 0.17 

MIMF 0.32 0.84 0.18 0.71 0.73 0.33 1 0.71 0.07 

MCS 0.14 0.17 0.39 0.87 0.87 0.65 0.71 1 -0.25 

MHT 
A
 0.57 2.61 0.70 -0.15 -0.14 0.17 0.07 -0.25 1 

YWT 0.31 16.6 0.71 -0.07 -0.04 0.03 -0.05 -0.01 0.57 

YP8 0.46 1.37 -0.21 0.49 0.47 -0.10 0.28 0.39 -0.24 

YRIB 0.45 0.98 -0.16 0.45 0.57 0.05 0.37 0.43 -0.21 

YEMA 0.35 3.49 0.15 -0.04 -0.04 0.59 0.04 0.11 0.15 

YIMF 0.29 0.81 -0.26 0.23 0.32
 

-0.04
 

0.65 0.16
 

-0.12 
A 

Actually measured prior to calving but extremely repeatable so assumed same trait. 

 

Thirteen scenarios were tested for the effect of selection pressure on cow weight and body 

composition.  The relative weightings used in the scenarios were based on a subset of those in the 

current Angus Breeding Index (Angus Australia 2014).  The traits of importance herein are 

yearling weight, P8 fat, eye muscle area, intramuscular fat and mature cow weight and the relative 

emphasis has been assumed to be +19%, +6%, +2%, +11% and -4% respectively.  In the Angus 

Breeding Index it is actually 600d weight that is +19% and 400d weight is only +3%.  However, 

for the purposes of modelling herein, it was assumed that yearling weight was the trait with the 

greatest selection pressure at +19%.  All current Angus indexes are highly correlated with each 

other so the choice of which specific index to use is unlikely to impact on the conclusions herein. 
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The first series of scenarios (Table 2) were based on single trait selection for decreasing mature 

weight, increasing cow condition score or decreasing cow height (frame).  Selection using 

combinations of these cow traits were then tested in scenarios 4 and 5.  Scenario 6 assumed the 

sole focus was to “bend the growth curve” with high yearling and low mature weight.  Various 

carcass quality measures were added to this in the remaining scenarios with scenario 13 being 

interpreted as similar to the Angus Breeding Index. 

 

Table 2. Weighting on objective traits for selection scenarios tested. 

Scenario YWT YP8 YEMA YIMF MWT MCS MHT 

1. MWT     -4   
2. MCS      +4  
3. MHT       -4 
4. MWT+MCS     -4 +4  
5. MHT+MCS      +4 -4 
6. YWT+MWT  +19    -4   
7. YWT+MWT+YP8 +19 +6   -4   
8. YWT+MWT+YEMA +19  +2  -4   
9. YWT+MWT+YIMF +19   +11 -4   
10. YWT+MWT+YEMA+YP8 +19 +6 +2  -4   
11. YWT+MWT+YEMA+YP8 +19 -6 +2  -4   
12. YWT+MWT+YEMA+YIMF +19  +2 +11 -4   
13. YWT+MWT+YEMA+YP8+YIMF +19 +6 +2 +11 -4   

 

RESULTS AND DISCUSSION 

In this project, mature cow condition score was highly genetically correlated with mature fat 

depth (0.87) and strongly correlated with MEMA and MIMF (0.65, 0.71; Table 1).  Some 

producers had concerns about cows that could be the same weight, but some are tall with low 

condition and others are of modest stature with high condition score.  Height and MEMA were 

more strongly correlated with MWT (0.70 and 0.53, respectively) than fat (0.18-0.22) and 

condition score (0.39) with MWT. Mature cow condition score was lowly correlated with yearling 

measurements of WT, EMA and IMF and moderately correlated with fat depth (P8 and RIB). 

Selection for solely decreased mature weight resulted in cows that had less fat, less muscle and 

were shorter (Scenario 1, Table 3).  This result supports the concerns of some breeders that 

selection pressure for lower mature weight is associated with cows that have poorer condition. 

This is important as cow energy reserves influence reproductive performance (Osoro and Wright 

1992) and, therefore time retained in the herd.  A potential strategy could be to select for increased 

cow condition rather than weight per se.  This resulted in cows that were heavier but shorter and, 

as expected, had more muscle and fat (Scenario 2, Table 3).  Height was negatively correlated with 

condition (Table 1) so selecting for shorter cows resulted in decreased weight (assumed favourable 

for reducing feed requirements) and increased condition (also considered favourable; Scenario 3, 

Table 3).  Viewed simply, selection for reduced height could be more favourable than selecting for 

decreased weight.  Scenarios 4 and 5 demonstrate that placing a positive weight on MCS ensures 

greater increase in cow condition.  However, selection for cow traits needs to be in the context of a 

broader selection index.   

Selection with a strong emphasis on increased yearling weight but with lowered emphasis on 

reducing mature cow weight (Scenario 6) resulted in the opposite response to Scenario 1 where 

cow weight and height increased but all measures of condition still decreased.  Cow body 

condition is a function of both muscle and fat (Graham 2006).  However, as heifer EMA and IMF 

were lowly correlated with cow condition (Table 1), only scenarios with a positive emphasis on fat 
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depth resulted in increased cow condition.  Scenarios 9 and 12 with significant emphasis on 

increasing IMF did result in maintained MCS..   

 

Table 3. Correlated changes in cow weight and composition resulting from various 

selection scenarios and expressed as multiples of A. 

Scenario MWT MP8 MRIB MEMA MIMF MCS MHT 

1. MWT -1.00 -0.22 -0.19 -0.53 -0.18 -0.39 -0.70 
2. MCS 0.39 0.87 0.87 0.65 0.71 1.00 -0.25 
3. MHT -0.70 0.15 0.14 -0.17 -0.07 0.25 -1.00 
4. MWT+MCS -0.55 0.59 0.62 0.11 0.48 0.55 -0.86 
5. MHT+MCS -0.20 0.65 0.64 0.30 0.40 0.79 -0.79 
6. YWT+MWT  0.79 -0.18 -0.13 -0.13 -0.14 -0.15 0.67 
7. YWT+MWT+YP8 0.68 0.06 0.11 -0.18 0.00 0.05 0.55 
8. YWT+MWT+YEMA 0.84 -0.20 -0.14 -0.03 -0.14 -0.13 0.71 
9. YWT+MWT+YIMF 0.63 0.03 0.19 -0.19 0.52 0.00 0.64 
10. YWT+MWT+YEMA+YP8 0.75 0.06 0.11 -0.09 0.01 0.07 0.61 
11. YWT+MWT+YEMA+YP8 0.88 -0.42 -0.35 0.02 -0.26 -0.31 0.78 
12. YWT+MWT+YEMA+YIMF 0.69 0.02 0.19 -0.08 0.55 0.02 0.69 
13. YWT+MWT+YEMA+YP8+YIMF 0.49 0.27 0.41 -0.12 0.63 0.22 0.48 
14. 13 Conditional on MWT 0.00 0.25 0.39 -0.26 0.61 0.15 0.24 

 

Lee et al. (2015b) distinguished between fat depth and fatness, which they defined as fat depth 

with weight fitted as a covariate.  Scenario 13 resulted in increases in all cow traits except EMA 

with the relative increase in height being smaller than weight and carcass composition.  This raises 

the question as to whether the carcass traits just increased with weight or whether cow 

composition was genuinely improved.  In theory, condition score should address this, but given it 

is subjective it seemed sensible to assess changes independent of those in weight (Scenario 14).  

The result was a greater reduction in EMA (-0.26), reduced change in height (0.24) and similar 

changes in fat traits.  In conclusion, as yearling IMF and EMA were lowly correlated with cow 

condition score, a small positive weighting on yearling fat depth or large weighting on IMF is 

required to avoid selection leading to reduced body condition of cows below that necessary for 

production. 
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SUMMARY
Genetic parameters were estimated for seasonal body weight changes of cows and weaning weight

of their calves in two beef herds run at pasture in a Mediterranean climate. Heritability estimates
for weight changes were low. Cows predisposed to lose more weight were also likely to gain more
weight, and larger cows had greater genetic potential for weight changes. Low to moderate genetic
and permanent environmental correlations indicated that cows with greater seasonal weight changes
weaned heavier calves, due in part to the genetic association between weaning weight and cows’
mature body weight. Results indicate that in this environment, scope to select for heavy weaning
weight without penalty to cow body weight during periods of seasonal feed scarcity is limited.

INTRODUCTION
Pasture based livestock production in Australia is affected by extreme seasonal variation which

results in an annual pattern of weight gains and losses, depending on feed availability. Resource
allocation theory posits that an ability to wean a heavy calf with little penalty to her own body weight
should provide a cow with ‘robustness’ to environmental challenges. In spite of increasing interest
in robust cows, few studies reporting genetic parameters for body weight changes are available. We
examine patterns of variation for seasonal weight changes of beef cows and the relation to growth of
their calves using data from a selection experiment in Western Australia.

MATERIAL AND METHODS
Data originated from the Wokalup selection experiment which comprised two herds of approxi-

mately 300 cows each, Polled Herefords (HEF) and a synthetic breed, the so-called Wokalups (WOK);
details are given by Meyer et al. (1993). Except during calving, all animals were weighed on a
monthly basis. Production was entirely pasture based and governed by a Mediterranean climate with
winter rains and summer droughts, i.e. feed growth in winter and spring and subsequent dearth in
summer and autumn. Calving took place mainly in April and May and calves were weaned, depending
on the season, in late November or December. This resulted in strong seasonal variation in body
weight, with cows usually at their top weight in January and lowest weight in June.

Analyses. Traits considered were cow body weights in January (JAN) and June (JUN), weight changes
from January to June (LOSS) and June to the following January (GAIN) and calf weaning weight
(WW), disregarding observations for cows more than 8 years old and WW records for calves not
raised by their genetic dam. Characteristics of the data are summarised in Table 1.

Data were analysed fitting a random regression (RR) model, treating WW as a characteristic of
the cow. Fixed effects comprised a quadratic regression on age of cow (in years) and contemporary
groups, defined as year-paddock classes for the cow traits and year-paddock-sex of calf classes for
WW. Other effects for cow traits included month of calving, assigning a code of ‘0’ for cows without
calves recorded. For WW, birth type (single or twin; <2%) as well as a within sex linear regression on
age at weaning, were fitted. Random effects were additive genetic (G) and permanent environmental
(PE) effects of the cow, modelling changes in variation through a RR on Legendre polynomials of
*AGBU is a joint venture of NSW Department of Primary Industries and the University of New England
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Table 1. Characteristics of data and univariate random regression models fitted

Trait Hereford Wokalup

na ncb x̄c sdd pe Gf PEf Rg n nc x̄ sd p G PE R

JUN 2679 729 436 82 12 1 4/3 2 2889 808 463 85 9 1 3/3 2
JAN 2490 692 559 78 7 1 3/2 1 2625 722 592 84 5 1 3/1 1
GAIN 2398 663 128 41 3 1 1 1 2468 702 132 47 3 1 1 1
LOSS 2504 715 -78 48 6 1 3/1 2 2661 774 -89 53 4 1 1 2
WW 1985 631 244 44 4 1 1 1 2203 777 269 45 4 1 1 1
a No. of records b No. of cows c Mean (kg) d Standard deviation (kg) e No. of parameters f Order of fit/Rank fitted: G genetic,
PE permanent environmental g No. of residual classes

age. For WW, the random effect of the calf’s sire was also included (intercept only). Estimates of
covariance components were obtained via restricted maximum likelihood (REML) using WOMBAT
(Meyer 2007) with a sampling approach (Meyer and Houle 2013) to approximate standard errors.

Numerous univariate RR analyses were carried out for each trait, considering different orders of
polynomial fit (up to quartic), as well as reduced rank estimates of the covariance matrices among RR
coefficients, fitting separate measurement error variances for each year of age. The most parsimonious
model was then selected based on the REML form of the Bayesian information criterion (BIC), and
additional analyses decreased the number of error variances as far as possible without increasing BIC.
The final model fitted 2 error variances (2, 3-8 years) for LOSS and JUN and a single error variance
otherwise (see Table 1). Bi- and trivariate RR analyses were performed fitting the best model thus
identified for each trait, again reducing rank of fit if eigenvalues close to zero were encountered.

RESULTS AND DISCUSSION
As illustrated in Figure 1, there was substantial variation in weight changes between cows. Cows

continued to grow till 4 or 5 years of age and body weight changes depended on cow size, resulting in
lower LOSS and somewhat higher GAIN at younger ages. Stringent model selection meant that a
single coefficient was fitted for genetic effects for all traits, i.e. genetic covariances were considered
constant for all ages. Quadratic or cubic polynomials were required to model changes in variation with
age for permanent environmental effects on individual weights. For weight changes, however, these
higher order effects mostly cancelled out, so that a simple repeatability model appeared appropriate
for GAIN in both breeds. For LOSS, differences were most pronounced for heifers and required
separate measurement error variances for heifers and older cows (see Table 1).

With calving spread over about three months, month of calving had a strong effect on LOSS and
GAIN which was similar for both breeds. Figure 2 gives estimates for their effects, scaled to sum
to zero. As expected, cows not raising a calf (month 0) had substantially larger gains and lost less
weight. LOSS and, in turn, GAIN were least for the small proportion of cows calving late (month=6)
as calving or depletion of body reserves in early lactation occurred after the June weighing.
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Figure 1. Distribution of cow weight changes (kg).
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Estimates of phenotypic variances and corre-
sponding variance ratios from trivariate analyses are
summarized in Figure 3 and Figure 4, respectively,
with vertical bars showing the range of plus or minus
one standard deviation. Genetic correlations between
cow weights at different ages are generally found to be
high. Hence, not surprisingly, heritability estimates
for weight changes were low. Rose et al. (2013) re-
ported somewhat higher estimates for weight changes,
especially GAIN, of Merino ewes in Western Aus-
tralia. Analogous arguments held for PE effects of
cows, and corresponding repeatabilities were thus
also low, 15 to 17% for GAIN and 8 to 26% for
LOSS. Fitting a quadratic regression for PE effects
for LOSS in HEF resulted in a corresponding shape
for estimates of the pertaining variances which may
reflect so-called ‘end-of-range’ problems often en-
countered in RR analyses. Treating WW as trait of
the cow, variation between animals reflects a cow’s
potential for growth transmitted to the calf as well as her maternal effects. Estimates of variance ratios
were consistent with results from previous analyses of WW as trait of the calf (Meyer et al. 1993),
which identified maternal effects for HEF to be twice as important as for WOK.

Corresponding estimates of correlations are summarised in Figure 5 and selected results from
bivariate analyses are given in Table 2. Genetic (rG) and permanent environmental correlations
between GAIN and LOSS were essentially unity, i.e. cows pre-disposed to lose more weight were
also likely to gain more subsequently. However, with most variation due to environmental effects,
corresponding phenotypic correlations were weak. Estimates of rG between individual weights and
weight changes ranged from 0.6 to 0.9 (absolute value; Table 2), emphasizing that genetically larger
cows had the genetic potential for larger weight changes.

While phenotypic associations between seasonal changes and WW lacked strength, there were
low to moderate genetic and permanent environmental correlations indicating that cows with more
seasonal weight changes weaned larger calves. Of course, this was largely explicable by the genetic
association between potential for growth of the cow and her calf. Correlations between GAIN and
WW were somewhat weaker for HEF than for WOK. While differences were well within the range
of sampling variation, this may reflect some dissimilarity in maternal capability, especially milk
production. WOK are a synthetic breed comprising 25% Friesians, so that milk production is not
considered a limiting factor. In contrast, estimates of maternal PE effects on WW in Hereford are
consistently much higher, around 20%, than in most other breeds. Anecdotally this is often attributed

Table 2. Estimates of correlations from selected bivariate analyses

HEF WOK

Traits JUN JAN JUN JAN JUN JAN JUN JAN
GAIN LOSS WW WW GAIN LOSS WW WW

Genetic 0.88 -0.86 0.80 0.58 0.57 -0.69 0.91 0.89
Permanent environmenta 0.46 -0.71 -0.75 -0.65 0.70 -0.94 0.16 -0.43
Phenotypica -0.13 -0.16 -0.01 -0.01 -0.13 -0.09 0.25 0.24
a Correlation for cows at 4 years of age
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Figure 5. Estimates of correlations from trivariate analyses.

to poor milk production or short lactations.

CONCLUSIONS
Beef cows in pasture based production systems are likely to show strong seasonal fluctuations in

body weight, with substantial variation between animals. However, most variation appears to be due
to environmental effects, with low heritabilities and repeatabilities for weight changes. Estimates of
genetic correlations suggest that larger cows are likely to lose and subsequently gain more weight.
Selecting for robustness relies on proximate measures such as body weight change to predict through
genetic parameters the capacity of the animal to achieve production goals in the face of environmental
challenges while maintaining its ability to express functional traits. Current results suggest there
may be limited scope to enhance robustness by maintaining body weight reserves of the cow while
selecting for calf weaning weights in a pasture based Mediterranean production environment.
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SUMMARY 

The objective of this study was to estimate breed and heterosis effects between Holstein-

Friesian (F) and Jersey (J) cows at different herd production levels in herds milked once-a-day 

(OAD) or twice-a-day (TAD) in New Zealand. Three groups of herd production levels based on 

milksolids (MS, fat + protein) production per cow were considered: low, medium and high. The 

average MS production per cow was: 203.6; 269.2 and 339.9 kg of MS in herds milked OAD; and 

272.7; 353.8 and 434.1 kg of MS in herds milked TAD. Data consisted of 322,327 lactation 

records from 35,192 F; 31,118 J and 88,606 crossbred (F×J) cows that calved in spring between 

2008 and 2012. Breed effects, defined as F-J, increased as production level of the herd increased in 

both systems. Heterosis effects, expressed as a percentage of the mean of the parental breeds, 

ranged between 3.3 and 8.4% in OAD and 4.4 and 7.4% in TAD systems. The highest expressions 

of heterosis were found at medium (6.3-8.4%) and high (6.1-7.4%) production level in cows 

milked OAD and TAD, respectively. In conclusion, production level affects the expression of 

breed and heterosis in both milking systems. Breed and heterosis effects increased as production 

levels increased.   

 

INTRODUCTION 

Pasture-based dairy farming in New Zealand has predominantly been with cows milked twice-

a-day (TAD). However, since the late 1990s, milking once-a-day (OAD) has been adopted by 

some farmers for herd management and lifestyle benefits (Davis, 2005). 

Crossbreeding in New Zealand has brought favourable heterosis for production, fertility and 

survival traits, which results in increased farm profitability (Lopez-Villalobos et al. 2000). In an 

extensive review, Barlow (1981) concluded that heterosis was better expressed when the 

environmental conditions are sub-optimal, but in New Zealand, Bryant et al. (2007) found low or 

no heterosis on restricted environments in TAD systems. 

Because there is evidence of different breed performances and expression of heterosis in 

different environments in cows milked TAD (Bryant et al. 2007; Penasa et al. 2010; Kargo et al. 

2012), the objective of this study was to estimate breed and heterosis effects at different 

production levels (as an indication of dry matter intake) in cows milked OAD and compare the 

results with cows milked TAD under New Zealand conditions. 

   

MATERIALS AND METHODS 

Data. Lactation yields of milk (MY), fat (FY) and protein (PY) were provided by Livestock 

Improvement Corporation for the period 2008-2012. Initial data was restricted as follows. 

Lactation records were sorted based on a code to determine if the cow was milked OAD or TAD at 

a specific lactation record. In the present study, OAD herds were considered as those herds in 

which 100% of the cows were milked OAD during the entire lactation. Twice-a-day herds were 

selected in a radius of 20 km from OAD herds using map coordinates. In some cases, in a given 

single map co-ordinate, OAD herd was surrounded by several TAD herds, in that case all TAD 
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herds were selected using the GPS Visualizer (Schneider, 2012). Only herds with more than 50 

cows recorded per season were used in the analysis. Only records from spring calving cows in 

their first five lactations with lactation lengths greater than 150 days and less than 305 days were 

considered. Also, only records from Holstein-Friesian (F), Jersey (J) and their crosses (F×J) were 

kept, discarding cows whose parents provided no information about their breed composition.  

After all the restrictions were imposed, the dataset contained 322,327 lactation records from 

154,916 cows (35,192 F; 88,606 F×J and 31,118 J); 127,885 lactations were from 298 herds 

milked OAD and 194,442 lactations were from 350 herds milked TAD. 

Three groups (clusters) per milking frequency were constructed based on herd production 

levels (low, medium or high) for milksolids (MS, fat + protein) per cow using the FASTCLUS 

procedure of SAS version 9.3 (SAS Institute Inc., Cary, NC., USA, 2012). Low, medium and high 

production levels were considered those herds which respectively yielded: 203.6; 269.2 and 339.9 

kg of MS in herds milked OAD; and 272.7; 353.8 and 434.1 kg of MS in herds milked TAD. 

Number of herds per each cluster was: 110, 141 and 47 for low, medium and high production 

levels in the OAD population; and 168, 150 and 32 in the TAD population.  

Statistical Analysis. A univariate linear model was used to obtain breed and heterosis effects 

for MY, PY and PY using the MIXED procedure (SAS 2012). The model included the random 

effect of herd-season, the fixed effects of milking frequency, lactation number, production level, 

interaction between milking frequency and lactation number, interaction between milking 

frequency and production level, linear regression of MY, FY or PY on mean calving date 

deviation from median calving date of the herd for a given season, linear regressions of MY, FY or 

PY on proportion of F within each combination between production levels and milking 

frequencies, linear regressions of MY, FY or PY on coefficient of heterosis within each 

combination of production level and milking frequencies and the random residual error. The 

solutions for fixed effects and estimates of the regression coefficients for proportion of F and 

heterosis coefficients were used to predict the performance of F, J and F1 F×J cows at different 

production levels.  

 

RESULTS AND DISCUSSION 

Table 1 presents predicted production level of pure F, J and crossbred F1 (F×J), with breed and 

heterosis effects for MY, FY and PY in each combination of milking frequency and production 

level.  

Breed effects, defined as F-J, increased as production levels of the herd increased in both OAD 

and TAD systems. The superiority of F cows at high production levels showed more than double 

the level observed for yield of milk, fat and protein at low and medium production level in both 

systems. The smaller breed effect at low and medium production level compared to high 

production level suggest that J cows might have an advantage over F cows in those environments, 

in particular in OAD systems. The nutritional status of cows in grazing conditions varies 

considerably across the seasons in New Zealand; hence F cows cannot express their potential when 

they are exposed to restrictive periods (Ahlborn-Breier and Hohenboken, 1991).  

Differences in productive performance among breeds relate to the environment in which the 

breeds are evaluated (Bryant et al. 2007; Penasa et al. 2010; Kargo et al. 2012). Those studies 

reported that in general, more productive cows (with large proportion of North American genes) 

increased their superiority for MY in higher input systems. In more intensive systems, the 

nutritional requirements of high productive cows are likely better achieved (Penasa et al. 2010) 

allowing high producing cows (as F cows) to express their genetic merit for milk, fat and protein 

production.  
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Table 1. Breed performance and standard errors of production traits for Holstein-Friesian 

(F), Jersey (J) and first cross (F1) FJ cows, and estimates of breed and heterosis effects at 

different production level 

 

Production 

level
1
  

MF
2
 F F1 FJ J 

Breed 

effect 
Heterosis effect 

F-J (kg) kg† %‡ 

Milk yield (kg/cow) 

L 1 2572±26 2479±24 2101±25 471a±18 143a±15 6.1 

 
2 3526±18 3319±17 2760±19 767b±12 176a±10 5.6 

M 1 3305±21 3193±20 2703±20 602a±12 189a±10 6.3 

 
2 4520±17 4198±17 3523±18 997b±11 177a±8 4.4 

H 1 4221±29 3901±28 3331±29 890a±15 125a±13 3.3 

 
2 5595±26 5141±27 4096±29 1499b±15 295b±13 6.1 

Fat yield (kg/cow) 

L 1 121.4±1.3 132.7±1.1 118.6±1.2 2.8a±0.9 9.3a±0.7 7.7 

 
2 157.7±0.8 178.9±0.8 151.7±0.9 6.0b±0.6 11.4a±0.5 7.3 

M 1 157.2±1.0 178.9±0.9 155.9±0.9 1.3a±0.6 11.1a±0.5 7.1 

 
2 202.0±0.8 231.4±0.8 195.9±0.9 6.1b±0.5 13.5b±0.4 6.8 

H 1 195.8±1.4 209.4±1.3 191.3±1.4 4.5a±0.7 10.0a±0.6 5.2 

 
2 245.5±1.2 267.4±1.3 233.4±1.4 12.2b±0.7 17.8b±0.6 7.4 

Protein yield (kg/cow) 

L 1 97.7±1.0 99.3±0.9 87.6±1.0 10.1a±0.6 6.7a±0.5 6.7 

 
2 127.6±0.7 127.1±0.7 111.0±0.7 16.7b±0.4 7.8a±0.3 6.6 

M 1 126.2±0.8 128.7±0.7 114.4±0.8 11.8a±0.4 8.4a±0.4 8.4 

 
2 164.1±0.6 162.4±0.6 142.8±0.7 21.3b±0.4 9.0a±0.3 5.9 

H 1 160.1±1.1 157.5±1.1 141.2±1.1 18.9a±0.5 6.9a±0.5 6.9 

 
2 203.9±1.0 199.6±1.0 171.3±1.1 32.6b±0.5 12.0b±0.5 6.4 

1 L= low milksolids (fat + protein) yield, M = medium milksolids yield, H = high milksolids yield. 
2 MF = milking frequency, 1 = milking once-daily and 2 = milking twice-daily. 

† Expressed as F1 FJ – (F + J)/2. 

‡ Expressed as a percentage of heterosis effects relative to the phenotypic average of the parental breeds 

under milking frequency and production levels, as appropriate. 
a,b Within traits and production level, breed and heterosis effects with different superscripts were significantly 

different between milking frequencies (P<0.05). 

 
Heterosis effects for production traits, expressed in absolute values, tended to be greater in 

TAD, but in relative values, heterosis effects were similar in both, OAD and TAD systems (3.3-

8.4% in OAD and 4.4-7.4% in TAD systems).  
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The expression of heterosis for production traits was influenced by production levels. In TAD 

systems the absolute values of heterosis effects for milk, fat and protein increased as production 

level increased but in relative values, heterosis at low and high production levels tended to be 

similar. The lowest heterosis effects expressed in relative values were observed at medium 

production levels. In OAD systems, the absolute and relative heterosis effects for the production 

traits were greater at medium compared to low and high production levels. 

Despite lower relative heterosis effects at low production level these effects are similar to the 

heterosis effects for production traits in New Zealand by Ahlborn-Breier and Hohenboken (1991) 

and Harris (1996).  

The results obtained in this study are similar to the studies of Bryant et al. (2007) and Kargo et 

al. (2012), who found greater heterosis in the medium and high producing environments, 

contradicting Barlow (1981) who affirmed that heterosis effects tended to be greater in less 

supportive environments.  

 

CONCLUSION 

Expression of breed and heterosis effects differed across milking frequencies and production 

levels. The productive performance of F cows relative to J cows increased as production levels of 

MS increased in both, OAD and TAD systems. Production levels of the herds are also a factor 

which affects the expression of heterosis in both milking frequencies.  
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SUMMARY 

Data from a single prolific Merino flock (N=10705 joining records) recorded over 10 years 
were used to estimate genetic parameters for annual total weight weaned (TWW) of ewes which 
weaned lambs (N=8615), treated as a ewe trait, and the accompanying reproductive traits. TWW 
was the sum of individual weights of weaned lambs to birth ewe. An alternative trait definition 
included ewes which lambed and lost, which received zero trait values (TWW0, N=9509). Both 
TWW and TWW0 were lowly heritable (range h2: 0.06-0.11). Most of the phenotypic variation in 
these traits resulted from variation in the number of lambs weaned. Trait definition significantly 
influenced both the observable variation in the ewe weaning weight traits (eg. TWW vs TWW0) 
and correlations with reproductive traits. Because total weight weaned traits combine direct and 
maternal effects, and multiple non-genetic sources of variation, prediction of response to selection 
for total weight weaned and its components depends on the trait definition used and accompanying 
population characteristics and genetic parameters. We conclude that selection on an index which 
combines breeding values for reproductive performance, and both direct and maternal 
contributions to weaning weight traits, should be considered to improve ewe productivity in a 
more predictable manner under dual purpose breeding goals. This index is provided by Sheep 
Genetics, which also appropriately analyses individual animal reproductive and weight data while 
accounting for systematic effects and multiple records. 
 
INTRODUCTION 

Total lamb weight weaned per ewe joined has been proposed as a simple selection criterion for 
increasing reproduction and ewe productivity in dual purpose sheep (Snowder and Fogarty 2009). 
Total lamb weight weaned can reflect the full complement (or a subset) of traits important to ewe 
productivity, such as conception, ewe survival, litter size and lamb survival, along with the ewe’s 
maternal contributions (genetic and non-genetic) to lamb weaning weight(s). However, lamb 
weaning weights are also influenced by genes of the lamb (the direct genetic effect), half of which 
were received from the sire. Individual lamb weaning weights are also significantly influenced by 
a number of non-genetic factors, such as season, age of dam, birth and rear type, lamb gender, and 
weaning age (Ch'ang and Rae 1961). Therefore, trait values for total weight weaned combine 
many sources of variation, several of which are non-genetic in origin. In this study we estimated 
parameters for weaning weight traits defined as traits of the ewe in a prolific Merino population, 
particularly with respect to illustrating the effect of using alternative trait definitions and 
correction for non-genetic effects, to investigate potential implications of using a complex 
selection criterion such as total lamb weight weaned. 

 
MATERIALS AND METHODS 

Data were obtained from a prolific (high fertility, high litter size) Merino population recorded 
over 10 years for reproductive performance, as described in Bunter et al. (2014). Ewes with 
reproductive records (N=7457) were daughters of 308 sires and 3540 dams. A subset of individual 
lamb weaning weights was obtained over 8 years. Lambs recorded with weaning weights were 
progeny of 4197 ewes and 136 service sires. 
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Trait definitions. Reproductive traits for ewes included fertility (FERT), the number of lambs 
born (NLB) and weaned (NLW) per ewe joined, along with litter size at birth (LSIZE) and at 
weaning (LSIZEW) for lambed ewes. Weaning weight traits were defined as the average 
(AVWW) and total weaning weight (TWW) calculated annually for each ewe from weaning 
weight records on their lambs. For comparison, ewes which lambed but failed to wean a lamb had 
records augmented with trait values of zero (AVWW0, TWW0). Infertile ewes which did not lamb 
within a year had (zero) records for FERT, NLB and NLW only. 

Models for analyses. All traits were treated as repeated measures of the ewe under an animal 
model, with additional variation due to service sire effects (σ2s). The additive direct genetic 
contribution to lamb weaning weight was approximated as 4σ2s/σ2p using parameters for AVWW. 
Systematic effects for ewe reproductive traits included year (10 levels) combined with lambing 
contemporary group (CGP: 30 levels), with CGP defining conception method (AI vs natural), ewe 
age group (3 levels) and breeder defined management groups. Models for weaning weight traits 
included year (8 levels) and weaning CGP (58 levels), where CGP included ewe age group and 
breeder defined management groups for weaning traits. Parameters were first estimated in 
univariate analyses using models without any covariates. Litter size at lambing, the number of 
lambs weaned and weaning age were then added as linear covariates for weaning weight traits 
(AVWW and TWW) for comparison. For zero augmented traits (eg TWW0 and AVWW0) no 
weaning contemporary group was defined and the covariate for lamb age at weaning was excluded 
from models for analyses. The relative contributions of each covariate to phenotypes for AVWW 
and TWW were approximated as the squared correlation between the weaning weight trait and 
each covariate, calculated as (b*SDX/SDY)^2, where b is the partial regression coefficient, SDX and 
SDY are the SD of each covariate (X) and the dependent trait (Y), with both X and Y pre-adjusted 
for year-CGP effects. Correlations between specific traits were estimated from a series of bivariate 
analyses using ASReml (Gilmour et al. 2006), excluding all covariates from models for analyses. 

 
RESULTS AND DISCUSSION 

Ewe average weaning weight of lambs at approximately 107 days of age was 25.6 kg (Table 
1). Total weaning weight averaged 34.3 kg and was highly variable (CV=32%) relative to AVWW 
(CV=16%). Mean values decreased, while phenotypic variance and CV for both traits increased 
when the data were augmented for ewes which lambed and lost (ie 0 kg weight weaned). 

Parameter estimates. Heritability estimates were low and close to expectation for ewe 
reproductive traits. Variation due to service sire (σ2s) was significant for FERT but not litter size. 
Direct heritability for lamb weaning weight (as calculated from σ2s) was moderate regardless of 
litter size: 0.23±0.04 estimated for single born lambs versus 0.21±0.04 across all lambs weaned. 
Direct heritability was lower than the 0.29±0.01 reported by Safari et al. (2007) from a more 
diverse Merino population. Variance due to the permanent environmental effect of the ewe was 
similar across these studies (0.04, derived from values in Table 1, vs 0.05). In our analyses, when 
service sire was not fitted in models for analyses, service sire variance was mostly repartitioned to 
the residual variance (not presented). 

Parameter estimates for AVWW (h2=0.10±0.02, pe2=0.04) were relatively low. The 
expectation for component(s) contributing to the calculated ewe AVWW is 
1/4σ2a+σ2m+σam+σ2c, where: σ2a is the additive genetic variance (direct effect), σ2m is the 
additive maternal genetic variance, σam is the direct-maternal covariance, and σ2c is the common 
litter effect. Using parameters for individual lamb weaning weights estimated by Safari et al. 
(2007), assuming σam=0 and accurate partitioning for σ2c, the heritability for AVWW could be 
approximated as 0.25×0.26+0.10=0.17, which is higher than the value of 0.10±0.02 obtained here.  
Compared to phenotypic variance of individual lamb weaning weights, the phenotypic variance of 
AVWW is reduced. Heritability and repeatability for TWW were similar to estimates for AVWW, 
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but the phenotypic variance was approximately doubled. Each TWW record is equivalent to 
AVWW×n, where n was the number of progeny recorded at weaning, but additional variation is 
also expected due to ewe genetic contributions to n and the (co)variances between reproductive 
and weaning weight traits. Relative to AVWW and TWW, phenotypic variances were greatly 
increased by the zero enrichment of AVWW0 and TWW0. However, contemporary groups and a 
covariate for weaning age cannot sensibly be applied across values for these trait definitions. 

 
Table 1. Raw data characteristics, along with estimates of heritability (h2), repeatability (r), 
and service sire (σ2s), residual (σ2e) and phenotypic (σ2p) variances from univariate analyses 
(*line 1: no covariates; line 2: covariates included, with % reduction of variance in brackets) 
 
Trait N Mean (SD) h2 r σ2s σ2e σ2p 
FERT 10705 0.95 (0.22) 0.02±0.01 0.03±0.01 0.05±0.01 0.042 0.046 
NLB 10705 1.58 (0.69) 0.07±0.01 0.13±0.01 0.02±0.01 0.381 0.450 
NLW 10705 1.18 (0.66) 0.03±0.01 0.09±0.01 0.02±0.00 0.361 0.406 
LSIZE 10139 1.66 (0.60) 0.10±0.02 0.15±0.01 0.01±0.00 0.289 0.347 
LSIZEW 10139 1.28 (0.63) 0.03±0.01 0.10±0.01 0.01±0.00 0.334 0.374 
AVWW 8615 25.6 (4.20) 0.08±0.02 

0.10±0.02 
0.13±0.01 
0.14±0.01 

0.05±0.01 
0.05±0.01 

14.3 
9.55 (34) 

17.4 
11.9 (32) 

AVWW0 9509 23.2 (8.47) 0.06±0.01 
0.04±0.01 

0.14±0.02 
0.07±0.01 

0.02±0.00 
0.02±0.00 

58.5 
44.5 (24) 

69.7 
49.0 (30) 

TWW 8615 34.3 (11.0) 0.06±0.01 
0.11±0.02 

0.11±0.01 
0.12±0.01 

0.04±0.01 
0.05±0.01 

101 
19.9 (80) 

119 
25.4 (79) 

TWW0 9509 31.1 (14.5) 0.05±0.01 
0.08±0.01 

0.12±0.01 
0.12±0.01 

0.02±0.00 
0.07±0.01 

173 
20.3 (88) 

199 
24.9 (87) 

h2=σ2a/σ2p and r=(σ2a+σ2pe)/σ2p, where σ2a is the additive genetic variance and σ2pe is variance due to 
permanent environmental effects of the ewe; *covariates relevant for ewe weaning weight traits only 
 

The importance of weaning age, litter size and lambs weaned. Models without covariates 
explained <5% of the variation in all ewe weaning weight traits. When all covariates were 
included in the models for analyses, phenotypic variances were greatly reduced: by 30-32% for 
AVWW and AVWW0 and by 79-87% for TWW and TWW0 (Table 1). Variation in weaning age 
and litter size at birth explained about 13-15% each of the variation in AVWW. The number of 
lambs weaned explained the bulk of variation in TWW (r2~82%) (results not tabulated). Birth-
rearing class and weaning age are the main factors affecting individual weaning weights of lambs 
(Ch'ang and Rae 1961) and consequently traits derived from lamb weights for their dams. Since 
weaning dates are generally fixed, variation in weaning age mostly resulted from how early ewes 
conceived in the joining period. In these data, heritability from an additional analysis for the 
number of days until lambing, after the commencement of lambing, was only 0.03±0.01 
(r=0.05±0.01). Therefore, for accurate comparisons amongst ewes, ewe weaning weight traits 
should also be corrected for lamb age at weaning. 

Correlations between reproductive and weaning weight traits. Correlations between traits 
at the genetic and phenotypic level indicate that fertility is favourably correlated with all weaning 
weight traits (Table 2). Both TWW and TWW0 also had consistently positive correlations with 
reproductive traits (NLB, NLW, LSIZE and LSIZEW), being larger in magnitude for reproductive 
traits representing lambs alive at weaning. This is partly because only weaned lambs generate non-
zero weaning weight records. In contrast, some unfavourable correlations were evident between 
the reproductive traits and AVWW or AVWW0, demonstrating that individual lamb weights are 
decreased for lambs weaned in larger litters. Genetic correlations between AVWW and TWW or 
AVWW0 and TWW0 were 0.61±0.04 and 0.80±0.07 (not tabulated). These results suggest overall 
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that selection for (unadjusted) TWW would most strongly favour litter size at weaning in this 
prolific Merino flock, thereby increasing total weight weaned, but individual weaning weights 
would suffer. The latter has implications for lamb marketability at weaning and/or post-weaning 
survival of lambs. 

 
Table 2. Additive genetic (ra) and phenotypic (rp) correlations between reproductive and 
weight traits 
 
Trait Correlation AVWW AVWW0 TWW TWW0 
FERT* ra 0.09±0.17 0.81±0.21 0.10±0.17 0.22±0.18 
NLB ra 

rp 
-0.20±0.14 
-0.38±0.01 

-0.32±0.13 
-0.18±0.01 

0.51±0.11 
0.53±0.00 

0.18±0.14 
0.36±0.00 

NLW ra 
rp 

0.12±0.21 
-0.52±0.01 

0.68±0.12 
0.42±0.01 

0.89±0.04 
0.93±0.00 

0.92±0.03 
0.94±0.00 

LSIZE ra 
rp 

-0.22±0.12 
-0.34±0.01 

-0.45±0.11 
-0.21±0.06 

0.51±0.10 
0.48±0.01 

0.09±0.14 
0.31±0.00 

LSIZEW ra 
rp 

0.23±0.24 
-0.53±0.07 

0.57±0.15 
0.39±0.01 

0.88±0.06 
0.87±0.00 

0.80±0.07 
0.84±0.00 

*residual and therefore phenotypic correlations are not estimable 
 

While simple in concept, total weaning weight is an exceptionally complex trait. Trait values 
for ewes represent both direct and maternal effects, correlations between traits across trait groups, 
non-genetic factors influencing both ewe and lamb performance, the possibility of unaccounted for 
environmental covariance between dam and offspring, and a potentially high degree of variance 
inflation due to inclusion of zero values, which is somewhat arbitrary. This can create quite large 
fluctuations in genetic parameters (eg see correlations between LSIZE and TWW or TWW0, 
which are affected by lamb survival). Therefore, choice of trait definition and the ability to adjust 
for systematic effects will impact on the expected response to selection for total weaning weight, 
and correlated response in the sub-traits of economic importance. Studies to date have typically 
not made these calculations. 

 
CONCLUSION 

Selection for total weaning weight is simple at face value, but the response to selection for 
contributing traits will vary depending on population characteristics, the trait definition used, the 
corrections for non-genetic effects applied and therefore underlying genetic parameters. Further 
work is required to evaluate whether index selection combining ewe reproductive traits with both 
direct and maternal components for weaning weight, as is included in the existing Sheep Genetics 
dual purpose Merino index, delivers a more optimal and predictable improvement in response to 
selection for ewe reproductive traits and productivity, and individual lamb weaning weights, when 
compared to selection based on TWW alone. 
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SUMMARY 

Genetic parameters for fibre comfort factor (FCF) and correlations with key production traits 

were estimated from research (Cooperative Research Centre for Sheep Industry Innovation 

Information Nucleus) and industry data (Sheep Genetics MERINOSELECT). FCF is moderately 

to highly heritable and genetically consistent through life, with the yearling, hogget and adult 

expressions phenotypically (0.54 to 0.73) and genetically (0.97 to 0.98) correlated. The strong 

genetic correlations (rg) between FCF and both fibre diameter (FD) and FD standard deviation 

(FDSD) (range -0.58 and -0.92) indicate that selection to reduce FD or FDSD will generate 

favourable correlated increases in FCF. There would be little to be gained from including FCF in 

Merino breeding programs with an existing emphasis on reducing FD and it would be difficult for 

medium to strong wool breeders to add FCF to their breeding programs and maintain FD. 
 

INTRODUCTION 

Coarser fibres in a fibre diameter distribution are responsible for the fabric-evoked prickle 

sensation felt by wearers of next-to-skin garments. Coarser fibre ends buckle less readily when 

fabric pushes against the skin during wear and mechanically stimulate particular nerve cells lying 

close to the skin surface (Naylor 1992). The threshold value of buckling force required to trigger 

the nerve cell response corresponds to a FD of approximately 30 µm (Naylor 1992) and this 

finding led to the use of FCF, the percentage of fibres in the FD distribution < 30 µm, as a means 

of categorising apparel fibres in terms of their propensity to cause prickle when worn next-to-skin. 

The prickle sensation is not exclusive to wool and depends on a large number of other parameters 

including fabric construction and physiological state of the wearer (Naylor 1992). Despite this, 

consumers in key markets for Australian wool consistently associate prickle with wool and many 

Merino breeders are seeking to genetically increase FCF to a level, >95%, beyond which prickle 

cannot be perceived by most people under normal conditions (Garnsworthy et al. 1988). While 

fine wool sheep will typically have high FCF levels due to their low average FD (Baxter and 

Cottle 1998), some breeders of medium and strong wool sheep have expressed interest in breeding 

sheep with a higher FCF without changing average FD. This paper reports the genetic parameters 

for FCF and the phenotypic and genetic correlations with liveweight, wool production and a suite 

of measured and visual wool quality traits in Merino sheep using a combination of industry and 

research data.  

 

MATERIALS AND METHODS 

Research data. Data from Merino progeny (n = 4,958) born into the Sheep CRC Information 

Nucleus (IN) Flock (van der Werf  et al. 2010) between 2007 and 2010 were used. Yearling (Y, 10 

– 13 months) and adult (A, 22 – 25 months) performance for a suite of wool production and 

quality traits were assessed or measured prior to the yearling and adult shearings. Fleece rot 

(FLROT), colour (COL), character (CHAR), dust penetration (DUST), staple weathering 

                                                 
 AGBU is a joint institute of NSW Department of Primary Industries and The University of New England 

Proc. Assoc. Advmt. Breed. Genet. 21: 205-208

205



(WEATH) and staple structure (SSTRC) were scored using the Visual Sheep Scores guide (AWI 

Ltd and MLA Ltd 2013), with handle (HAND) scored according to Casey and Cousins (2010) and 

coverage (COV), fleece density (DENS) and nourishment (NOUR) assessed according to AMSEA 

guidelines (Casey et al. 2009). Right midside samples (approx. 80g) from each animal were 

measured at AWTA Limited (Melbourne) using standard IWTO test methods for yield (YIELD), 

staple length (SL), staple strength (SS), FD, FDSD, FD coefficient of variation (FDCV), FCF, 

mean fibre curvature (CURVE), brightness (Y), clean colour (Y–Z) and resistance to compression 

(RTOC). The unskirted greasy fleece weight (GFW) (belly wool included) was recorded at 

shearing with clean fleece weight (CFW) calculated as the product of GFW and YIELD. Both 

GFW and CFW were corrected to 365-day growth equivalents. Following shearing, the liveweight 

(LWT) of every sheep was recorded after being held off feed for approximately 2 hours.  

Industry data. Pedigree and performance data were extracted from the Sheep Genetics (SG) 

MERINOSELECT database (Brown et al. 2007). A subset of flocks was selected based on their 

recording of FCF and were a mix of industry ram breeding, research and sire evaluation flocks. 

Only those animals with both sire and dam pedigree, and born from 2005 onwards were included. 

The traits analysed were LWT, GFW, CFW, FD, FDCV, FCF, CURVE, SL, SS and COL recorded 

at yearling and hogget (H, 13 – 18 months) ages. The pedigree was built using all ancestral 

information available.  

ASReml 3.0 (Gilmour et al. 2009) was used to estimate variance components and genetic 

parameters. For both data sets, birth type, rearing type, and age of dam were fitted as fixed effects. 

Age of shearing was fitted as a covariate to the yearling IN data but fitted as fixed to the SG data. 

Flock and drop were also fitted as fixed to the IN data with genetic group, sire by flock and a 

maternal genetic effect fitted as random effects. For the SG data, a fixed effect of contemporary 

group (defined as flock, year of birth, sex, date of measurement, management group subclass), was 

also fitted for all traits along with random terms for the direct genetic effects and sire by flock year 

interaction. Maternal permanent environment effects were included for the SG LWT, GFW and 

CFW data with genetic groups, allocated on a flock basis for link flocks with sufficient data, fitted 

for all traits. Phenotypic and genetic correlations, with standard errors, were estimated from the 

appropriate covariances using a series of bivariate analyses. 

 

RESULTS AND DISCUSSION 

The mean FCF were similar for both data sources, as were the phenotypic variances which 

tended to increase with age (Table 1). Within the IN data, there was no evidence of sire by flock or 

maternal genetic effects for YFCF but these were both significant for AFCF representing 2.2 and 

20.1% of the phenotypic variance respectively. For the SG data both the sire by flock and maternal 

genetic effects were also significant for YFCF (6% of the phenotypic variance) but not for HFCF. 

 

Table 1. Mean, variance components, coefficient of variation (%) and heritability for FCF 

measured as yearlings, hoggets and adults from each data set 
 

Trait Mean Variance components CV Heritability 

  Phenotypic Residual Additive Sire by flock Maternal Genetic gp (%) (h2) 

IN          

YFCF 99.58 0.34±0.01 0.25±0.01 0.09±0.01 - - 0.07±0.06 0.59 0.27 ± 0.04 

AFCF 99.40 1.34±0.03 0.72±0.04 0.32±0.04 0.03±0.02 0.27±0.06 0.20±0.18 1.16 0.20 ± 0.04 

SG        

YFCF 99.60 0.47±0.01 0.35±0.01 0.07±0.01 0.03±0.00 0.03±0.00  0.63 0.14 ± 0.01 

HFCF 99.11 1.52±0.02 0.22±0.02 1.30±0.03 0.01±0.00 0.00±0.00  1.82 0.85 ± 0.03 

 

Genetic group was a significant source of variation in both the IN yearling and adult FCF, 
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representing 21 and 15% respectively of the phenotypic variance, however this is not surprising 

given the genetic grouping of the IN Merino progeny is largely based on a FD classification via 

their pedigree (i.e. ultra/superfine, fine fine/medium, medium strong) and the strong relationship 

between FCF and FD (Baxter and Cottle 1998). The heritability estimates for the IN yearling and 

adult FCF were both moderate, however the SG YFCF estimate was low (approximately half that 

of IN) while that for HFCF was high due to low residual and high additive variance at the hogget 

expression. 
 

Table 2: Phenotypic and genetic correlations (± s.e.) between a) yearling and adult FCF and 

yearling LWT, wool production, wool quality and visual wool quality scores estimated from 

the IN and b) yearling and hogget FCF and yearling and hogget LWT, wool production, 

wool quality and greasy colour from SG. 

Trait* Yearling FCF Adult FCF 

 rp rg rp rg 

YLWT -0.09 ± 0.02 -0.25 ± 0.09 -0.13 ± 0.03 -0.22 ± 0.07 

YGFW -0.15 ± 0.02 -0.37 ± 0.09 -0.05 ± 0.03 -0.05 ± 0.08 

YCFW -0.14 ± 0.02 -0.34 ± 0.09 -0.06 ± 0.03 -0.06 ± 0.08 

YFD -0.50 ± 0.02 -0.78 ± 0.05 -0.46 ± 0.02 -0.58 ± 0.05 

YFDSD -0.62 ± 0.01 -0.89 ± 0.04 -0.46 ± 0.02 -0.57 ± 0.06 

YFDCV -0.32 ± 0.02 -0.36 ± 0.08 -0.18 ± 0.03 -0.15 ± 0.07 

YCURVE -0.08 ± 0.02 -0.16 ± 0.09 -0.06 ± 0.02 -0.32 ± 0.16 

YRTOC -0.23 ± 0.02 -0.48 ± 0.08 -0.33 ± 0.03 -0.57 ± 0.06 

Y(Y-Z) -0.12 ± 0.02 -0.24 ± 0.09 -0.11 ± 0.03 -0.17 ± 0.08 

YCOL -0.12 ± 0.02 -0.40 ± 0.10 -0.17 ± 0.03 -0.43 ± 0.08 

YCHAR -0.20 ± 0.02 -0.71 ± 0.08 -0.27 ± 0.03 -0.73 ± 0.06 

YSSTRUC -0.27 ± 0.02 -0.86 ± 0.07 -0.29 ± 0.02 -0.77 ± 0.06 

YHAND -0.20 ± 0.02 -0.63 ± 0.11 -0.15 ± 0.03 -0.36 ± 0.11 

YNOUR -0.02 ± 0.02 -0.24 ± 0.14 -0.06 ± 0.03 -0.34 ± 0.13 

*IN traits listed in the materials and methods with 4 negligible correlations (|r|<0.2) are omitted from the table. 

Trait Yearling FCF Trait Hogget FCF 

 rp rg  rp rg 

YLWT -0.04 ± 0.01 -0.09 ± 0.07 HLWT  0.01 ± 0.01 -0.11 ± 0.05 

YGFW -0.09 ± 0.01 -0.21 ± 0.07 HGFW -0.19 ± 0.01 -0.32 ± 0.04 

YCFW -0.11 ± 0.01 -0.58 ± 0.10 HCFW -0.19 ± 0.01 -0.43 ± 0.05 

YFD -0.34 ± 0.01 -0.63 ± 0.03 HFD -0.47 ± 0.01 -0.54 ± 0.02 

YFDCV -0.24 ± 0.01 -0.35 ± 0.05 HFDCV -0.31 ± 0.01 -0.35 ± 0.03 

YCURVE  0.08 ± 0.01  0.29 ± 0.05 HCURVE  0.21 ± 0.01  0.34 ± 0.03 

YSL -0.03 ± 0.01 -0.09 ± 0.06 HSL -0.08 ± 0.01 -0.17 ± 0.03 

YSS  0.03 ± 0.01  0.29 ± 0.12 HSS -0.03 ± 0.02  0.06 ± 0.07 

YCOL -0.27 ± 0.10  0.73 ± 0.34    

 

The IN yearling and adult expressions of FCF were strongly correlated with each other, both 

phenotypically (0.73 ± 0.01) and genetically (0.98 ± 0.02) while the SG yearling and hogget 

expressions were equally highly correlated (phenotypic: 0.54 ± 0.01 and genetic: 0.97 ± 0.02). 

Most of the phenotypic correlations (rp) between FCF and other key production traits in both data 

sets were negligible (i.e. <0.2). The exceptions were rp with FD, FDSD, FDCV, RTOC, HAND, 

CHAR and SSTRC in the IN which varied in magnitude from low to high, depending on the age of 

expression (Table 2a) and rp with FD, FDCV, CURVE and COL in the SG data which were all low 

except for HFD and HFCF which was medium (Table 2b). All of the rp were negative indicating 

that animals with high FCF had finer less variable FD, lower CURVE and RTOC, increased 

a) 

b) 
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textural softness, well defined crimp, fine staple bundles and whiter greasy colour.  

In the IN, the majority of the genetic correlations (rg) between FCF and key production traits 

were significant and negative (Table 2a). The rg between YFCF and YFD, YFDSD, AFD and 

AFDSD (not presented) ranged between -0.92 to -0.67 and, although those between AFCF and 

YFD and YFDSD were slightly lower (-0.58 and -0.57 respectively), indicate that selection to 

reduce FD or FDSD will generate favourable correlated increases in FCF. Interestingly the rg 

between FCF and FDCV at each age, while still significant, were at least 50% lower than those 

involving FD or FDSD. The rg in the SG data were reasonably consistent with the IN estimates 

(Table 2b) with the exception of positive rg with YCURVE (0.29) and HCURVE (0.34), the low 

positive rg between YFCF and YSS (0.29) and the high positive rg between YFCF and YCOL 

(0.73). The remaining significant rg between FCF and the various production traits in both the IN 

and SG data were as expected given the strong genetic correlation between FCF and FD.  

The strong rg between FCF with FD and FDCV indicate limited benefit from including FCF as 

an additional trait in Merino breeding programs with an existing emphasis on reducing FD, as the 

percentage of fibres over 30 µm is simply a reflection of FD and FDSD. This study also indicates 

that it would be difficult for medium to strong wool breeders to add FCF to their breeding 

programs without making correlated changes in FD and to a lesser extent LWT and wool 

production due to the underlying biology of fleece production Moore et al. (1996). Naebe et al. 

(2015) recently investigated the prickle response of 48 fabrics with a range of FD, yarn and fabric 

construction and found that including FD in the model along with other significant fibre, yarn and 

fabric factors rendered measures of FD distribution, including FDCV and FCF, insignificant. 

Therefore variation in FD together with yarn and fabric construction factors appears to have a 

greater impact on prickle than FCF.  
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SUMMARY 

Genetic parameters were estimated for 5 sensory (overall liking, tenderness, juiciness, flavour 

and liking of odour) and 2 objective eating quality (EQ) traits (intramuscular fat, IMF, and shear 

force, SF), measured on loin and topside meat cuts (except IMF) produced by progeny from the 

Information Nucleus of the CRC for Sheep Industry Innovation. Heritabilities for sensory traits 

were low to moderate for loin and moderate to high for topside cuts. Loin IMF was highly 

heritable while SF was moderately heritable in both cuts. Genetic correlations among the sensory 

EQ traits were all positive and high (0.72-1.00). Genetic correlations between loin IMF and 

sensory traits were moderately positive and lowly positive for loin and topside respectively. SF 

had stronger, negative correlations with sensory EQ traits in the topside than in the loin. Overall 

liking may be improved more so through selection on IMF in the loin and SF in the topside. 

 

INTRODUCTION 

Whilst breeding programs implemented in the Australian sheep industry have yielded 

substantial gains in lean meat yield, several studies have indicated that such programs may have 

also reduced the sensory eating quality (EQ) of lamb meat produced by terminal sire production 

systems. Breeding programs applied by breeders of terminal sires routinely use Australian Sheep 

Breeding Values for post weaning expressions of ultrasound eye muscle and fat depths at the C-

site as components of breeding objectives and selection indices. Selection using these breeding 

values has been shown to reduce intramuscular fat (IMF) (e.g. Hopkins et al. 2007; Pannier et al. 

2014b) and sensory EQ scores (e.g. Hopkins et al. 2005; Pannier et al. 2014a). Research is 

underway through the CRC for Sheep Industry Innovation to enable EQ traits to be incorporated 

directly into breeding programs. Contributing to this research, this study aimed to estimate genetic 

parameters for a range of EQ traits of samples, assessed by untrained consumer panels, from the 

m. longissimus lumborum (short loin) and m. semimembranosus (topside) muscles of lambs. 

Genetic and phenotypic correlations of the sensory EQ traits with IMF and shear force were also 

estimated. 

 

MATERIALS AND METHODS 

The Information Nucleus (IN) program of the CRC for Sheep Industry Innovation (van der 

Werf et al. 2010) produced the lambs that were slaughtered to obtain the meat samples for this 

study. The sample preparation, cooking procedures and sensory testing protocols applied to grilled 

loin and topside samples tasted by panels of untrained consumers have been described by Pannier 

et al. (2014a). Briefly, 10 sub-samples prepared from each meat sample of a carcass were grilled 

under standardised conditions during each consumer tasting session (94 sessions in total) and 
*AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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tasted to provide 10 consumer responses per meat cut. The EQ traits were assessed by the 

consumers using a 0-100 scale (100 being most preferred) and for this study included tenderness 

(Ltend, Ttend), juiciness (Ljuic, Tjuic), liking of flavour (Lflav, Tflav), overall liking (Llike, 

Tlike) and liking of odour (odour) of loin and topside samples respectively. EQ records, based on 

the mean of 10 consumer responses for each muscle, were derived from 1414 animals, which were 

the progeny of 174 sires of various breeds born during 2009-2010, at 2 IN sites (Kirby and 

Katanning). From their carcasses and those from other animals born during 2007-2011 at all sites 

and slaughtered by the IN program, samples from the other loin were taken for analysis of IMF 

(%, 8917 records) and testing of shear force (SF) after 5 days of ageing (LSF, N, 9000 records), as 

described by Mortimer et al. (2014). A topside sample was similarly tested for SF after 5 days of 

ageing (TSF, N, 4793 records). 

For the sensory EQ traits, univariate anlyses were used to estimate phenotypic variances and 

heritabilities, where models included fixed effects of site, slaughter group, sex, birth type, rearing 

type, age of dam and age at measurement. Random effects included a direct genetic effect of 

animal and an effect of consumer tasting session, as well as a fixed effect of genetic group. 

Univariate analyses of IMF, LSF and TSF fitted fixed and random effects in models as described 

by Mortimer et al. (2014). Genetic and phenotypic correlations among the EQ traits, IMF and 

shear force values were estimated from bivariate analyses. Variance and covariance estimations 

were performed using ASReml (Gilmour et al. 2014). Table 1 summarises the data for each trait. 

 

RESULTS AND DISCUSSION 

Apart from odour, phenotypic variances and heritabilities of sensory EQ traits were lower for 

loin compared to topside samples, although the standard errors were relatively large for the 

heritability estimates of both meat cuts (Table 1). Heritabilities for EQ traits of loin samples were 

low to moderate while those assessed on topside samples were moderate to high. Irrespective of 

meat cut, odour was of very low heritability. These results, though based on relatively small 

numbers of records, confirm that the genetic variation in EQ traits is sufficient to be exploited 

through selection. Previously, the much smaller study of Karamichou et al. (2007), using trained 

taste panel assessments of loin samples (350 records), had shown that equivalent lamb sensory 

traits to those assessed in the present study were of low (0.05±0.09 for overall liking) to high 

heritability (0.31±0.17 for juiciness). While IMF had a high heritability (0.53), SF when measured 

in either the loin (0.24) or topside samples (0.29) was of moderate heritability. These estimates 

were consistent with estimates from a subset of the IN data used in this study and earlier estimates 

reviewed by Mortimer et al. (2014). 

Within each meat cut, genetic correlations among the sensory EQ traits were positive, with all 

estimates greater than 0.90 in size (Table 2, with results not shown for the odour traits due to low 

estimates of genetic variance and heritability). Phenotypic correlations were also high, though 

slightly lower than the genetic correlations. Johnston et al. (2003) reported that untrained panel 

assessments of sensory scores for tenderness, juiciness, flavour and overall acceptability of beef 

produced by temperate and tropically adapted cattle breeds were highly correlated, both 

genetically and phenotypically. The genetic correlations between the same EQ traits assessed in 

each of the loin and topside samples were between 0.87, for Ltend with Ttend, and 1.00, for Ljuic 

with Tjuic, and tended to be associated with larger standard errors. For the remaining 

combinations of sensory scores, assessments in loin and topside samples were positively and 

highly correlated genetically, ranging from 0.72 to 1.00. However, phenotypic correlations 

between assessments in loin and topside samples were much weaker, ranging from 0.28 to 0.36. 

Very similar to the results of Karamichou et al. (2006) and Mortimer et al. (2014), IMF and 

LSF had a high, negative genetic correlation (-0.64, Table 2). However, a low negative genetic 

correlation (-0.21) was estimated between IMF measured in the loin and SF measured in the  
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Table 1. Descriptive statistics for lamb eating quality traits of loin and topside cuts (0-100 

scale, 100 most preferred), intramuscular fat (IMF, %) and shear force after ageing for 5 

days (SF, N) and estimates of phenotypic variance (σ
2
P) and direct heritability (h

2
) 

 
 Mean SD Minimum Maximum σ2

P h2 

Loin 

Tenderness 73.2 9.4 32.4 92.7 64.9 (2.74) 0.20 (0.07) 

Juiciness 67.3 9.4 30.3 94.8 64.0 (2.67) 0.18 (0.07) 

Flavour 71.1 8.0 40.5 91.2 49.5 (2.04) 0.10 (0.06) 

Overall liking 72.3 8.4 40.6 93.9 53.8 (2.23) 0.15 (0.07) 

Odour 69.9 6.4 46.1 87.0 32.0 (1.31) 0.04 (0.06) 

IMF  4.3 1.018 1.5 10.5 0.67 (0.01) 0.53 (0.04) 

SF5 27.5 9.8 10.8 95.1 58.53 (1.08) 0.24 (0.03) 

Topside 

Tenderness 47.7 12.0 12.9 83.9 110.9 (4.85) 0.36 (0.09) 

Juiciness 48.1 10.3 20.9 78.9 81.4 (3.45) 0.24 (0.08) 

Flavour 55.2 9.4 27.8 84.4 69.9 (2.92) 0.17 (0.07) 

Overall liking 52.1 10.4 20.8 84.2 85.5 (3.68) 0.30 (0.09) 

Odour 66.2 6.8 44.6 84.5 36.4 (1.48) 0.03 (0.06) 

SF5 41.8 12.3 15.3 98.9 84.4 (1.97) 0.29 (0.04) 

 

Table 2. Genetic (below diagonal) and phenotypic (above diagonal) correlations among lamb 

eating quality traits of loin and topside cuts, intramuscular fat and shear force 

 

 Ltend Ljuic Lflav Llike Ttend Tjuic Tflav Tlike IMF LSF TSF 
Ltend  0.78  0.76 0.84 0.35 0.33 0.31 0.35 0.20 -0.34  -0.21 

Ljuic 0.93 

(0.07)  

0.78 0.83  0.29 0.36 ne 0.33 0.23 -0.23 -0.17 

Lflav 0.94 

(0.11) 

0.99 

(0.10)  

ne 0.28 0.31 0.34 0.34 0.22 -0.24 -0.16 

Llike 0.95 

(0.06) 

0.90 

(0.08) 

ne1 

 

0.32 0.34 ne 0.36 0.24 -0.28 -0.18 

Ttend 0.87 

(0.14) 

0.72 

(0.19) 

0.90 

(0.25) 

0.93 

(0.17)  

0.82 ne 0.89 0.11 -0.19 -0.45 

Tjuic 0.93 

(0.17) 

1.00 

(0.18) 

0.98 

(0.26) 

0.99 

(0.19) 

0.94 

(0.05)  

ne 0.86 0.15 -0.13 -0.34 

Tflav 1.00 

(0.20) 

ne 0.94 

(0.29) 

ne ne ne 

 

0.91 0.12 -0.12 -0.31 

Tlike 0.88 

(0.15) 

0.80 

(0.19) 

0.90 

(0.25) 

0.93 

(0.18) 

0.98 

(0.02) 

0.94 

(0.04) 

0.99 

(0.03)  

0.13 -0.17 -0.41 

IMF 0.48 

(0.15) 

0.49 

(0.15) 

0.60 

(0.20) 

0.59 

(0.16) 

0.15 

(0.14) 

0.34 

(0.16) 

0.36 

(0.19) 

0.27 

(0.15)  

-0.29 -0.12 

LSF -0.45 

(0.17) 

-0.43 

(0.19) 

-0.49 

(0.23) 

-0.44 

(0.20) 

-0.58 

(0.15) 

-0.74 

(0.18) 

-0.74 

(0.22) 

-0.60 

(0.16) 

-0.64 

(0.06)   

0.36 

TSF -0.55 

(0.17) 

-0.38 

(0.19 

-0.48 

(0.23) 

-0.47 

(0.20) 

-0.85 

(0.09) 

-0.80 

(0.13) 

-0.91 

(0.15) 

-0.84 

(0.11) 

-0.21 

(0.09) 

0.59 

(0.08) 

 

1
ne, not estimable. 

 

topside. At the same time, the genetic correlation between SF in the loin and topside was 0.59. 

These results suggest that tenderness of the two muscles may be influenced by different genes. 

Johnston et al. (2001) had earlier concluded that very different genes could be influencing the 

expression of tenderness in the two muscles, after estimating a genetic correlation of 0.34 between 
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shear force in the loin and topside muscles from tropically adapted beef breeds. This was thought 

to be due to different levels of connective tissue in the 2 muscles as shear force measurement is an 

indicator of tenderness due to the myofibrillar component rather than connective tissue. For lamb 

cuts, total fat content of topside cuts has been reported to be lower than loin cuts (Ponnampalam et 

al. 2010) and may also be an influence. 

Genetic correlations of loin IMF with EQ traits were moderately positive for the loin samples 

(range of 0.48 to 0.60), but lowly positive for topside samples (range of 0.15 to 0.36; Table 2), 

which agrees with the strong, positive genetic relationships of IMF with juiciness and flavour 

assessed in lamb loins reported by Karamichou et al. (2006). In contrast, SF was negatively 

correlated with EQ traits, irrespective of meat cut. Genetic correlations of LSF and TSF with 

sensory scores assessed on loin samples were moderate (ranges of -0.43 to -0.49 and -0.38 to -

0.55), while the corresponding genetic correlations with EQ traits assessed on topside samples 

were much stronger (ranges of -0.58 to -0.74 and -0.80 to -0.91). Using the standard equation to 

estimate correlated response and assuming constant selection intensity, selection for increased IMF 

is predicted to yield about 100% and 70% more response in Llike than selection for reduced LSF 

and TSF respectively. In contrast, about 50% and 130% greater correlated responses in Tlike are 

likely from selection for reduced LSF and TSF respectively versus selection for increased IMF. 

Conclusions. There is scope to improve sensory EQ properties of lamb loin and topside cuts 

through selection. Selection on EQ traits assessed on either meat cut can be expected to improve 

sensory traits of the other meat cut. Though using both traits in breeding programs would be 

beneficial, it seems that IMF may be the better indicator trait to improve overall liking of the loin, 

while SF, particularly assessed on the topside, could be a better indicator trait to improve 

consumer overall liking of the topside. The estimates of this study are preliminary and many more 

records are needed to obtain accurate genetic parameter estimates for EQ traits, through both 

pedigree- and genomics-based approaches. 
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SUMMARY 

The objective of this collaborative research project was to use phenotypes collected from 

Charolais-sired crossbred calves in a commercial feedlot and processing plant to develop 

genomically-enhanced EBVs. Phenotypes and genotypes were collected from 4,195 crossbred 

feedlot calves and genomic breeding values (GBV) were calculated for post-weaning average daily 

gain, hot-carcass weight, marbling (MRB), ribeye area, and external fat thickness (FAT). 

Estimated breeding values (EBV) for Charolais sires with 10 or more progeny were calculated 

using an animal model with MTDFREML. Correlations of GBV with EBV ranged from 0.84 to 

0.93 when all calves were included in the data, but dropped to between 0.13 and 0.31 when sire’s 

own progeny were removed from the data set using a 5-fold cross-validation approach. 

Correlations increased when narrowing the evaluation to only those sires with 15 or more progeny, 

resulting in trait GBV accuracies ranging from 0.18 to 0.45 for FAT and MRB, respectively.  The 

inclusion of additional progeny in subsequent years of this project is expected to improve the 

accuracies of genomic predictions, and data will be used to evaluate the potential uses, costs and 

predicted benefits of using genomic information to optimize breeding program design and 

management on this vertically-integrated beef operation.  

 

INTRODUCTION 

To explore the potential economic value of genomic information to a large, vertically-

integrated beef cattle enterprise, a collaborative research agreement was formed between J.R. 

Simplot Land and Livestock and their genetic consultant Dr. Michael MacNeil, Delta G; the 

University of California, Davis; and Neogen/GeneSeek. Objectives of the project are i) to develop 

genomically-enhanced EBVs using data collected from commercial calves in the feedlot for the 

selection of terminal sire seedstock, ii) determine the cost:benefit of incorporating genomics into 

seedstock selection for an enterprise that derives value improvement in feedlot and processor 

economically-relevant traits,  and iii) examine other opportunities for deriving additional value 

from the genomic information such as marker-assisted management of the feedlot calves or an 

optimized breeding program design for this enterprise.  Here we provide a preliminary report of 

results from the first year of data collection. 

 

MATERIALS AND METHODS 

Phenotypes were collected from 4195 crossbred feedlot calves sired by Charolais terminal 

sires. Crossbred calves were genotyped with the “Low Density GeneSeek Genomic Profiler” 

(GGP_LD) bead chip that includes 19,725 SNPs. The phenotypic data collected for this project 

includes sex and polled status and encompasses traits involved in feedlot performance and carcass 

merit. Current traits analyzed for this project include post-weaning average daily gain (ADG), hot-

carcass weight (CWT), marbling (MRB), ribeye area (REA), and backfat thickness (FAT). A 
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total of 629 Charolais sires were genotyped, 415 with the “High Density GeneSeek Genomic 

Profiler” (GGP_HD) that includes 76,883 SNPs and 214 with the GGP_LD. Sire assignment was 

performed on calves with all sires as potential candidates for each run using an exclusion-based 

method implemented by SireMatch (J. Pollak, Cornell University). Two sets of 500 SNPs, selected 

based on high minor allele frequency (MAF) and high call rate, were utilized for the assignment of 

sires.  

A genome wide association study was performed on all traits using the Efficient Mixed-Model 

Association eXpedited (EMMAX) model implemented in Golden Helix. The mixed model 

equations consisted of contemporary groups based on sex, ranch origin (10 ranches), and harvest 

date. The GWAS was carried out utilizing phenotypes on 3,555 crossbred calves and the 15,658 

SNP from the GGP_LD. SNPs surrounding significant QTL peaks were extracted to evaluate the 

proportion of genetic variance explained by SNPs in the QTL region. 

Estimated breeding values (EBV) and heritability (h
2
) estimates were first calculated using an 

animal model with MTDFREML (Boldman et al., 1995). Due to a lack of pedigree data, sires 

(established via genotyping) were considered unrelated and dams were unknown. The EBV for 

Charolais sires with 10 or more progeny were extracted from the results.  The GBLUP method 

implemented in Golden Helix’s SNP and Variation Suite (Golden Helix, Bozeman, MT) was then 

utilized to estimate SNP marker effects on 8,000 SNP that are common to both the GGP_LD and 

GG_HD, for prediction of genomic breeding values (GBV).  A 5-fold cross validation approach 

was used to calculate the accuracy of the GBV. Sires with EBV were randomly allocated to one of 

5 groups such that approximately an equal number of progeny were included in each group. In 

each training analysis, the progeny of the sires in each of the 5-fold cross validation groups were 

excluded for the development of the genomic prediction equation for those sires.  Accuracy of the 

genomic breeding value for the sires was calculated as the correlation between the EBV and the 

GBV, divided by the average accuracy of the EBV (Neves et al. 2014).    

  

RESULTS AND DISCUSSION 

Collection of phenotypes at the feedlot and through the processing facility was facilitated by 

the use of electronic capture of all records at the processing chute, and the use of matched pair sets 

of visual ID and EID and the nextGen
TM

 ear tissue sampling unit (Allflex USA, Dallas, TX) to 

collect a DNA sample for genotyping. A total of 4195 DNA samples were analysed of which 3269 

were identified to a total of 325 single sires (77.93%). The use of two sets of 500 SNPs for sire 

exclusion clearly identified animals with no genotyped sire. Principal component analysis of the 

genomic data clearly revealed clustering of half-sib groups for groups of calves with no sire 

assignment. Data from calves that were not assigned to a specific sire were also used as part of the 

training population for the GBV. Collection of DNA from all possible sires remains one of the 

predominant difficulties when working with large commercial populations. The proportion of 

possible sires that were genotyped increased for the year 2 progeny as demonstrated by an increase 

in sire assignment rate to 87.5%.   

The GWAS analysis identified a small number of calves with incorrect gender assignment, and 

correctly identified a significant LOD peak for the polled locus on Chromosome 1. Significant 

SNPs were identified for CWT, ADG, and FAT on chromosomes 6 and 7 (Figure 1), both of 

which have been associated with growth in beef cattle previously (Lindholm-Perry et al., 2011; 

Saatchi et al., 2014). Further analysis for CWT on SNPs surrounding the peak on chromosome 6 

revealed that 10 SNP on either side of the peak accounted for 6.29% of the genetic variance with 

the most significant SNP accounting for 1.1%. Two SNP in close proximity to the peak on 

chromosome 7, and two SNP upstream accounted for 1.72% and 0.77% of the genetic variance, 

respectively. The identification of QTLs that are in common with those found in other studies 

using different breeds of cattle supports the integrity of the field phenotypic data collection in this 
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study.    

Figure 1. Manhattan plot using 3555 hot carcass weight (CWT) records implemented with a 

mixed model analysis, using the Efficient Mixed-Model Association eXpedited (EMMAX) 

model.  
 

Accuracies of genomic prediction using a 5-fold cross validation approach ranged from 0.13 to 

0.38 and from 0.18 to 0.45 for sires with ≥10 or ≥ 15 progeny, respectively (Table 1). Estimates of 

GBV accuracy using this 5-fold cross-validation approach are likely lower than true accuracy, 

because a large number of calves (i.e. ≥10 calves x ~ 22 sires) were removed from the training 

population in each of the five iterations.  

  

Table 1.  Accuracies of EBVs of Charolais sires with at least 10 progeny records, and GBVs
1
 

for the same sires when using all progeny records to train the prediction equations, or when 

excluding the sire’s own progeny from the training population using a 5-fold cross validation 

approach.  

   Sires ≥ 10 Progeny Sires ≥ 15 Progeny 

Trait2 

 

h2 

± SE 

N 

Train
3 

N 

Sire
4 

EBV 

Acc.5 

r 
 All

6 

r 
5-Fold

7 
GBV 

Acc.8 
N 

Sire
4 

EBV 

Acc.5 

r 
 All

6 

r 
5-Fold

7 
GBV 

Acc.8 

ADG 0.31±0.06 3392 112 0.75 0.84 0.21 0.29 65 0.78 0.88 0.29 0.37 

CWT 0.32±0.06 3555 114 0.74 0.92 0.22 0.30 72 0.77 0.92 0.21 0.28 

MRB 0.49±0.08 3370 111 0.80 0.92 0.31 0.38 67 0.82 0.93 0.37 0.45 

REA 0.40±0.07 3370 111 0.77 0.87 0.21 0.28 67 0.8 0.89 0.27 0.33 

FAT 0.49±0.08 3370 111 0.80 0.93 0.13 0.16 67 0.82 0.94 0.15 0.18 
1
Genomic breeding value (GBV) accuracy estimates were calculated on Charolais sires with at 

least 10 or at least 15 progeny records; 
2
ADG = average daily gain from feedlot arrival to final 

implant (µ= 135 days); CWT= carcass weight; MRB= marbling scored by camera; REA= ribeye 

area scored by camera; FAT= external fat thickness in adjusted yield grade units; 
3
Number of 

crossbred calves with associated phenotypes and genotypes used to train the prediction equations; 
4
Number of Charolais sires with ≥ 10 and 15 progeny respectively; 

5
Average accuracy of 

estimated breeding values (EBV); 
6
Pearson’s correlation between EBV and GBV, r(EBV,GBV), 

when all crossbred calves are included in the training; 
7
Pearsons correlation between EBV and 

GBV, r(EBV,GBV), for 5-fold cross-validation, where progeny from one sire group were excluded 

for the prediction of GBVs for that respective sire group; 
8
Accuracies calculated as the Pearson’s 

correlation between the EBV and the 5-fold cross-validated GBV, divided by the average accuracy 
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of the EBV.  

Accuracy of genomic prediction when using phenotypes is affected by heritability of the trait, 

quality of the phenotypic data, number of animals in the training population for each trait, marker 

density, and statistical prediction methodology. Thus, we anticipate improved accuracy to result 

from increases in the number of sires and phenotyped calves from subsequent calf drops, as well 

as future work to impute genotypes to greater density (Marchini and Howie, 2010), and implement 

Bayesian prediction methodology (Fernando et al., 2014). 

The impediments to the adoption of genomic technology in the beef cattle industry include the 

need for large training populations, the lack of a national breeding objective that includes and 

appropriately weights varying economic drivers in the different sectors of the beef cattle industry, 

and the difficulty of obtaining phenotypes from the whole supply chain. Much of the value derived 

from selection at the seedstock sector is realized by downstream supply chain partners (e.g. 

processing sector). Frequently there is no price signalling back to the seedstock producer making 

investments in phenotyping and genotyping to improve genetic progress in these traits, and this 

market failure impacts the commercial viability of any genetic technology (Van Eenennaam et al., 

2011). 

Vertically-integrated enterprises have the opportunity to develop their own breeding objective, 

and derive all of the value associated with genetic improvements across the various sectors of the 

beef industry, and hence are ideally situated to fully realise the potential of genomic information 

(Van Eenennaam and Drake, 2012). One advantage that vertically-integrated beef operations have 

when developing their breeding objective is the opportunity to include non-conventional traits. 

They are more likely to have ready access to records of economically relevant traits (e.g. feedlot 

feed requirements; survival to market endpoint) with very high relative economic value (Van 

Eenennaam and MacNeil, 2011), or related indicator traits (e.g. disease treatment/death records).  
It is envisioned that at the end of this three-year collaborative project accurate GBVs will have 

been developed for traits of economic importance to this large vertically-integrated beef cattle 

enterprise for their Charolais terminal sire seedstock herd, and the value proposition associated 

with the multiple potential uses of the genomic information and phenotypic information being 

collected as a part of this project will have been evaluated.  
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SUMMARY 

This study details the performance of Merino and Dohne Merino ewes and lambs over eight 

years in either a pure or a crossbreeding regime. Ewes were mated either to rams of their own 

breed or to Dormer or Suffolk rams as terminal sires. Dam breed affected birth weight and lamb 

survival, with lambs borne by Dohne ewes being heavier and having greater survival to weaning 

than those borne by Merinos. Progeny of Dohne ewes and progeny sired by terminal rams were 

heavier at weaning. Dohne Merino ewes were heavier at mating than Merinos, but produced less 

clean wool at a slightly lower fibre diameter. No ewe breed or breeding regime differences were 

found for number of lambs born or weaned per ewe lambed. Total weight of lamb weaned was 

higher in Dohne Merino ewes and in ewes mated to terminal rams. Crossbreeding may have a 

relative advantage to pure breeding in terms of lamb output per unit ewe body weight maintained. 

Further studies on breed differences and crossbreeding of the South African ovine genetic resource 

are warranted. 

INTRODUCTION 

Research on South African sheep has so far not focused on the comparison of those breeds 

constituting the available ovine genetic resource. The option of crossbreeding as a means to 

achieve commercial gains through heterosis and the exploitation of sexual dimorphism has also 

not been researched in great detail. In fact, published studies on these topics are very scarce. 

The paucity of published research is not only relevant for the South African sheep industry, as 

South African ovine germplasm has been exported to several overseas countries, including 

Australia and New Zealand. Among the breeds that were exported to Australia is the Dohne 

Merino. This breed presently contributes the most weaning weight records to the South African 

national database and shows sustained growth in weaning weight records during the recent decade 

(Cloete et al. 2014). In Australia, the Sheep Genetics Database already includes more than 100,000 

Dohne Merino records for most key traits and the breed is regarded as adaptable, with easy-care 

properties and an ability to adapt to varying conditions (Li et al. 2013).  

Against this background, we assessed the performance of the Dohne Merino in comparison 

with the internationally known Merino breed. The breeds were compared under regimes involving 

pure breeding and crossbreeding with terminal sires under commercial conditions.  

MATERIALS AND METHODS 

The study took place from 2007 to 2014 on the Langgewens research farm near Malmesbury in 

the Swartland region of South Africa, a mixed farming region (grain-growing and sheep farming) 

described in Cloete et al. (2003; 2004). The Merinos used in the study included some animals used 

in previous crossbreeding studies (Cloete et al. 2003; 2004) and ewes originating from the “Wet 

and dry” line at Tygerhoek (Cloete et al. 2007). Although Merino ewes originated from 

experimental flocks, previous results were consistent with other reports on other industry flocks 

(Cloete et al. 2003) while some ewes born from 2007 were sired by industry rams. The Dohne 

ewes were also transferred from the previous experiment, but were complemented with ewes 
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donated by local breeders and purchased ewes, primarily from the University of Stellenbosch 

Dohne Merino stud (Cloete et al. 1999). The ewes were mated in single sire groups in January, 

either to rams of their own breed (n=7 for Dohne Merinos; n=12 for Merinos), or at random to 

rams of the terminal sire breeds Dormer or Suffolk (Cloete et al. 2003; 2004). The ewes were 

maintained as a single flock afterwards. Selection of most rams considered their representation as 

sires in several industry flocks so as to create links of the experimental population with the 

national database. As well, about half of the selected Merino rams originated from the High line of 

a divergent selection experiment for number of lambs weaned per mating (Cloete et al. 2009). The 

ewes lambed in June-July. Birth weight, dam identity and pedigree were recorded at birth as 

reported by Cloete et al. (2003). Weaning weights were recorded at 97 (s.d.=19) days and birth 

and weaning records were combined to derive complete reproduction records. Ewes were shorn in 

May during late pregnancy and individual greasy fleece weights were recorded. Individual wool 

samples were taken to measure clean yield, staple length, staple strength, fibre diameter and the 

coefficient of variation (CV) of fibre diameter. Clean fleece weight was derived from the product 

of greasy fleece weight and clean yield. Wool records were available from 2008 to 2014.         

Data were analysed by ASREML (Gilmour et al. 2006) to predict means for selected fixed 

effects. Fixed effects assessed for lamb records were ewe breed (Dohne Merino or Merino), 

breeding regime (pure or terminal cross), sex (male or female), birth year (2007-2014), dam age 

(2-7+years) and birth type (single or multiple). Apart from ewe breed and breeding regime, ewe 

age (2-7+years) and year (2007-2014) were fitted to ewe records. No distinction was made 

between the two terminal sire breeds, as they were earlier shown to perform alike (Cloete et al. 

2003; 2004). The ewe breed x breeding regime interaction was fitted where appropriate (i.e. lamb 

traits and ewe reproduction) but not for ewe wool traits. The random effects of animal and dam 

permanent environment were fitted to lamb records, while animal permanent environment (and 

service sire for reproduction records) were fitted to ewe traits. Where proportions needed to be 

analysed, the online tool of Preacher (2001) was used.   

 

RESULTS AND DISCUSSION 

Ewe breed exerted a marked effect on lamb birth weight, lambs borne by Dohne Merino ewes 

being 9.6% heavier (P<0.01) than the progeny of Merino ewes (5.36±0.09 vs. 4.89±0.08 kg 

respectively; Table 1), when expressed relative to Merino progeny. Birth weight was independent 

of crossbreeding system and the interaction between ewe breed and crossbreeding regime. In a 

previous study, when only terminal crossbreeding was practiced, progeny of Dohne Merino ewes 

were 5.5% heavier than lambs borne by Merino ewes (Cloete et al. 2003).   

 

Table 1. Predicted means (±s.e.) for ewe breed (Merino or Dohne Merino) with mating 

system (pure breeding of terminal cross) combinations for lamb birth weight, weaning 

weight and lamb survival. The logit transformation was applied to binomial survival records, but 

only backtransformed means and approximate s.e.’s are given. 
Ewe breed (EB) Merino Dohne Merino 

EB CS 
EB 

x CS Crossing system (CS) Pure Cross Pure Cross 

Lambs born (n) 608 395 366 312    

Birth weight (kg) 4.79±0.11 4.99±0.09 5.32±0.13 5.40±0.10 ** 0.13 0.41 

Weaning weight (kg) 29.1±0.5 31.9±0.5 34.4±0.6 35.5±0.5 ** ** * 

Lamb survival 0.78±0.02 0.76±0.03 0.81±0.03 0.83±0.03 * 0.81 0.40 

* P<0.05; ** P<0.01; Actual significance level for P>0.05 

  

Weaning weight was affected by ewe breed, crossbreeding regime and their interaction. 

Terminal crossbred progeny of Merino ewes were 9.6% heavier at weaning than purebred lambs 
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(P<0.05; Table 1). This difference was smaller for Dohne Merino ewes, the advantage of terminal 

crossbred progeny only amounting to 3.2%. Overall, crossbred progeny of Dohne Merino ewes 

were 11.2% heavier than crossbred lambs produced by Merino ewes (Table 1). Cloete et al. (2003) 

previously reported a comparable breed difference of 10.5%. Van Deem et al. (2008) also found 

that F1 Dohne Merino x Merino lambs outgrew purebred Australian Merino lambs. Only ewe 

breed affected lamb survival, being improved by 6.5% in the progeny of Dohne Merinos compared 

to Merinos (0.82±0.02 vs. 0.77±0.02 respectively), when expressed relative to the mean for lambs 

borne by Merinos. A previous study reported respective lamb mortality rates of 0.18 to 0.23 for 

Merinos, compared to 0.16 for Dohne Merinos (Cloete et al. 2003). Cloete et al. (1999) reported 

that the advantage in lamb survival of purebred Dohne Merino lambs relative to Merinos was 

primarily for the survival of twins (respectively 0.87 vs. 0.81). 

Ewe mating weight and reproduction were independent of crossing regime and the interaction 

of ewe breed with crossing regime (Table 2). Overall, Dohne Merino ewes were 19.6% heavier 

than Merinos at mating (72.6±0.6 vs. 60.7±0.4 kg respectively), when expressed relative to means 

for the Merino. Previous studies also reported that mature Dohne Merino ewes were approximately 

20% heavier than Merinos (Cloete et al. 2003; 2004). The number of lambs born per ewe lambed 

ranged from 1.56 to 1.63 and number of lambs weaned per ewe lambed from 1.19 to 1.29 (both 

P>0.05). Overall, lamb output per ewe lambed of Dohne ewes exceeded the mean performance of 

Merinos by 18.5% (48.0±1.2 vs. 40.5±1.0 kg respectively; Table 2). The corresponding advantage 

of ewes mated to terminal sire rams amounted to 15.6% (47.5±1.2 vs. 41.1±1.0 kg respectively). 

Reproduction was not expressed per ewe mated, as higher lambing rates were seen in ewes mated 

to a terminal sire. In total, 395 of 512 Merino ewes mated to a Merino ram lambed in comparison 

to 249 of 295 ewes mated to a terminal ram (0.771 vs. 0.844; Chi²=6.12; P=0.013). A total of 237 

of 320 Dohne ewes mated to a Dohne ram lambed in comparison with 204 of 232 Dohne ewes 

mated to a terminal ram (0.741 vs. 0.879; Chi²=16.1; P<0.01). Previous studies also did not report 

marked advantages in reproduction traits of either breed in comparison to the other in either pure 

or crossbred situations (Basson et al. 1969; Fourie and Cloete 1993; Cloete et al. 2003).    

 

Table 2. Predicted means (±s.e.) for ewe breed (Merino or Dohne Merino) with mating 

regime (pure breeding of terminal cross) combinations for ewe mating weight and 

reproduction, with all reproduction traits expressed per ewe lambed 
Ewe breed (EB) Merino Dohne 

EB CS 
EB 

x CS Crossing system (CS) Pure Cross Pure Cross 

Ewes lambed (n) 395 249 237 204    

Mating weight (kg) 60.7±0.5 60.8±0.5 72.5±0.6 72.7±0.6 ** 0.83 0.99 

Lambs born 1.58±0.03 1.63±0.04 1.56±0.04 1.59±0.04 0.42 0.19 0.51 

Lambs weaned 1.19±0.04 1.20±0.05 1.23±0.05 1.29±0.05 0.20 0.46 0.56 

Weight weaned (kg) 37.4±1.2 43.5±1.5 44.7±1.5 51.4±1.7 ** ** 0.85 

* P<0.05; ** P<0.01; Actual significance level for P>0.05 

 

Wool traits of adult Merino and Dohne Merino ewes are provided in Table 3. Clean fleece weights 

of Dohne Merino ewes were 9.7% lower than in Merinos while the clean yield of Dohne Merino 

ewes were 7.2% below that of Merinos, when expressed relative to means for the Merino (all 

P<0.01). Previous studies suggested somewhat higher advantages in clean fleece weight for 

Merino ewes relative to Dohnes, ranging from 18 to 29% (Cloete et al. 1999; 2003; 2004). Van 

Deem et al. (2008) similarly reported that clean wool production was improved in Merino lambs 

compared to to F1 Dohne x Merino lambs. Clean yield results confirmed previous results that the 

clean yield of Merino ewes are higher compared to Dohnes (Basson et al. 1969; Cloete et al. 1999; 

2003; Van Beem et al. 2008). Staple length was independent of ewe breed, but staple strength 
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tended to be higher in Merinos (P=0.055). Cloete et al. (2003) reported a mean staple strength of 

37.2 N/ktex for Dohne Merino ewes compared to 41.6 N/ktex for Merino ewes selected for fleece 

weight. Fibre diameter and the CV of fibre diameter were improved by respectively 3.2 and 7.1% 

in Dohne ewes (P<0.05). Previous studies on fibre diameter are inconclusive for comparison of 

Dohnes with Merinos. Cloete et al. (2003; 2004) reported that Merino wool was broader than 

Dohne wool, Cloete et al. (1999) reported no breed difference and van Beem et al. (2008) reported 

that F1 Dohne crossbred lambs produced broader wool than Merinos.  

 

Table 3. Predicted means (±s.e.) for ewe breed (Merino or Dohne Merino) for ewe wool traits 
Trait Breed 

Significance 
Merino Dohne 

Ewes shorn (n) 472 291  

Clean fleece weight (kg) 3.91±0.04 3.53±0.05 ** 

Clean yield (%) 69.9±0.2 64.9±0.3 ** 

Staple length (mm) 89.9±0.5 90.1±0.6 0.47 

Staple strength (N/ktex) 36.2±0.5 35.1±0.6 0.06 

Fibre diameter (µm) 21.6±0.1 20.9±0.1 ** 

Coefficient of variation (%) 19.7±0.1 18.3±0.2 ** 

* P<0.05; ** P<0.01; Actual significance level for P>0.05 

 

CONCLUSIONS 

There were clear advantages of Dohne Merinos for growth, lamb survival and mature size, while 

Merinos outperformed Dohne Merinos for clean fleece weight and clean yield. No conclusive 

advantage for either breed was seen in reproduction. The finer fibre diameter of Dohne Merino 

ewes was unexpected, but consistent with some literature. The experimental outlay did not allow 

the unbiased estimation of heterosis but the larger crossbred advantage for weaning weight of 

Merino progeny compared to Dohnes may originate from heterosis. Alternatively, the improved 

outputs of the crossbreeding regime could simply stem from differences in sexual dimorphism 

between sire and dam breeds. Further research on input/output performances are warranted.   
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HAS THE BEEF GENETIC IMPROVEMENT PIPELINE BEEN EFFECTIVE? 
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SUMMARY 

Genetic improvement achieved by the Angus breed was examined to demonstrate the 

effectiveness of the beef genetic delivery pipeline in Australia. This pipeline has resulted in 

superior rates of genetic improvement for key economic traits relative to those achieved for the 

Angus breed in other countries. The accumulated present value of returns in the temperate 

Australian beef industry resulting from the genetic improvement achieved in Angus to 2014 was 

estimated to be $1.621 billion, projected to increase to $2.514 billion in 2024. 

 

INTRODUCTION 

There has been debate in recent times regarding the effectiveness of the existing pipeline for 

the delivery of genetic improvement to the Australia beef industry (e.g. Woolaston, 2014). The 

current pipeline, described by Parnell (2007), involves partnerships between cattle breeders, breed 

associations, commercialisers, and RD&E providers.  Genetic evaluation using BREEDPLAN 

(Graser et al 2005) has been a central element of the pipeline over the past 30 years. Hammond 

(2006) reflected on the past success of collaborative partnership arrangements between Meat and 

Livestock Australia (MLA), the Animal Genetics and Breeding Unit (AGBU), the Agricultural 

Business Research Institute (ABRI), state departments of agriculture, various breed associations 

and pioneering breeders in the design, development and implementation of BREEDPLAN and its 

important enhancement, BreedObject (Barwick and Henzell 2005).  

This paper examines genetic improvement in the Angus breed as an example of what has been 

achieved through the existing delivery pipeline. Members of Angus Australia are responsible for 

over 40% of animals registered in the Australian beef seedstock sector, as compiled by the 

Australian Registered Cattle Breeders Association (ARCBA).  They account for 40-60% of the 

performance records collected in the sector. The Angus database contains over 1.75 million 

animals, of which 1.2 million animals have performance data contributing to a total of over 6.7 

million records.  Angus Australia makes considerable annual investment in breed development 

initiatives including provision of recording and genetic evaluation services to members, pedigree 

and DNA quality assurance, and the conduct of applied research.  An important component of 

Angus Australia’s business is its partnerships with MLA, AGBU, ABRI and other service 

providers in the provision genetic evaluation services for its members.      

 

MATERIALS AND METHODS 

In order to compare rates of genetic improvement in the Australia Angus population with those 

achieved in other countries the published trends in Estimated Breeding Values (EBVs) and/or 

Expected Progeny Differences (EPDs) for a sample of comparable traits were scaled to standard 

units.  The Australian, New Zealand and UK EBV trends were scaled according to the respective 

additive genetic variances assumed in the Angus BREEDPLAN analysis.  The USA and Canadian 

EPD trends were scaled according to the additive genetic variances used to “import” these EPDs 

into the Angus BREEDPLAN analysis (B.Tier, pers. comm.). These trend comparisons can only 

be considered approximate due to differences in trait definitions across countries and differences in 

the analysis models used in each respective analysis.  For example, a full multi-trait model is used 

to calculate EBVs in BREEDPLAN, whilst some traits (e.g. birth weight) are only included in a 

single-trait analysis model to calculate US and Canadian EPDs. 
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A simple model was developed to quantify the approximate economic gains achieved in the 

temperate Australian beef industry resulting from genetic improvement by Angus seedstock 

breeders since the commencement of Angus BREEDPLAN genetic evaluation in the mid-1980s.  

The model accounted for genetic improvement in the registered Angus seedstock population, as 

measured by the trend in the average Angus Breeding Index value (Angus Australia, 2015). For 

simplicity, the model ignored any benefits accrued in the sub-tropical northern beef industry where 

Angus genetics has also had significant penetration in recent years.  

Since no accurate statistics are available on the breed composition in the Australian beef herd it 

was assumed that the proportion of Angus animals represented in the temperate commercial beef 

population was equivalent to the proportion of Angus cattle in the seedstock sector relative to the 

total number of breeding females registered across all temperate breeds, as published annually by 

ARCBA.  These statistics show that the proportion of Angus cattle in the seedstock sector 

increased from about 10% in the early 1980s to 47% in 2014.  The model assumed that 75% of the 

industry sources their bull replacements from recorded seedstock herds (Tier 1 commercial herds), 

with a 5 year lag in genetic improvement (approximately 1 generation).  Further, it was assumed 

that the remaining 25% of commercial herds (Tier 2 commercial herds) had a 10 year lag 

(approximately 2 generations) in genetic improvement relative to the seedstock sector. 

Statistics on the numbers of breeding females mated each year in the temperate Australian beef 

herd were estimated from industry data provided by MLA (B. Thomas, pers. com.), with 50% of 

these cows assumed to be run in temperate regions where Angus bulls are commonly used.  A 

discount rate of 7% was used to adjust returns over time to present value.  Predicted returns for the 

subsequent 10 years beyond 2014 assumed no change in the size of the commercial cattle 

population and no further increase in the proportion of Angus cattle in the temperate beef herd. 

 

RESULTS AND DISCUSSION 

Figure 1 shows that the average rates of genetic improvement in key economic traits achieved 

in the Angus bred in Australia over the past two decades generally exceeds those achieved in other 

major Angus populations globally.  Unfortunately, it is not possible to compare progress in 

profitability indexes used in different countries due to vastly different index assumptions used.  

However, it is expected that comparative gains in overall profitability will be directly related to 

gains achieved in key economic traits as shown.   

Figure 2 shows the actual trends in average Angus Breeding Index values for registered Angus 

herds to 2014, and the predicted lagged trends in Tier 1 and Tier 2 commercial herds in temperate 

Australia.  Also shown are the discounted returns over time from the modelled genetic trends in 

temperate commercial herds.  These results show that the long-term genetic improvement in 

Angus seedstock herds, coupled with increased market share of Angus, has generated significant 

economic benefits for the commercial beef industry in Australia.  The accumulated present value 

of returns resulting from the genetic improvement to 2014 was estimated to be $1.62 billion, 

projected to increase to $2.51 billion in 2024.  Considering the market share of Angus at the time, 

these results are consistent with the magnitude of cumulative gross returns resulting from selection 

and crossbreeding in southern Australia to 2001, estimated by Farquarson et al. (2003). 

Breeders typically have a myriad of breeding objectives, based on their interpretation of market 

signals and factors influencing profitability.  Consequently, it is inaccurate to assume that all 

participants of the value chain agree with the implied breeding objectives underpinning the trends 

in index values typically used to monitor genetic progress in the industry. Angus breeders who 

have focused on profitability indexes have made excellent genetic progress with respect to these 

indexes (Johnston 2007).   Sub-potential gains achieved in some herds or breeds are likely not to 

be a function of the delivery pipeline, but rather the lack of motivation for genetic change by some 

breeders and/or differing breeding objectives not adequately described by existing measures.  
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(a) Birth weight 

 
 

(c) Scan EMA/Ribeye Area (age end-point) 

 

(b) 400 Day Wt / Yearling Wt 

 
 

(d)  Scan IMF/Marble Score (age end-point) 

 

 

Figure 1. Standardised genetic trends for (a) Birth weight; (b) 400 Day Wt/Yearling Wt; (c) 

Scan EMA/Ribeye Area; and (d) Scan IMF/Marble Score in different Angus populations.            

Legend:  

Whilst rates of genetic gain in Australian Angus have been equal to or superior to comparable 

beef populations, they are still well below theoretical potential gains (Johnston 2007), the rates of 

improvement shown in various research populations (e.g. Parnell et al. 1997) or those achieved in 

segments of the Australian sheep industry (e.g. Swan et al. 2009).  It is suggested that the 

significant scope for enhanced rates of genetic improvement in the beef industry can be adequately 

realised within the current pipeline structure.  There is a lack of evidence to indicate that re-

structuring of the pipeline will have any significant impact on future rates of progress. 

There is no doubt that elements of the existing beef genetic delivery pipeline can be improved 

to enhance rate of technology development and to address constraints to delivery of more efficient 

and effective recording, genetic evaluation and extension services.  As suggested by Parnell 

(2007), there is a need for all participants in the pipeline to engage in more effective value chain 

partnerships to provide improved market signals, incentives, motivation and associated rewards 

from the application of genetics technology. 
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(a) Cows joined to Angus bulls 

 

 
 

(c) Annual discounted value of genetic gains 

 
 

 
 

 
 

 

 

(b) Genetic trend in seedstock and commercial 

herds 

 
 

(d) Accumulated discounted value of gains 

Figure 2. Modelling industry economic benefits resulting from genetic improvement in the 

Australian Angus population. 
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DETAILING A BEEF GENETICS EXTENSION STRATEGY 
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SUMMARY 

There has been a substantial increase in knowledge of the genetics underlying profit traits in 

Australian beef cattle. Implementation of such knowledge in breeding programs presents a 

significant opportunity to increase the rate of genetic gain. Current rates of genetic gain vary 

greatly between seedstock breeders, both within and between breeds. Commercial producers’ 

preparedness to pay more for bulls with higher genetic merit is an important factor influencing the 

rate of genetic gain in seedstock herds. Meat and Livestock Australia commissioned the 

development of a beef genetics extension strategy focused on effective extension to various 

segments within the beef industry. The strategy is to focus on 1) improving knowledge amongst 

commercial producers to enable them to appropriately assess the value of genetic merit, thereby 

increasing the demand for genetically superior bulls; and 2) providing bull breeders with 

information to assist them in increasing the rate of genetic gain in their herds to meet the projected 

increased commercial demand. 

 

INTRODUCTION 

Genetic improvement allows for beef producers to increase the productivity and profitability of 

their enterprises and quality of their stock. The success of genetic improvement is determined by 

the rate of genetic improvement being achieved by seedstock enterprises and the proportion of 

commercial bulls that are purchased from programs achieving high rates of genetic improvement. 

There have been substantial R&D efforts in beef genetics in Australia (ongoing). These have 

led to significant increases in understanding of the genetics underlying economically important 

traits and the development of DNA technology. With this knowledge and technology there is 

potential to significantly increase the rate of genetic gain. However, the benefit of these research 

outcomes is only realised when seedstock breeders utilise the technology to achieve genetic gain in 

a direction that will increase value chain profit. To date only a small proportion of beef genetics 

investment in Australia has focused on facilitating greater rates of genetic gain in the seedstock 

sector through adoption and effective use of BREEDPLAN. This has led to lower than optimal 

adoption of the technology resulting in a slower rate of genetic gain than is considered technically 

feasible, particularly in northern Australia (Fennessy et al. 2014). 

Rates of genetic gain vary greatly between seedstock breeders, both within and between 

breeds. This is partly attributed to poor price signals from commercial producers with regard to 

their preparedness to pay more for bulls with higher genetic merit. Lack of commercial producer 

price signals is associated with ineffective proof of profit messages and a low appreciation by 

commercial producers of the role genetics has for enterprise productivity, product quality and 

profitability. The primary objective of the proposed extension strategy is to increase the rate of 

genetic gain and thus profitability for beef producers. Focus is given to creating demand in the 

commercial sector and facilitating increased rates of genetic gain in the seedstock sector. 

 

MATERIALS AND METHODS 

Over 40 stakeholders involved in beef cattle genetics extension and implementation were 

interviewed by the project team during the consultation phase with additional opportunity for input 

at a facilitated workshop for stakeholders. Stakeholders engaged in the development of the strategy 

included genetics extension specialists, researchers, bull breeders, commercial producers, pastoral 
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companies, breed society representatives and those involved in delivery of genetic evaluation and 

extension in Australia. The consultation focused on documenting current genetics extension and 

implementation efforts, identification of gaps and opportunities and exploring strategies to address 

the gaps and harness the opportunities. In addition to consultation, numerous industry reports of 

genetics implementation were considered in the development of the strategy. 

 

RESULTS AND DISCUSSION 

Six primary recommendations are detailed below.  

1. Demonstration that genetics works with compelling proof of profit. Throughout the 

consultation there was consistent feedback on the need for the development of compelling proof of 

on-farm profit messages. This need was also highlighted by Freer et al. (2003) and more recently 

by Fennessy et al. (2014) who recommended, “Investment in generation of robust data to show the 

benefits of genetic improvement in commercial settings.” It would be ideal to see the 

recommendation of Fennessy et al. (2014) adopted but this would be accompanied by substantial 

cost and a time lag to demonstration, particularly for reproductive rate. Two alternative and 

complementary approaches are suggested, one utilising research herd data sets and the other 

working closely with existing breeders who have achieved demonstrable improvement in genetic 

merit to demonstrate the value of genetic improvement.  

 

Research herd data sets. It is recommended that recent research outputs be reviewed and on-farm 

productivity and proof of profit messages established for model farms based on differences in 

weaning rate, growth rate, carcass quality (and feed intake where available) that were observed for 

animals differing in genetic merit (teams of sires, divergent selection lines etc.). This task should 

be undertaken by a small team with expertise in livestock genetics, agricultural economics, 

livestock extension, science communication and marketing. Metrics including productivity (e.g. 

kg/Ha), cost of production ($/kg), turn off age, carcass quality (Meat Standards Australia Index 

and component traits), and return on investment (to-farm-gate value of genetic improvement) 

should act as a base when developing the messages and examples. 

 

Industry case studies. The use of the industry based case studies is focused on a producer advocate 

approach. This approach will help facilitate the communication of messages and outcomes to 

commercial beef producers. These case studies will involve the development of detailed 

productivity and profitability outcomes through improvement in genetic merit with a longitudinal 

component (i.e. not once off). Case studies would ideally document the change in genetic merit 

achieved and associated increases in productivity (e.g. increased weaning rate, shorter time to 

turnoff, improved carcass quality) and income. Where possible such case studies should be 

undertaken in multiple regions and breeds to overcome any suggestions that the results are not 

applicable to particular geographic regions or breeds. Case studies should also detail the bull 

selection strategy employed by the seedstock enterprise to achieve the gain they have. 

 

2. Assistance and advice to seedstock breeders. Is it expected that bull breeders new to 

BREEDPLAN will need assistance in understanding aspects of performance recording and genetic 

evaluation. Important concepts include contemporary groups, effective records, data integrity, and 

methods for performance recording. Whilst much of this material can be found on Southern Beef 

Technology Services (http://sbts.une.edu.au/, SBTS) and Tropical Beef Technology Services 

(http://tbts.une.edu.au/, TBTS) websites, it is essential to ensure seedstock breeders embarking on 

performance recording do not become disenfranchised early due to suboptimal recording methods. 

Support needs to be primarily targeted to seedstock breeders in northern Australia where current 

use of BREEDPLAN is lower than in southern Australia. Support from TBTS and local industry 
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service providers (on-the-ground) is likely to be required. There are currently few sufficiently 

experienced and available people in northern Australia to undertake this work at a local level. 

Through the genetics extension network (Recommendation 5) people will be identified and trained 

so they can fill the role of local service provision for this recommendation. 

 

3. Influential breeder support. When investigating population structure within breed, Amer 

(2014) identified that approximately 60% of herds do not supply sires to other breeders and those 

herds that do disseminate genetics to seedstock herds tend to have higher genetic merit. Nucleus 

herds are defined as herds that combine superior genetic merit and high rate of genetic gain with 

wide dissemination of genetics. These herds should be supported to increase their progress because 

of the multiplier effects on the value chain. 

Approach. Engagement of nucleus herds in R&D and the AGBU Influential Breeder Workshops 

is common practice. It is recommended that on a periodic basis (e.g. 3 years) an analysis is 

undertaken to identify which herds within and across breeds are the most influential with the aim 

of supporting current influencers (i.e. identification of nucleus herds). Two complementary 

approaches to engaging with these breeders are outlined:  

a) Involvement in AGBU Influential Breeder Workshops: herds continue to be involved in the 

AGBU Influential Breeders Workshop to ensure the breeders are up-to-date with current R&D 

outcomes and understand how they can best utilise new technology. 

b) Ensuring nucleus herds are involved in genetics R&D: Many influential herds are already 

involved in R&D. Where possible this should be maintained and/or expanded. There are 

industry benefits observed including: 

 influential breeders tend to be strong advocates for BREEDPLAN and genetic evaluation 

 they have extensive client training initiatives to highlight the benefits of genetic gain for 

beef producers and 

 animals in nucleus herds can inform genetic evaluation for other animals in the breed for 

new traits developed from R&D 

 

4. Enhanced value chain relationships. The implementation of carcass feedback for predicted 

eating quality via Meat Standards Australia (MSA) Index to producers, and the use of carcass 

optimisation by processors provide an opportunity for clear links between improving genetic 

merit, increasing carcass quality and higher price received. The MSA Index is a weighted average 

carcass MSA score calculated from scores for individual cuts and cut weights (Watson et al. 

2008). Recent developments in carcass optimisation allow processors to identify and segment 

carcasses with higher predicted eating quality so that more four and five star cuts can be marketed 

at substantial premiums. Market signals now exist such that carcasses with higher MSA Index 

attract higher price received. Two initiatives are proposed; i) continued work with beef processors 

to capture and value economic benefit from carcasses with higher predicted eating quality; and ii) 

development of tools to enable beef producers to evaluate the importance of genetic improvement 

on carcass quality and thus price received ($/kg). This approach is expected to facilitate clearer 

price signals, such that carcasses with superior predicted eating quality attract higher price 

received. This will provide an incentive for producers to seek bulls with superior genetic merit for 

eating quality and appropriately value them in addition to production traits. 

 

5. Establish a livestock genetics extension network for training and coordination. There are 

many parties involved in beef genetics extension. A strong message from the consultation was the 

need for coordination of beef genetics extension. It is suggested that a national genetics extension 

network be established for the beef genetics service provider sector. The purpose of the network 

would be multifaceted and include: 
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a) Training opportunity for people involved in direct-to-producer beef genetics extension; 

b) Greater awareness/coordination of the range of direct-to-producer activities occurring that 

have a genetic component; 

c) Greater awareness of current R&D and tool development; 

d) Mechanism for forming messages, providing updates and developing extension material; 

e) Greater facilitation of feedback from bull breeders and commercial producers to 

extension agents and those undertaking R&D (a recommendation from Moreland and 

Hyland 2013); and 

f) Planning and implementation forum. 

A well-functioning genetics extension network should lead to consistent messages to industry, 

common extension material, and common delivery of programs. An overall aim would be that 

there is a high likelihood that someone in the genetics extension network would provide the same 

advice and recommendations to a seedstock or commercial producer for breeding program or bull 

selection as the next person; or identify the appropriate person for the producer to contact. 

 

6. Market research. BREEDPLAN is an established technology that can demonstrably be used to 

inform animal selection and achieve genetic gain associated with greater profit for both beef 

producers and the wider beef value chain. Despite this, the rate of adoption and effective use of 

genetic evaluation to inform animal selection remains below potential. At the stakeholder 

workshop, there was considerable support for the engagement of a market research company to 

investigate barriers to adoption and to develop communication solutions to address such barriers. It 

is therefore recommended that a specialist market research company be engaged to investigate and 

report on: i) industry characteristics and barriers to adoption of genetic improvement programs at 

both the seedstock and commercial level; ii) key influences on decision making processes and how 

to leverage them; and iii) opportunities for improvement in the communication and marketing of 

BREEDPLAN and the economic benefits realised through genetic improvement. 

 

Measures of success. Those consulted in the development of the strategy agreed that the success 

of the strategy can be measured against the following criteria listed. By 2020-   

a) Performance: 50% increase in the rate of genetic progress as measured by weighted average of 

selection indexes for each breed society compared with 2012 base year, i.e. increase from 

$4.68/year to $7.02/year in southern Australia and $1.04/year to >$1.56/year in northern Australia; 

b) Penetration: 25% of bulls used in commercial matings in northern Australia and 75% in 

southern Australia will have BREEDPLAN Estimated Breeding Values; 

c) Establishment of national genetics extension and consulting network. 
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SUMMARY 

The Genetic Progress Report (Report) is an effective tool for farmers and their advisors to 

monitor genetic change at herd level, especially when gains are only slightly positive or even 

negative. Farmer case studies show a willingness to refine breeding objectives based on the report. 

An increased uptake of the Report is expected to contribute to a more focused approach to genetic 

choices and increased rates of genetic gain for both profit and traits of interest. 

 

INTRODUCTION 

For over 30 years, Australian farmers have steadily achieved genetic progress for Australian 

Profit Ranking (APR); an economic index that includes milk, fat, protein, survival, fertility, cell 

count, milking speed, temperament and liveweight traits. Currently, the rate of genetic gain for 

Holsteins is $8.40 profit/cow/year ($11.00 and $9.04 for Jersey and Red Breeds respectively) 

(ADHIS, 2014). However, progress could be more than double (Lacey and Coats, 2013).  

While there are likely to be many factors contributing to slower than theoretically possible 

genetic gain, the time between making a choice and seeing the outcome is one element. In a 2012 

survey, dairy advisors who don’t work in herd improvement were asked to describe characteristics 

of genetics that were most off-putting. The commercial politics, hard to keep up to date, time to 

see change, science is complicated were all reported to be off-putting by 46%, 25%, 16% and 11% 

respectively (n=125) (ADHIS, 2011). The results emphasise the need for unbiased, current 

information that is easy to access. While these findings are specific to advisors, anecdotal feedback 

from farmer discussion groups suggests farmers have similar needs. Simple, clear information on 

genetic change over time and current genetic merit would be very helpful. Furthermore such 

information would reinforce to farmers the permanent and cumulative nature of genetics and the 

need to make good choices each breeding season. The purpose of this paper is to explore the 

current use of a new report focussed on these aims by farmers and their advisors. 

 

DESCRIBING AND USING THE GENETIC PROGRESS REPORT 

To help farmers and advisors measure and monitor the effectiveness of their breeding choices, 

ADHIS developed the Genetic Progress Report. The Report is a within-breed analysis of a herd 

over a ten year period and shows genetic gain for APR, protein kilograms, fat kilograms, overall 

type, survival, daughter fertility and cell count. Over a decade’s worth of herd genetic information 

is displayed in an easy-to-read, two page report. Parameters of the report are defined in Table 1.  

The Report was first launched in April 2013 and has been released twice yearly since that time 

(April and August). The Report is provided to farmers, upon request, from their herd recording 

centre and is mailed to farmers on an annual basis. 

In 2014, Australia had a total of 6,314 dairy herds with 3,023 (48%) herd recording. Of those, 

2,481 herds met the minimum data requirements of the Report in August 2014. The proportion of 

total reports by breed was 82% Holstein (or Holstein cross), 15% Jersey (or Jersey cross), 3% 

other breeds. Each of the 2,481 herds will have a different Report and reactions to the report will 

vary. The following case studies provide an overview of two approaches. 
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Table 1. Definitions of parameters included in the Genetic Progress Report 

 

ABV Australian Breeding Value, Equivalent to EBV. ABVs for protein kg, fat kg, 

overall type, survival, daughter fertility and cell count are reported 

APR Australian Profit Ranking, Australia’s economic index prior to March 2015.  

Average APR Average APR of current cows in the herd. 

Average of top 

10% 

The average APR of cows in herds ranked within the top 10% of the breed 

by year of birth. 

Breed Purebred  and non-purebred are considered side by side, but other breeds 

separately. 

Current cows Cows calved in the past 30 months (relative to release date) and contributed 

data to an ABV.  

Genetic trend for 

each trait and 

index 

Increased = Average APR or ABV of years 6-10 > Average of years 1-5 and 

the last APR or ABV > first APR or ABV 

Decreased = Average APR or ABV of years 6-10 < Average of years 1-5 

and the last APR or ABV < first APR or ABV 

No clear trend = if either of the above statements are not true 

GBG Percentage of cows with sires included in the Good Bulls Guide or Progeny 

Test near the time of their dam’s mating. 

Minimum data 

requirement 

At least 50 cows of a single breed with ABVs. Dates of birth occur over 

several years. 

National Average The average APR or ABV of cows of the same breed and year of birth. 

Rank Rank within breed. Sorted by APR then ASI. 

 

In April 2015 ADHIS launched three new breeding indices. As a result the GBG has been 

updated replacing the APR with the new economic index, Balanced Performance Index (BPI). The 

Health Weighted Index (HWI) and Type Weighted Index (TWI) are also included. 

 

Case Study 1 – Chris and Diana Place. Finding out their Holstein herd ranked in the top 100 for 

APR was a welcome surprise to Chris and Diana Place, but they were more interested to see 

opportunities to improve fertility and mastitis resistance through breeding. These are just some of 

the results from the herd’s Genetic Progress Report. Chris dairies with his wife, Diana and his 

brother Peter, in Western Victoria. Their 420 cow Holstein herd averages more than 285 kg fat and 

235 kg protein from a predominantly grass-based feeding system, 5% above the regional average 

of herd recorded cows (ADHIS, 2014).  
Breeding decisions have always focused on high production cows that are easy to milk and 

have few health and fertility problems. For many years Chris has selected bulls from the top of the 

list for APR and within that list, bulls that are positive for udders, feet and legs. Their Report, of 

which sections are shown in Figure 1, shows how much has been achieved with this consistent 

approach.  While it’s reassuring to see how much can be achieved through breeding, Chris was 

more interested in the sections of the Report that showed opportunities for improvement. Figure 1 

showed that genetic progress for fertility is declining so Chris immediately gave higher priority in 

his selection decisions.  

When it comes to selecting sires for the season, Chris normally uses the Good Bulls Guide. His 

strategy is to go straight to the top four or five APR bulls in the Guide and then check them for the 

individual traits that are important for his herd. So from now on, he plans to look at fertility and 

mastitis resistance as well udders, feet and legs. ‘The Report presents our herd data in a very 

useful format. It’s a great tool to help us with our breeding decisions.’ 
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Figure 1. Genetic Progress Report Place herd (Protein kg, Fat kg, Cell count and Fertility) 

 

Case Study 2 – Bettina and John McLeod. Bettina and John McLeod’s herd ranks in the top 150 

for profit among Holsteins as shown in Figure 2 but the McLeods do not spend hours studying bull 

catalogues. Their achievement of a high genetic merit herd has come through a successful 

partnership with their breeding advisor, Mr Graeme Heaver. 
The McLeods dairy in South-West Victoria. Their 400 cow herd averages 770kg milk 

solids/cow, 56% greater than the regional average (ADHIS, 2014). A couple of times a year Mrs 

McLeod and Mr Heaver discuss the herd’s breeding objective, progress towards that objective, and 

specific priorities for the coming joining season.  

The Report has been useful in fine tuning the McLeod’s selection criteria. “The report 

highlighted how much progress has been made for cell count in recent years. Satisfied with this 

result, Bettina and I decided to place higher priority on selecting for fertility within the top sires” 

Mr Heaver said. 

Mrs McLeod finds the Report particularly useful for identifying and learning from past 

mistakes. “When I look at the graphs, I’m interested to see the dips – because they show where we 

made a mistake.” For example in 2006, another breeding advisor chose the sires, purely for type 
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without consideration of other traits. While the report shows a subsequent peak in genetic progress 

for type, it was accompanied by dips in profit, fat, protein, fertility, and longevity. Mrs McLeod is 

keen to be continually improving their dairy operation and uses the Report as a tool for monitoring 

breeding progress. “The Report presents our data in graphs that make it easy to see long term 

trends,” she said.  

 

 
Figure 2. Genetic Progress Report for John and Bettina McLeod’s herd (Profit) 

 

CONCLUSIONS 

The Genetic Progress Report is a practical output of ADHIS and Dairy Australia’s investment 

in genetic evaluation, genomic technology and genetics extension. Its value in identifying success 

and opportunities for improvement is shared amongst farmers and their professional advisors. 

Further work is scheduled to comprehensively evaluate the success of the Report. Updates to the 

report to incorporate Australia’s new breeding indices will further enhance opportunities to use 

this Report in genetics extension and education activities. 

 

REFERENCES 

ADHIS (2011) Good Bulls Guide – Dairy Advisor Survey 30 May 2011 (unpublished). 
ADHIS (2014) Australian Dairy Herd Improvement Report 2014. 

Lacey R. and Coates S. (2013) Development of genetics scenarios and implications for the 

Australian dairy industry. Final Report, submitted to Dairy Australia, April 2013, commercial 

and in confidence. 

Industry focus

232



REALISING GENETIC IMPROVEMENT FOR THE EXTENSIVE LIVESTOCK 
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SUMMARY 

This paper examines some aspects of the overall performance of livestock improvement systems, 

first asking what we mean by the term “system”. Variation in behaviour of agents within the 

system is examined, and some tentative conclusions about the nature of such systems, and scope 

for their management, proposed. 

INTRODUCTION 

 In discussions of livestock genetic improvement, one theme focusses on improvement at a 

whole of industry or country level (eg. Hill, 1971; Smith, 1978; Hammond, 2006), and the term 

“system” or something similar is sometimes used. In general such discussion is descriptive, 

retrospective and focussed on averages, often leading to reasoning in support of various forms of 

collective action. In this context, “collective” means activities funded, initiated, managed etc. via 

mechanisms or agencies acting on behalf of often large numbers of individual enterprises. 

A frequent observation is that rates of genetic improvement are less than what is technically 

possible, and that this can be attributed at least partly to various forms of market failure negatively 

impacting individuals’ incentives to invest in recording and to select somehow optimally. In turn, 

this thinking has underpinned various forms of collective investment into aspects of livestock 

genetic improvement in many countries (Amer et al, 2012). 

This paper is an attempt is made to explore the nature of such systems, and to ask whether 

taking a “systems perspective” can help achieve some different outcomes. 

This general perspective rests on some important assumptions, including: 

- Agents (individuals or organisations within the system) will respond to the availability of 

knowledge, tools etc by adopting and implementing them relatively immediately and 

uniformly 

- Interactions or interdependencies between tools and/or agents are either minimal or benign in 

their effects (which ironically is not unlike assuming that all genetic variation is additive, or 

that at least we can ignore interactions) 

- Information flow is such that all agents have perfect information about the future in a form 

relevant to whatever decisions they are able to make. 

These are all heroic assumptions. Where this heroism is recognised, the usual response is to 

propose some form of collective or even government intervention, which usually takes the form of 

subsidising the cost of some system input(s). A common example is that government or industry 

funds are used for R&D and E, which in essence means making some of the raw materials of 

genetic improvement – knowledge, tools and skills – either free or cheap. 

 Embedded in these assumptions is the expectation (hope?) that market returns will be sufficient 

to fund the risky investments that for example sire breeders must make. 

We can identify some aspects of the system through simple questions. 

a) What comprises the system?

In the livestock industries, the components that are interacting include: bull- and ram-breeders 

in breeds within the breeding sector, commercial producers, finishers, processors, retailers, service 

 AGBU is a joint venture of NSW Department of Primary Industries and University of New England 
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providers to these sectors (including research and development organisations), and consumers.  

 

b) How do agents interact? 

Agents interact via the sale of packages of genes (mainly sires) and their derivatives 

(commercial stock and their products). There are many sellers and buyers in most livestock system 

markets. What do prices for genetic material tell us about information flow in beef and sheep? 

 Data relevant to this question is incomplete. However, Van Eeenanam (2012) analysed sales 

data from a number of Angus studs, and found clear relationships between price paid and bulls’ 

merit, with r-squared in the 15-35% range, regression coefficients for the indexes in use at time of 

$40-70 per index point when stud bulls sales are excluded.  Walkom (pers. comm.) analysed sales 

data from a number of ram breeding flocks, and found r-squared values in the range 35-45% and 

regression coefficients of price on index of $45-120.  Analysis of Angus herd average prices 

indicates an r-squared of 45% for herd average bull price on herd average $Index merit. 

So, some information is being exchanged and used in at least some transactions. With more 

data, a greater understanding of the variation in this exchange, whether it is changing over time, 

and longer term trends in market share could be examined. 

 

c) Are the agents all aiming for the same things? 

It is possible to examine variation in breeders’ attitudes and behaviour around breeding 

objectives. A survey approach, such as in the MERINOSELECT Breeding Goals Survey (MLA, 

2012) reveals more variation in the weighting proposed for individual traits amongst breeders 

within a wool type category than between categories. A more analytical approach, involving 

calculating correlations between response vectors amongst breeders, reveals similar variation in 

realised breeding direction in Angus cattle (Lee, 2014) and Merino sheep (Swan, pers. comm.)  

 

QUESTIONS ABOUT LIVESTOCK IMPROVEMENT SYSTEMS 

 This brief overview suggests that there is a system of interacting and diverse agents. What 

questions can be asked of such systems? Smith (1978) is an example of studies highlighting the 

fact of differing perspectives within such systems – the question really being “what are agents 

trying to achieve?” 

- differences between individual breeders and the national or industry 

- differences between different sectors in an industry  

In most countries and industries, the general response to these differences has been the 

establishment of some form of national or industry-level evaluation, with either mandatory or 

voluntary participation. Such evaluation, especially when based on BLUP methods, has lead or 

contributed to, increases in rates of genetic progress. Depending on the interaction between the 

information generated by the evaluation and aspects like bull registration, such initiatives can 

effectively override differences in perspectives, but this may come at some political and financial 

cost. Amer et al (2012) examined returns from genetic improvement in beef cattle in several 

countries, and identified a range of approaches differing widely in apparent cost per animal, but 

less so in outcome. 

The general question of aims leads inevitably to the specific question of breeding objectives 

and hence indexes. National evaluation systems such as BREEDPLAN, Sheep Genetics and 

ADHIS invest significant resources into developing “industry” objectives, usually with inputs 

from breeders and others in industry, but may also provide scope for customised indexes. As 

breeders’ confidence in breeding technologies grows, the situation can arise, and seems to be 

arising more frequently, where some breeders wish to innovate by making and demonstrating 

genetic progress for new traits. By definition this leads to a situation where only some breeders 

have information on the new traits, which in turn means that the less innovative breeders are 
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automatically at a disadvantage if indexes are modified to include the new traits. 

This question of different views on objectives (and hence on indexes) in turn leads to the 

question of how to value outcomes of the system. If there is some national objective, but a 

significant portion of industry is pursuing objectives correlated at less than 1 with the national 

objective, should the national objective be used to value improvement? And the question of how to 

value outcomes leads to the question “how to improve those outcomes?” 

 

RESPONDING TO GAPS – LEAVE IT TO THE MARKET? 

 One way of viewing the establishment of industry-wide genetic evaluation systems is that they 

are primarily meant to provide information, enabling a market in genetic material to function with 

greater efficiency. This outcome seems to develop, but slowly and unevenly (Van Eenennaam, 

2012). This outcome alone provides a strong basis for some form of collective investment: 

objective information available to buyers and sellers is necessary for an efficient market. Such 

information is also a necessary condition for genetic improvement, but is not sufficient on its own. 

In the absence of direct payments for genetic improvement itself, Amer (pers. comm.) has noted 

that the primary incentive for breeders to make genetic progress is possible future market share. 

This incentive would appear to be the driver for dairy breeding companies, who operate in 

competitive markets in multiple countries, and pig breeders (Knap, 2014). It is not obvious 

whether beef and sheep breeding businesses in Australia are sufficiently scaleable to make 

growing market share a realistic goal for all but a minority of enterprises. 

 Another form of investment in information is via the calibration of genomic tests. This service 

is provided in the US dairy industry (and hence effectively, globally) by the USDA, and in the 

Australian beef and dairy industries by the respective industry funding bodies. This initiative has 

the beneficial effect of enabling informed investment in genetic information products, but raises 

the interesting question of who pays for the performance data required for the calibration. If such 

information is collected for other purposes, as is the case for some traits in dairy, this may partly 

obviate the problem, but where this is not the case, funding data collection becomes yet another 

dilemma poised around “who benefits, who pays?” 

 These are two forms of collective intervention, but on their own, they may not generate much 

overall improvement. What might we need to understand in order to do better? 

 

RESEARCHABLE QUESTIONS – FIRST ORDER 

 The fundamental level of research must always be focussed on analysis of genetic variation, 

including new methods. Having accurate descriptors of animals’ genetic merit is absolutely 

essential for efficient selection and the efficient operation of the market for genes (or the animals 

that carry and transmit them). 

 The next level of analysis is where we start to understand the behaviour of the “system” and its 

components. Industry databases now offer scope to analyse what individual enterprises have done 

– including tracking selection differentials, accuracies achieved, levels of linkage and resulting 

flows of information between enterprises, and directions of selection. Tools have been developed 

for such analysis, such as Takestock (Johnston, pers. comm.), but as yet they are not being used 

systematically to help design interventions (such as new services and products). 

 Reverter et. al (2011) provided an example of preliminary analysis of the network properties of 

the meat sheep genetic improvement system, and suggested further steps. Similarly, Charteris et al 

(2001) suggested the use of agent-based modelling to explore both the properties of livestock 

improvement systems, and potentially to explore through simulation the effects of different 

interventions. 
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RESEARCHABLE QUESTIONS – DESIGN AND COORDINATION 

 The bigger questions are around issues such as: 

- If we can identify information gaps, should they be filled, and if there is a cost, who pays and 

how? 

- If we assume that all system behaviours ultimately depend on decisions at the individual 

enterprise level, can we “nudge” them in any way (Thaler et al, 2008). For example, if 

relying on market premiums to incentivise bull- and ram-breeders, and we know that those 

premiums are imperfect signals, should someone add some sort of rewards for “good 

behaviour” – things like additional recording, sampling new bloodlines, strengthening 

linkage, or even simply making faster progress? 

- And ultimately, who monitors system behaviour and develops responses? This is ad hoc in 

Australia, relying on varying inputs and capacities of organisations such as MLA, breeds, 

ABRI, previously CRCs, and breeders, each with their own constraints. The problem is that 

this ad hoc system appears to be associated with opportunity costs running into hundreds of 

millions over the medium term. 

 

CONCLUSIONS 

 Charteris et al (2001) proposed that livestock improvement systems could usefully be 

examined using the perspective of Complex Adaptive Systems (CAS), where a CAS exhibits 

“strong interactions among its elements so that current events influence the probability of many 

kinds of later events”. The brief discussion here suggests that there is merit in that 

recommendation. Already it is clear that there is considerable variation at the level of individual 

enterprise (agent in CAS language) behaviour and at least some inter-agent interactions. 

It is not so clear how to tackle system-wide coordination and management (research using the 

CAS framework might generate useful ideas for this), but it seems highly likely that in the absence 

of any such coordination that overall performance will fall short of what seems possible (although 

what we think is possible may reflect ignorance on important inherent limits of such systems). 

Responding through some sort of central control seems politically unlikely, so the search must 

continue for ways to do better. Simply piling up raw materials (new knowledge), ensuring accurate 

EBVs and Indexes and other types of current R&D may unfortunately be necessary but not 

sufficient. 
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INHERITANCE OF TAIL LENGTH IN MERINO SHEEP 
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SUMMARY 

    The inheritance of tail length and spine length was estimated using data of 2667 Merino lambs 

assessed at approximately 6 weeks of age on the marking cradle. Maternal permanent 

environmental effects affected spine length and marking weight but not tail length. The heritability 

of tail length and spine length was both 0.58 ± 0.05, while the genetic correlation between the two 

traits amounted to 0.58 ± 0.05. However, adjusting the data for marking weight or spine length 

removed the genetic correlation between spine and tail length. The heritability of a subjective 

score for tail length was 0.38 ± 0.05. The results indicate that selection for short tails is possible 

and that it will not have a negative impact on spine length provided adjustment is made for body 

weight or spine length.  

 

INTRODUCTION 

    Breech and tail strike are the most common types of blowfly strike suffered by Merino sheep.  

Mulesing and tail docking are therefore used to reduce the impact of the main predisposing factors 

such as wrinkles, dags and breech cover that contributes to breech strike. Mulesing removes the 

skin around the anus, and docking the tail at the 3 or 4
th

 joint, makes animals less susceptible to 

breech and tail strikes because it reduces the accumulation of faecal material and urine in the 

breech and on the tail (James, 2005).  

    Recent trends in animal welfare and ethical sheep production systems, question these surgical 

techniques. This has resulted in alternative methods being investigated to remove or reduce the 

impact of the predisposing factors to breech strike. Greeff et al. (2013) and Smith et al. (2009) 

have shown that dags, wrinkles, urine stain and high breech cover scores are the most important 

indicator traits and selecting against these traits will reduce breech strike. Watts et al. (1977) 

showed that tail length played an important role in determining the susceptibility of sheep with 

diarrhoea to breech strike.  Sheep with very short tails are more susceptible to breech strike than 

longer tails because they cannot lift their tail to hold the wool out of the way when defaecating and 

urinating.  James (2005) therefore suggested that breeding for shorter tails should be considered in 

un-mulesed sheep to make sheep less susceptibility to breech strike.  

However, breeding for short tails may result in skeletal abnormalities as was found by James et 

al. (1990; 1991) in Merino sheep where single dominant genes were the mode of inheritance.  

Shelton (1977) showed that tail length adjusted for body length had a heritability of 0.38 in 

Rambouillet sheep. Scobie and O’Connell (2002) showed that the mode of inheritance of tail 

length in different sheep breeds was additive. However, no study has estimated the genetic 

correlation between tail length and spinal length. This study was carried out to determine whether 

it would be possible to breed for short tails, and whether there is any negative relationship between 

tail length, spinal length and body weight in Merino sheep.  

 

MATERIAL AND METHODS 

Animals. Body weight, tail length, spinal length and a visual score for tail length were 

recorded on 2667 lambs that were the progeny of 62 sires mated to 1294 ewes and born from 2012 

to 2014 in the Australian Wool Innovation Breech strike flock at Mt Barker research station in 

Western Australia. Lambs were born over approximately 6 weeks from mid July to end of August 
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every year.  Full pedigrees, sex of the lamb, birth status and age of the dam were recorded on all 

lambs. 

 

Measurements. Tail length was measured at marking at approximately 6 weeks after birth. A tape 

measure was permanently fixed length-wise in the marking cradle. The lamb was placed in the 

cradle with its spine lying lengthwise on the tape. A measurement was taken at the joint between 

the skull and the first neck vertebrae of the lamb, at the root of the tail, and at the tip of the tail. 

Spinal length and tail length for each lamb were calculated through subtraction. Tail length was 

also scored by holding the lamb’s leg perpendicular to its body and laying the tail along the 

anterior side of the backleg over the hock. Lambs were scored from 1 (short) to 5 (long) depending 

on the length of the tail relative to the hock. Tails that touched the hock were given a score of 3, 

while shorter tails were given scores of 1 or 2, and longer tails 4 or 5 depending on length. Any 

lamb with evidence of their tails being bitten off, were not recorded.  

Body weight of each lamb was recorded at marking in 2013 and 2014. As marking weight was 

not recorded in 2012, a body weight at marking was estimated for the 2012 drop by multiplying 

the average daily gain from birth to weaning at 85 days of age, with the average age of the 2012 

drop at marking and adding birth weight. This method assumes that growth was linear which may 

not have been the case. However, it was deemed acceptable in a preliminary study such as this 

until more data are recorded.   

 

Data analysis. The data were analysed with ASREML (Gilmour et al. 2009). An animal model 

with and without maternal permanent maternal environmental effects was fitted with year of birth 

(3 years), sex (male or female), age of the dam (2 to 6 years) and birth status (single or multiples) 

as fixed factors and all 2 way interactions. Day of birth was fitted as a covariate within year  of 

birth. Maternal pedigrees were not fitted because of shallow pedigrees. Different univariate 

analyses were first carried out with and without body weight at marking as a covariate to identify 

significant fixed effects. The following combinations of direct additive and maternal permanent 

environmental effects were fitted.  

 

   y =  Xb + Za + e        (1) 

   y =  Xb + Za + Wpe + e          (2) 

 

where y, b, a, pe and e are the vectors of observed traits of animals, fixed effects, direct 

additive genetic effects, permanent maternal environmental effect and residual effects, 

respectively.  X, Z and W are incidence matrixes for fixed, direct additive genetic and permanent 

maternal environmental effects of y, respectively.  Marking weight was also fitted as a covariate to 

tail and spine length, while tail length was also adjusted for spine length to determine its impact on 

the inheritance of tail length. Log likelihood ratio tests were carried out amongst the models to 

determine the most appropriate model for each trait. This was followed by bivariate analyses 

between tail length, spinal length and body weight to obtain variances and covariances for genetic 

parameter estimation, by fitting the most appropriate model as determined by the previous 

analysis. Tail score was only analysed to estimate the correlations with tail length.  

 

RESULTS AND DISCUSSION 

    Table 1 shows the average spine length, tail length, tail score and marking weight at marking at 

approximately 6 weeks of age. 

    Year of birth, sex of the lamb, birth status, day of birth and age of the dam affected tail length, 

tail score, spine length and marking weight significantly (P<0.001). No significant interaction 

effects were found between these fixed effects. Log likelihood ratio tests shows that model 2 
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which included both direct additive genetic and permanent maternal environment effects, fitted the 

spine and marking weight data best while model 1 with only direct additive genetic effects fitted 

the tail length and tail score data best. 

 

Table 1. Average spine length, tail length and body weight at marking (approximately 6 

weeks of age). 

 

Trait n Mean SD CV Min Max  

Spine length (cm) 2665 73.4 6.02 8,2 46 98  

Tail length (cm) 2665 23.2 3.62 15.6 11 40  

Tail score 2661 3.7 0.67 18.1 1 5  

Marking weight* (kg) 2665 13.0 3.09 23.8 4.2 25.4  

* Include some estimates 

 

Fitting marking weight as a covariate to spine length removed all the permanent maternal 

environmental effects and resulted in model 1 fitting the data best. The variance components are 

shown in Table 2. 

 

Table 2. Phenotypic variation, heritability and permanent maternal environmental effects of 

tail length, spine length, body weight at marking, and tail score, and fitting marking weight 

or spine length as covariate to tail length and tail score. 

 

Parameter 

Tail 

length SE 

Spine 

length SE 

Marking 

weight SE 

Tail 

score SE 

Vp  9.5  31.5  7.7  0.40  

h2 0.58 0.05 0.58 0.05 0.44 0.06 0.38 0.05 

h2  0.48a 0.05a 0.51a 0.04a --- --- 0.36a 0.05a 

h2  0.54b 0.05b --- --- --- --- 0.35b 0.05b 

m2
pe --- --- 0.06 0.02 0.17 0.03 --- --- 

Vp = Total phenotypic variation with model 1; h2 = direct additive heritability; m2 
pe = maternal 

environmental effect, a Marking weight fitted as covariate;  b spine length fitted as covariate 

 

Heritability estimates. Tail and spine length and tail score were all heritable traits with tail and 

spine length having the highest heritability of 0.58 followed by an estimate of 0.44 for marking 

weight and 0.38 for tail score. Maternal permanent environmental effects were not significant for 

tail length but it made a significant contribution (P<0.01) to marking weight and for spine length. 

The heritability estimate of 0.58 for Merinos is higher than the heritability of 0.39 in Rambouillet 

sheep (Shelton, 1977). However, it is not clear whether Shelton (1977) used the measured tail 

length, or a tail length adjusted for body length in his analysis. Fitting marking weight as covariate 

in this study decreased the heritability of tail length from 0.58 to 0.48 and decreased the 

heritability of spine length from 0.58 to 0.51. When tail length was adjusted for spine length, the 

heritability of tail length decreased slightly to 0.54. Scobie (2002) reported a very high heritability 

of 0.82 for tail length which is of the same magnitude as the estimate of 0.77 reported by Branford 

Oltenacu and Boylan (1974). However, both these studies worked with crossbred sheep in which 

the short-tail Finnish Landrace featured prominently. In the more common type of sheep breeds, 

Branford Oltenacu and Boylan (1974) reported an estimate of 0.50 which is slightly lower than the 

estimates derived in this study.  
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Correlations. Table 3 shows the phenotypic and genetic correlations between tail length, spine 

length, body weight at marking and tail score. Tail length was phenotypically positively correlated 

with spine length (0.44) and with body weight (0.53) at marking. Similarly, moderately strong 

genetic correlations were found between tail length and spine length (0.58) and between tail length 

and marking weight (0.67). However, fitting marking weight as covariate removed the strong 

correlation between tail and spine length. This indicates that tail and spine length are independent 

traits and that the genetic correlation is induced through body weight. Tail score was genetically 

moderately strongly correlated with tail length. Although the heritability of tail score is less than 

that of tail length, and has a correlation with tail length that is lower than expected, it may still be  

a useful trait to select indirectly for short tails without resorting to direct measurements.    

 

Table 3. Phenotypic (above diagonal) and genetic (below diagonal) correlations between tail 

length, spine length and marking weight and their standard errors in brackets. 

  

 
Tail 

length 
Spine length 

Spine length 

a 

Marking 

weight 
Tail score 

Tail length  0.44 (0.02) 0.05 (0.02) 0.53 (0.02) 0.61 (0.02) 

Spine length 0.58 (0.05)  ---- 0.81 (0.01) ---- 

Spine length a -0.01 (0.08) ----  ---- ---- 

Marking weight 0.67 (0.02) 0.80 (0.03) ----  ---- 

Tail score 0.77 (0.05) ---- ---- ----  
a Fitting marking weight as covariate 

 

CONCLUSIONS 

     This study shows that tail length is a heritable trait and that it would respond to selection. It has 

a moderately strongly genetic correlation with body weight at marking but adjustment for body 

weight or spine length at marking removed the genetic relationship between tail length and spine 

length. This indicates that Merino breeders can breed for shorter tails without having any negative 

impact on spine length provided adjustment is made for body weight or body size.  
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SUMMARY 

A stochastic simulation was developed to account for daughter misidentification (DaMi) in the 

estimation of breeding values (EBV) of bulls. Miss-assignment of parentage was simulated in 20% 

of daughters of 50% of bulls in 30 of 40 commercial herds. A bias of -40 kg protein was assigned 

to those cows that were misidentified as heifer calves. The model for genetic evaluation included 

fixed effects of contemporary group and random effects of additive animal, permanent 

environment and residual. The approach to account for DaMi was to include a regression 

coefficient for each sire that reflected DaMi. Compared to progeny test (PT) EBVs, parent average 

(PA) EBVs were overestimated by 2.3 and 3.4 kg protein for bulls with and without DaMi, 

respectively. Compared to PT EBVs, reproof (RP) EBVs were underestimated by 3.5 kg and 

overestimated by 5.1 kg protein for bulls with and without DaMi, respectively. The model that 

accounted for sires with DaMi removed biases from PA to PT for both groups of bulls, but 

compared to PT EBVs, RP EBVs were underestimated by 1.0 kg protein for both groups of bulls. 

This set of simulations indicates that paternity-verified status for a sire-daughter record can 

remove biases in genetic evaluation caused by DaMi. 

 

INTRODUCTION 

Studies in New Zealand dairy cattle (Johnson and Harris, 2010) have documented that 

estimated breeding values (EBV) of young bulls based on parent average (PA) are typically higher 

than subsequent EBV which include daughter information from the progeny test (PT) or from 

reproof (RP) in commercial herds. These biases from PA to PT and from PA to RP breeding 

values are not unique to New Zealand dairy bulls; there is evidence of similar biases in Denmark 

(Pedersen et al. 1995), the United States of America (Powell et al. 2004) and Germany (Rensing et 

al. 2009). Possible factors causing these biases include preferential treatment of bull dams 

(Pedersen et al. 1995) preferential treatment of daughters (Kuhn and Freeman, 1995), 

misidentification of sire-daughter pairs (Winkelman, 2013), heterogeneous variance across herds 

and years and effects of heterosis (van der Werf et al. 1994). 

Using DNA parentage verification the magnitude of sire to daughter misidentification in 

commercial herds has been estimated at 23% (Bowley et al., 2012). However in PT herds, where 

sires are initially evaluated for widespread commercial use, the degree of sire misidentification 

was approximately 5% in Livestock Improvement Corporation PT herds for the 2005 to 2007 

seasons (Winkelman, 2013).  The impact of daughter misidentification on dairy sire breeding 

value estimation has been investigated in New Zealand (Winkelman, 2013). Estimates of progeny 

group yield means for milk, fat and protein of DNA-verified daughters were higher than those of 

daughters for which paternity had been assigned via mating records. Progeny of genetically 

superior sires can easily be assigned to inferior sires and their genetic evaluations are biased 

downward (Bowley et al., 2012). The underestimation of elite sires has been shown via simulation 
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to have a negative impact on rates of genetic gain in the dairy cattle population (Bowley et al., 

2012). 

In this study a stochastic simulation was developed to evaluate biases caused by daughter-sire 

misidentification and to test an approach to correct for this bias during successive predictions of 

breeding values of bulls from birth to 9 years of age representing PA, PT and RP.  

 

MATERIALS AND METHODS 

 

Simulation scheme. The cow population comprised 40 commercial herds and another 20 herds 

for the sire proving scheme (SPS). Average herd size was 518 lactating cows plus replacements. 

Protein yield (Py) for each lactation of a cow was calculated as:  

Py =   + TBV + year + herd + p + e 

where  is the general mean of the population ( = 160 kg protein); TBV is the true breeding value 

of an animal modelled as TBV = 0.5(TBVsire + TBVdam) + ( z x 0.7 x genetic SD) where z is a 

random number from a normal distribution with mean=0 and SD=1; year is a year effect simulated 

from a normal distribution with mean 0 and variance=14.0 kg
2
; herd is a herd effect simulated 

from a normal distribution with mean 0 and variance=28.0 kg
2
; p is a permanent environmental 

effect of the cow through her productive life and repeated for each lactation; e is a residual effect 

for each lactation. Estimates of genetic, permanent and residual variances were 82.1 kg
2
, 85.5 kg

2
 

and 111.7 kg
2
, respectively. 

 

Genetic evaluation. Genetic evaluation for protein yield was performed each year using an 

animal model. The model equation for genetic evaluation was the following: 

 yikm =  + hyli + ak + pm + eikm 

where yikm is the protein yield record for cow m in contemporary group i defined as cows of the 

same lactation number calving in the same herd and year (hyl), ak is the random additive genetic 

effect of animal k, pm is the random permanent environmental effect of cow m, and eikm is the 

random residual effect unique to yikm. Lactation yields of protein were mature equivalent. 

The best 68 cows and best 6 progeny-tested bulls were used to produce 34 young bulls to be 

progeny tested in SPS herds, the best 20% of these were selected when the bulls were 5 year old 

based on progeny test results. Selected bulls were used in commercial herds for two years.  

 

Simulation of daughter-sire misidentification and bias. A bias of -40 kg protein was added 

to the yields of 20% of cows in 30 of 40 commercial herds. The introduction of this bias was at the 

level of contemporary group (herd-year-lactation number) and the bias was repeated for the same 

cows across all repeated lactations. This introduction of bias was to represent miss assignment of 

parentage whereby genetically elite sires get assigned progeny of inferior sires. Those cows were 

progeny of 50% of the bulls selected at random. All progeny of the other 50% of the bulls were 

correctly assigned to their sire. The model equation for genetic evaluation to attempt to remove 

bias caused by daughter misidentification was the following: 

 yijkm =  + hyli + j + ak + pm + eijkm 

where yijkm is the protein yield record for cow m in contemporary group i, daughter of sire j and j 

is the fixed regression coefficient for sire j that reflects misidentification (0 if rightly assigned 

daughter and 1 if wrongly-assigned daughter). 

 

RESULTS AND DISCUSSION 

Table 1 shows distributions of true and estimated breeding values for protein yield and their 

reliabilities for 238 bulls evaluated at different ages; 129 bulls had 20% of daughter 
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misidentification in each of 30 commercial herds and 109 bulls were without daughter 

misidentification. Compared to PT EBVs, PA EBVs were overestimated by 2.3 kg protein for 

bulls with daughter misidentification and 3.4 kg protein for bulls without daughter 

misidentification. When selected bulls entered the bull team and a significant number of daughters 

in the commercial population contributed to the reproof of these bulls, a divergent bias occurred 

for the two groups of bulls. Compared to PT EBVs, RP EBVs of bulls with daughter 

misidentification were underestimated by 3.5 kg protein whereas RP EBVs of bulls without 

daughter misidentification were overestimated by 5.1 kg protein.  

The biases in protein EBVs from PA to PT in this simulation agree with Johnson and Harris 

(2010) for New Zealand dairy cattle. They reported overestimation of 3 to 4 kg protein of PA EBV 

compared to PT EBV, and suggested that such bias could reflect drift in genetic evaluations 

(Powell et al. 2004) and may include parentage error associated with sires of sons as they 

accumulate daughter numbers. 

Protein EBVs from progeny test results were similar for both bull groups, but RP EBVs of 

bulls without daughter misidentification increased whereas RP EBVs of bulls with daughter 

misidentification decreased. This trend was expected in the simulation because misidentification of 

sire-daughter was always penalised with a negative bias. This agrees with Winkelman (2013) who 

reported that EBVs for production traits were, on average, biased downwards when all progeny 

was not DNA-verified. 

The model that accounted for sires with misidentified daughters, on average, removed biases 

from PA to PT for both groups of bulls, but compared to PT EBVs, RP EBVs were underestimated 

by 1.0 and 1.2 kg protein for bulls with and without daughter misidentification, respectively 

Livestock Improvement Corporation has offered SNP-based DNA sire verification services to 

customers since mid-1990s. The test is based on approximately 100 SNPs, where recorded sire 

was deemed correct if concordance with his daughter was at least 99% (Winkleman 2013). 

Likewise, customers of CRV Ambreed can obtain DNA sire verification services via Genomz. 

Test results from either service provider are recorded in the national database and nine classes of 

verified paternity of cows can be derived, including DNA-verified and paternity assigned using 

mating and calving records. Further research is being undertaken to include parentage verification 

status in the genetic evaluation for each sire for all traits as an attempt to correct biases caused by 

daughter misidentification. 

 

Table 1. Distributions of true (TBV) and estimated (EBV) breeding values for protein yield 

and their reliabilities for 129 bulls that had 20% of misidentified daughters and 109 bulls 

without misidentified daughters, evaluated in different years following selection on protein 

EBV obtained with a model without adjustment for daughter misidentification 
 
  TBV  EBV  Reliability 

Age of bull N Mean SD  Mean SD  Mean SD 

          

Bulls with 20% of misidentified daughters 

0 129 16.4 3.6  18.8  7.5  36 1.8 

4 129 16.4 3.6  16.5  6.0  83 1.6 

9 129 16.4 3.6  13.0  7.4  89 3.7 

          

Bulls without misidentified daughters 

0 109 16.7 3.9  20.0 7.0  36 1.6 

4 109 16.7 3.9  16.6 6.4  83 1.7 

9 109 16.7 3.9  21.7 12.0  89 4.0 
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Table 2. Distributions of true (TBV) and estimated (EBV) breeding values for protein yield 

and their reliabilities for 120 bulls that had 20% of misidentified daughters and 118 bulls 

without misidentified daughters, evaluated in different years following selection on protein 

EBV obtained with a model that included adjustment for daughter misidentification 

 
  TBV  EBV  Reliability 

Age of bull N Mean SD  Mean SD  Mean SD 

          

Bulls with 20% of misidentified daughters 

0 120 18.0 4.6  20.2 3.9  36 1.7 

4 120 18.0 4.6  20.2 5.5  83 1.5 

9 120 18.0 4.6  19.2 5.0  89 3.1 

          

Bulls without misidentified daughters 

0 118 18.1 4.8  20.6 3.7  36 1.9 

4 118 18.1 4.8  20.6 5.5  83 1.5 

9 118 18.1 4.8  19.4 5.3  90 4.0 

 

CONCLUSION 

This simulation study shows that misidentification of sire-daughter pairs can be a source of 

bias in the genetic evaluation of dairy sires, a model that includes parentage verification status in 

the genetic evaluation for each sire can potentially correct for this bias. 
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SUMMARY 

Breeding objectives were constructed for Merino enterprises operating in environments subject 

to forecast climate changes to 2030. These were derived using gross margins per dry sheep 

equivalent (DSE) from the GrassGro pasture model at three locations in New South Wales, Yass, 

Woolbrook, and Narrandera, and two enterprises, wool and dual purpose. Gross margins were 

predicted to be lower under forecast climate change, particularly at Narrandera. Simple breeding 

objectives were derived using GrassGro data, and selection index predictions based on these 

showed that losses in profitability could mostly be offset, and improved. The GrassGro breeding 

objectives were strongly correlated with those currently used in the MERINOSELECT genetic 

evaluation system, although there were differences in outcomes for body weight. 

 

INTRODUCTION 

The potential impact on future pasture production from increased temperatures and a more 

variable rainfall pattern has been assessed by the Southern Livestock Adaption 2030 project 

(sla2030.net.au). Even when the predictions are for minor changes in rainfall, increases in 

temperature result in a decrease in soil moisture leading to a decline in pasture production, both 

quantity and quality. Combined with a predicted increase in the number and severity of dry events, 

breeding flocks will likely have to adjust stocking rates downwards to manage the increased 

pressure on the pasture base, or utilise more conserved feed. If these adjustments are not made 

there will be an increase in the loss of perennial species from the system. The reduced use of 

fertiliser through the high rainfall zone of Australia adds to the pressure from climate change. 

Under these conditions it is relevant to ask what the appropriate breeding directions for livestock 

production are. In this paper, we use the GrassGro pasture model (Moore et. al. 1997) to estimate 

gross margins for Merino sheep enterprises under predicted climatic conditions. We then derive 

simple breeding objectives targeting these climate scenarios and compare them to the indexes 

currently used by the Merino industry 

 

MATERIALS AND METHODS 

GrassGro enterprise modelling: GrassGro was used to model pasture production of annual 

and perennial species in three locations in New South Wales, using local soil and daily weather 

records from 1960 to 2013. The locations were Yass (stocking rate between 1960 and 2013 of 14.2 

DSE/ha), Woolbrook (13 DSE/ha), and Narrandera (4.7 DSE/ha). Pasture production to 2030 was 

then modelled using climate predictions of temperature and rainfall from the HadGEM2 Global 

Circulation Model (Jones et al. 2013) with stocking rates set with a restriction to maintain a 

minimum acceptable ground cover. These were 10 DSE/ha at Yass, 9.3 DSE/ha at Woolbrook, and 

3.1 DSE/ha at Narrandera. Two different Merino enterprises were compared at each location, a 

wool system and a dual purpose system with all ewes mated to terminal sires and lambs finished in 

a feedlot. Production means for ewe fleece weight (agfw, kg), fibre diameter (afd, microns), body 

weight (awt, kg), and number of lambs weaned (nlw, lambs per ewe joined) are shown in Table 1. 

                                                           
 AGBU is a joint venture of NSW Dept. of Primary Industry and the University of New England 
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Gross margins ($/DSE) were calculated within GrassGro based on these production means, and 

median price and cost figures from 2009 to 2013. 

 
Table 1: Trait means for Wool and Dual Purpose (DP) enterprises at Yass, Woolbrook and Narrandera 

Trait Yass Woolbook Narrandera 

 Wool DP Wool DP Wool DP 

agfw (kg) 5.3 5.5 3.2 5.5 6.0 5.5 

afd (µ) 18.6 19.5 17.3 19.5 20.0 19.5 

awt (kg) 52 55 47 55 58 55 

nlw (lambs) 1.02 0.98 0.84 1.01 1.08 1.08 

 

Breeding objectives for future pasture production: Starting from these base scenarios, 

relative economic values were calculated for each trait by independently increasing the mean by 

5% and re-running GrassGro to obtain a new gross margin. These were deviated from the base 

gross margin and converted to a unit change for each trait (on the scale of MERINOSELECT 

breeding values) to obtain final relative economic values. 

Responses to selection on indexes for these breeding objectives were predicted over a 15 year 

time horizon for a ram breeding program with 300 ewes mated to 10 rams annually, selection 

intensities of 0.78 and 1.99 in females and males, and generation intervals of 4.5 and 3 in males 

and females. Two sets of selection criteria were compared: base traits including fleece weight, 

fibre diameter, CV of diameter, and body weight, and base traits plus number of lambs weaned. 

Comparison with modified MERINOSELECT objectives: MERINOSELECT provides 

standard indexes for three breeding objectives: Dual Purpose (DP+), based on a meat-focussed 

production system where surplus progeny are sold as lambs and a portion of ewes are joined to 

terminal sires; Merino Production (MP+) based on a balanced wool and meat production system 

where surplus progeny are sold as hoggets; and Fibre Production (FP+) based on a wool focussed 

production system. Importantly, the objectives feature reducing emphasis on body weight from 

DP+ to MP+ to FP+. They also differ in the level of emphasis placed on fibre diameter. DP+ is 

designed to increase fleece weight while maintaining fibre diameter, MP+ balances increased 

fleece weight and reduced fibre diameter, while FP+ targets large reductions in fibre diameter 

while holding fleece weight constant.  

Genetic correlations between GrassGro and MERINOSELECT breeding objectives were 

calculated as 𝑎1
′𝐶𝑎2/√(𝑎1

′𝐶𝑎1. 𝑎2
′𝐶𝑎2), where 𝑎1 and 𝑎2 are vectors of relative economic values 

for GrassGro and MERINOSELECT objectives and 𝐶 is the genetic covariance matrix between 

traits in the objectives. The MERINOSELECT objectives include traits which cannot be modelled 

by GrassGro, including carcass traits in DP+, worm egg count in FP+, and staple strength in all 

three. Economic values for these traits were not included when calculating correlations. The 

comparison is therefore based on modified MERINOSELECT breeding objectives containing 

equivalent traits to those modelled by GrassGro. 

 

RESULTS AND DISCUSSION 

Gross margins per DSE for the base production system parameters are shown in Table 2 for the 

period 1960 – 2013, and in 2030 under predicted climate changes. Profitability was predicted to be 

lower under forecast climate change for all locations and production systems, but particularly at 

Narrandera. Also shown are gross margins for 2030 where each trait mean was independently 

changed by 5%. For fleece weight, fibre diameter, and number of lambs weaned, the trait changes 

always led to an increase in profitability. By contrast, increasing body weight by 5% reduced 

profitability in wool systems at all three locations, and for the dual purpose system at Woolbrook. 
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For dual purpose systems at the other sites, increasing body weight had a neutral effect on 

profitability at Yass, and a positive effect at Narrandera. Note that gross margins were 

considerably higher for dual purpose systems because it was only possible to model a system 

where all ewes were mated to terminal sires, and the results do not incorporate the cost of 

replacing the ewe flock. 

 
Table 2: Gross margins ($/DSE) for base production systems from 1960 to 2013, with predicted climate 

changes in 2030, and 2030 with each trait mean changed by 5%. 

Period/Trait Yass Woolbrook Narrandera 

 Wool DP Wool DP Wool DP 

Gross margins ($/DSE) 

1960 – 2013 19.93 28.75 15.69 30.22 16.17 22.60 

2030 18.60 28.16 14.41 29.81 9.36 13.45 

+ 5% agfw 20.00 29.52 15.81 31.07 10.65 14.41 

- 5% afd 19.90 29.90 17.31 31.17 10.65 15.17 

+ 5% awt 18.00 28.19 13.87 29.63 8.33 15.17 

+ 5% nlw 19.20 29.03 14.95 30.38 10.33 15.17 

 

Predicted trait and gross margin responses from index selection on the GrassGro-derived 

objectives are shown in Table 3. Improvements in gross margin ranged from $3.58 to $6.88 per 

DSE, and were large enough to offset and improve on the loss in profitability predicted due to 

climate change at Yass and Woolbrook, but not at Narrandera. For wool traits, most systems 

resulted in balanced improvement of fleece weight and fibre diameter, the exceptions being the 

wool system at Woolbrook in which there was a greater emphasis on fibre diameter, and the dual 

purpose system at Narrandera in which a large increase in body weight limited the gain in fleece 

weight. There were large reductions in body weight for all wool systems (-2.14 to -2.93kg), 

consistent with negative economic values in these systems. In dual purpose systems there were 

smaller reductions at Woolbrook (-0.70 to -0.81kg), little change at Yass (0.07 to 0.27kg), and 

large increases at Narrandera (4.11 to 4.85kg), once again consistent with the respective economic 

values. When base traits only were recorded and included in the selection index, number of lambs 

weaned decreased for all systems except dual purpose at Narrandera. By contrast, when number of 

lambs weaned was recorded, changes in the trait were either neutral or positive for all systems (0.0 

to 0.08 lambs), and gross margin was increased by small to moderate amounts. 

 
Table 3: Trait and gross margin (GM, $/DSE, in the predicted 2030 environments) responses after 15 

years of selection with base and base+nlw selection criteria 

Criteria Trait Yass Woolbrook Narrandera 

  Wool DP Wool DP Wool DP 

base agfw 8.29 6.45 1.34 8.19 6.97 1.04 

 afd -0.92 -1.19 -1.77 -1.00 -1.04 -0.62 

 awt -2.14 0.27 -2.14 -0.70 -2.93 4.85 

 nlw -0.03 -0.01 -0.02 -0.02 -0.04 0.04 

 profit 4.06 4.05 6.82 3.58 3.78 5.73 

+nlw agfw 7.95 6.03 1.37 7.85 6.20 1.06 

 afd -0.86 -1.08 -1.74 -0.93 -0.88 -0.53 

 awt -2.18 0.07 -2.19 -0.81 -2.78 4.11 

 nlw 0.00 0.03 0.00 0.01 0.02 0.08 

 profit 4.21 4.32 6.88 3.72 4.23 6.42 
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Genetic correlations between GrassGro and the reduced MERINOSELECT breeding objectives 

(Table 4) generally show a high degree of association, indicating that the industry indexes will 

select sheep that increase profit under the predicted climatic conditions. For wool systems, the FP+ 

objective showed the highest correlations, and this was because it has the lowest level of emphasis 

on body weight and is therefore best aligned with objectives which have a negative emphasis on 

the trait. The MERINOSELECT objectives were more highly correlated with dual purpose 

systems, again because of the (increased) level of emphasis on body weight in these. The DP+ 

objective was most highly correlated with the dual purpose system at Narrandera. It is clear from 

these results that the key difference between the two approaches (GrassGro and 

MERINOSELECT) is their treatment of the impact of body weight on profitability. In the 

GrassGro model, body weight is considered as a single trait, while in the MERINOSELECT model 

body weight is separated into yearling and mature body weight, with the former targeting 

improved growth rates in sale lambs. The MERINOSELECT model does account for the cost of 

feed, and the outcome of this is that economic values are typically positive for yearling weight and 

negative for mature weight, but because genetic correlations between ages are strongly positive 

overall genetic gains for body weight are most often positive. We also note that because the 

GrassGro and MERINOSELECT objectives model feed in different ways, it may be difficult to 

resolve the differences in the treatment of body weight.  

 
Table 4: Genetic correlations between GrassGro and reduced MERINOSELECT breeding objectives 

Objective Yass Woolbrook Narrandera 

 Wool DP Wool DP Wool DP 

DP+ 0.76 0.91 0.55 0.82 0.85 0.94 

MP+ 0.82 0.94 0.67 0.89 0.86 0.89 

FP+ 0.89 0.97 0.87 0.94 0.88 0.82 

 

CONCLUSIONS 

The pasture modelling presented here shows that the future profitability of sheep enterprises 

will be lower under predicted climate change, but that in some locations genetic improvement 

programs can offset and to a degree exceed the loss in profit. Current MERINOSELECT breeding 

objectives are relatively well aligned with the genetic change required, but further work is required 

to understand the effects of body weight, and in particular to fully understand the biological and 

economic effects of reducing body weight at some or all stages of the productive lifetime of 

animals. 
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SUMMARY 

Globally, there is a trend away from microsatellites or short tandem repeats (STRs) to single 

nucleotide polymorphisms (SNPs) on the basis of perceived advantages for genetic identification, 

traceability and assessment of parentage. However, the transition is not simple and here we 

highlight unique problems faced in adapting low cost SNP-based assays for Australian systems.  

 

INTRODUCTION 

Much has been written about the promises of SNP-based parentage verification in livestock 

and animal traceability across the supply chain (Heaton et al. 2002, Van Eenennaam et al. 2007, 

Baruch and Weller 2008). Advantages discussed includes abundance, amenability to high-

throughput genotyping platforms and reproducibility across laboratories. The biallelic nature of the 

marker along with automation of bioinformatic analysis makes this process less prone to reader 

error. Unlike microsatellites, they are synergistic with existing genomics applications and hence 

more cost-effective for those breeds undertaking genomics-based breeding programs now or in the 

near future. Based upon modelling data and validation in taurine breeds the International Society 

of Animals Genetics (ISAG) recommended a set of 100 core SNP, and later added an additional 

set of 100 markers to increase the exclusion power in indicine and synthetic breeds. 

Following development and optimisation of Sequenom SNP panels, we demonstrate that the 

ISAG-recommended core bovine SNP parentage panel is not sufficient to provide accurate 

parentage verification in many common Australia production systems. The objectives of this study 

are: (1) to demonstrate factors influencing effectiveness of the tests, (2) develop additional 

analyses to clearly identify, communicate and eliminate problems pre- and post-analysis, and (3) 

maximise accuracy and completeness of parentage verifications especially in large test cohorts.  

 

MATERIALS AND METHODS 

Samples and DNA Extraction. Commercial populations of Brahman or Brahman-cross 

animals were used as case studies for sire verification only. DNA was extracted and purified from 

hair follicles using customised protocols.  

Genotyping. Genotyping was performed using iPLEX reagents and platinum protocols for 

high multiplex PCR, single base primer extension (SBE) and generation of mass spectra, as per the 

manufacturer's instructions (Sequenom, San Diego). SEQ1 iPLEX panels contained a total of 138 

SNP including 95 ISAG core plus 4 ISAG additional SNP. The additional panel in SEQ2 consisted 

of 59 SNPs for a combined total of 197 markers genotyped and total of 97 ISAG core SNP. These 

new markers were developed to be informative in Brahman and Tropical Composite breeds. Mass 

spectra were analysed using TYPER software (Sequenom, San Diego) in order to generate 

genotype calls and allele frequencies. Some sires were genotyped using the custom GeneSeek 

Genomic Profiler low-density BeadChip (GGP-LD) with ~ 25,000 SNPs assayed per sample.   

Post-genotyping data analysis. To identify issues of mislabelling or sampling errors, 

duplicate sample checks were performed by counting the number of discordant marker calls 

between two samples. Less than or equal to 5 discordant markers between genotypes across assays 

were considered likely to be from the same animal, indicative of sampling or testing errors and 
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requiring recollection to ensure accurate genotypes. Prior to requesting recollection of samples, 

putative duplicates were routinely checked via microsatellite analysis to ensure these samples did 

not represent closely related individuals (e.g. full sib). To date all cases have been confirmed as 

the same individual (n=19). Hence a discordance threshold of ≤ 5 SNP to represent potential 

duplicate samples appears a suitable value. 

Populations and Primary Analysis. Batches represented small, medium and large multi-sire 

matings, hence denoting increasing degrees of complexity in sire assignment. The small batch 

contained 20 Brahman progeny and 5 sire candidates. The medium-sized batch included 173 

Brahman crosses with 26 sire candidates. The large batch had 706 Brahmans originating from 3 

properties with a total of 42 sire candidates (Table 1).  Each batch was initially parent verified 

using the SEQ1 SNP data. Parentage analysis was via exclusion based on opposing homozygotes 

with strict criteria (exclusions ≤ 3). In the large herd, the SEQ2 SNP test was used to assess for 

increased accuracy of parentage assignment (exclusions ≤ 3). Any sire-progeny matches with a 

misconcordance rate > 3 SNP were not accepted. 

Detection of potential sibs. Often in large extensive beef herds it is not possible for the 

breeder to supply all potential sires. Thus we tested the ability of SEQ2 to assign unqualified 

animals to sib groups for a set of 204 Brahman progeny with known sire information. This 

represented progeny of 29 sires with an average of 7 progeny per sire (min=1 and max=17). These 

animals representing a subset of the large multi-sire population discussed previously. The accuracy 

of detecting the sib families was assessed against the known sire to group potential sibs from a 

method using genomic relationship matrix (GRM) developed with SEQ1 and SEQ2 panels. The 

GRM matrix was formed using all animals in the genotyped parentage analysis as per VanRaden 

(2008). The subset of animals requiring allocation to sib families was then selected from within 

this full matrix. Potential sib groups were formed by successively adding animals to the sib group 

if their mean relationship with the current group of the new animal was greater than an empirically 

defined threshold.  In the current analysis this threshold was varied from 0.12 through to 0.2 to 

examine the trade off in accuracy and number of animals assigned. In practice the threshold could 

be determined by analysis of animals with known parentage within the same parentage population. 

 

RESULTS AND DISCUSSION 

Broadly speaking, the process for the provision of large multi sire herd parentage analyses is as 

follows: owner provides hair samples to laboratory with a list of offspring and potential parents, 

lab staff prepare and genotype samples, data is analysed and results are returned to owner. The 

measure of success of a parentage verification is the proportion of all calves correctly assigned 

with no resubmission of samples required. However this is often not the case with a number 

animals remaining unresolved following the initial analysis. Unresolved cases may be due to 

incorrect sample submission, unrepresented sires/dams in the analysis, or the inclusion of 

genotyping errors with less than acceptable call rates. Data on true batches of increasing 

complexity are shown in Table 1 which illustrates a number of important considerations in 

deciding upon the test panel chosen.  

The small commercial batch had 100% of progeny assigned to a sire. All sires are accounted 

for and present in the testing pool.  For the medium sized commercial herd 82% of available 

progeny were matched to a sire despite 2 sires and 12 progeny failing to reach an acceptable SNP 

count (n ≥ 120 or ~ 85% of the total markers). These were unavailable for retesting and  not 

included in the primary analysis. Upon consultation with the owner, one additional sire candidate 

was identified and genotyped. When this sire was included in a reanalysis, the overall total 

increased to 89% of available progeny matched to a sire which is comparable to that achieved 

through microsatellites. 
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Table 1. Case studies from commercial batches across small, medium and large populations 

POPULATION 
 

BREED 
 

TEST 
 

PROGENY 
(n) 

SIRES 
 (n) 

Assigned 
(%) 

Unassigned 
 (%) 

Recollect 
(%) 

SMALL  Brahman SEQ1  20 5 100 0 0 

MEDIUM: 
analysis 1 

Brahman 
X SEQ1  173 24 82 11 7 

MEDIUM: 
analysis 2 

Brahman 
X SEQ1  173 25 89 4 7 

LARGE:Analysis 1 Brahman SEQ1  706 42 57 35 8 
LARGE:Analysis 2 Brahman SEQ2  706 42 97 3 0 

 

As shown in Table 1, the rates of successful assignment are affected by a number of factors 

including size and completeness of the animal data set provided at initial testing. To better identify  

the factors that may be leading to failures in assigning parents affecting results, pre- and post-

analysis data assessment tools have been generated to identify and resolve issues in a timely 

fashion. For example, the duplicate genotype check before parentage verification has been 

invaluable in identifying problems such as transcriptional errors during sampling or laboratory 

error, and as such saves time and increases accuracy/confidence as recollects for suspect samples 

can be organised promptly. Similarly, and especially for large batches of sample, graphic 

representations such as that shown 

in Figure 1 can be helpful in 

demonstrating issues and corrective 

steps required to resolve the 

analyses.  

 

Figure 1. Representation of 

data quality and reasons for 

unassigned progeny in initial 

testing. Pink represents qualified 

animals, Green represents those 

requiring retesting, and Blue 

represents missing sires. 

Noting the increased complexity 

of the large commercial batch, it 

would be recommended to future 

clients that all sires are genotyped 

using the GGP-LD test with 

progeny and dams on the lower density SEQ1/SEQ2 assay. Generally the number of sires is small 

in comparison to the total number of animals requiring genotyping and the marginal cost of 

genotyping the sires on a higher density panel is low and provides three immediate benefits: firstly 

the SNP array tends to be more accurate, secondly they have higher call rates and thirdly any 

particularly difficult to resolve cases (progeny) can be upgraded and testing across a much larger 

set of markers. While there is significant benefit in upgrading sires in particular to GGP-LD, the 

economic impost of genotyping all animals (sires and progeny) on this platform remains an 

impediment, and genotyping progeny on the smaller assays offsets this cost.  Previous analyses 

have shown the importance of increasing marker counts in these large herds, as shown in the 

primary analysis in Table 1 where only a subset of markers representative of the SEQ1 test panel 

are used in parentage verification. While 97% of progeny matched to a sire using SEQ2 data for 

progeny (analysis 2), had the SEQ1 test option been chosen only 57% of progeny were resolved.   
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It is important to note that the 97% assignment for analysis 2 was achieved only after extensive 

consultation with owners. In the first iteration of the SEQ2 analysis, 79% of progeny were 

assigned to a sire which is still superior to that of the SEQ1 test.   

With large multi-sire groups where herds may have been across multiple properties or 

extensively grazed, the nature of the enterprise makes complete mustering and collection of all 

sires logistically and economically difficult and it is not uncommon to have missing sires. While 

missing sires are evident through numbers of unassigned progeny, it is not immediately clear if 

one or more sires are missing. To this end, the use of GRM has been investigated to cluster 

progeny and hopefully give an estimate of missing sire numbers. In silico testing using CRC data 

for progeny (n = 204) was used to identify an appropriate stringency to allow clustering whist 

retaining relative accuracies. A minimum mean sib relationship of 0.13 was deemed the best 

balance between accuracy and percentage assigned. In practice this threshold would be determined 

by examining the mean relationship in animals within each data set where parentage is known. It is 

important to note that this is not intended to be a verification tool, but rather used as a guide only 

to estimate the likely number of sires not submitted and the likely groups of sibs. The benefits of 

returning estimated sire-groups for unresolved calf cases are considerable. Using this data and 

specifically animal groupings, producers may be able to identify the missing sires by paddock, 

birth/joining date or even physical characteristics of the calf groups.  

 

Table 2. Accuracy and assignment rates of GRM analyses for  

clustering unassigned progeny in parentage verification analyses 

While there are very good 

arguments for the shift from 

microsatellites to SNP-based 

parentage and in the long term 

SNP will become the dominant 

mode of identification in parentage and traceability testing, the difficulties associated with this 

transition have often been understated and largely unreported. The Australian cattle industry with 

its large diversity of breeds and extensive production systems represents a sector where unique 

challenges to successful transition exist. Previous research has demonstrated that ISAG's core (100 

SNP) panel can be inadequate for parentage testing for some breeds (Strucken et al. 2014) and our 

recent experiences suggest this is also the case for large Bos indicus cohorts in Australian 

production systems. Clear communication between laboratory and producers is essential including 

identification of challenges or constraints to achieving high levels of assignment. For example, 

tight deadlines for verification on consanguineous groups can be best met if sires and/or dams are 

collected and genotyped in advance of the progeny. Correct sampling techniques (clean and 

adequate amounts) is important. Improved results obtained over three seasons for a large Brahman 

herd from 71% assignment in year 1 and 2, to 89% in Year 3 were largely attributable to improved 

sampling technique on-farm. It is our view that implementation of these additional analyses at 

strategic points across the pipeline will further enhance rates of assignment.  
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 Stringency 

 

0.12 0.13 0.14 0.15 0.2 

Accuracy 85% 93% 93% 94% 100% 

% assigned 60% 55% 50% 41% 19% 
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SUMMARY 

BREEDPLAN, the Australian beef cattle genetic evaluation system, uses ultrasound scan 

intramuscular fat as a correlated trait for predicting carcase intramuscular fat. More recently, it has 

been observed that seedstock herds are being scanned at younger ages and lower levels of fatness 

and this research was undertaken to examine the effect on heritability and the genetic correlation 

estimates when scan records are removed using fat depth thresholds. Using BREEDPLAN data to 

estimate these genetic relationships, this study yielded genetic correlation estimates of 0.37 and 

0.36 in Angus and 0.69 and 0.54 in Hereford for bull and heifer scan intramuscular fat, 

respectively.  The results showed a useful improvement in the genetic correlation between bull 

intramuscular fat and carcase intramuscular fat in Angus cattle to 0.48. However, for Angus 

heifers and Hereford bulls and heifers there was no significant improvement, suggesting that 

strategies to reduce lean scanning will not improve the genetic correlation estimates in those cases. 

INTRODUCTION 

Current genetic correlation estimates used in BREEDPLAN, the Australian beef cattle genetic 

evaluation system, (Johnston et al. 1999) between scan intramuscular fat (IMF) and abattoir 

carcase intramuscular fat (CIMF) are based on a pooled temperate breeds analysis from the Beef 

Cooperative Research Center I (Reverter et al. 2000). Subsequent re-analysis of the genetic 

correlations between scan intramuscular fat and CIMF of industry data have produced estimates 

for Angus (Reverter and Johnston 2001; Bὂrner et al. 2013) and Hereford (Reverter and Johnston 

2001; Meyer et al. 2004) lower than the pooled breed analysis. 

Compared to 2010 the scanning of Angus bulls in 2014 occurred on average 40 days younger 

due to a trend towards producers scanning bulls at 400-days. Bὂrner et al. (2013) estimated that 

scanning younger bulls (mean age 426 days) compared to older bulls (590 days) reduced the 

genetic correlation for scan intramuscular fat and CIMF from 0.43 to 0.34. It was hypothesised 

that the genetic variation in intramuscular fat was not being expressed at the younger age, or could 

not be detected by the ultrasound machines in the leaner cattle. 

Preliminary analysis (pers. comm. M.G. Jeyaruban) showed that the lower genetic correlations 

were, in part, a consequence of scanning a large number of contemporary groups (CG) with a 

mean rib fat below 3mm and a mean P8 fat below 5mm. However, BREEDPLAN users were 

cautious of implementing rib and P8 fat restrictions to scan IMF records as restrictions would lead 

to a large proportion of records, up to 50% in Angus bulls, being excluded from evaluations, 

unfairly disadvantaging herds with genetically lower fat levels. 

The objective of this study was to determine the merit of using rib and P8 fat depth thresholds 

as criteria to improve the genetic correlation between scan IMF and CIMF in Angus and Hereford 

breeds. The study also explored the impact of retaining lean CG that had large variation in scan 

IMF on genetic correlation estimates. 
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MATERIALS AND METHODS 

The study analysed data submitted to the Angus Society of Australia and Herefords Australia 

databases for BREEDPLAN evaluations prior to November 2014. The majority of CIMF records 

in the Angus and Hereford data sets were from the Beef CRC (Reverter et al. 2000) with only a 

few breeders progeny testing and recording CIMF. 7,833 Angus CIMF and 1,836 Hereford CIMF 

records were used in this study (Table 1 and 2). The Angus ultrasound scanning data set contained 

226,687 BIMF and 245,840 HIMF records (Table 1) and there were 86,603 BIMF and 70,020 

HIMF records for Hereford (Table 2). 

The following approaches were taken to remove lean CG prior to estimation of the genetic 

correlations between scan and carcase intramuscular fat.  

 All data: all scan intramuscular fat records were retained 

 Subset 1:  Scan CG with a mean rib fat depth below 3mm and a mean P8 fat depth below 5mm 

are removed except for CG with a mean P8 > 4mm and where the sum of the CG’s mean and 

standard deviation for P8 fat was greater than 5 

 Subset 2: sub set 1 + CG with high phenotypic variation for scan IMF (sd. of IMF in top 25%)  

For both the Angus and Hereford heifers the analysis was repeated with a more stringent cut 

off based on a rib fat depth of 5mm and P8 fat depth of 7mm. 

Statistical Analysis. Genetic variances, correlations and variance ratios were estimated by 

applying restricted maximum likelihood (REML) in a series of bivariate animal model evaluations 

with three generations of pedigree in WOMBAT (Meyer 2007). For Angus ≈ 52% of the CIMF 

records had a corresponding HIMF record. However, no Angus bulls or Herefords with a scan IMF 

record had a corresponding CIMF record. 

The model fitted for CIMF had fixed effects of CG, linear and quadratic effects of carcase 

weight as covariates and a random additive genetic effect of animal. CG were defined as per 

Graser et al. (2005). Models fitted for BIMF and HIMF included the random additive genetic 

effect of animal and sire x herd as a random effect. The model also included the fixed effects 

season of birth (2 levels, summer and winter), sex (fitted to HIMF, 2 levels), dam age (scaled to 

5yrs old) x season, dam age squared x season, heifer factor deviation x season (if the dam was a 

heifer age was deviated from 2yrs old), and age (centred at 500 days) x sex  

 

RESULTS AND DISCUSSION 
Means and Variation. In Angus the mean CIMF was 8.32% compared to means of 3.28% and 

4.86% for BIMF and HIMF, respectively (Table 1). The standard deviation for the scan IMF traits 

was also lower than observed for CIMF. Removing the lean CG from the scan records increased 

the mean to 3.84% and 5.18% for BIMF and HIMF, respectively without noticeably reducing 

standard deviation. 

Hereford CIMF had a mean of 4.29% which was higher to the mean for BIMF (3.20%) and 

HIMF (3.83%; Table 2). However, the variation in CIMF (sd. of 2.16%) was noticeably greater 

than observed for BIMF (1.35%) and HIMF (1.65%; Table 2). As observed for Angus scan IMF 

traits, removing the lean CG increased the mean without significantly reducing the standard 

deviation (Table 2) for scanned traits. 

Genetic Variation and Heritability. The heritability of CIMF in Angus was moderate (0.32) 

(Table 2) and similar to earlier estimates from Angus BREEDPLAN data (Reverter and Johnston 

2001; Bὂrner et al. 2013). The heritability of CIMF in Herefords (0.37; Table 2) aligns with the 

observation in Angus and earlier estimates from the Hereford BREEDPLAN data (Reverter and 

Johnston 2001, Meyer et al. 2004). 

Additive genetic variation for BIMF and HIMF in Angus was lower than observed for CIMF 

(Table 1). The all data BIMF and HIMF records for Angus had heritability estimates of 0.17 and 

0.27, respectively and were similar to previous estimates of Reverter and Johnston (2001) and 
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Bὂrner et al. (2013). Removing the leaner CG from the Angus BIMF records led to a slight 

increase in the additive genetic variance and heritability (0.21; Table 1). The heritability of HIMF 

was not improved by removing CG for a rib fat of 3mm and P8 fat of 5mm (Table 1). However, if 

fat depth thresholds were set at a rib fat of 5mm and P8 fat of 7mm the heritability of HIMF 

increased to 0.33 (Table 1). 

The heritability of BIMF in Herefords was estimated at 0.20 (Table 2) which was slightly 

lower than previous estimates using Hereford BREEDPLAN data (Reverter and Johnston 2001, 

Meyer et al. 2004). Removing the lean CG increased the heritability of BIMF and HIMF to 0.23 

and 0.30, respectively (Table 2). As observed for Angus heifers, using the more stringent fat depth 

cut offs resulted in a larger increase in the heritability estimate for HIMF (Table 2).  

 

Table 1: Estimates of additive genetic variance (σ
2
a), heritability (h

2
) of scan IMF traits and 

genetic correlation (rg) between scan and carcase intramuscular fat (CIMF) for Angus   

 

Subset Records % of data Mean (%) SD σ2
a h2 rg CIMF 

Carcase IMF 

All data 7,833 100 8.32 3.90 1.324 ± 0.202 0.32 ± 0.05  

Bull IMF (fat cut offs BRF=3,BP8F=5) 

All data 226,687 100 3.28 1.49 0.163 ± 0.007  0.17 ± 0.01 0.37 ± 0.11 

Subset 1 120,636 53 3.84 1.38 0.190 ± 0.010 0.21 ± 0.01 0.48 ± 0.13 

Subset 2 149,122 66 3.61 1.50 0.198 ± 0.010 0.19 ± 0.01 0.47 ± 0.12 

Heifers and steer IMF (fat cut offs HRF=3,HP8F=5) 

All data 245,840 100 4.86 1.85 0.395 ± 0.009 0.27 ± 0.01 0.36 ± 0.07 

Subset 1 204,551 83 5.18 1.74 0.427 ± 0.010 0.29 ± 0.01 0.37 ± 0.07 

Subset 2 235,580 96 4.93 1.84 0.408 ± 0.010 0.27 ± 0.01 0.36 ± 0.07 

Heifers and steer IMF (fat cut offs HRF=5,HP8F=7) 

Subset 1 137,850 56 5.60 1.62 0.444 ± 0.013 0.33 ± 0.01 0.39 ± 0.08 

Subset 2 162,373 66 5.31 1.80 0.440 ± 0.012 0.28 ± 0.01 0.37 ± 0.08 

 

Genetic Correlations. If all BIMF records were incorporated in the bivariate analysis of BIMF 

and CIMF for Angus, the genetic correlation estimate was 0.37 (Table 1). This estimate was higher 

than correlations reported by Reverter and Johnston (0.13; 2001) but similar to the estimates by 

Bὂrner et al. (2013) in young (0.34) and older bulls (0.43). By removing lean CG, the genetic 

correlation estimate between BIMF and CIMF in Angus increased to 0.48 (Table 1). 

Reintroducing  some of the lean CG that had IMF variation in the top 25% lead to only a small 

reduction in the genetic correlation compared to when all lean CG are removed (0.47) and 

remained noticeably higher than when all data was included (Table 1). Increasing the variation 

threshold to include CG in the top 50% resulted in a genetic correlation of 0.39 (not presented). 

The results suggest that applying a threshold based on minimum fat depth to scan IMF data 

resulted in higher estimates of the genetic associations between scan and carcase IMF.  

Removing lean CG from the Angus HIMF records did not improve the genetic correlation with 

CIMF (Table 1). While using more stringent fat cut offs (rib fat < 5mm P8 fat < 7mm) leads to 

increases in the additive variance and heritability of HIMF the increase in the genetic correlation 

with CIMF was minimal (Table 1). The correlation between HIMF and CIMF in the Angus 

industry data was previously reported at 0.45 (Reverter and Johnston 2001) and 0.39 (mean age 

443 days) and 0.42 (583 days; Bὂrner et al. 2013).  

In Herefords, removing data selectively did not result in increases in either heritability 

estimates for BIMF or HIMF, or in the genetic correlations between BIMF and CIMF, or HIMF 

and CIMF (Table 2).  The genetic correlation between BIMF and CIMF in Hereford was 0.69 (all 

data) which was slightly stronger than the previous estimate of 0.59 presented by Meyer et al. 
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(2004). This may, in part, be due to Hereford bulls being scanned on average 30 days older and 

0.5mm fatter over the rib then the Angus Bulls. The genetic correlation between HIMF and CIMF 

in Herefords was considerably lower than the previous estimate presented by Meyer et al. (2004) 

of 0.97.  

The estimates of the genetic correlation between scan IMF and CIMF by Bὂrner et al. (2013) 

and within this study suggest that scanning younger and leaner cattle will reduce the strength of 

the association. This may, in part, be due to a decline in the accuracy of the scan equipment when 

measuring lean cattle, but further research will be required to test this hypothesis. 

 

Table 2: Estimates of additive genetic variance (σ
2
a), heritability (h

2
) of scan IMF traits and 

genetic correlation (rg) between scan and carcase intramuscular fat (CIMF) for Hereford   

 

Cut off Records % of data Mean (%) SD σ2
a h2 rg CIMF 

Carcase IMF  

All data 1,836 100 4.29 2.16 0.46 ± 0.14 0.37 ± 0.10  

Bull IMF (fat cut offs BRF=3,BP8F=5) 

All data 86,603 100 2.93 1.35 0.12 ± 0.01 0.20 ± 0.01 0.69 ± 0.17 

Subset 1 63,274 73 3.20 1.28 0.14 ± 0.01 0.23 ± 0.01 0.61 ± 0.18 

Subset 2 69,931 81 3.10 1.33 0.14 ± 0.01 0.22 ± 0.01 0.62 ± 0.18 

Heifers and steer IMF (fat cut offs HRF=3,HP8F=5) 

All data 70,020 100 3.83 1.65 0.30 ± 0.01 0.28 ± 0.01 0.54 ± 0.16 

Subset 1 62,208 89 4.02 1.59 0.32 ± 0.01 0.30 ± 0.01 0.48 ± 0.15 

Subset 2 64,250 92 3.97 1.62 0.32 ± 0.01 0.30 ± 0.01 0.47 ± 0.16 

Heifers and steer IMF (fat cut offs HRF=5,HP8F=7) 

Subset 1 44,657 64 4.26 1.53 0.36 ± 0.02 0.33 ± 0.02 0.55 ± 0.18 

Subset 2 51,049 73 4.06 1.64 0.36 ± 0.02 0.30 ± 0.01 0.46 ± 0.18 

 

CONCLUSION  
The continuing trend towards scanning Angus bulls at 400-days and at leaner subcutaneous fat 

depths is causing a decline in the genetic correlation between scan and carcase IMF. Removing 

contemporary groups based on fat depth thresholds resulted in a slight strengthening of the genetic 

correlation between scan and carcase IMF in Angus bulls. Producers should avoid scanning herds 

with fat levels below the cut offs presented, therefore allowing animals the opportunity to express 

their genetic merit for IMF. Increasing the number of CIMF records is desirable, yet difficulties in 

obtaining abattoir progeny test data mean there is also a need to improve the quality of scan IMF 

records. Alternatively the genetic correlations between scan and carcase IMF in BREEDPLAN 

evaluations should be adjusted, which will reduce the utility of scanning, but due to the large 

number of animals that can be scanned and the relative low cost of measuring scan IMF it still 

remains the most practical correlated trait for CIMF. 
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SUMMARY 

National (two-step) genomic evaluations for Holstein-Friesian dairy cattle have been available 

in Ireland since 2009; retrospective analysis reveals minimal bias in prediction and more accurate 

rankings compared to pedigree index. The size of the training population for dairying (up to 5,105 

animals) has increased 5-fold in recent years through sharing of genotypes. One-step multi-breed 

genomic predictions for beef cattle will become official in autumn 2015 made possible through a 

genotyped population of over 100,000 individuals. Genotypes of all cattle are from the custom 

International Dairy and Beef genotype panel developed in Ireland; this panel consists of 18,217 

SNPs. Genotyping of 11,400 sheep for the development of genomic predictions has just begun. 

 

GENOMIC EVALUATIONS IN DAIRY 

Past. Genomic selection was launched in Ireland in February 2009 for animals that were >87.5% 

Holstein-Friesian, but no more than 12.5% Friesian; the cost was €50 per animal and was freely 

available to all (i.e., both national and international farmers, breeders, breeding companies). 

Analyses revealed poor accuracy of genomic predictions in pure Friesians at the time so an 

initiative was undertaken to genotype high reliability pure Friesian males; genomic predictions for 

Friesians were available in 2010. The initial training population consisted of 998 high reliability 

Holstein-Friesian AI sires. Predictions were (and still are) undertaken based on a two-step 

approach using custom developed software. Predicted transmitting abilities (PTAs) from domestic 

genetic evaluations, weighted by their reliability were the dependent variables; later years used 

MACE evaluations as the dependent variable. The number of animals in the training population 

increased in the following years through bilateral sharing agreements and in 2015 includes up to 

5,105 animals. Sharing was (and continues to be) on the basis that genotypes will not be passed 

onto third parties, but more importantly that no restrictions are imposed on who can obtain a 

genomic evaluation. For example, genomic predictions are undertaken by the Irish Cattle Breeding 

Federation (ICBF) for thousands of animals annually for non-indigenous breeding companies.  

 

Present. Once a bull has >50% reliability for direct calving difficulty (a crucial trait in Ireland) in 

Ireland, then that bull is available for widespread use. Ireland maintains a national breeding 

program (i.e., G€N€ IR€LAND) to ensure robust genetic evaluations especially for calving 

difficulty and monitoring of congenital defects. No financial incentives exist for G€N€ IR€LAND 

farmers other than reduced semen cost. The most recent daughter-based national genetic 

evaluation of 182 bulls genomically tested between the years 2009 and 2012 but now with >70% 

reliability for milk production and reproduction are in Table 1; the correlation with their respective 

pedigree index predictions and their first genomic predictions in their year of sale are in Table 1. 

Genotypes of all cattle are generated using the custom International Dairy and Beef (IDB) 

genotype panel developed in Ireland. This panel includes 18,217 SNPs which include an extra 

5,765 SNPs, additional to the Illumina low-density base content for imputation to higher density 

(especially in beef). Also included are 1,927 SNPs for imputation to microsatellites for parentage 

testing as well as four lethal mutations and causal (or tightly linked) SNPs in major genes 

associated with performance or congenital defects. A total of 2,973 SNPs as part of on-going 

research projects are also included on the panel. 
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Table 1. Mean (reliability) daughter-based PTAs from the most recent genetic evaluation as 

well as past parental average (PA) or genomic-based PTAs; also included is the correlation 

with the most recent daughter PTA for both PA and genomic PTAs 

 

Mean 

 

Correlations 

Trait Daughter PA Genomic 

 

PA Genomic 

Milk (kg) 116 (90) 168 (41) 108 (61) 

 

0.71 0.79 

Fat (kg) 10.4 11.9 10.2 

 

0.55 0.7 

Protein (kg) 7.8 9.6 7.7 

 

0.63 0.75 

Fertility (d)  -4.5 (71)  -3.1 (30)  -3.7 (46) 

 

0.6 0.63 

Survival (%) 2.01 1.52 1.7   0.41 0.63 

 
Figure 1. (a) Number of animals in the training population generated within Ireland (Black) 

or from bilateral sharing (grey) and (b) proportion of semen sales from genomically tested 

sires (broken line) and genetic superiority (€) of used genomically tested sires relative to used 

proven bulls (continuous line); standard deviation of national index (EBI) is €72.  

 

Future. Attempts to exchange Jersey genotypes were largely unsuccessful; therefore an initiative 

began in 2014 to genotype commercial crossbred Jersey cows with the view to developing 

genomic predictions for Jersey animals in 2015. Farmers paid half the cost of the genotyping; 

2,811 genotypes from Jersey crossbred cows now exist with more being genotyped in 2015. 

Research is currently underway on the potential of undertaking a one-step multi-breed genomic 

evaluation for dairying with possible implementation in spring 2016. Ireland is part of the 1000 

Bull Genomes Project and has imputed all dairy genotypes to full sequence. Genome-wide 

association studies are underway to attempt to more closely track the causal mutations; once useful 

information is detected it will be added to updated versions of the IDB. Research is also underway 

on generating estimates of genetic/genomic merit for difficult to measure traits. One such initiative 

is the global dry matter initiative (gDMI) where across country genomic predictions for feed intake 

have been undertaken (de Haas et al., 2015) and SNP effects on each country’s scale were 

generated. Results showed a benefit from sharing of phenotypic and genomic information, 

especially in populations where the phenotypic information was lacking. Interest in Ireland is 

intensifying on the potential of precision genomic matings especially as part of the national sire 

advice algorithms. 

 

GENOMIC EVALUATIONS IN BEEF 

Past. The initial analysis in 2013 with 4,233 high density genotypes from multiple beef breeds 

revealed an insufficient population size to derive meaningful genomic predictions. In some 

instances a negative correlation existed between genomic predictions and progeny-based 

predictions when the breed in the validation dataset was not included in the reference dataset. A 

considerably large dataset of phenotyped and genotyped cattle was necessary to implement an 

accurate multi-breed genomic selection program. With an expectation of changing parentage 
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testing in cattle from microsatellites to SNPs, breed societies were requested to genotype all male 

calves using the IDB panel in 2014. Considerable transfer of germplasm exists between dairy and 

beef herds in Ireland. 

 

Present. Funding from the EU to Irish farmers has, for the last 5 years, been conditional on the 

recording of sire of the calf born and additional phenotypic information; it is a legal requirement to 

record the dam. In 2014, farmers were also required to genotype at least 15% of their cow herd; 

animals were optimally selected from the national database to aid in the derivation of genomic 

predictions – selection was based on genomic diversity, phenotypic diversity and information 

content (http://www.icbf.com/wp/wp-content/uploads/2014/05/Selection-of-animals-for-use-in-

beef-genomic-selection-program.pdf). Within farm, natural mating sires were prioritised. 

Following edits, 105,561 genotypes 

imputed to higher density, were 

available on AI, pedigree and 

commercial animals. The reliability 

of genetic evaluations for a series of 

linear type traits increased when a 

one-step genomic evaluation was 

undertaken (Figure 2). Within breed 

correlations between the genomic 

EBVs and progeny based EBVs 

varied from 0.51 to 0.73. No 

difference existed in predictive 

ability between high density or 

50,000 SNPs.  

Figure 2. Mean reliability of young bulls based on pedigree index (light bar) and genomic 

predictions (dark bar) for a selection of type traits; min and max represented as error bars. 

 

Future. Focus is on difficult to measure traits (e.g., feed intake and meat quality); for example it is 

hoped to genotype and phenotype over 15,000 animals for meat quality in the next 24 months. 

Because of the short shelf-life of minced-meat, amplicon sequencing with several hundred SNPs 

for the determination of Angus breed proportion is under investigation to quicken turn-around time 

for genotyping. The Irish dairy herd is expected to expand by approximately 30%; as reproductive 

performance improves with selection on the national dairy breeding objective, the scope for 

mating dairy cows with beef semen is greater. Hence, a breeding program for beef bulls to use on 

dairy cows has begun.  

 

GENOMIC EVALUATIONS IN SHEEP 

Present. Funding to genotype 11,400 sheep exists. In total, 363 highly unrelated sheep from 18 

different “breeds” in Ireland have been genotyped on the Illumina high density ovine beadchip. 

This is to establish breed differentiation and quantify the potential of across breed genomic 

predictions. Following discussions on whether to genotype commercial crossbred animals with 

good phenotypes or purebred pedigree animals, it was decided to genotype pedigree animals at the 

top of the breeding pyramid to, amongst other reasons, maximise the likelihood of genotyping 

continuing beyond the lifetime of the project. Ear biopsies of all pedigree animals (i.e., rams, ewes 

and lambs) are currently being collected from participating farms who record information in the 

national database. Influential parents will be genotyped using the Illumina high density beadchip, 

less influential parents will be genotyped using the Ovine50 beadchip and the remaining parents 

will be genotyped using a lower density panel being developed by an international consortium.  
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Future.  A multi-breed genomic evaluation will be attempted. The potential usefulness of an ultra-

low density, ultra-low cost genotype panel for parentage assignment (in commercial or progeny 

test animals) and possible screening for some structural mutations of interest (e.g., scrapie) will 

also be investigated. Sharing of Texel genotypes with the UK has begun. Suffolk EBVs from both 

the UK and Ireland have also been exchanged. Table 2 summarises the correlations between EBVs 

and inferred genetic correlations (following adjustment for accuracy of the respective national 

EBVs; Calo et al., 1973). The strong correlations that exist between some traits suggest a possible 

advantage in augmenting the accuracy of genomic evaluations by using the (weighted) UK EBVs 

as correlated traits in the Irish genomic prediction algorithms. No investment has yet been made in 

sequencing of sheep in Ireland. 

 

Table 2. Number of animals (n), correlation between EBVs (rEBV) and inferred genetic 

correlations (rg) for a series of traits between the UK and Ireland 

Trait n rEBV rg 

8-wk weight 222 0.254 0.937 

Weight at scanning 222 0.190 0.648 

Ewe weight 222 0.012 0.073 

Scanned muscle depth 210 0.075 0.258 

Scanned muscle fat 210 0.175 0.666 

Number of lambs born 215 0.450 0.993 

 

LESSONS LEARNT AND FUTURE PLANS 

Not having a national repository for biological samples or DNA bank was a short-sight. Since 

2010, two semen samples have to be provided, free-of-charge, to the ICBF for all AI bulls used in 

Ireland. The decision to develop a custom genotype platform was the correct decision; it did not 

require considerable effort (approximately 12 weeks to develop although validation of genotypes 

for some mutations is on-going), or alignment to any one genotyping platform or service provider; 

it did provide greater flexibility on what variants to include, and the cost per genotype was lower 

than could be provided by any other service provider with an available custom genotype platform. 

The list of SNPs included on the international dairy and beef chip is available from the author.  

The development of genomic selection in the Irish dairy population cost approximately 

AUS$0.55 m (including research personnel but excluding the required IT developments for 

reporting); this was predominantly funded by competitive research grants and bilateral sharing of 

genotypes. Genomic selection has delivered AUS$23m to the dairy sector since 2009. Genomic 

selection in sheep (excluding the cost of phenotyping and IT developments) will cost 

approximately AUS$0.96 m almost exclusively from a competitive research grant. Genomic 

selection in beef has cost €5.7 m, acquired from competitive research grants (€0.75 m) or EU 

farmer support mechanisms. Although it does require public investment, retaining public 

ownership of genomic proofs and the free access to genomic predictions is a considerable 

advantage. Sharing of genotypes with minimal conditions is also key to success.   

Like mobile phones and computers, it appears that the cost of genotyping using arrays is 

unlikely to reduce considerably in the near future but instead the quantity of SNPs to be included 

will increase. This will avoid the necessity to impute, improving computing time and accuracy.  
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- HOW GENOMIC INFORMATION AND PRECISE PHENOTYPES HELP TO 
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SUMMARY 

Disorders of the bovine hoof are important factors influencing the well-being and milk 

production of the dairy cow. Here, results from 2 different studies were used to demonstrate the 

value of how contemporary groups are defined, standardized recording, and improved trait 

definitions, to investigate the genetic background of important claw disorders. In the first study, 

1,962 first-lactation cows from 7 commercial (contract) herds were subjected to hoof trimming 

with an assessment of hoof disorders as binary traits. Sole hemorrhage (SH), white line disease, 

sole ulcer, and interdigital hyperplasia (IH) showed to be the most important noninfectious claw 

disorders. The DNA of 1,183 of the cows was used for analyses with a custom-made array of 384 

SNP. It revealed that SNP rs29017173 is significantly associated with SH disorder status. For IH, 

bull lineages with high proportions of IH affected daughters and granddaughters were identified. 

With the help of 192 genotyped cows (Illumina BovineSNP50 BeadChip) from well-selected 

cohorts, 4 candidate regions were identified. A second study based on 729 pregnant heifers from 

an US-American commercial dairy herd focused on bovine digital dermatitis (DD). New DD trait 

definitions were used to investigate the genetic background of this infectious disease. The new 

traits enabled the differentiation of clinical stages and their succession over time. The heritability 

estimates for the DD traits ranged between 0.19 and 0.52. An association study, based on 106 

genotyped cows from this study, revealed 3 promising candidate regions.  

 

INTRODUCTION 

The implementation of genomic selection by large parts of the animal breeding industry has 

enabled gains in predicting the accuracy of breeding values, increased genetic progress, and 

allowed new breeding strategies. With more precise knowledge of the genetic information, it 

seems that the limitation is now phenotype availability. This limit is caused by either the quality or 

the quantity of phenotypes. In general, precise phenotypes and standardized data management are 

key aspects for high quality data. New or hard to measure traits often result in a small, or hardly 

representative sample. Health traits have recently been growing in importance, but are often 

especially challenging (Egger-Danner et al. 2015). Most farms record disease events as they occur 

and thus the successful principal to work with defined contemporary groups at a specific point in 

time is generally neglected. 

This paper presents the use of defined contemporary groups, standardized recording, and 

improved trait definitions, to investigate the genetic background of and to identify associated 

genetic regions for the claw disorders sole hemorrhage, interdigital hyperplasia, and bovine digital 

dermatitis in dairy cattle.  

 

 

MATERIALS AND METHODS 

This paper is based on two different trials.  
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Trial_1: Seven commercial herds in north-eastern Germany were selected from a pool of 

contract dairy herds of the breed association Mecklenburg-Vorpommern. All herds had similar 

housing conditions and feeding. First lactation cows being in a similar stage of lactation were 

defined as contemporary groups. A fixed team of 3 people assessed a total of 1,962 first-lactation 

Holstein cows during 24 herd visits. Claw diagnoses were recorded for hind legs at the time of 

hoof trimming. The disorder status included assessing clinical and subclinical claw disorder cases 

as binary traits. A detailed description of the trial was described in Schöpke et al. (2013).  

About half of the cows (1,183) were genotyped using a custom-made 384 array.  

Before this study, no published QTL for sole hemorrhage (SH) were available. Thus, the 

selection of SNP for the custom-made array followed the general assumption that genetic 

correlation between leg conformation traits and claw disorders exists. 

SNP selection was based on a 4-step-strategy that included an in silico analysis of published 

QTL associated with conformation traits in cattle and pigs; the identification of syntenic 

chromosomal regions across cattle, pigs, and human; the selection of candidate genes; and the 

selection and validation of SNP. The list of candidate genes contained 1,035 genes that were 

assigned to at least one of the biological functions development, function and disease of skeleton, 

muscles, and connective tissue; cell signalling; disorder in vitamin and mineral metabolism; or 

hydrate metabolism. For the array, SNP within 384 of these genes were selected according the 

following criteria: validation for NCBI or bovine 50K chip, SNP interval (0.7–1.0 Mb), minor 

allele frequency (>0.05), not located in a repeat region, and tested on a Holstein-Frisian 

population. With regard to the selection of cows for genotyping with the custom-made array, entire 

contemporary groups were selected that exhibit a “normal” range of prevalence rates for the claw 

disorder sole hemorrhage. All further samples were genotyped for 1 SNP that was strongly 

associated with SH by a fluorescence resonance energy transfer assay (Förster 1946). Detailed 

description for DNA extraction, SNP selection, and genotyping can be found in Swalve et al. 

(2014). In a second part of this trial, contemporary groups with the highest prevalence rates for 

interdigital hyperplasia (IH) were used as a basis for genotyping 192 cows with the Illumina 

BovineSNP50 BeadChip. as described in Sammler et al. (2015). 

 

Trial_2: In this trial, 729 pregnant (nulliparous) heifers from a commercial Holstein dairy herd 

in Wisconsin, USA that was endemically affected by bovine digital dermatitis (DD), were 

inspected in a stand-up chute on a regular basis: at least 3 times per heifer within a mean (SD) 

individual cow observation time of 176 days (20.1). In total 6,444 clinical observations for DD 

were collected applying the M-score system as defined by Döpfer et al. (1997) and Gomez et al. 

(2014). This system is a classification scheme for stages of DD that allows a macroscopic scoring 

based on clinical inspections of the bovine foot, thus it describes the stages of lesion development. 

Briefly, lesions were classified as M0 for unaffected animals with no clinical lesions; as M1 for 

infected heifers with early lesions smaller than 2 cm in diameter (non-active); and as M2 for 

infected heifers with a classic active lesion of >2 cm of diameter considered to be infectious. An 

M4 stage denotes late and chronic stages of DD with (M4.1) or without (M4) small (<2 cm 

diameter) M1 lesions within their perimeter. M-scores were used to define new DD trait 

definitions with different complexity (Table 1) as described in Schöpke et al. (2015). Trait TBIN 

denoted a very basic description of the clinical DD status. This binary trait separated between 

unaffected heifers throughout the entire observation period and all other heifers. A special 

consideration of heifers reaching an active stage of lesion (M2 or M4.1) was given with trait 

TBINA. Trait TSEVCAT described the severity of DD cases a heifer was afflicted by in two 

slightly different versions. TSEVCAT was a categorical trait with 3 classes comparing not affected 

heifers (always M0; score = 1) with heifers having at least one M1, M4, or M4.1 but never M2 

(score=2), and cows suffering at least once from classic active ulcers (M2; score=3). TSEVCAT41 
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was very similar to TSEVCAT but differed concerning heifers with at least one M4.1 event, which 

received a score of 3. The known difference between M2-cow types (Gomez et al. 2014) is basis 

for the definition of trait TCTM2SC that classified heifers according the number of active M2 

lesions during the observation period (score of 1=type I heifer: no M2 lesions; score of 2=type II 

heifer: exactly one M2 lesion, score of 3=type III heifer: multiple M2 lesions). TCTM2SC counted 

all M2 events considering every leg separately and TCTM2 counted per event date. Trait 

TTRANS accounted for the changes of the M-stages over successive evaluations and thus included 

a better description of the DD infection dynamics. For TTRANS, the transitions between stages 

were classified (1: staying not-affected; 2: healing, improving; 3: staying affected on the 

same/comparable stage; 4: aggravating), the classes were weighted, and a transition score was 

derived. To compute TTRANS, for each heifer all observations were classified for heifer type as 

explained above, weighted, summarized, and divided by the number of transitions observed. A 

reference scenario (TREF) was defined by considering the first evaluation of each heifer as the 

only information. TREF denotes a single scoring for DD as has been commonly used in most 

studies applying genetic-statistical methods. 

For genotyping, the Illumina BovineSNP50 BeadChip was used to genotype 63 animals; 

another 43 animals were genotyped with the BovineHD Genotyping Bead Chip (777K). 

 

Table 1. Description of trait definitions for digital dermatitis, number of observations in the 

final data set, means, and standard deviations (SD); category frequencies instead of means 

for traits with more than two categories 

Trait Trait definition 
No. of 

observations 
(no. of cows) 

Mean SD 

TBIN 

Binary trait that differentiates between consistently not 

DD affected cows (0) and cows with at least one 

observation with a DD lesion (1) 

729 

(729) 
0.52 0.50 

TBINA 

Binary trait that differentiates between cows that never 

(0) / at least once (1) experience an active stage of DD 

lesion 

729 

(729) 
0.40 0.49 

TSEVCAT 

Categorial trait that differentiates between three severity 

categories of DD lesions: consistently not affected (1), at 

least once M1, M4, or M4.1 (2), at least once M2 (3) 

729  

(729) 

(1) 48.3% 

(2) 15.7% 

(3) 36.0% 

 

TSEVCAT41 

Categorial trait that differentiates between three severity 

categories of DD lesions: consistently not affected (1), at 

least once M1 or M4 (2), at least once active stage M2 or 

M4.1 (3) 

729  

(729) 

(1) 48.3% 

(2) 11.9% 

(3) 39.8% 

 

TCTM2 

Categorial trait that differentiates between three DD cow 

types concerning the number of M2 events: never M2 (1), 

once M2, at least twice M2 (3) 

691  

(691) 

(1) 64.0% 

(2) 14.5% 

(3) 21.5% 

0.79 

TCTM2SC 

Categorial trait that differentiates between three DD cow 

types concerning the number of M2 events considering 

legs separately;  never M2 (1), once M2, at least twice 

M2 (3) 

691  

(691) 

(1) 64.0% 

(2) 18.4% 

(3) 17.6% 

0.83 

TTRANS 
Transition score for the classified and weighted 

transitions between DD stages  
729  

(729) 
17.90 9.05 

TREF 
Binary trait that differentiates the first observation of the 

cow into not affected (0) or affected (1) 

729  

(729) 
0.12 0.33 
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Statistical Analyses: Data preparation, editing, and examination of alternative modelling of 

fixed effects as well as preliminary 𝜒² tests for genotypic associations with SH, IH, or DD were 

conducted using the statistical package SAS 9.1 and 9.4. Variance components were estimated 

using a restricted maximum likelihood (REML) animal model and applying the ASReml 3.0 

software package. Associations between genotype and disorder status were also tested using 

PLINK software. 
 

 

RESULTS AND DISCUSSION 

Trial_1: The 4 most important noninfectious disorders were sole hemorrhage, white line 

disease, sole ulcer, and interdigital hyperplasia with SH being the predominant disorder. 

Prevalence rate varied between 5.5 (IH) and 57.3 % (SH) showing remarkable differences of 

within-herd levels (Table 2). The prevalence level of SH is higher than in other studies, which is 

largely because “mild” or subclinical cases of diseases were included. For SH, herd-visit date, 

stage of lactation, and body weight significantly affected the probability of occurrence and thus 

were included as fixed effects in the model when accounting for SNP genotype effects. Analyses 

by PLINK of 295 SNP (MAF>0.5) revealed a highly significant association (P<0.001) between 

disorder status for SH and the SNP (HAPMap54883-rs29017173) within the IQGAP1 gene (BTA 

21). The GLIMMIX analyses resulted in back-transformed means of the disorder status of 0.35 

(AA), 0.49 (AG), and 0.54 (GG) when comparing the 3 genotypes in a reduced data set (herd-visit 

cohorts with extreme frequencies for SH were excluded). Using the full data set, the back 

transformed means of the SH status were 0.50 (AA), 0.56 (AG), and 0.60 (GG). Polymorphism of 

the SNP showed substantial effects for the occurrence of SH, but it was also found to be associated 

with feet and leg traits from the classical conformation score system. Fortunately, the same allele 

is favoured for all traits with substantial effects. IQGAP1 is proven via knock-out mice to play a 

critical role in postischemic neovascularization and tissue repair (Urao et al. 2010). Thus, it can 

serve as a promising candidate gene for the pathogenesis of SH in cattle. However, it might be 

more a question of tolerance here than of resistance. 

When assessing the disorder status of interdigital hyperplasia (IH), 107 IH positive animals 

were identified. When separating the IH phenotype into one-side and pairwise affected rear legs, 

71 cows and 36 cows were found, respectively. An investigation of sires with at least 5 daughters 

in the data set revealed an IH predisposition of 5 sires that are sons of the same bull. When 

comparing bulls with at least 140 granddaughters in the data set, the identified bull had a 

remarkably high proportion (9.4 %) of IH affected granddaughters. This result confirms the 

occurrence of IH in some bull lineages, this observation has occasionally been mentioned in 

literature (Hogreve 1964).  
 

Table 2. Prevalence rates for the 4 most important noninfectious disorders and herd-visit 

prevalence interval 
 

 All observations Within herd - date of visit 

Name of disorder [%] Min [%] Max [%] 

Laminitis 57.3 25 92 

White line disease 12.6 2 32 

Sole ulcer 7.1 0 25 

Interdigital hyperplasia  5.5 0 20 
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Within the 192 genotyped cows, 87 were IH positive (56 one-side affected vs. 31 pairwise 

affected) and 105 were negative (=controls). A case-control study on the genetic background of IH 

revealed associated regions on 4 different chromosomes.  

 

Trial_2: From all 6,444 observations, 68.0 % of the records were found to be negative, i.e. 

“healthy” regarding DD. Out of the 32 % DD-positive observations 54.8 % showed a chronic stage 

(M4 or M4.1) of which 37.7 % were chronic and active (M4.1). The infectious stages M2 and 

M4.1 together accounted for 11.3 % of all observations. 48.2 % of the heifers were consistently 

not affected by DD during the entire observation time. Estimates for heritabilities from univariate 

models were 0.19±0.11 (TBIN), 0.20±0.11 (TBINA), 0.27±0.12 (TSEVCAT), 0.23±0.12 

(TSEVCAT41), 0.46±0.16 (TCTM2SC), 0.52±0.17 (TCTM2), 0.42±0.15 (TTRANS), and 

0.19±0.11 (TREF). Estimates of heritabilities for DD exist in the literature (e.g. van der Linde et 

al. 2010; Gernand and König 2014) however, none of the published studies used M-scale scored 

records. Estimates in the present study were higher than results from literature. This might be due 

to the limited sample size. Even though, the results presented are based on a well-established 

classification system for clinical stages and their succession over time, and thus serve as a 

comparison between trait definitions that reach beyond a separation of affected and non-affected 

animals. Those traits were also basis for the association study. Analyses by PLINK showed 

candidate regions on 3 different chromosomes. For 1 of the regions, a haplotype consisting of 

several SNP being in complete linkage disequilibrium was identified. 

 

Conclusion. Phenotyping for health traits appears to be very difficult. This is partly due to 

dominant environmental effects and the occurrence of genotype by environmental interaction, but 

it is caused also by the difficulties of precisely defining “diseased” or “healthy” states. In Trial_1, 

an association between SH and the IQGAP1 gene was identified. The strength of this association 

differed between the full and the reduced data set, and thus it demonstrated that the detection of 

genetic effects or individual gene effects is strongly dependent on a well-planned study design, 

implying selection of herds, definition of phenotype, and time of evaluation. Trial_2 demonstrated 

the application of the M-scale scoring system when analysing the genetic pre-disposition for DD. 

This system is widespread in the veterinary field. Its first use for genetic analyses revealed higher 

heritability estimates than known from previous studies, and therefore the genetic predisposition 

for DD might be higher than previously assumed. The findings indicated that applying this 

improved phenotype definition of DD allows for improved management strategies and improved 

strategies for genetic selection. 
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Henshall, and M. Abrahamsen 

Cobb-Vantress, Siloam Springs, Arkansas, 72761, USA 

SUMMARY 

Cobb-Vantress is one of the leading global suppliers of broiler breeding stock, with products 

distributed in more than 100 countries.  Cobb has continually invested in new technologies to 

consistently deliver genetic improvement that provide a competitive advantage in the market 

place. Recently, Cobb has made significant investments to implement a genomic selection 

program to complement the traditional breeding program. In addition to genomic selection, 

opportunities such as causative mutation detection, parentage testing and simple trait selection 

have been successfully implemented in various breeding programs within Cobb.  There are many 

challenges involved in implementing these genomic technologies, including a simple but complex 

effort toward the logistics of sample collection and management from multiple pure-line 

populations at different geographical locations.  The current state of the genome sequence presents 

some barriers to the successful use of these technologies in some instances; however there is 

currently some significant effort toward its improvement.  We believe that genomic technologies 

are beneficial technologies to improve the genetics of our broilers.   

 

 

INTRODUCTION 

Cobb-Vantress, Inc. (Cobb) is the world’s oldest broiler breeding company. Since 1916 Cobb-

Vantress has contributed to the dynamic growth of the global poultry industry that has transformed 

chicken into a popular, affordable and healthy protein choice. Cobb maintains a pedigree program, 

ensuring continual genetic progress for a production pipeline where it creates multiple parent stock 

targeted toward the production of multiple products with different performance profiles, ranging 

from highly efficient, to high yielding, and slow growing broilers.  These products are successfully 

produced in very diverse environmental, management and regulatory production systems globally.  

There are several challenges facing the poultry industry requiring the production of alternative 

broiler solutions for future markets. Some of these challenges include; 

 Volatile global grain prices emphasizing the need for continual improvement in feed 

conversion and use of alternative feed products. 

 Emerging market opportunities emphasizing the need for diversified products for new 

environments. 

 Welfare and customer requirements driving the need for innovative products such as antibiotic 

free chicken. 

 Governmental and regulatory changes requiring the need for unique breeds (such as slow 

growing lines) or management practices. 

  Genomics is a technology being investigated to help Cobb create broiler solutions to tackle 

some of these industry challenges.  To date, Cobb has successfully integrated genomic 

technologies such as genomic selection, parentage testing, identification and elimination of 

deleterious alleles, and single gene tests. This paper will address some of the challenges and 

opportunities that Cobb has identified through its genomic program.  
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CHICKEN BREEDING AT COBB 

Over 2 million pure line chicks are hatched at Cobb annually.  All chicks hatched on one of our 

seven pedigree farms are individually identified, and individually phenotyped for over 50 traits, 

including;  

 broiler traits such as weight, feed conversion and breast meat percentage,  

 reproduction traits such as hatch of fertile and egg production 

 welfare and health traits such as skeletal defects, foot pad dermatitis and liveability 

Less than 5% of hatched chicks are retained as future breeders based on selections using both 

phenotype and BLUP breeding values.  It is estimated that one selected female pedigree breeder 

makes a genetic contribution over 3 million broilers (which are a four-way line cross).  Given our 

ability to pedigree millions of birds and maintain high selection intensities we can make genetic 

gains very quickly.  Figure 1 illustrates the progress made in the final broiler product (a cross of 4 

pure-lines) over a 20 year period.  

 
Figure 1.  Days to 5.0 Lbs. (2.27 kg) and Calories/5.0Lb for broiler between 1993 and 2013 

 

GENOMIC TOOLS FOR CHICKEN BREEDING 

The chicken genome sequence was made available by the international chicken genome 

consortium in 2004 (Hillier et al. 2004) and has been revised three times (2006, 2011 and 2013).  

The chicken genome is just over a third the size of a typical mammalian species, being only 1.2 

Bbp.   Similar to other livestock species the genome sequence has been used to create a variety of 

public genotyping tools such as the Illumina 60K chip (Groenen et al. 2011) and the Affymetrix 

high-density chip (Kranis et al. 2013), and the additional development of company specific arrays. 

 

Opportunities 

There are a variety of opportunities afforded to chicken breeding through genomic technologies 

such as high-throughput genotyping and sequencing.  Two such opportunities described in this 

paper include genomic selection and identification of DNA variations explaining deleterious 

phenotypes. 

 

Genomic selection 

In boiler production, the gains of genome selection are made through the improvement of 

accuracy of selection, and through the introduction of new traits that could not otherwise be 

incorporated into the breeding program, rather than reducing generation interval.  In Cobb, the 
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current analytical tool used to estimate genomic breeding values is single-step genomic BLUP 

(ssGBLUP) (Aguilar et al. 2010; Christensen & Lund 2010) using BLUP90IOD (Aguilar et al. 

2011; Tsuruta et al. 2011).   This methodology is amenable to our program due to the simple and 

fast calculation of genomic breeding values. 

In order to calculate the impact of genomic selection on our pedigree traits, both traditional and 

genomic evaluations are computed and compared. The accuracy of each evaluation is determined 

by correlating the corrected phenotype with the predicted breeding values (either traditional BLUP 

or ssGBLUP) when the phenotype is not included in the analysis. These estimates of accuracy 

indicate that the improvement in breeding value accuracy due to genomic selection is highly 

variable and dependent on the heritability and the number of birds with genotypes for the trait(s) in 

question.   

The key to the improvements in accuracy of breeding values for ssGBLUP is the increase in 

accuracy of estimated relationships between genotyped individuals.  Estimated genomic 

relationships between full-sibs ranges from 0.266-0.701 with a mean of 0.483 while half-sib 

relationships range from 0.050-0.547 with a mean of 0.239 (Figure 2). 

 
Figure 2.  Histogram of genomic relationships among half-sibs (left) calculated from 431778 half 

sib pair combinations, and full sibs (right) calculated from 78352 full sib pair combinations. 

 

The improvements in accuracy of selection of traits measured in our pedigree program represent 

the first step in the application of genome selection to a chicken breeding company.  We anticipate 

that the largest gains for genomic selection will be for the incorporation of new traits that can only 

be measured on chickens outside the pedigree facility (such as disease challenge, and broiler 

performance in commercial environments as a four-way cross broiler). 

 

DNA variations explaining deleterious phenotypes 

High-throughput sequence analyses can be utilised to identify causal or predictive mutations for 

particular phenotypes. One such effort was toward the identification of causal or predictive alleles 

for a phenotype specific to one of our pure line breeds.  This phenotype was termed ‘wiry down’, 

where affected chicks appeared wet and lethargic, and in most cases died soon after hatch.  

Pedigree analyses of affected families indicated that this phenotype was likely the result of a 

genetic mutation that occurred in one sire, seven years prior to the phenotype becoming obvious at 

our hatchery.  In order to identify the mutation for this genetic disease, high-throughput genome 

sequencing was completed on pooled samples representing affected and unaffected individuals. 

Allele frequencies were compared between pools which highlighted a 10Mb region on 

chromosome 4 associated with the phenotype.  Subsequent fine mapping of this region identified a 
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single SNP that was 100% predictive of the phenotype.  This SNP is now being used to eliminate 

the condition from our population. 

Similar efforts to identify predictive mutations for broiler phenotypes have not all been 

successful.   Some of these efforts have utilised the same pooling approach as above and some 

have utilised an individual sequencing approach.  The incomplete genome sequence, inaccuracies 

of phenotype recording and the complex nature of some of these phenotypes impact the successful 

identification of predictive tests for all traits. 

 

Challenges 

There are a variety of challenges that impact the utility of genomic tools in Cobb-Vantress.   

 The chicken genome sequence is currently incomplete.  In spite of the continual improvement 

of the chicken sequence, it is estimated that the current build is missing ~20% of the total genome 

(Warren 2014).  Some of these missing sequences are due to missing micro-chromosome 

sequences (9 completely missing, and one other is poorly covered) and approximately 30,000 gaps 

in the available sequence (W. Warren pers. comm.).  More importantly for the success of our 

genomic selection program, this missing sequence is estimated to contain between 5% and 20% of 

the expressed genes. This presents a difficult challenge in our ability to completely scan the 

chicken genome for genetic elements contributing the expressions of phenotypes.  

 Current sequencing technologies are unable to sequence the GC-rich micro-chromosomes. 

Therefore tools such as genotyping-by-sequencing, or low coverage genome sequence for use in 

genomic selection will also fail at scanning the entire genome for contributions toward trait 

expression. 

 The development of ‘stable’ and multiple-line genotyping tools (like SNP chips) is 

complicated by the massive allele frequency differences both between pure line populations, and 

the rapid changes in allele frequencies between generations of the same line.   

 Logistics is one of the greatest challenges for the implementation of genomic selection. 

Examples of obstacles to overcome are:  

o The timing of sampling; genomics is simply not cheap enough to sample and process 

every chick at hatch; therefore, sampling has to be completed strategically.  

o Genotype processing time; the available time between sampling and selection age for the 

calculation of genomic breeding values is very short. 

o Sample collection and management; thousands of samples are collected and processed on 

a weekly basis from a number of pedigree farms both in the US and Europe.   

While many challenges exist for implementing genomics, the opportunities and potential gains 

for a chicken breeding program are large. 
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SUMMARY 

Sequence data can potentially increase the reliability of multi breed genomic prediction by 

containing causative variants or markers in in high linkage disequilibrium (LD) with those. 

Sequence data does, however, also contain a large number of variants in low LD with the causative 

mutations, limiting the potential increases in prediction reliability when the full sequence would be 

used directly for genomic prediction. The objective of this study was to use sequence variants to 

increase the reliability of multi breed prediction in dairy cattle. First, a simulation study based on 

real sequence data was carried out to investigate how sequence variants can improve the reliability 

of across breed prediction. The simulation study used the regression of genomic relationships at 

causative mutations on genomic relationships at prediction markers to measure the loss in 

prediction reliability as a consequence of using markers in imperfect LD. It was concluded that it 

is important to use only variants very close to the causative mutations. In the second part a number 

of two component Bayesian SNP BLUP models were used, where the first component  mainly 

model variation within the breeds, while the second component model covariance across the 

breeds. Here, sequence variants selected from a multi breed GWAS for production traits were used 

as prediction markers in the second component. Different models and selection strategies were 

compared. Large increases in reliability, up to 0.10, were observed for multi breed prediction using 

QTL variants compared to within breed prediction using only 50K markers. Our results show that 

using a selective number of sequence variants can result in large increases in reliability, but careful 

selection of the variants is essential 

 

INTRODUCTION 

The reliability of genomic prediction is highly dependent on the size of the reference 

population. While for some breeds, for example Holstein, there are large national and international 

reference populations available, reliabilities in other breeds can be limited due to the smaller size 

of the reference populations. Smaller breeds can potentially benefit from the large reference 

populations available for some breeds by multi breed prediction. In practice, however, multi breed 

prediction only results in substantial increases in reliability compared to within breed prediction 

when closely related breeds are combined (Lund et al., 2014). One reason for this could be that 

linkage disequilibrium (LD) is only conserved over short distances across breeds, and therefore, 

the density of marker chips is insufficient to allow across breed prediction (de Roos et al., 2008). 

While the markers on the high density (HD) chip are dense enough for across breed prediction, the 

HD chip did not result in substantial increases compared to the 50K chip. The reason is likely that 

increasing the density to HD or full sequence does not only add variants closer to the causative 

mutations, but also variants in low LD with the causative mutations. Unless only variants in 

complete LD with the causative mutations are used, a loss in prediction reliability occurs (de los 

Campos et al., 2013). By including QTL variants selected from the sequence, Brøndum et al. 

(2015) found increases in reliability up to 5% for within breed prediction of production traits in 

dairy cattle. Because LD is conserved over shorter distances across breeds than within breed, such 

an approach can potentially be more beneficial for across breed and multi breed prediction than for 
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within breed prediction. Methods for multi breed predictions must be able to 1) capture the genetic 

variance within breed without introducing noise from private variants or SNP associations only 

present in one (potentially dominating) breed and 2) capture covariance across breeds by markers 

in very close LD with causative variants segregating in multiple breeds. 

The objective of this study was to use sequence variants to increase the reliability of multi 

breed prediction in dairy cattle. First, a simulation study based on real sequence data was carried 

out to investigate how sequence variants can improve the reliability of across breed prediction. 

Subsequently, sequence variants associated with QTL detected for milk, fat and protein yield were 

used for multi breed prediction in three dairy cattle breeds. 

 

MATERIALS AND METHODS 

For the simulation study, realised sequences on chromosome 1 of 122 Holstein, 27 Jersey, 28 

Montbéliarde, 23 Normande and 45 Danish red bulls were used. Causative mutations were 

randomly sampled from 1,475,541 bi-allelic SNP and indels on chromosome 1, or from all 

variants with a minor allele frequency (MAF) below 0.10. The number of causative mutations was 

10, 50, 100 or 250. Different sets of prediction markers were compared, with all variants from the 

50K or HD chip, only the 50K or HD variants closest to each causative mutations, or sequence 

variants in two 1 Kb intervals on either side of each causative mutation. In the latter scenarios, the 

distance between intervals and causative mutations varied from 1 base to 1 Mb, and the intervals 

contained either all variants or only the variants with a MAF of at least 0.10.  

For each scenario, two genomic relationships matrices were constructed for each breed and 

each pairwise combination of breeds, using either the causal loci, or the prediction markers. 

Genomic relationship matrices were scaled using the allele frequencies computed using the 

genotypes of all individuals in the genomic relationship matrix. Subsequently, the loss in R
2
 was 

computed following de los Campos et al. (2013): 

 2
,1

2
,1

2
,1 )1(1 ynynyn bRR   , 

where, for individual n+1, the difference between the prediction (
2

,1 ynR  ) using markers in 

imperfect LD with the causative mutations and the prediction ( 2
,1 ynR  )  if prediction markers were 

in perfect LD with causative mutations is quantified by the reliability factor (RF) 
2

1)1(1  nb . 

The b in the RF is the regression coefficient of the genomic relationships at prediction markers on 

the genomic relationship markers at the causative mutations. First, b was computed for each 

individual. Subsequently, RF was computed within replicate, using the b averaged across 

individuals. Finally, RF was averaged across replicates. 

 The second part of the study used imputed sequences and deregressed proofs (DRP) for milk, 

fat and protein yield from 5,852 French Holstein, 5,411 Danish Holstein, 1,203 Danish Jersey and 

937 Danish Red bulls. First, bulls genotyped with the 50K chip were imputed to HD. For the 

French data, this step was performed using Beagle 3.0.0, while for the Danish breeds, IMPUTE2 

was used. Subsequent imputation to whole-genome sequence was for all breeds done using 

IMPUTE2. The reference used for imputation to sequences of the Danish bulls consisted of the 

bulls in run 4 of the 1000 bull genome project, while for the imputation of the French bulls, a 

combined French-Danish reference set was used. The latter consisted of 122 Holstein, 27 Jersey, 

28 Montbéliarde, 23 Normande and 45 Danish Red bulls.  

 A number of Bayesian SNP BLUP models were run. As prediction markers, either the 50K 

markers, or 50K markers in one component and sequence variants selected from a multi breed 

GWAS (van den Berg et al., these proceedings) were used in a second component. Different 

selection strategies were compared. Selecting either all variants with a p-value in the multi breed 
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GWAS below 10
-10

, 10
-14

 or 10
-20

, or selecting maximum 1, 10 or 25 variants per intervals of 1, 2 

or 10 Mb. Genomic breeding values were estimated using a Bayesian SNP BLUP model. Both 

single trait models, using a breed effect to account for differences between breeds, and multi trait 

models, fitting the same trait in different breeds as different correlated traits were used. The single 

trait models contained a within breed 50K component (ST-WB50K), a multi breed 50K 

component (ST-MB50K), or multi breed 50K and QTL components (ST-MB50K-MBQTL). The 

multi trait models contained a multi breed 50K component (MT-MB50K), multi breed 50K and 

QTL components (MT-MB50K-MBQTL) or a within breed 50K and a multi breed QTL 

component (MT-WB50K-MBQTL). For all models, marker effects and variance components were 

estimated using Bayz software, with a MCMC chain of 50,000 iterations, discarding the first 

10,000 as burn-in. Reliabilities were estimated as the squared correlation between DRP and 

GEBV, divided by the mean reliability of DRP in the test population. 

 

RESULTS AND DISCUSSION 

RF decreased rapidly when the distance between prediction markers and causative mutations 

increased. This decrease was larger for across breed prediction than within breed prediction. 

Figure 1 shows the RF as a function of the distance between causative mutations and prediction 

markers for across breed prediction. Sequence variants on an interval on a similar distance to the 

causative mutations as the closest 50K or HD marker resulted in a larger RF when all 50K or HD 

variants were used, while RF was largest when only the closest 50K or HD markers were used. 

This shows that, in order to benefit from full sequence data, it is important to use only variants in 

high LD with the causative mutations, rather than using all sequence variants.  

 

 

 
Figure 1. Average across breed reliability factor (RF) computed from intervals or from SNP 

from the 50K or HD chips, for different numbers (c) of causative mutations. A: c=10, B: 

c=50, C: c=100, D: c=250. 

 

 Using sequence variants selected from a multi breed GWAS resulted in substantial increases in 

reliability for all breeds and traits. The reliability was, however, highly sensitive to the set of 
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prediction markers used. Maximum increases compared to within breed prediction using 50K 

markers ranged from 0.042 for fat yield in Jersey to 0.105 for milk yield in Jersey. For all breeds 

and traits, the highest reliabilities were obtained when the number of variants per QTL interval 

was limited. Selecting many variants per QTL risks the selection of variants that are not in LD 

across breed, and, thereby, lowers the reliability. While for both Danish and French Holstein, best 

results were obtained with single trait models, the multi trait models generally resulted in higher 

reliabilities in Jersey and Danish Red. Because most of the individuals in the data were Holstein, 

Holstein had a much larger effect on the estimated marker effects than Jersey and Danish Red. 

Although some QTL are shared across breeds, this is not the case for all QTL, and markers 

associated with QTL segregating in Holstein but not in the other breeds could introduce noise. A 

multi trait Bayesian variable selection that would allow different sets of prediction markers to 

influence different breeds, could potentially lead to larger increases in reliability than those 

observed here.  

 

Table 1. Scenarios with largest prediction R
2
 for each breed and trait.  is the difference with 

within breed prediction using 50K markers. HOLDK = Danish Holstein, HOLFR = French 

Holstein, JER = Jersey, RDC = Danish Red. 

 
Breed Trait 50K Best scenario 

HOLDK Milk 0.440 ST-MB50K-MBQTL10-25/1 0.087 

 Fat 0.475 ST-MB50K-MBQTL20-25/1 0.103 

 Protein 0.388 ST-MB50K-MBQTL10-1/1 0.055 

HOLFR Milk 0.327 ST-MB50K-MBQTL14-25/1 0.079 

 Fat 0.367 ST-MB50K-MBQTL20-25/1 0.097 

 Protein 0.372 ST-MB50K-MBQTL14-25/10 0.065 

JER Milk 0.299 MT-WB50K-MBQTL20-1/10 0.105 

 Fat 0.161 ST-MB50K-MBQTL10-10/10 0.042 

 Protein 0.219 MT-WB50K-MBQTL20-1/10 0.049 

RDC Milk 0.136 MT-MB50K-MBQTL20-10/1 0.073 

 Fat 0.114 MT-MB50K-MBQTL20-25/10 0.075 

 Protein 0.093 MT-WB50K-MBQTL14-10/10 0.059 

 

 

 Our results, both from simulation and real data, show that using a selective number of sequence 

variants can result in large increases in reliability for multi breed prediction in dairy cattle, but 

careful selection of the variants is essential. 
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SUMMARY 

The dataset created for the Feeding the Genes Project (Morton et al. 2013) was used to 

estimate the extent of phenotypic responses from Holstein daughters of Holstein sires in milk yield 

and composition variables associated with a 50 unit increase in the cow’s sires’ Australian Profit 

Ranking (APR). A subset from that dataset comprising 77,144 cows born from 2005 to 2009 was 

used to compare sire selection patterns in herds with different feeding systems. Australian Profit 

Ranking values of the cows’ sires’ varied widely from -303 to +430, including 20% of cows that 

were daughters of sires with negative APR values. Australian Profit Ranking values of the sires of 

the enrolled cows were low, with an average of 68 and an average annual rate of increase of 10.1 

APR units. The cows in the herds with the greatest reliance on pasture and feeding <1,000kg grain 

supplement in the bail had the highest average APR of 77 and the highest average annual rate of 

increase of 13 APR units, whereas the cows in the herds feeding total mixed rations with minimal 

reliance on pasture had the lowest average APR of 48 and an annual average increase of 7.8 APR 

units. These results indicate that there are broad ranges in average APR values and in annual 

average increases in APR, across the different feeding systems. Major differences in sire selection 

patterns were also observed among the different feeding systems. 

 

BACKGROUND 

The APR is a selection index that estimates the relative profitability of different animals and 

enables ranking of bulls based on the estimated relative profitability of their daughters. Australian 

Profit Ranking values are calculated using Australian Breeding Values (ABVs); these are based on 

data derived from herds using a diverse range of feeding systems. Some farmers question the 

relevance of the APR to herds that have limited or no reliance on pasture grazing, such as those 

using feedlot systems and feeding total mixed rations. These questions were addressed in the 

Feeding the Genes Project (Morton et al. 2013). The phenotypic changes in yields and milk 

composition associated with a 50 unit increase in the cow’s sires’ APR were compared between 

cows in herds with each of 5 feeding systems.  

Although sire selection patterns were known to differ among feeding systems, across herds 

differing in average yield levels, and in different states and regions, none of these differences have 

been quantified. Most of the 505 herds enrolled in the Feeding the Genes Project used feeding 

systems that combined grazing improved pastures with varied amounts of grain supplements fed in 

the bail during milking.  

The objective of the current study was to utilise the dataset created for the Feeding the Genes 

Project to assess whether Holstein sire selection patterns varied by feeding system, and to measure 

any differences in genetic trends associated with these systems. 
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MATERIAL AND METHODS 

All herds in which at least 50 Holstein cows calved in 2011 were selected from the Australian 

Dairy Herd Improvement Scheme (ADHIS) database. Letters were sent to herd managers asking 

them to complete a simple herd data questionnaire to identify their feeding system. In total, 505 

herds provided data suitable for analysis, and cow and lactation data for these herds were obtained 

from ADHIS. The original dataset included 250,857 lactations for Holstein cows born from 2002 

to 2009. The 77,144 Holstein cows, with identified sires, that had at least one enrolled lactation 

commencing between 2008 and 2011 were selected for the current study. Each cow’s sires’ APR 

was as estimated on 20th August, 2012. These cows were in 438 herds and were born from 2005 to 

2009. Each herd was classified into one of five feeding systems for each year from 2008 to 2010 

(Table 1). 

 

Table 1. Details of five feeding systems used to classify 438 Holstein herds enrolled in the 

Feeding the Genes Project.  

 

System name System 

no. 

System description % of cows 

Low bail feeding 1 ≤1000kg grain supplement/cow/lactation 

 

11.6 

Moderate to high bail feeding 2 >1000kg grain supplement/cow but did not 

use feed pad or mixer wagon 

59.0 

Partial mixed ration (PMR) 3 Part of the ration was fed on a feed pad 

using a mixer wagon with pasture for at 

least 9 months /year 

17.1 

Hybrid 4 Pasture for 2-8 months of the year and 

entirely on a feed pad with a mixer wagon 

for some periods 

6.3 

Total mixed ration (TMR) 5 Cows are usually fed a total mixed ration 

with less than 1month/year on pasture 

6.1 

 

RESULTS  
The most common feed management system was moderate to high bail feeding. It included 

66% of the 1885 herd-years enrolled in the current study and 59% of the enrolled cows (Table 1). 

Sires that each had at least 300 daughters had APR values ranging from -303 to +430, and 96% 

of study cows were daughters of sires with APR values between -200 and +200. The distribution 

of these cows by sire APR is shown in Figure 1. Overall, 20% of cows were by sires with negative 

APR values. This varied from 16% for cows in low bail feeding herds (System 1; see Table 1) to 

26% of cows in TMR herds (System 5). By comparison, 34% of all cows were from sires with 

APR values of at least 120, varying from 34% in low bail feeding herds to only 20% in TMR 

herds. While 22% of cows born from 2005 to 2007 had sires with negative APRs, 16% and 14%, 

respectively, of cows born in 2008 and 2009 had sires with negative APR values. Mean APR 

values and selected ABVs within each feed management system are shown in Table 2. Daughters 

in low bail feeding herds had a sire average APR of 77 compared to only 48 for cows in TMR 

herds. Similarly, the average annual change in sire APR increased by 13.0 units per year for cows 

in the low bail feeding herds, but by only 7.8 units per year for cows in the TMR herds (Table 2). 

Sire ABVs also reflected differences in sire selection criteria between feeding systems. 

Whereas the mean of sire milk volume ABV was only 259 litres for cows in the low bail feeding 

herds, this increased to an average of 311 litres for cows in the TMR herds. This was in contrast to 

the declining trends (from low bail feeding to TMR) in means of sire ABVs for protein and milk 
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fat yields (Table 1). 

 

 
 

Figure 1. Distribution of Holstein cows by APR of their sire for cows with sires with APRs 

between -200 and +200. 

 

Table 2. Mean (+ SD) sire APRs and annual increases in sire APR and their mean sire ABVs 

among cows in herds with differing feeding systems.   

 

Genetic variable Low bail Mod/high 

bail 

PMR Hybrid TMR Pooled 

APR       

Mean 77(85) 71(85) 62(84) 62(89) 48(86) 68(86) 

 

Change/year 13.0 10.0 8.8 12.1 7.8 10.1 

 

ABV        

Milk volume 

 (l) 

259(461) 289(472) 302(470) 296(482) 311(459) 289(470) 

 

Protein yield 

(kg) 

9(17) 8(18) 7(18) 7(19) 6(19) 8(18) 

 

Milk fat yield 

(kg) 

9(12) 8(12) 5(12) 7(12) 2(12) 7(12) 

 

DISCUSSION AND CONCLUSION 

There was a wide range in cow’s sires' APR values and almost 20% of the cows were 

daughters of sires with negative APR value. This pattern of sire selection indicated that there had 

been limited emphasis on sire APR by many herd owners; this consequently contributed to an 

average APR of only 68 and an annual average APR increase of 10.1. 
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Sires with high APR values were sometimes selected, as 14% of cows were daughters of sires 

with APR values greater than 160. However, the overall average of 68 could have been expected 

to be twice as high if herd owners had only selected sires with high APR values. Mean sire APR 

values differed markedly between feeding systems. The lower APR values for cows in the TMR 

herds may partly reflect the greater emphasis on milk volume ABV and less emphasis on milk fat 

and protein yield ABVs in herds with this feeding system, as the APR is negatively influenced by 

milk volume ABV and positively influenced by protein yield ABV. This may also have 

contributed to the slower annual rate of increase in the average APR of cows in these herds. 

A key finding from the Feeding the Genes Project was that a 50 unit increase in cow’s sires’ 

APR is associated with increases in phenotypic protein and milk fat yields as well as profitability 

in all feeding systems (Morton et al. 2013).  The average increases in the yields of milk volume, 

protein and milk fat measured in cows in the TMR herds was approximately double the APR 

associated increases for cows in the low bail feeding herds (110 versus 56 litres; 5.1 versus 2.6 kg 

protein; and 5.7 versus 2.6 kg milk fat/cow/lactation for TMR versus low bail feeding, 

respectively; Morton et al. 2013). These yield improvements were calculated to increase milk 

profit by $46/cow/lactation for a 50 unit increase in APR for cows in the TMR herds compared to 

$22 for cows in the low bail feeding herds (Morton et al. 2013). If greater use had been made of 

sires that had APR values greater than 160 (as was the case with 14% of cows) to achieve an 

average increase in APR of approximately 100 units higher that the pooled average of 68 units of 

APR (Table 2), the overall increase in milk profit would have averaged over $50/cow/lactation 

across the herds enrolled in the study. It would have been slightly less for cows in low bail feeding 

herds ($45), but almost double this for cows in TMR herds ($92). 

In conclusion, these results showed that greater use of sires with higher APR values could 

increase milk profit for herds in each of the 5 feeding systems with the greatest increases occurring 

in herds that relied less on pasture as the major source of nutrients. 
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SUMMARY
A scheme for penalized estimation of genetic covariance matrices free from tuning – using default

settings for the strength or penalization – is described and its efficacy is demonstrated by simulation.

INTRODUCTION
Estimates of genetic covariance matrices, ΣG, are known to be afflicted by substantial sampling

errors, increasing markedly with the number of traits considered. ‘Regularization’, i.e. modification of
estimators to reduce sampling variation at the expense of a small, additional bias, has been advocated
to obtain estimates closer to the population values. An early suggestion by Hayes and Hill (1981,
‘bending’) has been to shrink the canonical eigenvalues, λi, i.e. the eigenvalues of Σ−1

P ΣG (with ΣP
the phenotypic covariance matrix), towards their mean. As shown by Meyer and Kirkpatrick (2010),
the analogue in a maximum likelihood framework is to maximize the likelihood subject to a penalty
proportional to the variance among the estimates of λi. Neither authors provided guidelines on how to
determine the amount of shrinkage to be applied. While cross-validation techniques allow estimation
of so-called ‘tuning factors’, this proved laborious and only moderately successful (Meyer 2011).

A simple alternative is to apply a mild, default penalty which, while not providing maximum
benefits, will yield stable estimates and worthwhile reductions in ‘loss’, i.e. the average deviations
of estimates from population values. This is similar to the concept of weakly informative priors,
which is gaining popularity in Bayesian estimation (e.g. Gelman 2006). This paper demonstrates the
reductions in loss achievable using a default penalty on canonical eigenvalues.

PRIORS AND PENALTIES
For a given prior distribution of some function of the parameters to be estimated, we can obtain a

corresponding penalty as minus the logarithmic value of the pertaining probability density.
Shrinking canonical eigenvalues towards their mean, λ̄, by applying a quadratic penalty, P ∝∑

i(λi − λ̄)2, implies a Normal distribution, N(λ̄,σ2), with σ2 the variance of λi. This gives penalty

PN =
1
2

[
q
(
log(σ2) + log(2π)

)
+

1
σ2

q∑
i=1

(
λi − λ̄)2)] (1)

with q denoting the number of traits. Similarly, assuming a log-Normal distribution, the penalty is
obtained by substituting logλi and (

∑
i logλi)/q for λi and λ̄ in (Eq. 1). Earlier results showed that for

such a prior it was advantageous to penalize both logλi and log(1−λi) (Meyer 2011). We use PL to
denote the penalty obtained by summing contributions for both, with the same variance σ2.

A more flexible alternative is a Beta distribution, B(α,β), with scale parameters α and β allowing
for a wide range of shapes. For α,β > 1, the distribution is unimodal. In Bayesian estimation, ν= α+β
is interpreted as effective sample size, i.e. the number of ‘observations’ added by the prior. A Beta
distribution with mode equal to λ̄ can be specified as α = 1 + (ν− 2)λ̄ and β = 1 + (ν− 2)(1− λ̄), for
ν > 2. This allows us to quantify the degree of belief in the prior through the single parameter ν. For
m = ν− 2 and Γ(·) denoting the Gamma function, the penalty for the Beta distribution is

Pβ = q
[

logΓ
(
ν
)
− logΓ

(
1 + mλ̄

)
− logΓ

(
1 + m(1− λ̄)

)]
+ m
[
λ̄

q∑
i=1

logλi + (1− λ̄)
q∑

i=1

log(1−λi)
]

(2)

*AGBU is a joint venture of NSW Department of Primary Industries and the University of New England
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As for PL, Pβ involves functions of logλi and log(1−λi). The strength of penalization for all three
penalties is regulated by the parameter σ2 or ν. In contrast to previous formulations employing a
tuning factor, this lends itself to attempts of direct estimation by maximizing the penalized likelihood
with respect to this parameter (de los Campos 2013; pers. comm.).

SIMULATION STUDY
Records for q = 9 traits were sampled from multivariate normal distributions, assuming a balanced

paternal half-sib design comprised of s = 100,400 or 1000 sire families of size 10. Population values
for 72 scenarios, selected to represent an extensive range of possible – including unusual or ‘difficult’
– cases were obtained by combining 12 sets of heritabilities with 6 correlation structures. The variance
among population values for canonical eigenvalues ranged from 0 to 0.099 (mean 0.046) on the
original and 0 to 2.504 (mean 0.989) on the logarithmic scale. Restricted maximum likelihood
estimates of genetic and residual (ΣE) covariance matrices were obtained fitting a simple animal
model with means as the only fixed effects, for the three types of penalties described above. Penalties
were applied using the same, default ‘strength parameter’ for all cases, σ2 = 0.02 to 0.1 for PN ,
σ2 = 0.5 to 2.0 for PL and ν = 2.5 to 10 for Pβ. In addition, σ2 or ν were estimated from the data by
evaluating points on the profile likelihood and employing a quadratic approximation to determine
its maximum. In doing so, parameter estimates were constrained to the interval [2.001,50] for ν and
[0.001,10] and [0.01,25] for σ2 for PN and PL, respectively. A total of 500 replicates were carried
out for each case. For each sample, the loss in estimates was determined as (for X = G,E and P)

L1
(
ΣX ,Σ̂X

)
= tr
(
Σ−1

X Σ̂X
)
− log

∣∣Σ−1
X Σ̂X

∣∣− q (3)

with ΣX the matrix of population values, Σ̂X the corresponding estimate, and ΣP = ΣG +ΣE . The
Percentage Reduction In Average Loss due to penalization was then evaluated as

PRIAL = 100
[
1− L̄1

(
ΣX ,Σ̂

ν
X

)
/L̄1
(
ΣX ,Σ̂

0
X

)]
(4)

with Σ̂ν
X and Σ̂0

X the penalized and unpenalized estimates of ΣX , and L̄1(·) the average loss over
replicates. In addition, the mean reduction in unpenalized likelihood due to penalization (from its
maximum for unpenalized estimates), ∆L, was calculated.

RESULTS
Our main goal of penalized estimation is to reduce the loss in estimates of ΣG. The rationale for

shrinking canonical eigenvalues towards their mean or mode is that this reduces sampling variation by
‘borrowing strength’ from the estimate of ΣP, which typically is estimated much more accurately than
either of its components, ΣG and ΣE (Hayes and Hill 1981). Hence, loosely speaking, we attempt to
redress the balance in partitioning skewed by sampling error. This implies that we expect the estimate
of ΣP to remain more or less unchanged. Too stringent penalization can result in reduced or even
negative PRIAL for any of the covariance matrices estimated. In particular, a negative PRIAL for ΣP
represents a strong warning signal for over-penalization.

The distribution of PRIALs (higher values are better) across the 72 scenarios for ΣG and ΣP
for two sample sizes is summarized in Figure 1. Central dots display mean values. Values on the
x-axis are the fixed values for σ2 and ν used, except for ‘E’ which denotes use of the estimated value.
For clarity of scale, 5 values for ΣG less than −60, occurring for PL, ‘E’ and s = 100, are omitted.
PRIALs for PN were modest, but positive throughout for ΣG. Except for the smallest, fixed value for
σ2, i.e. the most stringent penalty, there was little evidence for adverse effects on estimates for any
of the cases. Estimating σ2 yielded marked improvements, especially for the larger sample size, for
cases with low variance among the population values for λi, i.e. the cases which matched the prior.
As there were few of the latter, however, mean PRIALs achieved remained quite low.
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Figure 1. Distribution of Percentage reduction in average loss for genetic and phenotypic co-
variance matrices (for s=100 and 1000 sire families).

As reported previously (Meyer 2011), penalizing logλi yielded substantially larger PRIALs. Using
a fixed value of σ2 = 2 proved to be a safe default for a mild penalty with mean PRIALs for ΣG as high
as 54, 44 and 33% for s = 100,400 and 1000, respectively. Lower values for σ2 resulted in increasing
numbers of unfavourable cases. Attempts to estimate σ2 for PL failed in a substantial proportion
of replicates for a number of cases, with estimates close to the lower boundary. As this was set at
0.01, it resulted in far too stringent penalization. This held in particular for the smallest sample size,
suggesting that this was, in part at least, attributable to insufficient information. Additional analyses
(not shown) estimating separate values of σ2 for two the parts of PL, involving logλi and log(1−λi),
respectively, reduced the incidence of problem cases, but, on the whole, was not satisfactory either.

A similar pattern emerged for a penalty based on the Beta distribution. However, for Pβ an
estimate for ν close to its lower boundary at 2.001 was equivalent to virtually no penalization. Hence,
there were no negative PRIALs due to over-penalization. Yet, overall there was little advantage in
estimating ν compared to a default value for a mild penalty. Means and minimum values for PRIALs
and the corresponding decrease in likelihood (from it’s unpenalized maximum) for selected values of
ν are given in Table 1. Results for fixed ν identified little adverse effects for any cases or sample sizes
for values up to about 6. Average changes in likelihood were small, especially when considering that
for q = 9 traits there were 90 covariance components to be estimated. As shown in Table 1, repeating
analyses with minimum values for ν of 2.5 and 4 increased PRIALs by a few percent compared to
corresponding results for a fixed ν, but at the price of marked additional effort.

DISCUSSION
Penalized estimation provides a powerful mechanism to improve estimates of genetic covariance

matrices by reducing sampling variation. Large improvements can be obtained if population parame-
ters approximately match the assumed prior distribution on which the penalty is based. In practice,
however, true values are unknown and it is important that the procedure chosen is robust, i.e. unlikely
to result in worse estimates. While estimation of the strength of penalization is possible in principle,
it is computational demanding and may not be particularly advantageous or even successful.
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Table 1. Mean and minimum PRIAL for estimates of genetic (ΣG), residual (ΣE) and pheno-
typic (ΣP) covariance matrices and change in log likelihood (∆L) for penalty Pβ

νa 100 sires 400 sires 1000 sires

ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L ΣG ΣE ΣP ∆L
Mean

F2.5 31.3 36.4 0.5 -0.27 21.9 15.6 0.1 -0.08 14.3 7.6 0.1 -0.03
F4.0 49.5 48.2 1.0 -1.25 37.5 23.3 0.4 -0.47 27.2 12.6 0.2 -0.22
F6.0 56.5 51.5 1.2 -2.52 43.6 26.3 0.5 -1.06 32.4 14.7 0.2 -0.55
F8.0 59.2 52.6 1.2 -3.72 45.7 25.5 0.5 -1.68 34.0 12.7 0.2 -0.92
E2.0 32.4 16.7 0.5 -1.25 31.9 11.8 0.4 -0.56 23.8 7.5 0.2 -0.27
E2.5 46.2 46.5 0.9 -1.35 38.8 24.2 0.5 -0.60 28.2 13.1 0.2 -0.29
E4.0 54.2 52.7 1.2 -2.01 46.7 29.3 0.6 -0.84 33.1 16.3 0.3 -0.41

Minimum
F2.5 16.2 8.7 0.2 -0.47 0.9 1.3 0.0 -0.23 0.2 0.4 0.0 -0.11
F4.0 16.0 22.5 -0.2 -1.98 4.0 5.0 0.0 -1.13 1.4 1.7 0.0 -0.69
F6.0 6.7 23.4 -0.5 -3.91 -0.4 9.4 -0.6 -2.41 -2.0 3.4 -0.2 -1.69
F8.0 -1.7 8.4 -1.0 -5.69 -17.1 13.2 -0.9 -3.72 -20.2 -1.3 -1.0 -2.67
E2.0 0.3 -3.1 -0.2 -5.21 0.5 -0.7 -0.1 -1.96 0.5 -0.2 -0.1 -1.18
E2.5 18.1 26.5 0.0 -4.99 14.5 7.1 -0.0 -2.01 3.4 3.0 -0.0 -1.17
E4.0 16.2 32.5 0.0 -5.38 15.8 9.8 0.1 -2.02 5.1 3.9 -0.1 -1.19

aEffective size, F: fixed value, E: estimated with this minimum value

Results show that a penalty encouraging shrinkage of canonical eigenvalue lends itself to a scheme
using a default strength parameter to impose a mild penalty. Assuming a Beta distribution provides
a more flexible prior than a Normal or log-Normal distribution. Moreover, the resulting penalty
has an intuitive parameter – the so-called effective sample size – regulating its stringency. A value
of ν = 4 to 6 yielded worthwhile reductions in loss without (non-negligible) negative PRIALs or
substantial changes in likelihood and can be recommended for routine use. Additional computational
requirements are small, but derivatives of the penalty may be needed. These are readily obtained by
parameterising analyses to canonical eigenvalues and elements of the corresponding eigenvectors
(Meyer and Kirkpatrick 2010), but this may have less favourable convergence rates than the standard
parameterisation. Alternative penalties, e.g. to shrink genetic correlations towards their phenotypic
counterparts may be preferable in this respect, and equally suited to default penalties (Meyer 2014).

CONCLUSIONS
Maximum likelihood estimation subject to a penalty can markedly reduce sampling variation of

estimates, and should be applied routinely in multivariate analyses involving more than a few traits.
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SUMMARY 

Accurate genetic evaluation relies on measurements, which can be difficult to achieve for some 

economical important traits (hard and /or costly to measure). We developed a strategy that can 

select an optimised subset of animals to phenotype based on pedigree relationship, prior 

information (previously phenotyped animals) and diversity to maximise genetic gain under 

inbreeding and cost constraints.  

We simulated a two-stage two-trait selection scenario for a small population of 10 paternal 

half-sib families of size 10 (pilot study). One trait was phenotyped for all animals (parents and 

selection candidates) and the second trait was phenotyped on only a selected set of  20 selection 

candidates based on a prior decision on phenotyping (stage 1). Phenotyping decisions were made 

either based on maximizing diversity of the set chosen to be phenotyped  (DIVERSITY) or simply 

based on breeding values at stage 1 (MERIT). After phenotyping, the second stage selection of 

animals as parents for the next generation was based on optimum contributions. The DIVERSITY 

strategy was most useful when there was limited prior information about the Mendelian sampling 

term of predicted breeding value. When parents of selection candidates have not been phenotyped, 

DIVERSITY does not provide any advantage over truncation selection (MERIT). However, when 

sires or both parents have been previously phenotyped, DIVERSITY resulted in higher genetic 

gain for similar level of inbreeding. From this study, we conclude that an optimized phenotyping 

strategy can have potential long term benefits in breeding programs but more work is needed to 

investigate under which conditions benefits are largest.    

 

INTRODUCTION 

Trait measurement provides the necessary information to perform accurate genetic evaluation, 

whether it is based on phenotype on the animal itself or on its relatives. However, it can be costly 

and/or difficult to achieve trait measurement for a large number of animals (e.g. carcass traits, 

methane emission). Reducing the number of animals phenotyped is a simple and efficient way to 

cut cost and/or allow economically important traits to be part of the selection criterion, but the 

question is how phenotyping costs can be reduced with minimal impact on genetic gain.   

Various efforts to manage cost of phenotyping have been made over the years. The first 

attempt to manage measurement was made by Robertson (1957) who proposed a theory to 

optimise the family size in a progeny testing breeding program by optimising the product of 

expected selection differential and accuracy. Wade and James (1990) developed a theory to 

manage the cost of testing while limiting a reduction in genetic gain. They mainly optimised the 

proportion of selection candidates to be phenotyped. More recently, Okeno et al. (2014) found that 

using knowledge on previously estimated breeding values was better than phenotyping randomly 

selected animals and that a phenotyping 80% of the animals provides the same gain as when all 

animals were phenotyped. Previous studies were therefore mainly concerned with determining an 

optimal proportion of animals to be phenotyped, but did not give any insight about which 

particular individuals should be measured. 

In a previous study, we developed a phenotyping strategy for a single trait measured on an 

optimised subset of animals with no prior information on the candidates to be considered 

(Massault et al. 2013). A set of individuals was phenotyped that maximised the information and 
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thus the accuracy of genetic evaluation. While this strategy proved to be efficient, it does not 

reflect a practical breeding program where multi-trait and multi stage selection is common and 

prior information on candidates exists in the form of estimated breeding values. 

In the current study, we present a phenotyping strategy that uses prior knowledge for the case 

of two-stage two-trait selection. We use a small paternal half-sib population structure and extreme 

parameters to assess the potential usefulness of such a strategy. 

 

MATERIALS AND METHODS 

Population simulation. To explore the efficiency of our selection criterion, we simulated a 

small pedigree of 10 paternal half-sib families, comprising 10 offspring each. We simulated 

genetic and environmental values for 2 traits with both a heritability of 0.3 and a phenotypic 

variation σ
2

P of 100 (e.g. body weight and feed efficiency) with a correlation between traits of rA = 

0.5 and rE = 0.25. Traits 1 and 2 have economic value of 0.01 and 0.1 respectively (the most 

important trait being the one with restricted phenotyping). We therefore have a breeding objective 

G of 0.01 * EBVTrait1 + 0.1 * EBVTrait2 (EBV = Estimated Breeding Value). We used selection in 

stage 1 to determine which selection candidates to phenotype for Trait 2, and offspring were 

selected to become parents at stage 2. All animals were measured for Trait 1 before stage 1 

selection. We had three different scenarios for prior information on Trait 2; NOT2, where no 

parents of selection candidates have been phenotyped for Trait 2; ST2, where sires   have been 

phenotyped for Trait 2 and PT2, where both parents have been phenotyped for Trait 2. These 

scenarios differ in the amount of information known about the between and within family 

components of EBV, and hence the correlation in EBV among relatives We calculated EBVs at 

stage 1 using multi-trait BLUP based on all available information on both traits. EBVs in stage 2 

were calculated using BLUP after phenotyping 20% of selection candidates for Trait 2. We used 

optimum contribution selection at stage 2 (Sonesson and Meuwissen, 2000), where contribution of 

animals to the next generation are optimised and balanced with diversity: 

  
𝑂𝑝𝑡𝑖𝑚𝑢𝑚 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  𝒙′𝑮 + 𝜆2𝒙′𝑨𝒙 

 

where G  is a vector of breeding values, x a vector of contribution to the next generation and A the 

numerator relationship matrix. We used 6 different values for 𝜆2 (0, -10,-100, -1000, -9999). We 

then compared the genetic gain (x'G) for the same level of inbreeding (F = x'Ax / 2) between 

different phenotyping strategies.    

Selection criteria for phenotyping (stage 1 selection). We used 2 strategies to select 20% of 

selection candidates to phenotype: DIVERSITY, where animals are selected for phenotyping 

based on merit as well as diversity, and MERIT, where animals are selected simply based on merit 

(highest EBVs). We also simulated an ALL strategy where all selection candidates were 

phenotyped. We propose a selection criterion based on the average (EBVs) of ‘would-be’ 

phenotyped animals and their genetic diversity: 

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =  𝒙′𝑮 + 𝜆1𝒙′𝑨𝒙 

 

where G is the vector of expected breeding value of phenotyped animal, x a vector indicating for 

each animal 1/n (number of phenotyped animals) when phenotyped or 0 otherwise and A the 

numerator relationship matrix. The first term reflects the average breeding values of phenotyped 

animals while the second term reflects the diversity between phenotyped animals. We use the 

extreme value of -9999 for 𝜆1 for DIVERSITY. Note that the MERIT scenario where the 

phenotyped set is chosen based on merit alone is equal to setting 𝜆1 to zero, while a scenario 

where diversity was the overriding criterion equal one where 𝜆1 = 9999. The optimality of the 
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result will also depend on the importance of genetic diversity at the final selection stage, hence we 

also varied 𝜆2. We simulated 100 replicates. 

Differential algorithm. To determine which subset of animals is best to phenotype, we used a 

differential algorithm (DE, Storn and Price 1997). The DE creates 16 subsets of animals to 

phenotype (solutions). Each subset of phenotyped animals is then evaluated using a selection 

criterion (described above) and the solutions are ranked. The DE creates a challenger for each of 

the 16 solutions by crossing-over and mutating solutions (i.e. a different set of animals to be 

phenotyped). If the challenger performs better, the current solution is discarded and the challenger 

enters the pool for the next generation of solutions.  Subsequently challengers are evaluated with 

the selection criterion over another 50,000 generations. At the end, the DE will have evolved to a 

best (or at least close to best) set animals to phenotype, for a given λ1 value. 

 

RESULTS AND DISCUSSION 

Genetic gain and diversity. Fig. 1 shows the possible selection points at stage 2 (plotting 

genetic gain (x'G) and level of inbreeding F (x'Ax/2)) for the two selection options at stage 1, with 

MERIT (i.e. 𝜆1 = 0) and DIVERSITY(𝜆1 = 9999) for NOT2, ST2 and PT2 scenarios. ALL always 

out-performs the 2 other strategies, as expected, due to the fact that all selection candidates have 

been phenotyped. The ALL strategy gave by far the highest gain under the same level of 

inbreeding at stage 2 selection. The DIVERSITY strategy performed generally better than the 

MERIT strategy. The advantage is not so important in the case of NOT2, but DIVERSITY is 

significantly higher when phenotyping sire (ST2) and both parents (PT2). The performance of 

DIVERSITY increases as the level of information on parents increases.  

Between and within family information. The difference seen between DIVERSITY and 

MERIT can be explained by the additional information given by phenotyping parents of selection 

candidates. In the case of NOT2, where no parents are phenotyped, there is no information other 

than the selection candidates own phenotype for Trait 1. EBVs from sibs are lowly correlated 

(correlation = 0.06, see Stanish and Taylor (1983) for calculation) which reduces the co-selection 

of relatives. Therefore, in this case, a phenotyping strategy that emphasises diversity is not really 

advantageous. MERIT distributed phenotypes to best animals across 8 different families (Fig 2.A) 

while DIVERSITY phenotyped 2 good animals for each family (Fig 2.B) resulting in DIVERSITY 

slightly better than MERIT. On the other hand, when sires have been phenotyped for Trait 2, sibs 

will have a higher correlation (0.40) among their EBVs. Selection on merit would emphasize 

family selection, which becomes restrictive at stage 2 selection (unless 𝜆2 = 0) and the distributing 

phenotypes over more families will allow more emphasis on within family selection at stage 2. 

Fig. 2.C shows that MERIT allocated phenotypes for the 5 best families while Fig 2.D shows that 

DIVERSITY phenotyped 2 good animals per family. This permits a relatively high genetic gain 

and also maximises the diversity and show the benefit of choosing specific individuals to 

phenotype rather than a random proportion to maintain diversity. The same principle applies when 

both parents have been phenotyped and the additional information brought more information on 

the selection candidates itself as each dam has a single progeny.  

Further work. The results showed in this study proved that in selecting animals for 

phenotyping there is an advantage to emphasize diversity of the set to be measured. We concluded 

that phenotyping good animals across a larger number of families resulted in higher genetic gain 

than phenotyping the best animals of few families for same level of inbreeding. An optimal 

solution is likely to be less extreme than the DIVERSITY strategy, hence it is important to find the 

𝜆1 value that optimises the subset of animals to phenotype that allows an optimal solution between 

merit and diversity at the second selection stage. It is also pertinent to explore the benefit of an 

optimal strategy, over a long period of time (e.g. 10 years of selection) and vary the parameter 

values such as trait heritabilities, genetic correlation and economic weights.   
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Fig 1. Genetic gain (x’G) versus diversity (F, level of inbreeding) plot for 3 different 

measurement scenarios NOT2, ST2 and PT2 with the three phenotyping strategies ALL, 

MERIT and DIVERSITY  

 
  Fig 2. Phenotyped individuals in one replicate with no information on Trait 2 for 

MERIT(A) and DIVERSITY (B) and when sires are phenotyped for Trait 2 for MERIT (C) 

and DIVERSITY (D) . Individuals are classified by EBV at stage 1 and families. 
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SUMMARY 

Sheep farmers are actively seeking unbiased information on the performance of sheep breeds 

and bloodlines within breeds to help improve their overall profitability.  To help answer this 

question the Elmore Field Days Inc ran a comparison to determine the merit of five ewe genotypes 

for prime lamb and wool production from 2009 to 2014.  Each of the five genotypes were 

represented by 42 ewes randomly selected from three properties. The ewes were joined annually to 

terminal sires for prime lamb production and run together as one mob except at lambing; there 

were six opportunities to lamb, the first as ewe lambs.    Ewe genotypes compared were the Border 

Leicester x Merino cross (BL x Mo), local Merinos from northern Victoria and three dual purpose 

Merinos, Centre Plus Merinos, the Dohne Merino and the South African Meat Merino (SAMM).  

The local Merinos produced the heaviest fleeces and Centre Plus Merinos the finest.  The BL x Mo 

and SAMMs had the highest reproduction but lighter and coarser fleeces. 

 

INTRODUCTION 

What is the best ewe genotype to use for a combination of prime lamb and wool production?  

To help answer this question the Elmore Field Days Inc ran a trial from 2009 to 2014 to compare 

the merit of five alternative sheep genotypes in the northern Victorian environment at Elmore.  

This paper reports covers the results of five adult years of ewe and lamb body weights, condition 

scores, reproduction data and key wool measurements.  Additional data for other traits were 

available for some years and are also reported. 

 

MATERIALS AND METHODS 

Ewes were run on the Elmore Field Days site 3 km east of Elmore in northern Victoria from 

January 2009 to October 2014.  The rain at the locality is winter dominant with a long term 

average of 466mm per year.  Sheep grazed on annual pastures growing between late autumn and 

spring and dry pasture residues and crop stubbles over the summer.  Summer storms in some years 

provided extra green feed from dryland lucerne and green summer weeds.  

 Five ewe genotypes were each represented by 42 ewes. Each genotype group was randomly 

selected from three properties, with 14 ewe lambs per property after an allowance for culling.  The 

ewe lambs were fed a high-quality diet to reach a joining weight in late February 2009, when they 

were joined to White Suffolk rams with a further five annual joinings to either White Suffolk or 

Poll Dorset rams. 

The ewe genotypes were (i) BL x Mo. - Border Leicester x Merino cross ewes, the most 

common prime lamb mother in northern Victoria.  (ii)  Merino LV - Loddon Valley Merinos, the 

second most common prime lamb mother in northern Victoria; based on Peppin bloodlines with 

some influence from South Australian bloodlines and typical of many medium Merinos.  These 

local ewes were compared to three dual purpose Merinos that have been recently introduced to the 

district.  (iii)  CP Merino - Centre Plus Merino, from Central West NSW.  (iv)  Dohne - The 

Dohne Merino is a dual-purpose breed developed in South Africa.  In 2008 the Dohne breed was 

in the early stages of introduction to Australia from South Africa.  Two properties supplied F2 ewe 

lambs while the third property supplied F3 ewes.  (v) SAMM - The South African Meat Merino is a 
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dual-purpose sheep originally bred in South Africa. In 2008 the SAMM breed was in the early 

stages of introduction to Australia.  Two properties supplied F3 ewe lambs while the third supplied 

a mix of F2s and F3s.  This report covers the five adult years of body weights, condition scores, 

reproduction data and key wool measurements.  Additional data were available for some years. 

Lambing time varied from year to year, from April (autumn) to August (late winter) as ram 

introduction varied from 1 November and 26 February.  Ewes were pregnancy scanned about 90 

days after the rams were introduced and assigned as ‘dry’ or carrying a single or twin.  They were 

divided into their breed groups immediately prior to lambing and run together again from lamb 

marking.  Ewes were inspected twice daily during lambing and assistance was only given when 

needed.  Individual lambs were not identified with their dam at lambing.  Instead ewe udders were 

inspected at lamb marking and weaning and each ewe was classed as ‘wet’ or ‘dry’ or ‘lambed and 

lost’ when linked to scan information. 

Shearing was in early October year and wool mid-side samples for wool quality characters 

were taken about 3 weeks before shearing.  Ewes were scored using standard industry guidelines 

by two experienced operators for greasy wool colour in two years and for wrinkle (neck and body) 

once at three years of age.    Fleece rot was scored before shearing after a normal season in 

September 2010 and in April and September 2011, after the wettest summer on record with 611 

mm of rain over 5 months. Lamb growth was assessed by live weights before sales and the 

proportion that would go to slaughter in the first draft.  Lambs were weaned at 12 to 14 weeks and 

sold when a commercial draft reached a minimum live weight of 46 kg; except in the poor spring 

of 2013 when the weight was reduced to 42 kg. The average age of the first batch at marketing was 

21 weeks.  Carcase measurements were available for 4 slaughter batches of lambs totalling 460 

lambs over three years.  Underweight lambs were carried over the summer in two years.   

Wool and lamb returns per ewe were calculated each year using average prices over the 

previous 12 months.  Wool prices differences reflected fibre diameter.  Lamb returns per ewe were 

calculated from lambing percentage, lamb live weight, dressing percentage and skin value. 

Statistical analyses.  A linear mixed model was fitted to reproduction, wool, body weight and 

condition score traits. Fixed effects fitted within the model included year (confounded with ewe 

age), ewe genotype and the interaction between year and ewe genotype (which was almost never 

significant).  For ewe body weight and condition score whether or not they lambed at 12 months 

was included and also the interaction between 12-month-lambing and year.  Random effects 

included property of origin, the interaction between property and year, and ewe to account for 

repeated measures across years.  For wool traits the year by property interactions were not 

significant and removed from the model. For traits recorded only once (e.g. broken mouths at the 

end of the trial) the model only included the fixed effect of ewe genotype. For lamb carcass traits, 

the model included fixed effects of year of birth, sex (ewe, wether) and ewe genotype.  Interactions 

between fixed effects were not significant and removed from the model.  Least significant 

differences (LSD) are shown where appropriate. 

 

RESULTS AND DISCUSSION 

Wool and ewe body weight.  The local Merino produced the heaviest fleeces and the SAMM 

the lowest.  The Centre Plus Merino had the finest wool, with local Merinos similar to Dohne, 

SAMM being coarser and the BL x Mo the coarsest (Table 1).  SAMM and BL x Mo ewes 

maintained greater condition than the others, with the local Merino the lowest.   

Reproduction and lamb performance.  There were no breed differences in fertility (ewes 

pregnant per ewe joined) but there were substantial differences in fecundity (litter size) and so 

lambs weaned (Table 2).  BL x Mo and SAMM were highest, Centre Plus intermediate and local 

Merino and Dohne lowest.  The 36% difference in lambs marked between the SAMMs and 

Australian Merinos in this study contrasted with a South African study where the difference was 
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12% between SAMMs and wool focused Merinos (Cloete 2003). The differences between Dohnes 

and wool focused merinos were similar in both studies.  Heterosis may have had a small effect on 

the F2 and F3 SAMM and Dohne results as maternal heterosis between Australian Merino strains 

averaged 8% lambs marked in a study of F1s by Mortimer et al (1997).  

These analyses clearly show the trial had sufficient numbers to validly test sheep 

reproduction, weights and wool production with the limited resources of farmer research 

organisations and a team of dedicated volunteers with professional help.  They are a reliable guide 

to the reproductive performance of the flocks of origin as the property of origin variance was very 

small and several studies including Allden (1979) and Gunn et al (1995) have indicated the 

nutrition of the young ewe, from a foetus to weaning, has zero or small long term effects on 

subsequent reproduction under commercial farm conditions. 

Lambs from SAMM ewes were the heaviest, then BL x Mo, Centre Plus and Dohne 

intermediate and the local Merino lowest (Table 3).  There were no differences in the GR fat 

measure after adjustments for carcase weight. 

 

Table 1.  Ewe live weight and condition score at joining for the five adult lambings from 2010 

to 2014 and wool productions for the five adult shearings from 2010 to 2014. 

Ewe Breed Ewe weight, 

fleece free at 

joining (kg) 

Condition 

score at 

joining 

(score 1-5) 

Greasy 

fleece 

 weight 

(kg) 

Clean fleece 

weight 

(kg) 

Fibre 

diameter 

mean 

(μm) 

Fibre diam. 

Coefficient 

of variation 

(%) 

Greasy wool 

colour 

(score 1-5) 

BL x Mo 79.6b 4.34d 5.5bc 3.9bc 30.3d 20.3c 3.4c 

Merino LV 63.6a 3.55a 6.6d 4.8d 20.9b 18.6b 2.4a 

CP Merino 70.7a 3.77b 6.0c 4.1c 19.0a 16.1a 2.4a 

Dohne 70.6a 4.05c 5.1b 3.5b 20.8b 17.8ab 2.9b 

SAMM 79.7b 4.38d 4.1a 2.6a 24.4c 17.0ab 3.3c 

LSD 8.1 0.17 0.5 0.4 1.3 1.1 0.2 

abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 

 

Table 2.  Ewe reproduction characters for the five adult lambings from 2010 to 2014. 

Ewe breed Scanned in 

lamb 

Fetuses 

scanned per 

pregnant ewe 

Fetuses  

scanned per 

ewe joined 

Lambed & lost  

per ewe 

lambing 

Lambs born    

per ewe joined 

Lambs marked       

per ewe joined 

 BL x Mo 0.94 1.67b 1.58b 0.04a 1.50c 1.32c 

Merino LV 0.91 1.42ab 1.29a 0.11b 1.16a 0.96a 

CP Merino 0.93 1.59b 1.48b 0.07a 1.38b 1.16b 

Dohne 0.90 1.40a 1.26a 0.15b 1.20a 0.96a 

SAMM 0.97 1.65b 1.61b 0.05a 1.56c 1.32c 

LSD 0.08 0.18 0.18 0.07 0.09 0.06 

abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 

 

Industry application.  Reproduction, lamb growth, wool and easy care characters are all 

highly relevant to improving profitability, but no single genotype exceled in all compartments.  

The estimated returns from wool and lamb are shown in Table 4.  The local Merino and Centre 

Plus had the greatest wool returns whereas BL x Mo and SAMM had the greatest lamb returns.  
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When wool and meat were combined the SAMM and Centre Plus were equivalent and the BL x 

Mo was close.  However, returns per hectare from the BL x Mo and SAMM would be reduced 

when accounting for their higher feed intake, due to higher number of lambs reared and heavier 

ewes.  However indications are that dual purpose Merinos with good wool, reproduction and lamb 

growth are likely to be the most profitable alternative in this Elmore environment. Systems 

analyses using bio-economic models such as GrassGro are needed to fully investigate whole farm 

profitability. 

 

  Table  3.  Lamb live weights, growth rates and dressing percentage.   

Ewe Breed Weight at 

Marking 

(kg) 

Weight in 

spring, before 

any sales (kg) 

Weight gain, 

Winter-Spring 

(g/day) 

Percent in 1st 

slaughter batch 

Weight gain 

over Summer 

(g/day) 

Dressing 

percent 

BL x Mo 19.4c 47.7c 261d 67.4c 156d 47.2bc 

Merino LV 18.2a 44.3a 241a 45.3a 142b 46.4a 

CP Merino 18.1a 46.1b 258c 55.8b 150cd 46.7a 

Dohne 18.7b 46.3b 255b 58.4b 133a 47.1b 

SAMM 18.8b 48.5d 274e 72.0d 146bc 47.4c 

LSD 0.4 0.5 3 4.0 7 0.3 

abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 

 

Table 4. Scores for skin wrinkle and fleece rot and the financial returns from wool and 

lambs. 

Ewe Breed Wrinkle, 

neck and 

body 

(score 1-5) 

Fleece rot 

8Sept2010 

(score 1-5) 

Fleece rot 

18Apr2011 

(score 1-5) 

Fleece rot 

6Sept2011 

(score 1-5) 

Wool 

returns per 

ewe 

 ($/ewe) 

Lamb 

returns per 

ewe 

($/ewe) 

Total wool and 

lamb returns per 

ewe 

($/ewe) 

BL x Mo 1.2a 1.5 1.6a 2.0a $19.94 $154.54 $174.48 

Merino LV 2.5c 1.3 2.4bc 3.2b $52.96 $102.32 $155.28 

CP Merino 2.3c 1.2 2.3b 2.7b $49.67 $130.04 $179.71 

Dohne 1.6b 1.4 2.9c 3.0b $38.70 $108.68 $147.39 

SAMM 1.1a 1.6 2.2ab 2.6ab $23.17 $157.08 $180.25 

LSD 0.2 0.6 0.6 0.6    

abc Ewe breed means within columns with different superscripts differ significantly (P<0.05). 
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SUMMARY 

The fertility in dairy cows is a major issue, as several studies suggest declines in the 

reproductive performance of dairy cows over the past 20 years. Little information is available on 

the comparative performance of South African Holstein (H) and Jersey (J) cows under similar 

feeding and management conditions. In this paper, the reproductive performance of H (n=120) and 

J (n=126) heifers and lactating cows on mostly kikuyu pasture are presented. Cows were 

supplemented with the same concentrate mixture after milking at 7 kg per cow per day. On 

average (±s.d.), Jersey heifers were inseminated earlier (P<0.05) than H heifers at 15.4±2.1 and 

16.1±2.3 months of age, respectively. A higher (P<0.05) ratio of J heifers were inseminated for the 

first time by 15 months of age than H heifers (0.49 vs. 0.29). Fertility traits, calving to first service 

(CFS), first service within 80 days post partum (FS<80d), and cows confirmed pregnant within 

100 days post partum (PD100d) for H and J cows were 88±26 and 78±29 days (P<0.01), 0.44 and 

0.62 (P<0.01) and 0.31 and 0.51 (P<0.05) respectively. The interval from calving to conception 

differed (P<0.05) between breeds, being 119±61 and 138±62 for J and H cows respectively 

Results are consistent with other studies showing a higher conception rate in J cows compared to 

H cows. The poorer reproductive performance of H could be probably attributed to a greater 

potential for milk production. Further studies are foreseen comparing the production performance 

and efficiency of H and J cows under this feeding regime.    
 

INTRODUCTION 

The declining fertility of dairy cows has recently become a major issue in most of the main 

dairy producing countries in the world. In most countries selection is aimed at improving milk 

production performance and conformation traits. Studies have shown that the declining 

reproductive performance of dairy cows may be associated to an increasing proportion of North 

American H sires in national dairy herds (Auldist, et al. 2007; Buckley, et al. 2003). Because of 

this decline in fertility in Holstein cows, producers are considering using other breeds, or in some 

cases, doing crossbreeding to improve traits such a fertility. In South Africa, the J breed is 

becoming very popular, especially in pasture-based areas. The breed is also increasingly being 

used in crossbreeding programmes in countries with seasonal pasture-based production systems 

mostly because of its perceived better reproductive performance in comparison to H cows (Auldist 

et al. 2007). However, Washburn et al. (2002a) found in a survey in the USA, an unexpected close 

similarity between H and J herds for services per conception or conception rate. This differed from 

earlier work by Fonseca et al. (1983) who reported significant differences in first service 

conception rate, i.e. 72% for J and 49% for H. Washburn et al. (2002b) later found that J cows, 

when managed in the same herd over three years, had a higher conception rate than H cows, being 

59.6% vs. 49.5%. In contrast, Prendiville et al. (2011) found no significant differences in 

reproductive efficiency between Holstein-Friesian and J cows in a seasonal pasture-based 

management system in Ireland. Breed differences in the fertility of South African heifers were 

demonstrated in a survey involving 10721 H heifers in 11 herds and 2349 J heifers in 5 herds 
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(Muller et al. 2014a). Because of a lack of a national data base for insemination or service records 

and pregnancy check results for dairy cows in South Africa, calving interval (CI) is at present 

being used as an indicator for fertility. Genetic parameters have been estimated for calving interval 

(CI) for dairy breeds (Mostert et al. 2010). Phenotypically, a small difference in CI was shown 

between H and J cows, being 398±68 and 389±64 days, respectively. Heritability estimates for CI 

were low, being 0.022±0.006 and 0.026±0.004 for J and H, respectively, albeit in agreement with 

other analyses. Mostert et al. (2010) found that genetic trends for CI showed an upward curve 

since 1980, amounting to 1.25 and 0.50 days per year for H and J cows, respectively. Muller et al. 

(2014b) showed that herd (presumably an indicator of managerial and inseminator skills) had the 

largest effect on the standard of reproduction management in H cows. The aim of the paper is to 

compare the reproductive performance of H and J heifers and cows under the same feeding and 

management conditions in a pasture-based feeding system in South Africa.      

 

MATERIAL AND METHODS 

 Location and Animals. This paper was based on an on-going breed comparison study being 

conducted at the Elsenburg Research Farm of the Western Cape Department of Agriculture. 

Elsenburg is situated approximately 50 km east of Cape Town in the winter rainfall region of 

South Africa. The area has a typical Mediterranean climate with short, cold, wet winters and long, 

dry summers. Holstein and J cows have been managed since 2003 as one herd. Cows in milk were 

supplemented with a commercial concentrate mixture being fed after each milking twice a day for 

a total of 7 kg per day regardless of milk yield and lactation stage. Cultivated pasture consists 

mainly of kikuyu grass (Pennisetum clandestimum) being irrigated during summer. Cows were on 

kikuyu pasture during most of the year. Pasture was further supplemented during winter with a 

pasture replacement mixture consisting of lucerne hay, oat hay and soybean meal providing at 

least 15% CP on an “as is” basis. Fresh drinking water was freely available at all times.  

 

Data recording. Cows were routinely checked and treated by a veterinarian for retained 

placentas and uterine infections within the first 10 days after each calving. From 40 days after 

calving, cows were checked for signs of heat and if active, a tail-marker was put on each cow to 

facilitate heat detection. Cows not showing signs of reproduction activity at this stage were treated 

according to a standard hormonal programme. Heat detection was done on a daily basis. Cows 

were inseminated from about 60 days after calving. Heifers born from these cows were put in a 

heifer-service group once they reached 13 months of age and were checked for reproductive 

activity. Heifers were serviced when showing clear signs of being in heat. The reproductive 

performance of heifers and cows was determined based on service dates and the results of 

pregnancy detection by rectal palpation by a veterinarian at least 45 days after the last service. 

Reproductive traits determined for cows were the interval (number of days) from calving to first 

service (CFS), number of services per conception (SPC), interval from calving to conception 

(DO), whether first service occurred within 80 days post partum (FS<80d), whether cows became 

pregnant from first service (PDFS) or within 100 (PD100d) or 200 days (PD200d) after calving. 

Reproduction traits determined for heifers were age at first service (AFS), whether first 

insemination of heifers was before 15 months of age, conception age of heifers and whether 

heifers became pregnant before 15 months of age as well as age at first calving (AFC). Categorical 

traits were scored as 1 for no and 2 for yes.   

 

Statistical analyses. Reproductive traits for heifers and cows were compared between breeds 

by analysis of variance using SAS. Records within breeds were used as random replicates. For 

categorical traits, frequency tables and Chi-square tests were used to determine whether response 

is independent of breed. Significance was declared at P<0.05.    
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RESULTS AND DISCUSSION 

Results from the analysis of variance comparing the reproductive performance of H and J 

heifers and cows are reported in Table 1. Jersey heifers were inseminated earlier (P<0.05) than H 

heifers, i.e. at 15.4±2.1 and 16.1±2.3 months of age resulting in a higher ratio (P<0.05) of J heifers 

inseminated for the first time by 15 months of age. The interval CFS was shorter (P<0.05) for J 

cows in comparison to H cows, being 78±29 vs. 88±27 days, respectively. This resulted in a higher 

ratio (P<0.05) of J cows being inseminated within 80 days after calving than H cows, i.e. 0.61 vs. 

0.44 respectively. While the number of services per conception for J cows only tended (P=0.09) to 

be less than for H cows, the interval from calving to conception was shorter (P<0.01) for J cows in 

comparison to H cows, being 119±61 vs. 139±62 days respectively. Although average values for 

some traits were acceptable, large variations were observed as indicated by high standard 

deviations. The coefficients of variation ranged from 31 to 51% for CFS and DO respectively. The 

distribution of the number of DO records is shown in Figure 1. The DO interval of more than 100 

days is exceeded in 70 and 50% of lactations for H and J cows respectively.  

 

Table 1. Analysis of variance mean (±s.d) estimates of the reproductive performance of 

Holstein and Jersey heifers and cows in a pasture-based feeding system (AI = artificial 

insemination; AFC = age at first calving; FS = first service; CFS = calving to first service; 

DO = days open; DIM = days in milk) 

 

Variables 

Heifers 

Variables 

Cows 

Holstein Jersey Holstein Jersey 

Number of records 120 126 Number of lactations  326 325 

Age first service (m) 16.1a±2.3 15.4b±2.1 Lactation number 2.31±1.44 2.56±1.51 

First service <15m 0.29a 0.49b Interval CFS (days) 88a±27 78b±29 

AI’s per conception 1.86±1.30 1.77±1.08 FS<80 DIM 0.44a 0.61b 

Pregnant first service 0.54 0.56 Services/conception 2.19±1.41 1.98±1.32 

Conception age (m) 17.5* ±2.9 16.8* ±2.8 Pregnant FS  0.41 0.48 

AFC (m) 26.5±2.9 26.1±2.9 Interval DO (days) 139a±62 119b±61 

AFC <24m 0.20 0.28 Pregnant <100 DIM 0.31a  0.51b  

AFC <27m 0.64 0.69 Pregnant <200 DIM 0.85 0.87 
a,b

Values with different superscripts differ at P<0.05; *Values differed at P=0.07 

 

                            
Figure 1. The distribution of the number of records for interval from calving to conception 

(DO) for all Holstein and Jersey cows 
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Results are consistent with other studies showing a higher conception rate in J cows in 

comparison to H cows. The poorer reproductive performance of H could possibly be attributed to a 

greater potential for milk production. According to an Australian survey (Little, 2003), the 

observed level of reproductive performance would suggest management problems for both breeds 

in this study. The 100-day-in-calf rate for H cows was 31% while for J cows 51% was achieved. 

Mackey et al. (2007) reported that in 19 Holstein-Friesian dairy herds in Ireland, fertility 

performance was generally poor, with the interval to first service being 84.4±35.4 days and the 

first insemination success rate 40.6±0.68%. The 100-day in-calf rate was 46.0±0.68% and the CI 

404±65 days. Growth rate and fertility of heifers are important traits affecting age at first calving 

and lifetime performance (Cooke et al. 2013). More emphasis should be put on the lifetime 

performance of dairy cows, i.e. total production per day of life from birth, as this would have a 

greater economic and environmental benefit (Wathes et al. 2014).  

 

CONCLUSION 

This study reported breed differences in reproduction performance between H and J heifers and 

cows. Results are consistent with other studies showing a higher conception rate in J cows 

compared to H cows. Although a larger proportion of J heifers were inseminated before 15 months 

of age, age at first calving was the same for H and J heifers probably indicating a lack in 

inseminator proficiency. A larger ratio of H heifers calved down past 27 months of age. First 

insemination after calving was earlier for J cows compared to H cows, while a higher first service 

success rate resulting in more J cows confirmed pregnant by 100 days post partum. This translated 

to fewer days open which should reduce calving interval by approximately 16%. Although J 

heifers and cows showed a better fertility, a general improvement in reproduction management is 

required in both breeds. Farmers recognize the importance of fertility in heifers and cows although 

not using appropriate indicators. Fertility indicators used in the study and results could be used as 

benchmarks for South African dairy farmers.  
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SUMMARY 

Prior knowledge of the genetic diversity, extent of linkage disequilibrium (LD) and population 

structure is necessary to determine the sample size and number of SNPs necessary to ensure 

sufficient power of detection in genome-wide association studies (GWAS) and genomic 

prediction. The OvineSNP50 chip was used to genotype Dorper, Namaqua Afrikaner (NA), South 

African Mutton Merino (SAMM) and 2 flocks of South African Merino to determine the genetic 

diversity, differences in LD across breeds and population differentiation. The NA samples 

exhibited the least number of polymorphic loci and was also the least genetically diverse breed 

tested. The South African Merino samples exhibited high levels of diversity comparable to results 

of international Merinos. The NA samples exhibited the longest stretches of LD in comparison to 

the 3 other breeds, while the Merino had the most rapid decay in LD. Dorper and SAMM samples 

exhibited intermediate LD length in comparison to the 2 aforementioned breeds. A principal 

component analysis (PCA) indicated 4 distinct clusters in the data representing the 4 breeds. The 

inclusion of additional SAMM and other Merino-based breed samples may aid in increasing the 

resolution and clearly defining breeds and subtypes.  

 

INTRODUCTION 

Genomic prediction and GWAS rely on sufficient marker coverage of the genome and a 

representative sample cohort (Goddard and Hayes 2009). Estimates relating to the genetic 

diversity, extent of LD and population differentiation is vital in selecting representative samples 

and determining the number of markers required for genomic prediction and GWAS (Goddard and 

Hayes 2009; Zhang et al. 2012; Kijas et al. 2014).  

The South African Merino is the primary fine wool producing breed in South Africa and is also 

utilised for meat production. The SAMM was originally developed from the German Merino and 

has become the major dual-purpose breed in South Africa (Cloete and Olivier 2010; Schoeman et 

al. 2010). The Dorper, a 50-50 composite of the Dorset Horn and Persian breeds, is the major meat 

producing breed in the country (Cloete and Olivier 2010). The NA is a hardy, fat-tailed sheep 

indigenous to South Africa and is primarily maintained for conservation purposes (Schoeman et al. 

2010; Qwabe et al. 2013). The breed is considered endangered with <1000 breeding ewes and <20 

breeding rams remaining (FAO 2000; Qwabe et al. 2013). Although the genetic diversity and 

population structure of South African sheep breeds have been explored previously using 

microsatellite markers (Soma et al. 2012; Qwabe et al. 2013), a fine-scale investigation is 

necessary to confirm the genetic diversity and the breed structure, and determine the extent of LD 

for future genomic studies (Kijas et al. 2012). The current study used the OvineSNP50 chip to 

genotype 160 Dorper, NA, South African Merino and SAMM samples to investigate differences in 

genetic diversity, LD and population differentiation across the breeds and sampling groups. 
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MATERIALS AND METHODS 

Samples and genotyping. The Dorper (n=20), NA (n=20) and SAMM (n=20) samples were 

obtained from a resource flock on the west coast of the Western Cape Province of South Africa at 

the Nortier Research Farm. The South African Merino samples were obtained from the resource 

flocks maintained at Cradock (n=50) and Grootfontein (n=50) in the Eastern Cape Province. Blood 

samples were obtained through venipuncture of the jugular vein and stored between -20°C and-

80°C. Samples were thawed and applied to bloodcards for transport. Genotyping was done with 

the OvineSNP50 beadchip at GeneSeek Inc. (Lincoln, NE, USA).  

Data analysis. GenomeStudio Software v. 1.0 (Genotyping Module, Illumina) was used to call 

genotypes from SNP intensity data and to ensure the stringency of quality control parameters. The 

following quality control measures were implemented: >0.25 GenCall score; >0.5 GenTrain score; 

>0.01 minor allele frequency (MAF); >0.95 call rate and a sample call rate >0.95 across all 

samples. Samples with more than 10% missing data were excluded. Genotype data that met the 

quality control criteria were used to determine the number of polymorphic loci and the MAF 

distribution for the 5 respective sampling groups and an additional group comprising 20 Cradock 

and 20 Grootfontein Merino samples. The observed heterozygosity and inbreeding coefficient (FIS) 

was calculated for each group in PLINK v.1.07 (Purcell et al. 2007). Allelic richness (Ar) and 

private allelic richness (Par) was determined using ADZE v. 1.0 (Szpiech et al. 2008). As SNP 

ascertainment bias may inflate LD values, LD was calculated for subsets of SNP data pruned 

within each breed and across breeds. The --indep-pairwise 50 5 0.5 command in PLINK was used 

to calculate pairwise LD within a 50 SNP window and remove one SNP from a pair where the LD 

exceeds 0.5 before moving on 5 SNPs and repeating the procedure. Linkage disequilibrium (r
2
) 

was calculated for all SNP pairs remaining after LD pruning using the --r2 command. A principal 

component analysis (PCA) was conducted in the R package (R Core Team 2015), adegenet v. 1.4-

2 (Jombart and Ahmed 2011) to identify population structure within and between the sampling 

groups and to identify potential outliers. Equal sample numbers (n=20) from each group were 

included in the PCA. Loci were pruned across all samples and the MAF cut-off was increased to 

0.1 to mitigate the possible effect of SNP ascertainment bias. File formatting was conducted in R, 

PLINK or PGDspider v. 2.0.8.0 (Lischer and Excoffier 2012).  

 

RESULTS AND DISCUSSION 

From the total of 160 samples, 16 samples (2 from the Cradock Merino, 13 from the 

Grootfontein Merino and 1 from the SAMM sampling groups) were excluded. The remaining 

samples had an average call rate of 99.72% and 91% (of the total of 54 241) of the SNPs met 

quality control measures (Table 1). The Merino samples (Cradock and Grootfontein) were 

polymorphic for approximately 89% of SNPs, while NA samples were polymorphic for only 69% 

of SNP loci. The Dorper and SAMM samples were intermediate to these values, at 83% and 81%, 

respectively. The MAF distribution of the Merino, Dorper and SAMM were relatively similar and 

most loci exhibited MAFs of more than 30%. In contrast, the NA samples exhibited a large 

number of non-polymorphic loci and an equal distribution in the number of polymorphic loci 

across the MAF range. The NA samples also had the lowest allelic richness, private allelic 

richness and observed heterozygosity in comparison to the other 3 breeds (Table 1). These low 

levels of genetic diversity in the NA have also been observed with the microsatellite-based studies 

(Qwabe et al. 2013) and OvineSNP50 genotype information (Kijas et al. 2012).   
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Table 1. Genetic diversity estimates of the 5 sampling groups and a combination sample 

consisting of an equal number of Cradock (n=20) and Grootfontein (n=20) Merino samples. 

NA: Namaqua Afrikaner; SAMM: South African Mutton Merino, n: number of samples, MAF: 

Minor allele frequency; Pn: Percentage of polymorphic loci; SE: Standard error; Ar: Allelic 

richness; Par: Private allelic richness; He: Observed heterozygosity; FIS: Inbreeding coefficient. 

Sample group n 
Loci with 

MAF<0.01 
Pn Ar (SE) Par (SE) He FIS 

NA 20 11921 69.20 1.75 (0.001) 0.007 (0.0003) 0.28 0.25 

Dorper 20 4026 83.55 1.89 (0.001) 0.012 (0.0004) 0.34 0.11 

SAMM 19 5174 81.16 1.88 (0.001) 0.012 (0.0003) 0.33 0.12 

Cradock Merino 48 1120 87.12 1.99 (0.001) 0.014 (0.0004) 0.36 0.05 

Grootfontein Merino 37 1120 84.43 1.99 (0.001) 0.011 (0.0003) 0.35 0.08 

Merino (combined) 40 1120 89.01 1.94 (0.001) 0.012 (0.0003) 0.35 0.06 

 

The extent of LD varied according to the manner in which LD pruning was applied to the 

dataset (Figure 1). The unpruned dataset exhibited LD over longer stretches, while pruning within 

each breed markedly reduced the LD values between SNPs. A less extreme reduction in the extent 

of LD was observed when SNPs were pruned across breeds. In all datasets, the Merino, followed 

by the Dorper and SAMM displayed the most rapid decay in LD. The NA samples had the longest 

stretches of LD overall. High levels of genetic diversity and LD decay over short distances has 

been reported for international Merino samples and may be a consequence of the large effective 

population size and variation maintained within the breed (Kijas et al. 2012; 2014)  

Figure 1. Linkage disequilibrium (r
2
) determined for 4 South African sheep breeds prior to 

pruning SNPs in strong linkage disequilibrium (LD) (A); LD pruning within each breed (B); 

and LD pruning across all samples (C). Merino (20): Cradock (n=20) and Grootfontein Merino 

(n=20) samples; All Merino: Cradock (n=48) and Grootfontein Merino (n=37) samples; SAMM: 

South African Mutton Merino; NA: Namaqua Afrikaner. 

 

The first principal component accounted for 12.29% of the variation in the sample, while the 

second and third principal components accounted for 7.93% and 6.84%, respectively. Across the 

first principal component, the NA and Dorper samples clustered separately while substantial 

overlap was seen between the other sampling groups. The third principal component separated the 

4 breeds tested into separate clusters. The Grootfontein and Cradock Merino samples remained 

clustered together across all principal components. Inclusion of additional Merino samples (48 
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Cradock Merino, 37 Grootfontein Merino) and the full set of (unpruned) SNPs, resulted in the 

SAMM samples clustering separately from the Grootfontein and Cradock Merino for all principal 

components (data not shown).  

 

 
Figure 2. Principal component analysis of 4 South African sheep breeds from 5 sampling 

groups. (NA: Namaqua Afrikaner; D: Dorper; CD: Cradock Merino; GF: Grootfontein Merino; 

SAMM: South African Mutton Merino).  

 

The NA samples exhibited large stretches of LD and the least genetic diversity of the breeds 

tested. Fewer SNPs would therefore be necessary to achieve the same level of coverage of the NA 

genome than more diverse breeds. Fewer individuals may also be needed to establish a 

representative sampling cohort for this breed. Despite SNP pruning, the effect of SNP 

ascertainment bias should still be considered when interpreting whole-genome SNP data from NA 

as indigenous breeds had limited representation during SNP discovery (Clark et al. 2005). The 

South African Merino samples exhibited high levels of genetic variability and a rapid decay in LD 

that were comparable to results of international Merino breeds (Kijas et al. 2012; 2014). A 

relatively large sample cohort and a large number of SNPs will be required of future genomic 

studies to adequately capture all variation contained in this breed. The 4 breeds tested appear to be 

genetically distinct, however, the inclusion of additional SAMM samples may elucidate the 

relationship between the SAMM and South African Merino further. Scope exists for further 

studies that include additional South African sheep breeds, such as the Dormer and Dohne Merino, 

to clarify the relationship between the South African sheep breeds.  
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SUMMARY 

The phenotypic diversity present within domestic sheep breeds is the outcome of direct human 

selection in behavioural as well as productive traits such as meat, milk or wool. To explore the 

genomic diversity of domestic sheep breeds we made use of whole-genome sequences of 68 

domestic sheep sampled from five major geographic regions: Africa, the Americas, Asia, Europe 

and the Middle East. SNP calling identified a total of 26 million variants, ranging from 22 to 25 

million SNPs per individual. The Asian and African animals examined contain a higher rate of 

heterozygosity (32.3% and 28.4%) compared to individuals from Europe (19.9%), the Americas 

(19.4%) or UK (20.4%). This is most likely a consequence of the sheep reference genome being 

from a European breed. In the future, we aim to compare these genomes against wild ovids to give 

further insight into the genomic mechanisms underlying domestication across breeds as well as 

their functional implications.  

 

INTRODUCTION 

Specific to sheep, the process of domestication was probably initiated around 11,000 years ago 

to facilitate stable access to meat and subsequently 5,000 years ago human mediated selection for 

wool and milk production (Chessa et al. 2009). Early consequences of animal domestication are 

likely to have included changes in stature, coat pigmentation, horn morphology in ruminants and 

docility (Zeder 2008). Genome-wide patterns of variation have proven highly informative for 

detecting genes under selection, with recent examples including loci controlling digestion 

(Axelsson et al. 2012), fertility (Larkin et al. 2012), stature and pigmentation (Rubin et al. 2010, 

Rubin et al. 2012) and horn development (Kijas et al. 2012).   

In this preliminary analysis of 68 domestic sheep genomes, we compare patterns of genetic 

diversity and genetic divergence between individuals sampled from major geographic regions. 

This represents a first step in the reconstruction of the early evolutionary history of domestic sheep 

and the identification of loci involved in shaping the phenotypic diversity of today’s modern 

breeds.  

 

MATERIALS AND METHODS 

Samples. Sixty-eight domestic sheep were sequenced using Illumina paired-end technology. 

Of these, 46 animals were selected from the ISGC Breed Diversity Hapmap experiment genotyped 

using the SNP50 Beadchip (Kijas et al. 2012), 6 animals were previously used for SNP discovery 

in the construction of the SNP50 BeadChip and CNV detection and the remaining animals werw 

investigated for the first time in this work. The selected animals belong to 42 different breeds 

drawn for Asia (n=12), Africa (n=6), the Middle East (n=13), the Americas (n=8), the United 

Kingdom (n=7) and continental Europe (n=22). 

Alignment and variant calling. Reads from each sample were mapped against the sheep 

reference assembly v3.0 (available at http://www.livestockgenomics.csiro.au/sheep/) with BWA 

(Li and Durbin 2009) using default parameters. Duplicate removal and sorting were performed 

using samtools v.0.1.18 (Li et al. 2009). Genotypes were called for each animal separately using 

samtools mpileup. A series of filters were applied to prune low quality variants, including 

minimum depth of coverage (6 fold), map quality score (> 20) and base pair quality (>20). 
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Variants from each animal were then combined to produce a merged VCF file. This included 

examination to distinguish between positions with insufficient data to assign a genotype from 

those that were homozygous for the allele present in the reference genome. 

Sequence based diversity estimates. To examine genomic differences among breeds and to 

infer population diversitys we made use of two metrics, namely principal components analysis 

(PCA) based on genetic diversity (heterozygosity level) and the compression efficiency (CE) 

algorithm (Hudson et al. 2014).  

CE algorithm: In brief, CE is a new measure that exploits the order and proportion of 

heterozygosity in SNP genotypes. First, genotypes are encoded in numerical values 0’s 1’s or 2’s 

for detected in bi-allelic SNPs across samples. Second, CE is calculated as CE= (Sb-Sa) / Sb, where 

Sb and Sa correspond to the size in bytes of the SNP genotype data before and after compression by 

the command gzip in UNIX, respectively. This measure is a proxy for the minimum amount of 

information required to reproduce a dataset. CE has shown to unravel genomic patterns such as 

phylogeography in diverse populations including human (Hudson et al. 2014). 

Fixation Index (Fst): Fst to calculate the genetic distance between populations was calculated 

as in Weir and Cockerman 1984 paper, using vcftools –weir-fst-pop option.   

 

RESULTS AND DISCUSSION 

Whole genomes of 68 domestic breeds from different geographical regions Africa (n=6), 

Americas (n=8), Asia (n=12), Europe (n=22), Middle East (n=13), United Kingdom (n=7) were 

sequenced at an average depth of 8X in all groups (7.6-8.2) (Table1). SNP calling resulted in the 

discovery of a total of 26 million SNPs across the collection of animals. The average number of 

variants observed was calculated after grouping individuals into the geographically defined 

groups. The highest average number was identified in European animals, however this reflects the 

larger number of genomes sequenced. Next, we examined the percentage of heterozygous SNPs 

between populations and discovered that Asian and African populations contain a higher rate of 

heterozygosity (32.3 and 28.4) compared to breeds in Europe (19.9), Americas (19.4) and UK 

(20.4). This is most likely a consequence of the sheep reference genome reference being from a 

European breed (Jiang et al. 2014). Therefore, rather than considering it a measure of 

heterozygosity within breeds it reflects that Asian and African sheep are more genetically 

divergent to the reference genome in comparison to European, UK and American. Also, we 

calculated the Fixation Index (Fst) of each population compared to Middle East breeds, where first 

sheep domestication took place In all comparisons we observe very low Fst values showing a very 

weak population structure across sheep breeds (Table 1). 

 

Table 1. Summary statistics on samples depth, number of called SNPs and percentage of 

heterozygosity 

 

Region 

Number 

of 

Samples 

Average 

Depth 

Average Number 

of called SNPs, 

millions 

% Heterozygosity Fst 

Africa 6 8.2 24.34 28.3 0.024 

Americas 8 8.1 23.18 19.4 0.021 

Asia 12 8.2 23.86 32.3 0.020 

Europe 22 8.1 25.05 19.9 0.023 

Middle East 13 7.8 23.00 24.6 - 

United 

Kingdom 
7 7.6 22.23 20.4 0.030 
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Previous analysis based on mitochondrial haplotypes and SNP chip datasets have suggested 

globally distributed populations of sheep exhibit generally weak population substructure in 

comparison to other domestic species (Meadows et al. 2005; Kijas et al. 2012). We sought to 

determine if the much higher density (and unbiased) SNP collection obtained here is able to 

provide additional detail about the relatedness amongst a global collection of domestic sheep. We 

performed PCA of pairwise allele sharing to infer global patterns of genetic structure, with the 

results shown in Figure 1A. PC1 separated European and UK sheep from  African, Asian, and 

Middle East. This largest PC only explained 4.2% of the total variance, indicating geographic 

origin is not a major source of variation. The second PC (2.6%) separated African, Middle East 

and Asian sheep. Finally, sheep from the Americas do not form a discrete cluster, but were rather 

distributed throughout the clusters ofAfrican or European animals. Thus, likely reflecting the 

highly admixed population history of the animals sampled from the Americas. Also, we analysed 

the 68 domestic sheep genotypes on basis of their compression efficiency (CE) and heterozygosity. 

The CE algorithm provides a new alternative to cluster populations based on the allele order and 

proportion across individuals (Hudson et al. 2014). It has been previously shown to reveal 

population structure in human populations, as well as cattle, mouse, dog and feral versus domestic 

sheep (Hudson et al. 2014). Here, we explore only domestic breeds which present relatively 

similar heterozygosity and CE levels (Figure 1B). Therefore, surprisingly, CE does not capture the 

same population structure as PCA and it is not able to clearly differentiate the phylogeography of 

the different breeds. Finally, the CE presents two clear outliers. The first corresponds to an Asian 

Garut animal with very low heterozygosity and high CE, whereas the second belongs to an 

American sheep from Santa Ines, with high heterozygosity and low CE. Possibly reflecting the 

level of admixture in different breeds. 

 

 
 

Figure1. Population structure. Breeds were coloured by origin Africa, Americas, Asia, Europe, 

Middle East and United Kingdom. A) Principal Component Analysis of genetic distance and B) 

plot CE versus Heterozigosity based on 550,048 SNPs without missing genotypes across the 68 

animals. 
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Future prospects in our analysis is to study the genomic features selected in particular domestic 

breeds together with the addition of 18 wild ovid genotypes which would allow us to study the 

impact of domestication by defining genomic regions and the associated functional traits selected 

across domestic breeds.  
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SUMMARY 

Imputation has enabled genomic selection in commercial livestock, taking advantage of a more 

cost effective Low Density (LD) panel, increasing the number of genotyped animals and hence 

accelerating the adoption process. A 5K LD panel has been employed commercially in New 

Zealand.  This study investigated the accuracy of imputation to 50K and High Density (HD) panels 

using a new 15K panelbeing developed by the International Sheep Genomics Consortium in four 

scenarios across two multi-breed New Zealand sheep populations. Theprototype panel resulted in 

higher values of imputation accuracy compared with the current LD panel (5K), which willbenefit 

the implementation of genomic selection for the sheep industry in New Zealand. 

 

INTRODUCTION 

Imputation is a robust tool able to infer the genotype at anun-genotyped locus and has been 

largely adopted for minimizing costs of genotyping in livestock breeding including sheep in New 

Zealand. Imputation assessment using the 5K LD panel in sheep was previously reported by 

Australian researchers (Hayes et al. 2012). In the New Zealand sheep industry, application of the 

current version of the low density panel (5K) has identified several genomic regions where 

imputation accuracy could be improved (Ventura et al. 2015, paper in submission), which could 

increase the accuracy of genomic predictions and further improve the identification of regions 

associated with traits of economic importance.A new 15K panel (in the process of 

design),containing markers selected by the International Sheep Genome Consortium (ISGC - 

www.sheephapmap.org),was used in this study to investigate imputation accuracies from 15K to 

both 50K and High Density (HD) panels in a multi-breed sheep population, pointing to potential 

regions for improvement over the 5K LD panel,which is used commercially for genomic selection 

in New Zealand sheep.    

 

MATERIALS AND METHODS 

Population imputation was implemented using the FIMPUTE 2.2 software(Sargolzaei et al. 

2014). A total of 15,443 animals,part of the Beef and Lamb NZ genetics program (formally Ovita), 

composing a multi-breed sheep population, were genotyped with the Illumina OvineSNP50 

Genotyping BeadChip(53,903 markers) and used in the present study to investigate the imputation 

from the low density panels (LD) 5K and 15K to the 50K panel. A second group of animals, part 

of the FarmIQ project, were genotyped using the Ovine Infinium® HD SNP BeadChip (606,006 

markers) and were used to carry out the imputation from 15K to the HD panel. The HD animals 

were selected from eight flocks predominately of terminal composite breeds. Many of the animals 

were from recent breed developments (http://www.focusgenetics.com/) with undefined breed 

ratios and are best described as composites. The majority of the animals (~97%) in the second 

group were born in the period 2010 to 2013. The total number of animals used in the terminal 

composite population was 2,868, where 300 of these were used as a validation set and were born 

in 2013.The same strategy of using the youngest animals to be imputed was applied for the 
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population with 50K genotypes. Only autosomal markers were included in this investigation.For 

the imputation from LD to the 50K level, 12,853 markers (referred to 12K subsequently) out of the 

new 15K LD panel, remained after quality control.For the imputation from 15K to HD, 14,844 

markers from the new LD set of SNPs were located on the HD panel and remained after quality 

control. Table 1 shows seven scenarios: six covering the imputation from 5K and 12K to the 50K 

panel in Romney, Coopworth and Perendale animals (Scenarios 1_R, 2_C and 3_P, respectively) 

and an additional scenario (4_TC) investigating the imputation from 15K to HD in the terminal 

composites. All LD panels used in this study were simulated by keeping markers in common 

between the respective LD and higher density panels and deleting remaining markers exclusively 

located in the higher density set (50K or HD). 

 

Table 1. Description of imputation scenarios from 5K and 12K to 50K, and from 15K to HD 

panel 
Scenarios No. reference 

animals 

No. imputed 

animals 

Reference animals 

description 

Imputed group 

breed2 

Density 

1_R 4256 1000 Romney Romney 5K &12K to 

50K 

2_C 15443 250 All breeds Coopworth 5K & 12K to 

50K 

3_P 15443 250 All breeds Perendale 5K & 12K to 

50K 

4_TC 2568 300 Terminal composite 

breed 

Terminal composite 

breed 

15K to HD 

 

Imputation accuracy was investigated using the allelic squared Pearson correlation (r
2
) and 

concordance rate (CR), determined as the proportion of the correctly imputed markers out of all 

markers that were inferred after imputation. In both cases, the imputed and true genotypes (before 

deletion to build the LD panel) were compared. Common SNPs between LD and HD panels (15K) 

were not considered during the imputation accuracy determination. 

 

RESULTS AND DISCUSSION 

The accuracy of imputation from 5K to 50K ranged from 87.89% to 89.97% using the 

concordance rate measure and from 65.42% to 68.22% when the r
2
 per SNP was calculated (Table 

2). Concordance rate, calculated per animal or SNP, provides the same accuracy. Accuracies 

determined using r
2
 per SNP marker,as done in this study,are usually lower than values calculated 

based on the animal, mainly due to the number of markers that are taken in consideration for the 

correlation estimates. An average gain in accuracy of 5.68% and 16.07% in CR and r
2
, 

respectively, was noted after using the new 12K panel as the LD panel rather than the current 5K. 

The imputation from 15K to HD, performed in the second group of animals (terminal composite 

group), resulted in a CR imputation accuracy of almost 98% and squared correlation (r
2
)of 

88.70%.  

 

Table2: Imputation accuracy under different scenarios 

 
Scenario 5KCR 5Kr2 12KCR 12Kr2 15KHDCR 15KHDr2 

1_R 89.07 67.06 94.77 83.24 - - 

2_C 89.94 68.22 94.92 82.96 - - 

3_P 87.89 65.42 94.26 82.70 - - 

4_TC 89.03 - - - 97.81 88.70 
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The accuracy of imputation (CR) per animal, from 5K and 12K to 50K, is presented in Figure 1-

left. Accuracies for almost all individuals were substantially increased by adding markers in the 

sparser panel and the largest gains in accuracy using the 12K panel (5K + new markers) were 

obtained for animals that obtained the lowest accuracies with the sparser panel (5K). Figure 1-right 

shows accuracy of imputation from 15K to HD where all individuals had their missing genotypes 

inferred with at least 90% success.  

 

  
Figure 1. Accuracy of imputation per animal: Left – imputation from 5K(blue) and 12K(red) 

to 50K panel in Romney animals (Scenario 1_R). Right: imputation from 15K to HD panel in 

terminal composite breed. (In both plots X is reported as number of imputed animals and Y, as 

the CR measure of imputation accuracy ranging from 0.5 to 1.0). 

 

A considerable increase in imputation accuracy to 50K for the 12K panel compared to the previous 

5K panel was observed as illustrated in Figure 2. Almost all regions had higher imputation 

accuracy imputing from the 12K panel as compared to the 5K considering both r
2
 and CR as 

metrics.  The first 20Mb illustrates a region where the accuracy is improved considerably with the 

12K panel. As illustrated in Figure 2, CR imputation accuracy per marker was higher than r
2
 for all 

three scenarios. As reported by several authors in other species(Bouwman and Veerkamp 2014; 

Sargolzaei et al. 2014),imputation of markers at low MAF have lower r
2
 accuracy than regions 

with higher MAF as can be noted by comparison of r
2
 accuracy associated with MAF across 

different regions. The same pattern of increased imputation accuracy can be noted in the last two 

plots in Figure 2, where the increased accuracy showed almost the same trend for the same regions 

even in different populations and with higher density panels. 
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Figure 2 – Imputation accuracy per SNP evaluated by CR(black dots) and r

2
(blue dots) 

according to the minor allele frequency (MAF is represented by the red line). First plot on 

top shows imputation accuracy from 5K to 50K for Chr1 and the central plot investigated 

imputation from 12K to 50K in Romney animals (Scenario 1_R). Last plot on the bottom 

shows imputation from 15K to HD in a terminal composite breed (Scenario 4_TC). (X is 

reported as Position (Mb) and Y, as the CR and r
2
 measures of imputation accuracy ranging 

from 0.5 to 1.0) 

 

The new 15K panel is still under development by the ISGC and the test results of this prototype 

panel will be used to inform the final panel implemented.  Better imputation accuracy, especially 

at the chromosome ends can be expected with the new panel when implemented in New Zealand 

sheep.   
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SUMMARY 

To detect how much genetic variance is accounted for by different genomic regions one first 

step is to work at the chromosomal level. We used a half sib data structure for two growth traits in 

sheep as a potentially powerful design to partition the genetic variance across chromosomes. 

Records for post weaning weight (PW) and scan C site back fat (CF) were used from 5,239 merino 

sheep. The model of analysis accounted for population structure by fitting genetic group effects as 

well as the numerator relationship matrix (A) or the first five principal components (PC). Different 

approximations were compared fitting the genomic relationship matrix (G) based on 48,599 

markers, or on single nucleotide polymorphisms of an individual chromosome. The correlation 

between chromosome length (L) and variance explained per chromosome (𝜎𝑔𝑖
2 ) was 0.53 and 0.70 

for PW and CF correspondingly, however significant differences in (𝜎𝑔𝑖
2 /L) were found between 

chromosomes, ranging from 0% to 17.5%. Some chromosomes explained more variance and 

covariance than expected, under the assumption that it is proportional to the chromosome size; 

suggesting that some chromosomes clearly harbor more QTL. Some chromosomes show a 

covariance of opposite sign indicating they could be used in selection to ‘break’ an unfavourable 

correlation (e.g. chromosome 8). These results represent a powerful source of information for 

genomic selection. 

 

INTRODUCTION 

The tracking of chromosome segments through a pedigree is becoming more feasible due to 

the availability of abundant genomic information. However with the ever increasing density of 

genetic markers, there is also an increasing ambition to work out which variants actually are 

responsible for the observed quantitative genetic variation.  

One first step to detect how much genetic variance is accounted for by different genomic 

regions is to work at the chromosomal level. Previous studies found a linear relationship between 

chromosome length and variance explained for human traits (Yang et al. 2010 and Visscher et al. 

2007), production and fitness related traits in dairy cattle (Jensen et al. 2012) and production traits 

in sheep (Daetwyler et al. 2012).  

The advantage of data on sheep populations is that the data structure is usually based on 

relatively large half sib families. This provides a powerful design for determining segregation 

based on linkage. The design is not suitable for LD mapping; hence the accuracy of mapping QTL 

positions would be low. However, the latter is less relevant for determining the amount of genetic 

variance explained per chromosome.    

The objectives of this study were to estimate the genetic variance and covariance for two 

growth traits in sheep, determine the amount of additive genetic variance explained by each 

chromosome and to investigate the best model to correct for population and pedigree structure.  

 

MATERIAL AND METHODS 

Data for this study was obtained from the Information Nucleus program of the CRC for Sheep 

Industry Innovation. Details on this program and its design are described by van der Werf et al. 
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(2010). The data set comprised a total of 2,455 purebred merino lambs with phenotypes for two 

growth traits (post weaning weight: PW and scanned C site back fat: CF), pedigree and genotype 

data. The animals were descended from 139 sires and the associated pedigree file contained 10,559 

animal identities from over 22 generations. The pedigree information was used to compute a 

numerator relationships matrix (A) for the animals with phenotypic records using the R package 

‘pedigree’ (Coster 2012). Genotypic information consisted of SNP marker genotypes obtained 

using the OvineSNP50 BeadChip assay (Illumina, San Diego, USA). After quality control 

(Moghaddar et al. 2014) and imputing missing genotypes with Beagle 3.2 (Browning and 

Browning 2007), genotype information on 48,599 SNP was used to derive a genomic relationships 

matrix (G), scaling G to be analogous to A following VanRaden (2008). 

The general model used to analyse the data was: 𝑦 = 𝑋𝑏 + 𝑍𝑎𝑎 + 𝑍𝑚𝑚 + 𝑍𝑞𝑄𝑞 + 𝑒, where 

vector b included fixed effects of sex of lamb (ram: 1 or ewe: 2), birth type/rearing type (single: 

1/1, twins: 2/2 or triplets: 3/3 and their combinations), management group, age of dam and 

weaning age; a is the random additive genetic effect of the lamb, m is the maternal permanent 

environmental effect and q is a genetic group effect. The genetic group consisted of merino strain 

(depending on the type of wool) where we regressed on strain proportion. Different models were 

explored to be able to partition the additive genetic variance into components that can be explained 

by markers while correcting for population structure, fitting into the model A and G individually 

(model 1 and 2 correspondingly) or simultaneously (model 3), together with genetic groups 

(merino strain) derived from a deep pedigree analysis, or fitting the first five principal components 

(PC) as a covariate (model 4). To decompose the variance components into 26 chromosomes, 

individual Gi were built based on marker information on the i
th

 chromosome and fitted 

simultaneously in the model (model 5), together with A (model 6) and with PC as a covariate 

(model 7). A bivariate analysis was also performed using the estimated variance components per 

trait resulting from the univariate analysis to define the starting values of the (co)variance matrices 

structures. The variance components for the first 4 models and the bivariate analysis were analysed 

using ASReml 3.0 software (Gilmour et al., 2009). Models 5 to 7 were analysed using GCTA 

software (Yang et al., 2011b). 

 

RESULTS AND DISCUSSION 

When pedigree (A) and marker based (G) relationship matrices were fitted individually we 

found that for PW SNPs capture additive genetic relationships among individuals and also effects 

of QTL (Table 1), G explaining more variation (36.80 %) than A (30.81%); however in the case of 

CF the results were opposite, A explained slightly more variation (25%) than G (22.61%). 

Nevertheless for both traits the log likelihood was higher when fitting only G in the model 

compared to fitting only A. Results from model 3, in which A and G were fitted simultaneously 

showed that most of the variance was partitioned toward G agreeing with previous reports (Haile-

Mariam et al. 2013 and Jensen et al. 2012). 

Model 4 was investigated as an alternative solution to correct for population structure avoiding 

co-linearity between the variance components. Results showed that variance explained by G after 

accounting for population structure using the first five PC was equal to 6.69 for PW and 0.09 for 

CF and the phenotypic variance was similar to the one calculated with the rest of the models. 

Genetic variance explained per chromosome using models 5 to 7 showed that the variance 

explained by each Gi varied and was somewhat related to the chromosome length (Figure 1) 

agreeing with Daetwyler et al. (2012). The correlation between variance explained and 

chromosome length was weaker for PW (0.55) than for CF (0.70) and marked differences in 

genomic variance explained were found for some chromosomes. For example, chromosome 6 

explaining the higher amount of genomic variance for PW (13.3 to 13.7% depending on the 

model), followed by chromosome 1 (8.6 to 8.8%), 2 (6.4 to 8.2%), 10 (7.6 to 8.9%), 16 (5.8 to 
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6.4%) and chromosome 26 is estimated to contribute 0% variance. 

 

Table 1. Variance components estimates using different mixed linear models for post 

weaning weight (PW) and scanned C site back fat (CF). 

 

PW 𝜎𝑎
2 𝜎𝑔

2 𝜎𝑚
2  𝜎𝑒

2 LogL 

Model 1 (A) 6.74   2.21  12.92  -9485.64 

Model 2 (G)   7.75  1.77  11.54  -9393.23 

Model 3 (A+G) 1.33  7.74  1.44  10.88  -9393.19 

Model 4 (G+PC)  6.69 2.38  12.12  -10358.2 

CF      

Model 1 (A) 0.12     0.36  -1293.60 

Model 2 (G)   0.11   0.37  -1279.29 

Model 3 (A+G) 0.03  0.10   0.35  -1279.09 

Model 4 (G+PC)  0.09   0.43  -1197.29 

 
The difference between variance explained per chromosome and the expected variance 

explained, under the assumption that the genetic variance is proportional to the size of the 

chromosome (Daetwyler et al., 2012), was also calculated (Figure 1) showing that some 

chromosomes explain more variance than expected; reflecting the relative QTL density on each 

chromosome, e.g. chromosome 6 for both traits with and extra variance of 9.1% for PW and 7.1% 

for CF; and others contribute with 0% of the variance explained, e.g. chromosomes 8, 9, 14, 19 

and 25 for CF. 

 

a)  

b)  

Figure 1. Genomic proportion of variance relative to the total size of the genome calculated 

per chromosome for post weaning weight (a) and scanned C site back fat (b) using models 5, 

6 and 7. The line indicates the expected proportion of genomic variance explained per 

chromosome based on its size.  
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A bivariate model was used to estimate covariances and correlations per chromosome between 

growth traits in sheep. We found that 6 chromosomes have large covariance effects (Figure 2) and 

5 have a negative covariance, e.g. chromosome 8, revealing that a small number of chromosomes 

appeared to ‘break’ the positive genetic correlation (overall genetic correlation ~ 0.5). 

 

 
Figure 2. Covariance between post weaning weight (PW) and scanned C site back fat (CF) in 

merino lambs from bivariate analysis per chromosome. 
  

The main conclusions from the present study are that the inclusion of PC in the model corrects 

for population structure avoiding co-linearity between the variance components. While the 

additive genetic variance explained per chromosome is partially related to chromosome length, 

considerable differences between chromosomes in the amount of additive genetic variance 

explained were found and a small number of chromosomes appeared to ‘break’ the positive 

genetic correlation.  

The approach presented in our study provides relevant information to the understanding of the 

genetic underlying complex trait variation and represents a powerful source of information for 

genomic selection. 
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ABSTRACT 

Sub-vital performance is a phenotype in which some pure white Swakara sheep die within 48 

hours of birth. Postmortem of sub-vital lambs have shown underdeveloped digestive organs. It is 

hypothesized that due to high levels of inbreeding, Swakara sheep carry a recessive mutation that 

affects some of the white fleece colour subpopulation resulting in the sub-vital production 

performance. The genetic basis of the sub-vital effect is however unknown. The aim of this paper 

was to use the Ovine SNP50K data to investigate inbreeding levels and occurrence of ROH in the 

Swakara sheep genome in order to uncover the genetic basis of sub-vital performance. Runs of 

homozygosity (ROH) are long stretches of contiguous DNA fragments that are homozygous and 

occur due to parents transmitting similar haplotypes to their offspring through shared ancestry. 

Long stretches of ROH observed in SNP markers indicate probable underlying stretches of DNA 

inherited identical by descent from recent common ancestors. The aim of the study was to screen 

for extended ROH shared across animals, estimate levels of inbreeding using ROH and infer 

association with sub-vital performance which could indicate regions associated with the sub-vital 

mutation. Ninety-four Swakara individuals that belonged to the grey (n =22), black (n=15) and 

white vital (n = 41) and white sub-vital (n=16) were genotyped using the OvineSNP50 beadchip. 

Four hundred and thirty six unique ROH regions that spanned between 1001 to 6594 Kb were 

observed on the 25 chromosomes in 94 individuals of the four colour subpopulations. Three 

consensus ROH (cROH) were more prevalent in sub-vital Swakara sheep. Results suggested 

alternative genetic mechanisms to sub-vital performance other than was initially hypothesised that 

sub-vital performance was due to recessive mutations prevalent in inbred white Swakara sheep.  

 

INTRODUCTION 

Swakara is a fat-tailed sheep breed that was improved through generations of selective 

breeding from the Karakul breed which originates from the Middle East (Campbell 2007; Soma et 

al. 2012). White pelts are preferred to other colours (brown, black and grey) on the market 

(Campbell 2007) because they can be dyed to any desired colour to make coats and other fashion 

products. Production of white pelt is however hampered by a sub-vital factor that affects some of 

the pure white Swakara sheep that die within 48 hours of birth. Postmortem of affected lambs have 

shown underdeveloped digestive organs. The pure white animals require special care that includes 

specialized diets and most die before reproductive maturity, even under special care. As a practice 

the breeders mate A-white (sub-vital pure white fleece) rams that are raised under specialized care 

with black ewes to produce 100% B-white and C-white progeny, which are predominantly white 

with black patches (and are vital). Mating of B-white X B-white (C-white) produces 25% black; 

50 % B/C-white and 25% A-white (sub-vital).  

It is hypothesized from the products of the different matings that the appearance of the sub-

vital factor in pure white Swakara could have resulted from intensive selection leading to the 

accumulation of the homozygous recessive allele associated with sub-vital performance. However, 

there are other white Swakara sheep that do not experience sub-vital performance implying some 

level of independent segregation of the sub-vital loci from the coat colour loci in some 
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populations. An understanding of the genomic structure and diversity of the white vital, white sub-

vital and the two other Swakara colour variants (black and grey) is important in determining the 

genetics of sub-vital performance and to aid breed improvement programmes. 

Runs of homozygosity (ROH) are defined as long and continuous stretches of homozygous 

genotypes (Ku et al. 2011) that result from parents transmitting identical haplotypes to their 

offspring. ROH have been used as an estimate of inbreeding ( Zhang et al. 2013). Recent studies 

have found associations between regions of extended homozygosity with both complex and simple 

gene disorders (Kijas et al. 2012; Suarez-Vega et al. 2013). Due to the small population sizes of 

Swakara breeding flocks and the intense selection, high levels of inbreeding and longer extended 

ROH could be occurring at a high frequency and also contributing to the expression of the sub-

vital factor. In this study, we investigated inbreeding levels and screened the genome of Swakara 

sheep for the occurrence of ROH using the Ovine SNP50K data. The genes covered by ROH were 

investigated and inference made on associations with sub-vital performance. 

 

MATERIALS AND METHODS 

 Animal genotyping and quality control. Blood was collected from 96 Swakara sheep 

sampled from two research stations and 3 farms in Namibia (n=60), Carnavon Research Station in 

South Africa (n=30) and consisting of four colour sub-populations i.e. black (n=16), grey (n=22), 

white vital (n=35) and white sub-vital (n=17). The white-vital referred to a sub-population of 

white Swakara that did not experience sub-vital performance whilst the white sub-vital would die 

prematurely.  The ovineSNP50 beadchip was used for genotyping. Quality control was done to 

remove SNPs where the genotype call rate was < 0.05, missing genotypes were >0.10, the minor 

allele frequency was < 0.05 or there was a deviation from Hardy Weinberg equilibrium (P < 

0.001). At least 80.35 % of the SNPs were left for further analysis after quality control. Two 

individuals, one white sub-vital and one black, were excluded from downstream analysis due to 

missing genotypes.  
Inbreeding and runs of homozygosity. Inbreeding coefficients (FIS) and runs of 

homozygosity (ROH) were estimated from SNP genotypes using Plink v.1.7 (Purcell et al. 2007). 

In this analysis, the ROH were defined as homozygous stretches along a 1000kb sliding window 

with a minimum of 20 SNPs allowed in the tract, with allowance of at most 2 missing SNPs and 

no heterozygous SNPs. The threshold for SNP density was set at 50kb/SNP. When two SNPs 

within a segment were too far apart (>500 kb), the segment was split in two using the --

homozygous gap function. Pools of overlapping segments were estimated using PLINK. The size 

of the consensus region was determined as well as the distribution of the consensus region in the 

sub-vital and normal Swakara sheep.  

Identifying potential trait association of SNPs in ROH segments. The Golden Helix 

GenomeBrowse® was used to identify genes within the consensus regions of ROHs using the 

sheep reference genome Ovies Aries OAR v.3.1 and Ensembl (www.ensembl.org/sheep). The 

genomic base location of the first and last SNP of a ROH was used to denote the region of interest. 

 

RESULTS AND DISCUSSION 

Inbreeding levels and ROH patterns in Swakara subpopulations. The inbreeding levels of 

the four Swakara subpopulations are shown in Table 1. The Grey subpopulation was the least 

inbred with an FIS value of 0.01 whilst the black Swakara had the highest FIS of 0.09.  The low 

inbreeding levels observed in the grey subpopulation were expected since homozygous grey 

karakul also experience a lethal factor documented by Groenewald (1993).  The black 

sub-population is known not to experience any sub-vitality or lethal factors and is 

currently used in crossbreeding with pure white Swakara as a way of managing sub-vital 
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performance. Four hundred and thirty-six (436) ROH were observed in 94 Swakara sheep. All 

sheep had at least one reported ROH (Table 1), and there were an average of about 5 ROH events 

reported per animal in each subpopulation.  

Chromosomal coverage of ROH in Swakara population. The ROH length ranged from 

1001Kb to 6594 Kb and covered at least 13.96% of the Swakara sheep genome. There were no 

ROHs observed on chromosome 23. The highest chromosomal coverage was observed on 

chromosome 9 that had 35 unique ROHs covering 44% of the chromosome. 

 
Table 1. Inbreeding (FIS) levels and the characteristics and number of ROH  Swakara sheep. 

 

Subpopulation FIS No. ind. with 

ROH 

No. ROH Mean ± SD ROH 

length (KB) 

Mean ± SD 

NSNPs 

White-vital 0.089±0.063 41 214 1661.13±788.92 35.01±16.07 

White subvital 0.078±0.13 16 84 1610.18±804.56 34.19±16.76 

Black 0.094±0.075 15 72 1567.67±776.72 33.28±15.32 

Grey 0.011 ±0.069 22 109 1749.98±922.79 37.05±18.58 

Overall 0.089±0.063     

 

 

Consensus (overlapping) ROH and putative function. The 436 unique ROH grouped into 

131 consensual ROH (cROH). Of these only three on chromosomes 3, 4 and 25 had a distribution 

biased towards sub-vital Swakara sheep (Table 2). The consensus ROH (cROH) on chromosome 4 

was observed in 10 sheep six of which were from the sub-vital group. Those cROH on 

chromosomes 3 and 25 were observed in 2 individuals each both of which were of sub-vital 

performance.  

 
Table 2. The consensus ROH common in white sub-vital sheep and the associated genes. 

 

cROH  Chr No. of 

individuals 

Length of 

cROH (Kb) 

No. Sub-vital 

sheep 

Genes within region 

cROH1                            3 2 1201.90 2 C2orf74 

cROH2                           4 10 2768.36 6 DPP6;HTR5A-AS1;SHH 

cROH3                            25 2 1018.51 2 LRRTM3 

 

Consensus regions cROH1 and cROH3 on chromosome 3 and 25, respectively, were observed 

in only in 2 white sub-vital Swakara sheep whereas cROH2 on chromosome 4 was observed in 6. 

Using the GenomeBrowse® tool we found that cROH3 is within a genomic region carrying the 

leucine-rich repeat transmembrane 3 (LRRTM3) gene.  This gene family is associated with late 

onset of Alzheimer's disease in mice (Laakso et al., 2012).  The consensus region cROH2 on 

chromosome 4 is a 2.8MB region on which lies the DPP6, HTR5A-ASI and SHH genes. No 

information was found on the putative functions of HTR5A-ASI, while studies on DPP6 suggest it 

functions on the development of the brain and skeletal system in livestock (Buzanskas et al., 

2014). The mammalian SHH has been reported to encode a signaling molecule that is vital for the 

developmental patterning especially of the nervous system and the skeletal system (Dorus et al., 

2006).  The trend in the observed cROH in white sub-vital Swakara sheep observed in this study 

suggests some candidate genes impacting on the nervous function and skeletal and brain 

development. The cROH2 carrying these genes was however also observed in a few  (40%) of 

vital Swakara sheep which makes it a less likely candidate for sub-vital performance under the 

assumption that the sub-vital performance was a recessive mutation only experienced in white 

Swakara sheep.  These results suggest alternative genetic mechanisms to sub-vital performance 
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other than was initially hypothesised that sub-vital performance was due to recessive mutations 

prevalent in inbred white Swakara sheep. Small sample sizes of both the vital and sub-vital sheep 

were a major limitation of this study. Alternative analyses such as genome-wide association 

studies and population stratification based analysis could be used to further investigate potential 

genes and the genetic mechanisms for sub-vital performance in white Swakara sheep. 

 

CONCLUSION 
Apart from the grey subpopulation, the Swakara sheep are moderately inbred with an average 

inbreeding co-efficient (FIS) of about 10% percent. Our results do not support the presence of a 

recent recessive-lethal mutation causing the sub-vital phenotype in white Swakara sheep. 
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SUMMARY 
Iranian cattle breeds are currently under-represented in studies regarding genetic variability and 

conservation effort even though they are settled in a region that is believed to be one of two 

ancient cattle domestication centres. This study provides first population genetic parameters for 

eight Iranian cattle breeds collected from across the entire country to highlight the necessity for 

conservation programs. High density genome-wide SNP chips were used. None of the Iranian 

breeds showed a decreased heterozygosity compared to outgroup breeds (Holstein, Jersey, and 

Brahman) and inbreeding coefficients were low. Nevertheless, estimated effective population sizes 

were <10 for the Mazandarani, Sarabi, and Kermani breeds and it is predicted that most of the 

genetic variability will be lost within 20-30 generations if no intervention measures are taken. 

Effective population size estimates varied between chromosomes with occasional extremely high 

values, especially for Najdi, Pars, and Kermani which have high proportions of indicine ancestry 
as represented by the Brahman outgroup. 

 

INTRODUCTION 

Two separate domestication events gave rise to the variety of cattle breeds we see today. India 

is the origin of humped zebu cattle, and the Fertile Crescent of the Near East is the region of origin 

for humpless taurine cattle (Loftus et al. 1994). Iran covers the Eastern side of the Fertile Crescent 

and the native cattle breeds represent an extensive biological resource for origin and domestication 

studies. Iran is home to a large number of cattle breeds, however, the number of indigenous 

animals is declining with breeds, such as the Golpayegani, becoming extinct and other indigenous 

breeds endangered. The loss of these breeds or their genetic diversity, which is the ultimate source 

of adaptive variation to environmental pressures, will significantly limit the genetic resources 

available to future breeding programs (Herrero-Medrano et al. 2013). 
Genetic characterization of the Iranian breeds provides the first step towards breed 

conservation, which largely depends on existing genetic variability and effective population sizes. 

A few studies attempted to examine the genetic diversity of Iranian native cattle (Mirhoseinie et al. 

2005; Valizadeh et al. 2012). However, these studies concentrated on only a few breeds and were 

based on small numbers of markers (Mirhoseinie et al. 2005; Valizadeh et al. 2012). In this study, 

a dense SNP dataset was used to investigate genetic diversity, inbreeding, and effective population 

sizes in eight Iranian native cattle breeds. 

 

MATERIALS AND METHODS 

Data. Hair samples of individuals from eight Iranian cattle breeds were collected throughout the 

country. The Iranian breeds could be clustered into four taurine populations (humpless), and four 
indicine populations expressing a hump and often a pronounced dewlap and pendulous ears. 

Additionally, randomly selected subsets from larger populations of Holstein, Jersey and Brahman 

cattle were included to anchor the Iranian breeds towards taurine and indicine origins.  

All animals were genotyped with the 700k Bovine BeadChip (Illumina Inc, San Diego, CA, 

USA). Genotypes were subject to a stringent quality control (Gondro et al. 2014) with a GC score 
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>0.9, call rates per marker >90% and per animal >70% (reduced due to small sample size). 

Markers were excluded that deviated (1) in their heterozygosity by more than 3 standard 

deviations from the mean heterozygosity or (2) from Hardy-Weinberg equilibrium at 

P-value<10-16. Only markers that were present in all breeds including outgroups were kept for 

further analyses which reduced numbers considerably (283,028 SNPs). 
 

Analyses. Population parameters such as average minor allele frequency (MAF) and average 

heterozygosity (He) were calculated per breed. Inbreeding coefficients (FIS) were estimated 
according to Weir and Cockerham (1984). Based on an unsupervised analysis in ADMIXTURE 

1.23 (Alexander et al. 2009) for two ancestral populations we calculated the percentage of indicine 

origin (as represented by the Brahman population) in contrast to the taurine origin (as represented 

by the Holstein and Jersey populations) in the Iranian breeds. 

Effective population sizes were estimated with the LDNe program (Waples and Do 2008). 

LDNe conducts population size estimations based linkage disequilibrium as represented by 

pairwise correlations (r2) according to Hill (1981) and Waples (2006). Only markers with allele 

frequencies >0.01 were used and the mating system was assumed to be random. Estimates were 

carried out per chromosome. For the purpose of conservation genetics, changes in heterozygosity 

over time (generations 1-50) were estimated as Ht = H0 (1 – 1/(2 Ne))
t where Ht and H0 are 

heterozygosity at generation t and generation zero, respectively, and Ne is the effective population 
size as estimated with the LDNe program and averaged across all chromosomes.  
 

RESULTS AND DISCUSSION 

The Iranian cattle breeds showed similar heterozygosity levels compared to the applied 

outgroup breeds. Inbreeding coefficients were close to zero indicating no apparent loss of genetic 

diversity (Table 1). The Pars breed had the highest inbreeding coefficient (0.121; Table 1). 

Surprisingly, the Holstein cattle showed an increase in heterozygosity as indicated by a negative 

inbreeding coefficient (-0.109; Table 1). This unexpected result indicates that further interpretation 

of results concerning the Holstein breed have to be taken in the context of this study, as Holsteins 

are generally reported to have a decreased heterozygosity due to strong artificial selection 

(Rodriguez-Ramilo et al. 2015). 
 

Table 1. Breed description and population genetics parameters for 11 cattle breeds 

after quality control 
 

Breed N Ne ±se Appearance MAF He FIS % indicine 

Jersey 15 10.6 ±1.00 taurine 0.22 0.32 -0.041 0.00001 
Holstein 15 7.7 ±0.91 taurine 0.24 0.36 -0.109 2.5 
Kurdi 7 31.1 ±10.6 taurine 0.26 0.36 0.005 32.3 
Sarabi 19 6.1 ±0.84 taurine 0.25 0.34 -0.023 42.1 

Pars 7 63.7 ±28.4 taurine 0.21 0.26 0.121 80.9 
Kermani 9 8.8 ±2.03 taurine 0.20 0.27 0.083 82.6 
Taleshi 7 72.0 ±20.1 indicine 0.23 0.32 0.017 61.5 
Mazandarani 10 3.1 ±0.87 indicine 0.23 0.32 0.018 65.6 
Najdi 7 165.5 ±56.8 indicine 0.21 0.31 -0.001 75.1 
Sistani 9 45.2 ±19.8 indicine 0.16 0.23 0.059 95.3 
Brahman 15 35.0 ±5.99 indicine 0.16 0.23 0.004 99.9 

Ne: effective population size; MAF: minor allele frequency; He: heterozygosity; FIS: inbreeding 

coefficient 
 

Notably, the more indicine a breed was (as represented by the percentage of Brahman origin) 

the lower the heterozygosity (Table 1). However, this trend can be explained by ascertainment bias 
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where indicine loci are often less variable due to mostly taurine breeds used in design of the SNP 

chip (Lachance and Tishkoff 2013). Interestingly, some of the breeds that were classified into 

taurine and indicine based on their outer appearance were re-grouped based on their genetic 

constitution. As such, Taleshi and Mazandarani expressed dewlaps and slight humps but had less 

indicine ancestry than Pars and Kermani (taurine appearance; Table 1). This discrepancy shows 
how important genetic analyses are to correctly assign individuals to breeds and ancestries. 

Effective population sizes based on LD were on average lowest for Mazanderani, Sarabi, and 

Kermani (Table 1). For these breeds, a close monitoring of potential inbreeding depressions is 

warranted; however, the small sampling size might have led to a downward bias of estimates. The 

Sarabi breed is currently the most used dairy breed in the North-West of Iran and the small 

effective population size of this breed might also stem from a semi-established breeding program 

by the Iranian government. Thus, individuals for mating could be artificially restricted. Effective 

population sizes for Holstein and Jersey were much lower compared to previous reports 

(Rodriguez-Ramilo et al. 2015; Stachowicz et al. 2011) and the downward bias of our study is 

most likely due to the small sample size. Nevertheless, comparisons can be made within the results 

of this study. 

Effective population sizes showed a large variation depending on the chromosome that was 
used for estimation. Whilst estimates of most chromosomes resulted in Ne <100, chromosomes 3, 

6, 10, 11, 13, 20, 23, 25, and 29 showed highly increased effective population sizes (Figure 1). 

Breeds with chromosome-wise outstanding Ne were Najdi, Pars and Sistani which are all breeds 

with an increased indicine/Brahman proportion. Taleshi showed highest chromosome-wise Ne  for 

the taurine classified breeds (Figure 1). 

 

 
 

Figure 1. Effective population sizes (Ne) per chromosome for 11 cattle breeds.  
diamonds: taurine breeds; squares: indicine breeds 

 

According to Waples (2006; equation 7), Ne is dependent on LD (r2) and sample size. Even 

though sample sizes in this study varied slightly between populations, we can deduce that 

chromosomes and breeds with outstandingly high Ne must have a very weak LD (small r2). Linkage 

disequilibrium between markers is also an important measure to estimate the phenotypic variance 

that is explained by the genetic sequence. Esquivelzeta-Rabell et al. (2014) demonstrated in sheep 
that the variance explained differed between chromosomes. Even though not completely 

transferable between sheep and cattle, chromosomes with the highest explained variance were also 

the chromosomes in this study that show outstandingly high Ne estimates (except chromosomes     

0

250

500

750

1000

1250

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Ne 

Chromosome 
Jersey Holstein Kurdi Sarabi
Taleshi Mazandarani Najdi Pars
Kermani Sistani Brahman

Poster presentations

316



3 and 29). 

Based on average heterozygosities and Ne estimates, genetic variability over the subsequent 

generations can be predicted if no intervention is made via conservation programs. Breeds with the 

smallest effective population sizes will lose almost all of their genetic variability within the next 

20-30 generations (Figure 2). As previously stated, conservation programs should aim to maintain 
the genetic variability of these breeds to preserve this valuable resource for the future. 

 

 
 

Figure 2. Decay of heterozygosity over 50 generations in 11 cattle breeds. 
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SUMMARY 

Transcriptional patterns in the expression of genes controlling lipid metabolism in 

supplemented sheep are currently unknown, thus quantitative reverse transcriptase polymerase 

chain reaction (qRT-PCR) was used to assess the messenger RNA (mRNA) transcription levels 

and expressions of Aralkylamine N-acetyltransferase (AANAT), Adrenergic beta-3 receptor 

(ADRB3), B-cell translocation gene 2 (BTG2), and Fatty acid synthase (FASN) genes. The aim was 

to assess the effect of dietary supplementation with Spirulina, a blue-green cyanobacterial 

microalga, on the expression of genes controlling fatty acid metabolism in the heart, kidney and 

liver of prime lambs. In total, 432 heart, kidney and liver samples from 48 purebred and crossbred 

Merino prime lambs supplemented with low or high levels of Spirulina over a 9-week period were 

utilized for the study. Both the low and high levels of Spirulina supplementation regimes strongly 

up-regulated the transcription of all the selected genes. Sire breed and sex of lamb did not 

influence gene expression patterns; however, significant variations in response to Spirulina 

supplementation underpin the genetics-nutrition interactions that could be of practical importance 

for manipulating meat quality in the Australian dual-purpose prime lamb industry for a healthy 

polyunsaturated fatty acid profile. 

 

INTRODUCTION 
Spirulina (Arthrospira platensis) is a blue-green cyanobacterial microalga that contains 60-

70% protein, high levels of carotenoids, essential vitamins, minerals and fatty acids (Ciferri, 1983, 

Holman and Malau-Aduli 2013; Holman et al. 2014). Spirulina has been trialled as a novel 

supplementary feed in many animal species and its recent inclusion in sheep diets has proven to be 

an effective nutritional strategy for increasing sheep meat production (Holman et al. 2012; Holman 

and Malau-Aduli, 2013). To our knowledge, apart from Kashani et al. (2015a) and Malau-Aduli 

and Kashani (2015), there is no available information on gene expression and molecular genetics-

nutrition interactions between ovine organs and dietary supplementation with Spirulina in dual-

purpose sheep. Therefore, the aim of this study was to investigate changes in the mRNA 

expression and transcriptional patterns of the following genes controlling lipid metabolism in the 

heart, kidney and liver of sheep under various Spirulina supplementation regimes: Aralkylamine 

N-acetyltransferase (AANAT), Adrenergic beta-3 receptor (ADRB3), B-cell translocation gene 2 

(BTG2), and Fatty acid synthase (FASN).  

 

MATERIALS AND METHODS 

RNA was extracted from 432 heart, kidney and liver samples from 48 prime lambs sired by 

White Suffolk, Black Suffolk, Dorset and Merino rams randomly allocated to 3 treatment groups: 

the Control, grazing without Spirulina (0%), low (100mL/head/day in the ratio of 1g of Spirulina 

powder:10mL of water or 10% wt/vol), and high (200mL/head/day in the ratio of 2g of Spirulina 

powder:10mL of water or 20% wt/vol) Spirulina supplementation levels. The supplementary 

feeding trial continued for nine weeks after an initial three weeks of adjustment. The RNA samples 

were treated with PureLink
TM

DNase (Life Technologies Pty Ltd. VIC, Australia), purified using 

RNeasy Mini Kit (Qiagen Ltd., VIC, Australia), DNase-treated and reverse transcribed to cDNA 
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using cDNA Synthesis Kit (Bioline Pty Ltd. NSW, Australia) and the primers in Table 1. 

Ubiquitin C (UBC) and Peptidyl-prolyl cis-trans isomerase A (PPIA) were used as house-keeping 

genes to normalise the gene expression data. Quantitative real time PCR (qRT-PCR) was carried 

out in triplicate 20 μL reactions containing 4 μL cDNA (50 ng), 10 μL 2×SensiFAST SYBR No-

ROX Mix (Bioline Pty Ltd., NSW, Australia), 4.4 μL H2O, and 0.8 μL forward and reverse 

primers (100 fmol). Assays were performed using the following cycling parameters: 95°C for 2 

min (polymerase activation); 40 cycles of 95°C for 5 s (denaturation), 60°C for 10 s (annealing), 

and 72°C for 5 s (extension). Gene expression levels were recorded as cycle threshold (Ct) values, 

i.e. the number of PCR cycles at which the fluorescence signal is detected above the threshold 

value. Amplification efficiencies were determined for all candidate and reference genes using the 

formula E=10^(−1/slope), with the slope of the linear curve of cycle threshold (Ct) values plotted 

against the log dilution (Higuchi et al., 1993). The software package Rotor-Gene 3000 version 

6.0.16 (Qiagen Pty Ltd., VIC, Australia) was used for efficiency correction of the raw Ct values, 

inter-plate calibration, normalisation to the reference gene, calculation of quantities relative to the 

highest Ct, and log2 transformation of the expression values for all genes. The qRT-PCR results 

were calibrated and normalized using the qBase relative quantification software (Pfaffl, 2001). A 

generalised linear model (GLM) in SAS (2009) was used in computing the fixed effects of 

Spirulina supplementation level, tissue, sire breed and sex, and their interactions on mRNA 

expression. Bonferroni’s probability pairwise comparison test was used to separate mean 

differences, with the level of significance defined as P<0.05. 

Table 1. Quantitative real-time PCR (qRT-PCR) oligonucleotide primers. 

   
aGene symbol qPCR Primers bTa Size (bp) 

 Forward Primer Reverse Primer   

AANAT ACTGACCTTCACGGAGATGC TTCACTCATTCTCCCCGTTC 60 211 

ADRB3 TCAGTAGGAAGCGGGTCGGG GGCTGGGGAAGGGCAGAGTT 60 291 

BTG2 CTGGAGGAGAACTGGCTGTC AAAACAATGCCCAAGGTCTG 60 194 

FASN GTGTGGTACAGCCCCTCAAG ACGCACCTGAATGACCACTT 60 110 

UBC CGTCTTAGGGGTGGCTGTTA AAATTGGGGTAAATGGCTAGA 60 90 

PPIA TCATTTGCACTGCCAAGACTG TCATGCCCTCTTTCACTTTGC 60 72 
aAralkylamine N-acetyltransferase=AANAT, β3-adrenergic receptor=ADRB3, B-cell translocation gene 2= 

BTG2, Fatty acid synthase=FASN, Ubiquitin C=UBC, Peptidyl-prolyl cis-trans-isomeraseA=PPIA, 

 bTa= Annealing Temp 

 

RESULTS AND DISCUSSION  
The relative mRNA expression levels of AANAT, ADRB3, BTG2 and FASN genes in the heart 

are presented in Figure 1. Significant up-regulation of the FASN gene (P<0.041) in the heart, 

corresponding to a 21-fold change was observed in the low group. AANAT gene transcription was 

4-fold and BTG2 1.4-fold up-regulated in the high treatment. 

Kidney expression levels of AANAT and ADRB3 genes increased by 16.64-fold and 54.53-fold 

respectively in the high group, while a down-regulation in the BTG2 transcript (0.15-fold) was 

observed in the low group (Figure not shown).  

In the liver, high ADRB3 and BTG2 mRNA expression levels were detected in both the low or 

high groups.  Significant up-regulation of the ADRB3 gene (P<0.032), corresponding to 60.59-fold 

in the low group, BTG2 gene (P<0.024), corresponding to 21.63-fold in the high group were noted 

(Figure not shown).  
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Figure 1. mRNA gene expressions in the heart of Australian prime lambs. 

 

FASN is fundamental in enzyme regulation of the de novo synthesis step of lipogenesis and its 

main function is to catalyse the synthesis of palmitate from acetyl-CoA and malonyl-CoA, in the 

presence of NADPH, into long-chain FAs ( Berndt et al., 2007; Byrne et al., 2005, Boizard et al., 

1998). In the heart, the low level of Spirulina supplementation increased the transcription levels of 

the FASN gene leading to an increase in omega-6 (ω-6) and omega-9 (ω-9) PUFA and a decrease 

in saturated FA and a concomitant increase in PUFA in the heart of supplemented lambs.  

In the kidney, significant expression of the AANAT encoded proteins accelerated the rate-

limiting step in the synthesis of melatonin from serotonin (Coon et al., 1999, Reiter et al., 2014). 

Melatonin is a hormone that controls the function of the circadian clock, which regulates activity 

and sleep (Coon et al., 1999, Reiter et al., 2014). Spanish scientists discovered that melatonin 

consumption stimulated browning of white fat tissue in rats (Jiménez-Aranda et al., 2013). Brown 

fat burns, rather than stores, calories. Thus, melatonin has an anti-obesity effect and its metabolism 

protects against oxidative degradation of PUFA (Jiménez-Aranda et al., 2013, Reiter et al., 

2014).In agreement, our fatty acid results (Kashani et al. 2015b) demonstrated that medium-level 

Spirulina supplementation significantly increased the ω-3 and ω-6 PUFA composition in all 

tissues and organs. The ADRB3 gene plays a key role in regulating mammalian energy storage and 

expenditure (Malau-Aduli and Kashani 2015). It is also a principal mediator of the lipolytic and 

thermogenetic effects of high catecholamine (Forrest et al., 2007, Wu et al., 2011). The primary 

role of this receptor is in the regulation of resting metabolic rate and lipolysis (Forrest et al., 2003). 

Given that ADRB3 encodes proteins regulating mammalian energy storage and expenditure by 

mediating effects from the sympathetic nervous system (Hu et al., 2010, Wu et al., 2012), our 

observations suggest an intricate genetics-nutrition interaction underpinning transcription at the 

molecular level that can be dietarily manipulated to achieve healthy FA composition outcomes.  
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BTG2 belongs to the anti-proliferative gene family and has been shown to be involved in cell 

growth, differentiation and survival (Mo et al., 2011), muscle fibre size, intramuscular fat 

deposition and weight loss (Kamaid and Giráldez, 2008, Sasaki et al., 2006). This seems to 

suggest that dietary Spirulina supplementation increases metabolic rate and lipolysis in the liver 

through up-regulation of ADRB3 and simultaneously induces a decline in preadipocyte 

proliferation, an increase in energy expenditure, and a decline in energy uptake in adipocytes, 

ultimately enhancing ω-3 and ω-6 PUFA contents in the liver.  

The results presented here demonstrated that mRNA expression levels of AANAT, ADRB3, 

BTG2 and FASN in the heart, kidney, and liver are likely influenced by dietary Spirulina 

supplementation level. Our results show that genes involved in fatty acid metabolism in the kidney 

and liver are more sensitive to Spirulina supplementation than in the heart. These findings support 

the use of a low level of dietary Spirulina supplementation for optimal increase in healthy omega-

3 and omega-6 fatty acid contents of organs among Australian crossbred sheep. 
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SUMMARY 

Significance of environmental and ewe bloodline effects, and their estimates, on post weaning 

(PW) fleece traits recorded in a central test sire evaluation flock were investigated. The findings 

that heavier fleeces were produced by single-born or single-reared or older animals, were generally 

similar to those reported for yearling expressions of clean and greasy fleece weights. Apart from 

sex significantly influencing each of the fleece quality traits, mean and coefficient of variation of 

fibre diameter, staple length and staple strength were largely unaffected by the environmental 

effects. Significant ewe bloodline and sire x ewe bloodline effects indicate that sire x genotype 

interactions are important for early age fleece traits. At present, these interactions are partially 

accounted for by fitting sire x flock interactions in the methodology applied in the 

MERINOSELECT genetic evaluations. 

 

INTRODUCTION 

A gradual decline in the average age at recording of performances in Merino fleece traits is 

evident in the MERINOSELECT database (D.J. Brown pers. comm). Therefore, understanding the 

importance of age effects on genetic parameters for fleece traits and the role of assessments in 

young Merinos in breeding programs designed to improve lifetime performance is of continuing 

interest. Performance recording of fleece traits by ram breeders is occurring more often now in an 

age range of 7 to 10 months (post weaning, PW), which offers ram breeders the opportunity to 

supply rams more in line with the needs of their commercial clients. As no published information 

is available on the genetics of Merino PW fleece traits, including the importance of environmental 

effects, this preliminary study sets out to estimate environmental effects on PW fleece traits 

recorded at a central test sire evaluation (CTSE) site, as well as the impact of ewe bloodline effects 

on these traits.  

 

MATERIALS AND METHODS 

Data for this study were available from the progeny of the Macquarie (Trangie) CTSE site, 

which is conducted according to the requirements of the Australian Merino Sire Evaluation 

Association (Casey et al. 2009). The site is hosted at the Agricultural Research Centre, Trangie. 

Briefly, the progeny were born in 2012 and 2013 following annual AI matings of 12 industry sires 

(with one sire in common across years) to base ewes sourced from commercial flocks 

representative of 2 Merino bloodlines (GRASS: dual purpose type, fleece weight emphasis; 

Karbullah: dual purpose type, fertility emphasis) and a commercial flock managed at the centre 

(progeny of ewes mated to Centre Plus rams: dual purpose type, wool, fertility and growth 

emphasis, 2013 mating only). Approximately 50 ewes were inseminated per sire. To achieve a 

spread of lambing in each year similar to that from natural mating, AI matings were conducted in 2 

programs per year: 13 days apart in 2012 and 29 days apart in 2013. At their first mating, all ewes 

were maidens (aged 2 years old in both years, as well as 3 year old ewes in 2012) and were 

randomly allocated to each sire, balanced across the ewe bloodlines and AI programs within a 

year. Before lambing, the base ewes were allocated to a lambing paddock according to their AI 

sire and program (24 lambing paddocks per year). During daily lambing rounds, lambs were 

tagged and their date of birth and sex were recorded. Lambs were weaned at an average age of 92 

Poster presentations

322



days in 2012 and 115 days in 2013. Sire pedigree was confirmed and maternal pedigree assigned 

through DNA testing of blood samples from sires, dams and progeny conducted through the CRC 

for Sheep Industry Innovation. Birth type and rearing type of the progeny were derived from 

lambing paddock records, the DNA parentage testing results and dam’s pregnancy scanning status.    

Animals were first shorn at assessment of the PW fleece traits, which occurred at average ages 

of 8 months (2012 drop) and 8.6 months (2013 drop). Traits included greasy fleece weight (GFW, 

kg), clean wool yield (YLD, %), clean fleece weight (CFW, kg), mean fibre diameter (FD, 

micron), coefficient of variation of FD (FDCV, %), fibre curvature (CURV, degrees/mm), staple 

length (SL, mm) and staple strength (SS, N/ktex). Data analyses were performed using ASReml 

(Gilmour et al. 2014). Significance of fixed effects was first tested in models that fitted a random 

effect of sire. The fixed effects examined included ewe bloodline (3 levels), AI program group (4 

levels), sex (ewe, wether), birth type (single, twin), rearing type (single, twin) and dam age (2, 3 

and 4 year old matings). Age at observation was fitted as a linear covariate within each birth year. 

The importance of the interaction of sire with ewe bloodline was tested by fitting it as an 

additional random effect in a second model for each trait. The interaction effect was considered 

significant (P<0.05) if its inclusion with the sire effect resulted in a significant increase in the log-

likelihood between models. Table 1 summarises the data on each trait. 

 

Table 1. Descriptive statistics for post weaning fleece traits 
 

Trait Mean SD Range Trait Mean SD Range 

GFW (kg) 3.4 0.73 1.4 - 6.0 FDCV (%) 18.1 1.89 13.0 - 25.7 

YLD (%) 68.7 4.67 52.6 - 81.0 CURV (°/mm) 90.4 7.62 65.7 - 117.5 

CFW (kg) 2.3 0.53 0.9 - 4.2 SL (mm) 66.6 9.15 40 - 96 

FD (micron) 17.1 1.25 13.6 - 23.0 SS (N/ktex) 35.4 14.09 10.1 - 73.5 

 

RESULTS AND DISCUSSION 

Environmental effects. All PW fleece traits were significantly influenced by sex of the 

animal, with wethers having heavier (0.27 kg, greasy; 0.18 kg clean) and finer fleeces (0.26 

micron) of slightly lower FDCV and CURV and with shorter staples of lower strength than ewes 

(Table 2). This contrasts with the study of Asadi Fozi et al. (2005), where no significant 

differences between ewes and wethers were found for GFW and CFW at 10 months of age of a 

multiple-bloodline fine wool flock; however, significant differences between the sexes were 

reported for YLD, FD, FDCV and SS. Earlier, Young et al. (1965) also observed no significant 

difference between rams and ewes in GFW at 5-6 months of age in a medium wool flock.  

Age at observation significantly affected both fleece weights and SL, with older animals 

tending to produce more wool. The direction of the minor effect on SL varied with year of birth 

such that 2012-born animals (from a lambing period of 22 days) produced 0.09 mm shorter staples 

per day as age increased while 2013-born animals (from lambing period of 41 days) produced 0.33 

mm longer staples per day (Table 2). In agreement with the current study, previous studies have 

reported significant effects of age at observation on GFW and CFW across a range of Merino wool 

types at 10 months of age (multiple-strain flock: Brash et al. 1997; multiple bloodline broad wool 

flock: Hill 2001; Asadi Fozi et al. 2005) and yearling age (industry flocks: Huisman et al. 2008) 

and SL (10 months of age: Hill 2001; yearling age: Huisman et. al 2008). However, these studies 

did show significant age effects on FD (Brash et al. 1997; Hill 2001; Asadi Fozi et al. 2005; 

Huisman et al. 2008) and SL (Hill 2001; Huisman et al. 2008). 

Twin-born and twin-reared animals had significantly lighter PW GFW (0.19 and 0.26 kg 

respectively) and CFW (0.14 and 0.18 kg respectively; Table 2), which agrees with the significant 

effects on fleece weights previously identified in young Merinos due to birth type and rearing type  
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Table 2. Significance of fixed effects
1
 and their estimates

2
 for post weaning fleece traits and 

percentage of phenotypic variation accounted for by sire x ewe bloodline interaction 
 
 GFW YLD CFW FD FDCV CURV SL SS 

Sex *** ** ** *** ** *** *** * 

 0.27 

(0.07) 

-0.78 

(0.26) 

0.18 

(0.05) 

-0.26 

(0.07) 

-0.31 

(0.11) 

-0.24 

(1.01) 

-4.09 

(0.78) 

-1.57 

(0.79) 

Age *** ‡ *** n.s. n.s. n.s. ** n.s. 

2012 0.008 

(0.015) 

-0.27 

(0.14) 

-0.002 

(0.011)    

-0.09 

(0.26)  

2013 0.034 

(0.006) 

-0.06 

(0.05) 

0.022 

(0.004)    

0.33 

(0.10)  

Birth type * n.s. * n.s. * n.s. n.s. n.s. 

 -0.19 

(0.08)  

-0.14 

(0.06)  

-0.74 

(0.30)    

Rearing type ** n.s. ** n.s. * n.s. n.s. n.s. 

 -0.26 

(0.08)  

-0.18 

(0.06)  

0.76 

(0.29)    

Dam age n.s. n.s. n.s. * n.s. n.s. n.s. n.s. 

3 

   

-0.45 

(0.16)     

4 

   

-0.49 

(0.22)     

Ewe bloodline * n.s. * *** * *** *** n.s. 

Karbullah -0.09 

(0.03)  

-0.06 

(0.02) 

0.35 

(0.08) 

-0.32 

(0.12) 

-3.10 

(0.51) 

3.15 

(0.73)  

Commercial 0.08 

(0.09)  

-0.02 

(0.07) 

-1.25 

(0.21) 

-0.19 

(0.34) 

0.43 

(1.42) 

-2.44 

(1.99)  

Sire x ewe 

bloodline (%) 0 n.s. 0 n.s. 0 n.s. 4.0 * 2.8 * 1.6 n.s. 2.5 * 2.9 * 
1 ‡, P < 0.10; *, P < 0.05; **, P < 0.01; ***, P < 0.001; n.s., not significant (P ≥ 0.10). 
2 Estimates expressed as follows: ewe bloodline as the deviation from GRASS estimate of estimates for each 

of the Karbullah and Commercial bloodlines; sex as the deviation from ewe estimate of the wether estimate; 

birth type and rearing type as the deviation from estimates for single animals of estimates for twin animals; 

dam age as the deviation from estimates for 2 year old matings of estimates for later matings. 

 

(Young et al. 1965; Brash et al. 1997; Huisman et al. 2008) and a combined birth-rearing type 

(Hill 2001; Asadi Fozi et al. 2005). While in the current study the estimates for rearing type effects 

on the fleece weights were as least as large as those for the birth type effects, Huisman et al. 

(2008) reported that the rearing type estimates for yearling fleece weights were approximately half 

those for birth type effects (-0.078 versus -0.193 for GFW and -0.074 versus -0.130 for CFW). It is 

possible that rearing type may have greater impacts on fleece weights recorded at the PW age than 

at yearling and later ages, but this needs to be confirmed by further study. FDCV was reduced 

significantly in fleeces of twin-born animals but was significantly higher in fleeces of twin-reared 

animals, as reported by Husiman et al. (2008). The remaining traits were not influenced by birth 

type or rearing type, results which are consistent with earlier findings for CURV (Huisman et al. 

2008), SL and SS (Hill 2001; Huisman et al. 2008). However, birth type had influenced 

significantly FD in the studies of Brash et al. (1997) and Huisman et al. (2008), as well as a 

combined birth and rearing type effect in the studies of Hill (2001) and Asadi Fozi et al. (2005). 

Except for FD, there were no significant differences between dam ages for the PW fleece traits, 

likely due to the ewes being no more than 4 years old at their second lambing opportunity. Based 

on published reports of significant estimates for fleece weights at 5-6 (Young et al. 1965) and 10-
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12 (Hill 2001; Asadi Fozi et al. 2005; Huisman et al. 2008) months of age, it is expected that dam 

age effects could influence PW fleece weights. However, it is likely that these effects would be 

relatively small and less noticeable than effects of the other early environmental effects. This may 

also be the case for FD and FDCV, for which significant dam age effects, though small, have been 

reported (Hill 2001; Huisman et al. 2008). 

Ewe bloodline effects. Ewe bloodline had a significant effect on all PW traits, except YLD 

and SS, with ranges of difference in performance across the ewe bloodlines used in this study of 

0.17 kg for GFW, 0.06 kg for CFW, 1.6 micron for FD, 0.32% for FDCV and 5.59 mm for SL 

(Table 2).The sire x ewe bloodline interaction was significant only for FD, FDCV, SL and SS, 

accounting for 2.5 to 4.0% of the phenotypic variation in these traits and suggesting that non-

additive genetic variance, or heterosis, may be influencing these traits. These results contrast with 

Mortimer et al. (1994) who found non-additive genetic effects to be significant for hogget GFW 

and CFW, but not hogget FD. From data drawn from industry studs and CTSE sites, Atkins et al. 

(1998) concluded that possible non-additive effects could be influencing yearling fleece weight, 

based on a significant sire x genetic group effect and the lesser importance of a sire x location 

effect following decomposition of a sire x management group interaction. Taken together, the 

evidence suggests that sire x genotype interactions are important for early age fleece traits, though 

further studies to estimate these effects are needed using suitable data. Currently, this interaction is 

in part being accounted for as a component of a sire x flock interaction that is fitted by the 

methodology used in MERINOSELECT genetic evaluations (Li et al. 2015). 

Conclusions. Although to be verified by estimates from larger data sets, preliminary estimates 

of environmental effects on PW fleece traits are generally similar to those available for yearling 

fleece traits. The influence of sire x genotype interactions on early age fleece traits warrants 

further investigation using data sets structured without confounding of sire and other effects.  
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SUMMARY 

Methane emissions by dairy cows have become a major environmental issue as it has been 

suggested as a major contributor to global warming. In this paper, the methane emissions of 40 

Jersey and 62 Fleckvieh x Jersey (FxJ) cows were predicted using specific milk fatty acids (FAs). 

Cows were on kikuyu pasture supplemented during pasture shortages with a replacement mixture 

consisting of lucerne hay, oat hay and soybean meal. All cows received the same concentrate 

mixture twice a day after milking at 7 kg per cow per day. Milk samples (153 Jersey and 283 FxJ), 

were collected every 35 days over the lactation period, starting from 10 days after calving as per 

standard milk recording procedures. At least three and maximum seven milk samples per cow 

were collected over the lactation period. FAs were determined by gas chromatography. From this, 

methane emissions per unit of dry matter intake using two prediction equations were predicted. 

Predicted methane emissions varied between breeds although differences were small (P>0.05). 

Using Methane equation 2 and 3, predicted methane emissions for Jersey and FxJ cows were 

26.2±1.07 and 25.8±0.94 and 24.6±0.99 and 24.4±1.08 g/kg feed DM, respectively. Methane 

emissions in both breeds showed curvilinear (P<0.05) trends over the lactation period. Over all 

cows, lactation stage and breeds, the coefficient of variation in predicted methane emissions for 

Jersey and FxJ cows was approximately 20%, possibly indicating genetic variation among cows. 

This variation could be used towards reducing methane production in dairy cows.   

 

INTRODUCTION 

Methane (CH4) emissions by dairy cows are a major environmental issue as it has been 

suggested to be a major contributor to global warming. Dairy cows, being ruminants, contribute 

directly to greenhouse gas (GHG) emissions as CH4, a major GHG, is produced through the 

fermentation processes in the rumen. Methane is released into the atmosphere by natural processes 

of eructation and breathing. Knapp et al. (2014) pointed out that to mitigate enteric CH4 emissions 

per unit of energy-corrected milk, herd productivity, not individual animal productivity is 

important to environmental sustainability. This concept was demonstrated by    Capper et al. 

(2009) in comparing US dairy production systems in 1944 and 2007 showing that while the carbon 

footprint of modern dairy cows increased from 13.5 to 27.8 CO2 equivalents kg/cow, the CO2 

equivalent production decreased from 3.66 to 1.35 kg/kg milk. This resulted mainly from an 

improved genetic merit for milk production in dairy cows, better diet formulation, improved herd 

health and housing. The overall improvement in production resulted in 64% fewer dairy cows to 

produce the required milk output. Van de Haar & St Pierre (2006) and Chagunda et al. (2009) 

showed that more energy efficient dairy cows produce less methane and nitrogen per unit product. 

Selecting for dairy cows for more efficient feed use would bring together higher production and 

reduced resource requirements (Bell et al. 2012). However, by breeding for cows to produce less 

methane without forfeiting production would have a greater improvement on the industry’s 

environmental foot-print. To enable this, a robust indicator trait that can be used together with 

production traits is required. Dijkstra et al. (2011) developed an indicator for methane production 
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of dairy cows based on milk FAs. However, correlations between methane production and 

individual milk FAs are not consistent among studies (Visker et al., 2014). Early work by Tyrrell 

et al. (1991) did not show breed differences between Holstein and Jersey cows for maintenance 

and production requirements per unit of metabolic body weight. Münger & Kreuzer (2006) also 

found no differences between Jerseys, Holsteins and Simmental in CH4 per DM intake in a 3-three 

comparison with direct measurements of CH4 and milk production, although Simmentals produced 

more CH4/energy corrected milk because of a higher body size. The aim of this paper is to 

compare the predicted methane emissions of Jersey and FxJ cows in a pasture-based feeding 

system.  

  

MATERIAL AND METHODS 

Location and Animals. This paper was based on an on-going breed comparison study at the 

Elsenburg Research Farm of the Western Cape Department of Agriculture. Jersey and F bulls were 

used on two comparable groups of Jersey cows regarding breeding value for milk yield, to create a 

FxJ crossbred herd with a purebred Jersey herd as control. Cows were mostly on kikuyu pasture 

(Pennisetum clandestinum) being supplemented with a concentrate mixture twice a day after 

milking at 7 kg per cow per day regardless of milk yield and lactation stage.  Fresh drinking water 

was freely available at all times. Milk samples, 153 from Jersey and 283 from FxJ, were collected 

over the lactation period starting from 10 days after calving every 35 days as per usual milk 

recording procedures. At least three and maximum seven milk samples per cow were collected 

over the lactation period. FAs were determined by gas chromatography. As the original aim of the 

study was the comparison of the production performance of the two breeds, cows were, at times, 

specifically during pasture shortages, supplemented with a pasture replacement mixture consisting 

of lucerne hay, oat hay and soybean meal. Results on the production performance of Jersey and 

FxJ cows have been reported by Goni et al. (2014).   

 

Milk sampling and fatty acid analyses. Milk samples for FA analyses were collected and 

recorded every five weeks according to standard milk recording procedures. At each recording 

event, milk samples were collected from cows of both breeds from 10 days after calving (DIM) to 

about 175 DIM (milk tests 1 to 5) and thereafter from 240 DIM (milk tests 7 to 8). Milk samples 

were collected at the evening and next morning’s milking session and combined. Milk samples for 

FA analyses were kept frozen at -20°C until laboratory analysis and FA composition of milk 

samples was obtained by gas chromatography at IBMB, CPUT, Bellville, Cape Town. Thirty six 

FA were detected and concentration levels determined. Breed differences for FAs were reported 

by Sasanti et al. (2012). For the present study methane emissions were predicted using the 

methane prediction formulae 2 and 3 as suggested by Visker et al. (2014):   

 

CH4 (g/kg feed DM) = 28.60 - 1.13 x C4:0 + 0.36 x C18:0 - 2.57 x C18:1trans10+11 - 9.29 x 

C18:1cis 11 for Methane 2. 

CH4 (g/kg feed DM) = 27.13 – 3.04 x C4:0 + 2.71 x C6:0 – 1.63 x C18:1trans10+11 for 

Methane 3. 

 

Statistical analyses. Predicted methane emissions (prediction models 2 and 3) were compared 

between breeds by analysis of variance using samples of all cows within breed as replicates using 

the GLM procedure (SAS Institute Inc.).  

 

RESULTS AND DISCUSSION 

The fat content in J milk was higher (P<0.05) than in FxJ milk, i.e. 4.09±0.85 and 3.87±0.74% 

(Table 1). Goni et al. (2014) found that although the fat percentage of the milk of FxJ cows was 
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lower (P<0.05) than J cows, the fat yield of FxJ cows was higher (P<0.05) than that of J cows 

because of a higher milk yield. The differences between breeds in methane production as predicted 

by methane prediction equations 2 and 3 were, however, small. Methane emissions found by 

Visker et al. (2014) using the same equations, were lower than the results in the present study, 

being 21.34±1.23 and 20.87±0.82 for methane prediction models 2 and 3, respectively. Similarly, 

as found by Visker et al. (2014), the present study also showed that for both Jersey and FxJ cows 

the methane production was lower for the Methane3 prediction model in comparison to Methane2.  

The coefficient of variation was high (ca. 20%) for both prediction models possibly indicating 

differences among cows within breeds. This variation could possibly be used to identify more 

efficient cows in terms of methane production.  

 

Table 1. The mean milk fat content (%) and methane production based on fatty acids in the 

milk of Jersey (J) and Fleckvieh x Jersey (FxJ) cows in a pasture-based feeding system   

 

Parameters  Fat %  Methane2  Methane3 

Breeds  J FxJ  J FxJ  J FxJ 

Mean (g/kg feed DM)  4.09ª 3.87
 b
  26.2 25.8  24.6 24.4 

Standard deviation  0.85 0.74  1.07 0.94  0.99 1.08 

Minimum  2.60 1.59  20.5 21.8  21.1 14.7 

Maximum  7.80 6.49  28.5 28.4  26.3 28.7 
      a,b

Values with different superscripts within column between breeds differ at P<0.05  

 

The effect of lactation stage as indicated by milk test on methane production is shown in 

Figure 1. Methane production for both methane prediction equations showed curvilinear trends 

towards the end of the lactation similar as the fat percentage for both breeds.  

 

 
 

Figure 1. Methane production as affected by milk test for Jersey (■) and Fleckvieh x Jersey 

(□) cows using two prediction models (solid lines = Methane 2 and dash lines = Methane 3) 

 

Although Garnsworthy et al. (2012) recorded methane emission rate during milking in 

automatic milking stations as CH4/day, in contrast to the current study using predicted methane 

emissions as CH4/kg DM, their study showed that between-cow variation in methane emission rate 
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was greater than within-cow variation. These differences between cows were ascribed to variations 

in body weight, milk yield, parity and week of lactation. Using daily methane emissions averaged 

on a weekly basis, Garnsworthy et al. (2012) showed an increase over the first 10 weeks of the 

lactation consistent with expected increases in feed intake because of milk yield increases. Lassen 

et al. (2013) demonstrated genetic variations with a heritability estimate of 0.21 using methane 

emission rates determined in automatic milking stations. High variation among cows increases the 

level of replication required to obtain reliable estimates of methane emissions and to assess the 

effect of mitigation strategies (Garnsworthy et al. 2012). Because milk is routinely collected for 

milk recording, FA profiles could easily be obtained using gas chromatography or infrared profiles 

(Visker et al. 2014). Regression equations developed by Visker et al. (2014) are probably not 

appropriate for the current study as diets differed. Chilliard et al. (2009) showed that CH4 output 

was positively and strongly correlated to milk FA 6:0 to 16:0 based on the use of acetate produced 

in the rumen during fiber digestion. It was suggested that milk FA profile can be considered to be 

a potential indicator of in vivo CH4 output, but studies using other dietary supplements reported 

contrasting results. Therefore, it appears that suitable equations should be developed for specific 

feeding programmes. For the present study it was, however, possible to show differences between 

cows within breeds.   

 

CONCLUSION 

This study showed that predicted methane emissions by using regression equations varied 

between cows within breed, while only small differences between Jersey and FxJ cows were 

observed. Within breed differences indicate possible genetic variation among cows which may be 

exploited towards reducing methane production in dairy cows.  
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SUMMARY 

Over thirty years' worth of dairy cattle data was analysed to help understand the phenotypic re-

lationships between early (surviving from 1
st
 parity to 2

nd
 parity) and late (surviving from 1

st
 parity 

to 4
th

 parity) survival and other phenotypes in high and low milk production output systems on 

New Zealand dairy farms. 

Survival and fertility traits were computed from parturition, herd test and culling records, and 

mating and parturition records respectively. 

The results of this study indicate some phenotypic differences in relationships for Traits Other 

than Production (TOP), body condition score, Somatic Cell Score (SCS) with survival between 

farming systems and over time. Non-linear relationships between TOP traits and survival were 

observed. There was a tendency for SCS to influence survival more at a younger age than at an 

older age across all production levels and for Farmer Opinion to influence survival more at a 

younger age than at an older age within high output systems.  

 

INTRODUCTION 

New Zealand dairy production systems have become more diverse over the years with a higher 

proportion of farms becoming more intensive. This work is a preliminary analysis of low and high 

output production systems to help understand if there are different phenotypic and genotypic driv-

ers of cow survival (longevity) to optimise trait selection. 

This paper describes the phenotypic relationships between survival and production and non-

production traits in low and high milk solids production systems. Phenotypic correlations can re-

flect trade-offs between traits and potentially reveal underlying genetic relationships. 

The specific objective was to compute phenotypic correlations for early and late survival with 

Traits Other than Production (TOP) scores, 270 day combined milk solids, somatic cell count 

(SCC), liveweight, body condition score (BCS) and fertility. Comparisons were made across herd-

level groupings based on two different production systems: high output versus low output, as well 

as two time periods (2002 to 2014 for all records and 2010 to 2014 for recent records). All pheno-

types were based on first lactation records, except for survival which was based on first to fourth 

lactation records. 

 

METHODS 

Data was extracted from the NZ Dairy Core Database and Dairy Industry Good Animal Data-

base (DIGAD). Data preparation and analysis was undertaken using SAS software (SAS Institute 

2011) and R 3.1.2 (R Core Team 2014; Dowle et al. 2014). Pairwise Pearson correlations were 

computed between phenotypes from herds belonging to different herd-level subsets based on 

milksolids (fat plus protein) production in second lactation and record date. 

 

Data preparation. Only herds with good quality data were selected. Animals had to: have birth 

date recorded (not estimated), be born in New Zealand, have been born after the year 2000 and 

have both parents recorded. Animals that moved herd and did not reside in a single herd from birth 

to their second lactation were discarded. Only herds with more than 50% of animals with TOP 
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scores were selected to obtain a representative sample of herds that had a high proportion of cows 

scored for TOP traits (Table 1). 

Survival and fertility traits were computed from parturition, herd test and culling records, and mat-

ing and parturition records respectively. 

Traits Other than Production scores included scores for milking adaptability and speed, tem-

perament, farmer opinion, dairy capacity, rump angle and width, legs, udder support, front and rear 

udder, front and rear teat placement, udder overall and dairy conformation.  

 
Table 1: Average first lactation milksolids (fat + protein) production, number of herds, animals in 

groups for which phenotypic correlations were assessed. 

 

Production catego-

ry 

Milksolids production 

(kg/cow/day) 

Herds Animals All 

(2002-2014) 

Animals Recent 

(2010-2014) 

High output 1.38 34 13,058 4,886 

Low output 0.96 42 14.199 4,024 

 

Survival. Early and late survival traits were computed as per the existing multi-trait genetic evalu-

ation (Harris et al. 2007), which defines survival as the ability of the cow to be retained in the herd 

consecutively from her first to second and first to fourth lactation (SV12 and SV14 respectively). 

While survival from first to third lactation is also included in the existing genetic evaluation, re-

sults for this trait have been omitted for conciseness. Parturition and herd test dates were used to 

determine whether a cow was lactating in a season, starting with the first lactation from one and a 

half years old to exclude heifers that calved early. 

The lactation of a cow in a season was scored as a logical variable: 1 when they had a lactation 

in a season and 0 otherwise. When a cow had no lactation record(s) in between two seasons in 

which she was lactating, that lactation was defined as missing. Survival phenotypes were then de-

rived by checking all logical lactation values over the interval from first to second and first to 

fourth lactations for SV12 and SV14 respectively. Survival was set to 1 if all the lactation values 

were 1. Survival was 0 otherwise. 

 

Fertility. Mating and calving records were used to derive calving season day (CSD). Calving sea-

son day was calculated as the difference in days between planned start of calving (Stachowicz et 

al. 2014) and the cow’s calving date. 

Only spring calvings were used to compute CSD, i.e. calvings between June and November. 

Mating had to occur within 200 days from the previous calving. Calving intervals (difference in 

days between consecutive calvings) from 300 to 550 days were accepted. Mating dates where the 

individual bull could be identified were used and “run with bull” matings were excluded. For both 

mating and calving dates there had to be matching herd identification records. 

Survival records were merged with fertility records to determine if a fertility-related culling 

event occurred for a cow during her first lactation. Cows that were mated but did not calve as a 

result of this mating were penalized by having 21 days added to the longest calving season day 

record in their contemporary group (Donoghue et al. 2004). 

 

Groups. For the purpose of herd-level grouping, every animal was assigned to a single herd: the 

herd in which it calved for the first time. The majority of animals were not transferred during their 

lifetime, therefore the impact of assigning the smaller part of an animal's data to the wrong herd 

was assumed to be minor. 

To allocate herds to a particular production system (high versus low output), phenotypes for 

daily combined milk solids production from second lactation herd test records recorded between 
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50 and 200 days in milk (lactation curve shows perfect linear fit (R
2
=0.99) in this interval) were 

used. PROC GLM in SAS was utilized to fit a linear model including fixed effects of days in milk, 

herd, season, age of the cow at calving, month of calving and the cow’s breed composition. High 

and low output herds were defined as those herds belonging to the top and bottom performers of 

the obtained herd lactation solution. Low and high solution thresholds were adjusted in such a way 

that there were approximately 20,000 animals in both groups. Records were also grouped by data 

age: recent (records from 2010 to 2014) and all (records from 2002 to 2014). 

 

Analysis. Pearson correlation coefficients were computed among raw phenotypes, focussing on 

the correlations of the two survival traits (1
st
 to 2

nd
 lactation, and 1

st
 to 4

th
 lactation) with TOP and 

production traits. Linear and quadratic coefficients for the regressions of survival traits on the TOP 

traits were also estimated. 

 

RESULTS AND DISCUSSION 

There was a 0.42 kg difference in milksolids per cow per day between low and high output 

herds (Table 1). A summary of results is given in Table 2. In general, udder conformation traits 

had stronger phenotypic correlations in high rather than in low output herds with some evidence 

that the relationship between udder traits and early survival is becoming stronger in the more re-

cent data. In high producing herds, overall farmer opinion, had a stronger correlation with early 

rather than with late survival. This corresponds with the earlier finding that farmer opinion has an 

important influence on survival (Berry et al. 2005). The phenotypic relationship between 270-day 

milk solids production and cow survival was constant across herd types and time periods. Somatic 

cell score had a strong negative relationship with early survival, and was stronger in high output 

herds than in low output herds. Milking adaptability showed a similar pattern, perhaps reflecting 

the correlation of approximately 0.6 observed between farmer opinion and milking adaptability in 

these data. There was a stronger phenotypic correlation between both udder support and udder 

overall and survival in high than in low output herds. 

First lactation BCS had a low negative correlation with SV12 in high output herds. This might 

reflect that cows which maintain condition produce less milk in high output herds and this impacts 

on their likelihood of survival. Whereas in low output herds, it is more beneficial to maintain con-

dition in early lactation as this confers benefits for fertility and late season milk production. Dairy 

capacity exhibited a low genetic relationship with survival in low production herds, which sup-

ports the above explanation as capacity and BCS are highly correlated. 

Regression analysis results are not shown here in detail, but TOP scores had an impact on most 

survival in a non-linear manner, such that quadratic regression coefficients were significantly dif-

ferent from zero. Of 252 TOP/survival relationships studied, 142 were significant, and 122 out of 

142 had significant non-linear phenotypic relationships, usually with an intermediate optimum.  

Future research will estimate genetic correlations between survival traits, and all other traits by 

production level. The results of this study indicate that TOP and other trait records in daughters 

might more accurately inform survival genetic evaluations of dairy cattle if account is taken for the 

differences in relationships for TOP traits and other traits with survival across farming systems; by 

considering non-linear relationships and relationships specific to age. This later point is especially 

relevant because survival in early lactations is more economically important than survival across 

lactations at later ages. This is because the increased need to replacements is much higher in a herd 

where more cows are lost at young ages than at later ages. Finally, there is some evidence that the 

relationships between TOP traits and survival are changing over time, which has implication for 

the use of historic data for estimating genetic correlations. 
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Table 2 Phenotypic correlations between survival traits and TOP scores, 270 day combined 

milk solids, SCS, liveweight and BCS, and CSD for herd-level groupings based on milk solids 

production and data age.  
 

Trait Group 

 Production system High output Low output 

  All  Recent All Recent 

  SV12 SV14 SV12 SV14 SV12 SV14 SV12 SV14 

TOP 

 

Milking adaptability 0.05 0.03 0.05 0.07 0.03 0.01 0.07 0.07 
Temperament 0.05 0.03 0.02 0.06 0.04 0.01 0.07 0.08 
Milking speed 0.03 0.04 0.01 0.04 0.02 0.04 0.10 0.13 
Farmer opinion 0.13 0.07 0.13 0.07 0.07 0.06 0.09 0.11 
Dairy capacity 0.01 0.01 0.04 -0.07 0.03 0.05 -0.02 -0.05 
Rump angle -0.02 0.02 -0.01 -0.05 0.00 0.01 -0.01 -0.07 
Rump width 0.02 0.03 0.02 0.00 0.03 0.05 0.00 0.04 
Legs 0.00 -0.02 0.01 -0.03 0.01 0.02 -0.01 0.02 
Udder support 0.08 0.08 0.12 -0.01 -0.01 0.03 -0.10 -0.08 
Fore udder 0.04 0.07 0.07 -0.01 0.02 0.04 -0.02 -0.04 
Rear udder 0.06 0.05 0.10 -0.05 -0.03 0.00 -0.12 -0.07 
Front teat placement 0.02 -0.05 0.04 -0.07 0.00 -0.03 0.02 -0.05 
Back teat placement 0.04 -0.04 0.04 -0.03 -0.01 -0.04 -0.02 -0.06 
Udder overall 0.08 0.08 0.11 -0.02 0.01 0.04 -0.05 -0.05 
Dairy conformation 0.08 0.07 0.10 -0.05 0.06 0.09 -0.02 -0.03 

Liveweight -0.02 0.02 -0.03 -0.02 0.01 0.01 -0.01 0.01 
BCS -0.07 -0.01 -0.10 -0.01 0.01 0.00 0.00 -0.05 
270-day milk solids 0.11 0.11 0.10 0.09 0.12 0.13 0.08 0.08 

SCS -0.22 -0.07 -0.27 -0.06 -0.11 -0.05 -0.13 -0.03 

CSD  0.00  0.01  -0.03  0.03 
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SUMMARY 

Liveweight data from walk-over-weigh technology on NZ dairy farms provides a potential 

source of daily or average liveweight data for genetic selection. In this study, mixed models 

utilising both fixed and random regression with varying orders of Legendre polynomials or 

eigenvectors were assessed to model the longitudinal properties of liveweight records of New 

Zealand dairy cows. Higher order models fitted the data best despite the subsequently large 

increase in number of parameters. The choice of either Legendre polynomials or eigenvectors as 

the set of basis functions made no significant difference. Limits to model order will need to be 

applied on the basis of assumptions concerning data covariance structure and desired number of 

liveweight-derived traits for selection. Additionally, methods developed here for estimation of 

genetic covariance of regression coefficients and for inversion of the mixed model equation matrix 

can be extended to models for which pedigree relationships are also taken into account. 

 

 INTRODUCTION 

Liveweight (LW) is a trait which changes over time, and may thus be considered as 

“longitudinal” or “infinite-dimensional” (Kirkpatrick et al., 1994). Some of the approaches that 

have been applied to model these repeated data types include repeatability, multivariate and 

random regression (RR) models (Mrode and Thompson, 2014).  

The use of RR models has become a preferred method to analyse longitudinal data for animal 

genetic evaluation. These models use a fixed regression to describe the average shape of a 

lactation or growth curve, and a random regression for each animal to account for deviations from 

the fixed regression (Schaeffer and Deckers, 1994). RR models have been applied to model test-

day records of milk traits in dairy cattle (Jamrozik and Schaeffer, 1997; Olori et al., 1999), as well 

as growth and mature weight in beef cattle (Meyer, 1999, 2004; Speidel et al., 2010) and other 

livestock. In these models, Legendre polynomials are typically used as the set of basis functions, 

however they can suffer from a Runge effect (Runge, 1901), where a higher order polynomial 

describing the general curve has high oscillations in the boundary areas. Eigenvectors avoid this 

problem, and just a few eigenvectors may adequately account for the covariance structure of the 

data, so they may provide a better set of basis functions in a RR model. 

The current animal evaluation model for LW of NZ dairy cattle is based on a combination of 

both visual score and static weights. Walk-over-weigh (WOW) records per animal in commercial 

dairy sheds provide the opportunity to incorporate this new data into the current LW models. 

Utilisation of these data may also allow for better characterisation of the seasonal LW curve. The 

objective of this study was to compare RR models using either Legendre or eigenvector basis 

functions of various orders with longitudinal LW data, albeit without considering pedigree. 

 

MATERIALS AND METHODS 

Data. A total of N = 58,532 WOW records collected on na = 2,899 2-year-old New Zealand 

dairy cows born in the 2010/2011 season were extracted from the Dairy Industry Good Animal 

Database (DIGAD). The data consisted of individual animal weekly average LW collected over nt 

= 40 weeks from lactation start (defined as weeks-in-milk, WIM), from ncg = 6 herds. All data 

manipulation, modelling and analysis were performed with R statistical software. 
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Models. Mixed models were used in the analysis, whose fixed component included a 

regression on either Legendre or eigenvector basis functions which would describe the general 

liveweight curve, and whose random component described individual deviations from the general 

curve. Following the notation of Mrode & Thompson (2014), models used were of the form: 

 𝑦𝑡𝑖𝑗 = ℎ𝑡𝑑𝑖 + ∑ 𝜓𝑡𝑘𝛽𝑘

𝑛𝑓

𝑘=0

+ ∑ 𝜙𝑡𝑘𝑎𝑗𝑘

𝑛𝑟

𝑘=0

+ 𝑒𝑡𝑖𝑗 (1) 

Where ytij is the test day record for cow j on day t within contemporary group (herd test day) i, 

ψtk is the value of a k
th

 basis function (Legendre or eigenvector) evaluated at time t, βk ∈ β, the 

vector of fixed regression coefficients, ϕtk is the value of a k
th

 Legendre polynomial evaluated at 

time t, and ajk ∈ aj, the vector of random regression coefficients (animal effects) for animal j 

(where aj ∈ a, the full vector of random regression components). The set of basis functions for 

fixed effects are of order nf, and for random effects are of order nr. The matrix notation (2) and 

mixed model equation (MME) notation (3) for this model are as follows: 

 𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 (2) 

 [
𝐗T𝐗 𝐗T𝐙
𝐙T𝐗 𝐙T𝐙 + 𝐈𝜎𝑒

2 ⊗ 𝐊−1] [�̂�
�̂�

] = [
𝐗T𝐲

𝐙T𝐲
] (3) 

Here it is assumed that var(a) = I⊗K and var(e) = 𝐈𝜎𝑒
2 (necessary priors), where ⊗ is the 

Kronecker product and K is an nr-dimensional covariance structure of the random regression 

coefficients for animal effects. X and Z are the incidence matrices corresponding to the effect 

solutions (superscript T indicates matrix transpose). Here Xb = X1b1+X2β, the sum of 

contemporary group fixed effects (htdi ∈ b1) and fixed regression components respectively. It 

should be noted that our approach does not yet take into account the pedigree relationships, which 

would otherwise partition the animal effect into additive animal genetic and permanent 

environmental effects. If this were the case, the MME would be in a 3×3 partition, with nr-

dimensional estimated covariance structures of G and P, in Kronecker product with 𝐀−1𝜎𝑒
2 and 

𝐈𝜎𝑒
2, respectively. As it stands, we instead used an estimate of the combined covariance of G and 

P; K, which was the genetic covariance of animal effects covA(a) calculated from the phenotypic 

covariance of the data covP(y), with y structured as an animal × test-week dataset. Liveweight 

heritability was assumed to be h
2
 = 0.35; residual variance was assumed to be 𝜎𝑒

2 = 400kg. 

 𝐊 = covA(𝐚) =
ℎ2

2
(𝐙T𝐙)−1𝐙TcovP(𝐲)((𝐙T𝐙)−1𝐙T)T (4) 

Basis function sets. For Legendre polynomials, the setup of an order k incidence matrix (for a 

basis set of k functions for either the fixed or random model component) was calculated as X (or 

Z) = ML, where L was the k×k matrix of Legendre polynomial coefficients, and M was the N×k 

matrix of each observation’s week-in-milk t transformed to the [-1, 1] interval (5) and evaluated 

for the k different degrees of monomials. 

 𝑥𝑚 =
2(𝑡𝑚 − 𝑡𝑚𝑖𝑛)

(𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛)
− 1,        𝑚 ∈ {1 ⋯ 𝑁} (5) 

For eigenvectors, the setup of an order k incidence matrix was calculated as X = TEk, where T 

was the N×nt matrix for each observation’s WIM, and Ek was the nt×k subset of the k eigenvectors 

of the top k eigenvalues of the eigendecomposition of the phenotypic covariance matrix, covP(y) = 

EΛE
T
 (E is the matrix of all eigenvectors; Λ is the diagonal matrix of eigenvalues). 

Residual analysis. Akaike information criteria (AIC) (Akaike, 1974) were calculated for each 

model to provide a relative measure of model quality. For nested models, Likelihood ratio tests 

(LRT) (proven by the Neyman–Pearson (1933) lemma to be optimal for model selection) were 

also used to determine if any reduction in residuals between models was significant or not. 
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Assuming normal distribution of residuals, the log-likelihood of a model was determined as a 

function of residual variance σ2
 and number of observations N: 

 ℓ𝑛(ℒ) = −
𝑁

2
(1 + ℓ𝑛(2𝜋𝜎2)) (6) 

From this, AIC = 2n - 2ℓ(ℒ) was calculated (where n = ncg + nf + nr .na was the total number of 

parameters), and for two nested models a likelihood ratio LR = 2ℓ𝑛(ℒM2) - 2ℓ𝑛(ℒM1) was 

calculated (for “null” model M1 nested within model M2). A chi-squared test using test statistic 

LR with degrees of freedom df = nM2 – nM1 would produce a value p = 1 – χ2
 which, for p < 0.05, 

would indicate that model M2 was significantly better than the simpler M1 model. 

MME matrix inversion. The block-structure of the MME matrix (dimension ncg + nf + nr.na) 

allowed for an alternative inversion of much smaller nr-dimensional matrices. If the data is ordered 

by animal, then the Z
T
Z component of the MME (3) will be block-diagonal, comprised of na sub-

matrices of dimension nr each. The same is true for 𝐈𝜎𝑒
2⨂𝐊−1, and so 𝐃 = 𝐙T𝐙 + 𝐈𝜎𝑒

2⨂𝐊−1 will 

be block-diagonal also. Given the Banachiewicz (1937) identity for of a partitioned matrix inverse, 

[
𝐀 𝐁
𝐂 𝐃

]
−1

= [
𝐒D

−1 −𝐒D
−1𝐁𝐃−1

−𝐃−1𝐂𝐒D
−1 𝐃−1 + 𝐃−1𝐂𝐒D

−1𝐁𝐃−1] , where 𝐒D = 𝐀 − 𝐁𝐃−1𝐂  (7) 

and the property of the inverse of a block-diagonal matrix being another block-diagonal matrix of 

individual block inverses, then it follows that the inverse of the MME matrix may simply be 

determined by way of calculating the inverse of each nr-dimensional sub-matrix of D (and the 

inverse of the small (ncg+nf)-dimensional Schur matrix SD). 

 

RESULTS AND DISCUSSION 

 

Varying model orders. For RR 

models with fixed Legendre component 

of nf ∈ {3, …, 7} and random 

component of nr = 3, the general 

polynomial representing the data 

(Figure 1) shows how the oscillations 

of higher order polynomials become 

apparent for nf ⪞ 5. Despite this, LRT’s 

between models of consecutive orders 

of fixed Legendre component nf ∈ {3, 

…, 20} with conserved random order nr 

∈{1, …, 3} showed significantly better fit for orders nf ≤ 9 (p < 0.005). However, residual variance 

was not longitudinally homogenous (even for varying random orders), indicating that higher order 

fixed effects may be required. Unlike the random regression component, increasing the fixed order 

makes almost no computational difference. However, under the assumption of a reasonably 

smooth longitudinal relationship between LW values, the fixed order should be limited. 

For RR models with fixed Legendre component of nf = 9 and random component of nr ∈ {1, 

…, 5}, residual variance decreases (and log-likelihood increases) with increasing nr (Table 1), and 

this variance also scales quite uniformly across season for different nr. LRT’s indicated that 

models were very significantly better with increase in random component order for nr ≤ 3, for both 

Legendre and eigenvectors models. The AIC was minimised for nr = 3, indicating that quadratic 

random animal effects are best. Increased parameters per animal should contribute in a 

biologically meaningful way, as it is upon those parameters that animals may be selected by. 

Therefore, while incorporating a random regression component into the model is advisable, the 

order of this component should not be too large; letting nr = 3 should be sufficient. 

 
Figure 1. Fixed regression curves for models with 

Legendre orders nf ∈ {3, …, 7} and nr = 3. 
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Table 1. AIC and LRT’s of models of Legendre or eigenvector fixed component nf = 9, and nr ∈{1, …, 5} 
 

 Legendre, nf = 9 Eigenvector, nf = 9 

Order nr 1 2 3 4 5 1 2 3 4 5 

ℓ𝑛(ℒ) (×103) -289 -280 -276 -273 -271 -289 -280 -276 -274 -272 

AIC (+5.7×105) 13,904 2,533 449 1,051 2,895 14,661 2,930 568 1,217 3,256 

LR (nr vs. nr-1)   17,169 7,882 5,196 3,954   17,529 8,160 5,148 3,760 

p = 1-χ2   0 0 1 1   0 0 1 1 

 

Legendre vs. eigenvector. Models with a fixed regression component of either Legendre 

polynomials or eigenvectors of order nf = 9 were compared via AIC values for their relative merit, 

for random component of Legendre orders nr ∈ {1, …, 5}. For any particular random order nr, 

Legendre models had slightly better AIC values than those of the eigenvector models (Table 1). In 

the absence of a measure of significance for AIC comparison, the default choice of regression 

function ought to remain as the Legendre polynomials. 

Pedigree information. Future inclusion of pedigree information ought to improve model fit 

even more due to increased utilisation of data via pedigree linkages. While the relationship matrix 

A would not be subject to inversion by the block-matrix inversion technique, the use of A
-1

 would 

allow for a similar technique for solving the model. Therefore the use of a full (including pedigree) 

RR model will have essentially no more computational complexity for random orders nr > 1. 

 

CONCLUSION 

In a RR model for WOW data, increasing orders of fixed and random regression components 

significantly improve the model in general, though these must be tempered by the practical 

realities of assumed longitudinal relationships and necessary number of parameters per animal. 

The choice of type of regression function (Legendre polynomials or eigenvectors) is insignificant. 

The future inclusion of pedigree relationships ought to ensure a much better depth of data per 

animal and subsequent model improvement. The use of block-matrix inversion will still ensure 

that computational complexity is significantly reduced. 
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SUMMARY 

Yearling fibre diameter profiles from the OFDA2000 instrument were used to derive records 

on mean and coefficient of variation (CV) of fibre diameter at multiple points in the post-weaning 

age window, from 20 to 90% of staple profile length. Genetic correlations were calculated between 

these traits and their yearling equivalents. Results showed that from 50% of the staple profile and 

higher, post-weaning fibre diameter is genetically the same trait as yearling fibre diameter. 

Although the derivation of CV of fibre diameter was less accurate, genetic correlations with the 

yearling expression were greater than 0.9 for all except one percentile point. The expected 

correlation between post-weaning and yearling fleece weight was also derived, and under simple 

assumptions it is not unreasonable to expect estimates of genetic correlations greater than 0.9. 

INTRODUCTION 

The MERINOSELECT genetic evaluation system provides Australian Sheep Breeding Values 

(ASBVs) for wool traits at three age stages: yearling (approximately 12 months of age), hogget (18 

months), and adult (2 years and older). Expressions of a particular trait, fibre diameter for 

example, are treated as separate correlated traits at each age stage. For efficient selection and 

marketing of rams, ram breeders would like to accurately evaluate wool traits as soon as records 

can viably be collected. Consequently, there is considerable interest in adding post-weaning wool 

traits to MERINOSELECT, recorded prior to yearling and potentially from 6 months of age. In 

order to implement these traits as ASBVs it is necessary to estimate genetic parameters including 

correlations with traits at later stages. While post-weaning wool records have been accumulating 

over recent years, including in designed research trials, the difficult combination to estimate is 

between post-weaning and yearling because there is very limited scope to shear animals twice 

between 6 and 12 months of age. For fibre diameter however, it is possible to derive records in the 

approximate window of post-weaning ages, from a yearling record measured using the OFDA2000 

instrument (Baxter 2001) which records the fibre diameter distribution in 5mm increments along 

the wool staple. This study presents correlations between post-weaning mean and CV of fibre 

diameter derived from OFDA2000 profiles, with mean and CV of fibre diameter, clean fleece 

weight, and staple strength measured at the yearling stage. The expected correlation between post-

weaning and yearling fleece weight was also derived. 

MATERIALS AND METHODS 

Data. OFDA2000 fibre diameter profiles recorded on yearling fleeces were obtained from 

Merino progeny born in the Sheep CRC Information Nucleus (IN) flocks between 2007 and 2011 

(van der Werf et al. 2010). Using profiles on individual animals where the OFDA2000 staple 

length was greater than 50mm, mean fibre diameter was calculated as the weighted average fibre 

diameter from the tip of the staple (i.e. the start of the wool growth period at birth) to points 

extending from 20% to 90% of the staple in 10% steps. That is, a weighted average of the mean 

diameters at each 5mm increment was calculated within each growth period percentile range, 

using number of fibres counted as the weights. Each percentile range was then treated as a trait, 
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with the range of traits encompassing the post-weaning wool growth period. It is important to note 

that across animals, variation in wool growth rates mean that at any one percentile point there will 

be an unknown range in the underlying measurement date. This is a potential source of inaccuracy, 

although age adjustments are generally not made in analyses of fibre diameter. 

CV of fibre diameter was derived for the same percentile ranges, but in order to account for 

variation both along and across fibres, 50,000 random deviates were sampled from a normal 

distribution defined by the observed mean and standard deviation of fibre diameter at each 5mm 

increment, before combining across all 5mm increments within a percentile range to estimate the 

overall CV of diameter for the percentile range. This is a further potential source of inaccuracy. 

Correlations were estimated between these traits and yearling mean fibre diameter (yfd) and 

yearling CV of fibre diameter measured using the Laserscan instrument, based on an independent 

sub-sample of wool from the same fleece. Two other key breeding objective correlations were also 

investigated, between mean fibre diameter at each percentile point and yearling clean fleece 

weight (ycfw), and between CV of fibre diameter at each percentile point and yearling staple 

strength (yss). A summary of the data structure by trait is shown in Table 1. 

Analyses. Bivariate animal models were fitted in ASReml (Gilmour et al. 2009), using the 

procedure developed by (Swan et al. 2015) for data from the IN flocks. Briefly, in addition to 

standard fixed effects, random effects for genetic groups defined either by flock of origin or 

Merino strain, additive direct genetic effects, and sire by flock interactions were fitted for each 

trait. Correlated variance structures were fitted for genetic group and additive direct effects, but 

not for sire by flock. A random maternal permanent environment effect was also fitted for ycfw. 

Estimates of genetic correlations were derived from the additive direct genetic effect only. 

The expected correlation between post-weaning and yearling fleece weight. There is a part-

whole relationship between post-weaning and yearling fleece weights due to the fact that if an 

animal is shorn as a yearling, all of the wool that was present when the animal was at post-

weaning age is contained in the yearling fleece. Yearling fleece weight (𝑌) can therefore be 

expressed as 𝑌 = 𝑃 + (𝑌 − 𝑃) = 𝑃 + 𝐷 where 𝑃 and 𝐷 represent post-weaning fleece weight and 

the weight of wool grown between a post-weaning time point and yearling shearing respectively. 

The correlation between post-weaning and yearling fleece weight (𝑟𝑃𝑌) can then be derived as 

𝑟𝑃𝑌 = (𝑟𝑃𝐷𝜎𝐷 + 𝜎𝑃) 𝜎𝑌⁄ . If the correlation between 𝑃 and 𝐷 is zero this simplifies to 𝑟𝑃𝑌 = 𝜎𝑃/𝜎𝑌, 

the square root of the variance ratio between post-weaning and yearling fleece weight. For 

example, for a variance ratio of 50%, the expected correlation is 0.71. More likely is that 𝑃 and 𝐷 

are correlated to a similar degree as two independent fleece weights, say yearling and adult. With 

fixed values of 𝜎𝑃 and 𝜎𝑌 and an assumed value of 𝑟𝑃𝐷, the value of 𝜎𝐷 can be derived by 

numerical optimisation, and the expected correlation 𝑟𝑃𝑌 can be calculated at the phenotypic and 

genetic levels. 

Table 1. Data summary for traits analysed including OFDA2000 mean and CV of fibre diameter (yfd_o 

and ydcv_o), Laserscan mean and CV of fibre diameter (yfd and ydcv), clean fleece weight (ycfw) and 

staple strength (yss). 

Statistic yfd_o ydcv_o yfd ydcv ycfw yss 

Units micron % micron % Kg N/Ktex 

Records 4948 4948 5137 5113 5683 4872 

Trait mean 17.3 18.3 16.8 18.6 2.4 31.7 

Trait SD 1.9 2.0 1.6 2.7 0.7 11.8 

Mean age 314 314 330 330 336 331 

Sires 200 200 186 186 210 186 

Dams 3086 3086 3279 3275 3570 3167 

Genetic groups 126 126 126 126 126 126 
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RESULTS AND DISCUSSION 

Results in Table 2 show that for as little as 20% of the yearling staple, the heritability of fibre 

diameter exceeded 0.5, and the genetic correlation with yearling diameter was close to 0.9 or 

higher. At 50% of the staple, the genetic correlation reached 0.97, and at 70% of the stable, 0.99. 

Heritability also increased, to 0.74 at 90% of the staple. This demonstrates that at the likely ages 

post-weaning wool traits will first be included in MERINOSELECT in the window between 50 

and 90% of the staple, mean fibre diameter is genetically the same trait as yearling fibre diameter. 

Further, it is apparent that mean fibre diameter can be accurately measured for the purpose of 

genetic analyses from even younger ages. These high heritabilities and genetic correlations were 

observed even under the circumstances that the measurement points on the OFDA2000 profiles 

could not be matched to consistent measurement dates across animals, as described above. 

The genetic correlations between fibre diameter along the staple and yearling clean fleece 

weight (Table 2) showed a declining trend, from 0.48 at 20% of the staple to 0.31 at 90%, with the 

latter effectively the same as the estimate of 0.32 between yfd and ycfw reported by Swan et al. 

(2015) from the same data. Higher genetic correlations between fleece weight and fibre diameter 

measured at early ages are a cause for concern, and warrant further investigation. An initial step 

would be to see if the pattern is repeated in OFDA2000 profiles from the second shearing of these 

animals. 

Table 2. Parameter estimates for mean fibre diameter (± standard error) derived from OFDA2000 

staple profiles with varying amounts of the staple included (% of staple), including heritability, genetic 

and phenotypic correlation with Laserscan yearling fibre diameter (rg yfd and rp yfd) and yearling 

clean fleece weight (rg ycfw and rp ycfw). 

% of staple Heritability rg yfd rp yfd rg ycfw rp ycfw 

20 0.54 ± 0.05 0.88 ± 0.02 0.67 ± 0.01 0.48 ± 0.10 0.21 ± 0.02 

30 0.56 ± 0.05 0.91 ± 0.02 0.71 ± 0.01 0.46 ± 0.10 0.22 ± 0.02 

40 0.58 ± 0.05 0.94 ± 0.01 0.75 ± 0.01 0.44 ± 0.10 0.21 ± 0.02 

50 0.62 ± 0.05 0.97 ± 0.01 0.79 ± 0.01 0.41 ± 0.10 0.21 ± 0.02 

60 0.65 ± 0.05 0.98 ± 0.01 0.82 ± 0.01 0.39 ± 0.10 0.20 ± 0.02 

70 0.66 ± 0.05 0.99 ± 0.01 0.85 ± 0.01 0.36 ± 0.10 0.20 ± 0.02 

80 0.69 ± 0.05 1.00 ± 0.01 0.87 ± 0.00 0.35 ± 0.10 0.20 ± 0.02 

90 0.74 ± 0.05 0.99 ± 0.00 0.90 ± 0.00 0.31 ± 0.10 0.19 ± 0.02 

Results in Table 3 show high estimates of genetic correlations between derived CV of diameter 

and Laserscan yearling CV of diameter (0.88 to 0.97), although these were lower than the 

equivalent estimates for mean diameter in Table 2 and did not show the same pattern of increase 

with staple percentile. Genetic correlations were highest between 30 and 50% of the staple (0.95 to 

0.97). By contrast, heritability of the derived measurements did increase, from 0.19 at 20% to 0.31 

at 90%, although this was still considerably lower than the estimate of 0.50 for Laserscan ydcv 

reported by Swan et al. (2015) from the same data. The genetic correlation between derived CV of 

diameter and yearling staple strength followed the expected trend, ranging from -0.50 to -0.61. 

Although it appears highly likely that the method used to derive CV of diameter for partial staples 

in these data has reduced accuracy, indications are that the trait can be measured during the post-

weaning period and will be a useful selection criterion for staple strength. These results are 

consistent with the findings of Greeff and Schlink (2013) that CV of diameter on partial staples 

was genetically the same trait as CV on the whole staple. Interestingly, Greeff and Schlink also 

found that staple strength could be accurately assessed on staples from 60% of the staple length 

and higher (genetic correlation estimates of 0.85 for 60%, and 0.99 for 80% of the staple). 

Expected correlations between post-weaning and yearling clean fleece weight (pcfw and ycfw) 

are shown in Table 4. The phenotypic variance of 0.16 for ycfw was taken from Swan et al. 
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(2015), while the value 0.08 for pcfw was from unpublished MERINOSELECT data (Brown, 

2015, pers. comm.). To derive genetic variances, heritability was assumed to be 0.3 at both stages, 

and genetic and phenotypic correlations between 𝑃 and 𝐷 were set to the equivalent correlations 

between yearling and adult clean fleece weight used in MERINOSELECT. Based on these input 

values, the expected genetic and phenotypic correlations were 0.96 and 0.92 respectively. While 

yet to be confirmed by estimates from industry data, these theoretical results strongly suggest that 

fleece weight recorded during the post-weaning stage window will provide accurate information 

on yearling fleece weight. Collection of fleece weights in industry flocks early in the post-weaning 

window (around 6 months of age) would be highly desirable to determine how early fleece weight 

can be measured. The loss in accuracy due to measuring at young ages could potentially be offset 

by the ability to shorten the generation interval of males leading to increased rates of genetic gain. 

Table 3. Parameter estimates for CV of fibre diameter (± standard error) derived from OFDA2000 

staple profiles with varying amounts of the staple included (% of staple), including heritability, genetic 

and phenotypic correlation with Laserscan yearling CV of fibre diameter (rg ydcv and rp ydcv) and 

yearling staple strength (rg yss and rp yss). 

% of staple Heritability rg ydcv rp ydcv rg yss rp yss 

20 0.19 ± 0.04 0.93 ± 0.06 0.39 ± 0.01 -0.50 ± 0.11 -0.16 ± 0.02 

30 0.23 ± 0.04 0.95 ± 0.05 0.41 ± 0.01 -0.54 ± 0.10 -0.19 ± 0.02 

40 0.25 ± 0.04 0.97 ± 0.05 0.43 ± 0.01 -0.57 ± 0.09 -0.21 ± 0.02 

50 0.27 ± 0.04 0.97 ± 0.05 0.45 ± 0.01 -0.58 ± 0.09 -0.24 ± 0.02 

60 0.28 ± 0.04 0.92 ± 0.04 0.48 ± 0.01 -0.61 ± 0.08 -0.27 ± 0.02 

70 0.29 ± 0.04 0.90 ± 0.04 0.50 ± 0.01 -0.60 ± 0.08 -0.29 ± 0.02 

80 0.29 ± 0.04 0.90 ± 0.04 0.51 ± 0.01 -0.61 ± 0.08 -0.30 ± 0.02 

90 0.31 ± 0.05 0.88 ± 0.04 0.53 ± 0.01 -0.60 ± 0.08 -0.30 ± 0.02 

Table 4. Expected correlations between post-weaning and yearling clean fleece weight (𝒓𝑷𝒀) assuming 

correlations between P and D (𝒓𝑷𝑫) match MERINOSELECT correlations between yearling and adult 

fleece weight, and observed variances for post-weaning and yearling fleece weight (𝝈𝑷
𝟐  and 𝝈𝒀

𝟐). 

Correlation 𝜎𝑃
2 𝜎𝑌

2 𝑟𝑃𝐷 𝑟𝑃𝑌 

Genetic 0.024 0.048 0.71 0.96 

Phenotypic 0.08 0.16 0.48 0.92 

 

CONCLUSIONS 

The results presented in this study demonstrate that Merino breeders can have confidence in 

the accuracy of ASBVs for post-weaning wool traits as selection criteria for yearling wool 

breeding objective traits. Further research to identify how early fleece weight can be recorded in 

the post-weaning age window, and whether breeding programs using early wool measurements 

can lead to increased rates of genetic gain would be of value. 
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SUMMARY 

Methane is the main source of greenhouse gas (GHG) from ruminants. The focus of this study 

was to measure methane production (MPR) in industry cattle. The ultimate aim was to develop 

estimated breeding values (EBVs) for methane traits for use in genetic improvement to reduce 

GHG in cattle. A total of 548 Australian Angus and 102 Australian Charolais Beef Information 

Nucleus herd steers which were undertaking a net feed intake test at the University of New 

England “Tullimba” research feedlot, near Armidale NSW, were measured for MPR using 

GreenFeed Emission Monitoring (GEM) units. The units provide short term MPR measurement 

anytime an animal visits a unit. Two-thirds of the steers from each breed visited the GEM units; 

most of them more than 20 times within a period which ranged from 50 to 66 days. There were 

significant (P < 0.05) sire differences in MPR, MPR per unit feed intake, MPR per unit body 

weight and MPR per unit average daily gain in Angus cattle. The significant sire differences in the 

methane traits indicate the presence of genetic variation for methane traits when measured by 

GEM units. 

 

INTRODUCTION 

Across the globe the agricultural sector is a significant source of GHG emissions. A recent 

Food and Agriculture Organisation (FAO) study reported that livestock were responsible for 

14.5% of global GHG emissions, and ruminants contribute about 80% of the livestock emissions 

(Gerber et al. 2013). Methane is the main source of GHG from ruminants, and is produced during 

the process of microbial fermentation of plant material, mainly in the rumen, which is then exhaled 

into the atmosphere. High methane production is associated with high feed intake in ruminants 

(Blaxter and Clapperton 1965; Pelchen and Peters 1998). Feed intake is highly correlated with 

growth and other productivity traits in ruminants (Arthur et al. 2001), hence any strategy to lower 

methane production per se, may have a detrimental impact on ruminant productivity through a 

correlated reduction in feed intake. Hence there has been increased interest in the amount of 

methane produced per unit feed intake, also known as methane yield (MY) and the amount of 

methane produced per unit of product, known as methane intensity (MI).  

In the last decade there has been active development of methane measurement technologies to 

the stage where individual animal methane production (MPR) can now be measured on a large 

scale. The suitability and accuracies of these methane measurement technologies are currently 

being assessed, in conjunction with the development of standardised measurement protocols for 

livestock. For genetic improvement purposes it is essential to accurately measure the trait of 

interest (e.g. methane) in a large number of animals on a regular basis to estimate the genetic merit 

of each potential breeding animal for the trait. The focus of this study was to measure methane in 

large numbers of industry cattle from high-profile potentially elite sires that will contribute to 

future genetic improvement in Australian cattle breeds.. The ultimate aim was to develop 

estimated breeding values for methane traits for use in genetic improvement.  
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MATERIALS AND METHODS 

Experimental animals. The Australian beef industry has developed a number of resource herds 

known as the Beef Information Nucleus (BIN) to underpin research and development of genomic 

selection. The BIN is a progeny testing scheme (Banks, 2011) and current participants include the 

Angus, Brahman, Charolais, Hereford and Limousin breed societies. Records on all economically 

important traits are collected on steers, heifers and cows, including difficult to measure traits like 

feed intake and feed efficiency. The steers from the Angus and Charolais BINs are measured for 

growth and net feed intake (NFI; the measure of feed efficiency) on a feedlot ration at the 

University of New England “Tullimba” research feedlot, near Armidale NSW. While being 

measured for NFI, the MPR of some cohorts of steers were measured. From December 2013 to 

January 2015, one cohort of Charolais and five cohorts of Angus BIN cattle had the opportunity to 

be measured for MPR. Each cohort is made up of approximately equal numbers of steers per sire 

used that in the progeny test for the year. 

 

Measurement technology. The MPR of the cattle was measured using GreenFeed Emission 

Monitoring (GEM) units manufactured by C-Lock Inc. (U.S. Patent 7966971). The GEM units 

provide short term measurement of methane production made many times per day using portable 

breath collection and methane analyzer. The scientific principles underpinning the operation of the 

unit is explained by Zimmerman et al. (2013), and a detailed description is provided by 

Zimmerman (2013) at the company’s website (http://c-lockinc.com/whatisgreenfeed.php). At the 

research feedlot the GEM units were located next to the feed intake recorders and the steers have 

the opportunity to voluntarily visit the GEM unit at any time to have their MPR measured. 

 

Statistical analysis. The definitions of all the traits used in this report are provided in Table 1. The 

data used were from 102 Charolais (1 cohort) and 548 Angus (5 cohorts) steers who had the 

opportunity to visit the GEM units during their NFI test. The percentage and frequency of visits to 

the GEM units were calculated for both breeds. The number of records and progeny per sire in the 

Charolais data was limited and thus was not subjected to further analysis. The data from the Angus 

steers were analysed further to assess sire differences for the methane traits using records on the 

356 steers with a minimum of 20 visits to the GEM units. A preliminary analysis was conducted to 

examine cohort effect on the traits with a full model which included the effects of cohort, sire, sire 

by cohort and residual error. All the terms in the model were assumed to have random effects and 

the errors were assumed to have a normal distribution with mean zero and variance. Cohort and 

sire effects were highly confounded hence cohort and sire by cohort were dropped in the final 

analysis. All parameters were estimated using residual maximum likelihood (REML) procedure 

and the sire means were adjusted using the best linear unbiased predictor (BLUP) due to their 

random nature. Least significant difference at 5% level was calculated and used to compare means 

between sires. All analyses were run on ASReml Release 3.00 (Gilmour et al, 2009). 

 

Table 1. Definition of traits 
Trait name Abbreviation Units Definition 

Body weight BW kg Mid test BW (Start BW + End BW)/2 

Average daily gain ADG kg Daily BW gain (End BW – Start BW)/ days on 

test 

Daily feed intake FI g/day Average daily feed intake during the test 

Methane production rate MPR g/day Methane produced 

Methane yield MY g/kg  MPR per unit FI (MPR  FI) 

Methane intensityBW MIB g/kg MPR per unit BW (MPR  BW) 

Methane intensityADG MIA g/kg MPR per unit ADG (MPR  ADG) 
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RESULTS AND DISCUSSION 

About one third of the steers (33% of Angus and 34% of Charolais) did not visit the GEM 

units, hence did not have an MPR record. The percentage of steers with more than 20 visits to the 

GEM units was 56% for Angus and 63% for Charolais. Therefore, in order to obtained accurate 

data on as many progeny per sire as possible for the estimation of genetic parameters and EBVs 

for methane traits, the number of steers which use the GEM units and the frequency of visits need 

to increase. Measurement of MPR with the GEM units relies on the cattle visiting the units. In the 

feedlot environment the steers had ad libitum access to the high-energy feedlot ration. Although 

the GEM unit deliver a small amount of feed pellets to the steers on each visit, it did not appear to 

be a strong enough attractant for many steers. It is therefore important that other inducement 

strategies be investigated, especially in the feedlot environment. Most of the steers that used the 

GEM units visited more than 20 times during their NFI test period which were from 50 to 66 days.  

The 356 Angus steers who had frequent visits (>20) to the GEM units were the progeny of 83 

sires, with an average of 4.3, and a range of 1 to 14 steers per sire. The descriptive statistics for all 

the traits studied in the Angus steers are presented in Table 2. The steers were consuming an 

average of 15.8 kg of feed, growing at 1.95 kg and producing 217.6 g of methane per day.  

 

Table 2. Descriptive statistics for production and methane traits of Angus steers 
Trait1  Mean SE Min Max 

Body weight (BW), kg 601.9 3.7 438 830 

Average daily gain (ADG), kg 1.95 0.02 0.72 3.53 

Daily Feed intake (FI), kg  15.8 0.11 10.5 22.7 

Methane Production rate, g/day 217.6 2.05 104.5 385 

Methane yield, g/kg FI 13.86 0.14 6.41 26.93 

Methane intensityADG,  g/kg ADG     115.3 1.5 58.0 243.7 

Methane intensityBW, g/kg BW     0.363 0.003 0.166 0.640 
1
See Table 1 for full trait names and definitions 

 

There were significant (P < 0.05) sire differences in all the methane traits (MPR, MY, MIB and 

MIA). Means for MY and MIA of the top and bottom five sires are presented in Figure 1. In 

general, the sire differences were significant only between the top and bottom five sires for each of 

the methane traits, with no significant differences among the sires in the middle range. Donoghue 

et al. (2015) has shown that there is genetic variation, with moderate heritability for methane traits 

in Angus cattle when measured in respiration chambers. The presence of significant sire 

differences in the methane traits of the steers in the feedlot indicates the presence of genetic 

variation for methane traits when measured by GEM units. However, the number of animals 

measured is not adequate for comprehensive analyses to provide an accurate estimate of the 

genetic variation for these methane traits when measured in the GEM units. It is therefore essential 

that measurement of animals in the GEM units be continued in order to generate enough GEM 

based data for the estimation of genetic parameters and for the development of EBVs for industry 

cattle. The research on the measurement of methane traits on females at pasture is in its infancy 

and the use of GEM units to collect data from females at pasture needs to continue so that the 

relationship between feedlot measurements in steers and pasture measurement in females can be 

evaluated. Very few animals have been measured on pasture and measurement protocols are 

currently being developed and trialled. Continued funding is required to progress the work on 

measuring methane on females at pasture.  
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Figure 1. Mean methane yield and methane intensityADG, with standard error bars of 

steer progeny for the top (red) and bottom (green) five Angus sires 
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SUMMARY 

The advent of dense genotype platforms allow for the identification of specific regions that give 

rise to inbreeding depression and characterize their relationship with the additive effect of that region. 

Utilizing a run of homozygosity (ROH) metric the first study objective is to identify regions having an 

impact on inbreeding depression for United States (US) and Australia (AU) Jersey cows. The second 

objective is to determine the relationship between the additive and ROH SNP effects. Genotyped 

cows with phenotypes on milk yield traits (US=6751; AU=3974) and calving interval (US=5816; 

AU=3905) were utilized. A ROH based metric (ROH4Mb) was calculated across the genome. 

Residuals from a model that accounted for the fixed and additive genetic effects were regressed on 

ROH4Mb using a single marker regression or a machine-learning tree based model. The relationship 

between ROH4Mb and additive effect was characterized based on sliding window (500kb) direct 

genomic value derived from a Bayesian-LASSO analysis. Genomic regions across multiple traits were 

found to be associated with ROH4Mb for the US on BTA13, BTA23 and BTA25 and AU on BTA3, 

BTA7 and BTA17. Multiple potential epistatic interactions were characterized. The covariance 

between ROH4Mb and the additive effect depended on the genomic region. 

 

INTRODUCTION 

High levels of inbreeding result in a reduction in fitness and overall performance at the phenotypic 

level (Leroy, 2014). Previous research has shown that inbreeding depression is heterogeneous across 

founders (Gulisija et al. 2006), which implies that the genetic load is not distributed evenly among 

genomes. Utilizing a run of homozygosity (ROH) metric, Pryce et al. (2014) confirmed heterogeneity 

in inbreeding depression by identifying multiple regions that resulted in reduction in milk yield and 

fertility traits in Australian (AU) Holstein and Jersey cows. Furthermore, regions with multiplicative 

effects, which individually may have a minor effect but which have significant impact on fitness when 

combined, might provide clues about the previously identified non-linear relationship of inbreeding 

depression (Gulisija et al. 2007). 

Characterizing regions that give rise to inbreeding depression in dairy cattle is advantageous due 

the increasingly large number of genotyped cows and the extensive list of recorded phenotypes. It has 

been shown by Howard et al. (2015) that ROH frequency differs across the Australian (AU) and 

United States (US) Jersey populations, which could potentially give rise to different regions that have 

an impact on inbreeding depression. Also, Howard et al. (2015) found that regions of the genome with 

high ROH frequency are most likely the result of directional selection. Here we hypothesize that the 

covariance between the additive effect and ROH status of a SNP is variable across the genome, and 

characterizing this may provide clues about the relationship between the two metrics. Therefore the 
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objectives are: 1. Identify regions that have an impact on inbreeding depression for US and AU Jersey 

cows utilizing ROH metrics; 2. Determine the relationship between the additive and ROH status effect 

of a SNP. 

 

MATERIALS AND METHODS 

Data. Two populations of genotyped cows born in the US and AU were utilized to identify 

regions that when homozygous cause a reduction in dairy yield traits including milk (MY), fat (FY) 

and protein (PY; n = 6751 US; n = 3974 AU) and fertility measured as calving interval (FERT; n = 

5816 US; n = 3905 AU). Phenotypic information for the AU population was provided in the form of 

yield deviations. In order to make comparison similar, yield deviations were also constructed for the 

US population based on the same model outlined by Howard et al. (2015). A total of 32,431 QC SNP 

were used for the analysis. The ROH status of a SNP was defined based on whether the SNP was 

within an ROH of at least 4 Mb in length (ROH4Mb; 1 if the SNP was in a ROH and 0 otherwise). 

Genome wide association study (GWAS). A two-stage analysis was performed within each 

population. Stage one involved generating residuals from an animal model that accounted for the 

additive genetic effects. The second stage involved using the residuals from the first stage as a 

phenotype to regress on ROH4Mb status. For this analysis two models were utilized. Model 1 was a 

single marker regression model, which regressed the phenotype on the ROH4Mb status for each SNP. 

Significance (P-value < 0.001) was declared by using a permutation test (n= 2,500 samples). The 

second model utilized a machine-learning tree based regression algorithm, referred to as a gradient 

boosted machine (GBM), to identify higher order ROH interactions. The “gbm” R package 

(Ridgeway 2010) was used to carry out the analysis. Based on a 4-fold cross-validation the final 

model was constructed from 1200 trees at an interaction depth of 5 and a shrinkage parameter of 

0.0075. Within each chromosome, SNP with a correlation exceeding 0.1, as outlined by Lubke et al. 

(2013), were removed and only SNP with the largest impact based on single marker regression 

analysis were included in the final analysis. The final number of SNP utilized was 115 and 81 for the 

US dataset and 100 and 105 for the AU dataset for yield traits and fertility, respectively. The variable 

importance value (Ridgeway 2010) was used as measure to assess the importance of a ROH4Mb 

status of a SNP on a given phenotype. 

The identification of epistatic interactions between the ROH4Mb status of a SNP was carried out 

by counting the number of times two SNP were a descendent pair, as described by Yao et al. (2013). 

Briefly, based on Figure 1, assume SNP B and D have a large epistatic interaction. The SNP pairs are 

represented based on the levels at which they appear, such that SNP D was derived from a split 

produced by SNP B, and therefore the combination represents a parent (SNP B) and child (SNP D) 

descendent pair. The SNPs B and D will appear more frequently in the same branch of a tree due to 

the pair having an epistatic interaction. Lower level descendent pairs such as parent (SNP A) 

grandchild (SNP D) will also be referred to as a descendent pair. The identification of SNP with 

independent effects, such as SNP B and C won’t be tagged as descendent pairs due to SNP B and C 

being on separate branches. The significance (P-value < 0.001) of the frequency of a descendent pair 

and variable importance value was declared based on a permutation test (n= 2,500 samples). 
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Figure 1. An example of a regression tree generated by a Gradient Boosted Machine algorithm. 

Additive and ROH4Mb relationship. The second objective of the study was to characterize the 

relationship between the additive and ROH4Mb effect of a SNP. Both the additive and ROH4Mb 

marker values were obtained within each population and trait using a Bayesian LASSO marker 

regression (Park and Casella 2008). Estimates of the additive effect of a SNP were obtained using 

yield deviations as phenotypes. Estimates of the ROH4Mb effect of a SNP were obtained using the 

same phenotype as in the two-stage approach. The LASSO analysis was performed using the ‘BLR’ 

package in R (de los Campos et al. 2013). To characterize the relationship between the additive 

genetic and ROH4Mb SNP effect across the genome, 500 kb overlapping windows were used to 

estimate the GEBV (co)variance for a given window for both analyses. 

 

RESULTS AND DISCUSSION 

Within a population, regions that had an effect across multiple traits included BTA13 (19.3-19.9 

Mb; MY-PY), BTA23 (32.7-33.3; MY-FY-PY) and BTA25 (24.8-30.7; MY-PY) for the US 

population and BTA3 (113.4-114.6; FY-PY), BTA7 (6.6-16.7; FY-PY) and BTA17 (68.9-75.0; MY-

FY-PY) for the AU population. In both countries none of these regions had an effect on calving 

interval. Strikingly, no regions were identified that were significant in both populations. Both models 

ranked regions comparably with a rank correlation of 0.48 to 0.65 across all traits and populations. A 

list of the regions and candidate genes is outlined in Table 1. 

Multiple regions of the genome were found to display potential interactions based on their 

frequency of being a descendent pair. The majority of all significant descendent pairs were associated 

with at least one SNP that also had a large variable importance score. Additionally, a gene network 

analysis revealed network associations including shared protein domain (HNF1B-LBX2) genetic 

interactions (HNF1B-LOXL3; HNF1B-RPL17). Additional work will be needed to validate regions 

found across both the single marker regression and GBM analyses in other populations. 

The relationship between the additive genetic effect and the ROH4Mb effect displayed positive 

and negative covariance across the genome. Regions on BTA3, BTA7, BTA20 and BTA26 had a 

positive covariance between the additive and ROH4Mb effect of a SNP across both populations, and 
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have previously been found to be under positive directional selection (Howard et al. 2015). 

Homozygosity at certain regions of the genome is beneficial such that homozygosity based on the 

ROH4Mb status gives rise to a higher additive genomic estimated breeding value. Conversely, 

homozygosity at certain regions is unfavorable giving rise to lower additive genomic estimated 

breeding values. The majority of the regions with the largest absolute covariance value across traits 

were positive, which is not surprising due to a low frequency of ROH4Mb status for regions with a 

large ROH4Mb effect (mean ROH4Mb frequency = 0.089) in comparison to the regions that 

displayed a large positive covariance (mean ROH4Mb frequency = 0.235). These results provide 

evidence that it is possible to distinguish between two individuals that have the same inbreeding 

coefficient, but different overall genomic loads. This would have in turn important consequences in 

the management of genomic diversity and the implementations of effective mating design. 

 

Table 1. Regions of the genome associated with inbreeding depression for milk traits. 
 

Country Traits BTA (Region Mb) Frequency Candidate Gene 

United 

States 

MY-PY 13 (19.3-19.9) 0.10 PARD3 

MY-FY-PY 23 (32.7-33.3) 0.18 ALDH5A1 

MY-PY 25 (24.8-30.7) 0.05 IL4R, CALN1 

Australia 

FY-PY 3 (113.4-114.6) 0.06 UGT1A1 

FY-PY 7 (6.6-16.7) 0.17 NOTCH3 

MY-FY-PY 17 (68.9-75.0) 0.04 IGLL1 
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SUMMARY 

The Australian goat industry would like to improve reproductive rate by increasing kid 

survival. Parameter estimates for kid survival and correlated traits are yet to be reported. A 

preliminary analysis of birth weight and survival was conducted using 16,050 records from 

industry herds. The heritability for birth weight (0.32±0.029) was similar to previous reports, but 

the heritability for kid survival (0.29±0.024) was higher than expected in comparison to other 

breeds of goats and sheep. The phenotypic variance for birth weight is similar to those previously 

reported for Boer goats. For a binomial trait there was moderate variation in kid survival with a 

phenotypic deviation of 0.288, birth weight had a moderate amount of variation with a standard 

deviation of 0.599kg. The lowest kid survival rates occur in animals less than 2.5kg with survival 

rates between 67% and 85%, while animals over 2.5kg had survival rates between 92% and 98%, 

the overall mean for survival was 85%. The phenotypic correlation estimate of 0.16 is low but 

positive for birth weight and survival. The genetic correlation was also positive and high at 

0.54±0.068. Improving survival could potentially be achieved either with direct selection or 

indirect selection with birth weight. 

INTRODUCTION 

The Australian goat industry was valued at $146m AUD in 2012/13 (MLA 2012). The majority 

of production is achieved by harvesting feral goats from the Australian rangelands but genetic 

improvement is focused on the domestic Boer goat population. While there is limited genetic 

research on goats in Australia, reproductive rate has been identified as a trait requiring 

improvement (MLA 2012). Goats are moderately fertile (does kidding/doe joined = 0.82, 

Walkden-Brown and Bocquier 2000) and highly fecund (kids born / doe joined = 1.76, Zhang et 

al. 2009). Instead of focusing on fertility and fecundity, increasing kid survival between birth and 

weaning could increase the net reproductive rate.  

Australian sheep research has made recent progress on survival traits much of which is yet to 

be replicated in Australian goats. Sheep have been shown to display low to moderate genetic 

correlations between birth weight and survival but with curvilinear phenotypic relationships 

between these traits (Brien et al. 2014).  

This paper reports a preliminary analysis using the KIDPLAN national genetic evaluation 

database to estimate the genetic and non-genetic relationships between kid survival and birth 

weight. This is part of a larger project which aims to determine whether correlated traits can be 

exploited to achieve genetic improvement of kid survival in Australian production systems. 

MATERIALS AND METHODS 

Data analysed for this study was submitted to the national performance recording scheme 

KIDPLAN and included records on 16,280 individuals born from 1991 to 2014. 973 duplicate 

records were removed during data cleaning. The animals are progeny of 574 sires and 3,669 dams. 

The median number of progeny per sire was nine and per dam was three. The key traits of interest 

 AGBU is a joint venture of NSW Dept. of Primary Industry and the University of New England 
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were birth weight and kid survival. Birth weight was recorded by the breeder. Kid survival was 

generated using birth and rearing type records, 743 dead tags were added when multiple litter sizes 

did not have data submitted on the dead kid. Ideally breeders would submit data for all dead kids, 

from the calculated survival 2404 kids did not survive to weaning and of these 507 dead kids had a 

birth weight recorded. Due to the low number of quadruplets (480 kids) and quintuplets (60 kids), 

litters of 3 or greater were analysed as a single category termed ‘multiples’. Fixed effects in the 

analysis were date of birth, sex, dam age and site in addition to birth type and rearing type. The 

data was submitted from 40 herds. 

Means, phenotypic variances, heritabilities and correlations were estimated using ASREML-R 

(Butler et al. 2009) for both kid survival and birth weight. Univariate analysis of birth weight and 

kid survival was conducted with fixed effects for sex, site, year of birth, site by year of birth 

interaction, dam age and birth type included in the models. The animal model included the 

following random effects; direct genetic effect fitted as a trait of the kid, a permanent 

environmental and maternal genetic component and a sire by flock by year interaction. Predictions 

for birth weight and survival were also estimated with birth type as it had significant effect on both 

traits.  

A bivariate analysis for birth weight and survival was conducted to estimate phenotypic 

variance, heritability, genetic and phenotypic correlations. The full model included the fixed 

effects birth type, sex, flock, year of birth, flock by year of birth interaction and dam age. The sire 

by flock by year interaction was removed from the random effects as it was not estimable in the 

bivariate model, leaving the random effects as direct genetic, permanent environmental and 

maternal genetic components.  

 

RESULTS AND DISCUSSION 

The mean birth weight (±SD) for goats in this data set was 3.5kg ±0.6 and was normally 

distributed. Kid survival rates for different birth weight categories are illustrated in Figure 1 and 

shows a trend for lower birth weights to be associated with lower survival rates. It also appears 

that high birth weight was not associated with lower survival as seen in other species due to 

dystocia (Brown et al. 2014). The survival rate for goats between 1.0 and 1.4kg was 67%, 1.5 to 

1.9kg was 70% and goats 2 to 2.4kg was 85%. The mean survival rate for goats was 85%, which 

was higher than a mean Merino lamb survival rate of 72% from a sample with a similar mean birth 

weight of 3.63kg (Hatcher et al. 2014).  

 
Figure 1. Survival rate of goats plotted against birth weight groups of 0.5kg 
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Predicted means for birth weight and kid survival rates for each birth type class were made 

using the univariate model. Birth type had a significant effect on both kid survival (P<0.01) and 

birth weight (P<0.01). Singles had the largest birth weight (3.88kg), twins (3.49kg) and multiples 

the lowest (3.16kg) (Table 1). There was no significant difference in kid survival between singles 

and twins (83% and 82% respectively) but multiples had a lower survival rate (71%). 

 

Table 1. Predicted means (± se) of Boer kid survival rates for each birth type class and birth 

weight 

 

Birth 

Type 

Number of records 

for birth type 

Survival Birth Weight 

(kg) 

Number of records 

for birth weight 

1 3,510 0.83 (0.0075) 3.88 (0.019) 1,971 

2 8,841 0.82 (0.0068) 3.49 (0.016) 6,301 

≥ 3 3,699 0.71 (0.0084) 3.16 (0.020) 2,373 

 

A summary of the heritability, phenotypic and genetic correlations, and phenotypic variances 

are summarised in Table 2.The heritability for birth weight was 0.32 and similar to other estimates 

for birth weight in Boer goats which have been reported between 0.19 and 0.39 (Ball et al. 2001, 

Zhang et al. 2008, Zhang et al. 2009). No studies are yet to publish heritability of survival in Boer 

goats however, the estimate of the current study of 0.29 was much larger than those reported for 

other breeds and species. Previous goat studies have reported heritabilities of 0.10 (Singh et al. 

1990) and studies in sheep ranged between 0.01 and 0.03 (Brien et al. 2014). It is important to note 

that the phenotypic variance reported for birth weight is consistent with that of the Boer goat at 

0.36 previously reported between 0.31 and 0.57
 
which allows for selection to be undertaken 

successfully (Ball et al. 2001, Zhang et al. 2008). Though the phenotypic variance of survival was 

low (0.08) there is variation in the trait, in comparison to sheep it is within the range of 0.05 and 

0.19 as reported by Hatcher et al. (2014).  

The genetic and phenotypic correlations between birth weight and kid survival are 0.54 and 

0.16 respectively. The phenotypic correlation between birth weight and kid survival has previously 

been reported to be a curvilinear relationship (Snyman 2010). The genetic correlation has not yet 

been reported for goats and appears to be high. The genetic correlation for sheep has been reported 

between not different to zero and 0.45 (Brien et al. 2014).  

 

Table 2. Estimates of, phenotypic variance (𝝈𝐩
𝟐), permanent environmental variance (PE), 

maternal genetic variance ( 𝝈𝒎
𝟐 ), heritability (h

2
) and genetic (rg) and phenotypic (rp) 

correlations for birth weight and survival from a bivariate analysis of goats (±se). 

 

Trait Birth Weight(kg) Survival 

𝜎p
2 0.36 (0.01) 0.08 (0.001) 

PE 0.037 (0.01) 0.0034 (0.001) 

𝜎m
2  0.027 (0.01) 0.0008 (0.001) 

h
2
 0.32 (0.03) 0.29 (0.02) 

Birth Weight - rp = 0.16 (0.01) 

Survival rg = 0.54 (0.07) - 

 

As the majority of losses occur in kids under 2.5kg, the results of this study suggest that 

selection to increase birth weight, to reduce mortalities, can be undertaken successfully though 
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caution must be taken not to develop dystocia problems. The preliminary results also suggest that 

improved survival could be achieved by direct selection for the trait.  

The high heritability for survival was unexpected, and may be a consequence of the larger 

variation in birth type observed in the current study compared to sheep. Additionally the survival 

data is yet to be analysed using a more appropriate model for binomial data. The results could also 

be a function of the data if breeders did not submit complete kid mortality records.  

The predictions for survival (Table 1) indicate that increasing survival could be accomplished 

by reducing litter size but this could have unfavourable consequences for weaning rate (as number 

of kids per doe joined). Future work will examine the relationship of birth weight with litter size 

and how selection to change these may influence weaning rates. Finally the results of this study 

suggest that kid survival in single, twin and multiple birth classes should be considered as separate 

traits and will also be investigated in future work.  

 

CONCLUSIONS 

The higher than expected heritability for kid survival reported in this study suggests that if 

measurements of kid survival are collected, and the trait is given priority in the breeding objective, 

breeders will be able to improve the trait by selection. The genetic and phenotypic correlation 

between kid survival and birth weight has implications for future indirect selection, but with a risk 

of increasing the chance of dystocia. The results also indicate that litter size could contribute to kid 

survival and birth weight which will be further investigated. 
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SUMMARY 

Phenotypic and genetic correlations (rg) between breech cover and wrinkle scores with lamb 

survival were estimated from research (Cooperative Research Centre for Sheep Industry 

Innovation (Sheep CRC) Information Nucleus (IN)) and industry data (Sheep Genetics (SG) 

MERINOSELECT). Breech cover had low to moderate antagonistic rg (0.24 to 0.53) with direct 

lamb survival, despite favourable rg with some lamb survival indicator traits. While there was 

some inconsistency in the direction of rg at the various age expressions of wrinkle and direct lamb 

survival, the rg between wrinkle and lamb survival tended to be negative and favourable. 

 

INTRODUCTION 

High wrinkle scores are related to poorer reproductive outcomes (Turner and Young 1969). 

Folds
+
 ewes, selected on total fold score at four months of age, weaned half as many lambs during 

their lifetime as Folds
-
 ewes (Dun 1964). Folds

+
 rams were less fertile and sired fewer lambs than 

Folds
-
 rams irrespective of whether they were mated to Folds

+
 or Folds

-
 ewes (Dun and Hamilton 

1965). In addition, more Folds
+
 single-born lambs died compared with Folds

-
 singletons due to 

dystocia resulting from increased birthweight together with the smaller size of the Folds
+
 ewe 

(Dun and Hamilton 1965). While these early studies provided insight into the relationship between 

wrinkle and reproduction, few studies since have reported phenotypic and genetic correlations 

between these traits and none have included breech cover. The recent focus by some Merino 

breeders to genetically reduce wrinkle, to decrease flystrike and the need for mulesing (James 

2006), is likely to generate correlated improvements in Merino reproductive performance. This 

paper reports estimates of phenotypic and genetic correlations between wrinkle and breech cover 

with lamb survival to weaning (a key component of reproductive performance), assessed as a trait 

of both the ewe and the lamb, using a combination of industry and research data. 

 

MATERIALS AND METHODS 

Research data. Data from Merino progeny born into the Sheep CRC’s IN (van der Werf et al. 

2010) between 2007 and 2011 were used. Twice daily lambing rounds were conducted from the 

start of lambing in each year to uniquely identify each lamb, designate a dam, confirm birth status 

(alive or dead, LS0), collect early life information (sex and type of birth) and record birth weight 

(BWT), birth coat score (BCS), overall birth vigour (OBV), lambing ease (LE), rectal temperature 

(RT), three skeletal measures (crown rump length CRL, metacarpal length ML and thorax 

circumference THO) and a suite of timed lamb behaviours (time taken from lamb release after 

tagging to bleat BLT, stand STD, contact the ewe CONT, contact the udder UDD and follow the 

ewe FOLL) as described by Brien et al. (2015). Identities of all surviving lambs were confirmed at 

3 (LS3) and 7 days of age (LS7) and at weaning (approx. 91 days of age, LSURV). Breech cover 
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(BCOV), breech (BRWR), body (BDWR) and neck (NKWR) wrinkle were scored according to 

industry standards (AWI Ltd and MLA Ltd 2013) at marking (7-43 days, BCOV and BRWR only) 

as yearlings (11 months) and adults (23 months). Variance components were estimated using 

ASReml (Gilmour et al. 2009) from a series of univariate animal models (see Brien et al. (2015) 

for the lamb survival traits and Hatcher and Preston (2015) for BCOV and wrinkle traits). 

Phenotypic and genetic correlations between the lamb survival, BCOV and wrinkle traits were 

estimated from appropriate covariances using a series of bivariate analyses with the residual 

covariance with the direct lamb survival traits set to 0. 

Industry data. Pedigree and performance data were extracted from the SG MERINOSELECT 

database (Brown et al. 2007). A subset of 29 flocks was selected based on their recording of 

wrinkle and reproduction traits and were a mix of industry ram breeders, research and sire 

evaluation flocks. From within these flocks all animals with both sire and dam pedigree, and born 

since 1990 were included. Data were extracted for all early breech wrinkle (EBWR, marking to 

weaning), late body wrinkle (LBDWR, yearling to adult), lamb survival as a trait of the lamb 

(LSURV) and lamb survival as a trait of the ewe (SURV) (Table 2). The pedigree was built using 

all available ancestral information. For the bivariate analyses there was between 270 and 607 sires 

with records for both traits depending on the trait combination. Parameters were estimated in 

bivariate animal model analyses in ASReml (Gilmour et al. 2009). For EBWR and LBDWR fixed 

effects of contemporary group (defined as flock, year of birth, sex, date of measurement, 

management group subclass), birth type, rearing type, age of dam, and animal’s age at 

measurement were fitted. For LSURV and SURV contemporary group (defined as flock, year of 

lambing, ewe age class (1, 2 and 3+) and management group) was the only fixed effect fitted. 

Random terms for direct genetic effects and sire by flock-year were fitted for all traits. Maternal 

permanent environment was included for wrinkle and LSURV and a repeated record term added 

for SURV. For correlations involving LSURV, the residual covariance was fixed to zero as only 

surviving lambs had records for both traits. Genetic groups were fitted in all analyses and allocated 

on a flock basis for linked flocks with sufficient data (Swan et al. 2015). 

 

RESULTS AND DISCUSSION 

Research data. Some of the rg, particularly those involving direct lamb survival, had large 

standard errors (Table 1). This may be due to the dataset size, the number of sire families 

represented or the low additive variation for the direct lamb survival traits (h
2
<0.01, Brien et al. 

2015). Nevertheless, until such time as lamb survival records become more widely represented in 

industry data or further analysis is done on pooled resource flock data, these results are likely to 

remain the only available estimates. 

There were unfavourable rg between marking, yearling and adult BCOV and direct lamb 

survival (Table 1), such that selection for increased bare area around the perineum and breech will 

generate correlated decreases in lamb survival. The low negative rg between BWT and marking 

BCOV implies that selection for bare breeches is genetically associated with higher BWT, while 

the low positive rg of yearling and adult BCOV with RT may be indicative of decreased 

thermoregulation capacity. There were favourable rg between BCOV and LE as well as some 

timed lamb behaviours, no significant rg between BCOV and any of the skeletal measurements and 

the direction of the rg with BCS, OBV and the timed lamb behaviours varied with age. However, 

as RT had the strongest rg with LSURV among the suite of indicator traits (Brien et al. 2015), it is 

likely to dominate the genetic relationships with lamb survival despite the favourable relationships 

between BCOV and the other indicator traits.  

The medium to high negative rg between the marking and yearling expressions of BRWR with 

direct lamb survival were indicative of a favourable relationship. So selection for plainer breeches 

will generate correlated improvements in lamb survival. Plainer breeches were also genetically 
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associated with lower BWT, smaller skeletal measurements and higher RT. However, the rg 

between the age expressions of BRWR with OBV and the timed lamb behaviours varied in 

direction. The rg between the various lamb survival traits and yearling BRWR and BDWR were 

similar as were those between adult NKWR and BRWR. Due to the nature of the IN data set, our 

ability to fully account for across flock differences via fitting genetic groups was limited. As a 

result, the rg may be inflated compared to what would be observed within other flocks. 
 

Table 1. Genetic correlations between a) marking and yearling and b) adult of breech cover 

(BCOV), breech (BRWR), body (BDWR) and neck (NKWR) wrinkle with lamb survival and 

various indirect selection criteria for lamb survival in the Sheep CRC IN 
High rg (≥0.6) are highlighted in bold and medium rg are underlined. The rg for LS0, BWT, CRL and BLT 

have been omitted from 1b) as they were all negligible (|r|<0.2). 

a) Marking Yearling 

 BCOV BRWR BCOV BRWR BDWR NKWR 

LS0 -0.30±0.08 -0.03±0.05  0.53±0.13 -0.20±0.06 -0.37±0.06  0.16±0.07 

LS3  0.24±0.22 -0.42±0.14  0.34±0.30 -0.41±0.17 -0.59±0.16 -0.06±0.18 

LS7  0.49±0.25 -0.48±0.16  0.43±0.31 -0.49±0.18 -0.59±0.16 -0.16±0.18 

LSURV  0.49±0.68  -0.99±0.71  0.21±0.63 -0.98±0.87 -0.82±0.63 -0.39±0.47 

BWT -0.27±0.12   0.38±0.08 -0.06±0.19  0.12±0.10  0.29±0.10 -0.01±0.11 

BCS -0.37±0.13 -0.60±0.08  0.32±0.21 -0.08±0.11 -0.11±0.11 -0.11±0.12 

OBV  0.38±0.16 -0.30±0.11 -0.38±0.27  0.10±0.14  0.06±0.14 -0.28±0.15 

LE  0.26±0.26 -0.38±0.19 -0.08±0.38 -0.17±0.22 -0.32±0.22 -0.48±0.23 

RT  0.13±0.26 -0.36±0.18  0.35±0.36 -0.08±0.22  0.14±0.22  0.17±0.23 

CRL  0.04±0.13  0.20±0.08 -0.04±0.19  0.11±0.10  0.18±0.09 -0.02±0.11 

ML  0.12±0.19  0.32±0.13  0.16±0.26  0.33±0.14  0.39±0.13  0.27±0.15 

THO -0.13±0.16  0.31±0.09  0.10±0.22  0.22±0.11  0.38±0.11  0.32±0.13 

BLT -0.05±0.21 -0.21±0.15  0.57±0.30 -0.08±0.17  0.01±0.17  0.10±0.19 

STD  0.01±0.31 -0.36±0.23  0.73±0.37  0.09±0.23 -0.10±0.22  0.05±0.25 

CONT -0.25±0.22 -0.22±0.14 -0.08±0.28 -0.11±0.15 -0.15±0.15 -0.19±0.17 

UDD -0.03±0.51 -0.00±0.39  0.46±0.61 -0.11±0.41 -0.37±0.44 -0.69±0.48 

FOLL -0.52±0.28 -0.37±0.22  0.23±0.39 -0.09±0.23 -0.22±0.24 -0.08±0.26 

 

b) Adult 

 BCOV BRWR BDWR NKWR 

LS3  0.17±0.36  0.04±0.19  0.06±0.23  0.44±0.28 

LS7  0.34±0.37  0.03±0.20 -0.01±0.23 0.44±0.28 

LSURV -0.14±0.72  0.10±0.39 -0.07±0.46  0.64±0.66 

BCS  0.44±0.23 -0.09±0.13  0.00±0.15  0.06±0.18 

OBV  0.39±0.25  0.15±0.15 -0.38±0.28 -0.05±0.22 

LE  0.71±0.46 -0.03±0.04 -0.30±0.28 -0.71±0.32 

RT  0.22±0.40 -0.09±0.23  0.03±0.29  0.12±0.33 

ML -0.06±0.27  0.10±0.17  0.02±0.19  0.01±0.22 

THO  0.01±0.22  0.46±0.14  0.29±0.16  0.57±0.18 

STD  0.66±0.35  0.32±0.32 0.11±0.30 -0.03±0.32 

CONT  0.07±0.27  0.23±0.18 0.10±0.20  0.06±0.23 

UDD  0.64±0.73 -0.38±0.49 0.13±0.48 -0.24±0.53 

FOLL  0.58±0.34  0.09±0.27 0.05±0.28 -0.30±0.31 

 

Industry data. EBWR and LBDWR were moderately heritable and had small but significant 

maternal effects (Table 2) consistent with IN estimates (Hatcher and Preston 2015). The 

heritability of LSURV was low (0.02) with a significant maternal effect (0.14) which agreed with 

IN estimates (Brien et al. 2015). The rg between LSURV and wrinkle were small and negative but 
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not significantly different from zero (Table 2). The IN results were generally stronger negative, but 

also often not significantly different to zero. However, SURV was more negatively correlated with 

wrinkle both at the genetic and maternal permanent environment levels than LSURV. 
 

Table 2. Phenotypic variance (σ
2
p), maternal permanent environment (PE), direct 

heritability (diagonal bold type), genetic correlations (below diagonal), maternal permanent 

environmental correlation (above diagonal) between wrinkle and lamb survival traits 
 

 EBWR LBDWR LSURV SURV 

Records 80,467 38,348 46,826 11,957 

σ2
p 0.59±0.00 0.51±0.00 0.11±0.00 0.09±0.00 

PE 0.04±0.01 0.00±0.01 0.14±0.01 NE 
     

EBWR 0.32±0.01 NE -0.14±0.06 NE 

LBDWR NE 0.40±0.01 0.99±0.79 NE 

LSURV -0.05±0.10 -0.24±0.20 0.02±0.01 NE 

SURV -0.17±0.11 -0.28±0.18 NE 0.03±0.01 

NE: not estimated or not estimable 

 

CONCLUSIONS 

Merino breeding programs with an emphasis on reducing wrinkle are likely to generate 

correlated improvements in reproduction both as a trait of the ewe and the lamb. While breeders 

using BCOV as an indirect selection criterion for flystrike could expect correlated decreases in 

direct lamb survival despite favourable genetic relationships with some lamb survival indicator 

traits. However the inconsistency between age expressions of the wrinkle and BCOV traits due to 

low precision of the genetic correlations does add some uncertainty to these conclusions. The 

inaccurate parameter estimates are due to some animals not having both records, as dead lambs 

were not scored for BCOV or wrinkle and we therefore rely on the genetic relationships between 

animals via the pedigree to estimate these genetic correlations. Accurate parameters and multiple 

trait index predictions are required to properly quantify the impact of these relationships for 

Merino breeding programs. 
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SUMMARY 

It has been suggested that traits associated with fitness, such as fertility, may have 

proportionately more genetic variation arising from non-additive effects than traits with higher 

heritability, such as milk yield. Here, we performed a large genome scan with 408,255 single 

nucleotide polymorphism (SNP) markers to identify chromosomal regions associated with 

dominance and epistatic (pairwise additive × additive) variability in milk yield and fertility 

(measured by calving interval), using 7,055 genotyped and phenotyped Holstein cows. The results 

were subsequently replicated in an independent set of 3,795 Jersey cows. We identified genome 

regions with replicated dominance effects for milk yield on Bos taurus autosomes (BTA) 2, 3, 5, 

26 and 27 whereas SNPs with replicated dominance effects for fertility were found on BTA 1, 2, 3, 

7, 23, 25 and 28. A number of significant epistatic effects for milk yield on BTA 14 were found 

across breeds. However, these were likely to be associated with the mutation in the diacylglycerol 

O-acyltransferase 1 (DGAT1) gene, given that the associations were no longer significant when 

the full additive effect of the DGAT1 mutation was included in the epistatic model. The results of 

our study suggest that individual non-additive effects make a small contribution to the genetic 

variation of milk yield and fertility. 

INTRODUCTION 

Female fertility is of great interest to the dairy industry because impaired reproductive ability 

can reduce the profitability of a dairy herd, through increased expense of additional inseminations, 

veterinary treatments and replacement cows. Selection to improve milk production traits in 

Holstein and Jersey cattle populations has led to a decline in fertility traits in the last few decades 

due to unfavourable genetic correlations between fertility and milk production (Berry et al. 2014). 

Many countries have now included fertility in their national breeding goals. However fertility 

related traits usually have low heritability estimates and genetic improvement through traditional 

breeding programs is slow, although substantial genetic variation exists (Khatkar et al. 2014). For 

traits such as fitness traits, where heritability estimates are low the non-additive part of genetic 

variation could be used to genetically improve the trait of interest. Non-additive genetic variation 

is the result of allele by allele interactions and involves intra-locus (dominance) and inter-locus 

(epistasis) interactions. 

An increasing availability of genotypes coupled with phenotypes has provided a new 

opportunity for estimation of non-additive genetic effects. Genome-wide association studies can be 

used to estimate both the additive and non-additive effects of genetic markers, but most published 

GWAS for dairy cattle to date have focused on additive effects of genes while non-additive 

interactions are generally neglected. 

The objective of this study was to detect chromosomal regions with non-additive effects for 

calving interval (CI) and milk yield (MY) using a Holstein cow discovery population. We then 

attempted to validate these associations in an independent Jersey population of cows. 
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MATERIALS AND METHODS 

Data. Animals were genotyped with Illumina BovineSNP50 v2 BeadChip (Illumina, San 

Diego, CA, USA) and their 50K SNP data were imputed to the high density (HD) 800k panel 

using Beagle 3 (Browning and Browning 2009). Standard quality control checks were applied on 

genotypic data prior to the imputation step. Accurate estimation of dominance effects of the SNPs 

requires enough observations in all three classes of SNP genotypes. Therefore, a further 223,748 

SNPs were removed from HD SNP panel due to a genotype class with frequency < 0.01 in both 

Holstein or Jersey animals. The final set comprised 408,255 SNPs. 

Phenotypic data included 23,198 and 11,091 milk yield and calving interval records 

respectively for 7,055 Holstein and 3,795 Jersey cows (some cows had records across multiple 

lactations). These records were pre-corrected for herd-year-season, age at calving, parity and 

month of calving using a fixed model on full national data set of phenotypes. Residuals from this 

model were then used as the response variable in GWAS analyses for the genotyped animals. 

 

Statistical model. The mixed linear model used was: 

𝐲 = 𝟏𝐧𝜇 + 𝐗𝐛 + 𝐙𝐮 + 𝐖𝐩𝐞 + 𝐞 

where y is a vector of phenotypes (CI or MY), 1n is a incidence vector of ones, µ is the population 

mean term, b is the vector containing relevant additive or dominance marker effects as specified 

below, u contains polygenic effects assumed to be distributed as  𝐮~N(0, 𝐀𝜎𝑔
2) with A being the 

pedigree based numerator relationship matrix, pe is the vector of random permanent 

environmental effects with 𝐩𝐞~N(0, 𝐈𝜎𝑝𝑒
2 ) and e is a vector of random residual deviates distributed 

as  𝐞~N(0, 𝐈𝜎𝑒
2). Then X is a design matrix allocating records to marker effects (dominance or 

additive by additive) and Z and W are incidence matrices for the random effects. σ
2
g, σ

2
pe and σ

2
e 

are polygenic additive, permanent environmental and residual variances, respectively. 

The original marker covariates (0, 1 or 2) were corrected for allele frequencies (Vitezica et al. 

2013) to build X, so that 𝑥𝑖𝑗(𝑎) = {-2p, (q-p) or 2q} for additive effects of aa, Aa and AA 

genotypes, respectively, with p and q being the frequencies of alleles A and a at marker j in the 

population. For dominance effects, aa, Aa and AA genotypes were coded as 𝑥𝑖𝑗(𝑑) ={-2p
2
, 2pq and 

-2q
2
}. Then, the contents of Xb varied with the type of the genetic effect being tested. For 

dominance, 𝐗𝐛 = {𝑥𝑖𝑗(𝑎)𝑎𝑗 + 𝑥𝑖𝑗(𝑑)𝑑𝑗}, where 𝑑𝑗 is the dominance effect of marker j. In the 

epistasis model, 𝐗𝐛 = {𝑥𝑖𝑗(𝑎)𝑎𝑗 + 𝑥𝑖𝑘(𝑎)𝑎𝑘 + 𝑥𝑖𝑗𝑘(𝑒)𝑎𝑗𝑘}, where 𝑥𝑖𝑗𝑘(𝑒)is the qualification for 

nested interaction effects involving markers j and k, 𝑎𝑘 is the additive effect for the k marker and 

𝑎𝑗𝑘 is the pairwise additive by additive epistatic marker effect between markers j and k. 

 

Validation. To confirm if significant SNPs were consistent between breeds, results from the larger 

Holstein population (discovery set) were validated in the Jersey breed in two different ways. First, 

if a significant SNP was found in the discovery process, we examined whether it was also 

significant in the validation population. Second, for each significant SNP in the discovery 

population, we searched for significant SNPs in the validation population within the region 500 kb 

downstream and upstream of the identified SNP. 

The false discovery rate was calculated following the approach proposed by Bolormaa et al. 

2010 as: %𝐹𝐷𝑅 = (𝑃(1 − 𝑆/𝑇)/((𝑆/𝑇)(1 − 𝑃))) × 100  
where P is the P-value threshold in F-test, S is the number of significant SNPs according to this 

threshold and T is the total number of tests. 

For dominance models, all of the markers in the final HD panel were used. To reduce the 

dimension of SNP combinations tested in the epistatic models, only significant SNPs determined 

using the P-value of the F-test of their additive effects in the Holstein discovery set were included. 
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RESULTS AND DISCUSSION 
Dominance. The false discovery rate (FDR) for dominance effects were high, at 100% for both 

traits (Table 1) meaning that the number of significant SNPs in Holsteins is smaller than expected 

by chance. Forty SNPs were significant (P< 0.0001) in the Holstein discovery population for MY. 

Only 1 of these was also significant (P < 0.01) in Jersey cows, but with different signs observed in 

the discovery and validation analyses and with a FDR of 39 % (Table 1). For CI, 36 SNPs were 

found to have significant (P < 0.0001) dominance associations in the Holstein discovery set (Table 

1). Of these, 3 (1 with same direction) SNPs were validated in individual validation (FDR = 11 %). 

The segment validation approach was more successful; the number of validated SNPs for MY 

increased to 21 (P < 0.01) with a FDR in the validation population being equal to 1%; 10 SNPs 

were validated for CI (FDR = 3 %) within discrete regions. The validated SNPs with significant 

dominance effects on MY and CI were detected on 5 (BTA 2, 3, 5, 26 and 27) and 7 (BTA 1, 2, 3, 

7, 23, 25 and 28) chromosomes, respectively (Figure 1). 

 

Table 1. P-value thresholds and the number of SNPs with significant dominance effects and 

corresponding false discovery rates (FDR) for milk yield (MY) and calving interval (CI) 
 

  Discovery  Individual validation  Segment validation 

Trait  P Holstein FDR (%)  P Jersey FDR (%) Same Dir. 

 

P Jersey FDR (%) 

MY  0.0001 40 102  0.01 1 39 0 0.01 21 1 

CI  0.0001 36 113  0.01 3 11 1 0.01 10 3 
1Number of same direction SNP effects in discovery and validation populations 

 

 
Figure 1. Manhattan plot of dominance SNP effects for fertility (top) and milk yield (bottom) 

with chromosome number on horizontal axis and –log10(P-value) on vertical axis. 

 

Epistatic interactions. A larger number of significant pairwise interactions were found for 

milk yield compared to fertility (Table 2). For MY there were 3,700 significant pairwise 

interactions in the discovery population of Holstein cows at the threshold of P < 10
-7

. Of which 

165 were validated (P < 1×10
-5

) in the Jersey population (Table 2). The number of validated 

additive × additive effects that were in the same direction in both Holstein and Jersey data was 163 

out of 165. In all epistasis analyses of MY, FDRs were calculated to be very close to zero. Since 

all of the SNPs that had validated interactions for MY were located at the beginning of BTA 14 

and near the DGAT1 gene, we suspected that these interactions may have been due to the DGAT1 

mutation effect. Therefore, the epistatic model was extended to include a SNP in the DGAT1 gene 

itself as a fixed effect to see if any of the interactions remained significant. The absence of 

significant interactions in this region after including the DGAT1 effect in the model suggests that 

the identified significant pairwise interactions identified were picking up the DGAT1 effect by 

creating haplotype like combinations. That is, the linkage disequilibrium of SNP allele 

Reproduction, behaviour and health

360



 

 

combinations with the DGAT1 mutation was higher than for the individual SNP, rather than a true 

epistatic interaction. 

Five additive × additive interactions were found significant (P < 0.0001) for CI in Holsteins 

with a FDR of 18%. However, none of these was validated (P < 0.01) in the Jersey population. 

 

Table 2. P-value thresholds, number of significant pairwise additive × additive interactions 

and calculated false discovery rates (FDR) for milk yield (MY) and calving interval (CI) 

 
    Discovery  Validation  

Trait  No. of interactions  P Holstein FDR (%)  P Jersey FDR (%) Same Dir.1 

 MY  255,255  10-7 3700 0  10-5 165 0 163 

CI  9,180  10-4 5 18  0.01 0 NA NA 
1Number of same direction SNP effects in discovery and validation populations 

 

Implications. One critical parameter determining the power of a GWAS is the amount of LD 

between the observed SNP and the unobserved causal variant. The success of a GWAS in 

identifying QTLs with additive effects is controlled by r
2
 (r is the correlation between genetic 

marker and causative mutation) while detection of dominance or pairwise additive by additive 

effects depends on r
4
. This indicates a much higher reliance on LD in searching for non-additive 

effects compared to additive effects, if LD between the markers and QTL is incomplete (Wei et al. 

2014). This, and possibly the relatively small size of individual dominance and epistatic effects, 

was reflected in results of this study in which a larger number of additive markers were identified 

than the markers with dominance and epistasis effects for both traits under investigation. 

The standard in reporting GWAS results is validation and before genotype-phenotype 

relationships can be used in selection decisions, they should be replicated in an independent 

population to confirm generalized effects in multiple populations. Validation of GWAS results 

across breeds can refine QTL regions to narrower intervals and is powerful in identifying 

positional candidate genes. This is because the extent of LD across cattle breeds is limited in 

contrast to within a breed, where considerable LD can be maintained in intervals up to 1 Mbp as a 

result of a relatively small effective population size. We validated a lower number of non-additive 

genetic associations than additive effects such that very few dominance effects for MY and CI 

were confirmed and no epistasis effect was common across Holstein and Jersey cows for CI. This 

trend is in agreement with the fact that the higher dependence on LD in searching for dominance 

and epistatic effects compared to additive effects significantly decreases the chance of validating 

associations in independent populations for non-additive effects of the markers (Wei et al. 2014). 

 

CONCLUSION 
We identified and validated a small number of SNPs with suggested dominance effects on MY 

and CI in Australian Holstein and Jersey cows. Given our results, identifying non-additive gene 

actions using single SNP regression in a GWAS setting will require very large datasets to capture 

the likely very small individual non-additive genetic effects. 
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SUMMARY 

Breeding indices have enabled farmers to select for multiple traits simultaneously, including 

negatively correlated traits such as milk production and fertility. This negative correlation is 

believed to be either caused by an energy deficit during early lactation or serves a functional 

purpose in providing optimal birth spacing. A linear regression was carried out between 

parameters describing a lactation curve and a fertility index (RZR) and milk yield EBVs (mEBVs) 

to determine the effects of selection on the lactation curve. Breeding values of first lactation milk 

yield and a RZR were available for 2,405 sires. Additionally, these sires had test-day records of 

the first lactation of ~2M daughters. There was a negative correlation between mEBVs and RZR 
(r=-0.27, P<0.0001). Selection for fertility resulted in higher initial milk yield with an early peak 

yield. This suggests that an early peak occurs to provide offspring with sufficient milk despite a 

potential energy deficit. Further, an early peak provides an increased duration over which milk 

production declines and therefore sufficient time for the cow to recover from the energy deficit 

prior to a subsequent pregnancy. Finally, current production environments could be optimised to 

fulfil the genetic potential of high producing dairy cows. 

 

INTRODUCTION 

Negative genetic correlations have been reported between milk production and a variety of 

functional traits (Dekkers et al. 1998; Muir et al. 2004) including health and fertility (Ingvartsen et 

al. 2003; Oltenacu and Broom 2010). Both causal and functional hypotheses have been proposed 
to account for such negative correlations (Strucken et al. 2015). Collard (2000) proposed that the 

energy deficit experienced during early and peak lactation causes detrimental effects on health and 

fertility. However, very low correlations have been reported between total milk yield and energy 

balance (Spurlock et al. 2012). Alternatively, the negative impact of lactation on fertility may 

serve a functional purpose to provide optimal birth spacing for the survival of offspring. 

Whilst milk production predominantly remains the most economically important trait for dairy 

farmers, functional traits such as conformation, udder health and fertility have become more 

prominent as the importance of animal welfare and longevity has increased (VanRaden, 2004; 

Miglior et al. 2005). Consequently, breeding goals were adjusted to incorporate health and fertility 

traits into breeding indices (Osteras et al. 2007; Boichard and Brochard 2012). These breeding 

indices allow traits to be weighted according to their economic importance and heritability, and 

account for phenotypic and genetic correlations between traits (Dekkers 2007). As such, this has 
enabled dairy farmers to breed for milk production and functional traits without requiring 

knowledge on how these practices impact upon the dynamics of milk production. 
The dynamics of milk production can be described using an appropriate lactation model such 

as the Wilmink curve (Wilmink 1987). By fitting such a model to milk yield test-day records, a 

lactation cycle can be summarised using a minimal number of parameter values. These parameter 

values can subsequently be used to perform a linear regression with estimated breeding values for 

total milk yield and a fertility index. Understanding the impact of selection for fertility upon the 

parameter values of a lactation model could aid in determining whether the negative correlation 

between production and fertility is causal or functional. If the observed impact of production upon 

Reproduction, behaviour and health

362



fertility is caused by the energy deficit experienced during early and peak lactation, then a reduced 

peak milk yield would be expected to occur at a later time point. However, if the negative 

correlation serves a functional purpose to provide optimal birth spacing for the survival of 

offspring, then a reduced persistency would be expected. 
 

MATERIALS AND METHODS 

Data. Estimated breeding values (EBVs) for 2,405 Holstein Friesian sires, and test-day records 

for 1,797,852 daughters, were provided by VIT, Verden (Germany). Each bull had an average of 

747 daughters (min=50, max=84,387). 

Fertility breeding values were pre-corrected for herd*year, month of insemination, age at 

insemination, parity*age at insemination, status and effect of the bull (c.f. VIT April 2015). 

Breeding values were available for six measures: non-return rate 56 days post-insemination 

(separated for heifers and cows), first to successful insemination (separated for heifers and cows), 

calving to first insemination, and days open. The fertility EBVs were summarized in a fertility 

index (RZR) which was standardized to a mean of 100 and a standard deviation of 12. Further, 

corrected 305d EBVs for milk yield (mEBV) were available for the first lactation. These breeding 

values were raw values, representing actual yield deviations from the population mean. 
Daughter records comprised the first lactation with an average of 8 test-day records per cow 

(min=1, max=20). The average lactation length was 259 days (min=5, max=330). 

 

Table 1. Data description for the fertility index (RZR) and 305d milk yield EBVs (mEBV) of 

the first lactation for sires, and test-day milk yield of daughters 
 

 N Mean Min Max SD 

RZR 2,405 100.95 62.00 136.00 9.90 
RZR (top 10 sires) 10 130.4 128.00 136.00 2.37 
RZR (worst 10 sires) 10 71.6 62.00 75.00 4.01 

mEBV (kg) 2,405 711.03 -1438 2774 609.43 

mEBV (top 10 sires) 10 2583 2408 2774 118.51 

mEBV (worst 10 sires) 10 -1118.6 -1438 -946 157.77 

milk yield total (kg) 14,862,232 25.57 2.00 98.80 6.54 
milk yield per sire (kg) 386-731,431 18.9-31.4 2.0-12 30.6-98.8 4.4-8.8 

 

Analyses. Pearson’s correlation coefficients were calculated between RZR and mEBVs. Wilmink 
curve parameters were estimated per sire with a non-linear model in R. The Wilmink curve is given 

as  (Wilmink 1987): 

 

y = a + b * exp-k*DIM + c * DIM 

 

Y is the test-day record; a is the potential maximum daily milk yield (kg); b determines the y-

intercept (y-intercept = a+b); c is the gradient of the linear decay in milk yield (kg d-1); k is the 

growth rate. Parameters b and c are both negative for a lactation curve. Convergence was achieved 

for 2,392 sires. Each parameter was subsequently used for a linear regression with RZR and 

mEBVs. 

Environmental factors such as season or age are known to impact upon milk production. To 
determine the effect of environmental factors, we estimated the Wilmink curve parameters in a 

linear mixed model including the fixed effects of age at calving, year season, and milk recording 

system nested within farm. Sire was included as a random effect. These calculations were carried 

out across the top 10 and worst 10 sires for RZR and mEBVs, to provide the greatest contrast 
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between the production curves of high and low ranked sires (Table 1). In order to fit a linear 

model, Wilmink parameter k was fixed at 0.06316 (top 10 RZR), 0.05912 (worst 10 RZR), 

0.05258 (top 10 mEBVs), and 0.07269 (worst 10 mEBVs) based on preliminary calculations. 

 

RESULTS 
The pseudo-genetic correlation between mEBVs and RZR was significantly negative (r=-0.27, 

P<0.0001), confirming previous reports (Oltenacu and Broom 2010). As expected, this negative 

correlation resulted in a negative association between Wilmink curve parameter a (potential 

maximum) and RZR, and a positive association with mEBVs (Table 2). Further, increases in both 

RZR and mEBV resulted in a significant reduction in parameter b, and hence a higher y-intercept. 

 

Table 2. Effects of fertility index (RZR) and mEBVs on lactation curve parameters 
 

 RZR ±se R2 (adj) mEBV ±se R2 (adj) 

a -0.042 ±0.005*** 0.03  0.0023 ±0.00*** 0.36 
b  0.031 ±0.008*** 0.005  0.0009 ±0.00*** 0.02 
c  0.000006 ±0.00 0.0003 -0.0000003 ±0.00 0.0008 
k  0.0002 ±0.00** 0.003 -0.00001 ±0.00*** 0.06 
*** P<0.0001 **P<0.001 

a: potential maximum daily milk yield; b: determines y-intercept; c: gradient of the  

linear decay in milk yield; k: growth rate 

 

Effects of RZR and mEBVs on curve parameter c (determining the gradient of the linear decay 
in milk yield) were not significant. However, a reduction in parameter c is indicated for increasing 

RZR (i.e. decreased decay rate), whilst increasing mEBV caused an increase in parameter c (i.e. 

increased decay rate, Table 2). Parameter k 

(growth rate) increased for better RZR, and 

decreased for better mEBVs (Table 2). 

Correction for environmental effects had 

an impact upon lactation curve parameters 

(Table 3). The largest impact was observed 

for parameter a where correction for 

environmental effects increased the 

potential maximum daily milk yield for the 
best mEBV sires, and decreased for the 

worst RZR and mEBVs. Further, correction 

for environmental effects reduced parameter 

b for the best mEBVs, causing a higher y-

intercept (Table 3). 

 

DISCUSSION 

The functional and causal hypotheses previously proposed to account for the negative 

correlation between production and fertility may be expected to impact upon the shape of the 

lactation curve in different manners. Reductions in fertility caused by an energy deficit 

experienced during early and peak lactation would be expected to impact upon early lactation. 

Whereas, if the observed reduction in fertility serves a functional purpose to provide optimal birth 
spacing, then an increased rate of decay (decreased parameter c) would be expected. 

All significant impacts of the fertility index occurred for parameters determining early and 

peak lactation (a, b, and k), whilst no significant effect was found on rate of decay (parameter c). 

This is consistent with previous studies which reported genetic loci affecting early and peak 

Table 3. Corrected and uncorrected Wilmink 

parameters based on best and worst sires 
 

 RZR mEBVs 

 10 best 10 worst 10 best 10 worst 

 corrected parameters 

a 30.93 30.82 54.14 23.77 
b -10.74 -13.70 -1.3E-07 -9.66 

c -0.038 -0.036 -0.020 -0.036 
k 0.063 0.059 0.053 0.073 
 uncorrected parameters 

a 30.82 33.07 34.81 28.80 
b -10.80 -13.85 -13.70 -9.61 
c -0.038 -0.037 -0.036 -0.036 
k 0.063 0.059 0.053 0.073 
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lactation (Strucken et al. 2011; Strucken et al. 2012). These results appear to support a causal 

hypothesis where the negative correlation between production and fertility is due to an energy 

deficit in early lactation. The expectation was that the fertility index would cause a decreased 

potential maximum milk yield and a slower growth rate. However, the results showed an increased 

initial milk yield (y-intercept) and an increased growth rate causing an early production peak. The 
increased initial milk yield and growth rate during early lactation occurs to provide offspring with 

sufficient milk despite a potential energy deficit. Peak lactation occurs earlier when a fertility 

index is implemented in the breeding program, allowing for a longer decline in milk yield and 

hence increasing optimal birth spacing (despite no apparent impact upon the gradient of decay in 

milk yield). 

Correction for environmental effects revealed that high producing dairy cows have a higher 

genetic potential than is currently supported by the production environment. In contrast, cows with 

a low fertility and milk yield showed a maximised genetic potential where production was biased 

upwards by a favourable production environment. 

 

CONCLUSION 

Selecting for increased fertility increases initial milk yield and growth rate in amount of daily 
milk production causing an early production peak. Early peak lactation occurs to provide offspring 

with sufficient milk despite a potential energy deficit, and provides an increased duration over 

which milk production declines. This provides sufficient time for the cow to recover from the 

energy deficit during early lactation prior to a subsequent pregnancy. Further, current production 

environments could be optimised to fulfil the genetic potential of high producing dairy cows. 
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SUMMARY 

Genetic improvement of dairy cattle health using producer-recorded data is feasible. Estimates of 

heritability are typically low, indicating that genetic progress will be slow. Health improvement may 

also be possible through incorporation of environmental and managerial aspects into herd health 

programs. The objective of this study was to utilize non-parametric methodologies including support 

vector machines and random forests to explore prediction of cow health status from routinely collected 

herd summary data. Random forest models attained the highest accuracy for predicting health status in 

all health categories. Accuracy of prediction (SD) of random forest models ranged from 0.87 (0.06) to 

0.93 (0.001). Results of these analyses indicate that non-parametric algorithms, specifically random 

forest, can be used to accurately identify individual cows likely to experience a health event of interest. 

Further development of predictive models into herd management programs will continue to improve 

dairy health. 

 

INTRODUCTION 

To fully understand complex diseases, it is important to understand relationships between genotype, 

environment, and phenotype. Genetic improvement of dairy cattle health has been determined to be 

feasible utilizing producer-recorded data by several studies (Zwald et al. 2004; Parker Gaddis et al. 

2012, 2014). Low estimates of heritabilities indicate, however, that genetic progress will be slow. 

Variance observed in lowly heritable traits can largely be attributed to non-genetic or environmental 

factors. In typical genetic evaluations, adjustments for environmental effects are accomplished by 

considering them as fixed effects. This disregards potential effects of management and environmental 

conditions on genetic expression (Windig et al. 2005). The question is then whether more rapid 

phenotypic improvement can be achieved if herd health programs incorporate environmental and 

managerial aspects. 

Recent studies have incorporated herd characteristics into statistical models in relationship to 

reproductive efficiency (e.g., Löf et al. 2007), production (e.g., Windig et al. 2006), and health (e.g., 

Stengärde et al. 2012). Farm staff or Dairy Herd Information (DHI) Association technicians regularly 

report on numerous herd characteristics observed on test days (DHI-202: Dairy Records Management 

Systems 2014). Additional environmental information is accessible through online databases including 

climatic, human census, and geographical data. Large numbers of variables create analysis challenges, 

ranging from increased data pre-processing to increased computing time. The majority of previous 

studies have utilized parametric statistical models to analyse herd characteristics (e.g., Stengärde et al. 

2012), which can suffer from multiple testing problems and colinearities of numerous variables (Sato 

et al. 2008). Alternatively, non-parametric methods have recently been investigated to better handle 

numerous variables (e.g., Schefers et al. 2010). The objective of this study was to utilize non-
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parametric methodologies to explore prediction of cow health status from routinely collected herd 

summary data. 

 

MATERIALS AND METHODS 

Data. The DHI-202 Herd Summary provides a report on herd production, reproduction, genetics, 

udder health, and feed cost information (www.drms.org). Data were available from 2000 through 2011 

from Dairy Records Management Systems (DRMS; Raleigh, NC). Four months (March, June, 

September, and December) of collected records were available for each year. Each herd summary 

contained over 1,100 variables. Number of contributing herds varied from 647 to 1,418, depending on 

month and year of reporting. Data included Ayrshire, Brown Swiss, Guernsey, Holstein, Jersey, and 

crossbred herds.  

Supplementary data were acquired from publicly available datasets. The National Oceanic and 

Atmospheric Administration National Climatic Data Center (NCDC) provides information regarding 

temperatures, precipitation, degree-days, and drought indices (NCDC, 2014). Monthly summaries of 

data from the weather station located closest to each herd were merged with herd characteristic data. 

Estimates of population size were obtained on a county-basis from the United States Census Bureau 

(www.census.gov) as a measure of population density. Intercensal estimates from 2000 through 2010 

were produced by updating the Census 2000 counts with estimates for components of population 

change (United States Census Bureau, 2012).  

Voluntary producer-recorded health event data were available from DRMS (Raleigh, NC) from 

U.S. farms from 2000 through 2012. These data were merged with available production data. Health 

and production datasets were edited following the editing procedures described in Parker Gaddis et al. 

(2012). Health events included hypocalcemia, cystic ovaries, digestive problems, displaced abomasum, 

ketosis, mastitis, metritis, and retained placenta. These events were grouped into three main categories: 

mastitis, metabolic (hypocalcemia, digestive problems, displaced abomasum, and ketosis), and 

reproductive (cystic ovaries, metritis, and retained placenta) disorders. Health events were combined 

with herd characteristics based on date of health event occurrence. 

Data pre-processing. A function was employed to determine and remove highly correlated 

variables by searching the correlation matrix. Editing was also performed to ensure that no variables 

were linear combinations of other variables (Kuhn 2013). Any variables with (near) zero variance were 

removed from the data. The above editing reduced the size of the dataset to approximately 3.7 million 

records with 829 variables. Missing records needed to be handled before statistical modeling could be 

performed. Variables with more than 50% missing observations (n = 70) were excluded from further 

analyses. Remaining missing herd characteristic records were imputed using an iterative principal 

component analysis algorithm (Husson and Josse 2012). Once a complete dataset was created, 

lactational incidence rate was calculated for each health event by herd-year as number of affected 

lactations per lactations at risk (Kelton et al. 1998). 

Analyses. Analyses were performed using a binary indicator where “0” represented no incidence of 

a health event during a lactation and “1” represented at least one incidence of a respective health event 

during a lactation. Nonparametric models investigated included support vector machines (SVM) and 

random forests (RF). Briefly, an SVM model maps response variables to a higher-dimensional space 

that contains a “maximal separating hyperplane” (Sullivan 2012). The response variable should 

separate across this hyperplane into correct classifications (Sullivan 2012). Two different kernel 
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functions were investigated: a linear kernel and a radial basis kernel (RBF). The SVM
perf

 software 

(version 3.0) was utilized to fit SVM models (Joachims 2006).  

Tree models are a data mining technique that are easily interpretable and implicitly perform feature 

selection, making them ideal for data with numerous variables (Kuhn and Johnson, 2013). Random 

forest (RF) models were utilized as a machine learning algorithm that fits many decision trees to 

bootstrapped samples of a dataset and then averages these decision trees to create a final predictive 

model (Breiman 2001). The “bigrf” package of R (R Core Team 2014) was used to fit these models 

(Lim et al. 2014). An optimal number of trees was determined prior to fitting a final model by testing a 

range of values for each health event category. 

For all the above described models, 10-fold cross validation was used to evaluate predictive ability. 

Measures of predictive ability included accuracy, sensitivity, and specificity. Accuracy was calculated 

as the sum of true positives and true negatives divided by the sum of positive and negative incidences. 

Sensitivity, or true positive rate, was calculated as number of positive incidences correctly identified 

divided by the total number of positive incidences. Specificity, or true negative rate, was calculated as 

the number of negative incidences correctly identified divided by the total number of negative 

incidences (Fawcett 2006). 

 

RESULTS AND DISCUSSION 

The number of states reporting data ranged from 35 to 45, depending on health event. The most 

common herd size fell in a range of 100 to 299 cows; however, data included herds with fewer than 50 

cows and a maximum herd size of over 5,500 cows. Overall median incidence rates were 24%, 8%, 

and 18% for mastitis, metabolic, and reproductive health events, respectively. These fall within the 

range of previously reported incidence rates (Parker Gaddis et al. 2012). 

Predictive ability in training datasets were similar to those estimated for validation data, indicating 

that the models were not being overfit to training data. Prediction accuracies, sensitivity, and 

specificity for SVM models are shown in Table 1. Linear and RBF kernels performed similarly for all 

health event categories. These models had much higher specificity compared to sensitivity, indicating 

that they were more capable of identifying healthy cows. 

 

Table 1 Summary of model performance for incidences of mastitis, reproductive, and metabolic 

health events averaged across 10-fold cross validation results fitting support vector machine 

(SVM) and random forest models 

 
  Accuracy 

(Validation) 

Sensitivity 

(Validation) 

Specificity 

(Validation) 

Mastitis SVM (linear) c=0.01* 0.70 (0.003) 0.24 (0.002) 0.88 (0.003) 

 SVM (RBF) c=10.0 0.70 (0.01) 0.39 (0.03) 0.83 (0.02) 

 Random forest 0.93 (0.001) 0.82 (0.003) 0.97 (0.001) 

Reproductive SVM (linear) c=0.005 0.69 (0.002) 0.32 (0.01) 0.79 (0.004) 

 SVM (RBF) c=10.0 0.77 (0.01) 0.33 (0.03) 0.88 (0.02) 

 Random forest 0.92 (0.001) 0.74 (0.006) 0.97 (0.0007) 

Metabolic SVM (linear) c=0.01 0.76 (0.03) 0.12 (0.03) 0.93 (0.05) 

 SVM (RBF) c=10.0 0.75 (0.01) 0.25 (0.02) 0.88 (0.01) 

 Random forest 0.87 (0.061) 0.57 (0.145) 0.96 (0.04) 
*c represents the error penalty tuning parameter for SVM models 
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The optimal number of trees for RF models was determined to be 25, regardless of health event. 

Random forest models had the best predictive ability across all health event categories (Table 1). 

Overall, sensitivity was lower than specificity; however, sensitivity was higher for RF models 

compared to SVM models. 

Each of the models investigated herein had benefits and disadvantages. Support vector machines 

are a flexible class of models with several kernels that can be employed. These models require 

estimation of tuning parameters and results can be more difficult to interpret. Random forests were the 

most flexible models. They can easily handle a large number of variables, as well as missing records. 

Random forest models can be more difficult to interpret than a single decision tree, but tend to have 

better predictive performance and are capable of identifying influential variables. 

This study suggests that benchmarking of cow health is feasible with routinely collected data. 

Improvement in predictive ability may be possible by modeling each health event as opposed to 

grouping events into categories. Factors that predispose a cow to retained placenta, for example, may 

not be the same as factors that increase a cow’s risk of cystic ovaries. With continued development and 

incorporation of predictive models into herd management, routinely recorded herd data could be used 

in conjunction with genomic selection strategies to further improve dairy cattle health. 
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SUMMARY 

This paper summarises the findings of a number of research projects exploring the genetic 

evaluation of dairy cattle fertility in New Zealand and describes the proposed changes to the 

genetic evaluation system. The following recommendations for changes in the national genetic 

evaluation model of fertility traits were made: 1) replace the binary calving trait with its 

continuous version measured in days; 2) include records on first calving of heifers in the model; 3) 

include the information on reproductive interventions like labour inductions and mating hormonal 

synchronization for evaluating fertility phenotypes; 4) drop milk production traits from the model; 

5) retain body condition score as a predictor trait in the model; 6) add gestation length as a new 

correlated predictor trait to the model; 7) consider the inclusion of a gestation length breeding 

value (direct) in selection index. 

 

INTRODUCTION 

The reproductive performance of dairy cows is a major driver of profit in dairy farming, 

especially in seasonal, pasture-based systems, where the calving interval is essentially constrained 

to a short window around 365 days. Herds that achieve high levels of fertility (i.e. meet the 

industry target of 78% 6-week in-calf rate with minimal use of hormonal intervention) are able to 

maintain a condensed seasonal calving pattern and minimise the number of cows being culled 

involuntarily for reproductive reasons. By international standards, reproductive performance of 

dairy cows in New Zealand is high. It has, however, experienced the global decline in fertility that 

was associated with selection for high milk yields without the protection of including fertility in 

the economic selection index, known as Breeding Worth (BW; Harris and Montgomerie 2001). 

In New Zealand, fertility is currently evaluated using two binary traits: calving rate at 42 days 

(CR42; if cow calves within 42 days from the planned start of calving in parities 2 to 4) and 

percentage mated at 21 days (PM21; if the cow is presented for mating within 21 days from 

planned start of mating) in parities 1-3, along with two predictor traits: first lactation milk yield 

and body condition score (BCS). These traits indirectly measure a cow’s genetic propensity to 

return to a fertile state after calving and to become pregnant in a period that will allow her to 

maintain a 365-day calving interval. Both PM21 and CR42 have low heritability (0.05 and 0.02, 

respectively; Harris et al. 2005). 

There are potential benefits of incorporating new fertility traits into the genetic evaluation, 

particularly if these traits are more accurate measures of true fertility or if they can be measured 

earlier in the cow’s life than current mating and calving traits. A number of research projects were 

undertaken in order to explore possible improvements to the national genetic evaluation system for 

fertility. 

Bowley et al. (2015) analysed data from 169 herds participating in fertility monitoring projects 

(Brownlie et al. 2011) in the 2011 and 2012 seasons and demonstrated that redefining fertility as a 

continuous calving trait (CSD - calving season day, which is defined as the difference in days 

between planned start of calving for a given contemporary group and actual cow’s calving date) 

instead of using binary (0/1) scores as per the current trait definition could increase the accuracy of 

fertility evaluation. A heifer calving trait was also investigated and shown to have similar 
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heritability estimates to cow fertility traits. In addition, there was a relatively high genetic 

correlation between heifer and cow fertility (0.7) which means that some of the genes underlying 

cow fertility are similar to those underlying heifer fertility. Hence, the heifer fertility trait may be 

useful in predicting the estimated breeding value (EBV) for fertility of cows and young bulls 

(Pryce et al. 2007). Adjusting for reproductive interventions by setting affected calving and mating 

records to missing was also suggested (Bowley et al., 2015). Novel potential fertility traits were 

investigated and postpartum anoestrous interval was recommended to be considered as a trait with 

heritability higher than currently evaluated traits (0.08). However, its inclusion on a national scale 

would require a substantial effort by the industry to record phenotypic data. 

Stachowicz et al. (2014a) evaluated the initial finding by Bowley et al. (2015) using national 

fertility data. Firstly, this research addressed the issue of the impact of alternative approaches of 

identifying planned start of mating and planned start of calving dates for each contemporary group 

on heritability estimates of fertility traits and found minimal differences. Secondly, the genetic 

parameters PM21 and CR42 were estimated using alternative trait definitions (continuous vs 

binary vs a scoring system) to determine the best fertility traits for subsequent work. From this, it 

was recommended that the binary version of the mating trait and the continuous version of the 

calving traits should be used. Thirdly, genetic correlations of the best fertility traits with other 

fertility, production and conformation traits were estimated to identify possible predictor traits for 

fertility. Results indicated that milk yield, the current predictor trait, might be better replaced with 

protein percentage. Finally, the heritability of heifer calving season day (CSD) was estimated, as 

well as its genetic correlations with cow fertility traits and this was found to be a valuable early 

predictor trait of future cow fertility. 

Selection index modelling methods were used to investigate the impact of changes in the 

fertility genetic evaluation model on accuracy of estimated breeding values for fertility traits 

(Stachowicz et al., 2014b). The binary or continuous equivalents of the current fertility traits were 

compared, replacing milk yield with protein yield or protein percent as a predictor trait in the 

fertility model and by considering the impact of inclusion of the heifer fertility trait. The results of 

this study agreed with previous findings, that: 1) the continuous version of CR42 was a more 

accurate predictor of true fertility than the currently used binary trait; 2) including milk production 

traits in the fertility model has minimal impact on accuracy of the prediction for fertility; and, 3) 

adding the heifer calving trait increased the accuracy of cow fertility trait predictions. 

The research reported here continues the work described by Stachowicz et al. (2014a & 

2014b). Gestation length (GL) expressed as trait of the calf was investigated as a possible predictor 

trait to be included in the genetic evaluation model for cow fertility. Variance components were 

estimated and the selection index model was extended to include this trait in order to evaluate the 

impact it would have on the accuracy of the fertility breeding value prediction. 

 

MATERIALS AND METHODS 

Data. The fertility data were extracted from the New Zealand national dairy database. This 

data included records from 1989 to 2013 for cows having at least heifer calving recorded. Mating 

and calving records from the first three lactations were considered. Data edits and fertility trait 

(PM21 and CSD) definitions were described in detail by Stachowicz et al. (2014a). Gestation 

length data were included for the cows that had fertility phenotypes, as well as for all the calves 

born to those cows. Gestation length was calculated as a difference in days between last recorded 

mating and calving date. Only artificial insemination matings were included. 

Genetic analysis. Genetic analysis was carried out using ASReml software (Gilmour et al., 

2009). The fertility traits (PM21 and CSD) were analysed with the same model which corresponds 

to the one used in national genetic evaluations of fertility traits (Harris et al. 2005): 

PM21 or CSD = CG + Age*Breed + HFFR + HFNZ  
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+ HETJExNZ + HETJExFR + HETNZxFR + RECJExNZ + RECJExFR + RECNZxFR + a + e. 

Gestation length was analysed with the following direct- maternal model: 

GL = CG + SireCode + AgeD*BreedD + SexC*BreedC + dHFFR + dHFNZ + cHFFR + cHFNZ 

+ dHETJExNZ + dHETJExFR + dHETNZxFR + dRECJExNZ + dRECJExFR + dRECNZxFR  

+ cHETJExNZ + cHETJExFR + cHETNZxFR + cRECJExNZ + cRECJExFR + cRECNZxFR 

+ a + m + mpe + e, 

where: 

- CG is the fixed contemporary group effect (herd-year-age for PM21 and CSD; herd-year-

age of the dam for GL) 

- SireCode is the sire official indicator 

- Age*Breed is the fixed linear regression of age at calving in days nested within breed (for 

heifers the Julian day of the year when the cow was born was used) 

- AgeD*BreedD is the fixed linear regression of age of the dam in days nested within breed 

of the dam 

- SexC*BreedC is the fixed linear regression of sex of the calf nested within breed of the calf 

- HFNZ and HFFR are fixed linear regressions of New Zealand and foreign Holstein-Friesian 

breed composition (d for dam; c for calf) 

- HET and REC are fixed linear regressions of breed specific heterosis and recombination 

effects (d for dam; c for calf)  

- a is a random animal effect 

- m is a random maternal effect (model allowed for covariance between a and m) 

- mpe is a random maternal permanent environmental effect 

- e is a random error term. 

The multivariate animal model included 8 traits: PM21 in parities 1-3, CSD in parities 0-3 

(where 0 denotes heifer calving), and GL. 

Selection index modelling. The selection index model, as described by Stachowicz et al. 

(2014b), was extended to predict the effects of including GL as predictor a trait in the fertility 

genetic evaluation model. It was also used to assess the effects of placing direct selection emphasis 

on GL (by including it in the BW index) on the rates of genetic change that might be expected in 

GL, fertility, and the overall annualised profit from dairy cattle genetic improvement in New 

Zealand. Direct selection emphasis on GL, in addition to using it as a correlated predictor of 

daughter fertility, may be justified in the future based on the effect the bull has as a service sire on 

the fertility of the cows to which he is mated. 

 

RESULTS AND DISCUSSION 

Genetic parameters. Estimated heritabilities, as well as genetic and residual correlations are 

presented in Table 1. Gestation length is a trait with very high heritability (0.68) as well as high 

and favourable genetic correlations with evaluated fertility traits (PM21 and CSD), while 

corresponding residual correlations remain low, which makes GL a perfect candidate as a predictor 

trait for fertility traits in a multiple trait evaluation. 

Selection index modelling. These results indicate that including direct GL as a predictor trait 

in the fertility genetic evaluation model, in addition to the changes already considered by 

Stachowicz et al. (2014b), would further increase the accuracy of the fertility breeding value 

prediction. If GL was to be utilized in the BW index as well as a predictor trait in the fertility 

genetic evaluation model, then a further increase in the rate of genetic gain would be expected for 

both female fertility and GL. Including GL as a predictor trait in the fertility model and the BW 

index could increase annual industry profit by about $7 million. Including GL in the BW index 

only would allow for capturing around 20% of this amount. The phenotypic effects of GL on 

future fertility, production, survival and other traits were investigated and discussed by Jenkins et 
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al. (2015). 

 

Table 1. Residual correlations (below diagonal), genetic correlations (above diagonal) and 

heritabilities (diagonal) for PM21 in parities 1-3, CSD in parities 0-3 and GL (A=direct 

animal effect, M=maternal effect) 

 
 CSD_0 CSD_1 CSD_2 CSD_3 PM21_1 PM21_2 PM21_3 GL_A GL_M 

CSD_0 0.02 0.66 0.39 0.40 0.07 0.22 0.04 0.57 0.08 

CSD_1 0.12 0.02 0.30 0.34 -0.25 -0.03 -0.06 0.56 0.09 

CSD_2 0.00 0.34 0.01 0.70 -0.49 -0.58 -0.42 0.45 0.09 

CSD_3 0.03 0.06 0.16 0.02 -0.50 -0.47 -0.58 0.38 0.09 

PM21_1 -0.12 -0.17 -0.05 -0.01 0.03 0.54 0.52 -0.15 -0.07 

PM21_2 -0.04 -0.08 -0.16 -0.07 0.10 0.06 0.77 -0.21 -0.06 

PM21_3 -0.03 -0.06 -0.11 -0.27 0.07 0.14 0.05 -0.22 -0.07 

GL 0.01 -0.02 0.07 0.07 0.08 0.04 -0.02 0.68 -0.26 

 

 

Recommendations. Based on data from a number of research projects, the following 

recommendations for changes in the national genetic evaluation model of fertility traits are made: 

1) replace the binary CR42 with its continuous version CSD; 2) include heifer CSD in the model; 

3) include the information on reproductive interventions in fertility phenotypes; 4) drop milk 

production traits from the model; 5) retain BCS in the model; 6) add GL as a new predictor trait to 

the model; 7) consider the inclusion of a direct GL EBV in the BW index to account for the 

advantage of shorter GL sires to the cows they are mated, over and above the improvements in the 

fertility of their daughters from shorter GL. 

Future work. Variance components for the recommended model are currently being 

estimated. The next steps include the implementation of a new model for genetic evaluation to be 

run using the full national fertility data set. New results will be compared with the current genetic 

evaluation outcomes, prior to releasing new fertility breeding values to industry for consultation. 
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SUMMARY 

Using a Bayesian genomic prediction method, BayesR, we demonstrate improved accuracy of 

genomic prediction for cow fertility using high density SNP markers combined with imputed 

sequence variants in and close to gene coding regions. We also used the same analysis to identify 

candidate genes and potential causal mutations with a broad range of effects on fertility. 

 

INTRODUCTION 

Dairy cow fertility has caused much concern over the past three decades in many countries 

because it had been in decline, partly due to an unfavourable genetic correlation between fertility 

and milk traits. Accurate genomic predictions of fertility would be of great benefit to the dairy 

industry because it is measured only in mature females and has low heritability. It is also important 

to identify genes affecting fertility to better understand genetic factors that underpin the trait. 

BayesR, a Bayesian genomic prediction method, can achieve higher accuracy of genomic 

prediction compared to genomic best linear unbiased prediction (GBLUP), particularly for traits 

affected by many small effect genes as well as some of much larger effect (Erbe et al. 2012, 

Kemper et al. 2015). This occurs because BayesR models the single nucleotide polymorphism 

(SNP) effects as a mixture of four normal distributions, including a null distribution and one 

distribution with moderate to large variance. 

BayesR should also be a more precise method for QTL discovery than GWAS (genome-wide 

association analysis) or GBLUP. GWAS fits SNP individually which often results in one QTL 

being predicted by a large number of SNP in LD. GBLUP fits all SNP simultaneously but effects 

are distributed as a single normal distribution so are smeared across many adjacent SNP with 

strong shrinkage of larger effects. Furthermore, BayesR provides a well calibrated test of the 

likelihood that a SNP predicts a real QTL effect (posterior probability). 

Using BayesR we compare accuracy of genomic prediction for dairy cow fertility using high 

density SNP markers and imputed sequence variants in and close to genes. We also identify 

candidate genes and potential causal mutations associated with fertility. 

 

MATERIALS AND METHODS 

We obtained dairy bull progeny test phenotypes of female fertility for 6804 bulls, including 

5285 black and white Holsteins, 620 Red Holsteins, 803 Jerseys and 96 Australian Reds. Most 

bulls had MACE international breeding values and these were converted to de-regressed proofs 

(DRP) on the Australian scale (ie. corrected phenotypes: details in Haile-Mariam et al. (2015) – 

we used a subset of their data). The remainder (252) had daughter trait deviations (DTD) from the 

Australian Dairy Herd Improvement Scheme (ADHIS). Both the DTD and DRP were converted to 

the same scale using linear regression. The 620 Red Holsteins were our validation set and the 

remaining  bulls (6184) made up the reference set. 
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All bulls were either genotyped or imputed for the Bovine HD SNP Illumina array (“800K”) as 

described in Haile-Mariam et al. (2015). Bulls were then imputed for sequence variants in coding 

regions and in “regulatory regions” (defined as 5000bp either side of genes) using Beagle3 

(Browning and Browning 2009). Run 3 of the 1000 Bull Genomes Project was used to discover 

these variants and provided the reference Holstein and Jersey bulls for imputation (Daetwyler et 

al. 2014). The 800K and imputed sequence genotypes were combined to give a third genotype set 

(“SEQ”). Very rare variants were pruned from SEQ (minor allele frequency: MAF < 0.002) as 

well one of any pair of SNP in perfect LD, preferentially keeping non-synonymous coding variants 

and then variants in regulatory regions. A total of 907,643 SEQ variants remained, most of which 

were SNP and a small number of indels. 

BayesR was implemented as detailed in Kemper et al. (2015). Briefly we fitted the model:       

y = Xb + Wv + Za + e, where y=vector of phenotypes, X=fixed effects design matrix and 

b=vector of fixed effects (mean, breed, data type - DRP/DTD nested within breed). Here 

W=design matrix of variant genotypes centred and standardized (Yang et al. 2010) and v=vector 

of variant effects, distributed as a mixture of four distributions: N(0, 0.0σ
2
g), N(0, 0.0001σ

2
g), N(0, 

0.001σ
2
g), N(0, 0.01σ

2
g) where σ

2
g=total genetic variance. Z=polygenic effects design matrix, 

a=vector of random polygenic effects ~ N(0, Aσ
2
a), where A=pedigree relationship matrix and 

σ
2
a=additive genetic variance not explained by the genotypes. e=vector of residual errors ~ N(0, 

Eσ
2
e) where E=diagonal matrix with a weighting coefficient based on effective number of 

daughter records per bull (Garrick et al. 2009). Analyses were performed with 50K, 800K or SEQ 

genotypes, each running for 40,000 iterations (20,000 discarded as burn-in) with 5 replicates per 

analysis. Results were derived from the mean of 20,000 iterations, averaged over all replicates. 

The posterior probability of a given SNP being included in the model was calculated as the 

proportion of iterations (post burn-in) that each variant fell in a non-zero distribution (averaged 

across replicates). Accuracy of genomic prediction was estimated as the correlation between 

predicted breeding value and corrected phenotypes. The mean squared error of the prediction for 

each analysis was calculated as the average of the squared difference between predicted breeding 

value and phenotype. 

 

RESULTS AND DISCUSSION 

There was a clear trend for the accuracy of genomic prediction to increase with the density of 

genotypes (Table 1). The highest accuracy was achieved using SEQ genotypes, possibly because 

some causal mutations were included in the SEQ data. Also the imputed sequence included many 

more rare variants than in the 50K or 800K data (Table 1). Therefore, SEQ is more likely to 

include variants in strong LD with other rare/recent mutations, including rare causal mutations, 

than common SNP on the 50K or 800K arrays. 

 

Table 1. Genomic prediction using different densities of genotypes 

Genotype Sets (Total number variants) 50K (37,236) 800K (600,640) SEQ (907,643) 

Proportion of variants with MAF1 < 0.05 11% 7% 22%  

Accuracy of Genomic Prediction (s.e.m.2) 

Mean Squared Error of prediction   

0.386 (0.0008) 

166 

0.418 (0.0004) 

148 

0.440 (0.0012) 

144 
1 Minor Allele Frequency  
2 Calculated as: SD of accuracy from 5 replicates divided by √5 

 

To better understand the contribution of sequence variants in and near coding regions, we 

tested the accuracy of prediction in the validation set using only the top 5000 variants (based on 

posterior probabilities) from either: 
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A. Non-synonymous coding variants and variants within 5000bp of genes, or 

B. Intergenic variants excluding regions close to genes (±5000bp). 

Prediction accuracy for group A = 0.35 while B = 0.27. When sets A and B were combined, 

prediction accuracy = 0.39. The high LD in the cattle genome means that there is considerable 

overlap in the predictions from set A and B. However, the results do suggest that variants in and 

close to coding regions explain a large proportion of the trait variance but that intergenic regions 

are also important in regulating trait expression, in keeping with evidence from the human 

ENCODE project (Skipper et al. 2012). The fertility trait appeared to be highly polygenic, with an 

average of 3305 SNP effects fitted in the model. This is expected because the fertility trait was 

largely based on calving interval: a complex trait influenced by many factors such as cow energy 

balance, oocyte health and embryo development. 

In Figure 1 we present some examples of QTL discovery from among the 50 most significant 

QTL regions occurring within 5000bp of a gene: first to demonstrate the advantages of our 

approach and second to illustrate the range of genetic factors that underpin the complex female 

fertility trait. 

Several regions only showed strong evidence for QTL in the SEQ analysis, demonstrating the 

improved power of SEQ genotypes. One example (Fig. 1a) is a rare variant in the 3 ꞌ UTR of the 

SCARA5 gene showing a strong probability of being either the causal variant or one in strong LD 

with a QTL. This SNP is likely a relatively recent mutation because it segregated only in the black 

and white Holsteins (MAF=0.08) and was not in strong LD with any other SNP. SCARA5 

expression is upregulated in human endometrium tissue when an early embryo is present (Duncan 

et al. 2011), and was also found to be more highly expressed in bovine ovary tissue compared to 

17 other tissues (Chamberlain et al. 2014). A second example (Fig 1b) is two SEQ variants in high 

LD (Holstein only, MAF=0.025). The highest probability variant lies between SMEK1 and 

CCDC88C gene, while the other is a missense mutation in SMEK1. Potentially either gene could 

be considered to be a good candidate. CCDC88C is a negative regulator in the Wnt signalling 

pathway that regulates embryo germ cell development (Enomoto et al. 2006). SMEK1 has been 

demonstrated to regulate hepatic gluconeogenesis in mice (Yoon et al. 2010) and also appears to 

regulate the differentiation of embryonic stem cells (Lyu et al. 2011). In an analysis of the same 

data for milk traits (results not shown), these same mutations have a strong association with milk 

yield and the allele that increased milk yield reduced fertility. 

A further region that showed a strong association for fertility and milk yield is between the GC 

and NPFFR2 genes (Fig. 1c). There is strong LD across this region and the association was spread 

across several variants. Again both genes are potentially good candidates: GC encodes Vitamin D 

transporter and disruption of the Vitamin D pathway affects oestrogen biosynthesis, while 

NPFFR2 interacts with kisspeptin which plays a key role in neuroendocrine regulation of 

reproduction (Matzuk and Lamb 2008). A number of regions on the X chromosome showed 

several strong QTL signals including SNP very close to KAL1 (Fig 1d) and UBE2A. In humans 

several mutations in KAL1 are responsible for “Kallmann syndrome”, affecting the embryonic 

migratory pathway of neurons that synthesize gonadotropin-releasing hormone (Hardelin et al. 

1992). This results in impaired gonad development in males and females. Mutations in UBE2A 

have been shown to be associated with maternal effects on early embryo survival (Matzuk and 

Lamb 2008). 

The validity of our results are dependent on the accuracy of imputation and reference genome 

annotation, neither of which is perfect. However, this study demonstrates that imputed sequence 

genotypes with Bayesian analysis improved the accuracy of genomic prediction and the QTL 

discovery highlighted a broad range of genetic factors potentially affecting dairy cow fertility. 

 

 

Reproduction, behaviour and health

376



 
 

Figure 1. QTL discovery: The variant with the highest BayesR posterior probability is annotated 

and shown as purple diamond, and the LD (r
2
) between this and other variants is colour coded. 

Genes are shown in blue with exons delineated by thicker bars. 
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SUMMARY 

In this study, we aimed to develop genomic estimated breeding values for heat tolerance in 

Australian dairy cattle. We combined test-day herd recording data with temperature and humidity 

measurements (in the form of temperature-humidity index or THI) from weather stations that were 

closest to the herds for test days between 2003 and 2013. Tolerance to heat stress was then 

estimated for each cow using random regression (intercept and slope) to model the rate of decline 

in production with increasing THI accumulated over the four days prior to the day of milking, for 

milk, fat and protein yields. The cow slopes from this model were used to define daughter trait 

deviations (DTD) for their sires. Data were analysed separately for Holsteins and Jerseys. The 

reference population for genomic prediction was 2,300 Holstein and 575 Jersey genotyped sires 

with DTD for response to heat stress for milk, fat and protein yield. With this reference, and using 

GBLUP, the range in accuracy of genomic predictions for heat tolerance across traits were 0.38 – 

0.53 and 0.49 – 0.63 for 435 Holstein and 135 Jersey validation sires, respectively. When 2,191 

Holstein and 1,190 Jersey cows were added in the reference populations, no substantial 

improvements in accuracy were observed. Genomic selection appears to be a useful tool to enable 

farmers to improve milk production in environments with higher heat load. 

INTRODUCTION 

Changes in environmental factors such as air temperature, humidity, air flow and radiation 

beyond the comfort zone of animals will lead to heat stress (Armstrong 1994). Heat stress in dairy 

cattle is an important issue as it results in reduced milk yield (Hayes et al. 2003), reduced fertility 

(Haile-Mariam et al. 2008) and therefore reduced profitability (St-Pierre et al. 2003). As the 

temperature in Australia is projected to continue to increase, the future of dairy farming will need 

measures to adapt to heat stress. 

One way to address the challenge posed by heat stress is to apply management measures such 

as providing shade, fans and sprinklers to cows. Another approach that may have greater benefits 

in the long term is to select animals with better heat tolerance, as it has been demonstrated that 

variation in heat stress response is heritable (Hayes et al. 2003; Haile-Mariam et al. 2008). That is, 

production and fertility of some animals are less affected by heat stress than others and therefore 

these animals could be valuable candidates for selection. The genetic gain for heat tolerance will 

be greatest if accurate genomic estimated breeding values are available, as this will enable 

selection of young bulls and heifers. 

In this study, we used dense DNA markers, together with field production and climate data, to 

develop GEBV for heat tolerance for dairy cattle in Australia. 

MATERIALS AND METHODS 

Hourly climate data including dry bulb temperature and relative humidity (%) were obtained 

from the Bureau of Meteorology (Melbourne, Australia) for all weather stations in Australia from 

2003 to 2013. Average temperature-humidity index (THI) on the test day and 1, 2, 3 and 4 d 
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before the test day were calculated following Hayes et al. (2009). The first-lactation test-day 

records between 2003 and 2013 for milk, protein and fat yield were extracted from the Australian 

Dairy Herd Improvement Scheme (ADHIS) database for Holstein and Jersey cows. Production 

records were merged with THI from the nearest weather station, or the second nearest station if it 

had a lower number of missing records. In total, THI from 105 weather stations were matched to 

production records of 1,655 Holstein and 501 Jersey dairy herds. 

In our dataset, genotypes were available for a total of 2,735 Holstein and 710 Jersey sires. 

Illumina Bovine High-Density genotypes (777,963 SNP markers) were available for 1,620 of the 

Holstein sires and 125 of the Jersey sires. For all other sires, 50K (56,430 SNP) genotypes were 

available. After quality control and removal of non-polymorphic SNPs, 632,004 SNPs remained 

for animals genotyped at high density and 43,425 SNP remained for animals genotyped at the 

lower density. All animals genotyped at the lower density had genotypes imputed to the higher 

density SNP panel using BEAGLE 3 (Browning and Browning 2009).  

All statistical analyses were undertaken separately for Holstein and Jersey. Mixed linear 

models were used to fit the data with variance components estimated using maximum likelihood in 

ASReml (Gilmour et al. 2009).  

A random regression model was used to derive individual cow sensitivity to changes in THI of 

milk, fat and protein yields (i.e. the slope of the regression, or cow slope): 𝑦𝑖𝑗𝑙 = 𝜇 + 𝐻𝑇𝐷𝑖 +

𝑌𝑆𝑗 + ∑ 𝐴𝑛𝑋𝑛
3
𝑛=1 + ∑ 𝐷𝑛

8
𝑛=1 𝑍𝑛 + ∑ 𝑃𝑙𝑛𝑊𝑛

𝑙
𝑛=0 + 𝑒𝑗𝑙𝑖  (model 1), where 𝑦𝑖𝑗𝑙  is yield of milk in 

litres, fat in kg x100 or protein in kg x 100 from the 𝑖𝑡ℎ herd test day, 𝑗𝑡ℎ year season of calving, 

and 𝑙𝑡ℎ cow in her first lactation; µ is the intercept, 𝐻𝑇𝐷𝑖 is the effect of the 𝑖𝑡ℎ herd test day; 𝑌𝑆𝑗 

is the effect of the  𝑗𝑡ℎ year season of calving; 𝑋𝑛 is the  𝑛𝑡ℎ-order orthogonal polynomial 

corresponding to age on day of test; 𝐴𝑛 is a fixed regression coefficient of milk/fat/protein yield on 

age at test; 𝑍𝑛 is the  𝑛𝑡ℎ-order orthogonal polynomial corresponding to days in milk (DIM) at test; 

𝐷𝑛 is a fixed regression coefficient of milk/fat/protein yield on DIM; 𝑃𝑙𝑛 is a random regression 

coefficient on THI for the  𝑙𝑡ℎ cow; 𝑊𝑛 is either the intercept or slope solution for heat load index 

for cows; and 𝑒𝑖𝑗𝑙  is the vector of residual effects. In this random regression model, all THI values 

below 60 were set to 60 (Hayes et al. 2009). 

The effects of the sires (sire slope) to sensitivity of milk, protein and fat yield of cows to 

changes in THI were obtained using the following model:  
𝑦𝑖 = 𝜇 + 𝑆𝑖𝑟𝑒𝑖 + 𝑒 (model 2), where, 𝑦𝑖  is a vector of slope value for a daughter of the i

th
 sire 

obtained from model 1, 𝑆𝑖𝑟𝑒𝑖 is the effect of the i
th

 sire on cow slope ~ 𝑁(0, 𝜎𝑠
2), 𝑒 is the vector of 

residuals ~ 𝑁(0, 𝑰𝜎𝑒
2) where I is identity matrix and 𝜎𝑒

2 is residual variance.  

Proportion of additive variance in cow slope was calculated as 4 times of sire variance divided 

by total variance obtained from model 2. 

To assess the accuracy of using genomic breeding values to predict heat tolerance, in each 

breed, the sires were split into a reference and a validation population. These populations were 

split by age, with sires born before 2005 included in the reference population, and sires born in or 

after 2005 placed in the validation population for Holsteins; sires born before 2004 were included 

the reference population, and sires born in or after 2004 were placed in the validation population 

for Jerseys. Sires that are paternal half-sibs were placed in either the reference set or the validation 

set. The genomic breeding values (GEBV) of the validation sires (the phenotype of which were not 

included in the analysis), were estimated by GBLUP using model: 𝑦 = 𝜇 + 𝑍𝑔 + 𝑒 (model 3), 

where 𝑦 is a vector of sire slope values (solutions for model 2), 𝜇 is the intercept, 𝑍 is a design 

matrix relating records to genomic breeding value of animals, 𝑔 is a vector of genomic breeding 

values ~ 𝑁(0, 𝑮𝑹𝑴𝜎𝑔
2), where 𝑮𝑹𝑴 is the genomic relationship matrix, 𝜎𝑔

2 is the additive genetic 

variance captured by SNP, and e is a vector of random residuals ~ 𝑁(0, W𝜎𝑒
2), where W is identity 
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matrix and σe
2
 is residual variance. The genomic relationship matrix (GRM) was constructed 

amongst all genotyped individuals following Yang et al. (2010). 

Proportion of additive variance of sire slope that is explained by SNP was calculated as 

additive variance divided by total variance obtained from model 3. 

In some analyses the genotyped cows were used in the reference population as well as 

reference sires, and in this case cows that were daughters of validation bulls were excluded from 

the analyses. A similar model to model 3 was fitted to the reference data, but in this case the 

difference in residual variances for bull and cow phenotypes were taken into account by 

constructing the diagonal matrix 𝑾 as 𝑔(1 𝑤𝑖⁄ ) , where 𝑤𝑖  is the weighting coefficient for the 𝑖𝑡ℎ 

animal. Weighting coefficient was calculated differently for bulls and cows following Garrick et 

al. (2009), as follows: 

𝑤𝑖(𝑏𝑢𝑙𝑙𝑠) =  
1−ℎ2

𝑐ℎ2+ 
4−ℎ2

𝑝

       ;    𝑤𝑖(𝑐𝑜𝑤𝑠) =  
1−ℎ2

𝑐ℎ2+[
1+(𝑛−1)𝑡

𝑛
−ℎ2]

 

where ℎ2is the heritability of heat tolerance, 𝑐 is the proportion of variance not explained by SNP 

(𝑐 =0.2), 𝑑 is the effective number of daughters, 𝑛 is the number of repeat records (i.e. lactations),  

𝑟 is the number of records per cow, and 𝑡 is the repeatability of the trait (average repeatability for 

cow slopes in relation to milk, fat and protein was 0.34 for Holsteins and 0.44 for Jerseys in the 

current datasets). 

The accuracy of genomic prediction was taken as the correlation of the genomic estimated 

breeding values, and the slopes for the validation sires (from model 2), divided by square root of 

the proportion of variance of sire slope explained by SNP obtained from model 3.  

RESULTS AND DISCUSSION 

 

Table 1. Correlations between sire slopes and GEBV, and accuracies of genomic estimated 

breeding values using 632,004 SNP panel for heat tolerance on milk, fat and protein yield 

using GBLUP 

 
Breed Reference Validation Production 

traits affected 

by heat stress 

Correlation Accuracy 

Holstein  2,300 sires 435 sires Milk yield 0.26 0.46 

   Fat yield 0.22 0.38 

   Protein yield 0.26 0.47 

 2,300 sires + 2,191 cows 435 sires Milk yield 0.27 0.48 

   Fat yield 0.22 0.38 

   Protein yield 0.29 0.53 

      

Jersey  575 sires 135 sires Milk yield 0.34 0.49 

   Fat yield 0.40 0.60 

   Protein yield 0.42 0.63 

 575 sires + 1,190 cows 135 sires Milk yield 0.39 0.56 

   Fat yield 0.39 0.60 

   Protein yield 0.43 0.64 

 

There was substantial test-day milk, fat and protein yield variation in the datasets. In all dairy 

farming regions of Australia, cows experienced some degree of heat stress, which was variable 

among regions. For example, in Queensland the median of daily temperatures and THI were 20.7 

and 67.3, respectively. Northern Victoria experienced a wide spectrum of weather conditions, with 
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average daily temperatures ranging from -5°C to 38°C (median of 13°C), and THI ranging from 

33.8 to 81.0 (median 56.6). 

The proportion of additive variance in cow slope in relation to milk, fat and protein yields 

were 0.14, 0.16 and 0.13 in Holsteins and 0.27, 0.26 and 0.21 in Jerseys, respectively. The 

corresponding proportions of variance explained by SNP in sire slope were 0.32, 0.34 and 0.30 in 

Holsteins and 0.49, 0.44 and 0.45 in Jerseys. This confirms that selection for heat tolerance is 

possible and could be particularly effective in the geographical regions with high heat load. 

Correlations of sire slopes among milk, fat and protein yield ranged from 0.46 – 0.86 for Holsteins 

and 0.60 – 0.86 for Jerseys. 

Genetic correlations between heat tolerance and production traits in cows were negative. For 

example, in Holsteins the correlations between heat tolerance with milk, fat and protein yields 

were -0.38, -0.40 and -0.54, respectively. This confirms the antagonistic relationships between 

heat tolerance and production traits reported in previous studies (Ravagnolo and Misztal 2000). 

Correlations between sire slopes and GEBV, and accuracies of genomic prediction are 

presented in Table 1. When only genotyped sires were included in the reference population, 

accuracies of genomic prediction ranged from 0.38 to 0.53 in Holsteins and 0.49 to 0.63 in Jerseys. 

When the reference set was expanded to include genotyped cows, the accuracies of genomic 

predictions showed a slight increase in some cases but not all. 

The accuracies of genomic predictions for heat tolerance we have reported indicate that 

genomic selection offers a promising tool to predict heat tolerance for individual animals based on 

their genotypes. This will enable farmers to improve the milk production at higher heat load 

conditions of their herd over time through selection decisions. 
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SUMMARY 

Lactation anoestrous interval (time from the beginning of the annual mating period to the 

identification of the cows’ first subsequent corpus luteum by ultrasound scanning) was measured 

in 898 Brahman females. Previous analyses, including genomic prediction, were performed using 

a trait defined in cows which successfully weaned a calf (as 3 year olds) from their first mating 

(LAI: n = 629). The current study expanded this dataset by including an additional 269 records for 

cows from the same experiment, whose first calf was weaned from their second annual mating, 

increasing the number of records for the new trait (LAI12) to 898. Heritability for LAI12 (0.43 ± 

0.13) was consistent with the previous estimate for LAI (0.51 ± 0.18). A genome wide association 

study identified more significant SNPs at the P < 0.01 level for LAI12 (n = 16,886) than were 

previously identified for LAI (n = 597). Importantly, a five-fold cross-validation analysis showed 

that the accuracy of genomic EBVs was increased from 0.14 to 0.24. Expanding the definition of 

lactation anoestrous interval to that described for LAI12 identified more significant SNPs 

associated with the trait and increased the accuracy of the associated genomic EBVs for lactation 

anoestrous interval.  

 

INTRODUCTION 

Female reproduction is a key driver of profitability for beef producers in northern Australia. 

Research examining the genetics of reproductive traits in northern Australia’s tropically adapted 

beef cattle has shown that extended post-partum anoestrous intervals contributed significantly to 

low weaning rates (Baker 1969; Entwistle 1983). This was more recently confirmed by Johnston et 

al. (2014) who showed that lactation anoestrous (LAI: a measure in lactating first calf females of 

the time in days between the start of the second annual mating period and the estimated date of 

first ovulation based on regular ultrasound scanning to detect ovarian function) was more heritable 

(h
2
 = 0.51) than measures of net female reproduction traits. The study also showed that in 

Brahman females, lower (more favourable) LAI was significantly genetically associated with 

higher lifetime calving and weaning rates (rg = -0.71 ± 0.21 and -0.62 ± 0.24 respectively) in 

Brahman cows. However, in the cows examined for that study, reproductive rates from their first 

mating meant that only 63% of females (n = 629) were eligible to receive a LAI record.  

Hawken et al. (2012) conducted a genome wide association study to identify single nucleotide 

polymorphisms (SNPs) which explained genetic variation for a range of female reproduction traits 

in the same females described by Johnston et al. (2014), and Zhang et al. (2014) estimated 

genomic breeding values, and their accuracy, from the same data. This research showed that some 

opportunities exist to exploit genomic selection for female reproduction, but that LAI had the 

lowest accuracy of genomic prediction (0.14) due, in part at least, to low numbers of records for 

the trait. This study, therefore, aimed to maximise the data which could be analysed for lactation 

anoestrous interval in Brahman females by re-defining a trait to include records from cows which 

failed to wean a calf from their first annual mating, to estimate variance components for this trait 

and to determine whether it can improve the accuracy of genomic prediction in Brahman cattle. 

 

_____________________________  
* AGBU is a joint venture of NSW Department of Primary Industries and the University of New England 
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MATERIALS AND METHODS 

Animals and measurements. Animals evaluated for this study were a subset of the Brahman 

females (N = 1,026) from the Co-operative Research Centre for Beef Genetic Technologies 

Northern Project. Breeding and management of heifers up to their first annual mating was 

described by Barwick et al. (2009), and Johnston et al. (2009; 2014) described management 

through their first (as 2 year olds), and subsequent matings. Cows which failed to wean a calf in 

consecutive years were removed from the experiment, which meant that no culling on the basis of 

reproductive performance was undertaken in females prior to their second annual mating. At the 

start of the second and subsequent annual mating period, regular ultrasound scanning of the 

ovaries to identify the presence of a corpus luteum was undertaken in lactating cows. This 

identified the onset of cycling and this interval defined LAI (Johnston et al. 2014). For the current 

analysis, females whose first calving and lactation was the result of their mating as 3 year olds (i.e. 

for cows which failed to wean a calf from their first mating) also had a record included in the 

analysis of lactation anoestrous interval. All records for this trait (LAI12) were for the animal’s 

first lactation, and no cow had more than one record included in the analysis. 

 

Statistical analysis. Fixed effect modelling for LAI12 followed the protocols described by 

Johnston et al. (2014) for LAI, and initially included descriptors of the cow (property of origin (4 

levels), month of birth (5 levels), dam age (7 levels), mating group (26 levels)), and the calf (calf 

month of birth (5 levels) calf sex (2 levels)), and all first order interactions. For females whose 

LAI12 record was from their mating as 3 year olds, mating group described both current and 

previous mating groups, ensuring that cows which had a record from their first mating were never 

analysed in the same contemporary group as those whose record came from their second mating. 

Terms were sequentially dropped from the model based in order of non-significance, with final 

models containing effects which were significant descriptors of systematic variation in LAI12 at P 

< 0.05. Following the methods described by Johnston et al. (2014), variance components for LAI 

and LAI12 were calculated in ASReml (Gilmour et al. 2009), with animal fitted as random and 

relationships between animals described using a three generation pedigree. 

 

Genotyping and genome wide association study (GWAS). The Beef CRC database includes 

high density Illumina genotypes (HD: 729,068 SNPs) for 1137 animals, with a further 14, 110 

imputed to this level from the results of Illumina 50K SNP chips using the BEAGLE software 

package, with an accuracy of 90% (as described by Bolormaa et al. 2013). Of the 898 BRAH 

females with a record for LAI12, 875 had genotypes which could be analysed for this study. 

Thirteen percent of these were from the HD SNP chip, with the remainder imputed from 50K. 

SNPs with low minor allele frequencies (< 0.05) were excluded from the analyses. The magnitude 

and significance of SNP effects were estimated as the solutions for each SNP when fitted as a 

fixed effect in a model with animal fitted as random and including all significant descriptors of 

environmental variation. The expected false discovery rate (FDR) was calculated as FDR = p(1-

s/t)/[(s/t)(1-p)], where p is the threshold significance level tested (e.g. 0.001), s is the number of 

significant markers, and t is the total number of markers evaluated. 

Genomic estimated breeding values (GEBV) for LAI12 were calculated using genomic best 

linear unbiased prediction (GBLUP). The genomic relationship matrix was fitted as a random 

effect to estimate GEBVs (Zhang et al. 2014), using the method described by Yang et al. (2010), 

and inverted using the Wombat software package (Meyer 2007). GEBV Accuracy (ACC) was 

estimated as ACC = r / h, where r is the correlation between GEBVs and phenotypes and h is the 

square root of the heritability. The accuracy reported for this study is the mean of five estimates 

from a five-fold cross validation of GEBV estimates (Zhang et al. 2014). 
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RESULTS AND DISCUSSION 

Table 1 presents the number of observations and descriptive statistics for LAI (from Johnston 

et al. (2014)) and LAI12. By including results for Brahman cows whose first lactation was from 

their second annual mating, the number of records available for analysis increased from 629 to 898 

(by 43%), with LAI12 displaying a lower mean and slightly lower standard deviation than LAI. 

This shows that when Brahman cows’ first lactation was from their second annual mating, 

lactation anoestrous interval was shorter than for cows when the trait was from their first annual 

mating. As more data becomes available for lactation anoestrous, it may be appropriate to test 

whether first lactation anoestrus records from the first and second annual mating were the same 

trait, and consider running a bivariate analyses if the relationship proved to be less than unity. 

 

Table 1. Number of records (N), mean and standard deviation (s.d.), with additive and 

phenotypic variances (σ2
a and σ2

p) and heritability (h
2
) (standard error in parenthesis) for 

LAI and LAI12. 

 

Trait N Mean s.d. σ
2
a σ

2
p h

2
 

LAI
† 
(days) 629 134 109 5238 10271 0.51 (0.18) 

LAI12 (days) 898 116 106 4115   9482 0.43 (0.13) 
†
 From Johnston et al. (2014) 

  

Table 1 also presents the additive and phenotypic variances for LAI and LAI12, and the 

resultant heritabilities for the traits. These show that expanding the definition of lactation 

anoestrous did not significantly change its heritability suggesting that selection to improve the trait 

would be similarly effective for LAI and LAI12.  

 

Genome wide assessment of SNP effects for LAI12. The numbers of significant SNPs at 

levels from P < 0.01 to 0.00001, and the proportion in each of these categories expected to be 

identified by chance, are presented in Table 2. The magnitudes of SNP significance estimated in 

the current experiment were, higher than those reported for LAI in the study of Hawken et al. 

(2012), where only 530, 66 and 3 SNPs significant at the p < 0.01, 0.001 and 0.0001 levels were 

reported. 

 

Table 2. Number of significant SNPs from genome wide association study (GWAS) for 

LAI12 in Brahman cows, and the proportion which could be expected as false positives 

(FDR) at significance levels from P < 0.01 to P < 0.00001. 

 
GWAS outcomes N (MAF > 0.05) ‡ P < 0.01 P < 0.001 P < 0.0001 P < 0.00001 

  SNPs Observed 567,445 14,449 2,127 289 21 

  FDR   0.38 0.27 0.20 0.27 
‡
 Total number of SNPs included in the analysis with minor allele frequency greater than 0.05 

 

Similarly, the FDR for LAI12 from the current study represents a marked improvement for 

those reported by Hawken et al. (2012) for LAI at the 0.001 and 0.0001 levels of 0.67 and 1.00 

respectively. These results suggest that expanding the definition of lactation anoestrous to include 

results for cows whose first calf was from their second annual mating, increased the capacity of 

genotypic data to describe genetic variation in lactation anoestrous in Brahman females.  

 

Accuracy of genomic estimated breeding values for LAI12. The results of the five-fold 

cross-validation showed that the accuracies for GEBV for LAI12 in Brahman was 0.24. This result 
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was higher than the accuracy of 0.14 reported by Zhang et al. (2014) when the trait was defined 

exclusively in cows which had successfully weaned a calf from their first annual mating. Given the 

high inputs in management, operator expertise and therefore cost associated with accurate 

measurement of lactation anoestrous, the opportunity to evaluate the trait using genomic 

technologies is particularly attractive. The results of this study show that by expanding the 

definition of the trait to include data from cows whose first lactation was from their second annual 

mating, the accuracy of genomic breeding values was increased by a factor of almost 60%. 

 

CONCLUSIONS 

Lactation anoestrous is an important determinant of reproductive performance in northern 

Australia’s Brahman cattle population. Results of this study have shown that expanding the 

definition of the trait to include results from cows whose first lactation was from their second 

annual mating, increased the number of records available for analysis while not significantly 

changing heritability for the trait. A genome wide association study showed that more significant 

SNPs were identified for LAI12 than were found for LAI. Importantly, the accuracy of genomic 

breeding values estimated for LAI12 were also significantly higher than those estimated for LAI. 

Lactation anoestrous is a difficult and time consuming trait to measure accurately, particularly 

under the extensive conditions which prevail in northern Australia. As more data becomes 

available for the trait from research, beef information nucleus and seedstock herds, genomics will 

provide opportunities to improve lactation anoestrous in Brahman cattle by selection. 
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PREDICTIVE POWER ACROSS FLOCKS IN THE PRESENCE OF GxE 

L. Li
1,3

, A.A. Swan
1,3

, D.J. Brown
1,3

 and J.H.J. van der Werf
2,3

 

1
Animal Genetics and Breeding Unit


, University of New England, Armidale, NSW 2351 

2
School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351 

3
Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351 

 

SUMMARY 

Genotype by environment interactions (GxE) for worm egg count (WEC) in Merino sheep 

were estimated in eight environments across Australia from the Sheep CRC Information Nucleus 

flock (IN). Genetic correlations between environments were estimated using a factor analytic 

model, with mean correlations for each environment ranging from 0.27 to 0.57 for an overall mean 

of 0.40, confirming the presence of large GxE effects for WEC. The industry genetic evaluation 

model for WEC fits a direct genetic effect averaged across environments, which is reported back 

to breeders as the Australian Sheep Breeding Value (ASBV), with a sire by environment 

interaction term to accommodate deviations in performance (not reported to breeders). This model 

was validated using the IN data, with results demonstrating that the average genetic effect does 

retain predictive power across environments, albeit with lower accuracy due to a lower heritability 

observed in the sire interaction model when GxE effects are large. 

 

INTRODUCTION 

Gastrointestinal parasites cause significant economic losses to the Australian sheep industry, 

and part of the integrated control strategy to reduce these losses is selection of sheep which are 

resistant to infection (e.g. Eady et al. 1996; Gray 1997). The MERINOSELECT and LAMBPLAN 

across flock genetic evaluation services (Brown et al. 2007) provide Australian Sheep Breeding 

Values (ASBVs) for worm egg count (WEC), and these allow ram breeders to identify genetically 

resistant sheep. WEC is a highly variable trait and measurements in different environments are 

affected by a number of different factors, including climatic conditions, worm species, treatment 

strategies, grazing management and host-parasite interactions. Previous studies based on the 

MERINOSELECT database have shown significant GxE (Pollot and Greef 2004; Carrick and van 

der Werf 2007), but are limited by the number of sires used across environments. The Sheep CRC 

Information Nucleus (van der Werf et al. 2010) is an ideal resource to study GxE with a large 

number of sires progeny tested across eight locations that represent the diversity of Australian 

sheep production environments. In this study we estimated genetic correlations for WEC across 

the eight “environments” in the Information Nucleus, and evaluate the impact of significant GxE 

on the genetic evaluation model used to estimate WEC ASBVs. 

 

MATERIALS AND METHODS 

Information Nucleus data description. Worm eggs were counted using a modified McMaster 

technique and included three species, H. contortus, T. colubriformis, and T. circumcincta. Faecal 

samples were collected from individual animals when the average of their cohort group exceeded a 

threshold of 500 eggs per gram (epg). The analyses included 8,509 records from the post-weaning 

stage (average age 131 days, with a range of 61 to 222 days), collected between 2007 and 2012. 

The animals represented were the progeny of Merino, Dohne Merino, and SAMM sires mated to 

Merino dams. They were located at eight sites across Australia and these represent the diversity of 

                                                           
 AGBU is a joint venture of NSW Dept. of Primary Industry and the University of New England 

Reproduction, behaviour and health

386



sheep production environments, and for the purposes of this study sites are defined as 

environments in the GxE sense. A summary of the numbers of animals and sires represented at 

each site is shown in Table 1. The total number of sires in the study was 308 and the number of 

sires used across pairs of sites ranged from 24 to 184. Where available, larval species 

differentiation by site and year of birth showed that a mixture of T. colubriformis and T. 

circumcincta was most common, with H. contortus observed in significant numbers only at two 

sites in a single year for each. WEC data were transferred to the cube root scale for analysis. 

Estimation of the genetic correlation between environments. Factor analytic models which 

are known for the parsimonious description of covariance structures and computational advantages 

(Meyer 2009) were fitted to the data from all sites using the ASReml software package (Gilmour 

et al. 2009). Fixed effects included contemporary group, formed using management group, site, 

year, sex, breed type (Merino, Dohne, SAMM) and date of measurement (252 levels), birth type (5 

levels: 1-5), rearing type (3 levels: 1-3), age of measurement (in days) fitted as a covariate and 

dam age (2-10 years) fitted as linear and quadratic covariates. The random sire × site effect was 

modelled with a factor analytic covariance structure (FA). A model with a single common factor 

was selected on the basis of the log-likelihood ratio tests. Heterogeneous residual variance was 

fitted in the model at the site level. 

Evaluating the impact of GxE in across-flock genetic evaluations. The MERINOSELECT 

and LAMBPLAN genetic evaluation systems analyse WEC in a multi-trait model, where the traits 

are defined by age of measurement in four age stages: weaning, post-weaning, yearling and hogget 

WEC. For each stage, the model includes a direct additive genetic effect and a sire by flock-year 

interaction effect. The direct additive genetic effect is reported as the WEC ASBV, while the sire 

interaction effect is included in the model to account for deviations in performance. These can 

arise in individual flock-year subclasses due to effects such as GxE, incomplete recording and 

preferential treatment of sire progeny groups, and is not reported to ram breeders. With this 

approach, the evaluation model is capable of adjusting for GxE to a degree, such that ASBVs 

represent an average genetic merit across the environments in which animals are evaluated. 

Provided the effects of GxE are not too large, it is thought that this is a reasonable approach. 

In order to quantify the predictive power retained by WEC estimated breeding values (EBV) in 

the presence of GxE, we tested this model using a cross-validation procedure using IN post-

weaning WEC data. Firstly, we fitted a single trait animal model including a random sire x site 

interaction term, with fixed effects as described above, to data from seven of the eight sites. We 

then calculate the regression of progeny performance in the eighth site on the sire EBVs from the 

seven site analysis, which has an expected value of 0.5. The process was then repeated for all sites. 

 

RESULTS AND DISCUSSION 

The results from univariate analyses for each site show that mean WEC
0.33

 was considerably 

higher for Kirby and Turretfield (>10 epg
0.33

) than the other sites which averaged 7.3 epg
0.33

 (Table 

1). Phenotypic variances also differ significantly across sites, ranging from 3.42 for Rutherglen to 

8.34 for Struan. Heritability estimates were low to moderate across sites, ranging from 0.05 ± 0.11 

for Hamilton to 0.58 ± 0.07 for Katanning. Generally low to moderate genetic correlations were 

observed across sites, with the mean correlation for each site with all other sites varying from 0.27 

to 0.57 (Table 1), and correlations between individual pairs of sites ranging from 0.21 to 0.85 (not 

shown). Although the standard errors of genetic correlation estimates were comparatively high due 

to the relatively small dataset, the mean estimates for each site with all other sites shown in the last 

column of Table 1, were significantly lower than 0.8 for four out of eight sites. With 0.8 the 

commonly accepted threshold considered to show biological importance (Robertson, 1959), the 

results confirm the presence of significant GxE for WEC. This is consistent with two other studies 

on GxE in Merinos (Pollot and Greef 2004; Carrick and van der Werf 2007). One of the alternative 
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methods to account for GxE in the genetic evaluation system is the multiple-trait MACE method 

(Schaeffer, 1994). However, the main difficulty for this trait is how to classify environments, 

given that there is no obvious pattern in this dataset in terms of the associations between the extent 

of genetic correlation and geographical or climatic information (results not shown). 

 

Table 1. Number of records, sires, mean of WEC
0.33

, and estimates of the phenotypic 

variance (Vp), heritability (h
2
), and mean GxE genetic correlation (rg) between environments 

at each site. Standard errors in brackets (s.e.) 

Site Location Records Sires Mean Vp (s.e.) h2 (s.e.) Mean rg (s.e.)A 

1 Kirby NSW 2482 296 10.8 8.16 (0.24) 0.22 (0.05) 0.36 (0.19) 

2 Trangie NSW 672 69 6.0 4.97 (0.28) 0.21 (0.08) 0.46 (0.25) 

3 Cowra NSW 575 89 6.9 6.20 (0.38) 0.21 (0.10) 0.49 (0.26) 

4 Rutherglen VIC 845 106 7.7 3.42 (0.18) 0.26 (0.08) 0.39 (0.21) 

5 Hamilton VIC 507 71 8.3 4.49 (0.29) 0.05 (0.11) 0.57 (0.23) 

6 Struan SA 721 103 6.6 8.34 (0.47) 0.27 (0.11) 0.31 (0.22) 

7 Turretfield SA 1066 110 10.6 5.38 (0.25) 0.31 (0.07) 0.31 (0.18) 

8 Katanning WA 1641 196 8.0 5.85 (0.23) 0.58 (0.07) 0.27 (0.14) 

Mean  1064 130 8.1 5.85 0.26 0.40 
AGenetic correlation estimates in bold are significantly less than 0.8 at p=0.05 level. 

 

Cross-validation results are shown in Table 2, and on average the regression of offspring 

performance on sire EBVs calculated in other environments was exactly 0.5, although there was a 

large range (0.33 to 0.81). This demonstrates that EBVs from a genetic evaluation model fitting 

sire interaction effects do have predictive power across environments in the presence of significant 

GxE. We note however that when compared to the average within-environment heritability 

estimate (0.26 in Table 1), heritability estimates were significantly lower from the single trait sire 

interaction model fitted across sites (0.09 in Table 2). This can be interpreted by extension of the 

co-heritability concept from the theory of correlated response (e.g. Falconer and Mackay, 1996): 

the co-heritability for selection in environment X targeting response in environment Y can be 

viewed as 𝒉𝑿𝒉𝒀𝒓𝒈 where 𝒉𝑿 and 𝒉𝒀 are the square roots of heritability in each environment and 

𝒓𝒈 is the GxE genetic correlation between environments. With an average heritability of 0.26 and 

average GxE genetic correlation of 0.40 from the results shown in Table 1, the co-heritability has 

an approximate value of 0.10 in these data. This is very similar to the average heritability estimate 

shown in Table 2. So while these results show that WEC ASBVs from MERINOSELECT and 

LAMBPLAN are likely to have predictive power across flocks even in the presence of significant 

GxE, they will have lower accuracy in an across flock context. For a co-heritability of 0.10 and 

within environment heritability of 0.26, the reduction in accuracy based on own performance is 

approximately 38% (calculated from √0.10/√0.26). For progeny-tested sires the reduction in 

accuracy will be lower as the number of progeny increases, especially if these progeny are 

represented across different environments. 

The MERINOSELECT model for post-weaning WEC assumes a heritability of 0.2 and a sire x 

site interaction variance ratio of 0.02, considerably different to the average estimates of 0.09 and 

0.06 of the same parameters in Table 2. It is likely that the difference is due to data structure: in 

the IN data the majority of sires are used across sites, whereas in the MERINOSELECT data for 

approximately 60% of the sires that have progeny with WEC measurements, the progeny were 

recorded in one flock only, and so GxE effects are not represented in a large part of the data. 
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Table 2. Cross-validation results for each environment, where Vp (phenotypic variance), h
2
 

(heritability), and s
2
 (sire by site interaction variance ratio) are estimated from a single trait 

analysis of data for all sites excluding the site shown in each row, and b is the regression of 

offspring performance at the site shown in each row on sire EBVs calculated from all other 

sites. Standard errors in brackets (s.e.) 

Site Location Vp (s.e.) h2 (s.e.) s2 (s.e.) b (s.e.) 

1 Kirby NSW 5.70 (0.12) 0.10 (0.03) 0.07 (0.01) 0.81 (0.19) 

2 Trangie NSW 6.56 (0.12) 0.09 (0.02) 0.06 (0.01) 0.33 (0.17) 

3 Cowra NSW 6.46 (0.12) 0.09 (0.02) 0.06 (0.01) 0.66 (0.21) 

4 Rutherglen VIC 6.76 (0.13) 0.08 (0.02) 0.06 (0.01) 0.39 (0.14) 

5 Hamilton VIC 6.55 (0.12) 0.07 (0.02) 0.07 (0.01) 0.63 (0.21) 

6 Struan SA 6.30 (0.12) 0.10 (0.02) 0.06 (0.01) 0.33 (0.20) 

7 Turretfield SA 6.60 (0.13) 0.09 (0.02) 0.06 (0.01) 0.33 (0.13) 

8 Katanning WA 6.54 (0.13) 0.08 (0.02) 0.04 (0.01) 0.53 (0.12) 

Mean 
 

6.43 0.09 0.06 0.50 

 

The data used in this study have also been used to develop genomic predictions which are used 

in the calculation of WEC ASBVs. For Merinos the accuracy of these genomic predictions is 

estimated to be 0.26 (Swan et al., 2014). The genomic analyses are based on IN data from all sites, 

and it would be worthwhile to investigate the impact of GxE on these analyses. 

 

CONCLUSIONS 

The results presented demonstrate that there are significant GxE for WEC in Merino sheep, but 

that the analysis method used in industry genetic evaluations can account for these to a degree. 

Although the accuracy of breeding values is most likely to be lower in an across flock context, ram 

breeders can have confidence in ASBVs based on performance data collected in their own flocks, 

and for sires with large numbers of progeny tested across a range of environments.  
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BESSiE

A PROGRAM FOR MULTIVARIATE LINEAR MODEL BLUP

AND BAYESIAN ANALYSIS OF LARGE SCALE GENOMIC

DATA.

V. Boerner and B. Tier

Animal Genetics and Breeding Unit1, University of New England
Armidale, 2351, NSW, Australia

SUMMARY

BESSiE is a software designed for uni- and multivariate analysis of linear mixed models
including large scale genomic data.

BESSiE facilitates models allowing for various �xed and random e�ects, and for observa-
tions on continuous or categorical scales, and implements di�erent Bayesian algorithms for
the prediction of e�ects of genetic markers (e.g. BayesA, BayesB, BayesCπ and BayesR),
GBLUP and SNP-BLUP.

INTRODUCTION

Various software packages are available for the analysis of phenotypic observations with
linear mixed models in quantitative genetics, which can be categorised by the employed algo-
rithm for inferring dispersion and location parameters of the modelled factors: a) Restricted
Maximum Likelihood (REML) based software, and b) Bayesian and Markov Chain Monte
Carlo (MCMC) based software. While various REML software packages speci�cally designed
for quantitative genetics are widely used and well documented,(e.g. ASREML (Gilmour et al.
2009), WOMBAT,(Meyer 2007), DMU(Madsen et al. 2014), REMLF90 (Misztal et al. 2002),
VCE (Groeneveld et al. 2010)), software packages employing Bayesian and MCMCmethodol-
ogy are less common (GIBBSF90 and THRGIBBSF90 (Misztal et al. 2002),BAYESR (Moser
et al. 2015), MCMCglmm,(Had�eld 2010)), but only GIBBSF90 AND THRGIBBSF90 are
explicitly designed for the application on large data sets and complex models in quantitative
genetics, and therefore provide results in a reasonable amount of time. The relatively small
number of Bayesian and MCMC software packages for quantitative geneticist may re�ect
the disadvantage of this methodology in terms of processing time. In addition, large scale
genomic marker data emerging in the late 2000 easily �t into existing REML software via ap-
proaches like GBLUP or single marker regression. In contrast several Bayesian algorithms
for sampling dispersion and location parameters of genomic markers have been proposed
(Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 2012), which di�er only slightly but
require adjustments in the software source code, thus making it more di�cult to develop
and maintain a software which covers all.

The aim of this paper is to describe the software BESSiE which is designed for uni- and
multivariate BLUP and Bayesian analysis of linear mixed models in quantitative genetics
allowing for various factors, algorithms, large scale genomic data and both continuous as
well as categorical observations.

SOFTWARE DESCRIPTION

BESSiE is written in FORTRAN90, command line operated, parameter �le driven and

1A joint venture of the NSW Department of Primary Industry and the University of New England
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comes with an extensive manual. It is available for 64bit Unix-like operation systems only,
and is optimised for Intel architecture.

The super-set model to be �tted in BESSiE may be written as:y1
.
yn

 =

X1 . 0
. . .
0 .Xn

b1
.
bn

 +

Z1 . 0
. . .
0 .Zn

u1
.
un

 +

Q1M. 0
. . .
0 .QnM

g1
.
gn

 +

e1
.
en


where (y1, ., yn)′, (b1, ., bn)′, (u1, ., un)′, (g1, ., gn)′ and (e1, ., en)′ are vectors of pheno-

typic observations of linear or categorical scale, �xed e�ects, random non-marker e�ects
and random marker e�ects, X, Z and Q are matrices relating the e�ects to their respec-
tive observations, M is a matrix of marker genotypes of dimension �number of genotyped
individuals�×�number of markers� and the subscripts are for trait 1 to n. Values in X may
be dummy variables or linear co-variables, where for the latter the order of polynomial re-
gression is user-de�ned. Values in (u1, ., un) are assumed to be distributed N([0, ., 0]′, A⊗Σ),
N([0, ., 0]′, G⊗Σ), N([0, ., 0]′, I ⊗Σ) or N([0, ., 0]′,K ⊗Σ), where A is the pedigree derived
numerator relationship matrix, G is a relationship matrix derived from genetic markers, I is
an identity matrix, K is an unknown matrix of dimension �number of factor levels�× �num-
ber of factor levels� provided by the user, and Σ is a co-variance matrix of factors. Note
that all random non-marker e�ects can be �tted together.

The algorithm to obtain dispersion and location parameters when trait observations are
of categorical scale is described in Sorensen et al. (1995) and Albert and Chib (1993).

Random e�ects of genetic markers (g1, ., gn)′ can be obtained from BayesA and BayesB
(Meuwissen et al. 2001), BayesCπ (Habier et al. 2011), BayesR (Erbe et al. 2012) or ridge
regression SNP-BLUP (Piepho 2009). For BayesA, BayesB and BayesCπ, all relevant pa-
rameters of the algorithms and the prior distributions of marker variances are taken from
the related publications, but can also be set by the user.

Residuals are assumed to be distributed N([0, ., 0]′, I ⊗ R), where R is the residual co-
variance matrix of dimension n × n. However, to account for observations with di�erent
residual variances (e.g. de-regressed breeding values), a co-variance Ω can be modelled,
where Ω is a block-diagonal matrix containing ω1σ

2
e1 to ωnσ

2
en in the diagonal elements of

the diagonal blocks, and
√
ω1ωnσe1,n in the diagonal elements of the o�-diagonal block which

links trait 1 and trait n, where ω1 and ωn are the weights of trait 1 and n, and σ2
e1 , σ

2
en and

σe1,n are the residual variances and co-variance of both the traits.
In multivariate analysis using BayesA, BayesB, BayesCπ or BayesR e�ects of genetic

markers are estimated from
 Q1M . 0

. . .
0 . QnM

′R−1
 Q1M . 0

. . .
0 . QnM

 +

 σ2
1 . 0
. . .
0 . σ2

n

−1


 g1
.
gn

 =

 Q1M . 0
. . .
0 . QnM

′R−1
 y1

.
yn

−
 X1 . 0

. . .
0 . Xn

 b1
.
bn

−
 Z1 . 0

. . .
0 . Zn

 u1
.
un


where σ2

1 to σ2
n are diagonal matrices of dimension �number of markers�× �number of mark-

ers� of which elements contain the marker variances generated according to the Bayesian
method speci�ed for trait 1 to n. The co-variances between the e�ects of a genetic marker
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on trait 1 to n are assumed to be zero.
BESSiE has no hard coded limitations in terms of number of traits, factors, genotypes

and markers, and has been tested on very large data sets.
As an example, a bi-variate analysis with 4,420 individuals genotyped for 510,174 single

nucleotide polymorphism (SNP), 19,549 individuals in the pedigree, 7 �xed e�ects and a
polygenic random e�ect per trait, and SNP e�ects modelled according to BayesR with 4
distributions requires 4.3GB of RAM and about 7 real time seconds on an Intel(R) Core(TM)
i7-3770 processor to sample all location and dispersion parameters once.

BESSiE comes without any warranties and can be used by the scienti�c community free
of charge. It can be downloaded from http://turing.une.edu.au/~agbu-admin/BESSiE/.
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SUMMARY 

There is growing interest in the Australian dairy industry in the genetic improvement of the 

health of dairy cows. In Australia, there is minimal storage or export of health data from some on-

farm software systems into industry databases to assist in the research or reporting of health traits. 

The Health Data for Healthy Cows (HDHC) project aims to get a better understanding of the 

extent of health data recording in the Australian industry by collecting health data from the 100 

Ginfo (genomic reference) herds. Health data obtained from herd test centres totalled 275,729 

records from just 46 out of the 100 herds. The four most recorded groups of health diseases 

identified were mastitis, reproductive problems, lameness and metabolic disorders. Mastitis had 

the highest incidence with 20% of cows affected, followed by reproductive problems (12%), 

lameness and metabolic disorders (5% and 3% respectively). This project has provided an insight 

into what health information is actually being collected on farm and that there is a source of health 

data available which can be accessed and potentially used for the genetic improvement of health 

traits in Australian herds. 

INTRODUCTION 

Great improvements have been made genetically in milk production in dairy cows over the last 

60 years. However unfavourable genetic relationships between milk production and most disease 

traits, such as mastitis, lameness, reproductive problems and metabolic disorder health traits have 

become apparent as milk production has increased (Pryce et al. 1997; Rauw et al. 1998; Koeck et 

al. 2012). 

A growing concern for dairy farmers is the improvement of dairy cow health through genetic 

selection. Healthy cows are more productive, easier to manage, require less intervention, have 

improved animal welfare and contribute to profitability by reducing production costs. However, in 

many countries, including Australia, industry collection of data on common health events has been 

sub-optimal or absent, which means there is no ability to provide breeding values and apply 

genetic selection for common health disorders. Also, such traits are low in heritability, meaning 

that although genetic progress is feasible, it will be slower. While many farmers may collect some 

of this information on farm, there is likely to be variation in the completeness of these data sets. In 

Australia, there is little storage or export of such information from some on-farm software 

packages into industry databases for research or reporting purposes. 

Before any work can begin on providing Australian farmers with breeding values for common 

health disorders, it is important to quantify what data is already being collected on farm and in 

veterinary practices. As a result of this challenge, the health data for healthy cows (HDHC) project 

has commenced to help improve our understanding of the extent of health data recording in the 

Australian dairy industry. The HDHC project will use infrastructure through the Dairy CRC in the 

form of the 100 ‘Ginfo’ (Genomic information) herds to collect all health data that is currently 

being amassed on farm. The Ginfo data is being used as a genomic reference population for 

genomic breeding values. One of the advantages of having a genotyped population is that it opens 

up new opportunities for new breeding values, such as dairy health traits. Therefore the objectives 
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of the HDHC project are to: 

 

1. Investigate and identify health data sources available within the herds participating in 

the Ginfo project 

2. Assimilate health data into a database in order to summarise health data status 

3. Estimate the incidence of common diseases and health occurrences on dairy farms 

4. Estimate antibiotic usage on farms 

5. Calculate provisional genetic parameters for health traits where incidence is high 

enough 

6. Estimate the accuracy of genomic selection achievable for data identified health traits 

 

For this paper the first three objectives are covered. 

 

MATERIALS AND METHODS 

Health data sources. On farm health data were collected from the 100 Ginfo participating 

herds. 

Survey. A survey was used to get an understanding of the health data collection and storage 

methods that occur on farm. Before participating in the survey, privacy consent and data release 

authority documents were also provided to the participants to comply with privacy laws. 

Obtaining health data. Once the survey, data release authority and privacy consent forms 

were returned by the farmers, an email was sent to each of the herds respective herd test centres to 

request all of the data collected for that farm, including the health data interchange format file. 

Data analysis. Each of the herds’ health data files were merged together to create a master 

health data file which contained the national cow ID, herd ID, health event, health treatment, date 

of health treatment, calving date, breed and cow date of birth. Statistical and graphical summaries 

of the surveys and master health data file were produced using Microsoft office Excel 2013 and 

the statistical program R version 3.1.1. 

Disease incidence calculation. For the calculation of disease incidence the following 

equations were used: 
 

Number of disease cases (disease occurrence) =  

No. of disease cases over a lactation / No. of cows-lactations with disease 

Disease occurrence is calculated for cows with a health event 

 

Number of cows with cases (%) = 

No. of cows with cases /Total No. of cows with test records 

Cases refers to specific diseases, for this paper cases refers to mastitis, reproductive disorders, 

lameness and metabolic diseases. 

 

RESULTS AND DISCUSSION 

To date 51 of the Ginfo participants have returned surveys. Out of these, 46 herds have health 

data recorded, while 5 had no health records. Therefore, the results currently presented include 46 

of the herds out of the total 100 participating in the HDHC project. The total number of raw health 

records (before any quality control) obtained only from herd test centres is 275,729 records 

between 1998 to 2011, from 42, 056 cows, representing multiple treatments per cow. 

Survey. The main form of recording of health data on farm is electronically. Health events are 

mostly recorded daily across the Ginfo herds. 

Figure 1 illustrates the health diseases that dairy farmers regard as most important and what 

they stated that they recorded on farm. 
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Figure 1. Health diseases farmers "say" they record and which they also regard as 

important. Mastitis (M), Reproductive (R), Lameness (L) and Metabolic (Me). 

Data analysis. Analysis of the data indicated that the general health events most commonly 

recorded are mastitis, reproductive problems (retained foetal membranes, uterine infections, cystic 

ovarian disease), lameness (foot and leg disorders, injuries, footrot, abscess) and metabolic 

disorders (milk fever, ketosis, Grass tetany) (Figure 2). This is fairly consistent with the survey 

conclusions on what farmers indicated they record and what they think are most important (Figure 

1). 

 
Figure 2. Health data that is actually being recorded on farm. 

More mastitis health event data being identified and made available for analysis purposes will 

assist in improving the reliability of the mastitis resistance breeding value. With fertility being one 

of the most significant issues facing the dairy industry, knowing that reproduction disorder health 

data incidences are actually being recorded indicates that farmers are seeing the value and 

importance of such a trait to the health and production of their cows. Therefore, having a large 

health event data set would potentially increase the ability for farmers to improve their fertility, 

and in return profit, through the incorporation into a multi-trait genetic analysis model to improve 

M

M + R

 M + L

M + L + Me

 M, L + R

 M + R + Me

M + L +  R + Me
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Mastitis 63%

Reproductive 22%
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Proc. Assoc. Advmt. Breed. Genet. 21: 393-396

395



the reliability and confidence of the fertility breeding value. 

Identifying what health event data is actually recorded on farm opens up new avenues of 

genetic analysis for potential new traits such as lameness and the development of new individual 

or integrated breeding values to become available to the industry. 

Disease incidence. Disease incidence for the top four most recorded health events; mastitis, 

reproductive problems lameness and metabolic disorders were calculated (Table 1). 

 

Table 1. Disease incidence of the most recorded health traits, total number of cow’s with 

each disease and the total number of cases for each health trait 

Disease No. of cows  Total no. of 

cases 

Disease 

occurrence 

Cows with cases 

(%) 

Mastitis 8495 21611 2.54 20% 

Reproductive 4972 7730 1.55 12% 

Lameness 2237 3124 1.40 5% 

Metabolic 1425 1951 1.37 3% 

 

For cows recorded with mastitis, on average there were 2.5 cases per lactation and 20% of 

cows affected. Cows reported with reproductive problems had 1.5 cases per lactation, affecting 

12% of cows. At a lower level, lameness and metabolic problems in nominated health event cows 

have about 1 case per lactation with 5% and 3% of health event recorded cows being affected 

respectively. Incidences from this data set are less than those previously reported in other studies 

(Clarkson et al. 1996; Espejo et al. 2006; Clarkson et al. 1996; Parker-Gaddis et al. 2012). The 

number of cow cases for lameness, reproductive and metabolic problems were lower than 

previously reported while mastitis cow cases were fairly similar to findings reported in Norway 

(Osteras et al. 2007). No conclusions at this point can be drawn about whether the herds used in 

this study are generally healthier than other herds as only half of the herds were used in this 

analysis.  

CONCLUSIONS 

In Australian herds, mastitis, reproductive disorders, lameness and metabolic diseases are the 

most recorded health events. Mastitis is the most common occurring disease in dairy herds, 

followed by reproductive disorders, lameness and metabolic problems occur at lower incidence. 

As a result these findings provide information to make clearer decisions on future research 

priorities, and contribute a reference data set that may be applied for genomic correlation purposes. 
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SUMMARY 

The development of a viable protocol for artificial insemination (AI) of ostriches may assist to 

overcome challenges to a structured breeding programme in this species. Data were obtained from 

up to 16 males trained to ejaculate in an artificial cloaca and 36 females producing eggs in the 

absence of males being used as a resource flock to develop an AI protocol. Repeatability estimates 

across years (termed as permanent environment or pe²) or within years (termed as temporary 

environment or te²) were estimated to assess whether current flock gains could be achieved by 

selecting particular animals. Male semen volume and libido were mostly affected by long-term pe² 

effects at respectively 0.38 and 0.32, while sperm morphology and sperm concentration mostly 

depended on te² effects, ranging from 0.09 for sperm concentration to 0.41 for the percentage 

normal spermatozoa. Permanent environmental effects were more important for semen motility 

traits, ranging from 0.03 for amplitude of the lateral head to 0.20 for straightness. However, most 

derived estimates did not differ from zero. Analysis of monthly female egg production and average 

egg weight records yielded estimates of 0.21 and 0.45 for pe² and 0.11 and 0.15 for te², 

respectively. Selection for better adaptation to the proposed AI protocol may result in current flock 

gains for some male and female traits.        

 

INTRODUCTION 

Genetic evaluation of ostriches is poorly developed when compared to other farmed livestock 

species (Cloete et al. 2008). Challenges associated with ostriches are a communal nesting system 

not conducive to the recording of parentage in colony mating flocks, confounded random effects 

and mate incompatibility when mated as pairs to record pedigrees, a very narrow male:female ratio 

and the absence of a formal recording and evaluation scheme (Bunter and Cloete 2004; Cloete et 

al. 2008). These challenges could all be alleviated by a workable protocol of artificial insemination 

(AI), which is studied as a viable alternative to natural mating (Malecki et al. 2008; Malecki and 

Rybnik-Trzaskowska 2011). Such technology also has the potential to reduce the male to female 

ratio and may add additionally to worker occupational health and safety by reducing the number of 

dangerous males, as well as bird welfare, by reducing incompatibility between animals paired off 

(Cloete and Malecki 2011). AI contributed markedly to livestock genetic improvement (Verma et 

al., 2012). It is foreseen that the ostrich industry is likely to benefit from AI in the same way. 

Since stress-free collection of semen in ostrich males has been developed (Rybnik et al. 2007), 

there have been a number of distinct advances towards making AI a reality in this species. It has, 

for instance, been demonstrated that semen can be collected from males trained to the dummy 

female method twice daily, without compromising ejaculate output and sperm quality (Bonato et 

al. 2011). Also, semen could be collected from trained males all year round, although some 

seasonal variation do occur (Bonato et al. 2014b). Stress-free artificial insemination of trained 
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ostrich females is possible by using the voluntary crouch principle (Malecki et al. 2008; Bonato et 

al. 2014c). Furthermore, inseminated females were demonstrated to produce fertile eggs (Bonato 

et al. 2014c).   

However, individual variation is observed for all traits that are likely to be of importance and 

value in an AI program. The question remains whether between-animal variation can be exploited 

to select individuals well-adapted to AI. To date, all genetic parameters for ostriches have been 

derived from a single resource flock, employing a pair-breeding system (Cloete et al. 2008). It is 

unknown whether between-animal variance ratios estimated for pair-bred ostriches would also be 

applicable to usage in an AI program.  

For this reason, in this study, the repeatability of sperm traits in males and egg traits in females 

was studied in a resource flock maintained to develop and refine a viable AI protocol in this 

species. Repeatability is the upper limit for heritability in cases where no animal permanent 

environmental effects are present. 

 

MATERIAL AND METHODS 

Location, animals and data collected. The animal resource was maintained at the Oudtshoorn 

Research Farm of the Western Cape Department of Agriculture near Oudtshoorn in the Klein 

Karoo region of South Africa. Data were sourced from seven males trained to ejaculate in an 

artificial cloaca and used in the seasonal variation trial of Bonato et al. (2014b) for the assessment 

of ejaculate volume, sperm concentration, sperm morphology (the percentage of live, normal and 

dead spermatozoa) as well as male libido (4-point scale) over a period of 24 months. Sixteen males 

provided 1169 recorded ejaculates for use in this analysis. A total of 257 semen samples from 10 

males collected from 2013 to 2015 were used to assess motility traits by using computer assisted 

sperm analysis (CASA) software (Microptic S.L. System Version 5.2, Barcelona, Spain). Traits 

considered were progressively motile and motile spermatozoa; curvilinear, straight line and 

average path velocity; linearity, straightness and wobble as well as beat cross frequency. These 

sperm motility traits are commonly related to fertilization success in other species (Suarez and 

Pacey 2006). Monthly egg production and egg weight (expressed as trait of the female) records 

were collected over 5 consecutive breeding seasons (from May to December, 2009-2013) in a 

female flock producing eggs in the absence of males (Bonato et al. 2014a). In total, 664 female-

month records of 36 females were available for analysis.   

Statistical analyses. Repeated records produced by the same male or female were 

accommodated in two ways by using ASReml software (Gilmour et al. 2006): firstly, the variance 

component of unique animals across years was considered as an indication of the animal 

permanent environment (pe²) and secondly, the correspondence of records of unique animals 

within production years were considered as an indication of animal temporary environment (te²). 

The former parameter can be considered to reflect long-term effects of specific animals on traits 

while te² reflect short-term effects. No attempt was made to partition the pe² variance component 

in genetic and permanent environmental effects, given the relatively small size of all databases 

(<1200 records) and the number of animals recorded (<40). Log likelihood tests were used to 

assess the significance of random effects added to the fixed effect analytical model. Fixed effects 

included were year (specific for the respective data sets), month or season and whether samples 

used for CASA were diluted or not. Fixed effects solutions are not relevant for this paper and 

therefore not reported.  

  

RESULTS AND DISCUSSION 

There is little knowledge about the repeatability of sperm traits in ostrich males under repeat 

sampling. Between-male differences for sperm traits reported by Bonato et al. (2011; 2014b) 

suggest that such traits are likely to be repeatable. Estimates of pe² and te² for sperm traits and 
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libido are presented in Table 1. The results in Table 1 show that pe² effects predominated in semen 

volume and libido scores. In contrast, te² effects were more important for sperm concentration and 

morphology. Nonetheless, male specific semen traits were repeatable, suggesting that these 

records can be used to select males with a high semen yield and/or libido for usage in the current 

flock. No comparable work on ostriches, other ratites or avian species could be found. 

 

Table 1. Repeatability estimates (s.e.) for semen volume, sperm concentration, sperm 

morphology traits and libido for the unique male across years (pe²) and the unique male 

within years (te²) effect, for males trained for the routine collection of semen using the 

dummy female method 
Trait pe² te² 

Semen volume (mm) 0.380.12 0.130.06 

Sperm concentration  (x109/ml) – 0.090.03 

Normal sperm (%) – 0.410.08 

Abnormal sperm (%) – 0.310.06 

Dead sperm (%) – 0.380.07 

Libido score (n) 0.320.10 – 

 

The between-male variance of male sperm motility traits mostly partitioned towards pe² (Table 

2). Derived estimates were, however, relatively low (<0.20), and only reached the level of double 

the corresponding s.e. for straightness. Although mostly not significant (P<0.05) when related to 

the corresponding s.e., the inclusion of the additional random term improved the log likelihood 

ratio for all traits except the amplitude of lateral head, and wobble. The pe² variance ratios for all 

traits associated with velocity were below 0.10. The only trait primarily affected by te² was 

linearity. We did not find any literature on similar traits in ostriches or other ratites. 

 

Table 2. Repeatability estimates (s.e.) for male sperm motility traits according to CASA for 

the unique male across years (pe²) and unique male within years (te²) effect, for males 

trained for the routine collection of semen using the dummy female method 
Trait pe² te² 

Progressive motile spermatozoa (%) 0.130.08 – 

Motile spermatozoa (%) 0.190.10 – 

Curvilinear velocity (µm/s) 0.080.07 – 

Straight line velocity (µm/s) 0.090.07 – 

Average path velocity (µm/s) 0.070.06 – 

Amplitude of lateral head (µm) 0.030.05 – 

Linearity (%) – 0.120.09 

Straightness (%) 0.200.10 – 

Wobble (%)  0.050.05 – 

Beat cross frequency (Hz) 0.100.07 – 

 

Between-female variance components for egg production and average egg weight partitioned 

mostly to pe² and to a lesser extent to te² (Table 3). The estimate of pe² were approximately double 

that of te² for egg production and about three times as high for average egg weight. The derived 

parameters were close to a pe² estimate of 0.17 (the sum of h², pe² and the service sire variance 

ratio) and a te² estimate of 0.15 derived by Fair et al. (2011) for monthly egg production records of 

pair-mated ostriches. Corresponding estimates by Fair et al. (2011) for egg weight amounted to 

0.57 for pe² and 0.13 for te², which also corresponded fairly well with the present estimates. From 

these results it seems as if parameters derived for a flock of females producing eggs in the absence 

of males are quite similar to those derived for pair-mated females. 
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Table 3. Repeatability estimates (s.e.) for monthly female egg production for the unique 

female across years (pe²) and unique female within years (te²) effects, for females maintained 

without males and producing eggs in the absence of males 
Trait pe² te² 

Egg production (n) 0.210.07 0.110.04 

Average egg weight (g) 0.470.08 0.150.04 

 

CONCLUSION 

This study is the first report of between-animal variation available for exploitation in an AI 

program for ostriches, aimed at overcoming typical production challenges, while also promoting 

genetic progress as in other species. Key male traits like semen volume and libido were repeatable 

across years, while sperm morphology traits were more affected by short-term animal affects. 

Between-animal effects for sperm motility traits were smaller and mostly not significant. Further 

work on these traits are needed to ascertain their role in fertilizing eggs produced by females 

subjected to AI. Parameters for female ostriches in the AI program were consistent with estimates 

from a pair-breeding flock. This is good news for the development of a viable AI program in this 

species, as current-flock gains are expected to selection for egg traits in female ostriches producing 

in the absence of males.  
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SUMMARY 

The aim of this study was to evaluate the accuracy of genomic prediction for lamb meat colour 

traits in New Zealand sheep. A total number of 7,602 animals born between 2010 and 2013 were 

genotyped with the High-Density Ovine BeadChip containing 606,006 single nucleotide 

polymorphisms. The traits included in this study were: loin redness (A24), yellowness (B24) and 

lightness (L24) measured 24 hours after blooming. The significance of the fixed effects and 

covariates were determined using general linear model. The final fixed effects models included 

contemporary group, sex and birthday deviation from the contemporary group mean as a covariate. 

The residual from the above model was used as phenotype for the genomic evaluation model 

development. The software GEBV was used to calculate direct genomic values (DGV), using 

GBLUP methodology. To evaluate the accuracy of genomic prediction, two sets of animals were 

formed based on birth year: training (birth years: 2010, 2011 and 2012) and validation (birth year: 

2013) sets. The accuracies for the three traits ranged from 0.29 to 0.33. Even though the accuracies 

were low, considering the costs and difficulty to measure and to select for meat quality traits, 

genomic selection might be a viable alternative. 

 

INTRODUCTION 

Meat colour traits have high economic relevance for the sheep industry as it is directly related 

to the appearance of the product, being an indicator of freshness and quality to consumers. In order 

to achieve consumer satisfaction, good management practices and environmental conditions for 

the animals and subsequently during meat processing play a very important role in the meat colour 

traits. However, it is known that meat colour has also a genetic component (e.g. Payne et al. 2009; 

Mortimer et al. 2014) and the gains achieved through genetic selection are permanent and 

cumulative. In order to genetically improve these traits, phenotypes must be recorded. However, 

they can only be recorded post-slaughter and are expensive to measure. Progeny testing not only 

increases the cost but also the generation interval. One possible solution to genetic improvement of 

these traits is genomic selection (Meuwissen et al. 2001), which has become a routine procedure 

because it reduces both progeny testing costs and generation interval. It refers to selection based 

on genomic breeding values, calculated from high density marker data. The benefits from genomic 

selection depend on the generation of accurate genomic breeding values (GEBVs). GEBV 

accuracies have been published for many traits in sheep (e.g. Daetwyler et al. 2012; Auvray et al. 

2014). However such estimates are scarce for meat colour traits. The aim of this study was to 

evaluate the accuracy of genomic prediction for meat colour traits in New Zealand sheep, using the 

GBLUP methodology. 
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MATERIAL AND METHODS 

Phenotypic data. Pedigree and performance records were obtained from the Sheep 

Improvement Limited database (SIL, www.sil.co.nz). A total of 7,602 animals born between 2010 

and 2013 in the FarmIQ Progeny Test flocks (www.farmiq.co.nz) were included in this study. 

These animals were primarily progeny from terminal sire composites and Texel mated to a variety 

of maternal breeds. Animals were randomly selected to be slaughtered on given dates at 

commercial abattoirs. There were four to five slaughters per year and processing procedures and 

times were kept the same for each slaughter. The traits included in this study were: loin redness 

(A24), yellowness (B24) and lightness (L24) measured at 24 hours after blooming.  

On the day after the slaughter, the boneless loins were vacuum packed and stored at -1°C for 8 

weeks (to simulate the period that takes for chilled lamb to reach the retail market). At 8 weeks 

post-processing, loin pH was measured on the Longissimus dorsi muscle and three 2-cm thick 

slices of the loin were placed on small plastic trays and wrapped using semi permeable cling film 

and stored at 4°C (to simulate retail display) for colour measurements at 24, 48, 96 and 168 hours 

(seven days). Measurements were taken using a Minolta Chromometer (Konica Minolta Sensing, 

Inc., Osaka Japan). Three replicates were collected and the average value for each were analysed. 

The chromometer measures colour using the standard CIE L* a* b* colour variables (CIE L* = 

lightness/darkness; CIE a* = redness/brownness; CIE b* = yellowness). Only measurements at 24 

hours are presented in this paper and are taken to represent the maximum redness (A value) post 

blooming.  

The significance of the fixed effects and covariates were determined using the general linear 

model (GLM) procedure of SAS (SAS Inst., Inc., Cary, NC). The final fixed effects models 

included contemporary group, sex and to offset the differences in age of measurement, birthday 

deviation from the mean of the contemporary group was used as a covariate in the analysis. 

Contemporary group was defined by flock, birth year, sex, weaning mob (management group) and 

trait measurement/slaughter mob. The residual for each animal after adjusting for the above effects 

was used as the phenotype for the GEBV model development.  

 

Genomic data. Marker genotypes were obtained using the Illumina High-Density Ovine 

BeadChip (Illumina Inc., San Diego, CA, USA), containing 606,006 single nucleotide 

polymorphisms (SNPs). SNPs were excluded from the analysis if minor allele frequency was less 

than one percent, call rate less than 90%, if they were located on the sex chromosomes, did not 

have known chromosome and/or position on the genome, had duplicated map positions (2 SNPs 

with the same position but with different names) or an extreme departure from Hardy Weinberg 

equilibrium (p < 10
-15

). A total of 519,186 SNPs were retained for further analyses after filtering.  

The software GEBV (Sargolzaei et al. 2009), was used to calculate direct genomic values 

(DGV), using the GBLUP methodology. The following model was used in genomic analysis: 

𝒚 = 𝟏µ +𝑾𝒂 + 𝒆, where y is the vector of phenotypes adjusted for fixed effects, µ is the 

overall mean, a is the vector of random animal DGVs, e is the vector of random residual effects, 1 

is a vector of 1s and W is the design matrix linking records to animal DGVs. The DGVs were 

assumed normally distributed with mean zero and variance equal to G*𝝈𝒈
𝟐 , where G is the 

genomic relationship matrix based on the SNP markers and 𝝈𝒈
𝟐  is the genetic variance. The 

random residual effects were assumed normally distributed with mean zero and variance equal to 

I*𝝈𝒆
𝟐, where I is an identity matrix and 𝝈𝒆

𝟐 is the residual variance. 

To evaluate the accuracy of genomic prediction, two sets of animals were formed based on 

year of birth: training (birth years: 2010, 2011 and 2012) and validation (birth year: 2013) sets. For 

each trait, 10 runs were performed where each time a randomly selected group of approximately 

300 animals born in 2013 (validation set) were taken as the validation set and all the animals from 
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the training. The youngest cohort of animals were used in validation to mimic what would happen 

in practice and the number of 300 was chosen in order to keep a practical number of animals in the 

validation set. The genomic prediction accuracy in the validation set was calculated as the Pearson 

correlation between DGV and adjusted phenotypes divided by the square root of heritability. The 

heritability was estimated from the same dataset using Restricted Maximum Likelihood (REML) 

procedures fitting an animal model and the same fixed effects described before, using ASReml 3.0 

(Gilmour et al. 2009).  

 

RESULTS AND DISCUSSION 

Number of observations, trait means (± SD), trait range, coefficient of variation and the 

estimated heritabilities (± SE) are given in Table 1. The traits included in this study had low 

heritability estimates. Despite the variation in heritabilities, the DGV accuracy estimates were 

similar and ranged from 0.29 to 0.33 (Table 2). L24 presented the highest Pearson correlation 

between DGVs and adjusted phenotypes; however B24 presented a lower heritability and 

consequently the accuracy estimates were similar (0.32 and 0.33, respectively).  

 

Table 1. Trait statistics and heritability estimates 

 

Trait1 N Mean ± SD Range CV (%) h2 ± SE 

A24 7,602 16.79 ± 2.51 9.62 – 24.44 14.98 0.17 ± 0.03 

B24 7,601 12.82 ± 2.65 5.68 – 20.31 20.68 0.11 ± 0.02 

L24 7,601 40.45 ± 3.43 29.09 – 51.25 8.47 0.16 ± 0.03 
 

1A24: redness/brownness; B24: yellowness; L24: lightness/darkness; N=number of animals; SD=standard 

deviation; CV=coefficient of variation; h2=heritability; SE= standard error.  
 

One reason that may contribute to the moderately low accuracies may be the low heritabilities 

of the traits. The accuracy estimates presented are global accuracies and robust accuracies could 

differ in various breed subgroups. Although our reference set appears large, almost all animals are 

crossbreds and/or composites from a variety of breeds. According to Saatchi et al. (2011) the 

validation is sensitive to the choice of the validation sample and to the pedigree relationships 

between the animals contributing to the validation and training sets, and the accuracies of DGVs 

are dependent on the strength of genetic relationships between the training and validation sets. It 

highlights the importance of maintaining an approximately constant average genetic relationship 

between animals in the training set and younger animals available for selection. One alternative is 

to define training and validation sets that are more related and also to evaluate other 

methodologies such as genomic evaluations using a single step procedure (Misztal et al. 2009) that 

would allow including phenotypes of non-genotyped individuals in the predictions. 

In general, low accuracies of genomic breeding values limit the benefit from genomic 

selection. However, for traits such as meat color that are difficult to improve by traditional 

selection, genomic selection will be an important tool. The genomic values would help to predict 

breeding value of young selection candidates (without their own performance). It would result to 

reduced costs, shorten generation intervals, and hence accelerate the rate of genetic gain. However, 

future investigations are needed in order to find alternatives to increase the genomic breeding 

values accuracies for meat colour traits. 

It is also important to highlight the need for the industry to continue investing in phenotyping 

and genotyping animals to create and maintain good reference and validation sets to develop 

accurate genomic predictions. 
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Table 2. Number of individuals in training and validation populations and accuracy of 

genomic prediction for meat colour traits 

 

Trait  N in training N in validation Mean accuracy1 (± SD) 

A24  5,980 1,622 0.29 ± 0.08 

B24  5,979 1,622 0.33 ± 0.11 

L24  5,979 1,622 0.32 ± 0.04 
 

1Mean accuracy estimated via 10 groups of around 300 animals. N=number of animals; SD=standard 

deviation; A24=redness/brownness; B24=yellowness; L24=lightness/darkness.  

 

CONCLUSION 

Genomic selection is likely to be a valuable tool to help in the improvement of difficult to 

measure phenotypes and low heritability traits such as meat colour. The findings in this study 

show that it is possible to generate molecular breeding values for rams at an early age for selection 

and breeding, thus reducing both generation interval and the costs of progeny testing. Further 

research will help to improve the accuracies of genomic breeding values for meat colour traits. 
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SUMMARY 

This study explores if there is an interaction between the genetic potential for growth in Merino 

lambs and their birth (BT) or rearing (RT) type. Data consisted of 3,920 singles and 4,492 twins 

which were the progeny of 285 sires and 5,279 dams. We found a significant sire by BT 

interaction with the effect accounting for 1.59% and 2.49% of the phenotypic variation for birth 

weight (BWT) and weaning weight (WWT), respectively. The effect was not significant for post 

weaning weight (PWWT), scanned fat (SF) and eye muscle depth (EMD) with sire by BT effects 

accounting for less than 1% of the variation in these traits. Sire by RT interaction effects were 

much smaller and not significant for WWT, PWWT and SF, but accounted for 1.83% of the 

variation in EMD, which was significant. A bivariate analysis treating phenotypes when expressed 

in singles and twins as two different traits resulted in genetic correlation estimates significantly 

lower than one, with BT having a larger effect on genotype expression than RT. 

 

INTRODUCTION 

Birth type (BT) and rearing type (RT) constitute environments that influence the early life of 

sheep. Animals born as singles have higher birth weight and grow faster than animals born as 

twins or triplets (Yilmaz et al. 2007). Furthermore lambs reared as singles are heavier than those 

reared as twins (Safari et al. 2007; David et al. 2011). Animals born as a single are more likely to 

have access to better nutrition in utero and animals reared as a single will also have access to more 

milk prior to weaning compared to those reared as twins. 

What has not often been looked at is whether the expression of genetic merit depends on or 

interacts with the BT or the RT of lambs.  If such an interaction exists, there could be implications 

for genetic evaluation as well as for breeding programs in general. It is not feasible to design 

breeding programs for expression of genotypes solely as single or twins. But it may be possible to 

predict that the expression of breeding value is more frequent in one of these classes, and this 

information can be used to predict progeny differences more accurately. In genetic evaluation, it 

may be important to account for such genotype by BT or RT interactions if they are found to be 

significant. 

The objectives of this study were to investigate genotype by BT or RT interactions for a 

number of growth related traits in Merino sheep. In a linear mixed model we investigated the 

presence of sire by BT or RT interaction and we estimated the genetic correlations between 

expressions of these traits in lambs born or raised as singles or as twins and the genetic correlation 

among the traits. We also investigated whether the genetic correlations between growth traits 

differ when expressed in singles or in twins. 

 

MATERIALS AND METHODS 

Data of Merino sheep for this study was obtained from the Information Nucleus (IN) program 

of the CRC for Sheep Industry Innovation in Australia. Details on this program and its design are 

described by van der Werf et al. (2010).  Data consisted of birth weight (BWT), weaning weight 

(WWT), post weaning weight (PWWT), scanned fat (SF), and eye muscle depth (EMD). WWT 

was measured at approximately 100 days and PWWT, SF and EMD were measured at 
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approximately 250 days of age. Birth weight records were available from 8,412 lambs generated 

from 285 sires and 5,279 dams of Merino sheep. 

Mixed model analysis was used in this study using the ASREML software (Gilmour et al. 

2009). The fixed effects in the models were birth year (6 classes, 2007-2012 with 969-1,678 lambs 

per year), flock (8 classes, 521-2,483 lambs per flock), and management group within flock (GRP: 

up to 4 classes per flock) as one contemporary group effect, as well as a BT (2 classes) x RT (2 

classes) effect. The other fixed effects included were age of dam (9 classes), sex (2 classes), and 

age at measurement as covariate. Live weight and age at scanning were included as fixed effects 

for SF and EMD. 

Genetic group, animal, dam, and interaction between sire and BT or RT (SxBT/RT) were fitted 

as random effects in a univariate animal model. The number of genetic groups was 135 and 

determined by strain and flock of origin. The phenotypic variance was calculated as the sum of 

variance components for additive genetic effect of the animal, the dam effect, the SxBT/RT effect 

and the residual. A pedigree file consisting of 20,010 animals from 11 generations was used to 

determine additive genetic relationships among animals and account for them in the analysis. It 

was assumed that dams were unrelated, and in the SxBT/RT interaction terms, sires were assumed 

unrelated as well. We used the log likelihood ratio test (LRT) to compare the full model including 

SxBT/RT with a reduced model to test the significance of the SxBT/RT interaction effect.  

In bivariate analyses, we considered the expression of a particular trait expressed in either 

singles or twins as two different traits with a genetic correlation between them (Falconer, 1952). 

The magnitude of the genotype by environment interaction (GEI) was evaluated based on the 

value of the estimated genetic correlation. Sire models were used in bivariate analyses with genetic 

group and sire as random effect and it was again assumed that sires were unrelated. Because of 

limited data in other subclasses, only traits expressed in the BT/RT combinations 11, 21, and 22 

were used in the bivariate analyses to investigate GEI in an attempt to disentangle the effects of 

BT and of RT.  

 

RESULTS AND DISCUSSION 

 

Univariate analysis. Estimates of heritability (Table 1) in a model considering SxBT were lower 

than those without inclusion of SxBT for BWT and WWT. Heritability estimates for PWWT, SF 

and EMD were similar with and without inclusion of SxBT. When including SxRT in the model 

the heritability estimate changed only for EMD. Heritability estimates in this study are in the same 

ballpark as previous report (Safari and Fogarty, 2003; Safari et al. 2005; Mortimer et al. 2010). 

The SxBT effect explained 1.59% and 2.49% of the phenotypic variance of BWT and WWT, 

respectively, which was significant and 0.76%, 0.80% and 0.06% for PWWT, SF and EMD, which  

was not significant. Brown et al. (2009) reported a similar pattern with inclusion of sire by flock-

year interaction in a model, which explained 2%, 3% and 4% of variation of WWT, PWWT and 

yearling body weight of lambs, respectively, reducing heritability estimates by up to 50%. 

Maniatis and Pollott (2002) reported a similar pattern when including sire by flock-year interaction 

in a model, explaining only 2 to 3% of the phenotypic variation in 8 week weight and scanning 

weight of lambs. This result of sire x contemporary group effect explaining 2.4% of variation in 

body weight is similar to that reported by Pollott and Greeff (2004). The interaction term in their 

study explained 2% and 2% to 4% of EMD and SF variation, respectively, and heritability 

estimates deflated by up to 50% after accounting for GEI.  

In our analysis, maternal effect contributed significantly to BWT and WWT variation (31 and 

23%), but it was smaller (10%) for PWWT and these figures were very similar with and without 

including the SxBT effect in the model. The contribution of dam effect was also similar when 
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including SxRT in the model. Overall these results indicate that it may be important to include 

SxBT effects in the genetic evaluation of Merino sheep, particularly for BWT and WWT. 

 
Table 1. Estimates of variance additive genetic, maternal and sire by BT(RT) effects and direct and 

maternal heritabilities of Merino sheep growth traits based on univariate analysis 

 

Traits 
Variance components without SxBT or SxBT in the model*  

σa
2 σm

2 σ2
SxBT(RT)

 σe
2 h2 m2 LRT 

BWT 0.141 0.182  0.268 0.24 ± 0.04 0.31 ± 0.02  

WWT 1.909 2.839  7.358 0.16 ± 0.03 0.23 ± 0.02  

PWWT 7.673 2.850  16.702 0.28 ± 0.04 0.10 ± 0.02  

SF 0.087   0.283 0.23 ± 0.04   

EMD 1.590   4.074 0.28 ± 0.04   

 Variance components with SxBT in the model  

BWT 0.125 0.185 0.009 0.272 0.21 ± 0.04 0.31 ± 0.02 7.16 

WWT 1.389 2.942 0.302 7.491 0.11 ± 0.03 0.24 ± 0.02 16.20 

PWWT 7.207 2.673 0.205 16.856 0.27 ± 0.05 0.10 ± 0.02 1.62 

SF 0.080  0.003 0.287 0.22 ± 0.04  0.67 

EMD 1.582  0.005 4.078 0.28 ± 0.05  0.00 

 Variance components with SxRT in the model  

WWT 1.898 2.842 0.004 7.362 0.16 ± 0.03 0.23 ± 0.02 0.00 

PWWT 7.564 2.600 0.038 16.745 0.28 ± 0.05 0.10 ± 0.02 0.06 

SF 0.084  0.001 0.284 0.23 ± 0.04  0.13 

EMD 1.395  0.103 4.164 0.25 ± 0.05  3.90 
Note: *σ2

a = additive genetic variance, σ2
m = maternal variance, σ2

SxBT = sire by birth type interaction variance, σ2
SxRT = sire 

by rearing type interaction variance, and σ2
e = residual variance; and h2 = direct genetic heritability, and m2 = maternal 

heritability 

 

Bivariate analysis. Results of this study (Table 2) show that the genetic correlation between traits 

expressed in singles versus twins differed significantly from one for most traits, with BT having a 

slightly larger effect on genotype expression than RT. This suggests that both pre- and postnatal 

environments significantly affect the genotype expression of weight traits in lambs. This finding 

agrees with Carrick and van der Werf (2005) who found that the genetic correlation between traits 

expressed in extreme environments (as defined by the mean performance of a cohort) was lower 

for earlier growth traits of sheep. In this study the expression of PWWT (at around 250 days of 

age) and EMD in single BT and RT might reflect the same trait and differs only in scale from twin 

BT and RT with genetic correlations of 0.88 ± 0.04 and 0.89 ± 0.04, respectively. Similarly, SF 

with the same RT but different BT (11x21) had a genetic correlation of 0.95 ± 0.02. The 

expression of WWT and SF in twin BT but with different RT might be the same as in twin BT and 

RT with genetic correlations of 0.96 ± 0.02 and 0.92 ± 0.05, respectively. Overall, these results 

indicate that differences in BT and RT will influence the expression of breeding values of growth 

traits in Merino sheep. 

 
Table 2. Genetic correlation between traits expressed in singles or twins (born or reared) based on sire 

model bivariate analysis 

 

Type of 

correlation* 

Traits 

BWT WWT PWWT SF EMD 

11x22 0.73±0.07 0.83±0.06 0.88±0.04 0.82±0.05 0.89±0.04 

11x21  0.77±0.05 0.70±0.09 0.95±0.02 0.71±0.14 

21x22  0.96±0.02 0.80±0.07 0.92±0.05 0.71±0.13 
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Note: *11x22 = correlation between lambs born-reared as single and lambs born-reared as twins, 11x21 = correlation 
between lambs born-reared as single and lambs born as twins but reared as single, and 21x22 = correlation between lambs 

born as twins but reared as single and lambs born-reared as twins 

 

CONCLUSION AND IMPLICATIONS 

The contribution of sire by birth type interaction to the expression of birth weight and weaning 

weight was significant, while the contribution of sire by rearing type was only significant for eye 

muscle depth. In general there was genotype by environment interaction indicating that birth and 

rearing type influenced the expression of traits of lambs. This study suggests that BT and RT are 

biologically important environments that influence the genetic potential for growth of lambs. This 

was the case particularly for BWT and WWT which were influenced by BT and EMD that was 

influenced by RT. The relatively stronger interaction for BT suggests that the prenatal 

environment has a larger influence on the genetic expression for growth after birth compared to the 

postnatal environment. These results also suggest that sires could re-rank when evaluated based on 

single versus twin birth or rearing type. Therefore, sire by birth or rearing type interactions should 

be included in models used for genetic evaluation. 
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SUMMARY 

Producers of Wagyu beef have unique opportunities to assess high value markets, where 

carcase value is determined primarily on marbling score. To date, there have been limited genetic 

studies of this breed, especially in Australia. Newly developed image analysis equipment could be 

a useful tool to analyse carcase characters. This study estimated genetic parameters for carcase 

traits measured by both the AUS-MEAT method and camera image analysis. Most carcase traits 

were moderately to highly heritable. The genetic correlation between AUS-MEAT marbling score 

and the image analysis marbling trait was very high, and similarly for the two measures of eye 

muscle area. It was concluded that image analysis of carcase traits is a feasible basis for selection 

in Australian Wagyu beef cattle.  

INTRODUCTION 

Wagyu is a collective term for Japanese beef breeds (Japanese Black, Japanese Brown, 

Japanese Shorthorn and Japanese Polled), accounting for 97% of Japanese cattle (Hirooka 2014). 

Wagyu cattle typically exhibit high marbling levels. Genetic evaluation for Wagyu cattle has been 

well reported but mostly for cattle in Japan and the USA. Production of Wagyu beef cattle in 

Australia started in the 1990s and was initiated from frozen semen and embryos, and live animals 

imported from Japan via the USA. The breeders’ association, the Australian Wagyu Association 

(AWA, http://www.wagyu.org.au/), provides BREEDPLAN genetic evaluation services to 

Australian Wagyu breeders. While there has been increasing interest in the market potential for 

Australian Wagyu beef there have to date been limited genetic evaluation studies for characters of 

Australian Wagyu cattle. Newly developed measurements of beef quality using imaging analysis 

traits of carcases have been tested in Australian Wagyu cattle on a small scale (Maeda et al. 2014). 

Maeda et al. (2014) compared the AUS-MEAT measure and the image analysis traits of carcase 

characters in Australian Wagyu cattle. The preliminary results demonstrated that the image 

technology is a useful tool to substitute for visual assessments of carcase characters. The aims of 

this study were 1) to estimate genetic parameters for carcase characters of Australian Wagyu cattle 

measured using these image analysis traits and conventional AUS-MEAT (AUS-MEAT Ltd 2005) 

visual assessment; 2) to estimate genetic correlations between a subset of traits to facilitate 

implementation of genetic evaluation of Australian Wagyu cattle; and 3) to examine  the feasibility 

of using image analysis traits of carcase characters as a substitute for, or to complement, the 

conventional AUS-MEAT grading.  

MATERIALS AND METHODS 

Animals and Phenotypes. Animals evaluated in this study had carcase records and were 

progeny of 336 sires, with progeny per sire ranging from 1 to 153. Forty-nine sires had a single 

offspring and 135 had fewer than 5 progeny; 6 sires had more than 100 progeny. The phenotypes 

and pedigree were extracted from the Wagyu BREEDPLAN database, with ancestors tracing back 

to the 1960’s.  

*AGBU is a joint venture of The NSW Department of Primary Industries and University of New England. 
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Carcase traits. Carcase traits were measured in accordance with the AUS-MEAT grading system 

by certified graders, and included hot carcase weight, marbling score, rib and P8 fat depths, 

intramuscular fat, and eye muscle area.  

Image analysis traits. The image analysis traits were obtained in two steps: 1) taking digital 

images of carcase cross-section from between the 5
th

 and 6
th

 ribs using the photography device 

(HK-333, Hayasaka Rikoh, Sapporo Japan, Kuchida et al.. 2001 and Takahashi et al. 2006); 2) 

analysing the images using image analysis software (BeefAnalyserII, Hayasaka Rikoh, Sapporo 

Japan) to generate a set of traits based on pixel sizes, counts and colours. In brief, the muscle in the 

rib eye area was identified by a border line (line width of 1 pixel), this border line was 

semiautomatically drawn using the image analysis software and manually corrected where 

necessary. The image was partitioned into lean parts in white and fat (or marbling) sections in 

black. Fine marbling particles (fat flecks) were defined as those with an area between 0.01 and 0.5 

cm
2
. The image for coarse marbling particles (or fat flecks > 1 pixel) was created by further 

thinning the marbling image and removing hairlines of 1 pixel wide. Details of these processes 

have been reported previously (Kuchida et al. 2001). Ten image analysis traits were analysed: 1) 

eye muscle area (cm
2
), 2) percentage of marbling area (%), 3) percentage of the coarse fat flecks 

(%) or marbling coarseness index as other reported (Maeda et al. 2014), 4) percentage of the 

largest fat flecks (%), 5) percentage of the  largest 5 fat flecks (%), 6) percentage of the largest 10 

fat flecks (%), 7) marbling fineness index or number of fat flecks per cm
2
 (count/cm

2
), 8) total 

number of fat flecks in rib eye area, 9) average luminance of the lean rib eye area and 10) ratio of 

minor to major axis in rib eye area. 

Statistical Models. Data were analysed using an animal model fitted with fixed effects and 

covariates to estimate breeding values, genetic variances and heritability for traits with reasonable 

numbers of records and, subsequently, genetic correlations for specific pairs of traits. The fixed 

effects included in the analysis for carcase weight were contemporary groups (defined by herd, 

original owner, management group and date of slaughter), sex, and age at slaughter and age of 

dam were fitted as covariates. In addition to those effects the carcase character traits (measured 

either through AUS-MEAT or via image analysis traits) were adjusted for carcase weight instead 

of age at slaughter. The model used was y = Xb + Za + e, where y represents the vector of 

observations, X is the incidence matrix relating fixed effects/covariate (e.g. contemporary group, 

sex and age at slaughter) in b with observations in y, Z is the incidence matrix relating the random 

additive genetic effects in a with observations in y, and e is the vector of random residual effects. 

The random effects in the model were assumed to be normally distributed with zero mean and 

variances as Var (a) = Aσa
2 

and Var (e) = Iσe
2
, where A is the numerator relationship matrix 

across all animals and derived from the available pedigree information, and I is an identity matrix. 

σa
2
 and σe

2 
are the components of variance for additive and residual random effects, respectively. 

Bivariate analyses were performed for pairs of traits of importance, and with sufficient data to 

estimate the genetic and phenotypic correlations. These included correlations between AUS-

MEAT and image analysis traits for marbling, eye muscle area and fatness measures, respectively; 

and between carcase weight and meat quality traits (marbling, fatness and eye muscle area). The 

random effects in these models were assumed to be normally distributed with zero mean and 

variance as Var(a) = G0 ⊗ A and Var(e) = R0 ⊗ I, where G0 and R0 are the additive genetic and 

residual covariance matrices among traits  respectively, and where ⊗ is the Kronecker product.  

 

RESULTS AND DISCUSSION 

Descriptive statistics for traits are showed in Table 1. These cattle had an average carcase 

weight of 417kg, AUS-MEAT marbling score of 7.5, eye muscle area of 89 cm
2 

and age at 

slaughter of 980 days. Image analyses of carcase characters showed lower eye muscle area (63 cm
2
) 

with a greater variation than the AUS-MEAT grading measure. An average of 27.3% of the rib eye 
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area was intramuscular fat, with 6.8% coarse fat flecks, 4.4% (or 5.4%) the largest 5 (or 10) fat 

flecks and 2.68 fine fat particles per cm
2 
of rib eye area. The largest fat particle accounted for 2.8% 

of the rib eye area and the average total number of fat particles in the rib eye area was 990 with 

very large variation.  

Genetic parameters. Genetic parameter estimates are shown in Table 1 for carcase AUS-

MEAT traits and image analysis traits. AUS-MEAT carcase traits were moderately to highly 

heritable. However, heritability estimates for measures of fat content traits were low; in particular, 

the estimate for carcase rib fat was abnormally low, with a possible explanation being irregularity 

in data collection (e.g. fat trimming). The estimates for carcase weight, eye muscle area and 

marbling are in line with the average of estimated heritability for carcase traits reported by Oyama 

(2011). Heritability estimates for intramuscular fat and P8 fat were similar, and the estimate for 

intramuscular fat was in the range summarized by Oyama (2011).  

Most image analysis traits of carcase characters were moderately to highly heritable. For 

example, marbling percentage, marbling particle fineness and coarseness (percentages of coarse fat 

flecks), and number of marbling particles were very highly heritable. The brightness of eye muscle 

was also moderately heritable. Image analysis traits for the shape of eye muscle area (ratio of 

minor to major axis) and for the percentage of the largest marbling particle had low heritability. 

These findings are similar to those previous reported (Osawa et al. 2008). The current results are 

similar to those reported by Maeda et al. (2014), but with lower standard errors. 

 

 

Table 1. Descriptive statistics and genetic parameters for carcase traits (including image 

analysis traits and AUS-MEAT measures of carcase) of Australian Wagyu cattle 

 

Trait N Mean s.d. Va Vp h2 s.e. 

Image analysis traits 

Eye muscle area (cm2) 2095 63.0 26.6 45.5 73.5 0.62 0.11 

Marbling percentage (%) 2095 27.3 7.75 13.1 35.6 0.37 0.09 

Fineness Index (count/cm2) 1856 2.68 0.62 0.13 0.26 0.50 0.11 

Fat particles (%) 2095 6.82 4.53 3.13 10.3 0.31 0.09 

The largest fat particle (%) 2041 2.75 2.37 0.21 4.29 0.05 0.05 

The 5 largest fat particles (%) 845 4.43 3.01 4.82 6.15 0.78 0.16 

The 10 largest particles (%) 845 5.43 3.43 6.41 7.56 0.85 0.15 

Total number of fat particles 845 987 702 131633 164074 0.80 0.03 

Minor major axis ratio 1856 0.83 1.12 0.01 0.06 0.08 0.06 

luminance of muscular part  1135 80.3 8.22 22.6 57.0 0.40 0.14 

AUS-MEAT traits 

Hot standard carcase weight (kg) 5269 417 61.2 646 1363 0.47 0.07 

AUS-MEAT marble score 0-9 3066 7.41 1.66 1.18 2.26 0.54 0.09 

Carcase eye muscle area (cm2) 1423 88.8 18.8 52.1 88.1 0.59 0.12 

Carcase rib fat depth (mm) 1303 15.0 7.00 1.48 27.6 0.06 0.05 

Carcase P8 fat depth (mm) 1860 26.8 10.6 11.1 43.6 0.25 0.11 

Carcase intramuscular fat (100+%) 866 134 70.7 385 1794 0.23 0.15 
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Genetic correlations. The genetic correlations from the bivariate analyses are shown in Table 

2. The genetic correlation between values for eye muscle area measured by image analysis traits 

and by the traditional method is very high (0.83), and the distributions of the two measures are 

very similar. The genetic correlation for the carcase marbling between AUS-MEAT measure and 

image analysis trait was unity. Other estimates were either small or associated with high standard 

errors.  

 

Table 2 Genetic and phenotypic correlations between traits
 

 

Trait1 Trait2 N
*
 rg s.e. rp 

Carcase Weight Image marbling% 2095 0.21 0.17 0.02 

Carcase Weight AUS-MEAT marbling score 3066 0.32 0.13 0.04 

Carcase Weight Image eye muscle area 2095 -0.15 0.14 -0.02 

Carcase Weight Carcase eye muscle area 1423 0.10 0.19 0.01 

Image marbling% AUS-MEAT marbling score 2073 1.00 0.01 0.77 

Image marbling% Image eye muscle area 2095 -0.04 0.17 0.18 

Image marbling% Image eye muscle area 1112 0.09 0.22 0.18 

AUS-MEAT marbling score Image eye muscle area 2073 -0.26 0.14 0.16 

AUS-MEAT marbling score Carcase eye muscle area 1423 0.03 0.17 0.21 

Image eye muscle area Carcase eye muscle area 1112 0.83 0.08 0.64 

Carcase intramuscular fat Carcase P8 fat 806 -0.09 0.49 -0.11 
*N is the number of records common for two traits; rg and rp are the genetic and phenotypic correlations. s.e. 

is the standard error for rg. 

 

CONCLUSIONS 

High genetic correlations show that both image analysis and AUS-MEAT measures for 

marbling or for eye muscle area are essentially the same traits. Image analysis of carcase 

characters captures useful genetic information as evident in their moderate to high heritability 

estimates. Thus they may be useful for selection in Australian Wagyu beef cattle. Prior to 

including these image analysis traits in Wagyu genetic evaluation, it is necessary to ascertain both 

their economic value and their genetic correlations with other traits.  
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SUMMARY 

In-plant sheep carcass grading systems offer ram breeders the opportunity to use carcass yield 

data from culls in genetic evaluations. This is a special case of two-stage selection where the 

second-stage measurement is not made on selection candidates in the nucleus, but on half-sib 

relatives that have been slaughtered.  Carcass yield data from ~ 11,500 progeny of 257 sires in the 

Beef + Lamb New Zealand Central Progeny Test were used to investigate the loss in breeding 

value accuracy in this scenario.  All animals had pedigree recorded, weaning weight and weight of 

lean in the hindleg, loin and shoulder primal cuts measured by VIAscan. Datasets were prepared 

where VIAscan measurements were retained for a random 5%, 10%, 20%, 30%, 40% and 50% of 

animals, each replicated five times.  Breeding values were estimated for each dataset, along with 

datasets comprising 0% and 100% of VIAscan records retained. Breeding values for all individuals 

without VIAscan records were regressed against their breeding value in the 100% dataset to 

determine the loss of accuracy from having records on a proportion of half-sibs rather than their 

own (plus their half-sibs) records.  Results indicate an asymptotic increase in EBV accuracy with 

increasing VIAScan records. When the proportion of animals with records reaches 50%, accuracy 

increases to 76.0%, 67.6% and 72.8% for VIAscan leg, loin and shoulder meat yield, respectively. 

 

INTRODUCTION  

There are limitations in selection programmes for carcass traits due to the fact that many traits 

can only be measured post-slaughter, or in the live animal with expensive technologies such as CT 

scanning (Young et al. 1996). Measurement at slaughter is problematic because slaughter 

obviously precludes the animal from being a selection candidate.  Meat processors in New Zealand 

are using carcass grading systems like VIAscan (Hopkins et al. 2004) which routinely give 

estimates of lean meat yield for carcass primal cuts.  There is potentially useful carcass data 

collected on ram breeders’ culls at slaughter that could improve meat yield breeding values. This is 

a special case of two stage selection (Jopson et al. 2004), where the primary measures are 

ultrasonic eye muscle dimensions, and second-stage carcass measurements are not made on 

highly-ranked selection candidates in the nucleus, but on half-sib relatives sent for slaughter.  The 

accuracy of an individual’s breeding value (EBV) is influenced by, amongst other things, whether 

the animal or its relatives were measured for a trait, the number of relatives measured and the 

relationship with relatives (Falconer and Mackay, 1996).  The loss of accuracy in meat yield EBVs 

due to half-sibs of selection candidates being measured rather than candidates themselves is not 

known.  The aim of this research was to simulate differing proportions of culls with meat yield 

measurements and investigate the effect on EBVs in the individuals remaining in the flock 

 

MATERIAL AND METHODS  

A progeny test dataset comprising 11,500 progeny, from 257 sires, born between 2005 and 

2013, was used.  Pedigree and trait data were obtained from the Beef + Lamb New Zealand 

Central Progeny Test (McLean et al. 2006).  VIAscan traits analysed were weight of lean in the 

hindleg, loin and shoulder primal cuts (VSLEG, VSLOIN and VSSHLD, respectively; Payne et al. 

2009); and correlated traits fitted in the Sheep Improvement Limited (SIL) meat yield module, 
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namely live weight at weaning and eight months of age, ultrasonic eye muscle measurement and 

fat depth over the eye muscle at the 12
th

 rib (WWT, LW8, EMA and FD, respectively; Jopson et 

al. 2009).   

Slaughter progeny included all the progeny of terminal sire rams and the male progeny of dual 

purpose rams.  Slaughter animals were drafted at monthly intervals from weaning at 12 weeks of 

age to achieve an 18 kg carcass weight. All lambs were slaughtered at Alliance Group Plants. and 

evaluated using VIAscan (Hopkins et al. 2004) for VSLEG, VSLOIN, VSSHLD and carcass 

weight (CWT).  The retained ewe progeny from dual purpose sires were weighed for LW8 and 

ultrasound scanned to measure eye muscle area (EMA) and fat depth over the eye muscle (FD) 

approximately 180 days after the mean lambing date of each flock.  

All slaughtered progeny in the dataset had VIAscan records.  New datasets were created where 

VIAscan records (VSLEG, VSLOIN, VSSHLD and CWT) were set to missing for a randomly 

selected proportion of the dataset.  Datasets were produced where only a random 5%, 10%, 20%, 

30%, 40% and 50% (referred to as P5 to P50, respectively) had VIAscan records present, with 

each dataset replicated five times.  Datasets where 0 and 100% (P0 and P100, respectively) of 

VIAscan measurements were present were also produced, this provides datasets with EBVs 

estimated from correlated traits only and a dataset where EBVs are estimated from the true 

measurement of every animal.  

EBVs were calculated using the SIL genetic engine (Young and Wakelin 2009), which are 

produced using a multi-trait animal model in ASReml (Gilmour et al. 1999). The models included 

terms for age of dam, birth and rearing rank, contemporary group (flock, birth year, sex, weaning 

mob and slaughter mob) and birthday deviation (as a covariate) for the traits WWT, LW8, FD, 

EMA, VSLEG, VSLOIN and VSSHLD, respectively, and a random animal effect. Breeding 

values were then compiled in a master dataset, and analysed in SAS (2013) with binary indicators 

to identify if the animal had its own VIAscan phenotypic records included or excluded for each 

iteration. Animals with EBVs predicted solely from relatives (i.e. their own VIAscan records were 

set to missing) were then regressed against the EBVs for the same animals from the P100 dataset, 

to produce Pearson correlation (accuracy relative to the EBV when all animals are measured for 

the trait).  

 

RESULTS 

The accuracy of EBVs for the three VIAscan traits estimated when no VIAscan data were 

present (i.e. based solely on live weight and ultrasound scanning data) ranged from 75.9 to 78.4% 

relative to EBVs when all animals have VIAscan records (Table 1).  The average progeny per sire 

with VIAscan records ranged between 2.3 and 20.0 for P5 and P50, respectively.  Some sires with 

small numbers of progeny were not represented with VIAscan records in the P5 and P10 datasets, 

but effectively all sires had progeny with records present for the P20 to P50 datasets. 

 

Table 1. Mean accuracy (r) of EBVs for animals based on a proportion of half-sib relatives 

having VIAscan records relative to EBVs when all animals had records. 

  P0 P5 P10 P20 P30 P40 P50 

VSLEG 0.784 0.793 0.808 0.835 0.851 0.863 0.872 

VSLOIN 0.766 0.764 0.771 0.786 0.798 0.809 0.817 

VSSHLD 0.759 0.777 0.794 0.819 0.836 0.846 0.855 

Sires NA 205 239 253 255 255 257 

Progeny/sire 0 2.3 4.1 7.9 12.0 16.1 20.0 
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The addition of VIAscan data increased the accuracy values for all three EBVs, increasing 

accuracy to between 81.7 and 87.2% for the P50 datasets.  The majority of the improvement in 

accuracy was observed in the P5 to P30 datasets, with the response appearing to be heading for an 

asymptote in the P50 datasets.  There was very good agreement in accuracy results across 

replicates as can be seen for VSSHLD in Figure 1.   

 
Figure 1. Accuracy of VIAscan shoulder EBVs relative to the true breeding value (TBV).  

 

DISCUSSION  

Ram breeders have a range of technologies available for prediction of meat yield to incorporate 

into their breeding programmes.  This includes ultrasound scanning, CT scanning, and now 

VIAscan carcass grading as an in-plant measurement of meat yield in the hindleg, loin and 

shoulder primal cuts.  Meat yield breeding values that use data from all three are available through 

SIL.  However, the gains that can be made using data collected in plant have not been quantified.  

Some loss of EBV accuracy is expected due to the fact that the animals must be slaughtered to 

gather the measurement so selection candidates are not measured, compared to a situation where it 

is possible to measure the selection candidate itself.   

The accuracy values from the P0 dataset for hindleg, loin and shoulder yield EBVs are 78.4%, 

76.6% and 75.9% respectively. This level of accuracy illustrates that LW8, WWT, EMA, and FD 

are relatively highly correlated with the VIAscan traits (Payne et al. 2009) and therefore contribute 

significantly to the prediction of meat yield breeding values (Thompson and Meyer 1986).  The 

results also show that a significant improvement in EBV accuracy can be made by using in-plant 

VIAscan measurements compared to not collecting any data at slaughter (i.e. compared to the P0 

treatment).  The majority of the improvement in accuracy was achieved by sampling between P20 

and P30 treatments (i.e. a random 20 to 30 percent of animals slaughtered and measured).  The 

economic benefit has not been considered, and so the cost of not having the slaughtered animals 

available for use in the nucleus or as rams for sale to commercial farmers has not been accounted 

for.  This would need to be estimated to optimise the use of VIAscan measurement in a nucleus 

flock. 

The asymptotic curve observed in Figure 1 indicates that 100% accuracy would not be 

achieved if it were in fact possible to collect VIAscan records on all individuals and still have 

selection candidates available.  While this appears somewhat counter-intuitive, half-sibs only have 

around 25% of their alleles in common (Falconer and Mackay 1996) so 100% accuracy can never 

be achieved where the selection candidate is not measured for a goal trait, but some of its half-sib 

relatives were measured for the trait.   

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0% 10% 20% 30% 40% 50%

A
c
c
u
ra

c
y
 (

r)
 

Proportion of progeny with VIAscan records 

Rep 1

Rep 2

Rep 3

Rep 4

Rep 5

Average

Proc. Assoc. Advmt. Breed. Genet. 21: 413-416

415



 

 

There are two practical factors that need to be considered in interpreting these results.  Firstly, 

the Central Progeny Test dataset is not typical of a nucleus flock in that it is a progeny test design 

where a large proportion of progeny are slaughtered.  In a breeder’s nucleus flock, there will be 

many genetic connections between the rams used in the flock, all of which would be expected to 

improve the accuracy of breeding values, especially over time as the depth of pedigree increased 

(Falconer and Mackay 1996) . 

Secondly, the simulated culling was based on random selection of animals. In practice farmers 

are likely to select a biased sample of lower-ranked animals based on live weight and ultrasonic 

scanning data.  While some animals with high EBVs may be culled for physical faults, these are 

expected to be a minority.  This results in truncated selection within the flock, rather than random 

selection.  Truncated selection would also introduce unbalanced representation of sire lines in the 

animals sent for slaughter measurement.  Thus the accuracy figure presented here may be higher 

than would be achieved in practice through truncated selection (Weigel 2001).  However, the 

extent of this is unknown, but could be determined through further simulation. 

 

CONCLUSION 

Meat yield breeding values for selection candidates estimated using data collected from half-

sib relatives give EBV accuracy levels intermediate between not collecting VIAscan 

measurements and having a technology that can measure meat yield in the live animal.  Collecting 

measurements on a random 12 progeny per sire (P30) gives close to the maximum improvement in 

EBV accuracy, but an economic analysis is needed to determine the optimum level.   
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SUMMARY 

The effect of different data exclusion policies for post weaning fat depth on heritability 

estimates were examined using industry data for Maternal, Merino and Terminal sheep. The 

exclusion policies which had the most positive effect on heritability were mean fat depth for the 

contemporary group (CG), and standard deviation of fat depth for the contemporary group. 

Exclusion based on mean weight of the CG showed some effectiveness for light animals. 

Excluding records based on mean age of the CG had no effect on heritability estimates.  In order 

for fat depth to be analysed most appropriately animals should be measured when they have had 

the opportunity to express the trait. It is appropriate to exclude CGs from the analysis where the 

variation in fat depth for a CG is low to improve heritability. The impact of these data exclusions 

on the utility of breeding values would need to be investigated in each analysis before any policies 

can be implemented. 

 

INTRODUCTION 

 Data quality and structure impacts heritability estimates, this is particularly evident- when 

using industry data (Swan et al.2007). Various data quality factors which could have an effect on 

heritability estimates were examined in this study and include, mean weight of contemporary 

groups, age of animals in CG, mean fatness of the CG, and variability of fatness in group. In order 

for an animal to express its true genetic potential for fat depth the animal needs both the physical 

maturity and environment to deposit sufficient fat. For genetic evaluations to be able to 

appropriately capture that genetic merit as a breeding value the animal needs also to have 

contemporaries to contrast those differences.  

The aim of this study was to examine the impact of data restriction policies on the heritability 

of post weaning fat depth using data from Maternal, Merino and Terminal sheep. The intention is 

also to provide feedback to the sheep industry on best practise for recording post-weaning fat and 

possible post measurement exclusion policies for the national genetic evaluation.  

 

MATERIALS AND METHODS 

Animals. Pedigree and phenotypes were extracted from the Sheep Genetics database (Brown et al. 

2007). The datasets used includes 10 years (2004-2014) of records with the Terminal analyses 

being restricted to only Poll Dorset animals due to size constraints, while the Maternal and Merino 

analyses had no restriction on breed. Sheep Genetics has standard protocols to exclude fat depth 

records outside of 0.5 mm to 15mm, records more than 4 standard deviations from the CG mean 

and records with no live weight recorded at the time of measurement. 

 

Alternate Data exclusion policies. Four data exclusion policies were developed to examine their 

effect on fat depth heritability estimates, and in addition an analysis with current standard data 
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exclusions was completed to provide a benchmark set of results. The four policies were; 1) 

excluding CGs where the mean weight was outside of minimum and maximum criteria, 2) 

excluding CGs where the mean age of the CG at recording was below age criteria and also 

excluding  CGs where the mean age was outside of minimum and maximum criteria, 3) excluding 

CGs where the mean fat depth of the group was outside of minimum and maximum fat depth 

criteria and 4) excluding data where the standard deviation of fat depth for the group was outside 

of minimum and maximum standard deviation of fat depth criteria. The thresholds defined were 

derived by examining the distributions of these terms across the data sets. 

 

Statistical Analysis. Genetic parameters for fat depth were estimated in univariate animal model 

analyses using ASReml (Gilmour et al. 2009). The fixed effects of CG and the animal’s liveweight 

at measurement (as quadratic) were fitted. CG was defined as flock, year of birth, sex, date of 

measurement, management group. Random terms for the direct genetic effects and sire by flock 

year interactions were fitted. 

 

RESULTS AND DISCUSSION 

Heritability estimates for the Maternal, Merino and Terminal datasets are summarised in Table 

1. Sheep Genetics currently use heritabilities of 0.30, 0.20 and 0.25 for post weaning fat depths in 

the routine evaluations for Maternal, Terminal and Merinos respectively. These benchmark 

heritabilities estimated are slightly lower than the current Sheep Genetics parameters for Maternal 

and Terminal and this reduction is likely due to the inclusion of sire by flock-year interaction term 

as shown by Brown et al. (2009).  

  

Table 1. Heritability (h
2
) and sire by flock-year (s

2
) estimates for post-weaning fat using 

current standard data exclusion policies 

 

Analysis group Records CGs h2 s2 

Maternal 143866 5609 0.24 (0.01) 0.02 (0.00) 

Merino 55028 985 0.21 (0.02) 0.02 (0.00) 

Terminal 249866 10014 0.21 (0.01) 0.01 (0.00) 

 

The impact of applying the first data exclusion policy of mean CG live weight is summarised 

in Table 2. All analyses show a small increase in heritability from the low mean weight groups to 

the higher weight groups. Applying an exclusion policy solely on weight would result in improved 

heritability estimates, however this would be at the cost of a large proportion of data being 

excluded from the analysis.  Heritability gains could be made if breeders waited until animals were 

heavier and fatter rather than measuring at lighter and leaner weight ranges. 

For all breed groups the heritability estimates show no increase as age of the CG increases, 

using both age exclusion policies. Older groups of animals across all breeds did not show 

increased heritability suggesting that factors other than age are important in allowing the genetic 

potential for fat depth to be estimated. In all breed groups there was an increase in heritability 

estimates as the mean fatness of the CGs’ increased (Table 3). While it would not be feasible to 

exclude all groups where fatness of the CG is low, breeders should be encouraged to record 

animals when higher levels of fatness have been achieved in the CG. Increasing the mean fatness 

of CG reduces the proportion of measurement error in relation to the mean .Measurement errors in 

fat depth scanning on average should be less than 1mm as this is a requirement of scanning 

accreditation (Woolcott et al, 2006). Heritability increases achieved through increased fatness of 
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CGs would allow for genetic evaluations to more accurately separate the genetic and non-genetic 

effects resulting in more accurate breeding values. 

 

Table 2. Heritability (h
2
) estimates for post-weaning fat depth with different contemporary 

group mean body weight (kg) data exclusion policies 

 

Criteria Maternal Merino Terminal 

Min Max %Records h2 % Records h2 % Records h2 

30 35 N.A N.A 9.3 0.15 (0.06) N.A N.A 

35 40 20.4 0.23 (0.02) 22.4 0.18 (0.03) 3.3 0.06 (0.04) 

40 45 25.0 0.19 (0.02) 29.6 0.14 (0.03) 11.7 0.16 (0.02) 

45 50 21.2 0.20 (0.02) 19.3 0.26 (0.05) 20.3 0.17 (0.01) 

50 55 15.6 0.25 (0.02) 8.4 0.26 (0.07) 21.2 0.19 (0.01) 

55 60 8.0 0.32 (0.04) 7.2 0.19 (0.10) 17.0 0.17 (0.02) 

60 65 N.A N.A 1.7 0.43 (0.15) 12.2 0.22 (0.02) 

N.A - Insufficient data to estimate 

 

Table 3. Heritability (h
2
) estimates for post -weaning fat depth with data exclusion based on 

mean fat depth of the contemporary group (mm) 

 

Criteria Maternal Merino Terminal 

Min Max % Records h2 % Records h2 % Recs h2 

1 2 10.3 0.20 (0.03) 28.9 0.15 (0.03) 4.6 0.05 (0.02) 

2 3 39.7 0.18 (0.01) 42.5 0.19 (0.03) 29.1 0.17 (0.01) 

3 4 32.3 0.28 (0.02) 26.5 0.33 (0.03) 37.6 0.20 (0.01) 

4 5 13.6 0.33 (0.03) N.A N.A 23.6 0.27 (0.01) 

 

The final exclusion policy investigated was for the level of variability in fat depth within each 

CG (Table 4). For lower levels of fat depth variability across Maternal, Merino and Terminal 

analyses groups the heritability estimates were 0.10 or lower. As variability increased for all three 

breed groups the heritability generally increased. Thus, having greater variability in fat depth 

within the CGs allowed for better estimation of the genetic differences.  

The factors used for data exclusion in this study are all positively correlated with each other 

and thus all expected to influence the level of expression in fatness. However the results confirm 

that the best factor to influence the heritability of fatness is to the variability of fat depth. Age and 

body weight provide practical proxies for breeders to assess if animals are in condition for 

scanning but measured fat depth is a more reliable tool. 

 

CONCLUSIONS 

These analyses show that data exclusion policies can have an effect on heritability estimates 

for post weaning fat depth in Maternal, Merino and Terminal sheep. Using CG based exclusion 

policies for mean fat depth or standard deviation of fat depth showed increases in heritability, with 

Maternal and Merino sheep showing the greatest benefit of these policies. Using mean weight of 

the group resulted in some small increases in heritability, especially when comparing lighter 
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groups to much heavier CGs, and could be useful for excluding very light CGs. Age at 

measurement had no effect on heritability estimates. In order for the most appropriate fat depth 

breeding values to be produced, phenotypic data should be collected for animals in CGs that have 

high variability for fatness. Increases in variability of CGs are indicative of groups which have 

exhibited the differences in their genetic potentials and provide meaningful comparisons for 

genetic evaluation.   Excluding CGs below minimum thresholds for fat depth variability during 

genetic evaluation could be implemented to more accurately estimate breeding values for fat 

depth. However the impact such data exclusions would have on the utility of breeding values 

would need to be investigated and an appropriate policy developed for both historical and new 

data used in these analyses. 

 

Table 4. Heritability estimates for post-weaning fat with data exclusion based on standard 

deviation of fat depth of each CG 

 

Criteria Maternal Merino Terminal 

Min Max % Recs h2 % Recs h2 % Recs h2 

0.0 0.3 3.2 0.10 (0.07) 5.3 0.06 (0.08) 2.8 0.06 (0.05) 

0.3 0.4 6.3 0.08 (0.04) 16.7 0.12 (0.04) 5.8 0.09 (0.02) 

0.4 0.5 15.7 0.16 (0.02) 32.4 0.17 (0.03) 14.5 0.13 (0.02) 

0.5 0.6 20.1 0.20 (0.02) 21.2 0.12 (0.04) 17.5 0.13 (0.01) 

0.6 0.7 16.0 0.17 (0.02) 10.7 0.23 (0.06) 17.5 0.14 (0.01) 

0.7 0.8 11.2 0.19 (0.03) 5.9 0.16 (0.05) 13.4 0.17 (0.02) 

0.8 0.9 8.2 0.19 (0.04) 3.7 0.29 (0.08) 10.0 0.23 (0.02) 

0.9 1.0 6.2 0.23 (0.05) 1.3 0.60 (0.20) 7.0 0.20 (0.03) 
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SUMMARY 

This study was conducted to determine the precision or confidence interval of phenotypes and 

estimated breeding values for enteric methane (CH4) emissions of individual animals estimated 

from spot measurements of methane flux. Components of variance of daily methane production 

(DMP; gCH4/d) and methane yield (MY; gCH4/kg DMI) from trial data were used to estimate the 

precision for assumed heritability values. The precision was relatively insensitive to number of 

measures per animal per day and to the number of days of measurement. The values of the residual 

components of variance (between measures, within-animals, within-days) are high compared to 

between animal and between day variance but the confidence intervals for EBVs for DMP and 

MY estimated from spot flux measures are about 20% each side of the mean, which should be 

adequate for industry implementation in breeding schemes.  

 

INTRODUCTION 

Cattle breeders can select for lower methane (CH4) production directly via the use of methane 

measuring equipment, such as respiration chambers (Herd et al. 2014), Greenfeed emission 

monitoring units (GEM; Velazco et al. 2014) or indirectly via pasture feed intake (Cottle 2011, 

2013). Indirect selection is only superior to direct selection if the indirect measurement is easier to 

make, has a high genetic correlation with the direct trait and has moderate to high heritability. At 

present measuring pasture intake of large numbers of cattle is no easier than measuring CH4 

production. On-farm measurement of DMP is likely to occur without knowledge of the dry matter 

intake, although herd intake may be determined (Jones et al. 2011). The simplicity of obtaining 

short-term (spot) measurements of enteric CH4 production rate is causing these methods to be 

evaluated for their use in estimating genetic parameters for CH4 production (Pickering et al. 2013).  

Typically, the arithmetic average of spot measures is used to estimate daily CH4 production (DMP; 

g CH4/d) yet the precision of this approach has not been reported (Cottle et al. 2015). Emission 

rates are known to change over momentary, diurnal and longer seasonal patterns (Crompton et al., 

2011; Ulyatt et al., 2002; Munger and Kreuzer, 2008), requiring representative sampling.  

This study aimed to determine the precision or 95% confidence interval of individual 

phenotypes and EBVs for CH4 emissions estimated from ~3-5 minute, spot measurements of 

enteric methane flux.  

 

METHODS 

Two data sets (grazing and feedlot; Cottle et al. 2015) were used to calculate the minimum 

number of spot flux measures needed to phenotype the true average CH4 emissions of an animal as 

required to develop DMP estimated breeding values (EBVs). DMP was estimated from multiple 3-

5 min spot measures of methane flux made by the GEM system using 24 cattle. The analysis was 

based on an acceptable margin of error (MoE) for sampling, a level of confidence to be associated 

with the final estimates, and an estimated coefficient of variation for each particular sample. MoE 

is the maximum permitted deviation of the estimate from the true mean. These calculations assume 
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the confidence level for sampling would be 90% (i.e. the measured value of DMP should be within 

10% of the true value). DMP estimates from cattle were estimated by GEM while cattle grazed 

pastures (173 gCH4/d) then again when they were feedlot finished (DMP = 142 gCH4/d). The MoE 

for each individual methane measurement was chosen as ± 5-10 gCH4/d. Measurement errors 

expressed as a percentage of the means, when MoE = 10 gCH4/d were therefore, 100*(10/142) = 

7%, and 100*(10/173) = 6% for feedlot and pasture respectively. For desired margins of error and 

levels of confidence, sample sizes were calculated as follows: 

Sample size (N) = (z
2
 * CV

2
)/(MoE/)

2
 

where: 

z is the value associated with the chosen confidence interval;  

CV was 40% (feedlot) or 30% (pasture); and  

MoE/μ is the ratio between the margin of error and the mean.  

To determine the optimum number of days and measures per day to achieve desired precisions 

of phenotype estimates and EBVs for DMP and MY, the 95% two-tailed confidence interval was 

estimated from the feedlot variance estimates reported by Cottle et al. (2015).  The standard error 

was calculated using the formulae in Cox and Solomon (2003) as shown below:   

Standard error (mean) = sqrt [σ
2
 / (na.nd.nr) + τa / na + τd / nd],  

where: 

 σ
2
 is the residual variance; 

 na, nd and nr are respectively the numbers of animals, days and samples per day, and 

 τa and τd are the variance components for animals and days respectively. 

The confidence intervals for EBVs were estimated as ±1.96 * √((√(1-h
2
)*√VA) + VE),   

where:  

h
2 
is heritability, 

VA is additive genetic variance, and  

VE = environmental variance ((1-h
2
)*VP). 

 

RESULTS AND DISCUSSION  

To be 90% confident of the DMP phenotype estimate being within 7.5% of the true mean 68 

spot measures were needed from an animal in a feedlot situation and 60 spot measures under 

grazing conditions (Table 1). CV is lower at pasture for a given absolute MoE as DMP is higher.  

 

Table 1.  Number of short-term GEM measures required to estimate the DMP phenotype of 

an individual animal (g CH4/day) with a specified margin of error and with a defined 

confidence using feedlot and grazing data sets 

 

 Confidence interval (%) 

MoE 

(gCH4/d) 
70 80 90 95 

Feedlot data set 

5 61 93 153 217 

7.5 27 41 68 97 

10 15 23 38 54 

Grazing data set 

5 54 81 134 190 

7.5 24 36 60 85 

10 13 20 34 48 
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The relationships between 95% confidence intervals and days of measurement and 

measurements per day are shown for DMP and MY EBVs in Figure 1. 

 

a)                                                                     b) 

Figure 1. Estimated width of 95% confidence intervals of a) DMP EBVs and b) MY EBVs 

(either side of mean) vs. numbers of days with 2 measurements / animal / day (solid line) or 

10 measurements / animal / day (dashed line). Heritabilites from top to bottom: 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6 and 0.7.  
 

The number of spot measures per animal per day (nr) is dependent on the frequency of 

supplement delivery by the GEM and voluntary visitation by cattle which is largely outside the 

control of the researcher.  Visitation had a minor effect on the number of days required to achieve 

a target precision for phenotypes. It would seem prudent to assume nr = 2, knowing that a higher 

number will slightly improve precision. Measuring animals less than 50 times will probably not 

achieve desired phenotype MoE and confidence intervals.  

The power analyses suggested that spot measurements would result in a precision in the DMP 

estimate of <10% deviation from true DMP value if they are made over a 70d period as routinely 

used with RFI tests in a feedlot. Spot measurements of enteric emissions can be used to define 

DMP but the number of animals and samples are larger compared to measurements made in 

respiration chambers with a lower CV (Hegarty 2013). 

Regarding establishing a precise estimate of the long-term emission phenotype, in a feedlot an 

animal needed 54 spot emission measurements to be 95% confident that the estimated mean is 

within 10% of the true DMP phenotype (Table 1). If MoE is 7.5 g/d, the required minimum 

number of measures (n=60) to describe a grazing animal’s phenotype within 10% of the true mean 

DMP, can be achieved by sampling an animal twice a day over 30 days, or 5 times a day over 12 

days. The more intense sampling schedules could confound the estimates under grazing conditions 

because a higher amount of supplement per day is required to attract the animals into the GEM 

unit. Within those ranges, all combinations of sampling regimes should deliver estimates within 

10% of the true phenotype. Less intense sampling regimes may increase the number of animals 

utilising a GEM unit.  

There is a minimum data requirement for all EBV traits so the optimization of the CH4 test 

duration will seek to provide the data at the lowest cost. A 35 day test was suggested by Archer et 
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al. (1997) to be sufficient to phenotype an animal’s feed intake (critical for the calculation of MY). 

In that case, 2 flux measures per day would enable the phenotype of DMP for a specific age and 

animal class to be used to calculate MY. If DMP is to be related to growth rate, a minimum 70 day 

test length with cattle weighed every two weeks is suggested (Exton 2001) so a 70 day test for 

growth rate can easily be run concurrently with the CH4 determinations. 

 From Figure 1, the 95% confidence interval for DMP EBV estimates was ±25 gCH4/day and 

for MY EBV estimates was ±3.5 gCH4/kg DMI, assuming a heritability of 0.26 for DMP and 0.23 

for MY (Lassen and Lovendahl 2013). Increasing the number of measurements / animal / day or 

number of days of measurement, (i.e. total number of measurements), had little impact on the 

precision of EBVs. The confidence intervals are about 20% of the mean values for DMP (~150g 

CH4/day) and MY (~13g CH4/kg DMI) each side of the mean, which is a relatively wider 

confidence interval than most traits, but should be of adequate precision for use in industry via 

breeding schemes such as Breedplan. The design of future enteric CH4 experiments will usually 

depend on the available budget and logistic limitations. Our formula and results can be used as a 

guide for any future experimental designs. 
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SUMMARY 

Understanding the consequences of selection represents an important part of the development 

of a genetic improvement program. The weighting applied to the adult ewe live weight (EWT) 

estimated breeding value (EBV) in New Zealand dual purpose flocks is currently highly topical 

with breeders having contrasting views as to the appropriateness of the current strong downward 

selection emphasis. This research assessed the implications of selection using a restricted ewe live 

weight index, and quantified the loss of efficiency of selection on indexes with varying economic 

weights, and a zero economic weight, for the EWT EBV, in flocks recording and not recording 

EWT.  

Results showed that recording ewe weight enables EWT EBV change to be restricted while 

achieving increased rates of gain in early growth traits. The current dual purpose production (DPP) 

index (Byrne et al. 2012) was also found to be robust to a 17 to 33% reduction in the EWT 

economic weight, resulting in a 2 to 4% loss in efficiency of selection on the current DPP index 

for all flocks that are either recording or not recording EWT. While selection indexes were robust 

to changes in EWT economic weights, if the EWT economic weight was set to zero, equivalent to 

a decision to exclude EWT from the breeding goal, the loss in efficiency of selection on the 

current DPP index was 16%.  

One option for industry could be to implement a 33% reduction in EWT economic weight 

which would result in no reduction in genetic potential for ewe mature size while selection 

candidates with superior growth rate would rank more consistently with ram breeder and buyer 

expectations. While this compromise would typically result in a 2 to 4% loss in efficiency of the 

current DPP, such an outcome is preferable to exclusion of EWT from the breeding goal as 

currently practiced by some breeders who object to a strong negative penalty on EWT, because 

that strategy leads to a 16% reduction in the economic value of genetic progress. 

 

INTRODUCTION 

Understanding the consequences of selection represents an important part of the development 

of a genetic improvement program. It enables breeders and farmers to understand how animal 

performance will change over time as a result of selection. A number of sheep breeders have 

provided feedback to Beef + Lamb New Zealand Genetics (B+LNZ Genetics) that some of the 

consequences of selection on the current DPP index are not desirable. Of specific concern is the 

loss of gain in early growth, as a result of using a negative economic weight on the EWT EBV. 

Depending on the level of recording and accuracy of prediction, the current DPP index may 

increase or decrease ewe weight (Table 1). While it is recommended that a negative economic 

weight on the EWT EBV be included in the DPP index, some breeders are requesting that this be 

dropped in the genetic evaluation of their flocks. Moving forward breeders and farmers would like 

to have the ability to be able to control EWT with continual improvement in early growth.  

The aim of this research was to assess the implications of selection using a restricted EWT 

index and to quantify the los, of efficiency, relative to the current DPP index, of selection on 

overall indexes with varying economic weights for the EWT EBV, in flocks recording and not 

recording EWT. 
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MATERIALS AND METHODS 

Data collation. The Sheep Improvement Limited Database (Newman et al. 2000) was used to 

identify 79 flocks of different breeds (Romney, Perendale, Coopworth and Composite) that were 

recording or not recording EWT from 2006-2013. This data was collated into high and low EWT 

BV accuracy datasets from flocks recording or not recording EWT. A quantification of the 

expected loss of efficiency of selection on indexes with varying economic weights for EWT was 

undertaken (Table 1).  

Data analysis. The first step of the approach involved estimating the regression coefficients of 

each trait of interest on the index (DPP) in question, within high and low accuracy datasets from 

flocks recording or not recording EWT. These regression coefficients ( b ), interpreted as how 

many units of progress in a trait can be expected per unit change in the index, can be derived from 

genetic variances of traits and indexes, as follows:  









I

T
ITIT V

V
rb ,,

   {Equation 1}, 

 

where r is the correlation and V is the variance for trait T  and index I , respectively. These 

values are very simply calculated for any set of selection candidates which have EBVs for the 

traits of interest, and for any specified index. 

The next step is to set as a benchmark the rate of genetic progress being achieved using the 

current index. This can be evaluated by looking at the averages of index values for animals born 

by birth year over recent years, a standard and routine practice in most genetic evaluation systems. 

If we assume that the vast majority of genetic progress comes from selection of a single type of 

selection candidate (e.g. progeny tested sires), then response to selection ( R ) on the current index 

( IC ) is:  

 
L

V
riR TM

TMICIC  ,
   {Equation 2}, 

 

where i is the selection intensity, r is the accuracy of selection of candidates on the current 

index ( IC ), V  is the variance for true overall merit ( TM ), and L  is the generation interval. If 

we assume that selection intensity and generation interval will be the same irrespective of what 

index is used to achieve genetic progress (this is reasonable for similar indexes with just 

moderately modified weightings on the same or similar traits as in the current index), then the 

relative rates of response in two indexes will be:  

 

TMTMIC

TMTMIN

IC

IN

Vr

Vr
R

R






,

,   {Equation 3}, 

where IN  is the new index, and the other parameters are described in equation 2. We can 

predict response in any trait of interest (
TR ) resulting from selection on the new index so that 100 

units of index progress is achieved based on combining Equations 1 and 2 above to be:  

IC

T
INTT V

V
rR  ,100  

It is important to note that in the above calculation, the correlation described is for the trait of 

interest with the new index ( IN ) being considered, while the variance of the current index ( IC ) is 

used to standardise the results in the denominator of the equation.  
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The equations can be easily adapted to predict response in one index that arises from selection 

on another index. This is achieved by treating the index of interest in the same way as we treated 

the trait of interest as described above. 

 

RESULTS AND DISCUSSION 
Results show that when selection candidates have high accuracy for the EWT eBV, selection 

on the current DPP index is expected to result in a modest reduction in EWT (Table 1). Table 1 

also shows that the recording of EWT enables the EWT EBV change to be restricted while 

achieving increased rates of gain in early growth traits (e.g. for high accuracy recorded flocks, CW 

response increases from 0.058 to 0.071, when EWT is restricted to zero). A similar result was 

observed for flocks that are not recording EWT, although the realised increases in rates of gain in 

early growth rate are much smaller (e.g. for high accuracy non recorded flocks, CW response 

increases from 0.067 to 0.068). This is because an almost equivalent weight (-146) to the current 

weight (-149) is required to restrict EWT EBV gain in flocks not recording EWT (Table 1). 

 

Table 1. Expected responses (regression coefficients) for each trait and index if selecting for 

100 cents of progress in the current index. 

 

Dataset High accuracy Low accuracy 

Ewe live weight (EWT) Recorded Not recorded Recorded Not recorded 

Selection candidates n=247,840 n=69,725 n=28,333 n=63,085 

Accuracy of EWT eBV 67.6% 63.5% 49.7% 50.3% 

Economic weight for 

EWT eBV (cents)1 

Cur 

-149 

New 

-109 

Cur 

-149 

New 

-146 

Cur 

-149 

New-

177 

Cur 

-149 

New 

-210 

eBV2 unit         

NLB lamb 0.011 0.011 0.012 0.012 0.008 0.008 0.010 0.010 

SUR lamb 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

SURM lamb 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

WWT kg 0.094 0.113 0.126 0.128 0.143 0.125 0.165 0.129 

WWTM kg 0.050 0.053 0.044 0.044 0.079 0.075 0.060 0.051 

CW kg 0.058 0.071 0.067 0.068 0.084 0.072 0.087 0.063 

EWT kg -0.067 0.000 -0.006 0.000 0.047 0.000 0.095 0.000 

FW12 kg 0.012 0.014 0.013 0.013 0.019 0.018 0.016 0.012 

LFW kg 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 

EFW kg 0.011 0.012 0.011 0.012 0.017 0.015 0.014 0.011 

Index3 unit         

DPP ( IC ) ₵ 100.0 98.63 100.0 99.99 100.0 99.33 100.0 96.99 

DPPR ( IN ) ₵ 97.31 98.64 99.98 99.99 98.68 99.33 94.19 97.03 
1 Cur: Ewe live weight economic weight in the current index; New: Ewe live weight economic weight required to restrict 
change in ewe live weight. 2 eBV, Estimated breeding values; NLB, number of lambs born; Sur, survival; SurM, survival 

maternal; WWT, weaning weight; WWTM, weaning weight maternal; CW, carcase weight; EWT, ewe live weight; FW12, 

fleece weight at 12 months; LFW, lamb fleece weight; EFW, ewe fleece weight. 3Index: DPP (using current ewe live 
weight economic weight); DPPR, dual purpose restricted to zero change in EWT eBV (using the restricted ewe live weight 

economic weight) 

 

When the accuracy of prediction of genetic merit for EWT EBV is low, significantly higher 

economic weights are required to restrict genetic change in EWT, for recording (-177) and (-210) 

non recording flocks (Table 1). With this level of weighting, associated reductions in response to 
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selection for early growth traits are apparent. The magnitude of this reduction (from responses to 

selection in current index) is greater for non-recording flocks compared to recording flocks. This 

shows an inability to identify genetic variation for adult ewe weight independent of early growth, 

when the trait is not recorded or predicted with low accuracy.  

As theory defines, results showed that selection indexes are robust to modest changes in the 

economic weight for EWT (Figure 1). For example if the current economic weight is dropped or 

increased by 50%, 95-96% of the current DPP will still be realised for flocks that are either 

recording or not recording ewe live weight. This efficiency increases to above ~99% with a 17% 

increase or decrease in the economic weight for EWT.  

If the EWT penalty is set to zero, equivalent to the practice of dropping EWT from the 

breeding goal, the loss in efficiency of the current DPP was 16%. To encourage industry to keep 

EWT in the breeding goal, the EWT penalty could be dropped by 33%, resulting in no reduction in 

genetic potential for ewe mature size when accuracy is high in flocks measuring the trait while 

selection candidates with superior growth rate would rank more consistently with ram breeder and 

buyer expectations. While this compromise could result in a 2 to 4% loss in efficiency of selection 

on the current DPP index for all flocks that are either recording or not recording EWT, this is a far 

better outcome for industry than a 16% loss from dropping EWT from the breeding goal. 

 

 
 

 

Figure 1. The effect of different economic weights for adult ewe live weight estimated 

breeding values on the percentage of current Dual purpose production index (DPP) realised 

for selection candidates from flocks that are recording or not recording ewe live weight. 
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SUMMARY
The impact of parameterising to genetic principal components and dimension reduction on

computational requirements is examined for a subset of traits considered in single step evaluation of
sheep in Australia. Together with judicious treatment of dense blocks due to genomic relationships in
the mixed model equations, such models can reduce computational requirements many-fold.

INTRODUCTION
Genetic evaluation utilizing genomic information is in the process of being adopted in many

livestock improvement schemes. In particular, the so-called ‘single-step’ procedure allows for joint
evaluation of all animals – genotyped or not – utilising all pedigree information available at the same
time (Misztal et al. 2009). It can be thought of as an extension of previous, best linear unbiased
prediction schemes, replacing the pedigree based numerator relationship matrix between animals, A,
by it’s counterpart, H, which combines the genomic relationship matrix among genotyped animals,
G, with relationships derived from the pedigree. Computing the inverse of H requires large matrix
products and direct inversion of G and the corresponding submatrix of A, and challenges thus posed
have attracted considerable attention (e.g. Aguilar et al. 2011).

Computational requirements to estimate breeding values are heavily dependent on the number
of non-zero (NNZ) elements in the coefficient matrix, C, of the mixed model equations (MME) to
be solved. In a multivariate analysis comprising q traits, each non-zero element of the inverse of the
relationship matrix can contribute up to q2 elements to C. Equivalent and reduced rank models have
been proposed which can reduce this number (Meyer and Kirkpatrick 2005; Meyer 2009), but have
seen little practical use. Let animals be grouped according to their genomic information status, with
H22 the submatrix of H for genotyped individuals. Typically, H22 and the corresponding block of H−1

are dense, i.e. contain few zero elements. Hence, the NNZ elements in C arising from elements of
H−1 becomes more important than previously, where the inverse relationship matrix A−1 was sparse
throughout. Furthermore, existence of dense blocks in the MME together with substantial amounts
of random access memory (RAM) available in modern hardware readily allow matrix manipulation
routines from highly optimized software libraries to be exploited. We examine the utility of equivalent
or reduced rank models together with the use of multi-threaded library routines for dense matrix
calculations for an application of single-step genetic evaluation to Australian sheep data.

EQUIVALENT MODELS AND BEYOND
Consider a linear mixed model for q traits, y = Xβ + Zu + e with y, β, u and e the vectors

of observations, fixed and random effects, and residuals, and X and Z the pertaining incidence
matrices. Let u represent animals’ additive genetic effects, ordered by animals within traits so that
Var (u) = Σ ⊗H, with Σ the genetic covariance matrix among traits. For Var (e) = R, the diagonal
block in C for u is then Cuu = Z′R−1Z + Σ−1⊗ H−1. The first part, Z′R−1Z, is block-diagonal for
animals, with blocks of size q × q. If Σ−1 has no zero elements, Σ−1⊗H−1, however, contributes q2

non-zero elements to Cuu for each non-zero off-diagonal element of H−1.
An equivalent model is obtained by expanding Zu to Z(Q ⊗ I)(Q−1 ⊗ I)u = Z?u?, with I an

*AGBU is a joint venture of NSW Department of Primary Industries and the University of New England

Proc. Assoc. Advmt. Breed. Genet. 21: 429-432

429



identity matrix. This gives Var(u?) = Q−1ΣQ−T ⊗H = Σ?⊗H and C∗uu = Z?′R−1Z?+ (Σ?)−1⊗H−1.
Choosing Q so that Σ? is diagonal reduces the NNZ elements contributed by each non-zero element of
H−1 to q. The trade-off for this is that Z? has up to q non-zero elements per observation compared to,
typically, a single element of unity in Z. This gives rise to some extra non-zero elements in other parts
of C?, especially in the off-diagonal block for fixed × random effects, X′R−1Z?. Suitable matrices Q
can be obtained from the eigen-decomposition Σ = EΛE′, either the matrix of eigenvectors, Q = E,
or the matrix of ‘factor loadings’, Q = EΛ−1/2. The latter can be rotated to lower triangular form,
Q = EΛ−1/2T (with TT′ = I) which reduces the NNZ elements in Q to q(q + 1)/2 and thus the
number of multiplications to set up the MME and the NNZ in X′R−1Z?.

Furthermore, this parametrization can directly yield substantial, additional computational savings
by invoking a ‘reduced rank’ model, if Σ has q − r negligible eigenvalues, which generally holds for
larger values of q. This involves estimating only the first r principal components (i.e. elements of
u?) for each animal which, at convergence, are combined to give the q corresponding elements of u.
This is achieved by simply considering only the first r columns of Q, which reduces the number of
equations in the model as well as the NNZ elements.

MATERIAL AND METHODS
Data consisted of 5.24 million records for 5 traits recorded on 1.77 million animals in the

LAMBPLAN terminal sire breeds evaluation (Brown et al. 2007), representing the most commonly
recorded traits in these breeds, namely birth, weaning and post-weaning weights, and post-weaning
eye muscle and fat depth. Including parents without records there were 1,995,755 animals of which
10,698 (N) were genotyped for 48,599 single nucleotide polymorphisms. To build H−1, genomic
relationships were computed following Yang et al. (2010). This yielded 63,793,942 NNZ elements in
H−1 (halfstored), compared to 6,584,393 elements in the corresponding pedigree based matrix A−1.

As in the routine LAMBPLAN evaluation, records were pre-corrected for the effects of birth-
rearing type, age at measurement and age of dam, and body weight as a covariate for eye muscle
and fat depth. The model of analysis then comprised contemporary groups as fixed effects, animals’
additive genetic effects, dams’ permanent environmental effects for the body weights (653,067 levels),
and genetic groups (93 levels) as random effects. The latter were fitted ‘explicitly’ – assigning
proportions of membership for each animal – as augmenting the pedigree by phantom parents in
single-step applications can be problematic (Misztal et al. 2013).

Analyses fitted standard multivariate (MV) and the principal components (PC) models described
above. Dense diagonal blocks in C (or C?) for genotyped animals were stored in two-dimensional
arrays, a single matrix of size qN × qN for MV and r blocks of size N × N for PC model analyses.
Similarly, if fitted, genetic groups were held in a single dense block. No distinction between MV and
PC was made for this effect, as the transformation yielded sufficient additional coefficients between
levels for different traits from the data part, Z?′R−1Z?, for the corresponding off-diagonal blocks to be
almost dense. The remaining non-zero coefficients in the coefficient matrix were held in compressed
sparse row format. A preconditioned conjugate gradient (PCG) algorithm (e.g. Tsuruta et al. 2001)
with partial Cholesky decomposition preconditioner was used to solve the MME. Cholesky factors and
solutions for the dense blocks were obtained using LAPACK routines DPOTRF and DPOTRS (Anderson
et al. 1999), respectively. The product of the coefficient matrix and a vector required in each PCG
iterate was formed using routines DSYMV from the BLAS library (Blackford et al. 2002) and the Intel
sparse matrix equivalent, MKL_DCSRSYMV.

Computations were carried under Linux on a machine with 256GB of RAM and 16 Intel Xeon
CPU E5-2630 cores, rated at 2.4Ghz with a cache size of 20MB. BLAS and LAPACK routines used
were loaded from the Intel Math Kernel Library (MKL), version 11.1.
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Table 1. Computing requirements for equivalent models for 5 traits

Without genetic groups With genetic groups

Pedigree Genomic Pedigree Genomic
MV PC MV PC MV PC MV PC

No. of equations 12,182,223 12,182,688
NNZa Sparse after data 50.7 66.2 50.7 66.2 223.8 316.0 223.8 316.0

after random 179.2 89.1 178.9 89.1 352.3 338.9 352.0 338.9
Dense genotyped – – 1430.6 286.1 – – 1430.6 286.1

Total 191.4 101.3 1621.6 387.4 364.6 351.2 1794.8 637.2
Memory (GB) 4.3 3.3 25.6 7.8 7.8 7.7 28.8 11.6
No. of PCG iterates 684 693 682 690 1357 1387 1339 1389
Timeb single 22.1 19.1 90.5 28.9 44.8 46.4 165.0 64.4

multi 20.5 20.8 65.3 31.7 42.2 42.9 122.6 61.1
aNo. of non-zero elements in coefficient matrix (in million) bin minutes, for single- and multi-threaded MKL routines

RESULTS
Computational requirements for analyses fitting equivalent models are summarized in Table 1,

comparing models with and without the use of genomic information. Values given for NNZ elements
pertain to one triangle of the symmetric coefficient matrix. As expected, there were marked differences
in the NNZ elements between MV and PC models, with more elements arising from the ‘data part’
but substantially less non-zero elements due to covariances between random effects for the PC models,
especially for single-step analyses. Fitting genetic groups increased the NNZ elements substantially
and almost doubled the number of PCG iterates required. PC models proved highly advantageous,
with overall computing times reduced 2- to 3-fold when genomic relationships were considered.
While CPU time summed over threads when using multi-threaded MKL routines (not shown) seemed
to indicate pronounced parallel processing, differences in elapsed time to single-thread runs were
surprisingly small, suggesting ‘processor spin’ rather than actual simultaneous execution.

Corresponding results for a 10-trait scenario, obtained by doubling the data, for single-step models
with genetic groups are given in Table 2. Considering more traits amplified differences between
models and improved multi-thread performance, especially for the Cholesky decomposition of the
diagonal block(s) for genotyped animals in the preconditioning step. Reducing the number of principal
components fitted decreased the number of equations in the model and NNZ elements in the coefficient
matrix. Results clearly illustrate the increasing advantage of PC over MV models with the number of
traits and number of negligible eigenvalues in the genetic covariance matrix among traits.

DISCUSSION
We have described a simple reparameterisation of the standard multivariate mixed model –

estimating genetic effects for principal components rather than the traits of interest – and illustrated its
potential to reduce computational requirements, especially when parts of the inverse of the relationship
matrix are dense. In addition, this parameterisation directly lends itself to dimension reduction by
eliminating the principal components which explain virtually no genetic variation, which becomes
increasingly important with the number of traits considered. Even a relatively small reduction in
dimension can have a big impact on computational requirements with negligible effects on the
accuracy of genetic evaluation, if chosen judiciously. Calculations shown for the small subset of traits
in LAMBPLAN considered here held the MME in core. In practice, this is unlikely to be feasible and
an ‘iteration on data’ type strategy needs to be employed instead (Tier and Graser 1991). However, the
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Table 2. Computing requirements for full and reduced rank models for 10 traits

MV10 PC10 PC9 PC8 PC7 PC6

No. of equations (in million) 24.37 24.37 22.37 20.37 18.38 16.38
NNZa Sparse after groups 901.8 1355.4 1208.4 1015.2 840.3 683.6

after random 1420.1 1401.2 1249.6 1051.9 872.4 711.1
Dense genotyped 5722.4 572.3 515.1 457.8 400.6 343.4

groups 0.313 0.331 0.271 0.215 0.164 0.121
Total 7167.1 1989.1 1787.3 1530.2 1291.4 1070.9

Memory (GB) 104.0 28.9 26.4 23.1 20.2 17.3
No. of PCG iterates 1797 1938 1969 1913 1891 1517
Timeb single Precondition 293.3 3.25 3.00 2.57 2.40 1.95

Total 959 202 188 155 139 126
multi Precondition 25.0 0.6 0.5 0.4 0.4 0.3

Total 551 147 140 127 116 88
aNo. of non-zero elements in coefficient matrix (in million) bin minutes, for single- and multi-threaded MKL routines

NNZ in the coefficient matrix is likely to be at least equally important in such schemes. In addition, if
sufficient memory is available, they are readily combined with in-core storage of dense blocks and
experience gained here with library routines for matrix computations should be directly transferable.

CONCLUSIONS
Computational strategies described are expected to play an essential rôle in making multi-trait,

single-step genetic evaluation for Australian livestock computationally feasible.
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SUMMARY 

The machine learning method, Random Forests (RF) has been shown to be effective in 

genome-wide association studies (GWAS). However, the presence of population structure (PS), 

e.g. relatedness between individuals, may cause spurious results in a RF analysis. In this study, we 

examined the impact of correcting for PS on the RF analysis of leg defect data from a commercial 

poultry population of 826 chickens genotyped for 44,129 SNP (single nucleotide polymorphism) 

markers. The results show that correcting for PS led to: 1) a significant improvement in the 

estimates of SNP variable importance values; 2) a significant reduction in false positives identified 

in the uncorrected data; and 3) a stronger evidence for a set of SNPs associated with the defective 

phenotype.  

INTRODUCTION 

One of the challenges of GWAS is that the number of predictors is larger than the number of 

samples, the so called “large p, small n” problem. During the past decades, a number of parametric 

statistical approaches have been developed for dealing with this issue, for example: Least Absolute 

Shrinkage and Selection Operator (LASSO) (Wu et al. 2009) and two-step Bayesian variable 

selection method (Zhang et al. 2008). Recently non-parametric machine learning methods have 

been shown to be efficient in analysing large genomic data (Szymazak et al. 2009). One of these 

methods is Random Forests (RF, Breiman 2001; Chen and Ishwaran 2012), a nonparametric 

decision tree based ensemble method for classification or regression of multiple predictor variables. 

Our initial preliminary examination found that this method is a powerful tool in pre-screening 

candidate genes in GWAS of sheep and cattle datasets (Li et al. 2014). Despite the advantage of 

RF over single marker GWAS methods in accounting for correlations among SNP variables, the 

existence of population structure (PS) has been shown to cause spurious results in the RF analyses 

(Zhao et al. 2012). In this study, we used a dataset from a commercial poultry population to 

examine the impact of correcting for PS on the RF analysis of a binary trait – leg defect. 

MATERIAL AND METHODS 

Data. A total of 826 broiler males from a commercial line of Cobb-Vantress Inc. was 

genotyped for 51,713 SNPs. The dataset comprised animals from 22 generations with various 

proportion of animals that had leg related problems, ranging from 29% to 51%. After quality 

check 7,584 SNPs were removed from the genotype dataset and the remaining 44,129 SNPs were 

used for the RF analyses. The original recording of an animal’s phenotypic leg status was either 

normal, bowed out, bowed in or rotated. We generated a new binary trait, by merging the latter 

three categories into a single category “Leg Defect’. Of the 826 animals, 592 were normal (coded 

“0”) and 234 had leg defects (coded “1”) (Table 1). 

EIGENSTRAT analysis for extracting population structure (PS) information. Unlike a 

linear model that can accommodate PS by fitting a covariance matrix in the model based on 

pedigree or genomic relationships, RF as a permutation-based method cannot directly account for 

such factors. Therefore, prior to a RF analysis, it is necessary to identify and correct any existing 
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population stratification. In this study we applied a method similar to that used by Zhao et al. 

(2012) to correct for PS. An EIGENSTRAT analysis (Price et al. 2006) was initially conducted to 

extract all eigenvectors from the SNP data. The linear regression models were fitted to regress the 

first 10 axes of variation (principal components) on: a) individual SNP genotypes, and b) the 

phenotypic trait values, respectively. The residuals from these analyses were combined for the RF 

analyses. All analyses were performed using the R program (version 3.1.1, http://www.r-

project.org/). 

 

Table 1. Trait distribution of leg related defect attributes in 826 roosters. 

 
Trait Number 0 (Normal) 1 (Defect) 

Bowed Out 826 729 97 

Bowed In 826 786 40 

Rotated Leg 826 729 97 

Leg Defect 826 592 234 

 

Random forests (RF). Details of the RF methodology can be found in Breiman (2001). In 

brief, six steps are involved: 1) As the training dataset, select a random subsample of 550 

individuals (or two thirds) with replacement from the available 826 individuals; 2) Select a random 

subset of SNPs (parameter mtry; say 420 out of the original 44,129) to form a decision tree; 3) 

Create a single tree via partitioning of sampled individuals in the subsample (normal versus defect) 

with SNP genotypes (e.g. “AA” versus others); and with the order (or arrangement) of SNP in the 

tree run repeatedly until individuals are perfectly partitioned into normal and defect; 4) Test the 

tree created in Step 3 with the remaining 276 individuals (i.e. validation) to determine the 

prediction error rate of the SNP tree; 5)  Repeat Steps 1 to 4 to develop a large number of forest 

trees (parameter Ntree); 6) Compute SNP variable importance value (VIM) by averaging the 

prediction error values across all forest trees. For a continuous phenotype (e.g. corrected data), 

Step 3 will build a tree that splits the sampled individuals into subsamples with different data value 

ranges. Step 4 will calculate the minimized sum of squared error for each SNP. It is worth noting 

that in a RF analysis, a SNP prediction error value is estimated when the SNP is randomly 

permuted, i.e. excluded from the forest trees. Therefore, the higher the VIM value, the more 

important the SNP is. 

Two crucial parameters impact the outcome of a RF analysis, i.e., the size of forest trees 

(Ntree) and the number of markers at each sampling event (mtry). To determine the minimum 

requirement for these parameters, we examined a range of Ntree and mtry values. These included 

Ntree = 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, or 2000, and mtry = 1, √𝑝, 2 ∗ √𝑝 or 

0.1*p, where p is total number of SNP markers (44,129). Once the minimum parameters were 

determined, these values were used to run the final RF analyses comprised of 100 RF replicates. 

To demonstrate the effect of correcting PS on the analysis, we compared the RF results from the 

corrected data with the uncorrected data. The R program randomForest was used (version 3.1.1). 

 

RESULTS AND DISCUSSION  
RF parameter determination. The average SNP VIM values for different parameter 

combinations of Ntree and mtry are shown in Figure 1. Note that in the context of RF analyses, a 

high value for VIM is favourable. For both uncorrected and corrected data, the average VIM 

reached a stable status with Ntree ≥ 1,000. This suggests that the RF analysis with Ntree ≥ 1,000 

should produce reasonably accurate VIM values. Among the four parameters tested for mtry, 

single marker analysis (mtry =1) gave the lowest estimates for VIM, while the other three 

parameters (√𝑝, 2 ∗ √𝑝  and 0.1*p) produced very similar values.  
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Figure 1. Comparison of the mean VIM 

values from different combinations of 

parameters with (top panel) and without 

(bottom panel) correction for population 

structure. 

Figure 2. The proportions of top 5 

marker appearances in 100 RF replicates 

with (red bars) and without (blue bars) 

correction for population structure. 

RF analyses in the corrected and uncorrected datasets. Compared to the uncorrected data 

(Figure 1b), correcting for PS (Figure 1a) clearly resulted in a significant increment in the 

estimated average VIM values (from 0.120 to 0.205). When investigating the top 5 ranking 

markers from each of the 100 RF replicates, a total of 166 and 179 markers were found in the 

uncorrected and corrected data, respectively. The compositions of these marker incidences in both 

datasets are shown in Figure 2. The top markers appearing only once in 100 replicates had the 

highest proportion (54% in the uncorrected versus 64% in the corrected data). The uncorrected 

data tended to have fewer markers (13.85%) with the highest incidence (i.e. captured in 6+ 

replicates) than the corrected data (16.20%). However, the intriguing results were found when 

comparing the distributions of the top 5 marker incidences across the whole genome in both 

datasets (Figure 3). It is very clear that correcting for PS led to a reduction in top ranking SNP 

incidence in a number of genome regions found to be significant in the leg defect analysis of the 

uncorrected dataset. The majority SNPs identified in the uncorrected data were no longer in the top 

ranking markers in the corrected data. Among 166 (uncorrected data) and 179 (corrected data) 

markers, there were 26 in common (shown by overlapping regions in Figure 3) and 11 of them had 

a reduced incidence in the corrected data. In contrast, there was a set of 12 common markers 

closely linked (near the right hand side of the genome), after correcting for PS, the association 

signal became much stronger. 

 

a) Corrected  

b) Uncorrected  
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Figure 3. Distribution of top 5 ranking marker incidences across genome for corrected (blue) 

and uncorrected data (red). 

Population stratification or admixture is known to cause different allele or genotype 

frequencies in subpopulations and that in turn can lead to detection of spurious SNP associations 

in GWAS (Zhao et al. 2012). RF has its advantage over single marker GWAS methods in handling 

high dimensional genomic data (Chen and Ishwaran 2012), but it has a limited power in dealing 

with a confounding effect of PS on both genotypes and a phenotype. The results here demonstrate 

the importance of correcting for population structure prior to RF analysis to minimize false 

positives. Since the “true” SNPs are unknown, these results are of very limited use for the purpose 

of method validation. There is a need in future to conduct a systematic evaluation of the method 

with large simulation datasets.  

  

CONCLUSIONS 

Correcting for population structure prior to RF analysis can improve the accuracy of SNP 

variable importance values and avoid spurious association results. Since RF is a non-parametric 

permutation based method, a large number of RF replicates is required to get reliable inference of 

the markers associated with a phenotype.   
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SUMMARY 

The ‘missing heritability problem’ is the inability to tag all the genetic variance of a trait using 

genome wide single nucleotide polymorphism. Here, we compute missing heritability for two 

populations of cattle phenotyped for ten tropical adaptation traits that exhibit variable genetic 

architectures. We derived genomic relationship matrices (GRM) using both low and high density 

SNP panels, and computed the missing heritability through comparison to pedigree (NRM). 

Overall, the low density indicine panel performs very well in characterising the Brahman 

population. We found that estimation of missing heritability was broadly similar for both panels 

across the ten phenotypes. This implies similar amounts of genetic variation relevant to those 

phenotypes have been captured. The phenotypes with the lowest missing heritability (coat type and 

sheath score in Tropical Composites) possess an architecture that can be characterised simply. 

That is, they are dominated by genes of large effect. 

 

INTRODUCTION 

The total genetic variance of a trait is usually estimated using pedigree information.  Then the 

total variance (phenotypic variance) is partitioned into genetic and environmental variance. The 

heritability or ratio of genetic variance to total phenotypic variance can be calculated. In genome-

wide association studies (GWAS), the shrunk variance associated with each significant single 

nucleotide polymorphism (SNP) can be estimated. If all SNP are considered simultaneously, a 

large proportion of the variance that would have been missed due to small individual effects can be 

captured (Yang et al. 2010). However, it has been shown that in all studies to date this sum of 

those variances is usually far less than the total genetic variance. Since the SNP in the GWAS 

cover 90% or more of the whole genome, the inability to account for the total genetic variance is 

called the missing heritability problem.  

The degree of missing heritability varies for different traits in the same dataset. Here we 

estimate the different degrees of missing heritability for 10 traits of tropical cattle for two breeds to 

determine whether there are large differences either between traits or between breeds in the 

amount of the genetic variance that is not tagged by SNP. 

To estimate the missing heritability we use the approach of simultaneously analysing the 

genetic variance using both pedigree and SNP data, in which the genetic variance not accounted 

for by the SNPs will be assigned to the pedigree component. This allows us to maximize the 

amount of genetic variance assigned to SNP, avoids the issues of significance thresholds, and 

biased estimation of the SNP effects due to small sample sizes (in the thousands instead of in the 

hundreds of thousands). 

 

MATERIAL AND METHODS 

Animals, genotypes and phenotypes. We used the genetic and phenotypic resources outlined 

in Porto-Neto et al. 2014. In brief, 2112 Brahman and 2550 Tropical Composite animals were 

genotyped with either the Bovine HD BeadChip (Illumina Inc., San Diego, CA) that includes more 

than 770,962 SNP or the GGP Indicine chip that includes 71,726 SNP. 

Calculation of genetic relationship matrix (GRM) and numerator relationship matrix 

(NRM). The GRM was computed based on the methodology developed by Van Raden (2008). 
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𝐺𝑅𝑀 =
ZZ𝑇

2∑𝑝𝑖(1 − 𝑝𝑖)
 

where Z is a matrix that relates SNP alleles to individuals and pi is the frequency of the second 

allele for the i-th SNP. ZZ
T
 represents the number of shared SNP alleles among two individuals 

and the division of ZZ
T
 by 2∑𝑝𝑖(1 − 𝑝𝑖) aims at scaling the GRM to make it analogous to the 

NRM obtained based on the pedigree information. 

Variance components. A single model with two random components was run in Qxpak 

(Perez-Enciso and Misztal 2011). We estimated missing heritability using the approach of Roman-

Ponce et al. 2014. 
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where 
2

u is the variance due to the genotype data (ie GRM) and 
2

a is the additive genetic 

variance due to the pedigree (ie. the NRM in our context). 

RESULTS AND DISCUSSION 

To provide an estimate of how well the two SNP panels characterised the genetics of the two 

populations, we plotted the population level frequency of the reference allele of each loci on a 

genome-wide basis (Figure 1).  

 

 
Figure 1. Population level allelic frequency for each SNP panel, 74K (blue lines) and 700K 

(red lines) on the Brahman (left hand plot) and Tropical Composite (right hand plot) 

populations. 

 

The left hand plot shows that the Brahman sample has a relative deficiency of low frequency 

alleles in the low density Indicine SNP panel (74K), compared to the HD SNP (700K) panel, and 

the frequency of the reference allele is biased to p = 0.5. On the other hand, there is a bias on the 

HD SNP panel towards low frequent alleles. The right hand plot shows that the Tropical 

Composite animals have an allele frequency distribution that is similar for both the low density 
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Indicine SNP panel as well as the HD SNP panel, although there does seem to be a relative lack of 

very low frequency SNPs in the low density panel for this sample. It is worth mentioning that the 

74K selection is part of the full HD panel, so the impact of two independent SNP selections was 

not tested here. We could speculate that a set of SNP that poorly characterise the structure of a 

population would also poorly perform in capturing the traits’ variance. Put another way, a random 

selection of 74K SNP would perform worst than a set of SNP with on average high minor allelic 

frequencies. 

We next computed missing heritability scores for the Brahman (Table 1) and Tropical 

Composite (Table 2) using both SNP panels. 

 

Table 1. Genetic parameters and missing heritability for Brahman cattle based on low and 

high density SNP panels. 

 

TRAIT 
74K 700K 

NRM GRM Missing NRM GRM Missing 

Coat type 0.232 0.264 0.468 0.228 0.269 0.460 

Coat colour 0.269 0.324 0.453 0.186 0.362 0.339 

Condition score 0.223 0.375 0.372 0.139 0.409 0.253 

Worm eggs (n/gr) 0.351 0.363 0.491 0.351 0.365 0.491 

Fly lesions 0.231 0.282 0.450 0.261 0.287 0.476 

Flight time 0.286 0.233 0.552 0.287 0.233 0.552 

Sheath score 0.284 0.335 0.459 0.281 0.360 0.438 

Temperature 0.230 0.195 0.541 0.233 0.187 0.555 

Tick score 0.413 0.384 0.518 0.413 0.383 0.519 

Yearling Weight 0.210 0.316 0.399 0.208 0.306 0.405 

 

Table 2. Genetic parameters and missing heritability for Tropical Composite cattle based on 

low and high density SNP panels. 

 

TRAIT 
74K 700K 

NRM GRM Missing NRM GRM Missing 

Coat type 0.169 0.502 0.252 0.267 0.430 0.383 

Coat Colour 0.284 0.389 0.422 0.279 0.400 0.411 

Condition score 0.175 0.321 0.354 0.175 0.306 0.365 

Worm eggs (n/gr) 0.369 0.359 0.507 0.365 0.365 0.500 

Fly lesions 0.359 0.364 0.497 0.358 0.365 0.495 

Flight time 0.251 0.311 0.447 0.241 0.327 0.424 

Sheath score 0.235 0.529 0.308 0.235 0.531 0.307 

Temperature 0.218 0.157 0.581 0.215 0.156 0.581 

Tick score 0.382 0.370 0.508 0.387 0.375 0.507 

Yearling Weight 0.293 0.363 0.446 0.285 0.385 0.425 

 

These missing heritability estimates are somewhat higher than the 36.6% reported by Roman-

Ponce et al (2014) across 11 cattle traits and the 38.5% reported by Haile-Mariam et al (2013) 

across 29 cattle traits. In the Brahman sample, the extra genetic information provided by the high 

density SNP panel only led to a systematic reduction in missing heritabilities in coat colour and 

condition score. In the Tropical Composite sample, the larger SNP panel did not lead to a clear 

reduction in missing heritability, and interestingly, in the trait coat type the missing heritability 

was lower when the lower density panel was used. This particular phenotype is controlled by a 

small number of genes and so the addition of non-informative SNP from across the genome may 

have reduced the accuracy of prediction.  
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We noted that the two phenotypes with the lowest missing heritability in the Tropical 

Composite populations (Coat type and Sheath score) are phenotypes with a relatively simple 

genetic architecture characterised by relatively few gene regions of large effect (Porto Neto et al. 

2014). It is not surprising that this kind of simple genetic architecture would be more amenable to 

accurate modelling of genotype to phenotype relationships. 
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SUMMARY 

Imputation of genotypes is a cost-effective method for generating genotypes for un-typed loci 

and allows data from different genotyping panels and platforms to be combined. Accuracy of 

imputation can be defined in a number of ways to distinguish well-imputed from poorly-imputed 

SNP. The aims of this study were to compare different measures of imputation accuracy in low 

density panel data and determine how well the estimated allelic R
2
 (AR

2
) measure reported by 

BEAGLE performs across minor allele frequency (MAF) as a post-imputation filtering tool. 

Genotypes for 28,793 New Zealand mixed-breed dairy cows from a low density BeadChip 

(n=16,512 SNP) were used in the study. For 17,593 animals, 9,166 SNP were masked and imputed 

using version 4.0 of BEAGLE software. Imputation accuracy for SNP with MAF ≥ 0.005 was 

high, but was variable for low MAF (< 0.005) SNP. Genotypic concordance was not informative 

for low MAF SNP and was poorly correlated with AR
2
 for low MAF SNP. Other imputation 

accuracy measures (genotypic correlation, minor allele sensitivity and imputation quality score) 

were informative for low MAF SNP and were highly correlated with AR
2
 across all MAF 

classifications (r > 0.81). Results showed that post-imputation filtering based on AR
2
 is an 

effective approach for removing poorly-imputed SNP, including those of low MAF. 

 

INTRODUCTION 

Genotype imputation increases the power of existing data by providing predicted genotypes for 

loci that have not been directly assayed. It allows data from different genotyping platforms to be 

combined and makes additional variants available for analysis without the cost of actually 

genotyping them. Compared to using a smaller set of only true genotypes, the additional power 

from imputed genotypes can provide better signal in genome wide association studies (Khatkar et 

al. 2013) and better estimates of direct genetic values (Khatkar et al. 2012; Weigel et al. 2010). 

However, incorrectly imputed genotypes can add noise and compromise an analysis (Weigel et al. 

2010; Chen et al. 2014). Imputation correctness has been evaluated based on a number of accuracy 

metrics in previous studies (Khatkar et al. 2013; Calus et al. 2014), each providing a different way 

to distinguish well-imputed from poorly-imputed SNP. This differentiation can be particularly 

problematic for low minor allele frequency (MAF) SNP where accurate imputation is more 

difficult and sensitive to genotype calling errors (Lin et al. 2010; Calus et al. 2014). Also, some 

measures of accuracy are highly dependent on MAF and can give misleading results for low MAF 

SNP (Lin et al. 2010; Hickey et al. 2012). In this study, accuracy of imputation was examined for 

genotypes from New Zealand (NZ) progeny test dairy herds which were genotyped on a custom 

GGP-LD BeadChip. Imputing low MAF SNP well is important within this context because these 

custom SNP chip panels are often updated with new loci, many of which are low MAF, with a 

requirement for these to be imputed through the historically genotyped population. Generating 

imputation accuracy metrics requires a comparison set of true and imputed genotypes, and this is 

often obtained by selecting a subset of animals as a validation set. For this validation subset, a set 

of SNP of interest are masked and then imputed. In practical applications of imputation where a 

complete “truth set” is unavailable, pedigree relationships can sometimes be used to infer true 

genotypes and the level of imputation accuracy. However, a generally-available post-imputation 

quality measure which is not dependent on having a “truth set” and is reliable across MAF is 
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desirable. Browning and Browning (2009) outline a post-imputation estimate of imputation 

accuracy, the estimated allelic R
2
 (AR

2
) which is not dependent on allele frequency or having a 

“truth set” of genotypes. The aims of this study were to compare the AR
2
 reported by BEAGLE 

(Browning and Browning 2009) to a number of different imputation accuracy metrics derived 

from comparing true with imputed genotypes, and determine how well the AR
2
 performs across 

MAF as a post-imputation filtering tool. 

 

MATERIALS AND METHODS 

Genotypes from New Zealand (NZ) progeny test dairy herds (Holstein-Friesian, Jersey and 

crossbreed) were obtained from a custom version of the GGP-LD BeadChip with 20,183 SNP. 

After removing animals with a call rate < 0.95 and any SNP that were non-autosomal or had a call 

rate < 0.9, 19,143 SNP for each of 28,793 animals were included in the study. 

Imputation reference. Reference animals were selected as those with progeny in the wider 

population (11,062 females; 138 males). Average pedigree relationships between reference 

animals were 0.034 (sd=0.031). Monomorphic SNP were removed and missing SNP were imputed 

using version 4.0 of BEAGLE (Browning and Browning 2009) with default parameters. This 

resulted in an imputation reference of 16,512 SNP for 11,200 animals. 

Imputation target. Genotypes for 17,593 animals not included in the imputation reference 

were included in the imputation target population. Of the target population, 38.4% had at least 1 

parent in the reference, and the average pedigree relationship between reference and target animals 

was 0.033 (sd=0.029). Of the 16,512 SNP in the imputation reference, 9,166 were masked to leave 

only the SNP in common with an earlier version of the GGP-LD BeadChip. Imputation was 

carried out using version 4.0 of BEAGLE with default parameters. True and imputed genotypes 

were compared for 9,166 masked SNP on 17,593 animals. 

Imputation accuracy. Imputation accuracy was assessed according to 4 measures: Genotypic 

concordance (GCONC; proportion of genotype calls where the true genotype matches the most 

likely imputed genotype), genotypic correlation (GCORR; correlation between observed and 

imputed number of copies of the alternate allele), minor allele sensitivity (MAS; proportion of 

times a minor allele is correctly called when it is present, analogous to non-reference sensitivity) 

and imputation quality score (IQS; concordance adjusted for chance agreement) as defined by Lin 

et al. (2010). 

Post-imputation quality. Post-imputation quality was assessed using the AR
2
 calculated by 

BEAGLE. This is an estimate of the squared correlation between the allele dosage of the most 

likely imputed genotype and the allele dosage of the true genotype. The true genotype is unknown 

but the allelic R
2
 is estimated from the distribution of imputed posterior genotype probabilities. 

MAF classifications. SNP were grouped by frequency of the minor allele in the reference. 

 

RESULTS AND DISCUSSION 

Table 1 summarises imputation accuracy as measured by GCONC, GCORR, MAS and IQS, 

and the AR
2 

reported by BEAGLE. For SNP with MAF < 0.005, GCORR, MAS and IQS all 

indicated measures of accuracy ≤ 0.462, whereas GCONC indicated a high accuracy (0.999). Also, 

a decrease in GCONC was observed with increasing MAF, but an increase in accuracy was 

observed when measured by GCORR, MAS and IQS. This is because GCONC is dependent on 

MAF, and demonstrates that measuring accuracy based on GCONC can be misleading for low 

MAF SNP, as outlined by Calus et al. (2014). Mean AR
2
 values also increased with MAF and 

were particularly low (0.188) for SNP with MAF < 0.005. Imputation accuracy levels were high 

(≥ 0.864) when MAF ≥ 0.005 based on all 4 measures considered in this study. The MAF at which 

SNP are accurately imputed would be expected to increase as the size of the imputation reference 

decreases. 
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Table 1. Mean imputation accuracy (GCONC, GCORR, MAS, IQS) and post-imputation 

quality (AR
2
) for SNP classified by MAF. 

 
MAF classification N GCONC GCORR MAS IQS AR2 

< 0.005 1218 0.999 0.462 0.198 0.217 0.188 

0.005-0.01 130 0.998 0.906 0.864 0.887 0.774 

0.01-0.05 557 0.995 0.951 0.930 0.947 0.873 

≥ 0.05 7261 0.974 0.965 0.974 0.951 0.910 

All 9166 0.979 0.928 0.867 0.852 0.810 

 

Correlations between imputation accuracy measures and AR
2
 are shown in Table 2. GCONC 

was poorly correlated with AR
2
 for SNP with MAF < 0.005. Other imputation accuracy measures 

(GCORR, MAS, IQS) were highly correlated (≥ 0.812) with AR
2 

across all minor allele 

frequencies. High correlations between these accuracy measures and AR
2 

suggest that AR
2
 may be 

a good tool for screening SNP post-imputation. 

 

Table 2. Correlations between AR
2 and imputation accuracy (GCONC, GCORR, MAS, IQS) 

 

classified by MAF. 

 
MAF classification N GCONC GCORR MAS IQS 

< 0.005 1218 -0.069 0.851 0.908 0.903 

0.005-0.01 130 0.763 0.824 0.852 0.900 

0.01-0.05 557 0.644 0.837 0.846 0.882 

≥ 0.05 7261 0.888 0.925 0.812 0.947 

All 9166 -0.077 0.927 0.972 0.974 

 

Figure 1 shows the distribution of GCORR values prior to and post filtering based on an AR
2
 

threshold of 0.7. Prior to filtering imputed genotypes, GCORR values were highly variable, in 

particular for SNPs with MAF < 0.005 (Figure 1a). After filtering, the variation in GCORR values 

was significantly reduced, particularly for SNP with MAF < 0.005 (Figure 1b). In total, 1191 SNP 

were removed, most of which were SNP with MAF < 0.005. Results for MAS and IQS were 

similar (not presented here). 

 

 
Figure 1. Distribution of genotypic correlation (GCORR) (a) prior to filtering and (b) post 

filtering based on an AR
2
 threshold of 0.7. 
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Browning and Browning (2009) demonstrated that at high SNP density, AR
2 

is a good metric 

for estimating imputation accuracy without dependence on allele frequency. Kelly et al. (2013) 

also showed that in a population of composite tropical cattle, AR
2 

was an effective measure for 

identifying a large number of poorly-imputed SNP when imputing from Illumina BovineSNP50 to 

Illumina BovineHD SNP panels. Table 3 summarises mis-classifications of SNP in this study that 

resulted when a post-imputation filter of AR
2 

> 0.7 was used to predict SNP that had been imputed 

well according to each of the accuracy measures GCORR, MAS and IQS. For each measure, 

well-imputed SNP are defined as those where the measure was > 0.7. False negative (FN) SNP 

were defined as those with an AR
2
 ≤ 0.7 but an imputation accuracy > 0.7. False positive (FP) 

SNP were defined as those with an AR
2 

> 0.7 but an imputation accuracy ≤ 0.7. Low FN rates 

(≤ 3.77%) were observed for SNP with MAF ≥ 0.01, but were higher for SNP with MAF < 0.01 

(5.83-22.88%). Very low FP rates (≤ 0.9%) were observed for SNP with MAF < 0.005 and were 

all zero for SNP with MAF ≥ 0.005. These results confirm that post-imputation filtering based on 

AR
2 
is an effective approach for removing poorly-imputed SNP, including those of low MAF. 

 

Table 3. Percentage of false positive (FP) and false negative (FN) SNP for imputation 

accuracy measures (GCORR, MAS, IQS) based on an AR
2
 threshold of 0.7. 

 
 GCORR MAS IQS 

MAF classification FN FP FN FP FN FP 

< 0.005 22.88 0.85 5.83 0.90 9.52 0.41 

0.005-0.01 20.93 0 17.69 0 16.15 0 

0.01-0.05 3.77 0 3.41 0 3.41 0 

≥ 0.05 0.25 0 0.36 0 0.15 0 

All 2.35 0.06  1.52 0.12 1.82 0.05 

 

CONCLUSION 

Genotypic concordance was not informative for low MAF SNP and was poorly correlated with 

AR
2 

values reported by BEAGLE for low MAF SNP. Other imputation accuracy measures 

examined (GCORR, MAS, IQS) were informative for SNP across all minor allele frequencies. 

These measures were also highly correlated with each other and with post-imputation AR
2 

values. 

Post-imputation filtering based on an AR
2 

threshold of 0.7 was shown to be an effective way of 

removing poorly-imputed SNP for imputed genotypes from a population of NZ dairy cows 

genotyped on a low density panel. 
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SUMMARY 

Inbreeding has the potential to negatively impact on animal performance. Strategies to monitor 

and mitigate inbreeding depression require that it can be estimated accurately. Here, we use 

genome-wide SNP data to produce three alternative estimates of inbreeding: proportion of 

heterozygous SNP, diagonal elements of the genomic relationship matrix and runs of 

homozygosity. We focus on Brahman (N = 2,112) versus Tropical Composite (N = 2,550) cattle 

which have been genotyped by a 74K Indicine chip and phenotyped for 10 traits of commercial 

importance to tropical adaptation. While the summary statistics for the Brahman and Tropical 

Composite populations are remarkably similar, the relationships of the inbreeding coefficients to 

the various phenotypes are different. In both populations, the proportion of heterozygous SNP was 

positively correlated with body condition score and negatively correlated with yearling weight. A 

possible explanation relating to the content of the Indicine SNP chip is briefly discussed.  

 

INTRODUCTION 

Inbreeding can reduce animal performance for commercially important traits. In order to 

mitigate inbreeding through management strategies and breeding programs, it is important to be 

able to estimate it accurately. Traditionally, inbreeding coefficients (F) have been computed from 

pedigree information. Given the recent availability of genome-wide single nucleotide 

polymorphism (SNP) data, it is now possible to exploit real genetic data to infer F. According to 

Saura et al. (2015) genomic F has the following three advantages: it measures homozygosity 

directly rather than its expectation; it can be applied to particular genomic regions such as those 

harbouring QTL; and it can be estimated with incomplete or even absent pedigree information. 

Here, we explore three different measures of inbreeding using 71,726 SNP genotypes from 

Brahman (BB) and Tropical Composite (TC) cattle measured for 10 phenotypes of relevance to 

tropical adaptation.  The three inbreeding measures we used are: proportion of heterozygous SNP 

(HET_F), diagonal elements of the genomic relationship matrix (GRM_F) and runs of 

homozygosity (ROH_F) (Keller et al. 2011; Saura et al. 2015). Sample size is relatively large 

(2,112 Brahman and 2,550 Tropical Composite) and genome-wide association studies have 

already been well characterised (Porto-Neto et al. 2014). 

 

MATERIALS AND METHODS 

Animals, genotypes and phenotypes. We used genetic and phenotypic resources outlined in 

Porto-Neto et al. (2014). In brief, 2,112 BB and 2,550 TC cattle with genotypes for 729,068 SNP. 

For the present work we extracted the 71,726 SNP corresponding to the GGP Indicus HD chip 

(http://www.neogeneurope.com/Genomics/pdf/Slicks/NE_GeneSeekCustomChipFlyer.pdf). The 

ten phenotypes are: coat type (COAT), coat colour (COLOR), condition score (COND), worm 

eggs (EPG), fly lesions (FLY), flight time (FT), navel/sheath score (NAVEL), temperature 

(TEMP), tick score (TICK) and yearling weight (YWT). In addition, we used the SNP-based 

estimated zebu content also described in Porto-Neto et al. (2014) as an additional variable to be 

related with the measures of inbreeding described next. 
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Measures of inbreeding. We explored three alternative measures of inbreeding: 

 

(1) GRM_F: Genomic inbreeding based on the diagonal elements of the genomic 

relationship matrix (GRM). The GRM was computed according to Van Raden 

(2008) and allele frequencies calculated separately for the Brahman and Tropical 

Composite population; 

(2) HET_F: Proportion of the total SNP genotypes that were heterozygous; 

(3) ROH_F: Proportion of the genome that consists of runs of homozygosity (ROH). 

 

We followed computational approaches described in Saura et al. (2015) by which ROH was 

detected according to the following criteria: (1) At least 10 kb in a ROH window; (2) At most one 

heterozygous SNP; (3) A density of at least 1 SNP per 100 kb; (4) A maximum distance of 100 kb 

between two SNP in a given ROH. 

 

Inbreeding depression. The effect of each measure of inbreeding on the phenotypes was 

estimated by fitting a model that contain the phenotype as dependent variable and the measures of 

inbreeding plus the zebu content as fixed regression covariates as well as the fixed class effects of 

contemporary group (combination of sex, year and location), age of dam. All analyses were 

performed using SAS 9.3 (SAS Inst., Cary, NC) one phenotype at a time and separately for the BB 

and the TC datasets.  

 

RESULTS AND DISCUSSION 

Table 1 shows summary statistics for the three measures of inbreeding in the two populations. 

For a given measure, the means are very similar in the two populations and they are also similar to 

the equivalent values reported by Pryce et al. (2014) with dairy cattle. In that work, the authors 

reported an average GRM_F of 1.134 and 1.144 for Holstein and Jersey, respectively. They also 

reported an average HET_F of 0.347 and 0.285 for the same two breeds of dairy cattle. 

In spite of the overall similarities between the two populations for the 3 inbreeding measures 

(Table 1), there are remarkable differences in the way they correlate with the phenotypes and zebu 

content. A likely confound is the indicine chip which better characterises the genetic variation in 

the Brahman population than it does in the Tropical Composite. As expected, we find that a low 

heterozygosity is correlated with inbreeding in Brahman (r = -0.271; P < 0.0001).  However, this 

relationship is actually reversed for the Tropical Composite cattle (r = 0.495; P < 0.0001). 

 

Table 1. Summary statistics for the three measures of inbreeding in the two populations. 
  

Population Measure of 

Inbreeding 

Mean Standard 

Deviation 

Minimum Maximum 

 

Brahman 

(N = 2,112) 

HET_F 0.391 0.018 0.284 0.456 

GRM_F 1.021 0.039 0.931 1.691 

ROH_F 0.376 0.020 0.306 0.533 

Tropical Composite 

(N = 2,550) 

HET_F 0.384 0.029 0.234 0.481 

GRM_F 1.021 0.067 0.880 1.412 

ROH_F 0.382 0.032 0.278 0.566 
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In both populations, HET_F was positively correlated with COND and negatively correlated 

with YWT (Figure 1). The strongest correlation involving ROH_F was with YWT being negative 

for Brahman (r = -0.175; P < 0.0001) and positive for Tropical Composite (r = 0.211; P < 0.0001). 

The discrepancies between the populations may reflect spurious results from the Tropical 

Composite. These animals are only 27.2% Zebu on average (Porto-Neto et al. 2014) which may 

lead to artefacts arising from the reliance on the Indicine chip for assaying gene variants. 

An alternative explanation is that these correlations, while statistically significantly different 

from zero, are rather small in magnitude and hence of little biological relevance, and their 

significance the result of the relatively large sample sizes. This feature is clearly illustrated by 

Figure 2 showing the scatter plot between ROH_F and YWT for the two populations. 

 

 
 

In the Brahman dataset, the linear model used for the estimation of inbreeding depression 

yielded an R
2
 that ranged from 18.4% for COLOR to 67.7% for YWT. Similarly, in the Tropical 

Composite, the R
2
 ranged from 18.6% for TICK to 75.6% for YWT.  Table 2 shows the estimates 

of inbreeding depression for each phenotype and in the two populations. In the Brahman 

population, significant inbreeding depression estimates were identified for FT, EPG, COLOR, 

COND and YWT. This contrasts with the Tropical Composite population for which only TEMP 

and YWT was significantly affected by either measure of inbreeding. 

While HET_F and ROH_F had very similar mean and variability (Table 1), they were poorly 

correlated (0.171 and -0.122 in the Brahman and Tropical Composite population, respectively) 

which may explain the large differences observed for some of the estimates of inbreeding 

depression. Consistent among both populations was the effect of inbreeding depression on YWT. 

In the Brahman population, a 1% increase in HET_F was associated with an increase of 1.89 kg of 

YWT. Similarly, a 1% increase inbreeding measured by GRM_F was associated with a decrease of 

1.08 kg of YWT in the Tropical Composite population. 

 
 

Figure 1. Heat map of the correlation 

matrix between zebu content and the 

three measures of inbreeding with 

each other and the ten phenotypes and 

for the two populations. 

 
Figure 2. Scatter plot of the relationship 

between inbreeding based on runs of 

homozygocity (ROH_F) and yearling weight 

(YWT) for the Brahman (blue dots) and 

Tropical Composite (red dots). 
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Table 2. Estimates of inbreeding depression for the three measures of inbreeding in the ten 

phenotypes and two populations. 

 
Phenotype Brahman Tropical Composite 

HET_F GRM_F ROH_F HET_F GRM_F ROH_F 

FT -101.44 -73.54 145.69* -170.20 -14.30 -22.15 

TEMP 1.01 0.20 -0.25 -2.64 0.28 1.14* 

EPG -3,097.96** -995.83** -329.25 -1,117.53 -440.95 -308.60 

NAVEL 3.48 1.78 0.61 -2.96 -0.68 0.51 

COLOR 16.25** 5.09** -1.86 2.37 0.73 -0.13 

FLY -3.44 0.62 1.16 -2.38 -0.56 0.02 

TICK 0.49 -0.80 0.30 -10.34 -0.68 2.53 

COAT 2.78 0.75 -1.43 0.16 2.34 -1.32 

COND -4.61* -2.26** -0.60 2.23 -0.60 0.74 

YWT 189.02** 38.80 4.58 -15.10 -108.42** 30.61 
*P < 0.05; **P < 0.01 

 

CONCLUSIONS 
Traditionally, inbreeding coefficients – based on the probability that both alleles at any given 

locus within an individual are identical by descent – have been computed from pedigree 

information. However, the advent of high-density genotype data allows for the estimation of 

realised F which might differ even between animals that have identical pedigree.  

It is worth mentioning that the pedigree-based inbreeding was of no practical use in our case 

because after tracing back three generations of ancestors, only four Brahman individuals were 

found to be inbred (all with F = 12.5%) and no Tropical Composite individuals were inbred. This 

is not surprising as the Beef CRC cattle were experimental cattle representing many properties, 

and bred with the objective to avoid, or at least minimise inbreeding. 

While the average of the three inbreeding measures employed here were similar in the two 

populations, the Brahman population appeared to be more affected by inbreeding depression than 

the Tropical Composite. A comparison of the inbreeding depression estimates here with those 

obtained from a model that contains a single inbreeding measure (as opposed to the three of them), 

plus a random additive polygenic component is warranted. 

Also in the future, we plan to explore different parameterizations of the GRM, and to partition 

ROH into two groups – ‘long’ and ‘short,’ with a view to infer past versus recent inbreeding as 

described by Saura et al. (2015). Characterising the gene content in the regions prioritised by 

differential ROH could also help identify genes of commercial relevance in the two populations. 

Finally, it would be worthwhile to establish what relationship exists between inbreeding and the 

‘missing heritability’ problem, as this has still not yielded to analysis. 
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SUMMARY 

As genomic data used for prediction of complex traits rapidly expand in size, the importance of 

computational efficiency of genomic prediction algorithms becomes paramount.  In this paper we 

describe an expectation-maximisation (EM) algorithm for genomic prediction (OptBR) with the 

speed-up scheme that is up to 30 times faster than MCMC implementations. The algorithm is 

flexible for joint analysis of data from different sources, as it includes weightings for the accuracy 

of phenotype, and can accommodate effects of factors such as breed, age, sex and additional 

covariates.  A further advantage of the method is that QTL mapping is performed simultaneously 

with genomic prediction.     

INTRODUCTION 

Genomic predictions are increasingly used to identify breeding individuals in livestock and 

crop improvement programs. The prediction equation to calculate genomic predictions is derived 

from a reference population genotyped for thousands of single nucleotide polymorphisms (SNPs), 

and with phenotypes for the target trait (Meuwissen et al. 2001), or through an alternative 

implementation where genomic relationships derived from the SNP are used to predict breeding 

values for selection candidates (e.g. VanRaden 2008).  Across many species, a key finding is that 

reference populations must be very large to achieve high accuracies of genomic prediction. One 

way to increase the size of the reference population is to combine information across populations 

from the same species. For example in dairy and beef cattle small to moderate increases in 

prediction accuracy have been reported by using a multi-breed reference population (Lund et al. 

2014; Kemper et al. 2015; Bolormaa et al. 2013). Another finding from these studies is that the 

increase in accuracy of prediction from combining information across populations can depend on 

the method of prediction.     

For multi-breed predictions, methods which assume a priori that SNP effects are all non-zero 

and small, and all from the same normal distribution (SNP-BLUP and GBLUP) do not perform as 

well as methods that assume a priori that some SNP may have zero, small or moderate to large 

effects (BayesB, or BayesR) (Lund et al. 2014; Kemper et al. 2015).  Compared to BLUP 

methods, these models use priors which assume a large proportion of SNP have effects close to 

zero, or actually zero, while a small proportion of SNP have moderate to large effects. This is 

important not only to improve genomic predictions across breeds, but also to improve the 

precision of QTL mapping using such methods. While the Bayesian methods are very attractive, 

the major difficulty with these methods is long computation time, which becomes intractable with 

very large data sets. The long computational time arises because Bayesian methods are typically 

implemented using MCMC. To speed up Bayesian methods, several heuristic convergence 

methods have been proposed e.g. fastBayesB (Meuwissen et al. 2009) or fastBayesA (Sun et al. 

2012). All of these methods reported reduced computation time but in some cases the prediction 

accuracy was reduced compared to their MCMC counterparts. 
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Our aim was to develop a computationally efficient algorithm (OptBR for Optimized BayesR) 

for simultaneous multi-breed prediction and QTL mapping. OptBR implements an EM algorithm 

on the hierarchical prior assumption for SNP effects and other parameters from BayesR (Erbe et 

al. 2012).  Also, OptBR retains the advantage of Predicted Error Variance (PEV) correction of 

emBayesR (Wang et al. 2015) to improve the accuracy. OptBR has four improvements compared 

with emBayesR which allow it to be applied to very large data sets, which may encompass 

multiple populations. These advantages include 1) weighting of phenotypes to allow for different 

errors in measurement across populations; 2) multi-breeds are accounted for by introducing fixed 

effects into the prediction models; 3) a polygenic term to capture variation not explained by the 

SNP, and 4) a speed-up scheme to make it 30 times faster than BayesR implemented with MCMC.  

 

MATERIALS AND METHODS 

Genotypes and phenotypes. OptBR was implemented on 630K SNPs panels (with total 

632,003 SNPs), that was imputed from 777K and 54K Illumina Bovine SNP arrays. Phenotypes 

for milk yield, protein yield, fat% and fertility were daughter trait deviations (DTD) for bulls, and 

trait deviations (TD) for cows. For genomic prediction, the data was separated into references set 

and validation sets. The reference data included 16,214 Holstein and Jersey bulls and cows, while 

the validation set included 251 Holstein bulls (bulls born after 2007), or a third breed, 114 

Australian Red bulls (Australian reds bulls were never included in the reference set).   

Data Model. The statistical model is 𝐲 = 𝐗𝛃 + 𝐙g + 𝐖𝐯 + 𝐞 where 𝛃 is a vector of fixed 

effects including breed, 𝐠 is a vector of the SNP effects, 𝐯 is a vector of polygenic effects ~ 

𝑁(0, 𝐀σv
2) , 𝐞 is a vector of residuals ~ 𝑁(0, Eσe

2) where E is diagonal and accounts for error in 

TD and DTD, with σe
2 the error variance. Three design matrices 𝐗, 𝐙 and 𝐖 allocate phenotype (𝐲) 

to the vectors 𝛃, 𝐠, and 𝐯 separately. The SNP effects are assumed to be drawn from a mixture of 

normal distributions with zero mean and variance either 0 𝑜𝑟 0.0001 ∗ σg
2 𝑜𝑟 0.001 ∗ σg

2 𝑜𝑟 0.01 ∗

σg
2 with probability 𝐏𝐫𝒌 (𝑘 = 1 ⋯ 4) drawn from a Dirichlet distribution with parameters (1,1,1,1).  

Expectation maximisation algorithm. To implement the EM algorithm we rewrite the 

statistical model for the i
th

 SNP as 𝐲 = 𝐗𝛃 + 𝐙𝐢gi + 𝐮𝟏 + 𝐖𝐯 + 𝐞 where 𝐮𝟏 = 𝒁𝒈 − 𝐙𝐢gi, that is 

𝐮𝟏 is the sum of all SNP effects other than SNP i. This form of the model allows us to treat 𝐮𝟏 as 

missing data and take expectations of the likelihood over 𝐮𝟏 and hence estimate gi allowing for the 

errors in the estimates of all the other SNP effects. We take the expectation of the log Likelihood 

of 𝐲 using 𝑉𝑎𝑟(𝐮𝟏|𝐲) = 𝐏𝐄𝐕(𝐮𝟏) where the prediction error variance (PEV) is derived from a 

BLUP approximation to the mixture model. We then maximize the expected likelihood with 

respect to each of the parameters including gi, the mixing proportions (𝐏𝐫), 𝛃 and 𝐯 as well as σe
2. 

We also trialled a speed-up scheme: when the SNP effect gi is very small (|gi| ≥ 0.00000001) 

after 50 iterations, it was not updated in future iterations but left at its current value. 

 

RESULTS AND DISCUSSION 

     To compare computing times for OPTBR and BayesR, three reference data sets related to milk 

yield were used, which have 632,003 SNPs with different numbers of animals ranging from 3,049 

in RefI (Holstein bulls Only), 11,527 in RefII (Holstein bulls and cows), to 16,214 in RefIII ( 

Holstein and Jersey bulls and cows) seen in Figure 1.  The results demonstrate the  advantage of 

OptBR over BayesR, and the advantage of the speed-up scheme. For instance, in the largest 

dataset time to convergence was 720 hours for BayesR but 28 hours for OptBR_Sp. 

      The accuracies of prediction using the EM were similar to BayesR with the exception of fat% 

(Table 1). A detailed investigation of the speed-up scheme was assessed using milk yield. Table 1 

shows that the speed up procedure did not sacrifice any accuracy (Table 1). 
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Figure 1. The computational time in hours compared between BayesR, OptBR_Orig, and 

OptBR_Sp on three reference data sets (RefI with 3,049 animals, RefII with 11,527 animals, 

and RefIII with 16,214 animals). 

 

Table 1. The impact of the speed-up scheme 𝐂𝟏 on accuracy (Acc.), the proportion of 

variants in each distribution (Pr) and error variance (σe
2) using milk yield as an example. 

 

 Acc. Pr σe
2 

OptBR_Orig 0.66 [0.998371, 0.001583, 0.000007, 0.000039] 239409 

OptBR_Sp 0.68 [ 0.997545, 0.002394, 0.000009, 0.000052] 247965 

 

The results in Table 2 demonstrate the robust prediction ability of our algorithm OptBR for 

multi-breeds and across breed prediction. On milk production traits, both BayesR and OptBR have 

3%~7% advantage over GBLUP. On the fertility, three methods had the similar performance. The 

prediction accuracy for Australian red bulls was not as high as for Holstein, which is not surprising 

given there were no Australian Reds in the data set. The bias is the coefficient of regressing the 

phenotype of validation set on Genomic Estimated Breeding Value (GEBV), which shows the 

underestimation of three methods for SNP effects on most of the traits except Fertility. 

 

Table 2.  The accuracy (Acc.) and bias of predictions for BayesR, GBLUP and OptBR from 

the Holstein and Jersey multi-breed reference population using either the Holstein or 

Australian Red validation populations. 

 
 Milk Yield Protein Yield Fat% Fertility 

 Acc. Bias Acc. Bias Acc. Bias Acc. Bias 

Holstein validation 

BayesR 0.68 0.84 0.68 0.88 0.81 0.90 0.44 1.53 

GBLUP 0.63 0.83 0.65 0.85 0.74 0.85 0.44 1.66 

OptBR 0.68 0.90 0.68 0.79 0.77 0.83 0.44 1.27 

Australian Reds validation 

BayesR 0.22 0.60 0.12 0.49 0.45 0.92 0.27 1.03 

GBLUP 0.16 0.54 0.11 0.51 0.32 0.90 0.29 0.97 

OptBR 0.24 0.70 0.12 0.42 0.41 0.89 0.29 1.10 
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We compared the ability of BayesR and OptBR to map QTL by investigating the number of 

SNPs with high posterior probabilities of having a non-zero effect (Figure 2). The number and 

position of QTL was similar between BayesR and OptBR. For milk yield, similar to BayesR, 

OptBR finds SNPs near to the genes CSF2RB  located on chromosome 5, SNPs near the casein 

complex on chromosome 6 (~87Mb), and SNPs related to CCL28/GHR on chromosome 20. The 

well-known gene DGAT1 (on chromosome 14) is mapped by both BayesR and OptBR. 

 
Figure 2. Posterior probability of non-zero SNP effect for milk yield from BayesR (top) and 

OptBR (bottom) across all chromosomes. 

 

The results suggest that OptBR will be useful for simultaneous genomic prediction and QTL 

mapping, particularly for very large data sets where computational efficiency is very important. 
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SUMMARY 

This paper presents a simulation study that shows that failure to fit dam permanent 

environmental effects in variance component estimation of lamb survival results in an upward bias 

in the estimate of maternal genetic variance. In contrast, fitting litter effects has little impact on 

variance component estimation. These results have implications for sheep genetic evaluation of 

lamb survival, and values for the direct and maternal heritability of lamb survival at the lower end 

of the range of those published based on alternative models should be used in national genetic 

evaluations.  

 

INTRODUCTION 

Lamb survival is lowly heritable, with many sources of variation affecting phenotype. These 

sources of variation include environmental effects, dam lifetime permanent environmental effects, 

litter effect, maternal genetic effects and direct genetic effects. Concerns have been raised that data 

structure may be insufficient for genetic variance component estimation software to partition 

maternal genetic effects from dam permanent environmental effects, meaning that some of the 

variance explained by maternal genetics may be incorrectly assigned to dam permanent 

environmental effects. This could lead to the, perhaps false, assumption that the maternal genetic 

effect is not significant. The opposite could also be true, and where permanent environmental 

effects are not accounted for, the maternal genetic effect could be artificially inflated. The aim of 

this study was to determine whether the data structures typical in New Zealand sheep flocks are 

sufficient for partitioning maternal genetic variance from environmental litter variance and dam 

lifetime permanent environmental variance. The distribution of the trait was also tested to 

determine if there was an effect on variance component estimation due to the trait being binary 

instead of continuous, and when binary, for dependence on incidence.  

 

MATERIALS AND METHODS 

This study was based on simulation of a population of animals born during 1995-2001. The 

population structure and relationship between individuals is set based on a real pedigree from a 

single sheep flock to reflect industry data, so as to be typical of that which would be used for 

variance component estimation in practice. The proportions of ewes lambing singles, twins, 

triplets and greater litter sizes were .15, .68, .16 and .01 respectively. There were 103 sires with at 

least progeny 30 progeny, and a total of 20,107 lambs born across the seven years. There was 

excellent connectedness across years due to several rams having large numbers of progeny across 

many years, and a further 18 rams with progeny across either 2 or 3 years (see Amer and Jopson, 

2003, for further details on the pedigree structure).. Animals from the first generation (i.e. 

unknown parentage) were attributed random true breeding values, as sampled from a normal 

distribution with a mean of 0 and genetic variances (direct and maternal) equal to the respective 

heritabilities (total phenotypic variance was assumed to be 1). As lamb survival is a binary trait but 

phenotypes were sampled from a normal distribution, a threshold (described below) was set to 

determine survival on the binary scale. The lamb survival phenotypes of individual progeny of 

known parents identified in the existing pedigree in subsequent generations were derived using 

methods described below.  
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Five random effects were simulated as contributing to the continuous lamb survival phenotype 

(aphen): the direct genetic effect, maternal genetic effect, dam permanent environmental effect, 

litter environmental effect and a residual effect. All founders in the flock pedigree were assigned 

values for genetic parameters, and then the simulation iterated down through generations within 

the pedigree simulating genotypes and phenotypes for all animals present, based on values 

previously simulated for their parents. To preserve pedigree integrity, no removal of animals as 

parents was undertaken, even when their simulated phenotype was “dead”. 

Two different binary (alive or dead) traits were derived from the continuous phenotype – one 

to represent high and one to represent low survival rates. To simulate a high survival binary trait, a 

threshold of 1.4 was defined to set survival to either dead (>1.4) or alive (≤1.4) – equating to 

approximately 8% of lambs in the population dying. A threshold of 1 was used to simulate a low 

survival binary trait - corresponding to approximately 15% lamb death. Expected values for 

heritabilities of binary traits when estimated using normal linear models was derived based on 

Dempster and Lerner (1950). 

Six scenarios with varying levels of simulated variance components were used to simulate each 

of the lamb survival traits (Table 1). HIGH (Table 1) reflects a situation where there are larger  

variance components in the lamb survival trait. LOW (Table 1) is perhaps more reflective of the 

real world scenario, where direct and maternal heritabilities are low and dam permanent 

environmental effect is low and equivalent to direct and maternal heritabilities. LOW1-4 (Table 1) 

were variations of LOW in that the same amount of genetic variation was present within the trait 

with each scenario (exception - LOW3), but the variance was distributed among the parameters 

differently - LOW1 (no litter effect), LOW2 (no permanent environmental effect), LOW3 (no litter 

or permanent environmental effect) and LOW4 (no maternal genetic effect). Each scenario was 

simulated 20 times and results averaged. 

For each trait (continuous, low survival, high survival) and each simulation scenario (HIGH, 

LOW, LOW1, LOW2, LOW3 and LOW4) five different models were fitted in ASREML (Gilmour 

et al, 2008) (Table 2). Although lamb survival is a binary trait, the continuous version was also 

analysed to determine if the efficiency of estimation and partition of variance components was 

influenced by the distributional properties of the trait.  

 

Table 1 Alternative sets of variance component parameters used as simulation inputs 

 

  
Scenario 

  HIGH LOW LOW1 LOW2 LOW3 LOW4 

h
2
direct 0.2 0.05 0.05 0.05 0.05 0.05 

h
2
maternal 0.15 0.05 0.05 0.05 0.1 0 

damPE (c
2
) 0.1 0.05 0.1 0 0 0.1 

litter (l)
2
 0.05 0.05 0 0.1 0 0.05 

 

RESULTS AND DISCUSSION 

When dam permanent environmental effect (damPE) is present in the dataset and accounted for 

in the genetic analysis, the estimate of maternal heritability of lamb survival is what would be 

expected based on the known (simulated) values in the dataset (Table 3). That is, the data structure 

is sufficient for the partitioning of variance between maternal genetics and dam permanent 

environmental effects. Conversely, when dam permanent environmental effects are present in the 

data but are not accounted for in the statistical model fitted, then the maternal heritability is 

artificially inflated (Table 3). This is the case whether a continuous lamb survival phenotype 

Statistical methods and computation

454



(0.091 when damPE is not fitted versus 0.049 when damPE is fitted), low survival phenotype 

(0.039 versus 0.021) or high survival phenotype (0.029 versus 0.016) is simulated. These results 

were consistent with results from the model when applied to the HIGH variance component set, 

whereby all components (direct genetics, maternal genetics, dam permanent environmental effects 

and litter effects) are simulated to be present within the population (Table 4). In this scenario, 

failure to account for dam permanent environmental effect resulted in a 35-55% increase in 

maternal heritability (Table 4). 

 

Table 2 Mixed models fitted - models 1-4 are fitted for the binary and continuous traits, 

while the probit model (5) is only fitted for the binary traits 

 

Model Equations 

1 cSurv/lSurv/hSurv = byr + sex + br + aod + animal + dam + dampe + litter 

2 cSurv/lSurv/hSurv = byr + sex + br + aod + animal + dam + dampe  

3 cSurv/lSurv/hSurv = byr + sex + br + aod + animal + dam + litter 

4 cSurv/lSurv/hSurv = byr + sex + br + aod + animal + dam 

5 (probit) lSurv/hSurv (probit) = byr + sex + br + aod + animal + dam + dampe + litter 

 

cSurv = continuous lamb phenotype, lSurv = low incidence lamb survival binary phenotype, hSurv 

= high incidence lamb survival binary phenotype, byr = birth year, br = birth rank, animal = 

animal’s unique identifier (relationships included by fitting the A matrix, which describes pedigree 

relationships, dam = dam uid, dampe = permanent environmental effect, litter = litter effect. 

 

 

Table 3  Effect of not accounting for permanent environmental effect (damPE) when it is 

present in the data (low survival variance assumed) – expected based on simulated values 

and estimated based on variance component estimation 

 

TRAIT h
2
direct h

2
maternal damPE 

Expected estimated expected estimated expected estimated 

Dam permanent environmental effect simulated and fitted 

Continuous 0.05 0.055 0.05 0.049 0.1 0.042 

Low survival 0.021 0.025 0.021 0.021 0.1 0.021 

High survival 0.015 0.015 0.015 0.016 0.1 0.017 

Dam permanent environmental effect simulated but not fitted 

Continuous 0.05 0.054 0.05 0.091 0.1 n/a 

Low survival 0.021 0.025 0.021 0.039 0.1 n/a 

High survival 0.015 0.016 0.015 0.029 0.1 n/a 
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Table 4 Effect of not accounting for either permanent environmental effect (damPE) or litter 

effect when they are present in the data (high survival variance assumed) – expected (exp) 

based on simulated values and estimated (est) based on variance component estimation 

 

TRAIT h2direct h2maternal damPE litter 

exp est exp est exp est exp est 

All terms simulated, all terms fitted 

Continuous 0.2 0.203 0.15 0.153 0.1 0.047 0.05 0.010 

Low survival 0.086 0.097 0.064 0.065 0.1 0.033 0.05 0.009 

High survival 0.061 0.072 0.046 0.050 0.1 0.030 0.05 0.013 

All terms simulated, litter not fitted 

Continuous 0.2 0.203 0.15 0.153 0.1 0.050 0.05 n/a 

Low survival 0.086 0.097 0.064 0.065 0.1 0.035 0.05 n/a 

High survival 0.061 0.072 0.046 0.050 0.1 0.033 0.05 n/a 

All terms simulated, dam permanent environmental effect not fitted 

Continuous 0.2 0.193 0.15 0.206 0.1 n/a 0.05 0.013 

Low survival 0.086 0.094 0.064 0.099 0.1 n/a 0.05 0.013 

High survival 0.061 0.071 0.046 0.078 0.1 n/a 0.05 0.016 

 

Additional simulations (results not shown) revealed that when variance components were not 

simulated, they were correctly predicted as being zero. Furthermore, when a generalised linear 

model approach was used to account for binomially distributed data, the only difference in results 

was as could be predicted using the transformation described by Dempster and Lerner (1950).  

 

Everett Hincks et al (2014) published variance component estimates for NZ sheep using a range of 

variance models. One of their models included dam permanent environmental effects, and this 

model gave the lowest estimate of the maternal genetic variance of lamb survival. We conclude 

that typical sheep pedigree structures in New Zealand sheep populations are sufficient for 

disentanglement of multiple variance components, and failure to fit an existing random effect in 

variance component estimation procedures can result in inflation of other variance components.  
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SUMMARY 

Investigations of genotype by environment (G×E) interactions may use estimates of average 

performance observed for contemporary groups (CGs) as environmental descriptors (ED). Data 

from a commercial breeding herd of Large White pigs were used to define ED based on backfat 

(BF) and average daily gain (ADG). The ED of BF and ADG were estimated using an animal 

model, with sex, month-year CG, weight (BF only), litter size and parity of birth litter as fixed 

effects. Estimates of CG were centred, and then used to allocate an environment for each 

individual in the genetic analyses of ADG. Each ED was partitioned into quartiles, allowing ADG 

to be defined as a separate trait in the four environments based on BF or ADG. Heritability 

estimates for ADG ranged from 0.12 to 0.16 for BF as ED, and 0.07 to 0.17 for ADG as ED. There 

was a weak relationship between the BF ED and ADG ED indicating they do not quantify the 

environment in the same way. Nevertheless, the use of either ED indicates re-ranking of animals in 

different environments, with Pearson’s correlations between EBVs ranging from 0.22 to 0.55 for 

BF as ED, and 0.43 to 0.54 for ADG as ED. 

 

INTRODUCTION 

Genotype by environment (G×E) interactions occur when different genotypes exhibit varying 

responses to changes in the environment. Phenotype, in particular mean performance of a group of 

animals, can be seen as the result of a combination of known, plus unknown and unobservable 

environmental factors (Streit et al. 2013). Therefore, estimates of phenotypic averages of 

contemporary groups (CGs) at each environmental level are commonly used as an environmental 

descriptor (ED) in animal breeding, allowing the environment to be quantified (for example, Knap 

and Su (2008) in pigs). This ED can then be partitioned, and the same trait measured in the 

different EDs can then be considered as separate traits (Falconer 1952), with each trait having its 

own heritability and breeding values. This multi-trait approach of G×E analysis allows the 

evaluation of any genetic correlations (rg) between the same trait expressed in different 

environments, and, if less than unity, this indicates a G×E interaction.  

In pig breeding, an environmental variable previously used was average daily gain (ADG) (Li 

and Hermesch 2013).We explore the use of backfat (BF) as an alternate production trait for an ED 

in G×E analyses, and make comparisons with the use of ADG as the ED.  

 

MATERIALS AND METHODS 

Data. Pig identity records and production traits were obtained from a commercial herd of 

Large White pigs in Gatton, south east Queensland, Australia. Inclusion criteria were years of birth 

from 1996 to 2013 inclusive, and all traits within four standard deviations from means of the raw 

data. After data editing, there were a total of 40,145 individual animals, which included 19,899 

entire male pigs and 20,246 female pigs. The 18 generations consisted of 2,444 dams and 568 

sires. Performance traits included ADG from birth to weighing and BF at weighing. The mean age 

of weighing was 129.1 ± 6.79 days (mean ± SD), which gave an average weight at testing of 87.1 
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± 9.23 kg. CGs were defined by birth month-year, giving a total of 216 CGs, ranging from 67 to 

493 pigs in each group and an average group size of 185 pigs.  

Analysis. Data cleaning and analysis was conducted using R, version 3.1.3 (R Core Team 

2015). Models were fitted using ASReml-R (Butler et al. 2009). Records were examined for 

duplicates and errors. The pedigree was extracted from the raw records, duplicate pigs and 

pedigree loops were removed, and founders identified. The analyses were conducted in two steps.  

Firstly, EDs were obtained based on estimates of CGs from the following animal models. The 

model for BF was BF =  + Sex + CG + Weight + LitterSize + BirthParity + Animal + Litter 

effect +. Fixed effects were sex, CG, weight (linear covariate), litter size of birth litter (linear 

covariate) and parity of birth litter. Random effects were common litter and animal effect. For 

ADG as the ED, the model was:  ADG =  + Sex + CG + LitterSize + BirthParity + Animal + 

Litter effect + .  
The 216 CG estimates for both EDs were centred around 0, and for maximum power to test for 

G×E, split into quartiles to have roughly equal number of observations within each group. Each 

animal was allocated an environment (E-BF1, E-BF2, E-BF3, or E-BF4; as well as E-ADG1, E-

ADG2, E-ADG3, or E-ADG4) according to their CG estimate.  

The second part of the analyses was to define ADG as a different trait for each environmental 

group. Heritabilities and estimated breeding values (EBVs) for ADG traits across environments 

were obtained from the animal model outlined for ADG above. Pearson’s correlations between the 

EBVs for each of the four traits based on BF as ED, as well as ADG as ED, were calculated as a 

proxy measure of genetic correlations. 

 

RESULTS AND DISCUSSION 

The 40,145 animals included in analysis had a mean ADG of 675.3 ± 68.43 g/day, and a mean 

BF measurement of 11.6 ± 1.90 mm. 

The centred CG estimates derived from the animal models in the first step of analysis ranged 

from -1.2 mm to 1.3 mm for the BF ED, and from -67.2 g/day to 77.5 g/day for the ADG ED. The 

environments E-BF1, E-BF2, E-BF3 and E-BF4 contained animals with a BF ED of < -0.38 mm, 

between -0.38 mm and 0.01 mm, between 0.01 mm and 0.39 mm, and > 0.39 mm, respectively; 

Similarly, E-ADG1, E-ADG2, E-ADG3 and E-ADG4 contained animals with an ADG ED of < -

15.9 g/day, between -15.9 g/day and 1.34 g/day, between 1.34 g/day and 16 g/day, and > 16 g/day, 

respectively.  

In an optimum environment, pigs have a higher ADG and lower BF. If the BF ED and ADG 

ED were able to quantify the environment in the same way, it was expected for these EDs to be 

highly negatively correlated. Figure 1 shows the weak relationship between the EDs based on BF 

and ADG (r = 0.08). This indicates that the two EDs do not describe the environment in the same 

way.  

The partitioning of the environments appropriately described inferior and superior 

environments, shown in the ADG of each environment. The superior BF environments with the 

lowest BFs had the highest ADG performance, with ADG decreasing from 680 g/day and 681 

g/day for E-BF1 and E-BF2, to 668 g/day and 671 g/day for E-BF3 and E-BF4 (Table 1). The ED 

derived from ADG showed an increase in ADG with quality of environment in a linear 

relationship, as expected.  Variability in performance (CV) decreased with superior environments 

for ADG as ED, reflecting the results of Li and Hermesch (2013) for their seven-trait analysis. The 

range of heritabilities derived from the four ADG traits in each ED were 0.12 to 0.16 for ED based 

on BF, and 0.07 to 0.17 for ED based on ADG. 
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Figure 1. The relationship between centered contemporary group (CG) estimates using 

backfat (BF) as ED and average daily gain (ADG) as ED (r = 0.08). 

 

Table 1. Number of observations (n), mean performance, coefficient of variation (CV), 

phenotypic variance (𝝈𝒑
𝟐), heritability (h

2
), standard error of heritability estimate (s.e(h

2
)), 

fraction of variance due to common litter environment (c
2
) and litter effect standard error 

((s.e(c
2
)) for average daily gain (ADG) defined as separate traits, using an environmental 

descriptor (ED) derived from backfat (E-BF1 to E-BF4) and ADG (E-ADG1 to E-ADG4).  

 

Environment n ADG (g/day) CV (%) 𝜎𝑝
2 h2 s.e(h2) c2 s.e(c2) 

E-BF1 9,767 680.0 9.97 3948.2 0.16 0.027 0.10 0.025 

E-BF2 11,328 680.6 10.07 4143.7 0.16 0.025 0.09 0.026 

E-BF3 9,804 668.4 10.33 4068.8 0.12 0.022 0.12 0.028 

E-BF4 9,246 671.2 10.04 4110.7 0.14 0.025 0.12 0.026 

E-ADG1 9,924 648.3 10.06 3941.6 0.15 0.027 0.11 0.025 

E-ADG2 10,313 670.8 9.71 4034.8 0.17 0.026 0.11 0.024 

E-ADG3 10,695 682.8 9.68 4158.7 0.07 0.018 0.11 0.019 

E-ADG4 9,213 700.7 9.56 4133.6 0.17 0.026 0.13 0.026 

  

Pearson’s correlations between EBVs ranged from 0.22 to 0.55 for BF as ED, and from 0.43 to 

0.54 for ADG as ED (Table 2). These were all significantly lower than unity, demonstrating re-

ranking of animals across environments. Although Pearson’s correlations indicate significant G×E 

interactions for both BF as ED and ADG as ED, these provisional values under-estimate genetic 

correlation between traits. 

 

Table 2. Pearson’s correlations between estimated breeding values (EBVs) for average daily 

gain (ADG) defined as separate traits in each environment, using an environmental 

descriptor (ED) derived from (a) backfat (BF) and (b) ADG. 
(a)      (b)     

 E-BF1 E-BF2 E-BF3 E-BF4   E-ADG1 E-ADG2 E-ADG3 E-ADG4 

E-BF1      E-ADG1     

E-BF2 0.35     E-ADG2 0.53    

E-BF3 0.29 0.55    E-ADG3 0.43 0.52   

E-BF4 0.22 0.49 0.54   E-ADG4 0.45 0.50 0.44  
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This multi-trait approach treats the ED as a categorical variable. When the ED is treated as a 

continuous variable, a reaction norm (RN) approach can be used (Kolmodin 2003). There is also 

the option of combining both approaches, when both categorical and continuous EDs are used at 

the same time. Windig et al. (2011) explored treatment of the ED as both continuous and 

categorical in a combined bivariate reaction norm approach. Although there was no G×E 

interaction found when multi-trait, RN and combined approaches were used, the combined 

approach was useful for separating effects when two EDs were confounded (e.g. spring calving vs. 

year-round calving production system). In this example, residual variance decreased with dairy 

higher milk production in a RN approach, but the combined approach showed that at the same 

milk production level, there was higher residual variance in spring calving compared to year round 

calving.  

The number of traits the environmental trajectory is split into is an important factor in G×E 

analysis. Li and Hermesch (2013) explored four different scenarios, splitting ADG as ED into one, 

two, three and seven traits. When treated as one and two traits, no significant G×E interaction was 

found, but a G×E interaction was observed when three and seven trait models were fitted. Genetic 

correlations also decreased as differences between environmental groups increased. Quartiles were 

used in the current study as it is a commonly used statistical summary. However the optimum 

number of traits should be further investigated.  

 

CONCLUSIONS 

This paper considers the validity and feasibility of G×E analyses when using alternative traits 

in defining the environmental variable. The mean performance of a production trait as ED, 

adjusted for by fixed and random effects, may be an appropriate variable if the environment is 

complex, or if there is no other available data to describe the environment. These first results 

indicate that BF can be used as an ED, with estimates of heritabilities and Pearson’s coefficients 

similar to those obtained when ADG was used as the ED. Both EDs suggest re-ranking of animals 

across environments. However, genetic correlations between ADG defined as a separate trait in 

different environments are required to make a final conclusion about G×E interactions.  
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SUMMARY 
Genomic information can accurately specify relationships among animals, including between 

those without known common ancestors.  Genetic variances estimated with genomic data relate to 

unknown, more distant, founder populations than those defined by the pedigree. Starting from 

different sets of assumptions, the properties of some alternative genomic relationship matrices (G) 

are explored. Although the assumptions and matrices differ, the resulting sets of estimated 

breeding values predict the differences between animals identically, despite obtaining different 

estimates of the additive genetic variance – showing that there are many ways of building G that 

provide identical results. For some methods integer and logic, rather than floating point, operations 

will expedite building G many-fold.   

 

INTRODUCTION 

Genomic data can provide more accurate information about relationships among animals.  

When only pedigree information is available, progeny are assumed to receive a random half of 

each parents’ genes and full-sibs are expected to share half their genes.  With genomic data we can 

tell which half of each parents’ genes an animal receives and precisely the proportion of genes 

shared by full-sibs.  Generally, genomic information provides more detailed information about 

relationships including that between individuals that share no known common ancestors.  

When a population is genotyped a genomic relationship matrix (G) takes the place of the 

numerator relationship matrix (A) in routine genetic analyses. However, unlike A, G must be built 

explicitly which can be a time consuming process particularly when the number of loci and/or 

genotyped animals is large.  When G
-1

 is needed, G must also be inverted directly as it is dense 

and unlike A, G has no simple inverse. This operation is generally more computationally 

expensive than building G whereas A
-1

 can be constructed rapidly, directly from the pedigree.  

Recently Forni et al. (2012) examined the effect of using different assumptions to build G but 

obtained the same results for some methods. This paper illustrates how using different assumptions 

when building G, can result in different G matrices and even estimated genetic variances, yet 

provide the same estimated breeding values (EBVs). It also shows how different assumptions can 

significantly expedite the process of building G. 

 

THEORY 

Estimates of relationships among individuals are essential for genetic evaluation.  Traditionally 

A fulfilled that purpose.  When combined with the genetic variance (σu
2
), variance of the breeding 

values (u) was defined to be Var(u)=Aσu
2
.  A is based on the idea of identity by descent (IBD) and 

is built by tracing the flow of genes down the pedigree.  Elements of A are twice the coancestry 

coefficient which are probabilities that limit the range of elements in A to [0,2]. Founders, the 

remotest set of ancestors with unknown pedigree, are assumed to be a random sample from a very 

large population in Hardy-Weinberg equilibrium.  The partition of A relating to the founders is an 

identity matrix, which implies that the genome of each founder consists of two subsets. The first 

subset contains loci that are all homozygous and common to all founders and thus generate no 
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phenotypic variance.  The other subset contains all loci that generate phenotypic variation. They 

are unique to each founder as off-diagonal elements of zero imply that there is no covariation with 

any other founder. This suggests that there were an infinite number of alleles at every locus in the 

base population.  

Genomic data, in the form of single nucleotide polymorphisms (SNP), can be used to build G 

(Van Raden 2008) for individuals with genotypes.  Using markers involves the strong assumptions 

relating to identity by state (IBS), where markers are deemed to be in linkage disequilibrium with 

genes affecting phenotypes, and that such genes behave similarly across the whole population, 

especially for relationships beyond the pedigree. When all individuals in the population have 

genotypes then G can be used in place of A so that the assumption about the variance of the 

breeding values becomes Var(u)=Gσu
2
. A variety of different methods are available for building G 

and some of them are equivalent to including the SNP directly as individual effects (g) in the 

model (Stranden and Garrick, 2009) in place of the breeding values, so that u=Zg and Var(g)=Iσg
2
, 

where σg
2 

is the variance due to the SNPs.  The equivalence between these methods indicates a 

degree of ambiguity and loosely implies that the effects of the SNPs, or the quantitative trait loci in 

linkage disequilibrium with them are estimable. Some methods for building G result in elements 

that have no probabilistic interpretation (e.g. elements less than zero).   

Genomic data. SNPs are the genotypes used in this paper, with each individual-locus 

represented by a number 0, 1 or 2, being the number of one of the alleles available at the locus.  

There are a animals with h haplotypes (h=2a) and m loci.  The genotypes are represented by Z, an 

a x m matrix and haplotypes by X an h x m matrix.  Haplotypes for each locus are formed 

independently of other loci. The matrix K=I  [1 1], where  is the Kronecker product, converts 

X to Z as Z=KX.  The matrix P is conformable to Z and contains the allele frequencies (p) for 

each locus in its columns.  In addition let J denote a matrix with all elements equal to 1.  

Dimensions of J are as implied in the equation where it is used.  Where necessary we specify the 

row (i) and column (j) dimensions as subscripts (Jij). 

  G matrices. Three alternative methods for building G are considered. The first of these is 

Van Raden’s (2008) first method, viz. G=MM'/d, where M=Z-2P, and d=2∑p(1-p). By 

subtracting 2P from Z genotypes are centred so that columns of M sum to zero. The denominator 

is designed to scale the matrix G to be similar to the scale of A.  This formulation of G generates 

some irregular elements that cannot be interpreted as co-ancestry.  These include negative 

elements, parent-offspring elements less than 0.5 and diagonals less than 1. Potentially, elements 

can be greater than 2 (between pairs of individuals sharing a very large number of low frequency 

alleles).   

The second method is similar to the first with genotypes centred around zero: F=(Z-J)(Z-J)'/c. 

The denominator, c, can be the same as d, or alternatively with all allele frequencies set to 0.5, 

c=m/2. F can also contain unusual elements, with the diagonal elements being a function of the 

proportion of the animals’ loci that are homozygous. Elements of F are readily computed by 

counting the numbers of identical and of opposing homozygotes between each pair of animals.  

This allows the use of integer and logical operations that are much faster than floating point 

operations required to compute (Z-2P)(Z-2P)'.  

The third method is based on building a gametic relationship matrix (H).  Nominally, a gametic 

relationship matrix (Γi) is built for each locus by counting 1 if the alleles are the same and 0 if they 

differ. Subsequently the complete gametic relationship matrix (Γ) is calculated by summing all the 

loci matrices and dividing by m. This is converted to the animal relationship as H = KΓK'/2. In 

practice, H is built as H = K[XX'+(X-J)(X-J)']K'/2m. The method for building H ensures that it 

has no elements less than 0 nor greater than 2 and no diagonal elements less than 1.   

Similarity. Expansion of the terms in the matrices illustrates the differences between them.   

1. Considering M as Z-J-D, where D=2P-J the numerator of G (=MM'/d) gives 
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             MM' = (Z-J-D)(Z-J-D)' = (ZZ'-ZJ'-ZD'-JZ'+JJ'+JD'-DZ'+DJ'+DD') 

By setting E = -ZD'+JD'-DZ'+DJ'+DD' and noting that with JamJam'=mJaa, 

        G = (ZZ'+mJ-ZJ'-JZ'+E)/d 

2.  F = (Z-J)(Z-J)'/c = (ZZ'+mJ-ZJ'-JZ')/c. 

3.  H = (K[XX'+(X-J)(X-J)']K/2)/m  

            = (KXX'K'+KJJ'K'/2-KXJ'K'/2-KJX'K'/2)/m, and since Z = KX and KJhm = 2Jam, 

              H = (ZZ'+2mJ-ZJ'-JZ')/m. 

These results clearly show how G, F and H differ and that since, G = (Fc+E)/d and F = m(H-J)/c, 

how one can be determined from another. When c=d, G = F+E/d. 

 

MATERIALS AND METHODS 
A small population made up of four sires mated to the same five dams each producing one 

offspring was generated.  Each individual had two haplotypes of 99 SNPs, a breeding value and 

phenotype for a trait with a heritability of 0.55.  These were analysed with the model y=μ+Z1u+e, 

where the data are a function of the mean (μ), the breeding values (u) and a residual (e), and Z1 is 

an incidence matrix assigning observations to breeding values. Var(u)=Wσu
2
, where W is a 

relationship matrix and Var(e)=Iσe
2
.  Genetic parameters for this population were estimated using 

five different matrices W.  The first used G with a small amount (0.01I) added to make it 

invertible (positive definite), the second and third used F with denominators of d and m/2 

respectively, the fourth used H and the last used F+10J. These data were analysed with 

WOMBAT (Meyer, 2007) to estimate variance components and breeding values. 

 

RESULTS AND DISCUSSION 

G matrices. The construction of the various matrices shows clearly how they relate to each 

other. The difference between G and F(c=m/2) arises from the different allele frequencies. F and 

H differ in their denominators and there is an additional term (mJ) included in H that is not in F.   

Evaluations. The results in Table 1 show that, regardless of which W matrix is used, the 

estimated breeding values (EBVs) are the same.  The correlations between EBVs from different 

analyses are 1, or close to 1, as are the regressions of 1 on those obtained when W=G.  Differences 

in estimated means are unimportant as EBVs are relative measures of genetic merit. Slight 

differences occur when G is used, compared to the other methods as its diagonal was augmented 

and some difference in the mean may be due to E. The addition of 10J to F has no effect, 

indicating that adding any multiple of J (results not shown) to these matrices have no effect.  

These results show the practice of augmenting the diagonal of G should be superseded by adding 

kJ, where k is small, to ensure G is invertible.  The likelihoods and residual variances are also the 

same for all models. Similar genetic variances were estimated when G or F was used. While the 

addition of a multiple of J to F matrices has no effect, it suggests a higher degree of relationship in 

that population than F alone. Using H obtained a considerably higher additive genetic variance  

 

Table 1: Results from evaluation of simulated data using different relationship matrices 

 

Relationship

Matrix 

Log-

Likelihood 

σe
2
 σu

2
 μ Regression of 

EBVs on EBVs(G) 

Correlation 

EBVs with 

EBV(G) Intercept Slope 

G -76.55 51.22 31.74  0.000 - - - 
F(c=d) -76.55 51.27 31.71 -0.027 0.027 0.999 1.0 

F(c=m/2) -76.55 51.27 33.83 -0.027 0.027 0.999 1.0 
H -76.55 51.27 67.73 -0.027 0.027 0.999 1.0 

F+10J -76.55 51.25 31.74 -0.027 0.027 0.997 1.0 
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than other matrices.  This might suggest that H uses a more ancient set of founders than assumed 

when G or F is used.  However, since Var(u)=Wσu
2
, and if it is only their denominators that differ 

(W1=wW2), the estimated additive genetic variance must vary in a complementary manner 

(σu1
2
=σu2

2
/w). This is so for F(c=d) and H where the ratio of the additive genetic variances is d/m 

and similarly for F(c=d) and F(c=m/2) where this ratio is 2c/m. 

Although the various genomic relationship matrices were different, their inverses, also 

necessarily different, provide the same results which may seem surprising given the different 

assumptions.  Despite this, the same results indicate that the inverses are simple functions of each 

other showing that the genomic data are being used in exactly the same way.   

The equivalence between these methods, based on relationship matrices, can be illustrated by 

considering modelling the genotypes directly. With this model the addition of a constant to the 

SNP genotypes for each locus has no effect on anything but the overall mean. The additive 

breeding values (u=Zg) would be the same as if nothing had been added. This is akin to centering 

alleles around different values and adding terms like E and kJ to any W. 

These results show that different approaches to using genomic data may not ensure real 

differences and may explain why some methods used by Forni et al. (2011) have identical results. 

These results also show that the apparent problems relating to strange elements (negative off-

diagonals, and diagonals less than 1) in G are nothing to fear, they are simply on a different scale 

to the other Ws.  Starting with the idea of SNP similarity provides H which, by construction, can 

have a similar probabilistic interpretation to A.  However, H provides a much greater genetic 

variance than the other methods, but this can be modified by factoring it by c/m.   

As genomic data provide relationships among individuals that are not IBD, it is clear that the 

unknown founder population implied when genomic data are used must be different to the known 

founder population derived from pedigrees.  These results show that the estimated additive genetic 

variance is sensitive to assumptions about allele frequencies which determine the denominator 

and, indirectly, the unknown founder population.  Paradoxically, the EBVs estimated from each of 

these evaluations are insensitive to the different estimates of additive genetic variance when 

combined with the appropriate W.  Conversely, incorrect EBVs could result from combining a 

relationship matrix W with an inappropriate additive genetic variance. 

Building the numerators of F and H are based on Z and X.  These matrices are integers and 

provide the opportunity to use integer rather than floating point operations.  Furthermore, as the 

non-zero elements of Z-J are only 1, and -1 the process of building F can be done with logic 

operators which is magnitudes faster than the floating point operations used to build G. 

 

CONCLUSION  
Many ways of using genomic data to determine relationships among individuals in a 

population, while appearing to be different, are similar.  Although they may be based on different 

assumptions, and can provide different estimates of the additive genetic variance, they provide the 

same measures of genetic merit of the population.  The estimate of the additive genetic variance is 

sensitive to the estimate of allele frequencies.  F should be used in place of G, as it is much 

quicker to build and provides an equivalent model and it does not require augmenting the diagonal 

to make it invertible. 
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SUMMARY 

Several examples of structural variation (SV), or copy number variation (CNV) affecting traits 

exist in cattle. However the effect of SV on complex traits is largely unknown. The identification 

of SV suffers from high false positive and low overlapping rate when using different programs. 

We detected SV in dairy cattle whole-genome sequence from 308 Holsteins and 64 Jerseys with 

two SV detection programs - Breakdancer and Pindel. We constructed a set of validated SVs based 

on 28 individuals that were sequenced twice, and were transmitted sire to son. A total of 

11,534candidate SVs covering 5.64 Mb were validated in the 28 twice-sequenced individuals, 

while 3.49 Mb and 0.67 Mb of SV were validated from Holstein and Jersey sire-son transmission.  

 

INTRODUCTION 

There are several categories of genome variation within a species. Single nucleotide 

polymorphisms (SNP) are the most frequent and have been widely utilized in association and 

genomic prediction studies. Another category is structural variation (SV) which refers to segments 

of 1 kilo bases (kb) to several mega bases (Mb) of deletions, duplications, inversions and 

translocations in the re-sequenced genome compared to a reference genome, of which copy number 

variation (CNV) only includes deletions and duplications.   

In cattle, a number of studies have shown evidence that SVs spanning gene coding regions can 

affect a wide range of traits (Liu et al. 2010). In Angus cattle, 297 CNVs were found to be associated 

with parasite resistance or susceptibility (Hou et al. 2012). Recently a 660 kb deletion was found to 

be associated with fertility and milk production in Nordic red cattle (Kadri et al. 2014). In addition, 

SVs have been shown to be associated with the polled phenotype in cattle (Medugorac et al. 2012; 

Rothammer et al. 2014)  

A number of genomic data types can be used to detect SV. PennCNV implements a hidden 

Markov model (HMM) to detect CNVs from SNP arrays (Wang et al. 2007). However, due to 

limited SNP density and high minor allele frequency of these SNP, the ability to identify rarer and/or 

smaller CNVs is limited. In addition, SNP chip methods cannot capture balanced SVs including 

inversions and translocations. 

Whole-genome sequence data can potentially be used to recover the whole spectrum of SVs. 

Paired-end mapping (PEM) (Korbel et al. 2007), split read (SR) (Ye et al. 2009), read depth (RD) 

(Teo et al. 2012), and de novo assembly (Iqbal et al. 2012) are the current four basic strategies used 

to detect SVs from sequence data.  

Here we detected SVs in whole-genome sequence data from Holstein and Jersey populations 

with a combination of Breakdancer (Chen et al. 2009) (PEM) and Pindel (Ye et al. 2009) (SR), 

combined with two novel validation strategies, to generate high quality SV sets. We also tested the 

hypothesis that highly conserved gene regions (between species) should have less SVs than in less 

conserved regions.   
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MATERIALS AND METHODS 

Animal samples. The paired-end read whole-genome sequence data is described in (Daetwyler 

et al. 2014). A total of 308 Holstein and 64 Jersey were sequenced with Illumina sequencing 

platforms, with average coverage 10.76 and 10.92 respectively. All the short sequencing reads 

were then aligned to reference assembly UMD 3.1 with the Burrows-Wheeler Aligner (BWA). 

Our validation strategy included assessing how many SVs were detected in both replicates of a set 

of 28 Holstein individuals that were sequenced twice with different libraries, and whether we 

could observe sire-son transmission of the SV in 68 Holstein and 33 Jersey sire-son pairs. 

 

Sequence population SV calls. We pooled the Holstein (not including twice-sequenced 

individuals) and Jersey populations and investigated the SV distribution differences between the two 

breeds. For each population, we first ran Breakdancer and Pindel to generate raw SV calls by each 

SV type (deletion, insertion, inversion and duplication). The default parameters were used for both 

programs. However, we enforced a threshold of a minimum of four supporting read pairs and 

observation in two individuals to classify higher quality SVs. We also filtered SVs that span 

chromosome gaps in the reference assembly. In the next step, we found the overlapping regions 

when merging the SV calls from Breakdancer and Pindel and considered these overlapped regions to 

be higher confidence SVs. 

 

Validated SV calls. In the Holstein population, 28 individuals were sequenced twice. In theory 

for each individual the two sequences should convey exactly the same information. However due to 

random distribution of sequence reads, assembly error and different depth of coverage, the two 

sequences are not identical, and, thus, programs can report different SVs. We generated a high 

confidence SV set by only reporting SVs detected in both sequences. In addition, as most SVs 

should be inherited, we only report SVs that are inherited from sire to offspring. The validated sets 

were further compared between each other and with outputs from SNP chip. 

 

Detecting SVs and CNVs from SNP chip genotype data. A total of 128 Holstein and 170 

Jersey cattle were genotyped with the 800K HD SNP chip, which were afterwards converted to Log 

R Ratio (LRR) and B allele frequency (BAF) for further analysis. Individuals with standard 

deviation of LRR>0.35 and BAF >0.2 were discarded, as suggested by Wang et al. 2007. A total of 

125 Holstein and 166 Jersey were kept after this filter. The genomic content (GC) model which 

incorporates the GC percentage information around each SNP was used to improve CNV outputs. 

SNP chip methods cannot detect inversions and therefore we eliminated inversion events when 

comparing to validated sets from sequence. 

 

Conserved genes. To test the hypothesis that SV and CNV are less likely in genes that are highly 

conserved across species, 248 core eukaryotic genes were selected (Parra et al. 2007) that were 

likely to be found in a low number of paralogs in a wide range of species. We downloaded the 

protein file (fasta format) and put it into the BLAST program to search the most similar proteins and 

genes in cattle. The search results were further converted into coding nucleotides in bed format with 

chromosome, strand, start and end position that can be overlapped with our validated SV sets. We 

defined a minimum of 0.5% of the gene overlapped with validated SVs to be reported. A chi-squared 

test was performed to test whether these conserved genes contain less SVs than all the other 

reference genes downloaded from the UCSC genome browser. 

 

RESULTS AND DISCUSSION 

Population SV Calls. The overlapped region from the two programs dramatically shrunk the 

original SVs into a small set, as only about 2-10% of the calls (ranging from 25 to 44,412 bp) were 
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kept after merging (p-value = 6.38448e-20). Overall, Holstein had more SV calls than Jersey, 

which may mainly be due to a larger sample size for Holstein. After filtering SVs less than 25 bp, 

the median length of deletion, insertion, inversion and duplication for Holstein was 1123, 72, 2533 

and 857 and for Jersey was 1152, 0, 1337 and 1014 bp, respectively. Table 1 shows the total 

covered length of SVs shared by the two populations. A total of 4.62Mb SV events were detected 

in both population, occupying 16.89% in Holstein (27.36 Mb) and 53.47% in Jersey (8.64 Mb), of 

which deletions and duplications had a relatively high percentage.  

Table 1. Covered region of SVs shared by Holstein and Jersey population  

 

SV Covered Region Mb DEL INS INV DUP Total 

Holstein 8.49 0.639 13.84 4.40 27.36 

Jersey 5.22 0 1.05 2.37 8.64 

OVERLAP 3.18 0 0.22 1.23 4.62 

 
 

Figure 1. Size range distribution of four type of SVs in twice sequenced, Holstein and Jersey family 

validated sets. 

 

Validated SV Calls. We generated three sets of validated SV calls: twice-sequenced, Holstein 

and Jersey family-level validated SV sets. A total of 5.64 Mb were validated from 28 

twice-sequenced individuals, while 3.49 Mb and 0.67 Mb SVs were found in Holstein and Jersey 

families. We also compared the Holstein twice-sequenced set and Holstein family set. Overall 82.0% 

SVs in Holstein family were also found in the twice-sequenced set. This result illustrates less false 

positives and thus higher confidence SVs compared to population calls. Figure 1 demonstrates that 

the size distribution of SVs is similar across these validated sets. Most deletions and insertions are 
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less than 100 bp; a large number of inversions are around 900 bp while duplications are around 

350 bp. For inversions in Jersey family there are two small peaks at 5kb and 10 kb respectively. 

When looking into the sires with multiple sons, a total of about 80 kb deletions and 90 kb 

duplications on BTA1 were shared in Holstein and 27 kb inversions on BTA11 and 16 kb 

inversions and duplications on BTA14 in Jersey, suggesting these areas could be common CNV 

regions in both breeds.   

The 800K SNP chip data results indicated a total of 2224 CNVs covering 250.5 Mb in Holstein 

(227 Mb deletions and 23.3 Mb insertions) and 2976 CNVs covering 357.4 Mb in Jersey (333 Mb 

deletions and 24.3 Mb insertions). As SNP platform resolution is limited, PennCNV cannot detect 

very small events. Therefore, we only compared this result with SVs larger than 5 kb detected 

from the sequence data. As a result, 12.33% deletions and 11.59% duplications in validated sets 

were also found in Holstein 800K outputs, while 14.95% deletions and 0% insertions overlapped 

in Jersey.  

 

Conserved Genes Test. We found 293 identical genes according to core gene sets after 

searching by BLAST. Overall, there were not many conserved genes in our reported SV areas. 

Within the 293 genes only five genes were found in Holstein family, one in Jersey (ETFDH with 

152 bps overlapped) and seven in twice-sequenced one. Among these genes, most harboured 

deletions, while two and one contained inversions and a duplication, respectively. All the five 

genes from the Holstein family set were confirmed in the twice-sequenced set. Compared to all the 

other reference sequence genes, however, no significant evidence was found to support that 

conserved genes regions contained less structural variants than all others (p-value >0.7). Our 

validated SV sets will assist genetic research in cattle such as genomic prediction and 

genome-wide association studies. 

 

ACKNOWLEDGEMENTS 

The authors thank all members of the 1000 Bull Genomes Consortium for provision of data. 

REFERENCES 

Chen K., Wallis J.W., McLellan M.D., Larson D.E., Kalicki J.M., et al.(2009) Nat Methods 6(9): 

677. 

Daetwyler H.D., Capitan A., Pausch H., Stothard P., van Binsbergen R., et al. (2014) Nat Genet 

46(8): 858. 

Hou Y., Liu G.E., Bickhart D.M., Matukumalli L.K., Li C., et al. (2012) Funct Integr Genomics 

12(1): 81. 

Iqbal Z., Caccamo M., Turner I., Flicek P., McVean G., (2012) Nat Genet 44(2): 226. 

Kadri N.K., Sahana G., Charlier C., Iso-Touru T., Guldbrandtsen B., et al. (2014). PLoS Genet 

10(1): e1004049. 

Korbel J.O., Urban A.E., Affourtit J.P., Godwin B., Grubert F., et al. (2007) Science 318(5849): 

420. 

Liu G. E., Hou Y., Zhu B., Cardone M.F., Jiang L., et al. (2010) Genome Res 20(5): 693. 

Medugorac I., Seichter D., Graf A., Ingolf R., Helmut B., et al. (2012) PLoS One 7(6): e39477.  
Parra G., Bradnam K. and Korf I. (2007) Bioinformatics 23(9):1061 

Rothammer S., Capitan A., Mullaart E., Seichter D., Russ I., et al.(2014) Genet Sel Evol 46: 44. 

Teo S. M., Pawitan Y., Ku C.S., Chia K.S. and Salim A. (2012) Bioinformatics 28(21): 2711. 

Wang K., Li M., Hadley D., Liu R., Glessner J., et al. (2007) Genome Res 17(11): 1665. 

Ye K., Schulz M. H., Long Q., Apweiler R. and Ning Z.M. (2009) Bioinformatics 25(21): 2865. 

 

Statistical methods and computation

468



A COMPARISON OF GENETIC CONNECTEDNESS MEASURES USING DATA FROM 

THE NZ SHEEP INDUSTRY 

J.B. Holmes
1
, B. Auvray

1
, S.A. Newman

2
, K.G. Dodds

2
 and M.A. Lee

1
 

1
 Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand 

2
 AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand 

SUMMARY 

The New Zealand Sheep industry, via Sheep Improvement Limited (SIL), estimates genetic 

connectedness across flocks as a function of progeny counts. This estimate is derived separately 

from the model fitted to estimate breeding values. As it ignores sources of genetic linkages other 

than direct parent-progeny links, it may under-estimate the level of connectedness present in the 

flocks assessed. In this paper, we compared this estimate to another derived from the variance-

covariance (relationship) matrix of additive effects when pedigree information was available and 

when genotype information was available on some of the animals assessed. For the example of a 

single trait model using weaning weight records, we found an increase in the level of 

connectedness estimated compared to the existing method, particularly when genotype information 

was incorporated in the relationship matrix.   

INTRODUCTION 

To optimise genetic gain in livestock programs, breeding values need to be predictable 

between flocks. In animal breeding literature this is referred to as connectedness. In the BLUP 

methods used to estimate breeding values, the most appropriate measure of connectedness is the 

prediction error variance-covariance matrix (PEV). However, this calculation is computationally 

demanding and many proxies have been proposed. 

The standard error of differences in breeding value means between flocks can be estimated as a 

function of the number of progeny born to common parents across flocks. This approximation is 

often used in traditional evaluations, where only pedigree information is used, but it is problematic 

when genotype information is also incorporated. As genetic evaluations for New Zealand sheep 

are increasingly using genotype data, a measure of connectedness derived from the model is 

preferred so that we can quantify genetic connectedness that is due to including genotype data.   

In this paper we compared the standard error of differences in breeding value means calculated 

from a model based proxy to PEV, (i.e. genetic drift variance (Kennedy and Trus 1993)) to the 

current measure. This was done for scenarios where only pedigree information was available, and 

when some animals had genotype information available. 

MATERIALS AND METHODS 

Data. The data was from 64,841 animals from 19 flocks born from 2011 to 2013 with weaning 

weight records. The pedigree file containing the recorded animals and parents without records 

consisted of 84,802 animals. Genotype information (50K Illumina SNP Chip) was available for 

269 of these animals of which 21 were in the initial set with weaning weight records. There were 

31,884 animals that were either genotyped or had a genotyped ancestor. Table 1 shows the 

distribution of animals with genotype records or a genotyped ancestor across flocks. 
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Table 1. Distribution of animals with weaning weight records and genotype records on 

either themselves or at least one parent across flocks 

 
Flock Number with records Number with a genotyped 

ancestor  

Percentage with genotypes. 

1 641 0 0.00 

2 2533 2065 81.52 

3 21240 14404 67.82 

4 1996 1314 65.83 

5 2344 1513 64.55 

6 1110 0 0.00 

7 16761 8231 49.11 

8 1984 1785 89.97 

9 815 769 94.36 

10 3535 0 0.00 

11 787 0 0.00 

12 953 0 0.00 

13 1025 699 68.20 

14 2412 293 12.15 

15 1193 528 44.26 

16 368 0 0.00 

17 2226 222 9.97 

18 984 0 0.00 

19 1934 61 3.15 

 

SIL measure. The measure of connectedness between two flocks used for genetic evaluations 

performed in SIL is proportional to the standard error of the weighted average of differences of 

breeding values (u) between flocks across parents namely 

√∑ 𝜆𝑖
2 (

1

𝑛𝐴𝑖

+
1

𝑛𝐵𝑖

)𝑖 = √1 ∑ (
1

𝑛𝐴𝑗

+
1

𝑛𝐵𝑗

)

−1

𝑗⁄                               [1] 

where 𝑛𝐴𝑗
is the number of progeny of parent j in flock A, 𝑛𝐵𝑗

 is the number of progeny of parent j 

in flock B and 𝜆𝑖 ∝ (
1

𝑛𝐴𝑖

+
1

𝑛𝐵𝑖

)
−1

∑ (
1

𝑛𝐴𝑗

+
1

𝑛𝐵𝑗

)

−1

𝑗⁄ . The standard error of differences has a 

range of (0, √2]. If there are no progeny from common parents in flock A and flock B, the 

standard error of the difference was arbitrarily set to 2. Only progeny born in a set time period are 

considered when calculating this measure. This is usually taken to be the previous three years, and 

has also been applied in this paper. 

Variance-covariance matrix measure. The standard error of differences in average breeding 

values between flock A and B was calculated to proportionality from the elements of  𝑽 =
(𝑿’𝑿)−𝟏𝑿’𝒁𝑮𝒁’𝑿(𝑿’𝑿)−𝟏 (Kennedy and Trus 1993) corresponding to flock A and B. 

𝑆. 𝐸. (�̅�𝐴 − �̅�𝐵) ∝ √𝑽𝑨𝑨  + 𝑽𝑩𝑩 − 𝟐𝑽𝑨𝑩                                           [2] 

where G is an additive relationship matrix, 𝒁 is the incidence matrix of animals with records and X 

is the flock incidence matrix. Two formulations for 𝑮 were used. When only pedigree information 

was available, which we refer to as the pedigree measure, 𝑮 = 𝑨, the pedigree additive 

relationship matrix. When some animals had genotype information available, which we refer to as 

the single step measure 𝑮 = 𝑯. To calculate 𝑯 both 𝑨 and a genomic relationship matrix 𝑮𝟏 was 
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required. 𝑮𝟏 was calculated for the genotyped animals using the first method of VanRaden (2008). 

The 𝑯 matrix was constructed using the method in Aguilar et al. (2010), where 𝑨𝟏𝟏 and 𝑨𝟐𝟐 are 

the additive relationship matrices for, and 𝑨𝟏𝟐 is the matrix of additive relationship covariances 

between the un-genotyped and genotyped animals respectively. 

𝑯 = 𝑨 + [
𝑨𝟏𝟐𝑨𝟐𝟐

−𝟏(𝑮𝟏 − 𝑨𝟐𝟐)𝑨𝟐𝟐
−𝟏𝑨𝟐𝟏 𝑨𝟏𝟐𝑨𝟐𝟐

−𝟏(𝑮𝟏 − 𝑨𝟐𝟐)

(𝑮𝟏 − 𝑨𝟐𝟐)𝑨𝟐𝟐
−𝟏𝑨𝟐𝟏 𝑮𝟏 − 𝑨𝟐𝟐

]              [3] 

When 𝑽𝑨𝑩 = 0, the standard error of the difference in average breeding value is set to 2, 

analogously to the situation of no progeny from common parents in the SIL measure.    

RESULTS AND DISCUSSION 

Clusters of connected flocks. The connectedness estimated from the different methods is 

given in Table 2 where clusters of flocks estimated to be connected are shown. The criterion to be 

connected is a standard error of difference less than 2. The measure currently used in the NZ 

genetic evaluation was the most conservative in estimating connectedness across flocks and the 

single step measure was the least conservative. Changes in the clustering between the three 

measures were due to the admission of previously isolated flocks into clusters, or cluster merging 

rather the shifting of flocks from one cluster to another. This made intuitive sense since any 

linkage coming from shared parents is also contained in the pedigree along with linkage from 

more distant ancestors, such as grandparents. In turn in the genomic relationship matrix, almost all 

off-diagonals are non-zero, even for animals thought to be unrelated.  

 

Table 2. Clusters of linked flocks (identified by flock code) according to the three measures 

of connectedness used  

 
SIL measure 

Cluster 1 2 8 13       

Cluster 2 3 7 17       

Isolated Flocks 1 4 5 6 9 10 11 12 14 

15 16 18 19      

Pedigree measure 

Cluster 1 2 4 8 13      

Cluster 2 3 7 14 17      

Cluster 3 1 12 19       

Cluster 4 5 16        

Cluster 5 6 10        

Cluster 6 11 18        

Isolated Flocks 9 15        

Single step measure 

Cluster 1 1 2 3 4 5 7 8 9 12 

13 14 15 16 17 19    

Cluster 2 6 10        

Cluster 3 11 18        

 

Comparison of standard error of differences. Figure 1 plots the standard error of differences 

for the three measures considered. A reduction in the number of standard errors being arbitrarily 

set to 2 was found moving from the SIL measure to the pedigree and single step measures. This 

corresponded to the reduction in isolated flocks found in the cluster analysis. For flock pairs where 

connections were found using the pedigree measure, the rank correlation of the standard error of 
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differences between the pedigree and single step measure was 0.9902. 

    

 
 

Figure 1. Comparison of standard error of differences using the three measures. 

 

The loss of connections through removed data. In this paper, we used three years of data in 

the calculation of the connectedness measure. In routine genetic evaluations, there are many more 

years of records and pedigree data available. It may be inappropriate to develop a flock based 

connectedness measure from the full relationship matrix from a routine genetic evaluation, since 

connections from old animals would be given equal weighting to younger animals. Kennedy and 

Trus (1993) discussed changing the incidence matrix 𝑿 in genetic drift variance from flock to 

flock by year. This method would utilise the connections lost through data removal while 

removing bias in measured connectedness through equal weighting of older and younger animals.  

Single step method results. The single step measure assigned all flocks with genotype 

information and any flock related to such a flock through pedigree into a single cluster of related 

flocks. This means single step BLUP would lead to an increase in the number of animals with 

comparable breeding values compared to traditional BLUP. It is unclear how reasonable this result 

is, but this warrants further investigation. However the genomic relationship matrix used uses IBS 

to estimate relatedness. As a result the accuracy and comparability of estimated breeding values 

may be inflated. The degree of this inflation will be dependent on the group of markers used in the 

calculation of the genomic relationship matrix and the ancestry of the animals. To overcome this, 

developing an unbiased estimation of a genomic relationship matrix may be of interest.   
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SUMMARY 

Hanwoo is highly prized for its marbling ability and is the most important cattle breed in 

Korea. In order to maintain the integrity of the breed and for product certification purposes it is 

important to develop tools to confirm the origin of the products. Breed composition estimates 

based on a large number of molecular markers (e.g. HD SNP arrays) are highly accurate but 

expensive for routine usage. The identification of a reliable panel with a small number of markers 

will reduce costs and can enable broader adoption of the technology by industry. In this work a 

heuristic optimization method was used to find the most reliable subset of markers, from the 

Illumina BovineHD array, to estimate breed proportion in Hanwoo. Accuracies of breed 

proportion estimates above 90% can be achieved using as little as 200 markers. The best balance 

between accuracy and number of SNP was obtained with 500 markers achieving 94% accuracy. 

Rapid and cost effective breed composition prediction in Hanwoo cattle based on a SNP panel 

with at least 200 markers will help to certify the products with an acceptable accuracy and ensure 

breed purity within the breeding program. The method described herein is directly applicable to 

other breeds.   

 

INTRODUCTION 

Hanwoo is the most important native Korean cattle and its history traces back 5,000 years (Jo 

et al. 2012). Over this long timespan the purpose of these cattle has evolved from farming, 

transportation and religious sacrifice to beef production (Lee et al., 2014). Hanwoo beef has 

unique marbling characteristics which confer a special tenderness, juiciness and unique flavour to 

the meat, making it highly sought after by consumers at premium prices (Kim et al. 2000; Han and 

Lee 2010; Jo et al. 2012). It has also been shown that Hanwoo has a healthier fatty acid 

composition in comparison to other breeds (Jo et al., 2012) which makes them even more 

attractive to consumers. In order to certify the products it is important to develop cost effective 

tools that allow verifying that the product truly comes from pure bred Hanwoo cattle. Breed 

prediction is also a useful tool for breed associations where the animals need to be purebred to be 

registered and, within genomic selection (GS) programmes, it can be used for quality control of 

research and industry samples (Dodds et al., 2014). 

Before the availability of marker data, breed proportion estimates could only be obtained from 

pedigree information. Single nucleotide polymorphism (SNP) genotypes potentially allow for 

more accurate estimates of breed proportion, even in the absence of pedigree records. A number of 

tools exist for predicting breed composition using genetic markers. Most of these implement 

statistical methods developed for prediction of admixture levels and use the complete set of 

markers. Common approaches are based on hidden Markov Model (HMM) clustering algorithms 

or maximum likelihood procedures (Frkonja et al., 2011). To obtain estimates of breed 

composition in crossbred populations, a reference population consisting of genotypes from 

purebred animals that may have contributed to the composite population are used. Dodds et al. 

(2014) explored genomic selection methodology by comparing GBLUP with regression methods 

to develop predictions for breed proportions. This study showed that either method can be applied 
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but which one is better depends on the structure of the ancestral breeds that contributed to the 

population of interest. Blackburn et al. (2014) showed that, in composite populations, using a 

small set of 60K markers (extracted from the Bovine HD SNP chip) at high frequency in each of 

the founder breeds; the proportion of the founder breeds in the composite animals can be 

estimated. In combination these studies showed how promising SNP panels are to characterize 

genetic composition within a population; nevertheless if the main objective is product certification 

and breed verification, the use of a full high density SNP panel has economic constraints. 

Consequently, it is of practical importance to find a small and accurate subset of SNP to estimate 

breed composition. In the present study we explored the use of Differential Evolution to identify a 

small SNP panel that can accurately be used for Hanwoo breed composition evaluation.  

 

MATERIAL AND METHODS 

Data. Genotype information from the BovineHD (700K Illumina BeadChip) array was 

available for a total of 2,453 animals from different cattle breeds (Hanwoo, Angus, Brahman, 

Charolais, Holstein and Jersey). The data set was divided into a discovery (2,253) and a validation 

(200) population. The discovery and validation samples were mutually exclusive. First, 200 

samples were randomly selected among the 6 different breeds previously mentioned as validation 

samples and then the remaining samples were used as discovery population. After quality control 

497,737 SNP across all populations were kept for further analysis. A second dataset consisting of 

genotype information from 24 Yeonbyun samples was also used to validate the proposed method. 

Yeonbyun are genetically highly related to Hanwoo (populations separated during the Korean 

War) with some level of crossing with European breeds (Gondro et al., 2012a); which makes them 

suitable as a proxy for crossbred Hanwoo. 

Breed proportion. Breed proportion estimates were calculated using the supervised option 

with K=7 implemented in the ADMIXTURE software (Alexander et al., 2010). From the breed 

proportion output we estimated the Hanwoo proportion of the validation set animals. Breed 

proportion was considered as the trait. Phenotypes of pure bred Hanwoo animals were coded as 1; 

animals of the other reference breeds were coded as 0; therefore prediction of the validation 

animals using the SNP subset was expected to be in the range of 0–1. A principal component (PC) 

analysis was also performed to better understand breed composition, to explore potential sub-

structure within the sample and for graphic display of the data. 

Evolutionary Algorithm. An algorithm based on Differential Evolution (DE) (Storn and 

Price, 1997) was used to select the best set of SNP for breed proportion estimation. Random keys 

were used to select the SNP panel. A random key is an evolvable vector of real numbers (one for 

each SNP) that are sorted in the objective function and then the ranking of the key is used to rank 

the SNP. The idea is that, SNP for better breed proportion estimation will evolve to higher values 

in the key and the rest to lower values; once the keys are sorted they reflect the relative value of a 

given SNP. Predefined cutoff values (100, 200, 300, 400, 500, 1000 and 5000) were used to select 

the number of SNP in the panel. Basically the DE evolves and sorts the SNP based on their key 

values and uses the top ranked ones up to the number defined by the cutoff parameter. More in-

depth details on the algorithm are given in Gondro and Kwan (2012b). An objective function was 

used to find the fitness of the selected SNP panel. In the objective function, the discovery 

population was further divided into two subsets: i) a subset population (1,253 random samples) 

with known Hanwoo proportion and ii) another subset population (1,000) with unknown Hanwoo 

proportion (proportions were set to missing for these samples). A genomic relationship matrix 

(GRM) was calculated using only the selected SNP panel with the all 2,253 discovery samples. 

The resulting GRM was used to predict the Hanwoo proportion (using GBLUP if number of SNP 

> number of animals, SNP-BLUP otherwise) for the 1,000 samples with unknown breed estimates. 

The fitness of a selected SNP panel (accuracy) was defined as the correlation between the 
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observed and the predicted Hanwoo proportion for these 1,000 samples. The DE evolved for 100 

to 500 generations depending on the number of SNP used in the panel; SNP panel size being 

inversely proportional to the number of iterations. We used 500 generations to evolve the DE for 

SNP panels with 100 – 400 SNP; 200 and 100 generations for SNP panels with 500 – 1,000 and 

5,000 SNP respectively. Once the DE finished, the SNP panel with the highest fitness value was 

selected and the SNP effects were saved to perform prediction on the validation data. Prediction 

for Hanwoo proportion was calculated using the following equation: �̂� = 1𝑛𝜇 + ∑ 𝑿𝑞
𝑖
+ 𝑒𝑖 , 

where 𝜇 is the mean, X is an incidence matrix linking observations to SNP genotypes, 𝑞
𝑖
 is the 

estimated effect of each SNP and i = 1 to the number of SNP on the SNP panel. 

Random subsets. To compare the performance of the DE Algorithm SNP were randomly 

selected for different panel sizes (100, 200, 300, 400, 500, 1000 and 5000) and then SNP-BLUP 

was performed on both validation sets. The accuracy of Hanwoo proportion estimates shown for 

each SNP panel is the average of 10 independent random samples.  

 

RESULTS AND DISCUSSION 

Figure 1 shows the first two PC of the 

genomic relationship matrix applied to 164 

animals from different cattle breeds. 

Hanwoo cattle is clearly separated from the 

European breeds and Yeonbyun animals are 

between Hanwoo and European breeds, 

showing that most of the animals are 

genetically highly related with Hanwoo 

cattle, agreeing with Gondro et al. (2012a) 

and that these cattle have potentially been 

crossed with European breeds. Consequently 

Hanwoo proportions in Yeonbyun animals 

are expected to be between 0 and 1. These 

results were confirmed when calculating the 

Hanwoo proportion of the validation set 

using the SNP panel selected with the DE 

Algorithm (data not shown). 

 

 
Figure 1. Top 2 axes of variation from 

principal component analysis of the 

breeds used to select the marker panel for 

breed proportion estimates. 

Accuracy of breed proportion estimates using different number of markers selected with the 

DE Algorithm ranged between 0.83 and 0.99 for sets of 100-5000 SNP (Table 1). When using 

Hanwoo and other European breeds as a validation set, the accuracies didn’t change much among 

SNP subsets using the DE Algorithm (100 to 300 SNP 98% and >300 99%) or random selection 

(93% with 100 SNP and 96 to 99% with >100 SNP). Results show that the number of SNP 

included in the different panels is sufficient to extract information about breed proportion in the 

population, being better than what previous studies suggest (5K SNP, Frkonja et al., 2011; and 

60K, Blackburn et al., 2014) and demonstrating that using only a fraction of SNP from the HD 

SNP panel we could predict the phenotype or Hanwoo proportion which is comparable with the 

prediction accuracies achieved when all SNP are used (0.99). However if the accuracy is important 

then we need to use larger SNP panels (i.e. panels with about 1,000 SNP). On the contrary if the 

cost is the main concern then we could use panels with a lower number of SNP by accepting a 

small decrease in accuracy. It should be noted though that Hanwoo is genetically quite distinct 

from European breeds and panels to resolve breed composition within European breeds will 

probably need to be larger.   
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Table 1. Accuracy of breed proportion 

estimates using Differential Evolution 

(DE) Algorithm and random SNP with 

different number of markers in the 

Yeonbyun validation set. 
 

SNP DE Random 

100 0.83 0.51 

200 0.91 0.72 

300 0.91 0.76 

400 0.91 0.83 

500 0.94 0.81 

1000 0.94 0.91 

5000 0.99 0.98 

 

 

Knowledge of animal breed composition in 

livestock populations is also important to 

identify the best candidates for selection. In 

crossbred populations it allows effective 

exploitation of heterosis effects by enabling 

accurate decisions about the best mattings to be 

performed within the population. Further, breed 

composition of crossbred animals in livestock 

populations provides information on the type 

and level of crossbreeding as well as on the 

level of recombination loss (e.g. VanRaden and 

Sanders 2003). Use of SNP panels increases the 

level of resolution at which the genetic 

diversity of composite breeds can be managed. 

Breed prediction also becomes possible in the 

case of incomplete or missing pedigrees and in 

the search for the best type of cross or composite of breeds. 

CONCLUSION  

The method presented in this study suggests that small, accurate and cost effective SNP panels 

can be identified for breed proportion evaluation. The results represent a promising approach for 

product certification and to ensure breed purity in Hanwoo at a low cost. This method can be 

ported seamlessly to other breeds as well.  
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SUMMARY 

Gene expression can be regarded as a complex trait phenotype, affected by a number of 

mechanisms, including cis-regulatory genetic variation. Allele specific expression (ASE) analysis 

can be used to determine the importance of cis-regulatory variation. In this study, using RNAseq 

data mapped to parental reference genomes, we analyse the ASE patterns of 17 tissue types and 

white blood cells (WBC) taken from a single lactating dairy cow. We found that 76% of all 

heterozygous single nucleotide polymorphisms (SNPs) tested (total 25,251) had significant 

(p<0.01) ASE in at least one tissue type and of all tested genes containing more than 1 tested SNP 

(7,985), 74% contained greater than 1 ASE SNP. However, there is a large variation between 

tissues in which genes contain SNP displaying ASE. We conclude that ASE is pervasive in cattle.  

Identification of these ASE SNP will aid in the detection of cis-regulatory variants responsible for 

phenotypic variation in bovine production traits, which in turn, may lead to improved selection of 

animals. 

 

INTRODUCTION 

Detection of ASE depends on the ability to differentiate the gene product of one parental 

chromosome from that of the other, and then to quantitate the relative amounts of each gene 

product. Using RNAseq data, this can be achieved by examining the imbalance of parental alleles 

expressed at heterozygous SNP (Pastinen 2010). When only one parental allele is expressed at a 

known heterozygous SNP, it may be indicative of gene imprinting. ASE complements the more 

traditional expression quantitative trait loci (eQTL) data, narrowing genomic regions of interest 

and has been successful in helping pin-point causative variants (Ge et al. 2009; Montgomery et al. 

2010; Pickrell et al. 2010). The variants used to measure ASE from RNAseq data are within 

transcribed regions, nevertheless, identification of those ASE SNP in mRNA may serve as markers 

for the existence of causal regulatory variants close by. It is the identification of these causal 

regulatory variants affecting quantitative traits in livestock species that are of most interest, as a 

subset of these mutations could affect traits in the breeding goals for these species.  

In this paper we present the results of an allele specific expression analysis of 17 tissues and 

WBC taken from a lactating Australian Holstein cow at a single point in time. This cow and her 

sire were sequenced as part of the 1000 bull genomes project and thus phased genotypes of all her 

heterozygous variants were available to create parental genomes. Alignment to parental genomes 

is considered the most accurate mapping method and least likely to result in mapping bias (Degner 

et al. 2009). Results of this study indicate pervasive ASE in bovine and large variation between 

tissues in which genes display ASE. 

 

METHODS 

100 base paired end RNA-seq reads were generated on an Illumina HiSeq2000 from 17 

different tissues and WBC (in triplicate - see Table 1, column 1 for tissue types) taken from a 

single lactating Australian Holstein cow (25 months old, 65 days into first lactation). Reads per 
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tissue ranged from 40 to 100 million. Maternal and paternal reference genomes were created by 

editing UMD3.1 bovine genome assembly at all heterozygous variant sites from this cow using 

phased genotypes from 1000 bull genomes run 3 (Daetwyler et al. 2014). Paired RNA reads for 

each tissue replicate were aligned twice, once to each parental reference genome, using TopHat2 

(Kim et al. 2013) and Ensembl release 75 genome annotation, allowing for two mismatches. 

Alignment files for each tissue replicate were merged, sorted and indexed using SAMtools (Li et 

al. 2009). Maternal and paternal allele counts for known heterozygous SNP for this cow 

(Daetwyler et al. 2014) were extracted using SAMtools mpileup (version 0.1.14). SNP were then 

filtered to only consider those falling within gene exon boundaries, with a minimum read depth of 

10 in both parental reference alignments and the most abundant allele in both the maternal and 

paternal alignments had to agree (removing SNP falling in regions with obvious mapping bias). 

SNP were considered as having significant (p<0.01) ASE using the following Chi-squared (𝜒2) 

test: 

𝜒2 =

(
(𝑟𝑚𝑎𝑝 − 𝑎𝑚𝑟𝑝)

2
𝑁

𝑟𝑎𝑚𝑝
)

2
 

where 𝑟 was the count of reference alleles aligned to both parental genomes, 𝑎 was the count of 

alternate alleles aligned to both parental genomes, 𝑚 was the count of reference and alternate 

alleles aligned to the maternal genome, 𝑝 was the count of reference and alternate alleles aligned 

to the paternal genome, 𝑟𝑚 was the count of reference alleles aligned to the maternal genome, 𝑟𝑝 

was the count of reference alleles aligned to the paternal genome, 𝑎𝑚 was the count of alternate 

alleles aligned to the maternal genome, 𝑎𝑝 was the count of alternate alleles aligned to the paternal 

genome and 𝑁 was the total number of alleles aligned to both parental genomes. Chi-squared 

values were divided by 2 to account for the value of N being derived from the counts of both 

parental haplotypes. 

 

RESULTS AND DISCUSSION 

Figure 1 demonstrates that there is little bias toward the reference allele for all SNP tested, with 

reference allele frequency normally distributed and centred at 0.5, indicating that our strategy of 

mapping reads separately to parental genomes was largely successful. As will be discussed later, 

lung has a large number of ASE SNP. Figure 1 also reveals a large number of SNP have extreme 

ASE (peaks at 0 and 1), however there is some bias in the SNP that display a reference allele 

frequency of 1. We believe this is due to errors in the whole genome sequencing of this cow, 

resulting in SNP called heterozygous when in fact the cow is homozygous at that position.  

In total 25,251 SNP were tested for ASE in at least one tissue, and these SNP fell within 7,985 

annotated genes. 89% of genes tested had significant ASE in at least one tissue (Table 1). Wang et 

al. (2014) state genes that have multiple SNP supporting ASE have a higher rate of successful 

verification. Therefore, we also tested the proportion of genes with >1 SNP with significant ASE 

where the gene had >1 SNP tested, this was 74% (Table 1). These results suggest that between  74-

89% of genes show ASE in at least one tissue. This estimate is higher than the majority of 

published mouse and human literature of 4-53% (Yan et al. 2002; Bray et al. 2003; Pant et al. 

2006; Serre et al. 2008; Vidal et al. 2011; Gao et al. 2012; MacEachern et al. 2012), though it 

must be acknowledged that these estimates are for single or few tissues or cell lines.  

For individual tissues, the proportion of genes showing significant ASE varied from as low as 

8-16% of those tested in thymus, to as high as 71-82% tested in lung.  Pant et al. (2006) previously 

reported that 53% of genes tested showed significant ASE in a study limited to testing only 1,389 

genes in WBC, our estimate of 21-33% of genes tested in WBC was lower, however we tested 
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more genes (4,680). Gao et al (Gao et al. 2012) reported 30% of the 8,779 genes tested in human 

mammary epithelial cells lines showing significant ASE, this also corresponds well to 16-31% of 

the 3,566 genes tested in our study showing significant ASE in mammary gland. The result of 71-

82% of genes tested showing significant ASE in lung seems high, however to our knowledge this 

is the first time ASE has been tested in lung. Our estimate of 14-25% and 14-26% of the 5,462 and 

5,946 genes tested in brain caudal lobe and brain cerebellum respectively are much lower than the 

estimate of 89% by Crowley et al (Crowley et al. 2015) in whole mouse brain, however they had 

an extremely powerful design testing greater than 12,000 genes in 96 mice from all possible 

pairwise crosses between the three divergent inbred lines. The power of our study comes from 

testing many tissues. Interestingly, a recent study undertaken by the GTEx Consortium (2015), 

compared between-sample and between-tissue sharing of ASE in humans with overall similarity of 

gene expression. They found that gene expression levels were determined by tissue, and that 

individuals clustered by tissue. However, allelic ratios have a higher correlation among tissues 

from the same individuals than among individuals for the same tissue. This suggests that ASE is 

primarily determined by the individual’s genome. Therefore we have likely underestimated the 

total number of genes displaying ASE in the cattle population, and that further testing in more 

individuals (currently underway) will uncover more genes that undergo cis-regulation. 

This study demonstrates that ASE is pervasive in cattle,  supporting the argument by Pai et al. 

(2015) that much of the variation seen in quantitative traits is likely due to these changes in 

expression, and that these genes are under cis-regulatory control. Attention must now turn to the 

identification of these cis-regulatory variants. The identification of causative regulatory variants 

could then be used in livestock genomic selection programs leading to more accurate genomic 

breeding values and increases in the rate of genetic gain for economically important traits. 

 

 
Figure 1. Reference allele frequency distributions for each tissue and WBC. 
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Table 1. Allele specific expression analysis results 

Tissue # SNP 

tested 

# ASE SNP 

(% tested) 

# Genes 

tested 

# Genes w/ 

>1 SNP 

tested 

# Genes w/ 

ASE SNP 

(% tested) 

# Genes w/ >1 

ASE SNP 

(% tested) 

Adrenal 14,698 2,636 (18%) 5,462 3134 1,635 (30%) 536 (17%) 

Brain caudal lobe 16,594 2,419 (15%) 5,946 3483 1,478 (25%) 494 (14%) 

Brain cerebellum 15,460 2,324 (15%) 5,650 3269 1,470 (26%) 466 (14%) 

Heart 9,545 2,919 (31%) 3,999 2118 1,869 (47%) 618 (29%) 

Intestinal lymph 11,719 3,554 (30%) 4,684 2542 2,391 (51%) 782 (31%) 

Kidney 16,616 7,442 (45%) 5,925 3457 3,958 (67%) 1,751 (51%) 

Leg Muscle 11,401 2,006 (18%) 4,455 2467 1,394 (31%) 402 (16%) 

Liver 12,507 6,773 (54%) 4,887 2715 3,574 (73%) 1,612 (59%) 

Lung 14,238 9,216 (65%) 5,419 3032 4,448 (82%) 2,157 (71%) 

Mammary 8,161 1,543 (19%) 3,566 1838 1,100 (31%) 302 (16%) 

Ovary 15,108 2,043 (14%) 5,588 3229 1,407 (25%) 399 (12%) 

Skin black 16,255 4,507 (28%) 5,870 3386 2,776 (47%) 999 (30%) 

Skin white 17,087 3,533 (21%) 6,004 3531 2,156 (36%) 766 (22%) 

Spleen 14,495 2,066 (14%) 5,317 3071 1,448 (27%) 382 (12%) 

Thymus 9,781 986 (10%) 3,981 2159 634 (16%) 182 (8%) 

Thyroid 18,181 3,279 (18%) 6,196 3703 2,013 (32%) 688 (19%) 

Tongue 12,744 1,671 (13%) 4,850 2718 1,177 (24%) 327 (12%) 

White blood cells 12,768 2,662 (21%) 4,680 2690 1,543 (33%) 552 (21%) 

Total 25,251 19,082 (76%) 7,985 4856 7,067 (89%) 3,570 (74%) 
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SUMMARY 

Long non-coding RNA (lncRNA) are common elements in vertebrates and other lesser 

organisms that possess numerous regulatory and cellular roles. Long ncRNA are well 

characterized in humans and mice, however in other species, there is comparatively little 

information of these elements. Identifying lncRNA in bovine could aid in identifying additional 

sites in the genome where mutations are likely to contribute to variation in complex traits along 

with understanding the evolutionary importance and constraints of these transcripts. This is 

important in bovine, since genomic predictions are increasingly used for genetic improvement of 

milk and meat production. We address the main challenge in identifying lncRNA, namely 

distinguishing lncRNA transcripts from unannotated genes, by developing a strict lncRNA 

filtering pipeline. Our aim was to identify and annotate novel lncRNA transcripts in the bovine 

genome captured from RNA Sequencing (RNA-Seq) data across 18 tissues, sampled in triplicate. 

We find 9,886 transcripts passed strict filtering criteria and show moderate to high expression. 

Further we find many unique lncRNA transcripts are downregulated in a tissue specific manner. 

This study also identified a large number of novel unknown transcripts in the bovine genome, 

many having high protein coding potential, indicating a clear need for better annotations of protein 

coding genes in the bovine genome.  

INTRODUCTION 

The mammalian genome is highly complex, with protein coding genes considered some of the 

most important elements within the genome, however these only account for only a small portion 

of the entire transcriptome. It has recently been revealed that about 1-2% of the human genome is 

transcribed to messenger RNA (mRNA) (Frith et al. 2005) and up to 50% of the transcribed 

genome does not align to known protein coding regions (Hung and Chang. 2010). It is 

hypothesized that these non-protein coding RNA can either be transcriptional artifacts due to RNA 

Polymerase II errors in elongation (Van Bakel et al. 2010) or non-coding RNA (Kapranov et al. 

2010). Evidence is accumulating for the later hypothesis, with studies across a range of species, 

including humans (Cabili et al. 2011), mouse (Dinger et al. 2008) and bovine (Qu and Adelson. 

2012, Weikard et al. 2013) finding many novel ncRNA across a range of tissues. 

Recent advances in transcriptome sequencing has allowed for the discovery of a new class of 

non-coding RNA transcripts that are surprisingly long, known as long noncoding RNA (lncRNA) 

(Marques and Ponting. 2014).  Long noncoding RNA are classified as having an arbitrarily defined 

length of more than 200 nucleotides with weak or no protein coding potential and generally have 

lower expression levels than mRNA (Marques and Ponting. 2014). Functions of lncRNA are quite 

diverse, but some of the better studied lncRNA have described functions in regulating and guiding 

epigenetic marks and gene expression. These elements are coded almost anywhere in the genome 

including intergenic regions (also known as long intergenic ncRNA (Qu and Adelson. 2012). One 

of the best studied examples is Xist, a gene responsible for facilitation of imprinting the X 

chromosome that is in fact a lncRNA (Clemson et al. 1996).  

While there have been a few studies in bovine isolating novel lncRNA (Weikard et al. 2013, 
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Billerey et al. 2014) there is still comparatively little information when compared to the repertoire 

of lncRNA found in human and mouse genomes. In this study we describe a comprehensive 

catalogue of putative bovine lncRNA expressed in 18 tissues and located within intergenic regions. 

Given the main challenge in identifying lncRNA is distinguishing them against transcripts from 

unannotated genes, we used stringent filtering methods to discriminate potentially protein coding 

RNA from ncRNA, acknowledging that the stringent filters may discard some true lncRNAs. We 

also compared our putative lncRNA to catalogues from mouse and human, to gain insights into the 

evolution of lncRNA across species. This information is of particular value since mutations that 

might be found within these lncRNA elements can potentially contribute to variations in complex 

traits.  

 

MATERIALS AND METHODS 

RNA extraction, tissue sampling, sequencing and alignment. The tissues used in this study 

include: adrenal gland, black skin, white blood cells, caudal lobe of brain, brain cerebellum, heart, 

kidney, leg muscle (semimembranosus), liver, lung, intestinal lymph node, mammary gland, 

ovary, spleen, thymus, thyroid, tongue and white skin.  

The quality control, filtration, read alignment to the reference genome and generation of the 

SAM files for the 18 tissue samples were performed as described in another study (Chamberlain et 

al. 2014). 

Finding intergenic long noncoding RNA. We used a Cufflinks/Cuffmerge/Cuffcompare 

pipeline to assemble transcripts for all three technical replicates in each tissue sample to the 

Ensemble reference gene set release 75. Entries that had a class code of either “u”, (unknown 

intergenic transcript), or “x”, (exonic overlap with the reference genome but on the opposite 

strand) were extracted and kept for further analysis. Similar to (Weikard et al. 2013) we used 

Cuffcompare to compare our transcripts to those in the NCBI iGenomes repository to filter out 

transcript with protein sequences, giving us a total of 47,117 transcripts with unknown 

annotations. We used the UCSC utility twoBitTofa to obtain the nucleotide sequences for the 

transcripts.  

Long non-coding RNA filtering pipeline. To find transcripts most likely to be noncoding 

RNA transcripts, we developed a 3 stage pipeline to filter out the transcripts that had a high chance 

of having protein coding potential. 

Stage 1. ORF Analysis. getorf from the EMBOSS software package was used to find all 

possible open reading frames (ORF) in all directions of the transcript. We performed a blastp 

search on all ORF sequences to determined possible protein coding domains using an E-value of 

1e-06 as cut-off. If no significant sequence matches were determined then the transcript was 

considered to be a potential lncRNA.  

Stage 2. Blastx. We determined if our transcripts had any significant matches with protein 

sequences by using the tool blastx. An E-value of 1e-06 was used as cut-off. Only transcripts that 

did not show any significant matches with known protein coding sequences were considered.  

Stage 3. CPC Tool. The third stage used the tool Coding Potential Calculator (CPC) which 

predicts the coding and noncoding potential of a transcript. We selected for transcripts as 

potentially noncoding if they have a score of < -0.5. 

Read counts, filtering of low read counts and differential expression analysis. Read counts 

were obtained using the tool HTSeq and was run with default parameters only specifying for non-

stranded (--stranded=no) and union mode (--mode=union) to get the counts matrix for each 

unkown transcript across all tissues and replicates. The final counts matrix file was used as input 

for the tool EdgeR for normalization and for filtering transcripts that had very low read counts 

(read count <25 across all three replicates for each tissue).  

Differential analysis was carried out by performing a t-test for each tissue with all the other 
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tissue samples. The standard error was calculated by subtracting the mean across all tissue with the 

mean for each tissue. If the t-test had a P-value of <0.05 and a positive standard error, then the 

transcript was considered to be upregulated. If the t-test had a P-value <0.05 and a negative 

standard error then that transcript was considered to be downregulated. All other transcripts were 

considered to have no differential expression. 

Homology analysis with ncRNA in human and mouse. Human and mouse ncRNA were 

obtained from; GENCODE v7, NONCODE v4 and lncRNAdb databases. A blastn search was 

performed using an E-value of 1e-06 to blast the unknown transcripts with the human or mouse 

databases. From this we extracted the transcripts that had significant matches with a known 

lncRNA. 

 

RESULTS AND DISCUSSION 

After transcript assembly and annotation of RNA-Seq reads a total of 47,117 transcripts that 

aligned to the genome but did not align to protein coding genes or had protein coding annotations 

were found. These assembled transcripts were passed through the filtering pipeline to determine 

coding or noncoding potential. We defined putative lncRNA only if the transcripts passed all 3 

stages of the filtering pipeline (methods) and had moderate to high expression levels after filtering 

for low read counts with EdgeR. A total of 9,886 putative lncRNA passed all three filters and were 

considered for further analysis. 

We find that tissues involved in similar organ functions share very similar expression of 

putative lncRNA. These correlations are lower that what we find in the protein coding genes from 

the same datasets (Chamberlain et al. 2014). The expression patterns of our putative lncRNA show 

that 37% are downregulated, while 4% are upregulated and 59% show no differential expression 

(Figure 1). 

The vast majority of the lncRNA are found to be within intergenic regions of the genome, 

however we do find a total of 1,501 lncRNA (about 15% of total lncRNA) that are located either 

near the 5’ or 3’ end of protein coding genes or are located within 5 kilobases upstream or 

downstream of protein coding genes. Due to the lack of stranded information, it is difficult to 

attempt to identify independently coded transcripts that are coded in the opposite direction of the 

neighbouring gene. Therefore we measured the concordance of expression between the lncRNA 

transcript and the neighbouring protein coding gene. A Pearson’s and Spearman’s rank correlation 

analysis showed that many lncRNA had high correlations with their neighbouring genes, and 

therefore could be unannotated exons, however a significant minority show no correlations, these 

may indicate independently coded transcripts.  

Comparative analysis with human and mouse lncRNA. To identify putative lncRNA that 

show sequence conservation we performed a blastn search between our lncRNA and the lncRNA 

in both human and mouse lncRNA databases. Of the 9,886 lncRNA, only 289 show significant 

sequence similarities with known human lncRNA and 119 show significant sequence similarities 

with known mouse lncRNA. Further, only 36 putative lncRNA show sequence similarities with 

both a human and mouse lncRNA. Long ncRNA were also compared to other bovine lncRNA 

found in similar studies using either pigmented or non-pigmented skin cells (Weikard et al. 2013) 

or bovine muscle cells (Billerey et al. 2014). Of the catalogue of lncRNA in the skin cells we find 

848 (out of 4,948) lncRNA that overlap with our catalogue of lncRNA. Of the 584 lncRNA found 

in muscle cells, we find a total of 129 that overlap with our lncRNA. Due to the fact that lncRNA 

are tissue specific and also can be expressed in different developmental stages we acknowledge 

that these catalogues provide valuable information of potential lncRNA in the bovine genome. 

Further, studying these regions will assist in finding new classes of genes that, while lacking the 

ability to code for proteins, can have mutations that could potentially affect complex dairy traits of 

interest, such as milk volume, fat percent, protein percent and mammary system. 
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Figure 1. Percent of lncRNA that are upregulated, downregulated or not differentially 

expressed. Red bars indicate percent of downregulated lncRNA for each tissue. Blue bars indicate 

percent of upregulated lncRNA for each tissue. Green bars indicate no differential expression. 
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SUMMARY 

With unprecedented increase in next generation sequencing (NGS) technologies, there has 

been a persistent interest on transcript profiles of long noncoding RNAs (lncRNAs) and protein-

coding genes forming an interaction network. Apart from protein-protein interaction (PPI), gene 

interaction models such as Weighted Gene Co-expression Network Analysis are used to 

functionally annotate lncRNAs in identifying their potential disease associations. To address this, 

studies have led to characterizing transcript structures and understanding expression profiles 

mediating regulatory roles. In the current analysis, we show how a lncRNA- cyp2c91 contributes 

to the transcriptional regulation localized to cytoplasm thereby making refractory environment for 

transcription.  By applying co-expression network methods and pathway analyses on genes related 

to a disease such as obesity from F2 pig model, we show that we can gain deeper insight in 

biological processes such as the perturbances in immune system, and get a better understanding of 

the systems biology of diseases. We believe this study has implications for finding prognostic and 

diagnostic markers for obesity and immune related diseases. 

 

INTRODUCTION 

With unprecedented increase in next generation sequencing (NGS) technologies, there has 

been a persistent interest on transcript profiles of long noncoding RNAs (lncRNAs) and protein-

coding genes forming an interaction network. Apart from protein-protein interaction (PPI), gene 

interaction models such as Weighted Gene Co-expression Network Analysis (WGCNA; Xue et al., 

2013) are used to functionally annotate lncRNAs in identifying their potential disease associations 

(Cogill and Wang, 2014). To address this, studies have led to characterizing transcript structures 

and understanding expression profiles mediating regulatory roles and comparing them with the 

ENCODE project (The ENCODE project. 2014). Recent reports show how lncRNAs contribute 

towards regulatory interactions with their non-coding peers like miRNAs (Jalali  et al., 2013). 

Whether or not lncRNA-protein networks restrain interactions is little known and not detailed. 

How such regulatory interactions between classes of lncRNAs and proteins would have a 

significant influence on the organism remains a challenge.  

Earlier, we have shown three regulatory genes, viz. CCR1, MSR1 and SPI1 associated with 

diseases like obesity and osteoporosis using gene network algorithms WGCNA and Lemon-Tree 

(Kogelman et al., 2014a) applied to NGS-based RNAseq datasets from porcine model for obesity. 

These clusters of highly co-expressed genes were ranked as highly significant based on their 

association with obesity-related phenotypes in a F2 pig model (Kogelman et al 2014b). With a 

wide range of biological processes effectively used as regulatory molecules, we anticipate (a) if the 

coexpressed genes have interacting partners with any long noncoding RNAs (lncRNA), (b) if so, 

whether or not they affect the coexpression, consequently further changing the networks and 

influencing the organismal phenotype or disease outcomes, or (c) if not, what would be the 

outcome of such lncRNA-dependent transcription. From a putative interaction network, we have 

established functional classes based on several different methods, explicitly focusing on the edge-

betweeness, pearson coefficient of overlapping genes, two nearest non-overlapping genes on either 

side, presence of subcellular location signals (not shown). These resilient methods would 

distinguish probability of lncRNA to show association/disassociation paradigm, RNA binding 
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protein-lncRNA interactivity and importantly disease association, if any.  

 

MATERIALS AND METHODS 

In the current study, we made a human concordant network from our previous WGCNA result 

from an animal model (see Figure 1; F2 pigs, Kogelman et al., 2014b) and found that 340 of 540 

porcine genes have orthologue peers in humans (Figure 2, panel a). The absence of orthologs in 

human is in agreement with the homology data available from the Pig Analysis Database (PAD) 

which specifies that about 73% of the sequences are covered by the both genomes (See PAD web 

reference). From the networks and GenBank annotation, we observed that cyp2c91, a lncRNA 

interacts with a host of regulatory genes. The betweenness centrality of cyp2c91 with the three 

regulator genes linked to obesity (CCR1, MSR1 and SPI1) was found to be consistent with the 

association pattern (Figure 2, panel b). With the hypothesis that lncRNA-protein interactions play 

an important role in regulating post-transcriptional changes and subsequent localization of the 

transcript, we used RNA-protein interaction predictor (RPI-pred) to predict whether or not the 

proteins encoded by these genes and the RNA form interaction pairs (Suresh et al. 2015). 

Considering the fact that these small molecules enter the nucleus without regulation, we asked if 

any gene products are localized extracellular to nucleus.  

 

RESULTS AND DISCUSSION 

We observed that among the three regulator genes, CCR1 was found to be localized in 

cytoplasm (Figure 2, panel c).  Encouraged by the outcome that the three have a plausible role of 

interaction with cyp2c91, we made a reliable interaction network with the mean disassociation 

based on the betweeness centrality (Figure 2, panel d). We found that MSR1 and CCR1 are found 

to be interacting with each other while SPI1 was a lone gene without an interaction pair. 

Nonetheless, the lncRNA-protein interactions were extended with the CCR1-cyp2c91 association 

mapped from network genes. The study suggests two ways forward. First, the fold change (log 2 

expression) can be attributed to lncRNA-dependent transcription. Second, CCR1-cyp2c91 

association is significant when compared to MSR1-cyp2c91 and SPI1-cyp2c91 (indicative of p-

values, not shown) where the genes are regulatory in nature forming diseased network. The three 

regulatory genes are associated with obesity and immune system, possibly linking them to Lupus. 

This is evident by the fact that several of the genes present in the WGCNA modules of Kogelman 

et al., 2014 (TNIP1, GPSM3, TFEC, TES, KCP, IRF5, TNPO3, ELF1, ITGAM and TNXB, KLF6, 

AKR1E2) are related to immune system and systemic lupus erythematosus (SLE). This might 

allow us to use this network as a model for immune response or obesity.   

The genome is lengthily transcribed in eukaryotes and it has been known that many transcripts 

have larger proportion of noncoding components. Although about 66-73% of the porcine genome 

(including ESTs, genes etc.) is conserved across humans, a considerable set of genes regulate 

interactions with lncRNAs. Further, a range of transcribed regions might tend to be regulatory and 

indicative of enhancing non-functional activity. Moving to a broader spectrum of calling them as 

junk, we asked for evidences on their regulatory potential based on their association with protein-

coding genes. Consistent with the interaction networks from porcine model for obesity, subcellular 

localization of the products of the three protein-coding genes revealed that two are nuclear while 

one, CCR1 was found to be in cytoplasm. This is again in agreement with the fact that the 

subcellular fractions of lncRNA differ significantly from each other, with a majority enriched in 

the nucleus, cytoplasm and ribosomes. These results show that lncRNA-protein interactions are 

self-regulating and yet they are dependent on organellar specificity. Our exploratory analysis 

suggests that CCR1-cyp2c91 contributes to the transcriptional regulation localized to cytoplasm 

thereby making refractory environment for transcription.  By applying co-expression network 

methods and pathway analyses on genes related to a disease such as obesity and systemic lupus 
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erythamatosis, we show that we can gain deeper insight in biological processes such as the 

perturbances in immune system, and get a better understanding of the systems biology of diseases.  

This stresses the possible need of finding genes linked to lncRNA-protein networks and further use 

them as potential diagnostic markers in animal and human diseases. 

 

 
 

Figure 1: The GWAS data from Kogelman et al. were checked for candidacy across the GenBank. 

After obtaining the bona fide accessions in humans, the sequences were checked using RPI-Pred and 

protein annotation. The betweenness centrality and closeness centrality values for the nodes were then 

computed and visualized using Cytoscape. The centrality values are computed for those that do not 

contain multiple edges. They are the normalized values for each gene/node by dividing the number of 

pairs of nodes existing in the network. The range would be between 0 to 1 with the condensed values in 

exponential form as calculated by cytoscape (centrality of vertex). We considered the candidate 

lncRNA linked to disease after reference mapping and linkage to disease while integrating it into the 

protein interaction network.  
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Figure 2: (a) The 504 genes from WGCNA across different modules linked to diseases not 

limited to obesity and immune response.  (b) Representative lncRNA cyp2c91 gene (in 

yellow) shown to be interacting with three regulatory protein-coding genes (c) Subcellar 

location of the genes associated in the network and (d) the network topology showing the 

profiled expression across the regulatory genes associated with cyp2c91. This is indicative of 

global protein-RNA interaction data. 
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SUMMARY 

Gene expression analysis can aid in prioritising regions or classes of variants for genomic 

prediction and they increase our understanding of quantitative traits. The number of reads from 

RNA sequencing that align to a gene can be used to quantify gene expression.  We sampled liver 

and muscle tissues of 150 lambs at slaughter. Their dams had been managed to high, medium, and 

low body condition scores (BCS) during mid-to-late pregnancy and the lambs were fed three 

different finishing diets. Differential expression of genes (DEG) was investigated contrasting 

tissue, BCS, lamb diets, other treatment differences, as well as high and low lamb carcass eye 

muscle width (CEMW). A large number of DEG were identified between tissues, but only the low 

versus high BCS comparison resulted in DEG for treatments. DEG were also found when we 

contrasted high and low CEMW. A strong trend toward down regulation was observed in all tests, 

except in BCS where all DEG were overexpressed in fatter ewes. 

INTRODUCTION 

Gene expression refers to the production of RNA transcripts which ultimately result in a gene 

product. Genes may be expressed only at certain time points in the animal life cycle and 

expression may be tissue specific.  Linking gene expression to measured phenotypes or even to 

management strategies may help us optimise the production system. Using expression analysis to 

prioritise candidate genes together with marker or DNA sequence data could ultimately increase 

genomic prediction accuracies for key traits. 

The rate at which genes are expressed can be investigated by measuring the abundance of RNA 

transcripts in a tissue. Sequencing RNA is an attractive option for this analysis because the number 

of reads that align to an annotated gene is a reliable measure of abundance (Mortazavi et al. 2008). 

The analysis of RNA sequence data has a number of uses. At the most basic level, it results in a set 

of genes expressed in the starting material (i.e. tissue, cell line, etc).  Additionally, contrasts can be 

performed within and across tissues, depending on the variety of tissues sampled or the number of 

treatments or other phenotypes measured in a study (e.g. liver versus muscle, high versus low body 

weight). Contrasts across animals may result in sets of differentially expressed genes (DEG), 

whose degree of difference can be measured via statistical tests and by the Log2 fold change 

between classes.   

Here we present preliminary results from a differential expression analysis using RNA 

sequence data on liver and muscle tissues of 150 lambs. Our initial aim was to investigate whether 

dam body condition score (BCS) during gestation and lamb finishing diets affect gene expression, 

potentially linking these treatments to genetics.  

MATERIALS AND METHODS 

The experimental design involved 648 pregnant ewes (Merino x Border Leicester and 

Maternal/Coopworth Composites) that resulted from artificial insemination to 5 Polled Dorset 

(PD) and 4 White Suffolk (WS) sires (that had been selected for high, medium, or low lean meat 

yield genomic breeding values). The core design was based on 3 BCS - ewe live-weight change - 
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nutritional treatments during gestation that were targeted in ewes reaching BCS2.5, BCS3.0 and 

BCS3.5 by lambing.  The ewe BCS was managed to a flock average of BCS3.0 from prior to 

artificial insemination and until ultrasound scanning at day 50 to confirm pregnancy. Following 

scanning, ewes were distributed amongst 18 management cells and nutrition was managed by 

allocation of feed-on-offer during the last 2 trimesters to achieve the condition score targets. Ewes 

were maintained within one management group and were given ad libitum access to pasture after 

lambing to weaning. 

Lambs were weaned at 12-13 weeks of age. Male lambs were backgrounded in pasture prior to 

the finishing with 3 different feedlot diets: 1) high protein, moderate energy, 2) high energy, 

moderate protein, and 3) high protein and energy. All male progeny (N=436) were slaughtered in 

three blocks at a commercial abattoir.  Full-bone out was performed on 100 lambs, with a partial 

bone out on the remainder (Pearce et al. 2010). Additionally, a large number or carcass phenotypes 

were recorded. Here we will present early results on only eye muscle width (CEMW). 

Liver and loin muscle tissue samples from slaughter lambs were taken within 10 minutes of 

death to determine the influence of the experimental treatments on aspects of meat quality, lean 

meat yield, and gene expression. Samples were flash frozen in liquid nitrogen and stored at -80ºC. 

150 lambs (100 full and 50 partial bone outs) randomly selected across all dam lamb nutritional 

treatments, birth types, breeds and sires, were selected for RNA sequencing. Frozen muscle and 

liver tissues were ground using the Genogrinder2010 (SPEX). Ground tissue was homogenised in 

Trizol® (Life Technologies™) and RNA extracted using the Trizol® Plus RNA extraction kit 

(Life Technologies™). Individually barcoded strand specific RNA sequence libraries were 

produced using the SureSelect Strand Specific RNA Library Prep Kit (Agilent Technologies). The 

300 libraries were combined into one of four pools and 120 bp paired-end sequencing performed 

on a HiSeq2000 genome analyser (Illumina Inc) with the aim of producing 40 million paired reads 

per library. Fastq files were called using CASAVA v1.8 (Illumina Inc). 

Fastq files were quality controlled using quadtrim (https://bitbucket.org/arobinson/quadtrim) as 

follows.  Low quality bases were trimmed from read ends (phred score < 20).  Reads were 

removed if they: failed the chastity filter, contained more than three Ns, had a mean base quality 

score of <20, or were < 50% of original read length.  Filtered reads were aligned to the 

SheepOAR3.1 assembly using the Ensembl v78 SheepOAR3.1 (Jiang et al. 2014) annotation file 

containing 25,202 genes using Tophat2 (Trapnell et al. 2012).  A gene by tissue count matrix 

containing all animal results was generated using the python package HTSeq (Anders et al. 2015).  

The R program DESeq (Anders and Huber 2010) was used for DEG analysis of tissues, traits and 

treatments, evaluating whether read counts per gene were significantly different when testing 

multiple samples belonging to two classes (e.g. liver and muscle) based on a negative binomial 

regression test.  Counts were normalised for mean read depth per sample.  The model fitted 

contrasted two classes across both tissues and within liver or muscle.  The following pairwise 

contrasts were tested: liver and muscle across all samples, liver and muscle in PD and WS sire 

groups, sire breed within either tissue, 3 BCS levels of dam at gestation, 3 lamb finishing diets, 3 

kill days, 3 sire LMY ASBVs, single versus multiple births, and extremes of CEMW (top 10% 

versus bottom 10%).  Genes were reported as DE if their false discovery rate percentage (FDR%) 

was below 40% at a p value of 0.001 (FDR%=(25202*0.001[number of DEG]
-1

)*100). 

RESULTS AND DISCUSSION 

An average of 70 million reads (range 19-333 million) were generated for each of 298 samples 

after filtering for chastity, which is substantially more than the target 40 million. Quality control 

reduced the reads to 87% of which a mean of 85% of paired reads (range 78-90%) were aligned to 

the assembly, which was comparable to other sheep studies (Chen et al. 2015).  

The normalised counts matrix was then used to test contrasts.  The comparison of liver and 
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muscle across all samples yielded 10,116 DEG, which was the largest number in the study (Table 

1).  It is expected that different genes would be expressed in discrete tissue types.  The animals 

were approximately balanced between PD and WS sire breeds.  Analysis of liver versus muscle 

contrasts within PD and WS revealed 7,990 and 7,060 DEG in each sire breed group, respectively. 

The DEG overlap between the sire groups was 6,559, indicating that in smaller and independent 

samples the same genes are expressed.  Single breed analysis resulted in negligible additional 

DEG when compared with the analysis across all animals (data not shown).  Contrasts of sire 

breed resulted in a non-significant small number of DEG. The FDR% of liver versus muscle 

comparisons was always < 1%.  Filtering DEG by increasing Log2 fold change stringency 

gradually reduced the number of significant genes.  However, a large number resulted in Log2 fold 

changes of => 10 (e.g. all samples liver vs muscle, 621).  The majority of these DEGs exhibited no 

expression in one tissue and strong expression in the other.  This may be suspicious with small 

sample size, but in our case of testing 149 lambs it is unlikely that all libraries would miss true 

transcripts in these genes.  DEG in muscle were much more likely to be down regulated (~80-

90%) than up regulated, and the percentage of down regulation decreased slightly with increasing 

Log2 fold changes before plateauing  at ~80% (Figure 1). 

Table 1. Number of DEGs at progressive Log2 Fold Change thresholds and FDR% at Log2 

Fold threshold 1. BCS2.5vs3.5 of ewes refers to low and high body condition during pregnancy. 

LIVER vs MUSCLE FDR%  Absolute Log2 Fold Change 

1 2 3 4 5 6 7 8 9 10+ 

All Samples 0.3 10116 6553 3751 2350 1633 1205 972 813 683 621 

Polled Dorset 0.3 7990 5565 3336 2156 1506 1151 929 784 683 627 

White Suffolk 0.4 7060 5820 3443 2186 1528 1155 933 786 690 627 

Overlap PD-WS - 6559 

TREAMENTS FDR% Absolute Log2 Fold Change 

TEST WITHIN 

LIVER 1 2 3 4 5 6 7 8 9 10+ 

BCS2.5vs3.5 of ewes 37.6 67 11 2 1 1 1 1 1 1 1 

TRAITS FDR% Absolute Log2 Fold Change 

BOTH TISSUES 1 2 3 4 5 6 7 8 9 10+ 

CEMW-

top10vsbot10% 4.1 616 481 67 21 8 6 6 6 6 6 

LIVER 

CEMW-

top10vsbot10% 7.4 340 241 63 19 6 5 5 5 5 5 

The contrasts across treatments detected fewer DEG.  In fact, no significant DEGs were found 

for treatments in muscle.  The negative control of kill day also revealed no effect on expression 

levels, which increases the likelihood that systematic problems during slaughter and related 

processing were avoided.  The only treatment that exhibited DEG was BCS, where the contrast of 

low (2.5) versus high (3.5) BCS of the ewe resulted in 67 significant genes in liver of the lambs 

(Table 1).  Interestingly, all DEG were up regulated in BCS3.5 when compared to BCS2.5, 

potentially linking an increase in body condition of ewes during gestation to up regulation of genes 

in their offspring at slaughter.  This is different to all other expression directions observed in this 

study. 

The contrast in extreme lamb CEMW phenotypes resulted in between 616 and 340 DEG across 

tissues and within liver, respectively (Table 1).  The number of DEGs met our FDR% threshold of 

40% up to and including Log2 fold change 3, which was a stronger signal than for ewe body 
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condition disparity.  In the CEMW tests, all DEG were down regulated, which indicates that a 

reduction in trait phenotype could be shown to be associated with down regulation of gene 

expression (Figure 1). 

Figure 1.  Proportion of down regulated genes at progressing thresholds of Log2 fold change for all 

significant contrasts, where All is all samples, BCS is body condition score, and CEMW are eye muscle 

width, respectively.  Only points with FDR<40% shown. 

KEGG and GO analysis of DEG identified two major gene pathway groups related to 

fat/cholesterol (liver) and muscle fibre. Several genes (APOA-1, -2, -4, -5, APOC3, and 

APOF/CAV3) were involved in cellular cholesterol and phospholipid efflux, homeostasis and 

transport (Bonferroni P < 5.5×10
-5

), whereas 5 genes (ACT, ACTG1, MYL, BMP10, and CAV3) 

were weakly linked to skeletal muscle differentiation (Bonferroni P < 8.8×10
-1

). The DEG 

identified when contrasting dam BCS contained candidate genes involved in stress response and 

embryonic development (e.g. KLHDC10, BMP4, MAPKAPK3, ABL1) 

The preliminary analysis of this large RNA sequencing dataset has revealed widespread DE of 

genes between tissues.  It has also connected ewe body condition during gestation to liver gene 

expression in their lambs.  Additionally, differences in CEMW were shown to be mirrored in gene 

expression patterns.  Further analyses on other phenotypic traits and allele specific expression will 

be performed.  The outcomes of this study will contribute towards more precise annotation of the 

sheep reference genome and it will aid in prioritising genetic markers for genomic prediction. 
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SUMMARY 

The last five years has witnessed the completion of reference genome projects for each of the 

major livestock species, along with the application of high throughput SNP genotyping to fast 

track gene discovery and genomic prediction. This paper explores one possible new direction in 

genomics and its possible impact on animal science. An international project has been initiated 

that aims to identify the genomic regions responsible for gene regulation, thereby providing 

functional annotation of animal genomes (FAANG). This seeks to increase our ability to interpret 

variation in genome sequence and predict the resulting phenotypic consequence. This has large 

implications for animal science and in particular animal breeding, given a key objective of 

genomic prediction is to use molecular data (currently SNP) to predict genetic merit. To 

successfully annotate the regulatory elements in genomic sequence, the FAANG Consortium has 

been created to provide coordination and standardisation in data collection, quality control and 

analysis. Aspects of the consortium are described, along with information on Australia’s current 

and future contributions. 

THE GENOME TO PHENOME CHALLENGE 

A central goal in biological science involves understanding complex systems, so that accurate 

predictions about the behaviour of systems can be made. Predictions might involve the 

susceptibility of an individual to disease or the treatment response of a patient to the application of 

a particular drug. In the case of livestock a key goal involves predicting variation in production 

traits, particularly those that are economically important but currently hard to measure. Animals 

are exceedingly complex, which makes the task of predicting phenotype challenging. The last 

decade has seen tremendous progress, whereby quantitative genetics theory combined with 

technical advances in SNP genotyping have allowed statistic models to effectively predict genetic 

merit. The accuracy of these predictions has been increased through use of dense SNP arrays, and 

by increasing the number of animals with both genotype and phenotype data in training 

populations. Further, reductions in sequencing cost have meant it is now feasible to collect the 

whole genome sequence of hundreds of animals. This is being used to improve genomic 

prediction, primarily through the utilisation of additional SNP. The availability of whole genome 

sequence, however, opens much richer opportunities given these datasets directly contain the 

sequence level differences that control phenotypic variation. Currently functional mutations are 

indistinguishable from a sea of neutral variation. These difficulties capture the essence of the 

genome to phenome challenge, which is to successfully interpret genome sequence to predict it’s 

consequence on phenotypic variation. 
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GENOME ANNOTATION 

To meaningfully tackle the genome to phenome challenge, a richly annotated reference 

genome sequence is required for each of the farm yard animal species. An important milestone on 

route to this objective was reached in 2014 with the completion of the draft reference genome 

assembly for sheep (Jiang et al. 2014). This completed the collection of available reference 

genomes for each of the major livestock production species that includes pig (Groenen et al. 

2012), cattle (Bovine Genome Sequencing and Analysis Consortium 2009), chicken (Burt 2005) 

and goat (Dong et al. 2013). While improvements to these assemblies are ongoing the task of 

annotating each genome has commenced. Annotation describes the process by which particular 

sequence characteristics and functional elements are identified in the genome. To date, the features 

annotated in detail extend only to variation (e.g. SNP and various repeat classes), protein coding 

genes (intron and exon location) and some aspects of gross sequence classification such as GC 

content. What is almost completely missing from animal genomes is the accurate identification 

and annotation of the gene regulatory machinery. The ENCODE project sought to rectify this in 

human by cataloging the full complement of gene transcripts, their isoforms and the hundreds of 

thousands of enhancers, transcription factor binding sites and promoter regions active across 

different cell types (ENCODE Project Consortium 2012). This large and costly international 

research effort has provided key advancements in our understanding of biology. For example, of 

the approximately 25,000 human protein coding genes only about 50% are expressed in any given 

cell type (Romanoski and Glass 2015). Further, it appears possible to identify the combinations of 

transcription factors responsible for directing the specialisation of precursor cells to differentiate 

into particular cell types. These fundamental observations represent the first steps towards a more 

sophisticated ability to understand how DNA sequence and gene regulation together serve to 

control complex traits. 

FUNCTIONAL ANNOTATION OF ANIMAL GENOMES (FAANG) 

Animal scientists with the shared goal of producing genome wide maps of functional elements 

held a planning workshop in January 2014 the Plant and Animal Genome Conference (PAG 

XXII). The meeting conceptualised the creation of a consortium to coordinate and execute the 

FAANG project. Subsequent discussion has defined the structure of the FAANG Consortium (i.e. 

working groups and their roles) and aspects of the FAANG Project (i.e. the operational plan for the 

science). Key aspects of both are described here, however additional considerations relating to the 

creation of a common data infrastructure, a centralised data analysis centre, pre-publication data 

release and the operational principles for participating scientists is available at the consortium 

website (http://www.animalgenome.org/community/FAANG/). In addition, the consortium 

recently published a white paper that describes the rationale for the science while providing details 

about the objectives (The FAANG Consortium 2015). It is important to note that any interested 

scientists are welcome to participate, and this can be initiated by signing up to the consortium on 

the website. 

SPECIES AND DATA TYPES 

Given the ENCODE project focussed on a single species (human) and cost in excess of $150 

million dollars, the livestock community recognised early that clear prioritisation was needed to 

design a project broadly in line with the vastly diminished financial resources likely available to 

animal scientists. This planning sought to take advantage of i) the declining cost of the sequencing 

and ii) key lessons from ENCODE relating to the choice of core data and tissue types for 

investigation. A prerequisite for inclusion in the FAANG project is the availability of a draft 

reference genome assembly of sufficient quality to serve as the template for annotation. At present, 

this means the project is confined to cattle, sheep, chicken and pig however additional species are 
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likely to be included as their genome assemblies improve (e.g. salmon, goat and horse). The 

consortium has also defined the following set of core assays to be deployed in each species: 

i) RNA Transcriptomics

Annotation requires detailed knowledge of the gene transcripts that are present within tissues, 

along with details of the transcriptional complexity many genes exhibit (e.g. tissue specific 

isoforms). RNA-sequencing will therefore be used to generate the transcriptome of each core 

tissue, from each species. 

ii) Histone Modification Marks

To map the genomic location of putative promoters, enhancers and transcription start sites (TSSs), 

CHiP-seq assays will be used that identify DNA sequences that bind to modified histones. The 

project has prioritised four histone modification marks found to be most informative by the 

ENCODE projects. These are: 

- H3K4me3 that correlates with promoters and transcription start sites 

- H3K27me3 which marks silenced genes 

- H3K27ac that indicates active regulatory elements 

- H3K4me1 which is associated with enhancers and enriched downstream of TTSs 

iii) Chromatin Accessibility and Architecture

To complement ii), methods are available that identify ‘protein bound’ DNA sequences due to 

chromatin accessibility and architecture. DNaseI footprinting was the first generation of such 

approaches, however more robust and sensitive approaches have been developed. One is ATAC-

seq, and will be used to identify open chromatin. Importantly, the results will be co-analysed with 

histone modification information to decipher the location of specific protein-DNA binding events 

to base-pair resolution. 

Beyond each of these core assays, the consortium has identified an additional set of data types 

considered non-essential but informative. These include DNA methylation, antibody dependant 

direct identification of transcription factor binding sites and genome conformation assays using 

methods such as Hi-C. Additional detail on all of these assays can be found elsewhere (Lane et al. 

2014; The Mouse ENCODE Consortium 2014; The FAANG Consortium 2015). 

AUSTRALIA’S CONTRIBUTION 

To initiate an Australian contribution into the international FAANG consortium, the co-authors 

have commenced informal discussions to i) collate existing projects that might be included and ii) 

define the objectives for future projects and strategise how they might be funded. Table 1 shows 

details of four projects in cattle and sheep, and in each case the focus is largely on transcriptomics. 

The first two are underway, the third is pending grant approval and the final project is funded and 

data generation is likely to commence in the last quarter of 2015. It is worthwhile noting very large 

surveys of genomic variation (SNP and indels), identified by whole genome sequencing projects, 

will be an important dataset used by the FAANG data analysis teams. In the case of cattle and 

sheep, these projects are being lead by Australian researchers (e.g. Daetwyler et al. 2014). 

Currently no data generation is planned for Bos indicus by non-Australian FAANG partners. 

Given their importance to the Australian cattle industry, the co-authors have prioritised Bos 

indicus as the focus for joint project applications. Interested parties who would like to become 

involved should contact any of the authors. 
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Table 1. FAANG compliant datasets currently being generated by Australian Scientists 

Species Breed Tissues (n) 1 Assays Status Contacts 

Cattle Holstein Various(38) RNA-seq, CHiP-seq Ongoing Hayes, Chamberlain 

Sheep Various GIT1 (7) RNA-seq of mRNA (coding only) Ongoing Dalrymple, Oddy 

Sheep Various GIT1 (7) RNA-seq of lncRNA, microRNA App. Pending Dalrymple, Oddy 

Sheep Rambouillet Various(20+) PacBio Iso-seq Funded Kijas, Cockett 
1The number of tissues collected is given in parenthesis, however in some cases only a subset will be used for 

data generation. GIT is an abbreviation for gastrointestinal tract. 

IMPACT FOR ANIMAL SCIENCE 

The completed FAANG project will provide a comprehensive data resource describing gene 

regulation and the genomic elements responsible. The manner in which this resource is used is 

likely to evolve over time. In the short term, the availability of a genome atlas of regulatory 

elements should greatly assist the interpretation of whole genome sequencing studies that aim to 

identify functional variants. Currently the hunt for functional variants is most often successful 

where a protein coding mutation is responsible, simply because the annotation of animal genomes 

is most complete for protein coding genes. Conversely regulatory mutations that underpin trait 

variation are far more difficult to identify, however they may be the most common. FAANG data 

should greatly assist in elucidating the consequence of variants that directly impact phenotype via 

alterations in gene action. In the field of genomic prediction, the outcomes from FAANG may 

propel the field beyond the use of SNP as the sole molecular input data-type for prediction. For 

example, it may be possible that transcription factor binding site networks, co-expressed gene sets 

or combinations of these along with SNP genotypes will become the input data that returns higher 

prediction accuracies than currently available for complex traits. In the short term FAANG data 

can be used to better annotate SNP and prioritise those likely to directly impact phenotypic 

variation for exploitation in reduced size SNP panels diagnostic of key traits. Regarding 

evolutionary questions, the availability of standardised data across at least four species (two 

ruminants, one monogastric mammal and one bird) should facilitate discoveries concerning those 

components of the gene regulatory machinery that are conserved and those that are lineage 

specific. We anticipate a completed FAANG project should provide a general resource for 

research into mammalian biology and variation in complex traits.    
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