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SUMMARY 
The Correlation Scan (CS) identifies local genomic regions that disproportionately contribute to 

the genetic correlation between traits using SNP effects generated from GBLUP. BayesR, has been 
shown to precisely localise SNP effects, and the BayesR SNP effects size are often less shrunk than 
GBLUP. Therefore, we aimed to compare the SNP effects generated from GBLUP and BayesR 
models on the resulting localised genomic regions using the CS method. Single-trait and bivariate 
models were used to analyse fertility data from Brahman cows (age at detection of first corpus 
luteum; 996 animals) and bulls (insulin-like growth factor measured from blood; 1022 animals) 
genotyped with the Illumina BovineHD (770K) SNP chip. We observed that the local correlation 
(r) estimates were larger with GBLUP than BayesR. There were considerable differences in the r 
estimates on chromosome 5, 14, and X. Further analysis into the distribution of the SNP effects of 
a QTL region on chromosome 14 highlights the effect that each method had on CS results. GBLUP 
spread the effect across neighbouring SNPs, while BayesR localised the effect to a small number of 
SNPs, reducing the r estimates. The differences between GBLUP and BayesR were reduced with 
BayesR bivariate model. As BayesR bivariate model tended to select common SNPs as having non-
zero effects on both traits compared to BayesR single-trait, the patterns of the r estimates were larger 
in the bivariate model. Other metrics from the BayesR bivariate model identified similar regions as 
the GBLUP in CS results. Our results showed that BayesR SNP effects can be used in our CS, but 
the bivariate model is recommended. 

 
INTRODUCTION 

Estimated genetic correlations between traits are useful parameters for developing and 
optimising animal breeding programs (Petrini et al. 2016). However, little is known about the local 
genomic regions that disproportionately contribute to these overall genetic correlations. With the 
widespread use of genomic data, the knowledge of local regions affecting trait correlations could 
allow breeders to make a more targeted genomic selection. The Correlation Scan (CS) identifies 
local genomic regions that contribute to estimates of the genetic correlations between traits (Olasege 
et al. 2022). The CS framework was developed using SNP effects generated from GBLUP, but it is 
possible to extend it for Bayesian approaches. BayesR has been shown to precisely localise SNP 
effects and the effect sizes are less shrunk than GBLUP (Kemper et al. 2015). Therefore, we used 
BayesR (single and bivariate models) to generate the SNP effects for the CS and compared the 
observed results with those obtained from GBLUP.  
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MATERIALS AND METHODS 
The two traits used for this study were age at detection of first corpus luteum in cow (AGECL, 

n=980) and blood concentration of insulin-like growth hormone measured in bulls (IGF1b, n=964) 
from a Brahman population. A detailed description of the traits is provided by Olasege et al. (2021). 
The estimated genome-wide genetic correlation between these traits was -0.65 (Olasege et al. 2021). 

SNP effects for the CS were calculated using single-trait and bivariate GBLUP (Olasege et al. 
2022) and BayesR (Breen et al. 2022) models, with BovineHD 770K SNP chip. The posterior 
inclusion probability (PIP) and Q2 probability (the probability that the SNPs are associated with 
either of the traits) were also obtained from bivariate BayesR. Then local correlations (r) were 
estimated using the SNP effects using each model. The method to estimate r (correlation of 500 
SNP effects in sliding windows between the two traits) has been previously detailed by Olasege et 
al. (2022).  
 
RESULTS AND DISCUSSION 

Single- and bivariate r estimates for the BayesR model are presented in Figure 1. The GBLUP 
single-trait result has been published (Olasege et al. 2022). The bivariate result for the GBLUP 
model looks identical to the single trait (result not shown). GBLUP yielded larger r estimates than 
BayesR. While both models identified similar windows, there were considerable differences in the 
r estimates on chromosome 5, 14, and X. For example, a QTL region including PLAG1 (Fortes et 
al. 2012; Hawken et al. 2012) on chromosome 14 was not identified by the BayesR single-trait 
model. However, with BayesR bivariate model, this region was signalled.   
 
A 

 
B 

 
Figure 1. Genome-wide plots of the local correlation (r) estimates for age at first corpus luteum 
and blood concentration of insulin growth hormone for BayesR model using SNP effects from 
single-trait (A) and bivariate model (B) 
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By investigating the 100 SNP effects surrounding the PLAG1 region between GBLUP (single-
trait) and BayesR (single- and bivariate model), we found that GBLUP (Figure 2A; r = 0.96) spread 
the effect across neighbouring SNPs, while BayesR SNP effects were localised to a small number 
of SNPs. BayesR bivariate (Figure 2C; r = 0.76) identified similar SNPs for each trait as having 
non-zero effects whereas BayesR single trait (Figure 2B; r =0.23) often picked different sets of 
SNPs. Leveraging on the PIP and Q2 probability from BayesR bivariate model, the regions identified 
as the most significant from GBLUP CS were also signalled using Q2*PIP, showing that these two 
metrics could complement the CS method (Figure 3). 

A 

 
B 

 

C 

 
Figure 2. The regression of the distribution of the 100 SNP effects within the boundary of the 
PLAG1 gene between age at first corpus luteum and (AGECL) and blood concentration of 
insulin growth hormone (IGF1b) using GBLUP single-trait (A), BayesR single-trait (B), and 
BayesR bivariate Model (C) 
 
CONCLUSIONS 

The differences in model assumptions led to differences in local correlations estimated using 
GBLUP and BayesR. GBLUP spreads the effect across neighbouring SNPs, whereas BayesR 
localised the effect to a small number of SNPs. With bivariate BayesR, SNP effects tend to be 
allocated to common SNPs across the traits, while BayesR single trait may select different SNPs for 
each trait, resulting in reduced r estimates. Our results showed that BayesR SNP effects can be used 
for the CS, but the bivariate model is recommended. Q2 and PIP from BayesR bivariate model could 
complement the CS method for insights into important QTLs. 
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Figure 3. The posterior inclusion probability (PIP) weighted by the Q2 probability for age at 
detection of first corpus luteum (A) and blood concentration of insulin growth hormone (B) 
from BayesR bivariate model 
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