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SUMMARY 
Several animal industries, including cattle, have built population scale whole-genome reference 

databases of genetic variants, SNPs and small INDELs, that have been discovered using short-read 
sequencing. These databases have proved invaluable: enabling development of genetic tools to breed 
healthier and more productive animals. However, while accurate and cost effective, short-read 
sequencing is not well suited to the discovery of larger genetic variants called structural variants 
(defined as > 50 base pairs in length). Thus, there is interest in creating population scale long-read 
databases for structural variant discovery and downstream applications. Ideally, for cost efficiencies, 
these would also contribute to the sequence database of SNPs and INDELs and enable imputation 
of all variants. Therefore, we explored the effect of long-read coverage on accuracy of SNP and 
INDEL discovery compared to a truth set from short-read sequence. The results show that at all read 
depths, recall and precision of SNP was considerably higher than for INDEL. At ≥ 10X read depth, 
SNP recall was 0.95 and reached 0.99 at 50X cover. The precision for SNPs and particularly INDELs 
suggested that the long-read variant calls included a relatively high, but likely overestimated 
proportion of false positives. We conclude that SNP and INDEL discovery in long-read data is 
useful, particularly if extensive 'truth’ variant sets exist that could help remove false positives. 

 
INTRODUCTION 

Several animal industries, including cattle, have built population scale whole-genome reference 
databases of small genetic variants (SNPs, and INDELs < 50 base pairs) that have been discovered 
using short-read sequencing (Daetwyler et al. 2017). These databases have proved invaluable for 
the detection of recessive deleterious mutations, for sequence imputation and enabling the 
development of genetic tools to breed healthier and more productive animals. However, while short-
read sequencing is highly cost effective and accurate for SNP and INDEL discovery, it is not well 
suited to the discovery of larger genetic variants (> 50bp in length) called structural variants (SVs). 
Instead, long-read sequencing is much better suited to genome-wide SV discovery. Limited research 
in livestock, and experience from human genetics research suggests that SVs may often have large 
effects on both mendelian and quantitative traits (reviewed by Nguyen et al. 2023a).  

Until recently, two major deterrents for long-read sequencing have been the higher cost and 
lower per base accuracy, where the latter resulted in low quality SNP and INDEL calls compared to 
short-read sequencing. However, two key competitors in the field of long-read sequencing, Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), have made significant 
improvements in both per base accuracy and cost. Thus, there is now considerable interest in 
exploring the SV landscape at a population scale in cattle (Chamberlain et al. 2023) and potentially 
other livestock. For livestock studies, it is critical to consider how to reduce costs per individual 
without unduly compromising on the accuracy of variant discovery. The sequencing read depth is a 
key factor regulating cost, and Nguyen et al. (2023b) have used ONT long-read sequencing to 
explore the impact of read depth on the accuracy of SV discovery. Additionally, to maximise the 
cost effectiveness of long-read sequencing and to enable SV imputation, it is desirable to use these 
same sequences to develop new, or expand existing, whole-genome SNP and INDEL databases. 
Therefore, the aim of this paper was to explore the accuracy of SNP and INDEL discovery in long-
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read sequencing at a range of read depths. Additionally, the paper considers the impact of incomplete 
discovery of these variants for population scale studies or smaller scale studies of recessive 
deleterious mutations. 

 
MATERIALS AND METHODS 

Three Holstein animals were each sequenced at approximately 50X coverage using an ONT 
PromethION sequencer, with flow cell 9.4.1 and ligation kit LSK110. To achieve maximum 
accuracy, the bases were re-called using Guppy v6.1.7 with the ‘super high accuracy’ setting (SUP). 
The output FASTQ files were trimmed using Filtlong (default settings: 
https://github.com/rrwick/Filtlong). Filtered reads were mapped to the ARS-UCD 1.2 reference 
genome (Rosen et al. 2020) using Minimap2 (Li 2018). Clair3 software was used to call SNPs and 
INDELs in individual sequences (default settings: Zheng et al 2022) and for comparison, Longshot 
software was also used to call SNPs (default settings: Edge and Bansal 2019).  

Next, mapped reads at 50X coverage for each individual were subsampled using Sambamba 
(default settings: Tarasov et al 2015) to 3X, 5X, 10X, 15X and 20X coverage and the data at each 
read depth was processed as for the 50X coverage to re-call SNPs and INDELs. For each of the three 
animals, three chromosomes were chosen as technical replicates (chromosome 1, 19 and 25) to 
investigate the accuracy of SNP and INDEL discovery at each of these read depths. The same three 
animals had also been sequenced using short-read Illumina technology at approximately 12X, 15X 
& 18X read depth and were previously processed in Run8 of the 1000 Bull Genomes Project 
according to project guidelines (Daetwyler et al. 2017) with GATK joint variant calling according 
to GATK best practices (DePristo et al. 2011). The SNPs and INDELs discovered in the short-read 
data of the three animals were used as the gold standard ‘truth set’ of variants for comparison with 
the SNPs and INDELs discovered in the long-read sequencing for the same animals. To ensure a 
high quality truth set, we retained only biallelic variants with minor allele count of  > 3, GATK 
Variant Quality Score Recalibration Tranche < 99.0, and indel < 50bp.  

Hap.py software (https://github.com/Illumina/hap.py) was used to compare the variant truth set 
with the SNPs and INDELs discovered in the long-read sequencing that passed default software 
filters at each read depth (‘query sets’). The following three sets of variants were identified from 
this comparison: 1) true-positive variants/genotypes (TP) that match in truth and query variant sets, 
2) false-negative variants (FN) missed in the query set but present in the truth set, and 3) false-
positive variants (FP) that have mismatching genotypes or alternate alleles in query versus truth set. 
The summary statistics calculated were; Recall = TP/(TP+FN) and Precision = TP/(TP+FP). 

  
RESULTS AND DISCUSSION 

The results were calculated for the combined truth variant sets across the three animals and three 
chromosomes, resulting in comparisons for a total of 1,894,775 SNPs and 158,338 INDELs at each 
read depth. As expected, accurate discovery of both SNPs and INDELs in long-read sequence was 
affected by read depth: declining more rapidly once read depth fell below 10X coverage, compared 
to higher read depths of 15X, 20X and 50X. The “recall” statistic (Figure 1A) indicates the 
proportion of variants that were discovered in the long-read data that were also in the truth set (“true 
positives”: TP). There was excellent recall of SNPs from the long-read sequencing at 10X to 50X 
read coverage using Clair3 software, plateauing at between 0.95 to 0.99 (i.e. only 1 to 5% of SNPs 
in the truth set were not detected in the long-read sequence). Even at 5X coverage, Clair3 only 
missed 14% of SNPs. Longshot software showed much lower SNP recall, particularly at lower read 
coverage and even at 50X read depth 17% of SNPs were missed. This was expected because 
Longshot implements a less sophisticated variant calling approach (pileup only) compared to Clair3 
which combines both pileup and full alignment in a deep learning-based variant calling algorithm 
(Zheng et al. 2022). Furthermore, Longshot is recommended for use with at least 30X read depth 
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and it cannot be used to call INDELs. The precision of SNP discovery was very similar for both 
Clair3 and Longshot (Figure 1B) and suggested that the proportion of false positives among all SNPs 
discovered in long-read sequences was between 12 to 28%. The precision was lower than for high 
quality human data reported to be 0.99 at 20X coverage (Zheng et al. 2022). However, there are 
several reasons why we would expect our precision to be lower: (1) our strict filtering of variants to 
create the ‘truth set’ from the short-read data would likely result in a proportion of real SNPs and 
INDELs being excluded so if found in the long-read data they appear to be false positives, (2) the 
human field has put tremendous effort into creating high quality truth sets through the “Genome in 
a Bottle Consortium” with higher short-read depth (35X) (e.g. Olson et al. 2022) while our lower 
coverage short-read data likely missed some real variants, and (3) Clair3 software algorithms were 
trained on human data with difficult to map regions excluded. Thus, our less accurate truth set 
compared to the human field will inflate the estimated false positive rate and this biases downwards 
our estimate of precision. There is clearly a need for high accuracy truth sets in cattle for improved 
benchmarking. 

The recall and precision for INDELs using Clair3 was much lower than for SNPs, for example, 
recall ranged from 0.27 at 3X to 0.89 at 50X read depth (Figure 1a). Additionally, the recall rate 
kept improving with increased coverage compared to the plateau observed for SNP at around 15X 
coverage. As mentioned above, there is likely to be some downward bias in the estimate of precision. 
However, even in more accurate human data the precision for INDELs at 20X coverage was lower 
than for SNPs at around 0.87.  INDEL calls in long-read data are known to be more error prone than 
for short-read sequence, particularly in homopolymer regions (consecutive repeat bases) where 
sequencing difficulty creates false positives (Amarasinghe et al. 2020; Delahaye and Nicolas 2021). 

The high recall rates for SNPs suggests that long-read data of at least 10X coverage is likely to 
be of considerable value in augmenting or developing whole-genome SNP databases at population 
scale. This would be convenient because the study by Nguyen et al. (2023b) also suggested that read 
depth of ≥ 10X is preferable for population scale structural variant discovery. Furthermore, if the 
false negative rate for SNP in long-read data is around 10% or less and is largely sporadic (i.e., there 
is a different set of SNPs missing in each animal) this should enable highly accurate imputation of 
the missing SNPs where there are reasonable sized sequence databases. We examined the 
distribution of missing variants in our animals at 10X read depth (Chromosome 1) and found that 
only 4% of missing SNPs overlapped between each pair of animals on average. However, the 
overlap of the missing INDEL sets was much higher than for SNPs, averaging 16% between pairs 
of animals at 10X coverage. Therefore, if these INDELs are missed in most or all individuals and 
given the higher overall missing rate of INDELs compared to SNPs, then accurate imputation would 
require an existing reference population with accurately genotyped INDELs. If SNPs and SVs are 
accurately genotyped in long-read data then it will be possible to impute SVs into large populations 
of cattle with SNP panel genotypes using a reference population with long-read sequences. 

Although the results suggest relatively high false positive rates, if there are existing short-read 
databases of variants (such as the 1000 Bull Genomes project: Hayes and Daetwyler 2019) then 
these could be used as a filter/training set to help remove false positive SNPs and INDELs from 
long-read data.  In the case where research may be undertaken to discover a mendelian mutation of 
large effect in a small cohort of animals, Nguyen et al. (2023b) recommend long-read sequencing at 
≥ 20X coverage for high accuracy discovery of a causal SVs in the data. Thus, if the mendelian 
mutation might equally be a SNP or INDEL, and no short-read sequence was available on the same 
animals, then sequencing (≥ 20X) of parent-offspring trios would be necessary to filter putative false 
positive variants (particularly INDELs) that do not show mendelian inheritance (although this would 
remove de novo mutations). Although INDELs constitute around 10% of all variants in Run8, they 
are important. For example, in Run8 of the 1000 Bull Genomes project Variant Effect Predictor 
software (VEP: McLaren et al. 2016) annotated 0.28% of INDEL, versus only 0.01% of SNP, to 
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have a high impact on a protein (i.e. loss of function, truncation and/or triggering nonsense mediated 
decay). A caveat of our study is that the ONT flow cell 9.4.1 used here for long-read sequencing is 
now superseded by a newer flow cell that should increase accuracy. Nonetheless, our results provide 
a useful benchmark, with the expectation that a range of advances will result in improved accuracy. 

Figure 1. Recall (A) and precision (B) for SNP and INDEL discovery in long-read sequence of 
different read depths, using Clair3 (SNP and INDEL) and Longshot software (SNP only) 

CONCLUSIONS 
This study shows that with the use of existing truth sets of SNPs and INDELs, we can curate 

useful SNP and INDEL databases from long-read sequences. While there are some limitations 
particularly for small INDEL discovery in long-read sequence, it is likely that this will continue to 
improve with modifications in hardware, chemistry and variant calling algorithms. Also, there is a 
need to further develop truth sets in cattle of sequence variants for future benchmarking studies. 
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