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SUMMARY 

The aim of this study was to estimate the genetic relationship between immune competence and 
micro-environmental sensitivity (ES) of weaning weight, eye muscle area, and rib and rump fat 
depth. Variation in micro-environmental sensitivity among livestock leads to variability of 
phenotypes. The genetic correlations indicated that animals with higher immune competence tended 
to have lower micro-ES of weaning weight and eye muscle area, and higher micro-ES of rib and 
rump fat depth. 

 
INTRODUCTION 

Selecting to improve the immune competence (IC) of livestock could potentially lead to 
increased health and welfare of the animals, and decrease the livestock industry’s reliance on 
antibiotics (Dominik et al. 2019; Hine et al. 2019; Hine et al. 2021; Reverter et al. 2021a; Reverter 
et al. 2021b). Furthermore, improved immunity could reduce the production loss and cost of medical 
intervention associated with disease incidences thus increasing profits (Hine et al. 2021).  

The immune system is a complex system affecting many other systems in the animals, which 
can influence many phenotypes. The relationship between IC and live weight traits, growth and eye 
muscle area have been found to be unfavourable, while carcass traits and dry matter intake have a 
less straight forward relationship with IC (Reverter et al. 2021b). Aside from the direct relationship 
between IC and production traits, it is possible the IC affects the variability of production traits. The 
variability of phenotypes can vary between animals of different genetic backgrounds, in which case 
the genotypes exhibit micro-environmental sensitivity (micro-ES). Animals with less micro-ES are 
expected to respond less to disturbances in their environments and can be quantified at a genetic 
heterogeneity of the environmental variance (SanCristobal-Gaudy et al. 1998; Hill and Mulder 
2010). The relationship between IC and micro-ES has not yet been reported. 

The aim of this study was to investigate the relationship between IC and some production traits 
and between IC and the micro-ES of production traits in Australian Angus cattle. 

 
MATERIALS AND METHODS 

Data. Antibody- and cell-mediated immune response (AMIR, CMIR) were the IC component 
traits. The AMIR and CMIR records were provided by CSIRO and Angus Australia. The records 
were collected in 2012-2020 in accordance with the procedures described by Hine et al. (2019). The 
AMIR phenotypic values represent the level of antigen-specific serum IgG1 antibody in response to 
vaccination with Ultravac 7in1 vaccine (Zoetis) and were calculated from the square root 
transformed optical density values generated using an enzyme-linked immunosorbent assay and 
corrected for inter-plate variation. The CMIR phenotypes were calculated from the log-transformed 
ratio between the measured double skinfold thickness at test (intradermal vaccine injection) and 
control site (intradermal saline injection) (Hine et al. 2019). To account for initial double skinfold 
thickness, the pre-injection log-transformed ratio between the double skinfold thickness at test and 
control site was used as a covariate in the analysis.  
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Production traits consisted of weaning weight (WW), scan eye muscle area (EMA), scan rib fat 
depth (RIB) and scan rump fat depth (P8). The production traits were provided by Angus Australia 
and were part of the routine recording scheme between 2012 and 2020. 

For the IC records, contemporary groups (CG) were constructed by concatenating herd, year and 
test cohort. For the production traits, trait specific CGs were concatenations of herd, birth year, 
observation date for the trait, breeder defined management group, birth type and embryo transfer 
status. Age slicing further subdivided CGs for WW, RIB, P8 and EMA. Age slices covered 45 days 
for WW and 60 days for RIB, P8 and EMA as per Graser et al. (2005), and slices were symmetric 
around the average age of the CG. Summary statistics are shown in Table 1. Two pedigrees were 
used for analysis, one for sire (10948 animals) and one for rearing dams (98151 animals).  

 
Table 1. Summary statistics for the final dataset 

 
Parameter Statistic WW (kg) RIB (mm) P8 (mm) EMA (cm2) AMIR CMIR 

Records Count 31699 83034 83314 83486 3910 3908 
Phenotype Mean 254.60 6.11 7.89 80.49 0.85 1.89 

SD 51.63 2.76 3.73 17.56 0.43 0.42 
Range 77-496 1-22 1-33 31-157 0.01-2.13 0.85-4.92 

 
Analysis. The data was analysed using 8 two-trait models with an IC trait as one trait and a 

production trait as the second trait. The production traits were fitted with a double hierarchical 
generalised linear model (DHGLM) for estimating the micro-ES of the production traits resulting in 
a trivariate model. The general model was: 
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where 𝒚𝒚𝑰𝑰𝑰𝑰, 𝒚𝒚𝑷𝑷𝑷𝑷 and 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 were the IC trait (AMIR or CMIR), the production trait phenotype and 
calculated micro-ES phenotype of the production trait, respectively. 𝒃𝒃𝑰𝑰𝑰𝑰 contained the fixed effects 
of sex and CG for AMIR and the fixed effect of CG and the pre-injection covariate for CMIR, 𝒃𝒃𝑷𝑷𝑷𝑷 
and 𝒃𝒃𝒎𝒎𝒎𝒎𝒎𝒎 contained the fixed effects of sex and CG and covariate of age for the production traits 
(and the covariate of dam age and squared dam age for WW). 𝒔𝒔𝒙𝒙 and 𝒆𝒆𝒙𝒙 were the fixed effects, 
additive genetic sire effects and residuals of trait x (𝑥𝑥 ∈ (𝐼𝐼𝐼𝐼, 𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚)). The micro-ES phenotype 
was calculated as 𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎 = 𝒆𝒆�𝑷𝑷𝑷𝑷𝟐𝟐  /(𝟏𝟏 − 𝒉𝒉𝑷𝑷𝑷𝑷) , where 𝒉𝒉𝐏𝐏𝐏𝐏 was the diagonal element of the part of the 
hat-matrix corresponding to 𝒚𝒚PT (𝒚𝒚�𝑷𝑷𝑷𝑷 = 𝑯𝑯𝒚𝒚𝑷𝑷𝑷𝑷) also known as the leverage (Hoaglin and Welsch 
1978). For models where WW was the production trait, the model also included maternal genetic 
(𝒄𝒄) and permanent environmental (𝒑𝒑𝒆𝒆) effects.  

The distribution assumptions for the random genetic sire effects were 
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matrix among sires  based on the sire pedigree and ⊗ is the Kronecker product. The distribution 
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��, where 

𝑰𝑰 was an identity matrix of appropriate size, and 𝑾𝑾𝑷𝑷𝑷𝑷 and 𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎 were matrices containing weights 
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for the residual variances of the DHGLM. 𝑾𝑾𝑷𝑷𝑷𝑷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒚𝒚𝒎𝒎𝒎𝒎𝒎𝒎� )−1 and 𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((1 −
𝒉𝒉𝑷𝑷𝑷𝑷)/2).  

Post analysis corrections of variance components to obtain additive genetic and residual 
variances on the animal level were applied as described in Madsen et al. (2021). The variation and 
heritability of micro-ES (ℎ𝑚𝑚𝑚𝑚𝑚𝑚2∗ ) was converted from the logarithmic to the measurement level 
following Mulder et al. (2007) and Mulder et al. (2009). 

RESULTS AND DISCUSSION 
The results showed additive genetic variance of micro-ES in all production traits (Table 2). The 

heritabilities were in line with the heritabilities reported for production traits in Nellore beef cattle 
by Neves et al. (2011) and Iung et al. (2017). The genetic coefficient of variation (GCV) of micro-
ES was low to moderate, with higher values for the fat traits. The higher GCV of RIB and P8 indicate 
that some response to selection could be obtained. 

The heritability of AMIR and CMIR were in line with those previously reported (Dominik et al. 
2019; Hine et al. 2019; Reverter et al. 2021a; Reverter et al. 2021b). Likewise, the heritabilities of 
EMA and P8 were within previously reported values for Australian beef cattle, while the heritability 
of RIB was slightly higher than previously reported (Meyer et al. 2004; Jeyaruban et al. 2009). In 
contrast, the heritability of WW was higher than the 0.13-0.35 reported for Australian beef cattle 
(Meyer et al. 2004; Jeyaruban et al. 2009; Torres-Vázquez et al. 2018). Slightly larger heritabilities 
can be expected when a trait is fitted with a DHGLM as the genetic variation due to micro-ES is 
removed from the observed residual variance of the phenotype reducing the denominator used to 
calculate the heritability. 

Table 2. Estimated heritabilities and genetic coefficient of variation  

AMIR CMIR WW RIB P8 EMA 
𝒉𝒉𝟐𝟐 (%) 36.18 35.62 43.50 34.58 35.11 25.13 
𝒉𝒉𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐∗ (%) 0.03 1.22 1.42 0.35 
𝑮𝑮𝑰𝑰𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎 (%) 13 24 27 11 

Table 3. Genetic correlations between the production and immune traits in Angus cattle* 

AMIR CMIR 

𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃 𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑃𝑃𝑃𝑃 𝑟𝑟𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑃𝑃𝑃𝑃,𝑚𝑚𝑚𝑚𝑚𝑚 

WW -0.35 -0.12 0.18 -0.26 -0.15 0.18 

RIB 0.11 0.14 0.87 0.15 0.09 0.87 

P8 0.06 0.00 0.90 0.16 0.12 0.90 

EMA -0.13 -0.34 0.30 0.04 -0.17 0.31 

*Italic values had 95% confidence intervals not including 0

The genetic correlations between the IC traits and RIB and P8 indicated that animals with higher 
fatness also tended to have higher IC (Table 3). In contrast, the genetic correlations indicated that 
animals with higher IC had lower WW, showing that immune response may be utilising resources 
that would otherwise have contributed towards growth. The genetic correlations between micro-ES 
of production traits and IC tended to be moderately negative for WW and EMA and non-existing to 
lowly positive for RIB and P8. The genetic correlations involving the IC traits had large SEs and 
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therefore only the genetic correlations between WW and either IC trait had a 95% confidence 
interval not including 0. The larger SEs were likely due to the small data size of the two IC traits. 

The genetic correlations between the production traits and their micro-ES were strongly positive 
for RIB and P8 fat showing that selection to reduce fatness would have a correlated decrease in the 
micro-ES of fatness and vice versa.  

CONCLUSIONS 
All production traits showed micro-ES. The heritabilities and genetic coefficient of variance of 

micro-ES was higher for RIB and P8 than the other production traits. Selection to decrease micro-
ES may be possible for these traits.  

Results showed that mounting immune responses might direct resources away from growth. 
The positive genetic correlation between the fat and IC traits indicated that animals with higher 

fatness also have higher ICs.  
The genetic correlations between the IC traits and micro-ES of production traits showed a 

tendency for animals with higher genetic potential for IC to have lower micro-ES of WW and EMA 
and higher micro-ES of RIB and P8. 
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