
Proc. Assoc. Advmt. Anim. Breed. Genet. 25: 158 - 161 

158 

ASSESSING THE VALUE OF METAFOUNDERS FOR GENOMIC PREDICTION IN 
AUSTRALIAN SIMMENTAL BEEF CATTLE 

 
D.J.A. Santos, N.K. Connors, P.M. Gurman, M.H. Ferdosi, S.P. Miller and A.A. Swan  

 
Animal Genetics Breeding Unit*, University of New England, Armidale, NSW 2351Australia. 

 
SUMMARY 

The “metafounders” framework is used to augment relationship matrixes to accommodate 
genetic structure in founder populations, and can be estimated from genotypes, making it useful to 
align pedigree and genomic relationships in single-step genomic analyses. This paper aimed to 
assess the value of metafounders in the genomic evaluation of beef traits in Australian Simmental 
cattle, and in particular the possibility of collapsing genetic groupings based on metafounder 
similarity. Estimated breeding values from metafounder models with different groupings had similar 
predictive ability across 12 beef traits, while models with higher weighting on genomic relative to 
pedigree information tended to perform better.  
 
INTRODUCTION 

Metafounders (MF) are pseudo-individuals included in the pedigree that allow accounting for 
genetic heterozygosity and relationships within and between base populations, considering unknown 
ancestral populations (Legarra et al. 2015). The MF approach may be advantageous because it 
derives compatibility between genomic (G) and pedigree (A) relationship matrices by modifying A 
to align with G (Garcia-Baccino et al. 2017). Currently, the BREEDPLAN genetic evaluation for 
Australian Simmental uses 25 genetic groups, defined based on the country of origin, breed, and 
year of birth of animals with unknown parentage. The influence of all these genetic groupings and 
structures in the pedigree of Australian Simmental need to be considered in single-step genetic 
evaluations. This study aimed to assess the utility of MF in the genomic evaluation of beef traits in 
Australian Simmental, considering the predictive ability with different MF assignment strategies in 
the pedigree.  

 
MATERIALS AND METHODS 

Data. The genomic data consisted of 8,245 genotyped animals with 59,678 SNPs. Traits 
analysed included eight live ultrasound scan body composition traits, eye muscle area, intramuscular 
fat, P8 fat, and rib fat in bulls and heifers (BEA, BIM, BP8, BRF, HEA, HIM, HP8 and HRF), and 
four body weight traits, birth (BWD), weaning (WWD), yearling (YWD), and final weight (FWD). 
Numbers of genotyped and pedigree-only animals recorded for each trait are shown in Table 1. 

MF procedures. Metafounders were included in single-step models using an adapted inverse 

relationship matrix defined as 𝐇𝐇Γ−1 = 𝐀𝐀Γ−1 + �0 0
0 𝐆𝐆−1 − 𝐀𝐀22Γ−1

� , where 𝐀𝐀𝚪𝚪  is the pedigree 

relationship matrix augmented by the “gamma” matrix modelling within and across base population 
relationships, 𝐀𝐀22Γ  is the sub-matrix of 𝐀𝐀𝚪𝚪  for genotyped animals, and 𝚪𝚪  is the gamma matrix 
(Legarra et al. 2015). The matrix G was obtained as 𝜆𝜆𝐆𝐆𝑚𝑚 + (1 − 𝛌𝛌)𝐀𝐀22Γ , where 𝐆𝐆𝑚𝑚is the genomic 
relationship matrix as calculated via VanRaden (2008), and 𝜆𝜆 is the weighting factor between 
genomic and pedigree relationship matrices, set as either 0.5 or 1. For 𝜆𝜆=1 a small positive value 
was added to the diagonal of 𝐆𝐆𝑚𝑚 to ensure it was invertible. 

As described above, the genetic groups used to define MF groups have been defined based on 
country of origin, breed, and year of birth of animals with unknown parents. In addition to 12 
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Simmental groups, there were 4 substantial groups of Angus origin, with minor contributions from 
Hereford, European, Indicus, and unrecognised breeds. 

Estimation of 𝚪𝚪 was performed via generalised least squares (Garcia-Baccino et al. 2017) using 
the WOMBAT software package (Meyer 2007). The correlations between MF were calculated from 
the 𝚪𝚪 estimated, and the MF were grouped using multivariate clustering techniques.  

Genetic evaluation and prediction design. Prior to cross-validation, the variance components 
for each trait were estimated using all data available with the WOMBAT program (Meyer 2007), 
and these parameters used for BLUP analyses. Variance component estimation and EBV predictions 
using ssGBLUP with MF were performed using a single-trait animal model with contemporary 
groups as a fixed effect, direct genetic effects fitted as random for all traits, and maternal genetic 
effects fitted for BWD and WWD only (uncorrelated with direct genetic effects). Phenotypes were 
pre-adjusted for fixed effects apart from contemporary group. 

The performance of analyses with different MF groupings was compared across traits using a k-
fold cross-validation approach with k=5. For the k-folds analyses, animals with phenotypic and 
genotypic data were randomly split into five parts. EBVs were calculated 5 times for each trait, 
omitting the phenotypes of animals in each validation set such that their EBVs were then predicted 
from genomic and pedigree relationships (“part” EBVs). Then, the accuracy, stability and dispersion 
of the predictions were assessed. Accuracy was calculated as the correlation between part EBV and 
phenotypes of validation animals for all traits except for the two maternally influenced traits (BWD 
and WWD) for which the LR method was used (Legarra and Reverter, 2018). Stability was 
calculated as the correlation between part and full EBVs for the validation animals, and bias as the 
regression of part EBVs on phenotypes. Results for each statistic were averaged across folds. 
 
RESULTS AND DISCUSSION 

Gamma matrix and MF clustering. The matrix 𝚪𝚪 was estimated for 25 MFs (MF25) and the 
correlations between MFs grouped by similarity are shown in Figure 1. The diagonal “self-
relationship” elements of 𝚪𝚪 ranged from 0.29 to 0.82 with an average of 0.47 (the possible range in 
values is 0 to 2 with higher values indicating higher inbreeding). The average for Simmental groups 
was 0.43 and for Angus was 0.56. Higher values tended to be for smaller groups which by default 
have less diversity. Corresponding ancestral correlations were typically >0.8 within the Simmental 
and Angus groups, and approximately 0.2 to 0.6 between other groups (Figure 1). 

 

  
 
Figure 1. Metafounder clustering results: top left = Gamma matrix (𝜞𝜞) estimated for 25 genetic 
groups, top right = Gamma correlation matrix with clustering and dendrogram of the genetic 
groups 
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Through a k-means algorithm, the MF were collapsed progressively into 15, 14 and 12 clusters, 
and new 𝚪𝚪 matrices estimated. In all cases the 3 most similar groups of Angus origin were collapsed, 
while 12 Simmental groups were collapsed into 4 groups in MF15, 3 groups in MF14, and 1 group 
in MF12. 

Genetic Parameters. Heritability estimates from the MF25 models are shown in Table 1. 
Estimates for MF12, 14, and 15 were very similar to MF25 and are therefore not shown. These 
results are similar to the heritabilities assumed in the BREEDPLAN analysis for the breed, although 
generally marginally higher. According to Legarra et al. (2015), genetic variance estimates obtained 
from MF models should not be interpreted as a genetic variance within the population but as a 
parameter of the statistical model used for the analysis. Heritability estimates tended to be higher 
for models with λ = 0.5. 

 
Table 1.Number of genotyped (Geno) and pedigree only animals (Ped) with records for each 
trait, and heritability estimates for MF25 models with λ=1 or 0.5  

 
Trait Geno Ped Heritability (λ=1) Heritability (λ=0.5) 
BEA 1,800 21,017 0.32 0.33 
BIM 1,680 11,339 0.28 0.28 
BP8 1,796 20,986 0.37 0.42 
BRF 1,795 20,889 0.28 0.31 
HEA 483 15,787 0.35 0.36 
HIM 482 9,417 0.42 0.42 
HP8 479 15,759 0.56 0.57 
HRF 476 15,746 0.47 0.48 
BWD 3,068 111,262 0.40 0.40 
WWD 2,786 115,209 0.27 0.40 
YWD 2,842 118,646 0.42 0.42 
FWD 1,647 64,860 0.44 0.45 

 
Cross-validation. Accuracies across traits for MF models with λ = 0.5 and 1 are shown in Figure 

2. There was no effect on accuracy for analyses with different MF groupings, but an increase in 
accuracy was observed with λ = 1 for body weight traits. This trend was not observed for body 
composition traits. Stability of part versus full EBVs (Figure 3) was also higher for models with λ = 
1, but again there was no difference between MF groupings. Results for dispersion (not shown) were 
similar across models, and sufficiently close to the expected value of 1 across traits. These results 
suggest reasonable prediction accuracy can be obtained using MF models, with some evidence of 
higher accuracy with higher λ values. However, there was no advantage in aggregating groups based 
on similarity.  

Before implementation, additional studies should be performed to compare these MF analyses 
with traditional genetic groups models, and to investigate the accuracy of estimating MF 
relationships for groups with low numbers of genotypes. 
 
CONCLUSIONS 

Although patterns of similarity between metafounder groups were evident, generally reflecting 
breed of origin, there was little apparent benefit in collapsing groups. Alternatively, simplification 
of groups may be possible if desired, providing the performance differences between groups to be 
collapsed are minimal.  
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Figure 2. distribution of cross-validation accuracy across traits for MF models with λ=1 or 
0.5 

Figure 3. distribution of cross-validation stability of EBVs across traits for MF models with 
λ=1 or 0.5 
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