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SUMMARY 

Obtaining phenotypic measures of feed efficiency requires measuring intake levels and growth 
rates over a period of approximately 8 weeks (2 weeks of adaption and 6 of measurement), which is 
expensive and low-throughput. Rumen microbial community (RMC) profiles have shown to be 
associated with feed efficiency traits in ruminants and so may be a suitable proxy. Using a dataset 
of 1298 animals across 4 genetically linked flocks that were measured through a feed intake facility 
(FIF), we predicted feed efficiency from RMC profiles and obtained higher prediction accuracies 
compared to host genomic prediction. The genetic and phenotypic correlations between feed 
efficiency traits measured from the FIF and predicted from RMC profiles were estimated as 0.64 
and 0.33 for mid-trial intake and 0.47 and 0.30 for residual feed intake (RFI). These results suggest 
RMC profiles have the potential to be used as a proxy for feed efficiency traits in ruminants. 

 
INTRODUCTION 

Feed efficiency relates to the amount of feed an animal consumes to produce a fixed amount of 
product. There are many economic and environmental benefits from breeding for more feed efficient 
animals, such as reduced feed costs and reduced greenhouse gas emissions per unit of product. Feed 
efficiency traits are likely to play an important role in future breeding programs as competition for 
land resources intensifies and targets for greenhouse gas emissions are introduced. Various traits 
have been proposed to quantify feed efficiency, but all generally require measuring intake levels 
over an extended period. Although specialised facilities have been developed to measure intake, 
they are expensive to operate and only a limited number of animals can be measured at a given time. 
A potential proxy for feed efficiency in ruminants is the rumen microbial community (RMC) profile, 
as the fermentation process in the rumen, responsible for breaking down feed to produce volatile 
fatty acids that provide the majority of energy to ruminants, is driven by the microorganisms in the 
RMC. Previous studies have found associations between the rumen microbiome and feed efficiency 
in cattle (Li et al. 2019) and sheep (Hess et al. 2022). RMC profiles have previously been shown by 
Bilton et al. (2022) to be a viable proxy for methane traits. In this study, we extend this work to 
investigate the feasibility of RMC profiles as a proxy for feed efficiency. 

 
MATERIALS AND METHODS 

Experimental animals and protocols applied in this study were approved by the AgResearch 
Grasslands (Palmerston North, NZ) AgResearch Ruakura (Hamilton, NZ) Animal Ethics 
committees (approvals 13563, 13892, 14221, 15047 and 15386). 

Animals & phenotypes. Data from 4 genetically linked performance-recorded sheep flocks 
were obtained and consisted of 1298 ewe lambs that were born between 2014 and 2020 (Table 1). 
Feed efficiency traits were measured using a sheep Feed Intake Facility (FIF) based near 
AgResearch’s Invermay campus, Mosgiel, New Zealand. The lambs were measured at 
approximately 9 months of age in cohorts of approximately 200 animals across 42 days after a 14-
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day introductory period and were feeding on alfalfa pellets from automated feeders. The cohorts for 
the animals born in 2014 and 2015 were also separated into five pens of equal size. A full description 
of the experiment and data collection is given in Johnson et al. (2022). Feed efficiency traits that 
were calculated were mid-trial intake (MidIntake), mid-trial metabolic liveweight (MidLWT), and 
residual feed intake (RFI) was computed as described in Johnson et al. (2022). The mid-trial traits 
were obtained as predictions at day 21 of the measurement period from a linear model of the 
measured trait values. Additional animal information and measurements were downloaded from the 
Sheep Improvement Limited database (Newman et al. 2000). The animals used in this study are a 
subset of the animals used by Bilton et al. (2022). 

 
Table 1. Sample numbers by flock and year of birth 
 

Flock Dataset Year of Birth Total 
  2014 2015 2016 2019 2020  
1 Training 87 145 154   386 
2 Training 103 141 140   384 
3 Training  95 93   188 
4 Validation    158 182 340 
Total  190 381 387 158 182 1298 

 
Rumen microbial sampling & profiles. Rumen samples were collected from all animals via 

stomach intubation after the animals had been in the FIF for at least 4 weeks (2-week introductory 
period and 2 weeks of measurements). The protocol described in Bilton et al. (2022) was used to 
preserve, process and sequence the samples. The freeze-dried method (Kittelmann et al. 2014) was 
used for all samples except for the born 2020 samples from flock 4, which were preserved using the 
TNx2 solution (Budel et al. 2022). Sequencing was performed using a restricted enzyme-reduced 
representation sequencing approach (Hess et al. 2020) using PstI and run across multiple flowcells 
on an Illumina HiSeq2500 or NovaSeq6000. The reference-free pipeline developed by Hess et al. 
(2020) was used to generate a count matrix of tags (unique raw sequences trimmed to 65 bp) from 
which a microbial relationship matrix (MRM) was computed.  

Animal genotyping. To investigate prediction of feed efficiency traits from host genomics and 
comparing to the RMC profiles, a subset of the genomic relationship matrix (GRM) computed in 
Bilton et al. (2022) for animals included in this study was used. This GRM was computed in KGD 
(Dodds et al. 2015) using VanRaden method 1 with non-missing SNPs for each matrix entry and 
assuming missing data is at random. Animals were genotyped on a variety of nested SNP arrays. 
SNPs with a call rate of 70% were retained, resulting in 14,923 SNPs in the combined dataset. 

Statistical models. Data was split into (a) a training set consisting of the 958 ewes from flocks 
1 to 3, and (b) a validation set consisting of the 340 animals from flock 4. Univariate mixed models 
fitted to the training data were of the form: 

yijkl = μ + cgj + aodk + brrl + ai + eijkl      (1) 
yijkl = μ + cgj + aodk + brrl + mi + eijkl      (2) 

where μ is the overall mean, cgj is the jth contemporary group based on the interaction of flock, birth 
year, cohort and pen, aodk is the effect of the kth age of dam (2, 3, 4+), brrl is the effect of the lth 
birth/rear rank group (1/1+, 2/2, 2+/1, 3/2, 3+/3+), yijkl denotes the feed efficiency trait (MidIntake, 
MidLWT, RFI), mi ~ N(0,σm

2M), ai ~ N(0,σg
2G), eijkl ~ N(0,σe

2I), M denotes the MRM, G denotes 
the GRM and I is the identity matrix. We refer to the microbial values, mi, as the “RMC feed 
efficiency trait” since it provides an estimate of the feed efficiency trait yijkl (MidIntake, MidLWT, 
RFI) from the RMC profiles. Predictions of the microbial values (𝑚𝑚�𝑖𝑖) and the animals direct genomic 
breeding values (𝑎𝑎�𝑖𝑖) were made for the animals in flock 4 (validation set). Prediction accuracies 
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were computed as the correlation between 𝑚𝑚�𝑖𝑖 or 𝑎𝑎�𝑖𝑖 and the adjusted phenotype (yi
*) defined as the 

residuals from the linear model: 
yijkl = μ + cgj + aodk + brrl + eijkl       (3) 

fitted using both the training and validation sets. The microbiability (the proportion of variance of 
feed efficiency trait explain the RMC profiles) was computed as 𝜎𝜎�m

2/(𝜎𝜎�m
2 + 𝜎𝜎�e

2), and the heritability 
was computed as 𝜎𝜎�g

2/(𝜎𝜎�g
2 + 𝜎𝜎�e

2) using all 1298 animals from both the training and validation sets.  
   To assess the heritability and genetic correlation of the FIF and RMC feed efficiency traits for the 
validation animals, a bivariate model of the form: 

𝑚𝑚�𝑖𝑖 = μ1 + a1i + e1i 
 yi

* = μ2 + a2i + e2i 
was fitted using only the animals from the validation set, where μ1, μ2 are the overall means, a1i ~ 
N(0,σ1g

2G), a2i ~ N(0,σ2g
2G), e1i ~ N(0,σ1e

2I), and e2i ~ N(0,σ2e
2I). All models were fitted in ASREML 

v4.2 (Gilmour et al. 2015). The estimated heritability was computed as 𝜎𝜎�1g
2/(𝜎𝜎�1g

2 + 𝜎𝜎�1e
2) for the 

RMC traits and 𝜎𝜎�2g
2/(𝜎𝜎�2g

2 + 𝜎𝜎�2e
2) for the FIF traits. 

 
RESULTS AND DISCUSSION 

Prediction accuracies of the feed efficiency traits for each birth year of flock 4 and overall from 
RMC profiles and host genomics is given in Table 2. The RMC profiles yielded higher accuracies 
for the individual cohorts for all three traits compared to host genomics with accuracies ranging 
between 21% and 42%. These accuracies were similar to those observed for methane traits predicted 
form RMC profiles in sheep (Bilton et al. 2022). The microbiability estimates, which ranged 
between 0.41 and 0.68, were also larger than the corresponding heritability estimates for all traits 
when computed using both the training and validation animals.    
 
Table 2. Prediction accuracies for feed efficiency traits predicted from RMC profiles (M) and 
host genomics (G) for the animals in flock 4 

 
Trait Model Equation  Accuracy  Microbiability  Heritability 
   b19 b20 b19 & b20 (All; n=1298) (All; n=1298) 
MidIntake M 1 0.410 0.257 0.316 0.68 ± 0.06  
 G 2 0.096 0.145 0.123  0.34 ± 0.06 
MidLWT M 1 0.312 0.210 0.244 0.41 ± 0.08  
 G 2 0.230 0.101 0.163  0.39 ± 0.06 
RFI M 1 0.417 0.220 0.313 0.54 ± 0.07  
 G 2 -0.047 0.058 0.007  0.32 ± 0.05 

 
Table 3 reports the genetic parameter estimates from the bivariate analysis using the validation 

animals from flock 4. Heritability estimates for feed efficiency from FIF were slightly higher than 
previous reported (Johnson et al. 2022) and roughly double the heritability estimates of the 
equivalent RMC feed efficiency trait. The genetic correlation between the FIF and RMC feed 
efficiency traits were moderate at 0.64 (MidIntake) and 0.46 (RFI), while the phenotypic correlations 
were lower at around 0.32 (MidIntake) and 0.30 (RFI). These results are very similar to those 
reported by Bilton et al. (2022) for methane traits, except that the genetic correlations are lower for 
the feed efficiency traits. A bivariate analysis for MidLWT trait was also performed but the 
heritability estimate for the RMC trait was close to zero and so the results are not reported here. 
Nevertheless, these results suggest there is potential for using RMC profiles as a proxy for feed 
efficiency traits, although the small number of animals used in this study means follow-up studies 
are needed to confirm these results. 
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Table 3. Heritability, genetic and phenotypic correlations and phenotypic variances from a 
bivariate analysis of feed efficiency measured from the FIF and predicted from RMC profiles 
using flock 4 validation animals 

Parameter MidIntake RFI 
FIF RMC FIF RMC 

Heritability 0.44 ± 0.16 0.15 ± 0.11 0.45 ± 0.14 0.26 ± 0.13 
Phenotypic variance 76785 ± 6610 7772 ± 606 19166 ± 1625 1094 ± 87 
Genetic correlation 0.64 ± 0.30 0.46 ± 0.26 
Phenotypic correlation 0.33 ± 0.05 0.30 ± 0.05 

CONCLUSION 
Our results provide evidence that microbial predictors are a suitable proxy for feed efficiency. 

As determining feed efficiency in ruminants via direct phenotypic measures is difficult and 
expensive, RMC profiles provide opportunities for ranking animals based on their feed efficiency 
for application in breeding programs. 
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