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SUMMARY 
Using whole-genome sequence data in genomic prediction is expected to improve the predictive 

ability since the whole genome sequence may contain causal variants. This study aimed to compare 
the accuracy of genomic prediction with three densities of genotypes, 50k, high- density and whole-
genome sequence. The genomic prediction was performed to estimate breeding values for selected 
growth and carcass traits in Australian Angus beef cattle. Genotype imputation was conducted to 
retrieve genotypes at high-density and whole-genome sequence level. The dataset was split into 
testing and reference group to compare the accuracy of breeding values obtained from different 
genotype densities and for animals with different degrees of relatedness to the reference. The 
prediction accuracies were similar across three different genotype densities for the traits studied. We 
found no substantial improvement in genomic prediction accuracy using the whole-genome 
sequence data in this study. 

 
INTRODUCTION 

Genome-based evaluations, commonly known as genomic prediction, have become a standard 
approach for estimating livestock breeding values. Genomic prediction can improve the rate of 
response to selection by shortening generation interval and gaining more accuracy in predicting 
breeding value, especially for young animals and difficult-to-measure traits. The accuracy of the 
genomic prediction depends on two major factors; the number of DNA-tested animals recorded for 
the objective trait and the number of DNA markers used in genotyping. Current genomic evaluations 
use standardised genotyping arrays ranging from 10k to 700k in density, with 50k being the most 
common platform (Goddard et al. 2011). The advent of next-generation sequencing technologies 
has made it possible to obtain whole-genome sequence data at a reasonable price and such data could 
be used in routine genetic evaluations. Moreover, genotype imputation is a common practice to 
obtain whole-genome sequence with a reliable accuracy, for animals genotyped with lower densities.  

Whole-genomic sequence is expected to improve the accuracy of genomic prediction since it 
should include actual causal variants in the data instead of depending on the association between the 
QTLs and markers (Meuwissen et al. 2016). The objective of the present study was to examine the 
benefit of the sequence data for genomic prediction in Australian Angus beef cattle. Different 
genetic marker densities, including medium-density 50k, high-density 700k and whole genome 
sequence were used to examine the potential improvement in prediction ability when increasing the 
marker density for 3 economically important traits in Australian Angus cattle. 

 
MATERIALS AND METHODS 

Animal and data. Data was obtained from the Angus Australia database. The dataset analysed 
was for animals born between 2013 and 2022. Animals were measured for yearling weight 
(400dWT), final weight (600dWT) and carcass intramuscular fat (CIMF) (Table 1.). Contemporary 
groups (CG) were formed according to BREEDPLAN procedures (Graser et al. 2005) by 
concatenating herd, year of birth, sex, birth type, management group defined by breeders and 
measurement date. The CGs were subdivided by age at measurement with slices of 45 days for the 
growth traits and slices of 60 days for CIMF. Genotypes for animals were also received from Angus 
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Australia. Medium-density genotype data (50k) were from the previous study by Aliloo and Clark 
(2021). A total of 1,076 animals were genotyped with 700k genotype array (HD). Genotype data 
contained only bi-allelic SNPs located on the autosome. 

Genotype imputation. To obtain the whole-genome sequence, genotype imputation was 
performed. Whole-genome sequence data from 440 Angus bulls from the 1000 bull genome project 
(Hayes and Daetwyler 2019) were used as a reference for the imputation. The 50k genotype samples 
were imputed to the whole-genome sequence (WGS) level with a stepwise genotype imputation, 
from 50k to HD, then to WGS. The genotype imputation was performed with Minimac4 (Das et al. 
2016) and Eagle (Loh et al. 2016) was used for pre-phasing with default parameters. The imputation 
reference panel was a combination of samples with HD and reduced genotypes from the WGS. The 
imputation accuracy relied on Miminac4 internal quality metric (Rsq). Post-imputation quality 
control was applied to the imputed genotypes. Quality control filtered out those SNPs with 
Miminac4 Rsq < 0.30 and minor allele frequency (MAF) < 0.05. This resulted in 44,827, 522,192, 
and 7,899,466 SNPs for 50k, HD and WGS, respectively, in the final genotype dataset. 

Table 1. Descriptive statistics for growth traits and a carcass trait 
 

 N Mean Min. Max. SD. age age mean 
400-day weight, kg 56,058 398.46 235.00 622.00 67.82 301 to 500 400.29 
600-day weight, kg 23,705 521.84 339.00 814.00 97.89 501 to 700 574.67 
Carcass Intramuscular Fat, % 4,074 9.76 3.00 20.50 3.65 504 to 990 722.24 
 

Statistical Analysis. Possible systematic effects were tested for their significance in the model. 
The effects tested were CG and a linear and quadratic covariate of age at measurement and dam age. 
The effects with p-value <0.05 was kept in the final model. Due to a large difference in sample size 
between growth and carcass traits, they were examined differently. To assess prediction accuracy, a 
10-fold cross-validation was conducted using the whole dataset for CIMF. While, for the growth 
traits, the analysis imitated a forward prediction by splitting animals into a reference and a testing 
group based on their year of birth. The last two years of the data was used as the testing set and other 
samples were included in the reference group. Individuals in the testing set were grouped according 
to the level of their relatedness with the reference set by a relationship value, which extracted from 
a genomic relationship matrix (GRM). Then, samples in each subgroup were randomly assigned into 
10 groups for cross-validation. A univariate animal model using the full dataset with 50k genotype 
density was used to generate phenotypes corrected for all estimated fixed-effect coefficients. GRMs 
with three different genotype densities were constructed based on Yang et al. (2011) using GCTA 
software. The top-30 relationship values were extracted from off-diagonal elements of the GRM 
using 50k and then averaged (Clark et al. 2012). Observed phenotypes of the testing samples were 
masked and genomic estimated breeding values were obtained from analyses based on 50k, HD and 
WGS genotypes. The genomic prediction was performed using the GBLUP approach with a 
univariate animal model using MTG2 (Lee and Van der Werf 2016). The accuracy of genomic 
prediction was calculated as the Pearson correlation coefficient between the corrected phenotypes 
and GEBVs of the testing group divided by the square root of the trait heritability obtained from a 
50k-based analysis. The accuracies with the standard error were expressed as an average value from 
the cross-validation. The accuracy of genomic predictions was compared between three densities of 
genotypes, and was reported from the testing group and the subgroups according to the degree of 
relatedness. 
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RESULTS AND DISCUSSION 
The accuracies of genomic prediction for the studied traits are presented in Table 2. For both 

growth traits, the prediction accuracies were similar for the three genotype densities. Although there 
was no significant difference, the HD density had the highest accuracy with values of 0.683 (0.017) 
and 0.630 (0.016) for 400dWT and 600dWT, respectively. The lowest accuracy for both traits was 
from the WGS, given 0.675 (0.016) for 400dWT and 0.621 (0.014) for 600dWT. The accuracy 
marginally increased from 50k to HD, then slightly decreased from HD to WGS. Similarly, there 
was no difference in the prediction accuracies for CIMF. The highest accuracy was 0.643 (0.027) 
retrieved from HD but there was not significantly different in a comparison. Our results agreed with 
previous studies showing that using WGS did not significantly improve the accuracy of genomic 
prediction (Raymond et al. 2018; Bedhane et al. 2021). 

Table 2. Prediction accuracy1,2 with three different genotype densities by testing group and by 
relatedness subgroups, and trait heritability 

n 50k HD WGS 
400-day weight, kg
testing group 17,942 0.677 (0.016) 0.683 (0.017) 0.675 (0.016) 

medium-related 10,230 0.656 (0.020) 0.659 (0.021) 0.650 (0.022) 
high-related 7,712 0.711 (0.019) 0.721 (0.020) 0.714 (0.020) 

h2 0.246 (0.007) 

600-day weight, kg
testing group 5,117 0.627 (0.014) 0.630 (0.016) 0.621 (0.014) 

medium-related 3,259 0.611 (0.013) 0.615 (0.012) 0.608 (0.011) 
high-related 1,858 0.659 (0.032) 0.660 (0.036) 0.648 (0.035) 

h2 0.338 (0.001) 

Carcass Intramuscular Fat, % 
testing group 0.639 (0.024) 0.643 (0.027) 0.637 (0.027) 

h2 0.464 (0.027) 
1 Prediction accuracy with standard error was obtained from the 10-fold cross-validation. 
2 There was no significant difference in a comparison (p-value <0.01). 

Prediction accuracy by relatedness group. Different number of top relationship values were 
tested to define strength of relatedness between testing samples and reference set. The top-30 
average was found to clearly split testing set into two groups (Figure 1). Then, the testing set was 
subdivided into two groups, which were medium- and high-related groups, and 0.25 was the 
threshold point. There were 17,942 and 5,117 animals in the testing group for 400dWT and 600dWT, 
respectively. For CIMF, a 10-fold cross-validation with the whole dataset was performed. 
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As expected, the high-related group obtained more accurate predictions compared to the 
medium-related group (Table 1). The accuracy of relatedness subgroups fluctuated with only a slight 
change with different genotype density. However, difference in the accuracy was not significant 
between the genotype densities. The highest accuracy for both the medium- and the high-related 
group were from HD, and the lowest accuracy was from the WGS. The accuracy by subgroups was 
similar to the testing group where the accuracy steadily declined as the genotype density increased. 
There were a small difference and no clear pattern in the prediction accuracy when increasing the 
genotype density. Lastly, accuracy of genomic prediction is involved by several factors, for instance, 
trait heritability, size of the reference and relatedness between selection samples and the reference. 

Figure 1. Relationship values for testing animals from 50k genotype by traits with the 
threshold point 

CONCLUSION 
This study has investigated the benefit of whole-genome sequence for predicting breeding values 

for the selected growth and carcass traits in Angus cattle. Although the highest prediction accuracies 
were retrieved when using the high-density genotype, the difference was not significant compared 
to the 50k-based prediction. For the traits studied, there was no clear evidence of increased 
prediction accuracy with denser genotypes, such high-density array and whole-genome sequence. 
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