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SUMMARY 
Structural variation has been posited to contribute equal or greater diversity at the nucleotide 

level than any other form of genetic variation. Short read sequencing technologies are limited in 
their ability to characterise structural variants (SVs), however long read sequencing, which is now 
cost effective, poses as a solution to this problem. The Bovine Long Read Consortium (BovineLRC) 
aims to use long read sequencing technologies to sequence cattle at population scale to characterise 
the structural variation of the bovine genome for downstream applications. This pilot study 
sequenced 41 animals from two breeds in an effort to understand how much SV variability exists 
within and across breeds. A total of 76,572 SVs were detected across all samples, one third of which 
were segregating in only one breed. Insertions and deletions tended to be smaller and duplications 
larger. Insertions and deletions more often segregated across both breeds, while inversions were 
more often breed specific. Few duplications were detected but they tended to be slightly more likely 
to be breed specific. The results highlight that it would be beneficial to have a dataset with large 
numbers of animals and breeds to understand the structural variation that exists and explore the 
impact of SVs on traits of interest. 

 
INTRODUCTION 

The 1,000 bull genomes project has had a massive impact on cattle genomics worldwide 
cataloguing single nucleotide polymorphisms (SNPs) and small insertions and deletions (INDELs) 
in more than 6,000 cattle genomes (Daetwyler et al. 2014; Hayes, Daetwyler 2019). However, 
limitations of short read sequencing technologies mean that SVs are not easy to characterise. SVs 
can be large INDELs (>50 basepairs), inversions, translocations, copy number variations or 
segmental duplications and studies in human estimate that SVs together occupy a proportion of the 
genome that is equal to or greater than that of SNPs and small INDELs (Feuk et al. 2006; Ho et al. 
2020) and contribute greater diversity at the nucleotide level than any other form of genetic variation 
(Chaisson et al. 2019). Multiple studies in cattle have demonstrated that SVs impact classic 
mendelian traits, quantitative traits and gene expression (Kadri et al. 2014; Rothammer et al. 2014; 
Lee et al. 2021). 

Long read sequencing, such as nanopore sequencing from Oxford Nanopore Technologies 
(ONT) and single molecule real time sequencing from Pacific Biosciences (PacBio), have recently 
become cost-effective. Both claim costs of <$1,000US per genome at 30x coverage and have the 
advantage of being able to sequence across large SVs and therefore better characterise them 
compared to short read technology (Chaisson et al. 2019).  

To date genome wide SV detection in cattle at population scale has largely used short read 
sequence data (Boussaha et al. 2015; Mesbah-Uddin et al. 2017; Mielczarek et al. 2018; Hu et al. 
2020; Mei et al. 2020; Chen et al. 2021; Upadhyay et al. 2021) or limited long read sequence data 
(Low et al. 2020; Crysnanto et al. 2021) or a combination of the two (Couldrey et al. 2017). Like 
the Human Genome Structural Variation Consortium (Chaisson et al. 2019) the Bovine Long Read 
Consortium (BovineLRC) (Nguyen et al. 2023) aims to use long read sequencing technologies to 
sequence cattle at population scale to characterise the structural variation of the bovine genome. 
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Such a reference dataset will empower imputation of SVs into larger populations to examine their 
impact on quantitative traits as well as better resolve segmental duplication regions with copy 
number variants, understand the evolution of SVs and identify deleterious causal variants. 

As a pilot study we have sequenced 41 animals from two breeds with ONT in an effort to 
understand how much variability exists within and across breeds in SV. 

 
MATERIALS AND METHODS 

DNA sequencing. 19 Holstein and 22 Jersey animals were selected, avoiding full and half sib 
relationships to maximise diversity. High molecular weight DNA was extracted from semen, liver 
tissue or whole blood using Gentra Puregene kit (Qiagen). Sequencing libraries were prepared using 
ligation sequencing kit v9 or v10 (ONT) according to manufacturer’s instructions and sequenced on 
R9.4.1 flowcells on a MinION or PromethION (ONT). Super high accuracy basecalling was 
undertaken with Guppy v6.1.7 and reads with q-score greater than 7 retained for analysis. 

Data analysis. Reads were quality trimmed using FiltLong (https://github.com/rrwick/Filtlong 
accessed December 2022) with default settings and samples with short reads (6 Holstein and 6 
Jersey, 150 cycle paired reads) polished. Filtered reads were then mapped to ARS-UCD1.2 (Rosen 
et al. 2020) with additional Btau5.0.1 Y (Bellott et al. 2014) using Minimap2 (Li 2018). Sniffles2 
(Sedlazeck et al. 2018) was used to detect SVs for each sample and subsequently merge SVs from 
multiple individuals and re-genotype. SVs larger than 3Mb or with a genotype quality score less 
than 20 were excluded. 
 
RESULTS AND DISCUSSION 

A mean of 26x and 20x read coverage was achieved with mean read length N50 of 30kb and 
26kb for Holstein and Jersey samples respectively. On average 20,770 deletions, 19,620 insertions, 
234 inversions and 38 duplications were detected for each Holstein and 19,815, 18,458, 177 and 39 
respectively for each Jersey. After merging and filtering data from all animals a total 76,572 SVs 
were detected. This is more than studies using short read data with similar sample numbers 
(Boussaha et al. 2015; Couldrey et al. 2017; Mesbah-Uddin et al. 2017; Mielczarek et al. 2018; Hu 
et al. 2020; Upadhyay et al. 2021) and similar to small studies using long read data in a pangenome 
approach (Crysnanto et al. 2021) but less than the largest pangenome approach with short read data 
and almost 900 samples (Zhou et al. 2022) which detected greater than 3.6 million SVs. 14,526 SVs 
were segregating in Holstein only and 11,264 only in Jersey (Figure 1A). 50,782 (66%) were 
detected in both breeds, therefore one third of all SVs were breed specific.  

 
Figure 1. A Venn diagram showing SVs detected across or within Holstein (HOL) or Jersey 
(JER) breed (A). The relationship between allele frequency and length of SVs for Holstein 
specific SVs (B), those that occurred in both breeds (C) and Jersey specific SVs (D) 

 



GWAS 

Figures 1B-1D show a trend of longer SVs with lower allele frequencies in the population, for 
both breed specific as well as across breed SVs. As expected, high allele frequency SVs were more 
likely across breeds. Other studies have estimated the proportion of breed specific SVs at 66% 
(Boussaha et al 2015) when comparing 3 breeds, 15% (Mielczarek et al. 2018) in 13 breeds, 48% 
(Hu et al. 2020) in 10 breeds, 54% (Mei et al. 2020) in 8 breeds and 76% (Low et al. 2020) in 3 
breeds. While others found different allele frequencies of the same SV in different populations of 
taurine, indicus and zebu cattle (Upadhyay et al. 2021). This variation reflects the variable power of 
the different studies, driven by the numbers of samples, breeds included and breed definitions. Large 
numbers of samples and large numbers of breeds are likely required before we can be certain of the 
proportion of SVs that are breed specific.  

Figure 2. Numbers of deletions (A), insertions (B), inversions (C), and duplications (D) of 
different length for across breed (shared) and breed specific (unique) SVs. Note x-axis is not to 
scale 

In agreement with other studies (Boussaha et al. 2015; Upadhyay et al. 2021; Zhou et al. 2022) 
insertions and deletions tended to be smaller and duplications larger (Figure 2). In this study we 
found insertions and deletions more often occurred across both breeds (Figure 2A and 2B), while 
inversions were much more often breed specific (Figure 2C). Few duplications were detected but 
they tended to be slightly more likely to be breed specific. However, reads that span the structural 
variant are required to call them accurately, therefore this dataset with read N50 of 26-30Kb has 
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limited power to detect very large SVs, likely partially accounting for the low numbers of duplicates 
found. Other studies also find lower numbers of large duplications compared with insertions and 
deletions (Mei et al. 2020; Zhou et al. 2022). It’s also likely that many duplications were removed 
when SVs were merged across animals due to difficulty deciphering breakpoints for SVs. Given the 
small population size used here, read length N50 and the difficulties associated with accurate 
annotation of large and complex SVs this study had limited power to detect large and rare SVs. 

CONCLUSION 
This small pilot study in 2 breeds highlights that it would be beneficial to have a dataset with 

large numbers of animals and breeds to understand the structural variation that exists in the bovine 
genome. The BovineLRC has been formed to achieve this. It also highlights that more work is 
required to accurately annotate and genotype large and complex SVs. Further work is required to 
understand the impact of the SVs detected in this study on traits important to the dairy industry. 
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