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SUMMARY 
This study proposes an optimal contribution selection method (OCS) that utilizes both additive 

and non-additive genetic components. Using a genetic algorithm, the contribution of sires toward a 
cohort of dams, along with their mate allocation, were optimized under a constraint of a 1% 
increment of inbreeding per generation. The inclusion of dominance into the OCS increases the total 
genetic gain in offspring initially by 30.5% improvement from +4.02 to +5.27 units compared to 
using additive genetic component alone for a trait with a 15% dominance-to-additive variance ratio. 
Compared to additive-only OCS, optimization of the dominance component resulted in one-off 
additional gains, with no additional merit thereafter, despite continued optimization. In conclusion, 
this inclusion of dominance in mate allocation can give a significant genetic lift in total genetic 
merit. 

INTRODUCTION 
While optimal contribution selection (OCS) has successfully optimized the additive genetic gain 

in livestock breeding systems within a constraint of inbreeding, it has only focused on estimated 
breeding values (EBVs) and generally not focused on optimizing the non-additive genetic 
component, such as dominance. Dominance could explain a significant proportion of the genetic 
variance for some traits, but it has been difficult to exploit due to its dependency on sire-dam mating 
configuration and the difficulty of predicting these specific effects. The advent of genomic 
information, however, allows direct prediction of the expected offspring heterozygosity, which 
could be used to predict dominance effects for mate allocation.  

The aim of this study was to develop an OCS that could optimize both additive and non-additive 
genetic components, using information easily available to a breeding program. It is anticipated this 
OCS can be used in improving both additive and non-additive effects in a trait.   

LAYOUT OF THE OPTIMAL CONTRIBUTION SELECTION METHOD 
The OCS requires several inputs: sire and dam genotype arrays of size 𝑁𝑁𝑚𝑚 × 𝑀𝑀 and 𝑁𝑁𝑓𝑓 × 𝑀𝑀 

respectively, with 𝑁𝑁𝑚𝑚, 𝑁𝑁𝑓𝑓 and 𝑀𝑀 be number of sires, dams and markers respectively; sire and dam 
phenotypic vector of length 𝑁𝑁𝑚𝑚 and 𝑁𝑁𝑓𝑓 respectively, and narrow sense heritability. The genotype, 
phenotype and heritability were used to calculate the sire EBVs (𝜷𝜷�𝒎𝒎) and sire GRM (𝑮𝑮) using 
method by VanRaden (2008). A targeted level of increment of consanguinity (∆𝐹𝐹𝑡𝑡) were also needed 
for the OCS.  

This OCS has three phases: the first phase optimized additive and inbreeding components; the 
second phase optimized the non-additive genetic components only, and the final phase combined 
the results from both phases. Such a design was needed to improve the feasibility of the method 
from the significantly increased sample space when optimizing the dominance genetic components. 

To initialize the GA, 1500 candidate solutions of length 𝑁𝑁𝑓𝑓, denoted as 𝒔𝒔, that contain the indices 
of sires that paired with each dam, were generated, with the 𝑖𝑖-th entry of 𝒔𝒔 contains which sire that 
would be paired with 𝑖𝑖-th dam. This formatting was required due to the mate-specific nature of the 
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dominance component, which depends on the exact permutations of the sires. This set of 𝒔𝒔 vectors 
were compiled into a sire index matrix of size 1500 × 𝑁𝑁𝑓𝑓, denoted as 𝑺𝑺𝟏𝟏.   

The first phase of this OCS optimized the additive and inbreeding coefficients, which were 
initialized by translating 𝑺𝑺𝟏𝟏 into its corresponding sire proportion matrix 𝑿𝑿𝟏𝟏, defined as a matrix of 
size 1500 × 𝑁𝑁𝑚𝑚 with its 𝑖𝑖-th row and 𝑗𝑗-column representing the proportion of 𝑗𝑗-th sire that would 
contribute into the next generation for the 𝑖𝑖-th solution. The objective function for this phase was 
defined as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴 = 𝑿𝑿𝟏𝟏𝜷𝜷�𝒎𝒎
′ − 𝜆𝜆𝑖𝑖 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑿𝑿𝟏𝟏𝑨𝑨𝑿𝑿𝟏𝟏′) [1]

where 𝜆𝜆𝑖𝑖 denoted the scalar weightage for the inbreeding component for this phase of OCS.  
From this objective function, the top two 𝒔𝒔s in term of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴  were chosen, which were 

propagated into a new 𝑺𝑺𝟏𝟏. This new 𝑺𝑺𝟏𝟏 was subjected to five genetic operators: mutation, where 
sires in 𝑺𝑺𝟏𝟏 were replaced with new sires; vertical and horizontal recombination, where the part of 𝑺𝑺𝟏𝟏 
were exchanged, column-wise and row-wise, respectively, and vertical and horizontal inversions, 
where the orders of sires in 𝑺𝑺𝟏𝟏 were reversed, column-wise and row-wise respectively. The hyper-
parameters values for these operators were based on Srinivas and Patnaik (1994).  

This phase was then iterated with the new 𝑺𝑺𝟏𝟏. For each iteration, the 𝜆𝜆𝑖𝑖 was adjusted with the 
amount 100�𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑿𝑿𝟏𝟏𝑨𝑨𝑿𝑿𝟏𝟏′)� − ∆𝐹𝐹𝑡𝑡�. The mutation, recombination and inversion rate 
were also adjusted adaptively based on the method by Srinivas and Patnaik (1994). This process 
continued until convergence, defined as the point where the slope of the curve of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑿𝑿𝟏𝟏)𝐴𝐴𝐴𝐴  is less 
than 1 × 10−3 across the last 50 iterations. To reduce the chance of premature convergence for 
subsequent phases, this phase was repeated eight times, with the converged solutions from each 
repeat pooled into a new sire index array, 𝑺𝑺𝟐𝟐. From each repeat, the average of the 𝜆𝜆𝑖𝑖 at the point of 
convergence, denoted by 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎, was also recorded. 

The 𝑺𝑺𝟐𝟐 was then used for Phase 2 optimization, which maximizes the offspring dominance 
component. From 𝑺𝑺𝟐𝟐, 3000 solutions were resampled and altered using genetic operators. Only 
vertical recombination and horizontal inversion were used on 𝑺𝑺𝟐𝟐, as they only affect the 
permutations of the sires within the 𝒔𝒔s, thus with no effects on its additive and inbreeding scores, 
thus not affecting their Phase 1 optimality. The performance of each solution in 𝑺𝑺𝟐𝟐 was tested, with 
the objective function for 𝑘𝑘-th solution defined as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟐𝟐)𝐷𝐷 = �𝑯𝑯𝑺𝑺𝟐𝟐(𝑘𝑘,𝑖𝑖),𝑖𝑖

𝑁𝑁𝑓𝑓

𝑖𝑖=1

[2] 

where 𝑯𝑯𝑺𝑺𝟐𝟐(𝑘𝑘,𝑖𝑖),𝑖𝑖 is defined as the expected heterozygosity for 𝑺𝑺𝟐𝟐(𝑘𝑘, 𝑖𝑖)-th sire and 𝑖𝑖-th dam, which 
𝑺𝑺𝟐𝟐(𝑘𝑘, 𝑖𝑖) is the 𝑘𝑘-th row and 𝑖𝑖-th column of 𝑺𝑺𝟐𝟐. The top two 𝒔𝒔s in terms of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟐𝟐)𝐷𝐷 were extracted 
from 𝑺𝑺𝟐𝟐 and used to generate a new 𝑺𝑺𝟐𝟐 array, subjected to vertical recombination and horizontal 
inversion. This phase was iterated until convergence, defined as the point where the slope of the 
curve of 𝑓𝑓𝑜𝑜𝑏𝑏𝑗𝑗(𝑺𝑺𝟐𝟐)𝐷𝐷 is less than 1 × 10−4 across the last 200 iterations. To increase the chance of 
finding the global maximum, Phase 2 was repeated eight times, and the solutions pooled into 𝑺𝑺𝟑𝟑. 

In the final phase, the 𝑺𝑺𝟑𝟑 was translated into its corresponding sire proportion array 𝑿𝑿𝟑𝟑. The 
performance of each solutions was evaluated as follows:  

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟑𝟑,𝑿𝑿𝟑𝟑)𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑿𝑿𝟑𝟑𝜷𝜷�𝒎𝒎
′ + �𝑯𝑯𝑺𝑺𝟑𝟑(𝑘𝑘,𝑖𝑖),𝑖𝑖

𝑁𝑁𝑓𝑓

𝑖𝑖=1

− 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 ∗ �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑿𝑿𝟑𝟑𝑨𝑨𝑿𝑿𝟑𝟑′ )� − ∆𝐼𝐼𝑡𝑡� [3] 

Equation [3] served as the final objective function for the OCS. The top 𝒔𝒔 in terms of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑺𝑺𝟑𝟑,𝑿𝑿𝟑𝟑)𝐴𝐴𝐴𝐴𝐴𝐴 
were deemed as the optimized solution, and were the final output of the OCS.  
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TESTING THE OPTIMAL CONTRIBUTION SELECTION METHOD 
The OCS was tested with simulated genotypic arrays generated using QMSim (Sargolzaei and 

Schenkel 2009). For the ancestral population, 5,000 animals and 20,000 loci across 10 chromosomes 
of 100 cM each were simulated. This population was gene-dropped for 1,000 generations, with the 
population size increasing up to 10,000 in the final generation. Either 500 or 1000 sires and dams 
were then randomly chosen for genotyping and these were selection candidates (Table 1).  

From all loci, 500 of them were assigned as QTL, with both additive and dominance effects. 
Using these effect sizes, the phenotypes were calculated as follows:  

𝒚𝒚 = 𝒁𝒁𝒂𝒂𝜷𝜷 + 𝒁𝒁𝒉𝒉𝜹𝜹 + 𝒆𝒆 [4] 
where 𝒚𝒚 is the phenotype vector; 𝒁𝒁𝒂𝒂 is the additive genotypic array encoded in the format of {0,1,2}; 
𝒁𝒁𝒉𝒉 is the heterozygosity array with a value of 1 for heterozygotes and 0 otherwise; 𝜷𝜷 and 𝜹𝜹 are 
vectors with additive and dominance effect sizes for each QTL, respectively, and 𝒆𝒆 is a vector with 
the residual component of the phenotypes. Both 𝜷𝜷 and 𝜹𝜹 were generated using a gamma distribution, 
with shape parameters set at 0.3 and scale parameters provided in Table 1. The vector 𝒆𝒆 was 
generated using a normal distribution, with mean zero and variance  �1−ℎ

2�𝑣𝑣𝑣𝑣𝑣𝑣(𝑮𝑮𝑮𝑮)
ℎ2

, where ℎ2 is the 
narrow sense heritability. The ℎ2 was set at 0.3 for all simulations. 

These genotypes and phenotypes were used in a four-generation selection program. Three 
selection regimes were tested: truncation genomic selection (denoted as TS), OCS with additive 
component (OCSA); and OCS with both additive and dominance components (OCSAD). The ∆𝐹𝐹𝑡𝑡 
is set at 1% per generation for OCSA and OCSAD. To ensure validity of comparison for TS, the 
proportion of sires selected was determined by the number of selected top sires that would produce 
the same ∆𝐹𝐹𝑡𝑡. A non-selected population (NSEL) was used to establish the offspring baseline 
performance. For each generation, the additive, dominance and total genetic merits (TGM) from 
each selection regime were recorded. 

The parameters and values tested in this study were provided in Table 1. When a parameter was 
under study, default values were used for other parameters. When neither the additive and 
dominance genetic variances were under study, the default scale parameters of the effect size 
distributions were chosen such that the dominance genetic variance is 15% of the additive genetic 
variance. For each set of parameter values and selection regimes, 20 replicates were conducted. To 
test the performance between selection regimes, a two-sample Welch’s t-test was used, with the 
performance deemed significantly different if the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −log10(𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) ≥ 3.  

Table 1. Parameters and values tested in this study 

Parameters Default values Alternative values 
Number of Sires and Dams 500 1000 
Additive Effect Size Scale Parameter 1.0 3.0 
Dominance Effect Size Scale Parameter 0.5 1.5 

RESULTS 
The additive, dominance and TGM across four generations for the different selection regimes 

were provided in Figure 1. The first-generation total genetic merit under different parameter values 
and selection regimes were provided in Table 2.  

Compared to TS, both OCS methods significantly improved the additive genetic component of 
the offspring across all parameter values tested. The OCSAD method significantly improved the 
dominance component compared to OCSA from +0.17 to +1.51 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 22.54), and this led to 
a 30.5% additional improvement in TGM from +4.02 to +5.27 (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 8.48) in the first 
generation of selection under the default parameter values. The additional gain from the dominance 
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component is a one-off genetic lift, however, with no further additional increments in dominance 
genetic merit despite its continued optimization in the subsequent generations (Figure 1b).  

The improvement in TGM in OCSAD compared to OCSA was  observed for all parameter values 
tested, although these parameters affect the significance of improvement. For example, by increasing 
the scale parameter for additive QTL effect sizes from 1.0 to 3.0, which increases the additive genetic 
variance, the increment in TGM becomes less significant (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.59). While this change of 
parameter value has decreased the dominance-to-additive variance ratio to 2.1%, the TGM for 
OCSAD is still 11.4% higher than OCSA after the first generation of selection, indicating the 
potential merit of mate allocation in exploiting dominance variation.  

Figure 1. Plots for the base scenario showing (a) additive, (b) dominance and (c) total genetic 
merit of the offspring under truncation selection (TS), additive-inbreeding OCS (OCSA) and 
additive-dominance-inbreeding OCS (OCSAD) across four generations 

Table 2. First generation total genetic merit with truncation selection (TS), additive-
inbreeding OCS (OCSA) and additive-dominance-inbreeding OCS (OCSAD) under varying 
parameter values and selection regimes. Superscripts with different letters (row wise) denote 
significant differences between  selection regimes 

Parameter values Value tested Total genetic merit 
TS OCSA OCSAD 

Number of sires and dams (default) 500 3.045a 4.019b 5.247c 

         (alternative) 1000 4.010a 4.527a 5.827b 

Additive effect size scale parameter 3.0 8.845a 11.328b 12.616b 

Dominance effect size scale parameter 1.5 3.052a 3.953b 7.855c 

DISCUSSION AND CONCLUSION 
In this study, an OCS method that optimized the additive and dominance component was 

proposed. Using heterozygosity for all loci as a proxy for the optimization of dominance, with a 
15% dominance-to-additive variance ratio, this method improved the initial TGM by 30.5% 
compared to only optimizing the additive component. The one-off lift from the dominance 
component optimization means that after the first generation both OCS would have the same rate of 
genetic gain despite the continued optimization of dominance. Some  computational aspects of the 
proposed method could be further optimised.    

In conclusion, an OCS that optimizes additive and dominance effects was proposed in this study, 
and gave a significant lift in total genetic merit of a selected trait. The method can be used to improve 
the within-population genetic merit for economically important traits in livestock. 
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