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SUMMARY 

Including genomics in genetic evaluations can effectively increase selection response, especially 
for hard to measure, sex limited, and late in life traits. Modelling the increase in accuracy is useful 
when designing reference data projects and when breeders choose animals to genotype. Theoretical 
equations exist to predict the EBV accuracy of un-phenotyped animals. However, there are anecdotal 
reports that the accuracy obtained in practice was often lower than theoretical predictions. This paper 
validated an empirical approach to predicting accuracy in Australian Brahman data for nine traits. 
The empirical approach required the accuracy of reference and target animals from a standard 
pedigree BLUP genetic evaluation and the accuracy of reference animals from a GBLUP genetic 
evaluation. Using this information, a series of equations were applied to obtain the predicted GBLUP 
accuracy for target animals. Forward cross-validation showed that the empirical predicted GBLUP 
was comparable to the actual GBLUP accuracy observed for target animals (accuracy differed 
between 0.9% and 3.6%). In contrast, theoretical predictions differed from the observed GBLUP 
accuracy between 5.2% and 21.8%. For smaller (<4,000) reference populations, the theoretical 
accuracy was closer to the observed GBLUP accuracy, with differences ranging from 5.2% to 
11.6%. The theoretical accuracy was overestimated by between 20.7% and 21.8% for larger 
reference populations. Empirical estimates of the effective number of chromosome segments (Me) 
were between 2.0 and 3.9 times that of theoretical Me, with the greatest difference being for the traits 
with larger reference sizes. This suggests that the theoretical Me is the reason for overestimated 
theoretical accuracy predictions.  

  
INTRODUCTION 

Selection response is linear with increasing EBV accuracy, and genomic selection can be an 
effective way of increasing accuracy, especially for hard or expensive to measure traits, late in life, 
and sex-limited traits. For genomic selection to be effective, reference data with genotyped and 
phenotyped animals are required, and generally, the larger the reference size, the greater the 
accuracy (Goddard and Hayes 2009). Constructing reference data to underpin genomic selection can 
be expensive, especially for traits not commonly recorded by the industry. Therefore, predicting 
EBV accuracy is useful for designing reference data projects. Accuracy predictions are also useful 
for breeders deciding which animals to genotype and the value they can expect from their 
investment. There have been several theoretical predictions formulated to predict EBV accuracy of 
un-phenotyped animals given different population parameters (Daetwyler et al. (2008), Goddard 
and Hayes (2009), Goddard et al. (2011)). However, there have been anecdotal reports that accuracy 
from national genetic evaluations was often lower than the theoretical predictions. Dekkers et al. 
(2021) proposed an empirical approach for predicting EBV accuracy. This method bases predictions 
on the accuracy of reference and target animals from pedigree BLUP and GBLUP genetic 
evaluations. This study aimed to apply Dekkers’ empirical approach using an Australian Brahman 
beef cattle dataset and validate the prediction accuracies for nine traits using forward cross-
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validation. 
 

MATERIALS AND METHODS 
Full details of Dekkers’ empirical method for estimating the effective number of chromosome 

segments (Me) and predicted EBV accuracy are in Dekkers et al. (2021). In brief, this approach 
requires two genetic evaluations to be undertaken. The first is a BLUP evaluation with full pedigree 
(including target animals) and phenotypes of reference animals. The second was a GBLUP analysis 
using the phenotypes and genotypes of reference animals. The average BLUP and GBLUP accuracy 
for reference animals and average BLUP accuracy for target animals, along with population 
parameters (i.e. reference size, heritability and genome size) were used in a series of equations that 
iteratively updated Me until estimates were stable, and predicted GBLUP accuracy for target 
animals. Me was estimated with the equation below, where N was the number of reference animals, 
𝑞𝑞𝐷𝐷2  the proportion of genetic variance captured by the genotypes (initially 𝑞𝑞𝐷𝐷2 = 1 but was 
recalculated each iteration using 𝑞𝑞𝐷𝐷2 = 𝑚𝑚

𝑚𝑚+𝑀𝑀𝑒𝑒
 where m = number of markers), h2 the trait 

heritability and 𝜃𝜃𝐷𝐷𝐷𝐷 the Fisher information statistic of the reference animals. Dekkers’ predicted 
GBLUP accuracy of target animals (𝑟𝑟𝐺𝐺𝐺𝐺; equation below) was calculated based on the average 
accuracy of target animals from the BLUP analysis (𝑟𝑟𝐴𝐴𝐴𝐴) and the contribution of G above that of A 
for target animals (𝑟𝑟𝐷𝐷𝐷𝐷). For target animals, 𝑟𝑟𝐷𝐷𝐷𝐷 was a function of the contribution of G above that of 
A for reference animals (calculated from average BLUP and GBLUP accuracy) and the number of 
generations between reference and target animals. 

𝑀𝑀𝑒𝑒   = 𝑁𝑁𝑞𝑞𝐷𝐷
2ℎ2

𝜃𝜃𝐷𝐷𝐷𝐷
  𝑟𝑟𝐺𝐺𝐺𝐺=�
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Pedigree, pre-adjusted phenotypes and genotypes were obtained from the Brahman 
BREEDPLAN genetic evaluation. Genotypes were from different commercially available SNP 
chips, and after imputation and QA as part of the BREEDPLAN evaluation, 67,327 SNPs were 
available for analysis. Nine traits were considered; four hard to measure traits (shear force, lactation 
anoestrus interval, percent normal sperm, age of puberty) and five that were widely recorded 
(ultrasound scanned EMA, scrotal size, 200, 400 and 600-day live weight) in seedstock herds. All 
traits were recorded following BREEDPLAN protocols.  

Forward cross-validation was used to validate Dekkers’ empirical method. Reference (genotyped 
and phenotyped) animals were split based on year of birth, with the earliest animals remaining 
reference animals and more recent animals considered target animals with phenotypes and genotypes 
assumed unknown. The birth year that defined reference and target groups varied for each trait, such 
that approximately 70% of the data was the reference and the remaining 30% target animals. A five-
generation pedigree was built for reference and target animals, and three analyses were performed; 
1. BLUP evaluation with reference phenotypes and five-generation pedigree, 2. GBLUP evaluation 
with reference phenotypes and genotypes, and 3. GBLUP evaluation with reference phenotypes and 
the genotypes of both reference and target animals. Analysis 1 and 2 were used to apply Dekkers’ 
equations to obtain predicted GBLUP accuracy of target animals (𝑟𝑟𝐺𝐺𝐺𝐺) and population 𝑀𝑀𝑒𝑒. While 
analysis 3 was undertaken to get the observed GBLUP accuracy for target animals, which was then 
compared with Dekkers’ predictions. The same set of genetic parameters and models were used for 
each analysis. For all analyses, WOMBAT was used and exact accuracy based on the models and 
data obtained (Meyer 2007). Theoretical accuracy was calculated using Daetwyler et al. (2008), 
where 𝑀𝑀𝑒𝑒 = (2𝑁𝑁𝑒𝑒𝐿𝐿𝐿𝐿)/𝑙𝑙𝑙𝑙(𝑁𝑁𝑒𝑒𝐿𝐿) from Goddard et al. (2011) and compared with Dekkers’ prediction 
and the observed GBLUP accuracy. To theoretically derive 𝑀𝑀𝑒𝑒, the effective population size of the 
breed was estimated using RelaX2 (Stranden, 2014) software and was estimated to be 141.6 animals. 
The size of the chromosomes (L) was 1.017M (Snelling et al. 2007) with 29 autosomal chromosomes 
(k) represented on the SNP chips. 
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RESULTS AND DISCUSSION 
Table 1 records the number of reference and target animals, assumed trait heritability and average 

BLUP and GBLUP accuracy (empirical analyses 1 and 2). The number of reference animals ranged 
between 982 (shear force) and 11,541 (200-day live weight). Average accuracy from the BLUP 
analysis ranged from 0.47 (shear force) to 0.77 (age at puberty) for reference animals and between 
0.19 (percent normal sperm) and 0.39 (600-day live weight) for target animals. BLUP EBVs of 
target animals were based on pedigree relationships to the phenotyped reference animals. Reference 
animals had BLUP accuracies between 0.22 (ultrasound EMA) and 0.42 (age at puberty) higher than 
target animals. An additional but smaller increase in accuracy was observed for reference animals 
when genotypes were included in a GBLUP analysis; increases in accuracy ranged between 0.02 
(lactation anoestrus interval) and 0.11 (200-day live weight).  

 
Table 1. Number of reference and target animals, assumed heritability and average accuracy 
from BLUP and GBLUP analysis of Brahman reference (REF) and target (TAR) animals 
 

 Number of animals  Average accuracy 
Trait REF TAR h2 BLUP 

REF 
GBLUP 

REF 
BLUP 
TAR 

Shear force (kg) 982 511 0.26 0.47 0.50 0.21 
Lactation anoestrus interval (days) 1,048 470 0.40 0.68 0.70 0.30 
Percent normal sperm (%) 1,366 583 0.25 0.52 0.55 0.19 
Age of puberty (day) 1,670 806 0.57 0.77 0.80 0.35 
Heifer ultrasound scanned EMA (cm2) 2,565 1,393 0.21 0.52 0.57 0.30 
Scrotal size (cm) 4,351 1,988 0.48 0.67 0.73 0.32 
600-day live weight (kg) 7,805 3,673 0.51 0.70 0.78 0.39 
400-day live weight (kg) 8,730 4,832 0.41 0.67 0.75 0.37 
200-day live weight (kg) 11,541 4,415 0.25 0.59 0.70 0.36 

 
Table 2. The estimated effective number of chromosome segments (𝑀𝑀𝑒𝑒) and predicted 
accuracy from Dekkers’ empirical approach (Prediction), the GBLUP accuracy from forward 
cross-validation (observed) and the Daetwyler theoretical prediction (Theoretical) 
 

  Accuracy of target animals 
Trait 𝐌𝐌𝐞𝐞 Prediction Observed Theoretical1 

Shear force (kg) 4,500.64 0.29 0.28 0.36 
Lactation anoestrus interval (days) 3,425.78 0.42 0.40 0.45 
Percent normal sperm (%) 4,252.34 0.32 0.30 0.41 
Age of puberty (day) 3,997.45 0.52 0.49 0.60 
Ultrasound scanned EMA (cm2) 4,640.22 0.41 0.40 0.49 
Scrotal size (cm) 5,740.04 0.56 0.53 0.74 
600-day live weight (kg) 6,550.21 0.63 0.61 0.84 
400-day live weight (kg) 6,359.78 0.66 0.63 0.83 
200-day live weight (kg) 6,227.21 0.60 0.58 0.80 

1 theoretical prediction based on Daetwyler et al. (2008) method where  𝑀𝑀𝑒𝑒 = 1,680.23 (𝑁𝑁𝑒𝑒 = 141.6) 
 

The predicted accuracy from Dekkers’ empirical (Prediction) and Daetwyler’s theoretical 
(Theoretical) method are shown in Table 2, along with the observed GBLUP accuracy (Observed) 
of target animals. The difference between Dekkers’ empirical and Daetwyler’s theoretical accuracy 
was smaller (0.03 to 0.09) with smaller reference sizes, and Dekkers’ empirical prediction was lower 
than Daetwyler’s theoretical prediction. However, for traits with more than 4,000 reference animals, 
the difference between Dekkers’ empirical and Daetwyler’s theoretical predictions was much larger 
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(0.12 to 0.15). The observed GBLUP accuracy of target animals (analysis 3) showed that Dekkers’ 
empirical predictions were closer to the observed accuracy than Daetwyler’s theoretical accuracy. 
The observed accuracy was slightly lower (0.01 to 0.04) than Dekkers’ empirical predictions. The 
comparison with Daetwyler’s theoretical accuracy showed larger differences. For traits with fewer 
than 4,000 animals in the reference, theoretical accuracies were between 0.05 and 0.12 higher than 
the observed accuracy. The differences for traits with larger reference sizes ranged between 0.21 
and 0.22. These differences can be explained by the theoretical 𝑀𝑀𝑒𝑒 term being underestimated. Table 
2 shows the empirically estimated 𝑀𝑀𝑒𝑒 with estimates varying for each trait; for all traits empirical 
𝑀𝑀𝑒𝑒 was much larger than theoretical 𝑀𝑀𝑒𝑒. Empirical 𝑀𝑀𝑒𝑒 increased with increasing reference size, 
suggesting a greater diversity of DNA represented in larger references. For traits with smaller 
references, empirical 𝑀𝑀𝑒𝑒 was 2.0 to 2.8 times larger than theoretical 𝑀𝑀𝑒𝑒, and for traits with larger 
reference sizes, empirical 𝑀𝑀𝑒𝑒 was 3.4 to 3.9 times larger. The theoretical 𝑀𝑀𝑒𝑒 was a function of the 
effective population size and was constant across all traits.  

These results demonstrate that Dekkers’ empirical approach effectively predicted EBV accuracy, 
especially for larger reference sizes where theoretical methods overestimate accuracy. It was 
observed (results not shown) that spurious results occurred for the empirical method when the 
reference size was small (less than ~1,000 animals). However, with small reference sizes, genomic 
selection will have limited benefits over pedigree-based selection. The empirical method is only 
suitable once reference datasets with more than 1,000 animals exist, which limits its application for 
project design or breeds not yet undertaking genomic selection. It may be possible to use estimates 
from other breeds and traits to predict accuracy in these situations, but further work is needed to 
confirm this. One advantage of Dekkers’ empirical method is the ability to make predictions for 
different subsets of target animals. This validation study obtained the BLUP accuracy for target 
animals from a pedigree BLUP analysis. However, an alternative may be to use an assumed accuracy 
for target animals. Therefore, predictions can be made for a range of scenarios, including 
“cleanskins” where no pedigree or phenotypes are available (i.e. BLUP accuracy=0), animals that 
are not phenotyped but have phenotyped relatives and already phenotyped animals (i.e. BLUP 
accuracy will be higher than for un-phenotyped animals). In contrast, current theoretical predictions 
apply to one scenario, assuming that the target animals are un-phenotyped but have pedigree 
recorded and do not consider other scenarios.  
 
CONCLUSIONS 

Predicting the accuracy that can be achieved from genomic selection is desirable. This paper 
demonstrated that an empirical approach for accuracy prediction was effective and provided better 
predictions than existing theoretical approaches. However, the method does rely on reference 
datasets being available. 
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