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SUMMARY 

The Lacaune dairy sheep breed split in 1972 into two subpopulations with no exchange of genetic 
material but a single genetic evaluation and same selection objectives. Previous work has shown 
that this led to the creation of two disconnected but genetically close subpopulations. Previous work 
also demonstrated that the currently performed combined genomic evaluation of both 
subpopulations is slightly advantageous, in terms of accuracy, as opposed to within-subpopulation 
genomic evaluations. This paper focuses on the study of the estimated SNPs effects related to the 
three training populations: composed of one, the other or both subpopulations. The estimated SNP 
effects are strongly correlated across years within the training population. When subpopulations are 
predicted separately, there is low correlation between estimated SNP effects, but when they are 
predicted jointly, there is a strong correlation of the joint estimate with subpopulation estimates. The 
regression of “early” (only based on genomic information) on “late” (including progeny 
information) SNP predictions is lower than one for one of the subpopulations but not for the other, 
and close to one for the joint prediction. This shows some bias in this particular subpopulation whose 
origin is not understood. 

 
INTRODUCTION 

Selection in French Lacaune dairy sheep started in the 70’s with Genomic selection starting in 
2015. Each year, young AI rams are selected, among genotyped prospective rams, based on their 
Genomic Estimated Breeding Values (GEBVs) and used to inseminate females. The accuracy of 
Milk Yield BV of young genotyped rams (AI candidates) increased from 0.32 to 0.47 (i.e. a relative 
increase of 47%), when transitioned from pedigree-based to genomic based selection (Baloche et al. 
2014). However, it is of interest to understand if this genomic accuracy can be enhanced further by 
increasing the size and optimizing the setting up of the reference population. 

In 1972, the structure of genetic improvement split, with each flock participating in the AI 
programs of only one of two existing ram AI studs (breeding companies BC) 1 or 2), exclusively, 
i.e. a flock only sends rams and receives semen to and from the chosen BC. This created in fact two 
different subpopulations (1 and 2), subpopulations which do not exchange as breeders rarely 
exchange sheep and the flux of males and semen is handled by the BC within their participant flocks. 
Moreover, flocks respect the initial assignation of flocks to BC. Thus, for the last 5 decades, flocks 
have been contributing rams to a single BC and receiving semen from a single BC. In the following, 
we will use the wording “subpopulation” to indicate the set of animals belonging to flocks attached 
to each BC.  

A first study (Wicki et al. 2023) revealed a low genetic differentiation between the two 
subpopulations observable, on the one hand, by a low Fst value (0.02), and on the other hand by the 
results of a Principal Component Analysis (PCA) of the genomic relationship matrix. Indeed, this 
PCA shows two distinct groups corresponding to each BC, separated on the second component. 
However, the percentage of variance explained (1.6%) implies that most variation is within-
subpopulation, not across. Pedigree analyses showed a low and constant average pedigree 
relatedness between BC which confirms the very low genetic exchanges between companies. 
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Finally, Wicki et al. (2023) observed a small gain in GEBVs accuracy from the evaluations with 
training populations of a single BC to the evaluation based on combined reference population.  

In this paper, we focus on the study of estimated SNPs effects obtained from genomic evaluations 
based on reference populations using one company (BC1), the other (BC2) or both of them together 
(T). We compare SNP effects across years, and across the three possible reference populations.  
 
MATERIALS AND METHODS 

This study used all the pedigree, genotypes (50K Illumina chip OvineSNP50) and phenotypic 
data obtained from regular performance recording of Milk Yield from 1972 to 2021 available in 
Lacaune dairy sheep (Table 1). The correlation between allele frequencies of each subpopulation is 
0.905. 
 
Table 1. Number of animals in the pedigree, number of records and animals in records and 
number of genotyped animals 
 

 
Genomic prediction based on different reference populations. We performed genomic 

evaluations according to several scenarios in which the subpopulations were studied together or 
separately (Table1). In two scenarios, only the reference population of one subpopulation (BC1 and 
BC2) was included in the prediction model. In the scenario Together (T), information of both 
subpopulations was included.  

For all the genetic evaluations we used an animal model ssGBLUP with metafounders as detailed 
in Wicki et al. (2023) using blup90iod2 (Tsuruta et al. 2001). We used postGSf90 to compute SNPs 
effects (Tsuruta et al. 2001; Aguilar et al. 2010), i.e. SNP effects are backsolved from GEBVs of 
genotyped individuals.  

Validation. The scenarios were compared using the LR method (Legarra and Reverter 2018) but 
applied to SNP effects. We defined as “whole” the evaluation including all the phenotypes available 
until 2021. We compared the SNP effects estimated from this evaluation with SNP effects estimated 
from “partial” evaluations in which the phenotypes were truncated, i.e. phenotypes after a cut-off 
date were deleted, with cut-off dates ranging from 2015 to 2019. The correlation shows stability of 
SNP effects whereas the regression of SNP estimates on “whole” on SNP estimates on “partial” is 
expected to have a value of 1 for unbiased predictions. 
 
RESULTS AND DISCUSSION 

We observe very high correlations of estimated SNPs effects (Figure 1) across years within each 
reference population (above 0.77, 0.87 and 0.77 respectively for reference subpopulation 1, 
subpopulation 2 and both), which is reassuring in regards to the correctness of the model and the 
stability of the genomic predictions, especially for the combined reference population. The 
correlation is slightly higher for subpopulation 2 across years although we don’t have an explanation. 
The low correlations between subpopulations 1 and 2 (below 0.28) are on line with previous studies 
investigating combined genomic evaluations where differences in SNPs effects are observed 
according to the reference population design. Indeed, in our previous study (Wicki et al. 2023) we 
observed that “indirect” genomic predictions using SNP estimates from one subpopulation to obtain 

Population Animals in the 
pedigree 

Animals with 
unknown 

parent(s) (%) 

Number of 
records 

Animals 
with 

records 

Animals 
genotyped 

BC 1 1,087,161 11.5% 2,968,758 908,116 16,792 
BC 2 1,060,862 13.5% 3,041,612 874,329 12,225 
T (BC1+2) 1,974,901 10.8% 6,010,370 1,782,445 29,017 
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GEBVs in the other subpopulation had very low accuracy of 0.10 on average. In addition, these 
results show that, when analysing both subpopulations together, the model forces the SNP effects to 
be “portable” across breeds, whereas the analysis of populations alone does not impose this. The 
correlation between “Together” with each subpopulation is lower than 1 and lower than correlations 
within each subpopulation, yet the “Together” evaluation increases accuracy of GEBVs (Wicki et 
al. 2023) from 0.56 to 0.60 for subpopulation 1 and from 0.45 to 0.55 for subpopulation 2 on average 
(ratios of accuracies). We believe that the increase in accuracy from separate subpopulation analyses 
comes from the increase in the reference population size.  

Figure 1. Correlation of estimated SNPs effects between all the studied reference populations 
(“BC1” = reference population based on subpopulation 1 only, “BC2” = reference population 
based on subpopulation 2 only, “T” = reference population based on both subpopulations, 
“W” = evaluation including all phenotypic information until 2021, “2015” to “2019” = 
evaluation with phenotypic information truncated after year 2015 to 2019) 

We expected regression slopes close to 1 between SNPs effects whole and partial in each 
reference population. Similarly, we expected slopes slightly different from 1 between reference 
populations BC1 and T, BC2 and T; but far from 1 between BC1 and BC2. We indeed observed low 
slopes (below 0.31) when estimated SNP effects from one subpopulation were regressed on 
estimates from the other subpopulation. Within training population BC1, the slope increases over 
cohorts from 0.58 to 0.83, whereas within training population BC2 the slopes are very close to 1. 
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This would suggest some bias in BC1 but not in BC2 – the reasons for that are unknown. Slopes 
between single and combined populations are also variable across cohorts and BC but not too far 
from 1. Technically, they don’t need to be 1 because the “partial” Together contains information 
that it is not in the “whole” subpopulation.   

Table 2. Slopes of regression between estimated SNPs effects “whole” on “partial” 

CONCLUSIONS 
Although the evaluations within each subpopulation alone or combined lead to very similar 

results, this study showed that the estimation of SNP effects was different depending on whether 
each of the two Lacaune subpopulations was considered separately or together. However, the 
estimation of SNP effects across subpopulations were too different to be portable, leading to very 
poor-quality cross-subpopulations evaluations. 
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Cohort 

Partial Whole 2015 2016 2017 2018 2019 

BC1 BC1 0.58 0.64 0.71 0.77 0.83 
BC2 0.25 0.28 0.30 0.30 0.31 
T 0.36 0.39 0.43 0.47 0.50 

BC2 BC1 0.22 0.22 0.23 0.23 0.24 
BC2 1.00 1.01 1.02 1.01 1.00 
T 0.35 0.38 0.41 0.43 0.46 

T BC1 0.62 0.96 0.73 0.78 0.84 
BC2 0.94 0.92 0.96 0.95 0.94 
T 0.60 1.00 0.72 0.78 0.84 




