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EFFECTS OF SELECTION AND DATA TRUNCATION ON ESTIMATES OF GENETIC 
PARAMETERS OBTAINED FITTING A SINGLE-STEP MODEL
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SUMMARY
Simulation was used to illustrate the effects of genomic selection on estimates of genetic parame-

ters, comparing values when genomic relationships were ignored with those obtained accounting for 
the joint relationship matrix of genotyped and non-genotyped individuals. Analyses were carried out 
with increasing truncation of earlier records, pedigrees and genotype information. Results showed that 
estimates from pedigree only analyses could be markedly biased downwards as more historical data 
is ignored, especially with strong genomic selection, causing predicted breeding values for selection 
candidates in the last generation to be under-dispersed.

INTRODUCTION
Increasingly genetic evaluation schemes for livestock incorporate genomic information on a 

routine basis. To date, the most common method is single-step genomic best linear unbiased prediction 
(ssGBLUP) fitting a breeding value model. This replaces the pedigree-based inverse of the numerator 
relationship matrix with its counterpart which combines pedigree and genomic information (Aguilar 
et al. 2010). It is a conceptually simple extension of the classic prediction procedures using pedigree 
based relationships only (PBLUP). Like PBLUP, ssGBLUP requires appropriate values of genetic 
parameters as input. It is common practice to estimate these fitting the same –  or at least a  very 
similar – model as used for prediction of breeding values (EBV). Reviewing the status of genomic 
evaluation, Misztal et al. (2020) advocated inclusion of genomic relationships when estimating genetic 
parameters to counteract the bias due to genomic selection. The authors also recommended frequent 
re-estimation as genetic variances appeared to change quicker with ssGBLUP.

However, to date, estimates are mostly obtained considering pedigree based relationships only, 
and little is known about the impact of doing so on the efficacy of genomic se le ction. This paper 
presents a simple simulation study exploring the effects of accounting for genomic relationships on 
estimates of genetic parameters and the resulting accuracy of ssGBLUP based selection.

MATERIAL AND METHODS
Data were simulated for a trait with heritability of 0.3 and for individuals from 13 generations 

using the software package AlphaSim, version 1.05 (Faux et al. 2016). The data set contained records 
for 2100 and 3150 animals, respectively in generations 1 to 7 and 8 to 13, who were the progeny of 
100 and 150 sires and 1000 and 1500 dams, respectively. To mimic a distribution over fixed effects 
subclasses, records were randomly assigned to 51 ‘contemporary groups’ per generation. Genotypes 
were constructed by sampling 10 chromosomes with 4,000 single nucleotide polymorphism (SNP) 
and 50 quantitative trait nucleotide (QTN) each, randomly allowing for some QTN to be included 
among the SNP and assuming no mutation or recombination. Marker information for all individuals 
in generations 10 to 13 was retained, disregarding earlier genomic information.

AlphaSim provides the option to carry out selection in individual generations externally by 
allowing the user to select the parents and mating allocations of the next generation (Faux et al. 2016). 
This was utilised to implement three alternative selection schemes, combining random selection with 
selection on EBV obtained using pedigree relationships only and EBV from ssGBLUP analyses.

* A joint venture of NSW Department of Primary Industries and University of New England,
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Figure 1. Distribution of heritability estimates over replicates (see text for definitions)

Discarding generations 1 to 4 as burn-in, parents of generations 5 to 7 were chosen at random. 1) For 
a genomic scenario (GSel) selection was on EBV from PBLUP in generations 8 to 10 and on EBV 
from ssGBLUP in generations 11 to 13. This was contrasted with 2) selection on EBV from PBLUP 
in generations 8 to 13 (PSel) and 3) random selection throughout (RSel). EBV were obtained from 
restricted maximum likelihood (REML) analyses at convergence. For generation i analyses utilised 
data and pedigree information from generation 6 to i (to select the parents of generation i + 1) and, 
where applicable, all marker information from generation 10 to i.

To investigate the effects of selection bias and truncation of data on estimates of genetic parameters, 
analyses were carried out successively ignoring information from earlier generations, i.e. considering 
records, pedigrees and marker counts from generations i to 13 only where i = 6,...,12. In the following, 
we refer to generation i as the ‘starting generation’ for an analysis. Accuracy and dispersion of EBV 
for selection candidates in generation 13 were measured as the correlation between and regression of 
true breeding values (TBV) on EBV. 50 replicates were carried out for each scenario.

REML analyses (for both the external selection steps and the data sets sampled) used either pedi-
gree based relationships only (PREML) or pedigree and genomic relationships jointly (ssGREML), 
fitting a simple animal model with contemporary group as the only fixed effects. Genomic relationship 
matrices (G) were built using Method 1 of Van Raden (2008), eliminating SNP with minor allele 
frequencies less than 2% and centering allele counts using mean frequencies in the data. These were 
aligned to their pedigree based counterparts (A22) following Vitezica et al. (2011).

RESULTS
The distribution of heritability estimates over replicates for the three selection strategies is 

summarised in Figure 1. In all cases, means – depicted by circles – agreed closely with the median 
values. As expected, for RSel, estimates from ssGREML and PREML did not differ noticeably and 
showed no bias, though some differences in variability across replicates were evident. For PSel and 
GSel, however, estimates depended strongly on the subset of data utilised. Loosely described, REML 
can account for selection bias, provided the information that selection decisions were based on is 
included in the analysis. Hence, for data starting at generations i = 6 or 7, no selection bias was evident 
for PSel, while corresponding estimates from PREML analyses for GSel were somewhat lower. The 
latter could be attributed to stronger selection in the last three generations for GSel, together with the 
fact that PREML ignored the genomic information which facilitated it. Conversely, as more and more 
of the generations subject to selection were omitted from the data (i.e. as the ‘starting generation’ 
increased), estimates reflected the reduced genetic variation available in what was implicitly treated 
as the base generation in the truncated data set.
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Figure 2. Distribution of variance component estimates over
replicates for GSel (see text for definitions)

As shown in Figure 2 for
GSel, the higher heritability esti-
mates from ssGREML analyses
were mainly due to higher ge-
netic variance estimates. Inter-
estingly, ssGREML estimates of
the residual variance did not de-
pend strongly on the amount of
data truncation, while values for
PREML exhibited distinct repar-
titioning of genetic into residual
variation.

The distributions of correla-
tions between TBV and EBV and
regressions of TBV on EBV for
selection candidates in generation 13 are shown in Figure 3. With the simulation involving strong 
selection and, for ssGREML, all individuals from generation 10 onward having genomic information, 
mean correlations for ssGREML analyses were very high and substantially exceeded those from 
PREML, in particular for GSel. For all three scenarios, values for PREML differed little between the 
subsets of data utilised. Robustness of such correlations, in particular for univariate analyses, is a well 
known phenomenon for PBLUP. In contrast, means for ssGREML and starting generations 11 and 
12 dropped, due to the omission of marker information in these analyses. Mean regressions of TBV 
on EBV were close to their expected value of unity for all ssGREML analyses. Corresponding values 
for PREML and PSel or GSel, however, showed increasing underdispersion of EBV (i.e. regression 
coefficients greater than unity) with increasing starting generation, mirroring the underestimates of 
genetic variation reported above.

DISCUSSION
Simulation studies on ssGREML have been presented by Cesarani et al. (2019) and Junqueira 

et al. (2022) but involved different set-ups and questions considered. Our study attempted to mimic, 
in a simplified s cheme, t he p rogression f rom r andom s election t o pedigree based and finally to 
genomic assisted selection which might occur in a livestock improvement programme. Clearly, results 
are at least partially specific to the scenario c onsidered. In particular, for analyses using genomic 
information all individuals in the relevant generations were assumed to be genotyped. This yielded 
substantial differences in estimates of variance components from PREML and ssGREML. Additional 
ssGREML analyses retaining only genotypes for a proportion of randomly selected animals reduced 
estimates closer to values from PREML (not shown).

Truncation of data and pedigrees redefines the base generation. This implies that estimates of the 
genetic variance reflect the amount of ‘usable’ genetic variation in that generation. Consequently, when
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Estimates from ssGREML were consistently higher than those from PREML for both PSel and 
GSel and, for analyses including data from unselected generations, were somewhat higher than 
the population value of 0.3 simulated. Including pedigree information for individuals in starting 
generation i, we would expect estimates to reflect t he genetic variance i n base g eneration i − 1. 
Presumably the overestimates might be attributed, to some extent at least, to the effects of pedigree 
truncation – and thus underestimates of inbreeding – resulting in imperfect alignment of G to A22. 
Limited additional analyses for GSel using data from generations 3 to 13 yielded a mean heritability 
estimate closer to 0.3, suggesting so.
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Figure 3. Distribution over replicates of correlations between true and predicted breeding 
values and regressions of true on predicted breeding values for animals in generation 13 (see 
text for definitions)

omitting information on which selection decisions have been based, estimates declined, especially for 
GSel. Implications thereof need to be considered when predicting response to selection or evaluating 
reliabilities of EBV (Gorjanc et al. 2015). As more and more animals are genotyped and as the 
emphasis on genomic selection increases, ssGREML estimation of genetic parameters will become a 
necessity.
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