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SUMMARY 
This study used data from the Sheep CRC Information Nucleus Flock (INF), a Merino Lifetime 

Productivity (MLP) flock, and a ram breeding flock (Connemara) to evaluate the prediction of 
breeding values for breech strike between and within datasets. Cross-validation was used to 
evaluate the accuracy, predictability and dispersion of estimated breeding values. Validation 
between datasets had low predictability due to low linkage (pedigree-based) across flocks, but 
validation within datasets was encouraging. Considering the poor linkage between the three 
datasets and the low incidence of breech strike across flocks, the industry needs to continue 
investing in building and maintaining suitable sheep reference populations with a wide range of 
traits, including flystrike observations, to develop accurate predictions required to underpin direct 
and indirect selection. In addition, quantifying the value of genomic information to improve the 
accuracy of predictions will be the subject of ongoing research.  

INTRODUCTION 
Flystrike is estimated to be the fifth highest cost to the Australian sheep industry ($170 million 

per year, Lane et al. 2015), with breech strike identified as the most common type. Resistance to 
flystrike is a priority research area for Australian Wool Innovation (AWI). To make genetic 
progress in flystrike resistance, accurate and standardised data collection of phenotypes for 
flystrike, probably combined with genotyping is the first step. Establishing a well-designed sheep 
reference population is a crucial step (van der Werf et al. 2010) for developing Australian sheep 
breeding values (ASBVs; Brown et al. 2010), especially considering the different incidence rates 
of flystrike in various environments (Bird-Gardiner et al. 2013; Greeff et al. 2014; Smith et al. 
2009). Therefore, this study used data from the Sheep CRC Information Nucleus Flock (INF), one 
of the Merino Lifetime Productivity (MLP) flocks, and a ram breeding flock (Connemara) to 
estimate the accuracy, predictability and dispersion of pedigree-based breeding values within and 
across datasets.  

MATERIALS AND METHODS 
Data. A phenotype for breech strike was defined as a binary trait with 0/1 indicating 

“struck”/“not struck” within a defined shearing period (described in detail by Dehnavi et al. 2023). 
Three datasets including animals phenotyped for breech strike (struck or non-struck) were used for 
this study. The first dataset was from the Sheep CRC Information Nucleus Flock (INF), including 
1,335 Merino lambs born between 2008 and 2011, recorded across six research stations (Trangie, 
NSW; Cowra, NSW; Rutherglen, VIC; Hamilton, VIC; Struan, SA and Turretfield, SA). A second 
dataset with 2,115 animals from 28 sires from the New England sire evaluation site hosting a 
Merino Lifetime Productivity (MLP) flock at the CSIRO “Chiswick” research station at Uralla, 
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NSW. The MLP animals were born in 2017 and 2018. The last dataset was 1,941 lambs born 
between 2017 and 2021 in the “Connemara” Merino ram breeder flock, which were the progeny of 
31 sires. Routine screening for flystrike is done primarily from birth to crutching time (6-7 
months) for the Connemara flock but continued for a longer period in the other flocks. For this 
study, all animals were assessed and considered for flystrike up to yearling age. Pedigree data for 
animals with phenotypes were extracted from the Sheep Genetics MERINOSELECT database. 

Cross-validation analyses. Breeding values (EBVs) were estimated using a binomial model 
with a probit link function in ASReml (Gilmour et al. 2015). Models included contemporary 
groups (CGs) and the interaction of birth type and rearing type as significant fixed effects, and the 
direct animal genetic effect was considered a random effect (Dehnavi et al. 2023). To estimate the 
differences in the accuracy of predictions, an internal cross-validation procedure within each 
dataset and external cross-validation between datasets were tested as described by Legarra and 
Reverter (2018). The MLP and Connemara (CON) datasets were separated into four cross-
validation groups, and INF data were grouped into three groups of approximately the same size. 
All animals were randomly assigned to subgroups based on their CGs (Table 1).  

Table 1. The number of animals (N), sires (Sire), sires per contemporary group (Sire/CG), 
average incidence (Mean) and standard deviation (SD) for breech strike (0/1) for subgroups 
used in the cross-validation analysis 

Group N Sire Sire/CG Mean SD 
INF dataset 
INF1 473 66 15.67 0.19 0.40 
INF2 383 80 13.89 0.07 0.26 
INF3 479 109 16.10 0.13 0.34 
MLP dataset 
MLP1 579 28 11.91 0.05 0.21 
MLP2 459 28 12.20 0.05 0.23 
MLP3 692 28 11.09 0.05 0.22 
MLP4 385 28 10.55 0.09 0.28 
Connemara dataset 
CON1 368 23 6.25 0.24 0.43 
CON2 562 20 6.75 0.21 0.41 
CON3 511 28 7.50 0.25 0.43 
CON4 500 21 7.67 0.16 0.37 

Prior to generating EBVs, variance components were computed separately within each dataset, 
and in the combined dataset. These components were then used for the best linear unbiased 
prediction (BLUP) analysis and calculation of accuracy. Breeding values were estimated in the full 
dataset using pedigree and phenotype information for all animals. Following the analysis of the 
full dataset, six validation scenarios were investigated (Table 2). First, EBVs were calculated for 
each internal validation group (Table 1) after their phenotypes were removed, using data from the 
other groups of that dataset as a training population (INF – INF analysis, replicated three times; 
MLP – MLP and CON – CON analyses, replicated four times). Second, the prediction of each 
dataset was carried out using two other grouped datasets as a training population (INF+MLP – 
CON analysis and INF+CON – MLP analysis, each replicated four times; MLP+CON – INF 
analysis, replicated three times).  

For each scenario, validation metrics were calculated and averaged across replicates. Accuracy 
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and dispersion metrics were computed using the LR method (Legarra and Reverter 2018). The 
accuracy (LRacc) was calculated as the covariance between EBVs from the full and part analysis 
corrected for kinship matrix and genetic variance. The dispersion (LRslop) was calculated as 
regression slopes between the EBVs from each of the analyses (partial) with EBVs from the full 
analysis (whole) in the validation set. The LRslop parameter is expected to have a value close to one 
if there is no over or under-dispersion. Pearson correlation between partial and whole EBVs was 
also considered as an indicator of the predictability of EBVs.  

RESULTS AND DISCUSSION 
Validation results followed similar patterns for two of the three different internal validation 

scenarios (Table 2). For the CON – CON and MLP – MLP scenarios, correlations between EBVs 
of each analysis and EBVs of full analysis in the validation set were 0.89 and 0.83, respectively 
and for the INF – INF scenario the correlation was 0.53. The LRacc was low ranging from 0.14 for 
INF – INF to 0.37 for MLP – MLP internal scenarios. The LRslop for all internal validation 
scenarios was more than one. However, validation within the INF and MLP datasets was closer to 
one (1.06 and 1.05, respectively). CON and MLP could not predict breech strike in the INF dataset 
accurately. This scenario had a low correlation (0.35), very low accuracy (0.08) and a high LRslop 
(1.21). INF alone could not predict animals externally (results not shown in Table 2). INF with 
CON predicted MLP (INF+CON – MLP scenario) with a correlation of 0.51, accuracy of 0.13 and 
dispersion of 0.83 compared to the prediction of CON using INF and MLP (INF+MLP – CON 
scenario) with a correlation, accuracy and dispersion of 0.16, 0.06 and 0.59, respectively (Table 2).  

Table 2. The number of records (NTrain and NValid), the percentage of progeny in the training 
group having common sires with the validation group (FProg), genetic variance (σ2g), Pearson 
correlation, linear regression coefficient (LRslop) and accuracy (LRacc) for each validation 
scenario (training – validation) averaged across replicates 

Scenario NTrain NValid FProg σ2
g Correlation1 LRacc

1 LRslop
1 

INF – INF 890 445 65.76 0.12 0.53 (0.09) 0.14 (0.01) 1.06 (0.14) 
CON – CON 1456 485 71.40 0.09 0.89 (0.04) 0.37 (0.03) 1.12 (0.06) 
MLP – MLP 1586 529 100 0.09 0.83 (0.02) 0.24 (0.01) 1.05 (0.02) 
MLP+CON – INF 4056 445 1.25 0.10 0.35 (0.07) 0.08 (0.03) 1.21 (0.35) 
INF+MLP – CON 3450 485 4.45 0.10 0.16 (0.12) 0.06 (0.03) 0.59 (0.05) 
INF+CON – MLP 3276 529 4.49 0.10 0.51 (0.10) 0.13 (0.02) 0.83 (0.11) 

1 Standard deviation for evaluation metrics is presented within parenthesis. 

The internal-validation scenarios for MLP and CON resulted in higher prediction accuracy 
compared to the INF dataset. This may be because the INF dataset consists of different flocks 
subjected to different fly control regimes across a range of environments with a large degree of 
between-strain genetic variances (Swan et al. 2016), whereas the other two scenarios were 
performed within one flock (Connemara and New England sites), and in the case of CON, without 
pre-emptive fly control. However, the genetic variance of breech strike was low for all datasets 
with slightly more variation for INF (Table 2). Additionally, INF had a lower percentage of link 
progeny from common sires between training and validation data (66% for INF compared to 71% 
and 100% for CON and MLP, respectively; Table 2). 

The accuracy of genomic predictions (Habier et al. 2010) and parameter estimation (van der 
Werf et al. 2010) can benefit from larger reference populations. Accurate and consistent data 
recording in seed stock flocks can contribute to establishing a reference population for the industry 
(Alexandri et al. 2022). In this study, there were low levels of linkage which contributed to low 
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correlations and accuracy when predicting breeding values between datasets. 
Overall, the predictability of breeding values for validation animals was lower between 

datasets than within datasets. This shows the necessity of strategic data collection, especially from 
flocks that are well-linked externally to be able to predict animals across flocks with different 
incidence rates accurately. It is important to note that the effectiveness of data also depends on the 
quality of the trait measured, its incidence rate and diversity within and between flocks as well as 
the influence of environmental effects recorded on the flock. Genomic information can fill the 
gaps in the pedigree-based relationship matrix and this is likely to lead to better genetic 
connections between data sets. Therefore, investigating the impact of genomic versus pedigree 
information on predictions between datasets will be a focus of ongoing research. 

CONCLUSIONS 
This study demonstrated that flystrike was predictable within each of the three datasets used 

for this study, but predictions between datasets were not feasible due to the low genetic linkage 
established through pedigree alone. In order to build a reference population for predicting flystrike 
it is critical to establish well-linked flocks across environments. The ideal flock has accurate and 
standardised data collection including phenotypes for different flystrike types (breech and body 
strike), along with phenotypes for production and indicator traits and genotypes for a large number 
of animals.  
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